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Metal polyhydrides have attracted interest because some of them transform 
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1. INTRODUCTION 

In 1911, Heike Kamerlingh Onnes discovered superconductivity of 4.2 K in mercury [1].  
One of the most important activities in condensed matter Physics has been the search 
for high critical temperature (Tc) superconductors. Copper oxides and iron-based 
compounds with high superconducting transition temperatures were studied. At ambient 
pressure, the critical temperature of copper oxides and iron-based superconductors 
was 133 K [2] and 56 K [3], respectively. The conventional superconductor, magnesium 
diboride, has a Tc of 39 K [4]. One of the thermodynamic parameters that controls the 
structure and properties of condensed matter is pressure. High pressure can effectively 
shorten bonds and change electronic structure, resulting in new phases with unusual 
structures and properties that are rarely seen at atmospheric pressure. For example, 
high pressure can make the insulator transform to a metal state [5], increase Tc of 
superconductors (Tc of copper oxides is raised to 164 K at 31 GPa) [6]. Wigner and 
Huntington theoretically predicted in 1935 that solid hydrogen would be metalized at 
high pressure, resulting in metallic hydrogen [7]. As a result, the search for a metallic 
phase of solid hydrogen has become a hot topic in physics. There are various 
experimental research projects involving hydrogen at high pressures. However, these 
studies showed that metallizing hydrogen is extremely difficult. How to reduce the 
metallic pressure of a hydrogen system is one of the most important topics. In 2004, 
Aschroft [8] proposed a great idea that hydrogen-rich materials can be metallized at 
much lower pressures due to ‘chemical pre-compression’. High temperature 
superconductivity can be found after metallization because these materials are 
dominated by hydrogen elements, which can provide high phonon frequencies and 
strong electron–phonon coupling (EPC). For room temperature superconductivity, a high 
Debye temperature and strong electron-phonon coupling are necessary. As a result, 
they are good candidates for searching for high Tc superconductors within the 
experimental diamond anvil cell's reach (DAC). Researchers began looking for high-
temperature superconductors in hydrogen-rich materials based on this theory. Because 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

experimental studies of hydrogen-rich materials' metallization and superconductivity 
under high pressure are difficult, theoretical research has been at the top of the list of 
this field and made significant contributions. Metal polyhydrides have attracted much 
interest in condensed matter research since they can turn into  superconductors with 
high critical temperatures when exposed to higher pressures [9]. At 200 GPa, the Mg/Ca 
substituted hexahydride has shown superconductivity with Tc = 288 K [10]. Magnesium 
hydrides are the focus of this research (MgHx). Figure 1 demonstrate different ways to 
store hydrogen based on volumetric capacity and gravimetric capacity. MgH2 is 
interesting for hydrogen storage due to its high gravimetric and volumetric capacities 
(7.6 wt %and 109 gH2) [11]. We reported the relative structural stability of MgH2 (FCC), 
MgH2 (HCP), MgH3 in the pressure range of 0-300 GPa. This work focuses on the 
structural factors of Magnesium hydride that replaces hydrogen with deuterium. In this 
work, MgH2 (FCC), MgH2 (HCP), MgH3 structure was chosen as the prototype to find a 
structure that is stable under high pressure to be used as a base model.   

 

Figure  1 The gravimetric and volumetric capacities of hydrogen for hydrogen fuel [12] 
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Density Functional Theory (DFT), a method for solving many-body problems, was 
proposed by Hohenberg and Kohn in 1964 [13]. They demonstrated that the unique 
ground state properties of a system can be determined by replacing the wave function 
basis with an electron density by using the exchange-correlation energy which can be 
solved using the variation method in order to find the exchange-correlation potential, 
and the exchange-correlation energy can take the form of density. By including the 
correlation of an electron-electron interaction, or the correlation potential, Kohn 
proposed the Kohn-Sham equation in 1965 [14]. When the correlation potential is taken 
into account, the total energy of the many-body system is lower than when the Hartree-
Fock equation is solved. As a result, it is thought to produce the most likely relative total 
energy of the real system. The Kohn-Sham equation is sometimes referred to as 
"Schrödinger-like," but it is not the same as Schrödinger's equation because it only 
exists in functional form. W. Kohn was awarded the Nobel Prize in Chemistry in 1998 for 
this remarkable discovery. 

In this work, structural investigation was performed using ab initio methods. All the 
calculations were performed by using the density functional theory. The self-consistent 
field method carries out in the Quantum-ESPRESSO code [15]. This research will use the 
Generalized-Gradient Approximation (GGA) functional of Perdew-Burke-Ernzerhof (PBE) 
[16]  as an exchange-correlation functional.  

 

2. THEORETICAL BACKGROUND 

 

Density Functional Theory 

The Density Functional Theory (DFT) is one of the most famous and successful methods 
for studying ground-state energies and electronic structures in many-body quantum 
systems. Especially given the fact that they are identical, in concept, several parameter 
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estimations for exchange-correlation functionals are obligated. A detailed description of 
the DFT will be discussed in this section. 
2.1 The Born-Oppenheimer approximation  

The Born-Oppenheimer approximation was the first and most important step in 
calculating the total energy of a many-body system [17]. The full Hamiltonian can be 
written as following 

𝐻̂ = − ∑
ℏ

2𝑚
𝛻2 − ∑

𝑧𝐼𝑒
2

|𝑟𝑖−𝑅𝐼 |
𝑖,𝐼

𝑁𝑒
𝑖=1 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗 |
−𝑖≠𝑗 ∑

ℏ

2𝑀
𝛻2

𝐼 +
𝑁𝑛𝑢𝑐
𝐼=1

1

2
∑

𝑧𝐼𝑧𝐽𝑒
2

|𝑅𝐼−𝑅𝐽 |
𝐼≠𝐽    (1) 

The kinetic energy of electrons, the electron-nuclei interaction, the electron-electron 
interaction, the kinetic energy of nuclei, and the nuclei-nuclear interaction, respectively, 

are the five terms in the right-hand side of Eq. (1) where 𝑟𝑖  is position of 𝑖𝑡ℎ  electron 

and 𝑅𝐼  is position of 𝐼𝑡ℎ  nucleus with charge 𝑧𝐼 . They assumed the nuclei were at 
equilibrium and only the electrons were moving because nuclei are heavier than 
individual electrons. Therefore Eq. (1) can be written in a new form as shown below: 

𝐻̂ = − ∑
ℏ

2𝑚
𝛻2 − ∑

𝑧𝐼𝑒
2

|𝑟𝑖−𝑅𝐼 |
𝑖,𝐼

𝑁𝑒
𝑖=1 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗 |
𝑖≠𝑗   (2) 

This is the Born-Oppenheimer approximation, which provides an acceptable energy for 
a basic system but may be insufficient for solving more complex systems. 

