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CHAPTER I
INTRODUCTION

By a graph G = (V, E), we mean a finite undirected graph containing no loops

or multiple edges. Furthermore, we assume that GG has no isolated vertices.
In 1994, Vilfred [2] introduced the concept of ¥-labeling: A Y-labeling of
a graph G = (V,E) of order n is a bijection f : V — {1,2,..,n} such that
Z f(u) =k for all v € V, where N(v) is the neighborhood of v. The constant

ueN (v)
k is called the magic constant of the labeling f. A graph which admits a -

labeling is called a Y-graph. The Y-labeling is also known as the 1-vertex-magic
vertex labeling [3] and the distance magic labeling [4].

In 2015, Godinho and Singh [l introduced the concept of S-magic graph. A
graph G = (V| E) is said to be an S-magic graph if there exist a set T" of positive
integers with |T'| = |V, a bijection ¢ : V' — T, and a positive integer k such that

Z d(u) = k for all v € V. We call k an S-magic constant, ¢ an S-magic

ueN (v)
labeling, and 7" an S-magic labeling set. It follows that a »-graph is an S-

magic graph. Moreover, if GG is an S-magic graph, then each S-magic labeling set
T has a unique corresponding S-magic constant, i.e., for any two S-magic labelings
¢1:V = T and ¢o : V — T, we have Z o1 (u) = Z pa(u) for all v € V.

u€EN (v) u€N (v)
We denote the set of all S-magic constants that can be obtained through different

S-magic labelings of G' by M(G). Moreover, they observed that the complete r-

partite graph G' = Ky, ms.....m,., Where my < mgy < --- < m, is an S-magic graph

if and only if my > 2.

In 2018, Godinho and Singh [{] studied the function i(G) = r%lelg a(T), where
S = {T C N : T is an S-magic labeling set of G} and a(T) = max(T). The
distance magic index of G is defined by ¢(G) — n and is denoted by 0(G).

In this thesis, we determine i(G) for G which satisfies the conditions:
1. G = K m,

2. G = K myms is a complete tripartite graph and 2 < mgy < mg

m, 18 a complete r-partite graph and m; = mqy = ... =m, > 2

-----

3. G' = Ky, ms is a complete tripartite graph and 2 < mgy < ms.



CHAPTER 11
PRELIMINARIES

In this chapter, we review some definitions, theorems, lemmas, corollaries, and

examples used in this work. For more details, see in [[], [4] and [5].

2.1 S-magic graph

Definition 2.1. [I] A X-labeling of a graph G = (V, E) of order n is a bijection
f:V — {1,2,...,n} such that Z f(u) =k for all v € V, where N(v) is the

u€N (v)
neighborhood of v and where £ € N . The constant % is called the magic constant

of the labeling f. A graph G is called a Y-graph.

Definition 2.2. [1] Let G = (V, E) be an undirected graph with neither loops nor
multiple edges. A graph G = (V, E) is said to be an S-magic graph if there exist
a set T of positive integers with |T'| = |V, a bijection ¢ : V' — T', and a positive
integer k£ such that Z ¢(u) = k for allv € V. We call k an S-magic constant,

ueN (v)
¢ an S-magic labeling, and 7" an S-magic labeling set.

Definition 2.3. [1] If a graph G is S-magic then magic spectrum of G is defined
to be the set of all magic constants that can be obtained through different S-magic
labeling of G and is denoted by M (G).

Example 2.4. [[I] A path P; has 3 vertices z,y and z. Let deg(x) = 1,deg(y) = 2
and deg(z) = 1. We will show that an S-magic labeling set 7' of P; must be in
the form 7" = {a,a + b, b} where a,b are distinct positive integers. It is obvious
that if we define f : V. — T by f(x) = a, f(y) = a+ b and f(z) = b, then f
is an S-magic labeling. Therefore T = {a,a + b,b} is an S-magic labeling set
of P;. Now we assume that 7' = {a,b,c} is an S-magic labeling set of Pj, and
let f:V — T by f(r) = a, f(y) = c and f(z) = b. Then ¢ must be equal to
a+b. It follow that the S-magic constant of P is a +b. Since a and b are distinct
positive integers, a+b > 1+ 2 = 3. Hence, the path P5 is an S-magic graph where
M(Ps) ={3,4,5,6,...}.



a a+b b

L ]

Figure 2.1: A labeling of P; where S-magic constant is a + b.

Example 2.5. [l For a cycle Cy, if we label a pair of the opposite vertices with
the same summation, we get that C4 is an S-magic graph. It is not hard to see
that T'= {1,2,4,7 + 1} is an S-magic labeling set of Cy where i = 3,4,5,... with
5,6,7,... as magic constants. Since Cy has 4 vertices, there is one vertex such
that the labeling assigned to its neighborhoods are at least 4 and another number.
Thus the magic constant of C4 greater than 4. Hence Cj is an S-magic graph
where M (Cy) = {5,6,...}.

i i+1

Figure 2.2: An S-magic labeling T'= {1,2,4,i 4+ 1} of C; where S-magic constant
is 7 + 2.

Definition 2.6. [I] A vertex of degree 1 is a leaf, and a vertex that adjacient to

a leaf is called a support vertex.

Remark 2.7. [1] If G contains two distinct support vertices u and v, then G is

not an S-magic graph.

Proof. Suppose G is an S-magic graph, and G has two distinct support vertices u
and v. There are a leaf a adjacent to u and a leaf b adjacent to v, it implies the

numbers that label to v and v are equal. This is a contradiction. [

Theorem 2.8. [1] A tree T is an S-magic graph if and only if T = Ky, where
r> 2.



Theorem 2.9. [1] If there exist two vertices u and v in G such that | (N (u) ~ N(v))U
(N(v) N N(u))| =2, then G is not an S-magic graph.

Corollary 2.10. |1/ The complete graph K, is not S-magic for n > 2.

Lemma 2.11. [1] The complete r-partite graph G = K, ms....m, s S-magic if and

.....

only if the sum of the labels of all vertices in any two partite sets are equal.

Theorem 2.12. [1] The complete r-partite graph G = K, m,

.....

<o <my. is S-magic if and only if my > 2.

Lemma 2.13. [1] If G is S-magic, then the smallest S-magic constant corresponds

to the S-magic labeling set T for which Zz s minimum.
‘€T

2.2 Distance magic index

Definition 2.14. [4] Let i(G) = I%llgl a(T), where S = {T' C N : T is an S-magic
€

labeling set of G} and a(T) = max(T'). The distance magic index of G, denoted

by 6(G) is defined by i(G) — n.

Theorem 2.15. [4] A tree T is S-magic if and only if T = K,,, where r > 2.