 

 
2.2 The Hohenburg-Kohn Theorem 

The Hohenberg-Kohn theorems apply to any system in which electrons move under the 
influence of a potential. Two theorems made by Hohenberg and Kohn are known to be 
the DFT's starting point. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

Theorem I: There is a one-to-one relation between the external potential and ground 
state density for the interacting particles system in an external potential. 

We can write the ground state wave function as a unique functional of the ground state 

electron density. As a result, the ground state energy 𝜀 can be written as a function of 
the ground state density, as indicated in Eq. (3) 

⟨𝜓[𝑛0]|𝐻̂|𝜓[𝑛0]⟩ = 𝜀[𝑛0(𝑟)]  (3) 

𝑛0(𝑟) is electron density in a function of electron positions. 𝜀[𝑛0(𝑟)] is an energy 
in a function of density. Although the first Hohenberg–Kohn theorem mathematically 
shows that an electron density functional exists, it explains nothing about the functional's 
actual form. 

Theorem II: The second Hohenberg–Kohn theorem defines an important property of the 
functional and states that “the ground state energy can be determined by minimizing 
total energy, which is a function of electron density by variational principle of the energy 
functional”. 

This can be expressed mathematically as seen below. 

𝛿𝜀[𝑛(𝑟)]

𝛿𝑛
|
𝑛=𝑛0

= 0  (4) 

𝜀0 is the exact ground state energy which correspond to ground state density 𝑛0(𝑟) 

by 𝜀0 =  𝜀[𝑛0(𝑟)] 
 

2.3 Self-consistent Kohn-Sham equation 

The structural phase transitions can be calculated using Density Functional Theory 
(DFT), which is an excellent theoretical theory. In this study, DFT was used to examine 
the structure properties of MgH2 (FCC), MgH2 (HCP), MgH3. The equation derived by 
Kohn and Sham called the Kohn-Sham equation [14],   
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[
−𝛻2

2𝑚
+ 𝑉𝑒𝑓𝑓(𝑟)] 𝜓𝑛(𝑟) = 𝜀𝑛𝜓𝑛(𝑟)  (5) 

 

where the effective potential is  

𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻[𝑛(𝑟)] + 𝑉𝑥𝑐[𝑛(𝑟)]  (6) 

 

𝑉𝑒𝑥𝑡(𝑟) is external potential. 𝑉𝐻[𝑛(𝑟)] is Hartree potential. 𝑉𝑥𝑐[𝑛(𝑟)] is the 
exchange correlation potential 

with 

𝑉𝐻[𝑛(𝑟)] = ∫
𝑛(𝑟′)

 |𝑟 − 𝑟′ |
𝑑𝑟′ 

and  

𝑉𝑥𝑐[𝑛(𝑟)] =
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛
 . 

 

The first two terms, 𝑉𝑒𝑥𝑡(𝑟) and 𝑉𝐻[𝑛(𝑟)] can determine from the effective 

potential, whereas the last term, 𝑉𝑥𝑐[𝑛(𝑟)] is still unknown. The exchange correlation 

potential, 𝑉𝑥𝑐[𝑛(𝑟)], contains all quantum mechanical and explicit many-body 
effects that are unknown. The Local Density Approximation (LDA) and the Generalised 
Gradient Approximation (GGA) are two types of techniques for general correlation 
exchange functions [18]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

2.3.1 Local Density Approximation (LDA):  

It is a type of density functional theory (DFT) approximations to the exchange–correlation 
energy functional which is certainly based on the electronic density at each position in 
space. The exchange–correlation energy can be approximated directly using a lot of 
techniques. The local approximation obtained from the uniform electron gas concept 
[19], on the other hand, is the most popular. The proposed approximation is thus given 
by 

 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝜖𝑥𝑐

𝐻𝑜𝑚[𝑛(𝑟)]𝑑𝑟   (7) 

 

where 𝑛(𝑟) is the electronic density and 𝜖𝑥𝑐
𝐻𝑜𝑚 is the exchange-correlation energy 

per particle of a homogeneous electron gas of charge density. However, in many 
situations, such as in the case of rapidly varying density systems–more complicated 
systems, it is typically not appropriate to use LDA. 

 
2.3.2 Generalised Gradient Approximation (GGA) 

The electron density in most actual situations is unlikely to be uniform, making the LDA 
method unworkable in many ways. Despite this, many attempts have been made to 
develop the LDA by taking higher-order exchange-correlation energy components into 

account. Consequently, not only is the electron density, 𝑛(𝑟), included in the 

exchange-correlation energy, but the gradient of density, ∇𝑛(𝑟), is also taken into 
account, which is expressed as 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝑟)] = ∫𝑛(𝑟)𝜖𝑥𝑐[𝑛(𝑟), ∇𝑛(𝑟)]𝑑𝑟   (8) 

The self-consistent field (SCF) method is an iterative procedure for solve the Kohn-Sham 
equation to obtain the effective potential, the starting value of the density is first 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

guessed. The total energies and Kohn-Sham orbitals are then calculated using the 
equation. The new density is then derived from the Kohn-Sham orbitals that were just 
calculated and applied to the next phase. This iterative method repeats itself until the 
density convergence condition is satisfied. Finally, the output quantities, such as band 
structures and density of states, are calculated using the converged density. Figure 2 
shows the complete numerical procedure. 

 

Figure  2 Schematic of the SCF method 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 

 
2.4 Calculation techniques in DFT 

2.4.1 Plane wave basis set 

Different types of problems in solids make it difficult to calculate the Kohn-Sham 
equation for real materials. By considering simply a periodic solid that is invariant under 
translational and rotational symmetries, the Bloch theorem can be applied to reduce this 
difficult problem [20] . According to Bloch theorem, the electron wave function is plane 

waves multiplied by a periodic function 𝑢𝑘
𝑛(𝑟)  as solutions of the Schrödinger 

equation.  

𝜓𝑘
𝑛 (𝑟)  =  𝑢𝑘

𝑛(𝑟) 𝑒𝑖𝑘∙𝑟    (9) 

where 𝒌 is a wave vector and 𝑛 is a band index. The wave function and energy 
eigenvalue must satisfy the condition 

𝜀(𝑘) = 𝜀(𝑘 + 𝐺)   (10) 

 

𝜓𝑘
𝑛 (𝑟)  = 𝜓𝑘+𝐺

𝑛  (𝑟)   (11) 

with 𝑮 being the reciprocal lattice vector. Consequently, the maximum value of 

𝐺, 𝐺𝑚𝑎𝑥  is associated to the kinetic cutoff energy by the expression 

𝜀𝑚𝑎𝑥 =
ℏ2𝐺𝑚𝑎𝑥

2

2𝑚
    (12) 

As for the periodic function, it’s described as a sum of plane wave sets. 

𝑢𝑘
𝑛(𝑟)   = ∑ 𝐶𝑗

𝑛
𝑗 (𝑘)𝑒𝑖𝐺𝑗∙𝑟    (13) 

By plugging Eq. (13) into Eq. (9), the volumetric normalized electron wave function is 

written as 
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𝜓𝑘
𝑛 (𝑟)  =

𝟏

√𝑽
∑ 𝐶𝑗

𝑛
𝑗 (𝑘)𝑒𝑖(𝐾+𝐺𝑗)∙𝑟    (14) 

 
2.4.2 The pseudopotential method of Projected Augmented Wave 

The PAW (Projected Augmented Wave) approach was chosen to be used during whole 
project. This methodology evolved gradually from the augmented plane wave method 
with separating the wave function into two parts: partial wave expansions inside of 
sphere and envelope function from outside sphere [21] . At the sphere boundary, the 
envelope of function must be differentiable and totally matched. Because there are an 
infinite number of partial waves near to the atomic core, the all-electron wave function, 

𝜓, transformed into a fictional smooth function known as the auxiliary wave function. 𝜓̃, 

containing a smaller amount of partial wave basis. Within the sphere of volume Ω𝑅 , Any 
wave function, can be distributed as a linear combination of partial wave basis sets, as 
well as the fictitious smooth wave function. 

|𝜓(𝑟)⟩ = ∑ 𝑎𝑖𝑖 |𝜙𝑖(𝑟)⟩ , inside ΩR and  (15) 

|𝜓̃(𝑟)⟩ = ∑ 𝑏𝑖𝑖 |𝜙̃𝑖(𝑟)⟩ , inside ΩR   (16) 

whereas the all-electron partial wave and the auxiliary partial wave outside the sphere 
are 

identical: 

𝜙𝑖(𝑟) = 𝜙̃𝑖(𝑟) , outside ΩR    (17) 

The all-electron partial wave is the solution to the radial Schrödinger equation for an 
isolated atom, and the auxiliary wave function may be chosen from the all-electron 
partial wave that matches the all-electron partial wave outside of the sphere. As a result, 
the transformation operator, relates the additional wave function and the all-electron 
wave function. 
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|𝜓⟩ = 𝜏|𝜓̃⟩   (18) 

the transformation operator can be defined as follows 

𝜏 = 1̂ + ∑ 𝑆𝑅𝑅    (19) 

The transformation operator is frequently done by adding the identity operator with the 
sum of the atomic contributions at each specific site R as described in Eq (19). The 
atomic contribution reflects the difference between the all-electron partial wave and the 
auxiliary partial wave. Which is 

𝑆𝑅|𝜙̃𝑖⟩  = |𝜙𝑖⟩ − |𝜙̃𝑖⟩      (20) 

The new operator |𝑃̃𝑖⟩ described as the projection operator in atomic space that 
represents the local character of a wave function [22]. The partial wave basis set must 
be orthonormal to the operator. 

⟨𝑃̃𝑚|𝜙̃𝑛⟩ = 𝛿𝑚𝑛       (21) 

By using the mentioned property, the smooth wave function can be written as 

|𝜓̃⟩ = ∑  |𝜙̃𝑖⟩𝑖 ⟨𝑃̃𝑖|𝜓̃⟩     (22) 

By applying Eq. (19) into (22), we have 

|𝜓⟩ = (1̂ + ∑ (|𝜙𝑖⟩ − |𝜙̃𝑖⟩𝑖 )⟨𝑃̃𝑖|)|𝜓⟩.   (23) 

With the transformation operator which can write as 

𝜏 = 1̂ + ∑ (|𝜙𝑖⟩ − |𝜙̃𝑖⟩𝑖 )⟨𝑃̃𝑖|.   (24) 

the expected value of an arbitrary operator denoted by𝐴: 

〈𝐴〉 = ∑ 𝑓𝑛⟨𝜓𝑛|𝐴|𝜓𝑛⟩𝑛         
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= ∑ 𝑓𝑛⟨𝜓𝑛|𝜏
†𝐴𝜏|𝜓𝑛⟩𝑛      (25) 

𝑓𝑛  is the occupation number.  

(𝐻̂ − 𝜀𝑆̃) |𝜓̃⟩ = 0      (26) 

this equation can apply the PAW method to the Kohn-Sham equation. 

𝐻̂ = 𝜏†𝐻𝜏       (27) 

𝑆̃ = 𝜏†𝜏       (28) 

𝐻̂ is Hamiltonian matrix, 𝐻̂ = 𝑇̃ + 𝑉̃ . 

 
2.4.3 The cutoff energy and k-point mesh 

The reciprocate space, also known as k-space, presents the Fourier transform of the 
repeated periodic lattice in real space. The Kohn-Sham equation is solved in reciprocal 
space with plane waves as basis sets in this research. Equation (14) yields a concrete 
answer to the Kohn-Sham equation since there are an infinite number of plane-wave 
basis sets. However, due to a shortage of processing resources, analyzing the exact 
answer is difficult. As a result, Monkhorst and Pack still provide a limited but useful 
number of plane-wave basis sets [23], which is influenced by the kinetic cutoff energy, 

𝐸𝑐𝑢𝑡 , which is represented by the highest value of the reciprocal lattice vector, 𝐺𝑚𝑎𝑥 . 
The kinetic energy cutoff is now expressed as 

𝐸𝑐𝑢𝑡 ≤
ℏ2

2𝑚
|𝑘 + 𝐺𝑚𝑎𝑥|

2    (29) 

 

The more kinetic cutoff energies and k-points there are, the more correctly the energy is 
calculated; however, it also demands more processing resources. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 

 

 
2.4.4 The geometry optimization 

In computational physics, the Hartree–Fock (HF) technique is an approximation 
approach for determining a quantum many-body system's wave function and energy in 
a stationary state. The Hartree-Fock method attempts to estimate the solution of the 
electronic Schrödinger equation, assuming that the wavefunction can be approximated 
by a single Slater determinant consisting of one spin orbital per electron. In either case, 
note that the solutions depend on the orbitals. The Hartree-Fock equations can be 
solved numerically or they can be solved in the space spanned by a set of basis 
functions (Hartree-Fock-Roothan equations) [24]. As a result, we must first guess some 
initial orbitals before iteratively refining our guesses. Because of this, Hartree-Fock is 
known as a self-consistent-field (SCF) method. The Hartree-Fock equations can be 
defined as follows 