—1
Furthermore, (K1) is r(r2 & e

Lemma 2.16. If G is an S-magic graph of order n with distance magic index 0,
then

d2n+0)—6+1)—A(A+1) >0
5 >
Proof. Since the distance magic of G is 0, there is a set T C {1,2,...,n + 6}
with |T| = n and an S-magic labeling f : V' — T with a magic constant k. Let
vy, vy € V(G),deg(v1) = 0 and deg(ve) = A. Thus

A(A+1)

Y oflw) 1424+ A= 5

ueN (v1)

and

52(n+6)—6+1)

Y fw) <40+ n+0—1)+-+n+0-0+1)=

2
u€N (v2)
. Since Z flu) = Z f(u) =k, we get
u€EN (v1) ueN (v2)
02n+60)—3d+1) S A(A+1)

2 2



Therefore

02n+0)—6+1)-A(A+1)
2

> 0.

et 52(n+x) —5+1) — AA+1)
g(z) = 22T 5 :

then g(z) is a strictly increasing function of x. If there exist a non-negative integer

a satisfying
62(n+60)—0+1) = A(A+1)
2
it implies 0(G) > a. Also that if a is a smallest integer such that g(a) > 0, then

0(G) > a. So,

<0,

g(o):5(2"_5+1;_A(A+1), (2.1)

]

Lemma 2.17. Let G be a graph of order n such that g(0) < 0. Then 0(G) >
l9(0)]

)

Proof. Let |g(0)| = ¢qd + 1,0 <17 < 4. Since g(0) < 0, we have

d2n—-30+1)—A(A+1)

9(0) = 5 = —qd —T.
Then
5(2n—5+1;—A(A+1)+q5:_T
62n—04+1) —AA+1)+2¢5
5 - _
02(n+q) —0+1)-AA+1) .
2 — —I.

It implies that if r = 0, ¢ is a smallest value of x that g(z) > 0. Then §(G) > q.
If » > 0, then #(G) > ¢q and

5(2(n+q)—(5+1)—A(A—|—1)+2r:O
2

Since r < 9,

d2(n+q)—0+1)—A(A+1)+2r _ d2n+q)—d+1)—A(A+1)+20
2 2 '

Hence 52(n+ (g +1)) —6+1) — A(A +1)

> 0.
2




Therefore, ¢ + 1 is the smallest value of = that g(z) > 0. Thus 6(G) > ¢ + 1.
Observation that if G = K, 1, is a complete bipartite graph where 2 < m; < my.
We apply § = mq, A = my and n = m; + msy. By (@), we get

mi(2n —my + 1) — ma(me + 1)

9(0) = 5
i m1(2(m1 + mg) —mq + 1) — mg(mg + 1)
B 2
_mi 4 2mymg +my — (m3 + mo)
B 2
n(n+1

]

Theorem 2.18. [4] Let G be a complete bipartite graph K, m, where2 < my < my
and n =my +mqy. Let g(0) = M — ma(mg +1). Then

0, n(n+1) > 2my(me + 1) and n =0 or 3 (mod 4)
9(G) =<1, n(n+1) > 2my(ma+ 1) andn =1 or 2 (mod 4)
O 1) < 2analms + 1),

Proof. Case n(n+1) > 2my(my+1) and n =0 or 3 (mod 4). It is completed
by Theorem 1.6 in [4].

Case n(n + 1) > 2my(my + 1) and n = 1 or 2 (mod 4). Since a sum of
elements in a set {1,2,...,m; +ma} is equal to (m1+m2)(72m+m2+1) and mq +mo =
1 or 2 (mod 4), this sum is not divided by 2. Then 6(G) > 0. Let S(L;) and
S(Ls3) be the sums of the labelings assigned to V; and V5, repectively. We label
Li={ma+1,mo+2,...,my+mq} to Vi and Ly = {1,2,... ,my} to V3. Then
S(Ly) = mymg + %ﬁl) and S(Lo) = %ﬁl) Thus

n(n+1)

S(Ll) - S(Lz) = 2

— Mo (mg + 1)
= 1 or 2 (mod 4), it follows that w = 1 (mod 2). Furthermore,
ma(mg +1) =0 (mod 2), and then

n(n+1)
2

Let S(Ly) — S(La) =2p — 1 where p = (m; — 1)g+7 >0 and r > 0. So,

—mg(ma+1)=1 (mod 2).



Now, we proceed to attain equality in the sum of the labelings for the two partite

set. We divide into 2 cases.

For » = 0: we label the vertices in V; and V5 with the labeling sets L'1 =
{me+1—qma+2—q,...,mg+mi—1—q,my+my+1} and Ly = {1,2,...,mg—
gmo—q+1+(my—1),my—q+2+ (my—1),...,me+ (my — 1)}, respectively.
Thus S(L;) = S(L,) by using the relation in (@) See the labeling in Figure @ :

Vi

m;—q+1+(m;—1

Figure 2.3: A labeling of K, ,u, where m; and my satisfy n(n + 1) > 2ma(msg +
1)and n =1 or 2 (mod 4) for r = 0.

To see that all elements in L] except mg + m; + 1 are the numbers between
me —qand me —q+ 1+ (my — 1) in LIQ. Moreover, it obvious that mqy +m; + 1

greater than all elements in L,. Hence all elements in L)} and L, are distinct.

For r» > 0: we label the vertices in V; and V5 with the labeling sets L/1 =
{may—q,ma—q+1,....ma—q+(r—1),me—q+(r+1),mo—q+(r+2),...,me—
g+ (my—1)my+my+1}and Ly = {1,2,...,my—q,mg — q+ 1+ (my — 1), my —
q+2+ (my—1),...,mg+ (my —1)}. Thus S(L}) = S(L,) by using the relation
in (@) See the labeling in Figure



m,+1—gq

my+(r—-1)—q

my+(T+1)—gq

my;+(m;—1)—q

Figure 2.4: A labeling of K,,, ;n, where my and my satisfy n(n + 1) > 2mag(ms +
1)and n =1 or 2 (mod 4) for r > 0.

To see that all elements in L/1 except mo + my + 1 are the numbers between
me —q and me +2 —q+ (my — 1) in L;. Moreover, it obvious that my +m; + 1
greater than all elements in L,. Hence all elements in L} and L, are distinct.
Therefore, the set {1,2,...,my +my—1,m; + my + 1} is an S-magic labeling set
of G, this implies §(G) = 1.

Case n(n + 1) < 2my(msy + 1). We have

(my1 + me)(my +may+ 1) < 2(mg + 1)
m% + m% + 2mims +mq + mo < 2m§ + 2ms
2mimy +my(my + 1) < m3 + my
my(my+1)  m3+my

< . 24
mimo + 9 9 ( )

By Lemma and (@), 6(G) > [%-‘. We claim that 0(G) = {%ﬁ)‘—‘. Let
S(Ly) and S(Ls) be the sums of the labelings assigned to V; and V5, repectively.
We label the sets L1 = {mao+1,ma+2,...,ma+my} toVj and Ly = {1,2,...,ma}
to Vo. Then S(Ly) = mymsg + % and S(Ls) = w By (@), we get
S(Ly) < S(Ly). Let K = S(Ly) — S(L1) = myq +r where r > 0 and ¢ < my. So

S(LQ) — (S(Ll) +miq + T’) =0. (25)

For » = 0: we label the vertices in V; and V5, with the labeling sets L’l =
{my+14q, ma+2+q, ..., motmi—1+q mo+mi+q}and Ly = Ly = {1,2,...,my},

respectively, see in Figure @



Figure 2.5: A labeling of K., ;m, where m; and my satisfy n(n+1) < 2mg(me+1)

for r = 0.

Thus S(L}) = S(L,) by using the relation in (@) Therefore, 0(G) = ¢ =

qu'

mi

For r > 0: we label the vertices in V4 and Vj with the labeling sets L = {my+1+
¢ M+ 24, - Moty —T+q, MaFmy —r42+4q, ... Myt mi+q, ma+my +q+1}

and Ly, = Ly = {1,2,...,my}, respectively, see in Figure P.6.

1 V2

my+my+q-r

m,+m +q—r+2

m, +m +q

my+m +q+1

Figure 2.6: A labeling of K,,, ,n, where m; and my satisfy n(n+1) < 2mg(me+1)
for r > 0.