𝑓(𝑥1)𝜒𝑖(𝑥1) = 𝜖𝑖𝜒𝑖(𝑥1). (30) 

where 𝜖𝑖  is the energy eigenvalue associated with orbital 𝜒𝑖 . The Hartree-Fock 

equations are transformed into Roothaan equations by using a basis set. 𝜒 ̃is the atomic 
orbital basis functions, we have the expansion 
 

𝜒𝑖(𝑥1) = ∑ 𝐶𝜇𝑖𝜒𝜇
𝐾
𝜇=1  (31) 

 for each spin orbital 𝑖.It then leads into 

𝑓(𝑥1)∑ 𝐶𝜈𝑖𝜒𝜈(𝑥1)𝜈 = 𝜖𝑖 ∑ 𝐶𝜈𝑖𝜒𝜈(𝑥1)𝜈 . (32) 

A matrix equation is obtained by multiplying 𝜒𝜇
∗(𝑥1) on the left-hand side and 

integrating. 
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∑ 𝐶𝜈𝑖𝜈 ∫𝑑𝑥1 𝜒𝜇
∗(𝑥1)𝑓(𝑥1)𝜒𝜈(𝑥1) =

𝜖𝑖 ∑ 𝐶𝜈𝑖 ∫𝑑𝑥1 𝜒𝜇
∗(𝑥1)𝜒𝜈(𝑥1)𝜈 . (33) 

This could be greatly simplified by using matrix element notation. 

𝑆𝜇𝜈 = ∫𝑑𝑥1 𝜒𝜇
∗(𝑥1)𝜒𝜈(𝑥1), (34) 

𝐹𝜇𝜈 = ∫𝑑𝑥1 𝜒𝜇
∗(𝑥1)𝑓(𝑥1)𝜒𝜈(𝑥1). (35) 

The Hartree-Fock-Roothaan equations can now be expressed as a matrix: 

∑ 𝐹𝜇𝜈𝐶𝜈𝑖𝜈 = 𝜖𝑖 ∑ 𝑆𝜇𝜈𝐶𝜈𝑖𝜈  (36) 

or  

𝐹𝐶 = 𝑆𝐶𝜖 (37) 

 

where 𝜖𝑖  is the orbital energy that is represented by a diagonal matrix 𝜖. Except for the 

overlap matrix 𝑆, this is an eigenvalue equationTo make 𝑆 disappear, one must perform 
a basis transformation to an orthogonal basis, after which an eigenvalue equation can 

be solved. Because 𝐹 is depend on its own solution (via the orbitals), the method must 
be repeated iteratively. This is why the solution of the Hartree-Fock-Roothaan equations 
are often called the self-consistent-field method. 

 The process of arranging crystal structures in space so that their energies are 
minimized is known as geometry optimization. The investigated structure is relaxed to 
the point where each atom's net interatomic force is as close to zero as possible, and 
the atomic positions stay constant. In DFT, however, the temperature is ignored; the 
system in contact with any pressure value and T= 0 K reservoirs prefer the minimum 
enthalpy. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 

 

𝐻 = 𝐸 + 𝑃𝑉    (38) 

 

Enthalpy is the sum of the internal energy and pressure times volume. The matrix of 

lattice vector ℎ = {𝑎, 𝑏, 𝑐} and the coordinate 𝑠𝑖 , 𝑖 = 1…𝑁 use to examine the 

crystal structure by relate to ℎ  of N atoms in unit cell and 𝑉 = det (ℎ). We use the 
finite strain tensor as a free variable instead of the lattice vectors since the energy per 

unit cell is a function of ℎ and 𝑠𝑖 . The strain components have 9 dimensions and 3N, 
the enthalpy now has a functional of (9 + 3N)-dimensional space [25]. 

𝐻 =  𝐻(𝜖, 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛)    (39) 

The force component is created by taking the first derivative of the enthalpy with respect 

to the coordinates of atoms 𝑋𝑖  . 

𝐹 = −
𝜕𝐻

𝜕𝑋𝑖
|
𝑃

      (40) 

 

Around the lowest 𝑋𝑚𝑖𝑛, the enthalpy variation is defined as 

 

𝛿𝐻 =
1

2
(𝑋 − 𝑋𝑚𝑖𝑛) ∙ 𝐵(𝑋 − 𝑋𝑚𝑖𝑛)   (41) 

 

The Hessian matrix is denoted by 𝐵. The technique of quasi-Newton is being used to 

reduce lattice parameters. The searching for the 𝑋𝑚𝑖𝑛 from the force for one relaxation 

step is aided by the internal coordinates of pressured crystals [25]. The 𝑋𝑘  is written as 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 

 

 Δ𝑋𝑘 = 𝐻𝑘  𝐹𝑘      (42) 

and  

𝐻 = 𝐵−1
 

 

Despite 𝐻0 being unidentified. The crystal structure eventually fulfills the external 
pressure criterion and also has the smallest enthalpy, as determined by the algorithm, 
when 𝑋 reaches its minimum.  

 

 

2.4.5 Electronic band structure 

The electronic band structure (or simply band structure) of a material in solid-state 
physics explains the range of energy levels that electrons can have within it, as well as 
the ranges of energy levels that they can't have. The ground-state wave function is given 
by the Kohn-Sham equation solution, Eq. (5), which also relates to the system's 
Hamiltonian. The system's electrical characteristics are then determined by computing 
the expected values of the total energy responsible for each k-vector. Which is obtained 
by 

 

⟨𝜓𝑛𝑘′|𝐻̂|𝜓𝑛𝑘⟩ = 𝜖𝑛𝑘𝛿𝑘𝑘′ (43) 

 

The electronic band structure is produced by displaying the set of eigenvalues along 
the high symmetry points over the first Brillouin zone after getting energies matching 
each value of the wave vector k. When identifying if a crystal is an insulator, conductor, 
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or semiconductor, the band structure can be examined. The band gap between the 
valence and conduction bands is seen in figure 3. If the crystal is a conductor, the 
conduction and valence bands will overlap, which means there is no band gap. The 
crystal is a semiconductor when the energy gap between the conduction band and the 
valence band is more than 0 and less than 3 eV. The energy gap between valence 
bands and conduction band is too large for the electron to make the jump to escape 
from its atom and be promoted to the valance band in insulators with a band gap 
greater than 3 eV[26]. 