Thus S(L;) = S(Ls) by using the relation in (@) Therefore, we get 0(G) =
g+ 1= Pgw)q . 0

mi1




10

Example 2.19. Let G = K, ,n, where m; = 3 and my = 5. Then m;, my satisfies
the condition n(n + 1) > 2mgy(me + 1) and n = 0 or 3 (mod 4). Then G = Kj;
is an S-magic graph with an S-magic labeling set 7' = {1,2,3,4,5,6,7,8}. See the
labeling in Figure @ Then 6(G) = 0.

V1 V2
4
6
8
Figure 2.7: A labeling of K35 and §(K35) = 0.
Example 2.20. Let G = K,;,, n, where m; = 3 and mg = 6. Then my, my satisfies
the condition n(n+1) > 2my(my+1) and n =1 or 2 (mod 4). By Theorem ,

6(G) = 1. Then G = Kjg is an S-magic graph with an S-magic labeling set
T ={1,2,3,4,5,6,7,8,10}. See the labeling in Figure P.§.

41 V,
Figure 2.8: A labeling of K36 and §(K36) = 1.

Example 2.21. Let G = K, ;n, where m; = 3 and my = 10. Then m,, my satis-
fies the condition n(n+1) < 2my(mg+1). By Theorem .18, 0(G) =7. Then G =
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K36 is an S-magic graph with an S-magic labeling set 7' = {1,2,...,10,17,18,20}

that can see in Figure R2.9.

o

1

O 00 NOULT WIN -

=
o

Figure 2.9: A labeling of K319 and 0(K319) = 7.

In the next chapter, we determine i(G) for G = Ky, ym,.m, 1S @ complete tripar-
tite graph and satisfies the condition m; = my = mg > 2 and determine i(G) for
G = K, myms satisfies the following conditions:

1. G = Ky, ms....m, is a complete r-partite graph and m; =mg = ... = m, > 2
2. G = Ky m,m; is a complete tripartite graph and 2 < mgy < mg
3. G = Ko m,ms, is a complete tripartite graph and 2 < mgy < ms.



CHAPTER III
MAIN RESULTS

Theorem 3.1. Let mqy,mo,...,m, be positive integers where 2 < my; = mg =
- =m,, and let G = Ky m,
then G is an S-magic graph and G(G) =

. be a complete r-partite graph. If m is even,

.....

Proof. Let mq, mo, ..., m, be positive integers where 2 < m; =mgy = --- =m, = m,
and let G = Ky mo,...m. be a complete r-partite graph. Let Vi, V5, ..., V. be
the partite sets of G. For i € Sy, i € Vi where k = 1,2,...,r if and only if

=k or (1 —k) (mod 2r). Figure @ shows the labeling f, : V(G) — S; with a
labeling set S; = {1,2,...,rm}.

v, v, Vs V.

Figure 3.1: A Labeling of G with a label set S; ={1,2,...,rm}

Consider the sum of the labelings assigned to each partite V. Then the sum

is equal to

3
N

v ‘

[M]

Crn+k)+ Y 2m4+1—k)=k+Q2r+k)+Ar+k)+- -+ (r(m—-2)+k)

1

3
Il
o

n

+2r+1—-k)+@r+1—k)+--+(m+1—k)
=k+rm+1—-k)+2r+k+r(m—2)+1—k)
ot (rm—=2)+k+2r+1—k)

= %(rm—i— 1).
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This show that the sum of the labelings assigned to each partite is equal to w

Then i(G) = rm. Hence 6(G) = 0. O

Lemma 3.2. Let S = {rm —3r+1,rm —3r + 2, ...,rm} where m and r are odd.
Then

A={rm—3r+1,rm—3r+3,...,rm — 2r},

B={rm— (), rm— (32) - 1,..,rm — 2r + 1},

C={rmrm—1,.,rm— (')},
D={rm—3r+2rm—3r+4,..,rm—2r —1},
E={rm—r,rm—r—1,..,rm—32(r—1)},

F={rm— (') —1,rm—(52) —2,...,rm — r + 1} partition S.

Proof. Let S = {rm — 3r + 1,rm — 3r +2,...,rm} where m and r are odd. We
divide all elements in S into 6 sets: A = {rm —3r + 1,rm —3r +3,...,rm — 2r},
B={rm—3=L rm— 31 1 rm—2r+1},

C={rm,rm—1,.,rm— 5},

D={rm—3r+2,rm—3r+4,...,rm —2r — 1},
E={rm—r,rm—r—1,..,rm— %(r -1},
F={rm-(5)—-1rm—(5})—2,...,rm—r+1}.

We will show that A, B,C, D, E and F are 6 partitions of S. Note that A and D
contain an increasing sequence. The others contain a decreasing sequence. Then
max A < min B, min C' > max F and max F' > max E. Moreover, CNFNEND =
@ and AN B = @. We only need to show that AN D = &. Since A contains only
odd positive integers and D contains only even positive integers, then AN D = @.

In the last, we will show |A| + |B| + |C| + |D| + |E| + |F| = |S| = 3r. Consider

rm—2r—(rm—-3r+1)+2 r+1
Al = i
N % Rolk
3r—1 1
|B| = rm — - —(7"m—27°+1)-|-1=r+
-1 1
|C’|:rm—(rm—r )+1:r+
|D|_rm—2r—1—(7‘m—3r+2)+2_r—l
B 2 2
3 -1
|E]:rm—7“—(rm—§(r—1))+1=r2
-1 -1
Fl=rm—(——2)—1—(m—r+1)+1="""2-,

2 2

Therefore |A| + |B| + |C| + |D| + |E| + |F| = 3(%) + 3(%5*) = 3r. Hence,
A, B,C,D,E and F are the partitions of S.
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3r-1 -1
m—3r+1 rm-3r+3 AUuD rm—2r B m- rz E m-r| F rm_(TT)_l Cms m
|
l[ — M e tl .‘ 1 ... -‘ ¥ ll /. ¥ Il ¢ ... ¥ l /..
M ) S I ? I !
I | -1 r-1
rm—=3r+2 rm-3r+4 rm—2r-1 rm—2r +1 rm—( 3 )+1 rm—r+1 Tm_(T) m=1

Figure 3.2: The partition of S = {rm —3r + 1,rm — 3r 4+ 2,...,rm}.

]

Lemma 3.3. Let S = {rm —3r +1,rm — 3r +2,rm — g,rm — 5§ +2,7m — ¢ +
3,...,rm+ 1} where m is odd, and r is even. Then
A={rm—=3r+1,rm—3r+3,..,rm —2r — 1}

B:{rm—%,rm—%”— yeeey T —2r + 1}

C={rm+1,rm,.,rm—5+2}

D={rm—-3r+2,rm—3r+4,..,rm —2r}
E:{rm—r,rm—r—l,...,rm—377"—1—1}

F={rm—(3),rm—(5) —1,...,rm — 7 + 1} partition S.

Proof. Let S = {rm—3r+1,rm—3r+2,rm—g,rm—5+2,rm—5+3,...,rm+1}
where m is odd and r is even. Figure @ shows how we put elements in S into 3
sets; A, B and C.

Figure 3.3: Subsets A, B and C of S.

We will divide S\ (AU B U C) into 3 sets. Figure @ shows how we put
elements in S\ (AU BUC) into 3 sets; D, F and F.

rm—3r+2 m—3r+6 D rm-2r m_(%)*q E m—r [|MTTHL F m_(;;
e B L e R L =R
1
rm—3r+4 m-r-1 rm— g)_]

Figure 3.4: Subsets D, ' and F' of S.
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Now, we divide all elements in S into 6 sets: A = {rm — 3r + 1,rm — 3r +
3, ., rm —2r — 1},
B={rm—-%rm—%—1,.,rm—2r+1},
C={rm+1rm,..,rm— 3+ 2},
D={rm—3r+2,rm—3r+4,...,rm—2r},
E={rm—r,rm—r—1,..,rm— %Jr 1},
F={rm-(3),rm—(35)—1,..,rm—r+1}.
We will shows that A, B,C, D, E and F are 6 partitions of S. Note that A and D
contain an increasing sequence. The others contain a decreasing sequence. Then
max A < min B, min C' > max F’ and max F' > max E. Furthermore, all partition
not contain rm — 5 + 1. Thus, CNFNEND = @ and AN B = J. We only
need to show that AN D = @. Since A is a sequence of odd integers and D
is a sequence of even integers, then AN D = &. In the last, we will show that

|A| + |B| + |C| + |D| + |E| + |F| = |S| = 3r. Consider

’A|_rm—2r—1—(rm—3r+1)+2_7’
B 2 2
3

|B|:rm—?r—(rm—2r+1)+1:g
|C’|:rm+1—(7‘m—g+2)+1:g
|D|_rm—27"—(7“m—37"+2)—|—2_r

N 2 2

3

|E|:rm—r—(rm—§+1)+1=g
|F|:rm—(g)—(rm—r+1)+1:g

Therefore |A| + |B| +|C| + |D| + |E| + | F| = 6(5) = 3r. Hence, A, B,C, D, E and
F' are the partitions of S.
U

Theorem 3.4. Let my,mo,...,m, be positive integers where 2 < my; = mg =

m, be a complete r-partite graph. If m is odd,
0, if risodd

S e =My :m; and letG: Kml,mg

-----

then G is an S-magic graph and 0(G) =
1, if ris even.

Proof. Let Vi,V5, ...V, be partite sets of G. In the beginning, we use the label
set {1,2,...,7m — 3r} to label m — 3 rows of G, as shown in Figure @
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m-3 rows

Figure 3.5: A labeling m — 3 rows of G with label set {1,2,...,rm — 3r}

Case I: r is odd.

Firstly, we demonstrate how to divide A = {rm—3r+1,rm—3r+2,...,rm—1,rm}

into r sets with three elements and the same sum, which is 3rm + %.

Let a, = (rm—3r+1)+2(n—1), by =rm— (32) - (n—1), ¢, =rm— (n—1)
and P, = {an, by, ¢, }. Observation that b,, ¢, are decreasing and a,, is increasing.
We consider carefully about the largest value of n satisfies a,, < b,. Consider if

a, < b,, then

3r—1
(rm—3r +1)+2(n - 1) <rm — (") — (n— 1)
3r—1
3(n—1) <3r— (") -1
<3r—1
2
3n 21
—1<
" 6
n<3r—|—5
6
n<r+1
- 2
As a result, we get % sets from A which are Pl,Pg,...,P%. By Lemma @, it
easy to see that a, € A,b, € B and ¢, € C wheren=1,2,..., % Thus we get
1
2

all elements in U P, are distinct. Next, consider a set A \ (Pl U---u P%>;
n=1

rm—3r+2,rm—3r+4,rm —3r+6,...,rm —2r — L,rm — (3=2) + 1,rm —
2

(=) 2, mm — (552) — 1)
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Let d, = rm —r — (n — 1). Then d,, is decreasing. Choose

—1
Qn:{anﬁ—l,dn,c%ﬂl} forn:1,2,...,r2 )

By Lemma @, it easy to see that a, +1 € D,d,, € I/ and Cri1,, € F where n =

r—1

2
1,2,..., T;Zl Thus we get that all elements in U @, are distinct. Finally, we get
n=1
r sets with three elements and the same sum, which is 3rm + :3’2& to labels in each

Vi of G. Hence #(G) = 0, and we complete the proof.

Case II: r is even.

Let m = 2p + 1,r = 2q where p, q are positive integers.
Let B = {1,2,...,rm}. Consider

= 8102q2 + 8pq2 + 2q2 + 2pq + q.

Zb: rm(rm +1)

2
beB

By lemma , B can be an S-magic labeling set of G under the condition the
summation of all elements in B is divided by r. We have

db

1 1
beB :rm(rm—l— ):4p2q+4pq+q+p+§

is not an integer. It implies that B is not an S-magic labeling set of G, i.e.
6(G) > 0. Moreover, we get % +5 =0 (mod r).

We claim that {1,2,...,rm—=%,rm—5+2,...,rm,rm+1} is an S-magic labeling

r 2r

set of G. In the begining, we use the label set {1,2,...,7m — 3r} to labels n — 3
rows of GG, as shown in Figure @ Next, we demonstrate how to divide

C={rm-=3r+1rm-=3r+2,....,rm—%,rm — % +2,--- ,rm,rm + 1} into
r sets with three elements and the same sum, which is 3rm + 2 — 9—;. Let z,, =
(rm=3r+1)+2(n—1), yo =rm—(¥)—(n—1), z, =rm+1— (n— 1), and

P, = {x,,yn, zn}. Observation that y,, z, are decreasing and x,, is increasing,.
We be careful about the largest value of n that satisfies z,, < y,. Consider if

Tp < Yn, then

3
(rm—3r+1)+2(n—1)<7«m—(§)—<n—1)
3
3(n—1)<§—1
<3r—2
2
3r —2
n—1< r

6
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3r+4
6
r
n<—.

n <

As a result, we get § sets from C which are Py, P, . .. ; Pr. By Lemma @, it easy
to see that z,, € A,y, € B and 2, € C where n = 1,2,..., 5. Thus we get that all

3
elements in U P, are distinct. Consider a set C' (P1 u---u P%);
n=1

{rm—=3r+2,rm —=3r+4,...,rm—=2r,rm - + 1Lrm — ¥ + 2.+ rm —L}.

Let w, = rm —r — (n —1). Then w, is decreasing. Choose
,
Qn = {z, + 1wy, Z%Jr(nﬂ)} forn=1,2,..., 3

By Lemma @, it easy to see that x, +1 € D,w, € E and 2z, € I where n =

r

3

1,2,...,5. Thus we get that all elements in U Q,, are distinct. Hence {1,2,...,
n=1

g,rm — 54 2,...,rm,rm + 1} is an S-magic labeling set of G, and then

i(G) = rm + 1. It implies #(G) = 1. This completes the proof. O

rTm —

Definition 3.5. A minimal S-magic labeling set T of G is an S-magic labeling
set of GG such that Zz is minimum.