 

 

Figure  3 The energy band gap of conductor, semiconductor and insulator 

By increasing the pressure to the crystal, the gap between the conduction and valence 
bands can be changed. An insulator's valence band is completely filled with electrons. 
The gap will close after applying pressure to the crystal, and some electrons flow to the 
conduction band, making the crystal metal. 
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2.4.6 Density of states 

The quantity of all electrons permitted to occupy a specified level of energy is defined 
as the total density of states. A probability density function is used to represent it 
mathematically as a distribution. The DOS of nth-energy level is expressed as 

𝑔(𝜀) = ∫ 𝛿(𝜀 − 𝜀𝑛(𝑘))  (44) 

when the integral is spread over the primitive cell. The energy eigenvalue accounting for 

the nth-energy level is 𝜀𝑛(𝑘). As a result, the partial density of states (PDOS) is defined 
as the projection of each given atom's orbital onto the density of states. 

 
2.4.7 Phonon’s calculation 

Based on DFT calculations at 0 K, MgH2 and MgH3 structural tests under high pressure 
were identified in this work. Although, DFT calculations show good agreement with the 
experimental results in many situations, it cannot clearly prove the unique high-pressure 
phase. In generally, crystal stability can be explained using phonon frequencies caused 
by lattice dynamics. As a result, phonon calculations were used to verify the enthalpy-
pressure relationship's result. In the structure steady state coordinates, the expansion 
must be done for the whole energy [27] , which are 

𝐸 = 𝐸0 + ∑
𝜕𝐸

𝜕𝑢⃗⃗ 𝑘,𝛼
𝑘,𝛼 ∙ 𝑢⃗ 𝑘,𝛼 +

1

2
∑ 𝑢⃗ 𝑘,𝛼𝑘,𝛼,𝑘′,𝛼′ ∙ Φ

𝛼,𝛼′
𝑘,𝑘′

∙ 𝑢⃗ 𝑘′,𝛼′ + ⋯

        (45) 

The force which acts on atom can calculate as following 

𝐹𝑘,𝛼 =
𝜕𝐸

𝜕𝑢⃗⃗ 𝑘,𝛼
   (46) 
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The force term is zero at equilibrium. The 3rd harmonic approximation and the higher 

order terms believed to be irrelevant. 𝑢⃗ 𝑘,𝛼 is the vector of atomic displacements from 

equilibrium position. Φ
𝛼,𝛼′
𝑘,𝑘′

 is the force constant matrix, which is 

Φ
𝛼,𝛼′
𝑘,𝑘′

=
𝜕2𝐸

𝜕𝑢⃗⃗ 𝑘,𝛼𝜕𝑢⃗⃗ 𝑘′,𝛼′
  (47) 

DFT calculations are used to compute the force component. Then apply it to Newton's 
equation of motion to get the matrix eigenvalue equation, which is 

𝐷𝜀𝑚 = 𝜔𝑚
2 𝜀𝑚   (48) 

The dynamical matrix is 

𝐷
𝛼,𝛼′
𝑘,𝑘′

(𝑞 ) =
1

√𝑀𝑘𝑀𝑘′
Φ

𝛼,𝛼′
𝑘,𝑘′

  (49) 

The phonon calculation result can be obtained from eigenvalue, 𝜔𝑚
2 , This explains the 

frequency dispersion relationship of the structure. The square root of the eigenvalues of 
the dynamical matrix is used to calculate phonon frequencies. Because these 
eigenvalues can be positive or negative, phonon frequencies can be positive real or 
imaginary numbers. In Quantum-ESPRESSO code produce negative values at imaginary 
frequencies so If the phonon frequency is positive, the structure will be stable. If the 
phonon frequency is negative, the structure will be instability. 

 
2.4.8 Isotope effect 

The replacement of an atom by one of its isotopes has proven to be very useful in the 
study of reaction mechanisms. The discovery of the isotope effect in ordinary 
superconductors was essential in the development of the Bardeen-Cooper-Schrieffer 
(BCS) theory, Cooper pairs are formed by electrons interacting through lattice vibrations 
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[28]. For example, the expression on the isotope coefficient (𝛼) for H3S superconductor 
[29] in the function of the pressure was 

𝛼 =
𝜔𝑙𝑛𝑑𝑇𝑐

2𝑇𝑐𝑑𝜔𝑙𝑛
     (50) 

 

The electron-phonon pairing kernel has the following form 

𝐾(𝑧) = 2∫ 𝑑Ω
Ω𝛼̅2(Ω)𝐹(Ω)

Ω2−𝑧2

+∞

0
    (51) 

Where 𝛼̅2(Ω)𝐹(Ω) is The Eliashberg functions [30]. In the Eliashberg formalism, the 
depairing electron correlations are expressed by the the following: 

𝜇∗(𝜔𝑛) = 𝜇∗𝜃(𝜔𝑐 − |𝜔𝑛|)  (52) 

𝜔𝑐 = 3Ω𝑚𝑎𝑥     (53) 

𝜇∗ is the Coulomb pseudopotential. Ω𝑚𝑎𝑥  is the Debye frequency. 𝜃 is the 

Heaviside function. ωc is the cut-off frequency 

The Coulomb pseudopotential was defined by Morel and Anderson [31]. 

𝜇∗ =
𝜇

1+𝜇ln (
𝜔𝑒
𝜔𝑙𝑛

)
   (54) 

𝜔𝑒  is the characteristic electron frequency. Logarithmic phonon frequency 𝜔𝑙𝑛 is 
expressed by  

𝜔𝑙𝑛 = exp [
2

𝜆
∫ 𝑑Ω

𝛼̅2(Ω)𝐹(Ω)

Ω

Ω𝑚𝑎𝑥

0
ln (Ω)](55) 

𝐾𝐵𝑇𝑐 = 𝜔𝑙𝑛𝑒𝑥𝑝 [
−(1+𝜆)

(𝜆−𝜇∗(1+0.4747𝜆))
]  (56) 

The electron-phonon coupling constant 𝜆 is derived from 
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𝜆 = 2∫ 𝑑Ω
𝛼̅2(Ω)𝐹(Ω)

Ω

Ω𝑚𝑎𝑥

0
  (57) 

 

Thus  

𝛼 =
1

2
[1 −

(1+𝜆)(1+0.4747𝜆)(𝜇∗)2

(𝜆−𝜇∗(1+0.4747𝜆))2
]  (58) 

For superconducting material, the critical temperature is inversely proportional to square 
root of isotopic mass M 

𝑇𝑐 =
1

𝑀𝛼       (59) 

𝑇𝑐 =
1

√𝑀
 , 𝛼 = 0.5     (60) 

 

  

 

 

3. CALCULATION DETAILS 

 

In this work, we calculated the structures of MgH2, MgH2 (HCP), MgH3 under pressure 
between 0-300 GPa in order to determine the formation enthalpy and electronic property 
of their structures under high pressure by using density functional theory (DFT) which 
were numerically calculated. We also substituted the hydrogen atoms with deuterium (D) 
to determine the dynamical stability under high pressure.  The total energy was to be 
reported and applied to examine the electronic band structures, DOS and phonon 
dispersion. 
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3.1 Structure 

In this work MgH2 (FCC), MgH2 (HCP), MgH3 structures in figures 4, 5 and 6 were 
chosen as models to find stable structures under high pressure to be used as a basic 
model for calculating the critical temperature in the future work. 