€T
Lemma 3.6. Let m; and ms be two positive integers where my < mso. Suppose
G = Ky m, s an S-magic graph with a labeling set T' = {t1,ta, ..., tm+m,} and
n =my + ma. Then we have the following results.
(I) If my, my and n satisfy n(n+1) > 2ms(14+ms) and n =0 or 3 (mod 4), then

mi1+ma
Dt 14243+ + (my +my).
=1

(I11) If my,me and n satisfyn(n+1) > 2mo(1+my) andn =1 or2 (mod 4), then

mi+mg

Dtz (1+2+3+ - +mi+mg) + 1.

i=1
(I11) If my, my and n satisfy n(n + 1) < 2mo(1 + my), then

mi1+ma

Dt =21 42434 +my).
=1
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Proof. Let G = K, m, be an S-magic graph. Let V; and V5 be partite sets of
G. Let T = {t1,ta,. .., tyy+m, } and a labeling f : V(G) — T which Z f(z;) =

> f).

y; EVa

For case (I): By the proof of Theorem and 0(G) = 0 implies {1,2,...,m+
ms} is an S-magic labeling set of G. Thus

D ti= 142434+ (my +my).
t;eT

For case (I1): By the proof of Theorem and 0(G) = 1limplies {1,2,...,m1+

me — 1,my + mg + 1} is a minimal labeling set of G. Thus

S > 142434+ (my+mg) + 1.
t, €T

For case (I11): In this case, the minimal labeling set for V5 is {1,2,...,ma}.
Then

S Fy) 214243+ +m.

y; €Va

By Lemma , the sum of the labelings assigned to each partite is equal implies

doti= > fla)+ > fyy)

t, €T eV ijVQ
>(1+2+3+-+mg)+(1+2+3+---+my)
=1 W2 FHURUL M N

This completes the proof. [

Lemma 3.7. Let my and ms be two positive integers. Let G = Koy ms be an

S-magic graph, and T be a minimal labeling set of G. Then i(G) > f%} where

S(L) is the sum of the labelings assigned to each partite of G by a labeling set T'.

Proof. Let my and mg3 be two positive integers, and let G = Kj , m, be an S-
magic graph. Let V;, V5 and V3 be partite sets of G, and S(L;) be the sum of
the labelings assigned to each V; for i = 1,2,3. Let T be any S-magic labeling
set of G, and let f : V(G) — T be an S-magic labeling with |V (G)| = |T'|. Let
Vi(G) = {z1,22} and f(x1) = a, f(za) = b with @ < b. Then S(L;) = a + 0.
Since G is an S-magic graph, by Lemma , S(Ly) = S(Ly) = S(L3) = a+b.



20

Since a < band a+b < 2b, b > Ll) > S(L) Then max(T") > b > ( ) Hence
i(G) > S(L , it follows that i(G) > [S(L?)H]. O

Notation: We divide the relation between my and ms into 3 cases:

Case I: (mg + mg)(ms +mg + 1) > 2mg(ms + 1) and my +m3 =0 or 3 (mod 4)
Case II: (mg+ m3)(mg +ms + 1) > 2mg(ms + 1) and my +m3 =1 or 2 (mod 4)
Case I11: (mg + mg)(me +mg + 1) < 2mg(ms + 1).

Theorem 3.8. For two positive integers mo and ms where 2 < my < mg, let
G = K1 myms be an S-magic graph.

If G satisfies case I, then i(G) = (m2+m3)(2”2+m3+1).

If G satisfies case I1, then i(G) = (m2+m3)(mj+m3+1)+2.

. ‘ _ ma(ms+l)
If G satisfies case 111, then i(G) = =55,

Proof. Let Vi, V5 and V3 be the partite sets of G. Since |Vi(G)| = 1, Vi contains
the maximum number in a labeling set of G. Since G = K ;,,, m, is an S-magic
graph, the sum of the labelings assigned to Vi, V5 and V3 are equal.

For case I: By the proof of Theorem M), {1,2,...,my 4+ ms} is a labeling
set for V5, V3, and the sum of the labelings of each partite is (m2+m3)(4m2+m3+1).

Then label V; with a labeling set {(m2+m3)(;n2+m3+1) }. This labeling is S-magic. If
2(0) < (m2+ms)(ma+ma+1)
1

, then the sum of the labelings assigned to each partite

(ma2+m3)(mat+ms+1) (ma+m3)(ma+ms+1)
4 1 .

For case I1: By the proof of Theorem M, {1,2,...,mo+ms—1,mo+ms+1}

is a labeling set for V, and Vi, and the sum of each partite is (m2+m3)(m42+m3+1)+2.

Then label V5 with a label set {{metmaltnatmatD+2y - mpig Jabeling is S-magic. If
1
Z(G) < (ma+m3)(mao+msz+1)+2

less than , but it is impossible. Hence, i(G) =

, then the sum of the labelings assigned to each partite
less than (m2+m3)(mj+m3+1)+2, but it is impossible. Hence, i(G) = (m2+m3)(mf+m3“)+2.
For case II1: By the proof of Theorem 4], we label

the vertices in V3 by the elements in {1,2,...,m3}, and there exists a labeling set

for V5. Since GG is an S-magic graph, the sum of the labelings assigned to Vi is
equal to the sum of the labelings assigned to V3. Then we label V] with a labeling
set {W} By Lemma @, i(GQ) = m‘"’(m—SH This completes the proof. O

Theorem 3.9. Let msy and ms be two positive integers with 2 < msy < mg.
If my and mg satisfy case I or case I and mg +ms > 8, then G = Koy ms 95 an

S-magic graph and
[(m2+m3>(m2+m3+1>+4w
8

,  for case I

i(Q) =

[(m2+m3)(m82+m3+1)+6-‘ ,  for case II.
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Proof. If my = 2 and my + m3 > 8, then mg > 6. It implies that my and ms
satisfy case I1I. We omit this case. Let G = K31y ms With 3 < my < mg3 and
ma+mg > 8. Let S(L;) be the sum of the labelings assigned to V; where i = 1,2, 3.

For case [:
By the proof of Theorem , {1,2,...,mo+ms} is a labeling set for V; and V3 with

S(Ly) = S(Ls). It implies S(Ly) = S(Lg) = {medmalmatmstl) j o - (matms)(metmstl)

is an integer. We divide into 2 cases;

Case 1: (ma24+m3)(ma+ma+1)

7l Is even.
We claim that T} = {1’ 2,..., ma+ms, (m2+m3)(§12+m3+1) —1, (m2+m3)(g”b2+m3+1) + 1}
(ma+ms)(ma+ms+1)

is an S-magic labeling set of G. Since my+mg3 > 8, % > 1. Then
ma+mg)(ma+msz+1)
8

8
— 1 > my + mg. It implies all elements

> mgo +mg + 1. It implies (
in 7} are distinct. Furthermore, Figure @ shows the labeling of G with the label

set Ty = {1,2,...,my + ms, (m2+m3)(?2+m3+1) -1, (mﬁmg’)(;"ﬁm?’ﬂ) + 1}, and the
. . AN (ma+m3)(ma+ma+1)
sum of the labelings assigned to each partite is equal to ==,
Vi

(mj+mz)(my+msz+1)

(m}+mz)(my+mz+1)

VZ V3
1
1
\ J
|
{1,2,3, sz 11D + m3}

Figure 3.6: A labeling of Ks,,m; where mo and ms satisfy case [ and

(m2+m3)(ma+m3+1)
4

is even.

Therefore G = K3 1, ms is an S-magic graph. Since the sum of each partite
is (m2+m3)(T2+m3+1), and this is a minimum sum, then 7} is a minimal S-magic
labeling set for this case. We have S(L) = (m2+m3)(T2+m3+1). By Lemma @,
i(G) > (m2+m3)(;n2+m3+1) + 1, and Figure @ shows the labeling with i(G) =

(m2+m3)(?2+m3+1) +1. Moreover, if i(G) < (m2+m3)(;n2+m3+1) +1 it implies the sum of
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the labelings assigned to V5 and V3 less than (m2+m3)(T2+m3+1)

In conclusion, if (m2+m3)(T2+m3+1) is even, then i(G) = [(mﬁm?’)(;”ﬁmﬁl) + 1} :

, but it is impossible.

Case 2: (mztma)(matmstl) 5o 44

1

We claim that Th = {1,2,..., my+ms, (m2+m3)(m82+m3+1)+4 1, (m2+m3)(m82+m3+1)+4}

is an S-magic labeling set of G. By the proof of case 1, (m2+m3)(gn2+m3+l) > mgy +
ma+m3)(me+ma+1)+4

mg + 1 implies ( S > mgy + m3 + 1. Furthermore, Figure @ shows

the labeling of G' with the label set T = {1,2,...,ms + ms, (m2+m3)(m82+m3+1)+4 —

1, (m2+m3)(m;+m3+l)+4}, and the sum of the labelings assigned to each partite is
(ma+ms3)(ma+ms+1)
equal to A,
A v, Vs

( +m3)(m2+m3 +1 M4
8

1

(M2 +mz)(my+mz+1)+4
\8/

Figure 3.7: A labeling of Ks,,m; where mo and ms satisfy case [ and

(m2+m3)(T2+m3+1) is odd.

)

{1,2,3, ey My + m3}

Therefore G is S-magic. Since the sum of each partite is (m2+m3)(T2+m3+1), and

this is a minimum sum, then 75 is a minimal S-magic labeling set for this case.

We have S(L) = (m2+m3)(2”2+m3+1)' By Lemma @’ i(G) > (m2+m3)(mg+m3+1)+4’

and Figure @ shows the labeling with i(G) = (m2+m3)(m‘f+m3+1)+4. Moreover, if

it implies the sum of the labelings assigned to V5 and V3

. (ma+ms3)(ma+ms+1)+4
i(G) < tratmalmatmy

less than (m2+m3)(2”2+m3+1), but it is impossible. In conclusion, if (mztma)(matms+l)
is odd, then i(G) = [(m2+m3><m82+m3+1>+4] . Hence i(G) = [(mz+m3>(m82+m3+1>+ﬂ for
case I.

For case I1:

By the proof of Theorem , {1,2,...,mag+m3—1,ms+m3+1} is a labeling set
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for Vs and Vs with S(Ly) = (SLs). It implies S(Ls) = S(Lg) = {etms)matmst )42

1
ie. (m2+m3)(mf+m3+1)+2 is an integer. We divide into 2 cases;
Case 1: metma)matmatDF2 o ova)
: - )
We claim that T3 = {1,2, ooy, Mo + mg — 1,m2 + msg + ]_, (m2+m3)(m;+m3+1)+2

1, (m2+m3)(m§+m3+l)+2 + 1} is an S-magic labeling set of G. Consider

1) +2 6
(m2+m3)(m28+m3+ )+ _1>m2+m3+1—52m2+m3+1.

If (mz+m3)(m82+m3+1) — 1 =mg+ms+ 1, then

(m2+m3)(m82+m3+1) —1>my+msg+1.

Furthermore, Figure @ shows the labeling of G with T3 = {1,2,...,mg + m3 —
1,my + mg + 1, (m2+mg)(mat+ms+1)+2 1 (m2+m3)(m82+m3+1)+2 + 1}’ and the sum of

8
the labelings assigned to each partite is (m2+m3)(m42+m3+1)+2.

(n, 3)(m2+m3+1)+
(mz m3)(m2 +m3+1)+

{123 m2+m3—1m2+m3+1}

It implies mo 4+ m3 is not an integer. Thus

Figure 3.8: A labeling of Kj,,,m,; where my and mg satisfy case /I and

(ma+m3)(ma+m3z+1)+2

1 1S even.

(ma+m3)(ma+ms+2)
4

this is a minimum sum, then 73 is a minimal S-magic labeling set for this case. We
have S(L) = (m2+m3)(m42+m3+1)+2_ By Lemma @7 i(G) > (m2+m3)(m82+m3+1)+2 1

Moreover, if i(G) < (mztmallmatmatDH2 4 1 ¢ jyplies the sum of the labelings
8

Therefore GG is S-magic. Since the sum of each partite is , and
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assigned to Va and Vj less than {(metmal(metms+D+2 ¢ 56 is impossible. In con-

1

clusion, if (m2+m3)(mj+m3+1)+2 is even, then i(G) = [(m2+m3)(m82+m3+1)+2 + 1} .
Case 2: (m2+m3)(mf+m3+l)+2 is odd.

We will prove that Ty = {1,2,...,my +mg — 1, mg +mg + 1, (m2+m3)(m82+m3+1)72’

(mo+m3)(ma+m3z+1)+6
8

From the above, we found that

} is an S-magic labeling set of G.

(ma +m3)(mg +mg + 1) + 2
8

Furthermore, Figure @ shows the labeling of G with Ty = {1,2,...,mg + mg —

1,mg+mg+1, (m2+m3)(m82+m3+1)_2, (m2+m3)(";2+m3+1)+6}, and the sum of the label-

(ma+m3)(ma+ma+1)+2
i .

(m, +m3)(mz+m3+1 +2
( +m3)(mz+m3+1 +6

{123 m2+m3 1m2+m3+1}

> mg + mg + 1.

ings assigned to each partite is

Figure 3.9: A labeling of Kjm,ms wWhere mo and mg satisfy case /I and

1)+
(m2+m3)(m42+m3+ is odd.

Therefore G is S-magic. Since the sum of each partite is (m2+m3)(mj+m3+1)+2,

and this is a minimum sum, then 7} is a minimal S-magic labeling set for this case.
We have S(L) = (m2+m3)(m42+m3+1)+2. By Lemma @, i(G) > <m2+m3)(m82+m3+1)+6.
Moreover, if i(G) < (Tetms)lmedms TUE6 4 3 blies the sum of the labelings assigned
to Vo and Vj less than (mefma)(metmstDH2 “p¢ it s jmpossible. In conclusion,

8

1
if (metma)imetmstDR2 g oqd, then i(G) = [etmalmetmst 0] Hence i(G) =
[(m2+m3)(m82+m3+1)+6] for case I1. The proof is completed. O
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Theorem 3.10. Let my and mg be two positive integers with 2 < mgy < mg.
Suppose G = Ky, ms s an S-magic graph where me and mg satisfy case I or case
11, and ms 4+ m3 < 8.
(I.) mo+mg=4

{1,2,3,4,5,6} is an S-magic labeling set of K94 and i(G) = 6.
(I1.) mag+mg=5

{1,2,3,4,5,7,8} is an S-magic labeling set of K23 and i(G) = 8.
(I11.) mg+m3=06

{1,2,3,4,5,6,7,8} is an S-magic labeling set of Koo4, Ka33, and i(G) = 8.
(IV) mo+mg=T7

{1,2,3,4,5,6,7,8,9} is an S-magic labeling set of Koo5, Ko34, and i(G) = 9.
(V.) mg+m3=38

{1,2,3,4,5,6,7,8,10,11} is an S-magic labeling set of K35, Koa4, and i(G) =
11.

Proof. For (I),(II1),(IV), it is clear by the proof of Theorem , see in Figure

, Figure , Figure , Figure and Figure , as shown below.
1A V, 4 V V, Vs
Figure 3.10: A Labeling of Ky 95. Figure 3.11: A Labeling of K9 4.
A v, Vs A v, Vs

Figure 3.12: A Labeling of Ky 3 3. Figure 3.13: A Labeling of K3 5.
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Vi V Vs
Figure 3.14: A Labeling of K 34.
For (I1): Note that 1 +2+3+4+5+6+ 7 = 28. Since 28 = 1 (mod 3),

{1,2,3,4,5,6,7} is not an S-labeling set of G. Then i(G) > 8. Figure shows
the labeling of f : V(K323) — {1,2,3,4,5,7,8}. Hence i(G) = 8.