 

 
Table 1. Lattice parameters of MgH2 (FCC), MgH2 (HCP), MgH3 at the atmospheric 

pressure (0 GPa). 

Structure Space 
group 

a  

(Å) 

b  

(Å) 

c 

 (Å) 

Density 
(g/cm3) 

Volume 

(Å3) 

MgH2 Fm-3m 3.367 3.367 3.367 1.62 26.999 

MgH2 P6/mmm 3.074 3.074 3.534 2.64 28.917 

MgH3 Fm-3m 3.327 3.327 3.327 1.74 26.042 
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Figure  4 The Fm-3m structure of MgH2 or the face centered cubic 

 

Figure  5 The P6/mmm structure of MgH2 or hexagonal close packed 
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Figure  6 The Fm-3m structure of MgH3 or the face centered cubic 

Quantum Espresso Package [15]  was used to examine the physical characteristics of 
MgH2, MgH2 (HCP), MgH3 and substituted the hydrogen atoms with deuterium (D). The 
pseudopotentials for the core and valence electrons were described using the projector 
augmented wave technique (PAW) [32] . We used the Perdew-Burke-Ernzerhof (PBE) 
functional for the generalized gradient approximation (GGA). The convergence test 
needs to be achieved systematically to accurately assessed physical quantities with the 
aid of DFT. 

 
3.2 Convergence test 

Convergence tests are crucial for determining the correctness of the system's total 
ground-state energy. A convergence test is a method of improving the input script for a 
simulation in order to make optimum use of limited computer resources. To determine 
the simulation's accuracy and dependability, it's important to identify an optimal initial 
setting for study. The kinetic cutoff energies and k-point meshes are the parameters that 
must be optimized. Convergence test is a technique of increasing the effectiveness of 
limited computer resources by optimizing the input script for a simulation. To determine 
the simulation's correctness and reliability, it's important to identify a suitable setup for 
research for a certain system. Convergence testing of the MgH2(FCC) structure can be 
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divided into 2 parts. The k-point mesh of 4 x 4 x 4 was chosen and kept as a fixed value, 
after which the cutoff energies ranging from 30 to 120 Ry were varied, and each of the 
calculated total energies corresponding to each of the cutoff energies was plotted in 
Figure 7. The energies immediately decrease during the cutoffs from 30 to 120 Ry, as 
shown in Figure 7. 

 

Figure  7 The convergence test of total energy with the energy cutoff for FCC in MgH2 
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The cutoff energy of 80 Ry was chosen for the remainder of the calculations because 
when the cutoff is larger, the difference in calculating the total energy of this system is 
even smaller. The difference between cutoff energies of 80 and 90 Ry is less than 0.01 
eV, which is technically acceptable.  

 

Figure  8 The convergence test of total energy with the k point mesh for FCC in MgH2 

In the second part, the cutoff energy of 80 Ry was chosen and kept as a constant value, 
after which the set of k-point from 4 x 4 x 4 to 12 x 12 x 12 were varied and plotted in 
figure 8. The energy curve fluctuates a little initially, but it tends to stabilize at 11 x 11 x 
11. The set of k-point 11 × 11 × 11 and 12 × 12 × 12 has the total energy difference less 
than 0.0001 eV, so thus the k-point of 12 × 12 × 12 was chosen. Other physical 
properties of the MgH2(FCC) structure were calculated using the cutoff energy of 80 Ry 
and the k-point mesh of 12 x 12 x 12 as input parameters. 
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The same processes are used in the MgH2(HCP) convergence test in figure 9, with the 
k-point 4 x 4 x 4 kept as a fixed parameter, and the cutoff energies ranging from 40 to 
120 Ry. During the cutoffs from 40 to 120 Ry, the total energies decrease. Because the 
difference in cutoff energies between 80 and 90 Ry is less than 0.01 eV, the 80 Ry cutoff 
energy was chosen to be the same as MgH2 (FCC). 

 

Figure  9 The convergence test of total energy with the energy cutoff for HCP in MgH2 

The second procedure is the k point test, which uses an 80 Ry cutoff energy as a fixed 
parameter, followed by the k-point meshes test from 4 x 4 x 2 to 12 x 12 x 2 in figure 10. 
The results revealed that the obtained energy fluctuates. As a result, additional tests 
were carried out to assess the total energy's stability.  
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Figure  10 The convergence test of total energy and the k point set for HCP in MgH2 (n x 
n x 2) 

In figure 11 the first two k values were set to 12 by the test, which ranged from 12 x 12 x 
2 to 12 x 12 x11. The findings revealed that the difference in energy between the k-point 
meshes of 12 x 12 x 8 and 12 x 12 x 9 is less than 0.0001 eV, therefore the 12 x 12 x 8 k-
point mesh was chosen. In order to calculate the structure of MgH2 (HCP), the cutoff 
energy of 80 Ry and the k-point mesh of 12 x12 x 8 were utilized as input parameters. 
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Figure  11 The convergence test of total energy and the k point set for HCP in MgH2 (12 
x 12 x n) 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 The convex hull of Mg–H system 

This section carefully describes all processes within this work as follows: First, we 
calculate the enthalpy of MgH2 and MgH3 at 0-300 GPa then simulate the structure of 
pure hydrogen (HCP, monoclinic) and pure magnesium (HCP, BCC) to determine the 
enthalpy at pressure 0-300 GPa for calculate the enthalpy difference of MgH2, MgH3 to 
find the convex hull curve comparing with the enthalpy difference between Mg and H. 
The hydrogen phases that use in the calculation are P63/m at 0 – 50 GPa and C2/c at 
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100-300 GPa [33]. We calculated the formation enthalpy of Mg1-xHx using a fractional 
representation of Mg1-xHx with respect to its decomposition into Mg and H as 

∆Η(𝑀𝑔1−𝑥𝐻𝑥)
= Η(𝑀𝑔1−𝑥𝐻𝑥) − [(1 − 𝑥) × Η(𝑀𝑔) + 𝑥 × Η(𝐻)] 

where x is the concentration of H. The formation enthalpies from 0 to 300 GPa were 
evaluated as the difference in the enthalpy of the predicted Mg–H system. 

 

Figure  12 The enthalpy per atom of MgH2 (FCC) and MgH3 (FCC) are presented in the 
form of the convex hull (solid markers refer to a stable structure, whereas transparent 

markers refer to a meta-stable structure) 
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The convex hulls in figure 12 showed that the Fm-3m structure of MgH3 is 
thermodynamically stable between 100–300 GPa and 0–200 GPa for MgH2. Moreover, at 
150 GPa and above, MgH3 becomes more energetically favorable than MgH2. The D 
atoms were also used instead of the H atoms. Despite this, the enthalpies per atom of 
MgHx and MgDx are exactly equivalent because the pseudopotentials are identical; the 
only difference is the masses of H and D. Structures that exist on the convex hull are 
either thermodynamically stable or meta-stable and can be synthesized in principle. 
From the results we can find the calculation of electronic band structure, density of 
states and phonon dispersion of stable structures from the convex hull. 

 

Figure  13 The enthalpy per atom of MgH2 (HCP) and MgH3 (FCC) are presented in the 
form of the convex hull (solid markers refer to a stable structure, whereas transparent 

markers refer to a meta-stable structure) 
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However, the convex hulls of MgH2 (HCP) and MgH3 (FCC) in figure 13 show that the 
enthalpies per atom of the MgH2 (HCP) structure are unstable at every pressure. As a 
result, we decided not to look into the structure's electronic band structure, density of 
states, or phonon dispersion calculations. Therefore, there are 4 types of structural 
examination remaining in this project which are MgH2 (FCC), MgH3 (FCC), MgD2 (FCC) 
and MgD3 (FCC). 

 
4.2 The phonon dispersion  

Due to the finite size of the simulated material system, the first Brillouin zone is frequently 
sampled with a set of discrete k points in computational works. A k point represents a 
point in the reciprocal space, similar to a R point, which represents a point in the direct 
space. The first Brillouin zone is necessary for studying crystals' electrical, thermal, and 
optical properties. The first Brillouin zone of FCC crystals is seen in figure 14.  

 

Figure  14 The FCC lattice's first Brillouin zone, which includes the high symmetry k 
points and directions [34] 
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Table 1. The first Brillouin zone of an fcc lattice.  𝑘⃗ = 𝑢𝑏⃗ 1 + 𝑣𝑏⃗ 2 + 𝑤𝑏⃗ 3 
Symmetry points 

(𝑢, 𝑣, 𝑤) 
[𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧] Description 

Γ:(0,0,0) [0,0,0] Center of the Brillouin zone 

Χ: (0,1/2,1/2) [0,2π/a,0] Center of a square face 

L: (1/2,1/2,1/2) [π/a,π/a,π/a] Center of a hexagonal face 

𝑊: (1/4,3/4,1/2) [π/a,2π/a,0] Corner point 

U: (1/4,5/8,5/8) [π/2a,2π/a,π/2a] Middle of an edge joining a 
hexagonal and a square 
face 

K: (3/8,3/4,3/8) [3π/2a,3π/2a,0] Middle of an edge joining 
two hexagonal faces 

The real space and reciprocal space primitive translation vectors are: 

𝑎 1 =
𝑎

2
(𝑥̂ + 𝑧̂), 𝑎 2 =

𝑎

2
(𝑥̂ + 𝑦̂), 𝑎 3 =

𝑎

2
(𝑦̂ + 𝑧̂), 

𝑏⃗ 1 =
2𝜋

𝑎
(𝑘̂𝑥 − 𝑘̂𝑦 + 𝑘̂𝑧), 𝑏⃗ 2 =

2𝜋

𝑎
(𝑘̂𝑥 + 𝑘̂𝑦 − 𝑘̂𝑧), 

𝑏⃗ 3 =
2𝜋

𝑎
(−𝑘̂𝑥 + 𝑘̂𝑦 + 𝑘̂𝑧) 

 

In the process of calculating the phonon frequency, we tested the MgH2 and MgD2 
structure at 0 GPa as shown in figure 15 and 16 with the first Brillouin zone W-L-G-X-W-
K. 
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Figure  15 Phonon dispersion of MgH2 at 0 GPa 

 
Figure  16 Phonon dispersion of MgD2 at 0 GPa 
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The results showed that the phonon frequencies of MgH2 and MgD2 at 0 GPa did not 
match the predictions, indicating that the structure was unstable. In the calculations, 
there are two forms of phonons that are acoustic phonons and optical phonons. In 
general, acoustic phonons usually converge to zero at the center of the Brillouin Zone 
and optical phonons exhibit non-zero frequency at the Brillouin Zone center. The 
frequency of the MgH2 structure is higher than that of the MgD2 structure. 

 

Figure  17 Phonon dispersion of MgH2 at 100 GPa 
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Figure  18 Phonon dispersion of MgH2 at 150 GPa 

 

Figure  19 Phonon dispersion of MgH2 at 200 GPa 
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The results of the calculations occur the same way at other pressures. Figure 17, 18 and 
19 show the MgH2 phonon frequency at 100, 150, and 200 GPa. The results indicate that 
a part of the phonon frequency is negative, implying that the phonon dispersion is 
unstable. We tried raising the k point resolution to 24 x 24 x 24, but the phonon result 
remained negative. However, the test results of the MgD2 structure at 100, 150, and 200 
GPa cannot give the results of the calculations by using the same variables. Therefore, 
we focus on the next structures which are MgH3 and MgD3. 

 

Figure  20 Phonon dispersion of MgH3 at 100 GPa 

From the phonon calculation in figure 20, the results of Phonon dispersion of MgH3 at 
100 GPa show that the frequency of phonon in Fm-3m structure of MgH3 at 100 GPa has 
negative value. Therefore, the stability of MgH3 structure under this pressure is unstable.  
At 150 GPa and above, MgH3 becomes more energetically favorable than MgH2.The 
phonon dispersion of MgH3 structure at 150 and 200 GPa are showed in figure 21 and 
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22 and we discovered that the phonon frequency of MgH3 increases as pressure 
increases. The increased pressure on the structures increases the frequencies of all 
modes, but the magnitude of the increase varies. The high frequency modes show a 
significant shift in frequency with pressure, whereas the acoustic modes are almost 
unchanged. This means that pressure has no influence on the effective force constants 
for the low frequency modes, or even slightly decreases them. 