Vi v, Vs
Figure 3.15: A Labeling of K 3.

For (V): Note that 1 +2+3+4+54+6+7+8+ 9+ 10 = 55. Since 55 = 1
(mod 3), {1,2,3,4,5,6,7,8,9,10} is not an S-labeling set of G. Then i(G) > 11.
Figure @ and Figure show the labelings of K35 and Ky 44 with a labeling
set {1,2,3,4,5,6,7,8,10, 11}, respectively. Hence i(G) = 11.

Vi V; Vs v v, Vs

Figure 3.16: A Labeling of K3 5. Figure 3.17: A Labeling of K3 4.4.
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O]

By using an elemantary calculation, we obtain the following lemma that will
be useful in the proof of Theorem .

\/8m3+9m3—52m,+4
2(m2—2) )

Lemma 3.11. Let mo and ms be positive integers. If mg > —%—i—

1 2+m?
then —mg’("fJ“ ) 1> —m2+m§+m2+m3.
m2

\/8m3+9m3—52ma+4
2(m2—2)

. Then

Proof. Suppose ms > —% +

—(mg + 2) + v/(ma — 2)2 — 4(my — 2)(—(2m3 + 6m2))'

s 2(ms — 2)

Hence,
(mg — 2)mj3 + (mg — 2)mz — (2m3 + 6my) > 0.

Therefore,

m2m§ + moms — 4moy > 2m§ + 2m§ + 2mo + 2ms

(m3 +m3z)my 4my 2 2m3 + 2m3 + 2mo + 2m;

4’]77,2 4777,2 4TTL2
ma(mz + 1) o & m3 + m3 + mg + ms
4 2my '

O

Theorem 3.12. Let mo and ms be two positive integers and 3 < mo < mg.

If my and ms satisfy case 111, then G = K, ms @5 an S-magic graph and
i(G) = {—m“m?’“)ﬂ .

4

Proof. Suppose S(L;) is the sum of the labelings assigned to V; for i = 1,2,3.
Because mo and mg satisfy case I1I, by Lemma @, and Lemma @, we get
that S(L1) = S(Ly) = S(Ls) > ™t and (@) > [Mmri2] Now, we
demonstrate a labeling of G with S(L1) = S(Lg) = S(L3) = w and i(G) =
[malmst1¥2] First, label V, and Vs with labeling sets Lo = {ma+1, mg+2, ..., mg+

ms} and Lz = {1,2,...,m3}, respectively as in Figure .
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Figure 3.18: Label V5, and V3 with label sets Ly = {m3 + 1,...,m3 + ms} and
Ly ={1,2,...,ms}, respectively.

By the proof of Case n(n + 1) < 2ma(ma + 1) of theorem , K = S(Ls) —
S(Ly) = moq +, for ¢,r >0 and r < ms.

For r = 0: K = myq, we now replace the label set Lo by L'2 ={mg+1+¢qms+
244¢q,...,mg+ms+ q} and leave L3 unchanged as in Figure .

Vi £ Vs

Figure 3.19: Replace the label set Ly by L’2 forr =20

For r > 0: K = myq + r, we now replace the label set Lo by L'2 ={ms+q+
Lms+q+2,...,mz+matq—r,mg+mo+q—r+2,... ,mg+my+q,mz+my+q+1}
and leave L3 unchanged as in Figure .
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mz+my+q-—r

mg+my+q—r+2

.
mz+my+q

mg+my+q+1

Figure 3.20: Replace the label set Ly by L for r > 0.

By the proof of theorem P.18, S(Lg) = S(L3) = w Next, we will show

that i(G) = [w-‘ by labeling V; so that S(L;) = % Consider the

following situations.

Case 1: ™25t §s oven. Label V; with label set Ly = {mg’(nfﬂ) -1, mB(T’H) +
1}, see Figure @ and Figure for r = 0 and r > 0, respectively.

£

Figure 3.21: Label V; with a label set L, = {7t 1 malmstl) 4 4} for - = ),
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my+my+q-—r

mg+my+q—r+2

msz(mz + 1) msz+m; +q

-+

+1

mzg+my+q+1

Figure 3.22: Label V; with a label set L) = {m3(7z3+1) -1, mS(TZSH) +1}
for r > 0.

Denote the labelings in Figure and Figure by fi1 and fs, respectively.
We will show that f; and f; are S-magic labelings of G for »r = 0 and r > 0,

respectively by showing

mg(mg —|- ].)

1 —1>mo+ms+q+1. (31)

Note that
S(L3) — S(Lg) —Tr

q:

mo
.= m3(ﬂ;3+1) " (m2m3 + m2(ﬂg2+1)> —r
mg
B m§+m3 B 2mams + m3 + my o
N 2me 2me mg
m2 +m 2moms +m2 +m T
mo+mytqtl=my+my+———2 (2222 4

2me 2me mg
_ 2mgmg + 2m3 + m3 + ms — 2momg — m3 +mg — 2r
N ng
- m3 +m32 + my + ms
- 2m2 .

Then we will show that

mg(m3+1)_1>m%+m§+m2+m3 (32)

4 2m2



31

Since my and my satisfy case IT1, (mg + mg)(ma + ms + 1) < 2ms(mg + 1).
So

mg—mg—2m2m3+m3—m§—m2>0

m3 — (2my — 1) — (m3 + my) > 0.

Thus

ms > ——
3 2

1 2mg++/Sm+ 1
i 2m2+ . (3.3)

3 2 2
\/8m3+9m3—52ma+4 < 2ma++/8m3+1 by Lemma ﬂ we
2 ’ )

2(ma—2)

Then, if we can show that

complete this case. Consider

12m2 4 24v/2my + 1 > 8m2 + 25my — 2
8m3 + 25mg — 2
meo — 2

8m3 + 25my — 2
(2mg + /8m3 +1)* > \/m2+ 2
m2—2
bt o 1 5 | (= 2EmE + 25ms —2
2 (Mg — 2)?

2 \/8m§+9m§ — 52my + 4

12m32 4 24v2my + 1 >

2

(mg —2)?
\/8m3 + 9m3 — 52my + 4
» (m2 —2)
2msg + /8m3 + 1 . V/8m3 + 9mZ — 52my + 4 (3.4)
> (s — 2)

By Lemma 3.11 and (@), (@) holds. Then f; and f, are S-magic. Hence G is
an S-magic graph, and i(G) = W—{— 1= [m?’(m+l)+ﬂ when %3“) is even.

Case 2: ™(™+D js 6dd. Label V; with label set L; = {m3(m1+1)+2—1, mS(mTl)H},

see in Figure and Figure for r = 0 and r > 0, respectively.
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mg(ms + 1)+ 2
4

Figure 3.23: Label V; with label set Ly = {mg’(m:’fl)ﬂ -1, mS(mTl)H} for r = 0.

mz+my+q-—r

my+my+q—r+2

7713(77'1.3 + 1) +2
4

mz+my;+q

mg+my+q+1

Figure 3.24: Label V; with label set L, = {7tz g melms D2y gop - ),

Denote the labelings in Figure and Figure by f3 and fy, respectively.