 

Figure  21 Phonon dispersion of MgH3 at 150 GPa 
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Figure  22 Phonon dispersion of MgH3 at 200 GPa 

 

 

Figure  23 Phonon dispersion of MgD3 at 150 GPa 
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Figure  24 Phonon dispersion of MgD3 at 200 GPa 

In figure 23 and 24 the results of the calculations occur the same way at MgD3 structure, 
the phonon dispersion results show that all the frequency of phonon in Fm-3m structure 
of MgD3 at 150 and 200 GPa have positive value and when pressure is increased, the 
phonon frequency also increases, like in MgH3, although the optical mode of MgD3 is 
lower than the optical mode of MgH3. As a result, the MgD3 structure is assumed to be 
stable over this operating pressure. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41 

 

Figure  25 Phonon dispersion of MgH3 at 300 GPa 

 

Figure  26 Phonon dispersion of MgD3 at 300 GPa 
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Figures 25 and 26 illustrate two examples of phonon dispersion at 300 GPa. At the same 
k point, the phonon frequencies of H of MgH3 are higher than those of D of MgD3. This is 
the so-called isotope effect [25], which may be seen when hydrogen atoms (H) are 
substituted with deuterium atoms (D). Deuterium is actually twice as heavy as hydrogen 
in terms of mass. As a result, the phonon frequencies containing hydrogen atom 

vibrations are √2  times greater than those involving deuterium atom vibrations as 

𝜔 ∝
1

√𝑚
. The phonon frequencies below 750 cm-1 in figure 25 belong to the vibrations 

of the Mg atoms, according to a detailed examination. In Figure 26, these frequencies 
are mainly preserved. The phonon frequencies in figure 25 above 750 cm-1, on the other 
hand, correspond to hydrogen atom vibrations. Figure 26's related modes have a 

frequency that is 
1

√2
 time of figure 25's. These are caused by the heavier deuterium 

atoms' vibrations. Future superconducting critical temperature calculations will be 
based on these phonon dispersion studies. 

 

4.3 The electronic band structures 

The band gap in conductors, insulators and semiconductors refers to the energy 
difference (in electron volts) between the top of the valence band and the bottom of the 
conduction band in graphs of the electronic band structure of materials. Therefore, the 
band gap is an important factor in determining a solid's electrical properties. In the first 
Brillouin zones, the examined band structures for all phases along their high symmetry 
directions (W-L-G-X-W-K) in the energy range -12 eV to 12 eV and the Fermi energy is 
set to zero in all of the plots. Figure 27 shows the band structure of MgH2 at 0 GPa and 
electronic density of states (DOS) which the character of the bands crosses the Fermi 
level and the calculation of MgD2 at 0 GPa show in figure 28 which give the same result 
as MgH2. The calculations show that the valence and conduction bands in MgH2 and 
MgD2 structure have an indirect band gap overlap. This indicates that they are metallic. 
However, this calculation at zero pressure uses the PBE-GGA, which tends to 
underestimate band gaps [35]. 
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Figure  27 The electronic band structures of MgH2 at 0 GPa 
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Figure  28 The electronic band structures of MgD2 at 0 GPa 

When we calculate the energy band gap at higher pressure as in the example in figure 

29, which is the result of MgH2 at 150 GPa and figure 30 which is the result of MgD2 at 

150 GPa. They found that the characteristics of the energy band gap were still 

overlapped and when pressure is increased, the band structure also increases. The 

band minimum near the Fermi level is at X point with associated with Mg atom and the 

band maximum is at gamma point associated with H atom. This indicates that MgH2 and 

MgD2 at 150 GPa behave as metallic in nature, but the calculation is from PBE-GGA, 

which can underestimate band structure. Unfortunately, these structures turned out to 

be unstable in the phonon calculation from the results mentioned in phonon dispersion 

results. 
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Figure  29 The electronic band structures of MgH2 at 150 GPa 

 

Figure  30 The electronic band structures of MgD2 at 150 GPa 
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We also estimated the electronic band structure of MgH3 and MgD3 at pressures 
ranging from 150 to 300 GPa, which are stable due to the convex hull. Figures 31 and 
32 show an example of the electronic band structure and electronic density of states 
(DOS) of MgH3 and MgD3 at 150 GPa. The valence bands cross the Fermi level and 
overlap with the conduction bands, as shown by the electronic structures and their DOS. 
Near the Fermi level, the band minimum is at the W point associated with the Mg atom, 
while the band maximum is at the gamma point associated with the H atom. As a result, 
under pressure, MgH3 and MgD3 are metallic. However, there is no difference between 
the electronic structures of MgH3 and MgD3 at this level of DFT computations. The 
results of MgH3 and MgD3 are still metallic under pressure at 300 GPa and also give the 
exact same value of energy band structure and density of state as shown in figure 33 
and figure 34. 

 

 

Figure  31 The electronic band structures of MgH3 at 150 GPa 
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Figure  32 The electronic band structures of MgD3 at 150 GPa 

 

Figure  33 The electronic band structures of MgH3 at 300 GPa 
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Figure  34 The electronic band structures of MgD3 at 300 GPa 

In the future, the work that can be extended in this work is to determine the critical 

temperature. The critical temperature is related 𝑇𝑐 ∝ 𝜔𝐷𝑒
−

1

𝑁𝐹𝑉. 𝜔𝐷  is the Debye 

frequency which relate to the phonon dispersion.  𝑁𝐹  is the density of electron at the 

Fermi level which relate to the electronic structure of this work. 𝑉 is the electron-phonon 

interaction. However, 𝑉 is computationally costly and will be investigated further in the 
future. 
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5. CONCLUSIONS AND SUGGESTIONS 

In this research, we have calculated the convex hull of MgH2(FCC), MgH2(HCP) and 
MgH3 under pressure from 0–300 GPa by using DFT. We observed that MgH2(HCP) is 
unstable at all pressures, while MgH3 is stable between 100 - 300 GPa and becomes 
more energetically favorable than MgH2(FCC) from 150 GPa. Between 0 - 200 GPa, 
MgH2(FCC) is thermodynamically stable so we removed MgH2(HCP) from the remaining 
of the calculation. The phonon calculations confirmed that MgH3 is dynamically stable at 

high pressure, and due to the isotope effect, the phonon frequencies of MgD3 are 
1

√2
 

times lower than those of MgH3. However, even after increasing the computational 
resolution, the MgH2 and MgD2 results are unstable under pressures ranging from 0 to 
200 GPa. The electrical band structures of MgH3 and MgD3 and electronic density of 
states (DOS) were also described, which appear to be identical including MgH2 and 
MgD2 as well. As a result of having the same potential but the weight of deuterium has 
no effect on the electrical band structures and electronic density of states. For 
suggestion, at zero pressure, PBE-GGA can underestimate band structure so we may 
use the new functional in band structure calculation which are significantly more 
accurate with experiment such as the GGA suggested by Engle and Vosko and the 
modified Becke-Johnson exchange correlation potential by Trans and Blaha [36]. And 
we suggest that partial density of states (PDOS) can use to describe the contribution at 
Fermi level better than the density of state for the future work. 
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