We will show that f; and f, are S-magic labelings of G for r = 0, and r >
0, respectively by showing w -1 > %ZW It is completed in
case 1. Hence f3 and f, are S-magic. Therefore, G is an S-magic graph, and
Z(G) — mg(m3+1)+2 — ’7m3(m3+1)+2—‘ m3(m3+1)

4 4 2

’7m3(m3+1)+2—‘ )

when is odd. In conclusion, i(G) =

]

4

Theorem 3.13. Let my and mg be two positive integers and 3 < ms. If mg satisfies
case I11, then G = K m, is an S-magic graph and i(G) = {ww + 1.
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Proof. Let ms be a positive integer with 2 < mg. Suppose S(L;) is the sum of the

labelings assigned to V;,i = 1,2, 3. Now, we divide into 2 cases;

1 .
Case 1: % is even.

We claim that a labeling f : V' — {1,2,...,ms3, m3(7’;3+1) -2, m3(”2l3+1)—1, m3(”;3+1)+

1, w + 2} is an S-magic labeling of G with S(Ly) = S(La2) = S(L3) =

w. Since my and mg satisfy case I11, mz > 5. If mg > 6, m% +mz — 8 >

m3—2 > 4mg, and if m3 = 5, it is obvious that @—2 > 5. So, w —2 > ms.

Figure shows the labeling of G with 7" = {1,2,...,ms, m3(";3+1) -2, m3(";3+1) —

1, m3(77;3+1) +1, m3(";3+1) +2}, and the sum the the labelings assigned to each partite
m3(m3+1)
T

is equal to

mz(msz + 1)
4

ms (m3 1= l)

2
4

1

mz(mz + 1
3(43 )+2

maz(mz + 1
3(43 )+

1

ma(msz+1)
qd ms 25

Figure 3.25: A labeling of Ky ,,, with ms satisfies case 111 an is even

with §(G) = 22t 4o

Then G is an S-magic graph. By Lemma @, T has a minimum sum of elements.
Then T is a minimal S-magic labeling set. By lemma @, i(G) > w + 1.

Suppose i(G) = %ﬁl) + 1, there is a labeling set 7} with max(7}) = W +

1. Then 4 maximum elements that can be in 7T} are m(mstl) o ma(mstl)

1 T4
1, m"’(”f“) and m3(m43+1) + 1. Since the sum of the labelings assigned to each par-

mz(maz+1)
3 43 +

tite are equal, the only possible labeling sets for V; and V, are L'1 ={

1, % — 2} and L, = {mB(TH), mg’(nf’ﬂ) — 1}, respectively. Then S(L)) =

S(Ly) < w — 1. By Lemma @, S(L3) > %3“) This is a contradiction.
Hence i(G) > w + 2, and then i(G) = {w + 2-‘ for this case.

Case 2: % is odd.
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We claim that a labeling f: V — {1,2,...,ms, m3(m32+1)+2 -2, m3(m32+1)+2 -1,

m3(m?’2+1)+2, m3(m3’2+1)+2 + 1} is an S-magic labeling of G with S(Ly) = S(Ls) =

S(Ls) = w Since my and mj satisfy case IT11, m3 > 5. Then m3 +ms3—6 >

m3 — 1 > 4ms. So, w — 2 > mg. Figure shows the labeling of G with

T=1{1,2,...,ms, w —2 ms(m32+1)+2 1, ms(m32+1)+2’ ms(m32+1)+2 +1}, and

the sum the the labelings assigned to each partite is equal to

ms (m3+1)
— 5 -

v, v, V,

mz(ms +1) + 2 —32 ma(ms +1) + 2
4 4

myms + ) +2 ms(ms +1) +2
- 1 4
4

Figure 3.26: A labeling of K3 ,,, with mg satisfies case I11 and w is odd
with §(G) = malmatlt2 4 g,

Then G is an S-magic graph. By Lemma @, T has a minimum sum of elements.
Then T is a minimal S-magic labeling set. By Lemma @, i(G) > w.

ma(ma+1)+2

m3(m3+1)+2
1 —_— .

. There is a labeling set T5 with max(73) = i

Suppose i(G) =

Then 4 maximum elements that can be in Th are m3(m34+1)+2 -3, m?’(mfl)“ -
2, w — 1 and w. Since the sum of the labelings assigned to

each partite are equal, the only possible labeling sets for Vi and V5, are Llll =

{mg(m3;1+1)+2 N 3, m3(m1+1)+2 N 1} and L/2/ _ {m3(m9;1+1)+2 _9 m3(m3;1+1)+2}’ respec-

tively. Then S(L]) = S(L,) < w — 2. By Lemma @, S(Ls) > _m3("213+1).

This is a contradiction. Hence i(G) > ™83 t02 41 and then i(G) = mamst2 |

1= [ww + 1 for this case. O]

Y



CHAPTER IV
CONCLUSION AND SCOPE

In this thesis, we recall the concept of S-magic graph and distance magic

indices of graphs. We obtain (G) for the complete r-partite graph K, m,...m.
with all m; are equal where i = 1,2, ..., r as follows:

Theorem @ Let my,mo, ..., m, be positive integers where 2 < m; = my =

- =m,, and let G = Ky m,..

then G is an S-magic graph and 6(G) = 0.

Theorem @.Let mi, Mo, ..., m, be positive integers where 2 < m; = my =

m, be a complete r-partite graph. If m is even,

- =m, = m, and let G = K,,, m, .m, be a complete r-partite graph. If m is

0, ifrisodd
odd, then G is an S-magic graph and 6(G) =
1, if ris even.

Moreover, we obtain i(G) for the complete tripartite graph K, m,m, that
satisfies m; = 1,2 and 2 < my < mg as follows:
Theorem @.For two positive integers ms and ms where 2 < my < mg, let
G = K m,ms be an S-magic graph.
If G satisfies case I, then i(G) = (m2+m3)(T2+m3+1).
If G satisfies case I1, then i(G) = (metmslmatms t1¥2

4

If G satisfies case [11], then i(G) = w

Theorem @ Let my and mg3 be two positive integers with 2 < my < mg. If

mq and mg satisfy case I or case I and mgy + m3 > 8, then G = Ky, 1, 1S an

S-magic graph and

((m2+m3)(m2+7713+1)+4“
8

, for case I

i(G) =

[(mg+ma)(7n2+m3+1)‘*‘6—|7 for case II.

Theorem . Let mo and ms3 be two positive integers with 2 < my < msg.
Suppose G' = K9 1, m, i an S-magic graph where my and msg satisfy case I or case
11, and my + mg < 8.
(I.) mo+mg=4

{1,2,3,4,5,6} is an S-magic labeling set K325 and i(G) = 6.
(I1.) ma+mg=5

{1,2,3,4,5,7,8} is an S-magic labeling set of Ky53 and i(G) = 8.
(I11.) mg+m3=06
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{1,2,3,4,5,6,7,8} is an S-magic labeling set of K524, K533 and i(G) = 8.
(IV.) mo+mg="7

{1,2,3,4,5,6,7,8,9} is an S-magic labeling set of Ks55, K234 and i(G) = 9.
(V.) mg+m3=38

{1,2,3,4,5,6,7,8,10,11} is an S-magic labeling set of K35, K244 and i(G) =
11.
Theorem . Let ms and mg3 be two positive integers and 3 < my < ms.
If my and mg satisfy case I11, then G = Ky, ms i an S-magic graph and
i(G) = {Mw .
Theorem . Let my and mg be two positive integers and 3 < mg. If mg satis-
fies case I11, then G = Ky, is an S-magic graph and i(G) = {ww + 1.
The following problems naturally arise.
Problem 4.1 For complete tripartite graph K,,, ;, ms With m; > 3, determine
i(G).
Problem 4.2 For a complete tripartite G = K2, m, With 2 < mg < mg, derter-
mine M (G).
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