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Metal polyhydrides have attracted interest because some of them transform
into metals under high pressure, while others initiate a phase transition to become
superconductors. It was recently discovered that some superconducting metal
polyhydrides have a high critical temperature (T,) under pressure. We calculate the
structures of MgH,(FCC), MgH, (HCP), and MgH, under pressures ranging from 0-300
GPa in order to determine the formation enthalpy and electronic properties under high
pressure. We also replaced the hydrogen atoms with deuterium (D). The convex hulls
of MgH,(FCC), MgH,(HCP), and MgH,(FCC) calculated at pressures from 0 to 300
GPa. At all pressures, MgH,(HCP) is unstable, whereas MgH, is stable between 100
and 300 GPa. MgH,(FCC) is thermodynamically stable between 0 and 200
GPa. MgH, is dynamically stable at high pressure, according to phonon calculations,
while MgD,'s phonon frequencies are 1/\/2 times lower than MgH,'s due to the
isotope effect. The MgH, and MgD, results are unstable under pressures ranging from
0 to 200 GPa. The band structures and density of states of MgH, and MgD, were also

described, which appear to be similar, as well as MgH, and MgD.,.
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1. INTRODUCTION

In 1911, Heike Kamerlingh Onnes discovered superconductivity of 4.2 K in mercury [1].
One of the most important activities in condensed matter Physics has been the search
for high critical temperature (T,) superconductors. Copper oxides and iron-based
compounds with high superconducting transition temperatures were studied. At ambient
pressure, the critical temperature of copper oxides and iron-based superconductors
was 133 K [2] and 56 K [3], respectively. The conventional superconductor, magnesium
diboride, has a T, of 39 K [4]. One of the thermodynamic parameters that controls the
structure and properties of condensed matter is pressure. High pressure can effectively
shorten bonds and change electronic structure, resulting in new phases with unusual
structures and properties that are rarely seen at atmospheric pressure. For example,
high pressure can make the insulator transform to a metal state [5], increase T, of
superconductors (T of copper oxides is raised to 164 K at 31 GPa) [6]. Wigner and
Huntington theoretically predicted in 1935 that solid hydrogen would be metalized at
high pressure, resulting in metallic hydrogen [7]. As a result, the search for a metallic
phase of solid hydrogen has become a hot topic in physics. There are various
experimental research projects involving hydrogen at high pressures. However, these
studies showed that metallizing hydrogen is extremely difficult. How to reduce the
metallic pressure of a hydrogen system is one of the most important topics. In 2004,
Aschroft [8] proposed a great idea that hydrogen-rich materials can be metallized at
much lower pressures due to ‘chemical pre-compression’. High temperature
superconductivity can be found after metallization because these materials are
dominated by hydrogen elements, which can provide high phonon frequencies and
strong electron—phonon coupling (EPC). For room temperature superconductivity, a high
Debye temperature and strong electron-phonon coupling are necessary. As a result,
they are good candidates for searching for high T_. superconductors within the
experimental diamond anvil cell's reach (DAC). Researchers began looking for high-

temperature superconductors in hydrogen-rich materials based on this theory. Because



experimental studies of hydrogen-rich materials' metallization and superconductivity
under high pressure are difficult, theoretical research has been at the top of the list of
this field and made significant contributions. Metal polyhydrides have attracted much
interest in condensed matter research since they can turn into superconductors with
high critical temperatures when exposed to higher pressures [9]. At 200 GPa, the Mg/Ca
substituted hexahydride has shown superconductivity with T, = 288 K [10]. Magnesium
hydrides are the focus of this research (MgH,). Figure 1 demonstrate different ways to
store hydrogen based on volumetric capacity and gravimetric capacity. MgH, is
interesting for hydrogen storage due to its high gravimetric and volumetric capacities
(7.6 wt %and 109 gH,) [11]. We reported the relative structural stability of MgH, (FCC),
MgH, (HCP), MgH, in the pressure range of 0-300 GPa. This work focuses on the
structural factors of Magnesium hydride that replaces hydrogen with deuterium. In this
work, MgH, (FCC), MgH, (HCP), MgH, structure was chosen as the prototype to find a

structure that is stable under high pressure to be used as a base model.
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Figure 1 The gravimetric and volumetric capacities of hydrogen for hydrogen fuel [12]



Density Functional Theory (DFT), a method for solving many-body problems, was
proposed by Hohenberg and Kohn in 1964 [13]. They demonstrated that the unique
ground state properties of a system can be determined by replacing the wave function
basis with an electron density by using the exchange-correlation energy which can be
solved using the variation method in order to find the exchange-correlation potential,
and the exchange-correlation energy can take the form of density. By including the
correlation of an electron-electron interaction, or the correlation potential, Kohn
proposed the Kohn-Sham equation in 1965 [14]. When the correlation potential is taken
into account, the total energy of the many-body system is lower than when the Hartree-
Fock equation is solved. As a result, it is thought to produce the most likely relative total
energy of the real system. The Kohn-Sham equation is sometimes referred to as
"Schrodinger-like," but it is not the same as Schrédinger's equation because it only
exists in functional form. W. Kohn was awarded the Nobel Prize in Chemistry in 1998 for

this remarkable discovery.

In this work, structural investigation was performed using ab initio methods. All the
calculations were performed by using the density functional theory. The self-consistent
field method carries out in the Quantum-ESPRESSO code [15]. This research will use the
Generalized-Gradient Approximation (GGA) functional of Perdew-Burke-Ernzerhof (PBE)

[16] as an exchange-correlation functional.

2. THEORETICAL BACKGROUND

Density Functional Theory

The Density Functional Theory (DFT) is one of the most famous and successful methods
for studying ground-state energies and electronic structures in many-body quantum

systems. Especially given the fact that they are identical, in concept, several parameter



estimations for exchange-correlation functionals are obligated. A detailed description of
the DFT will be discussed in this section.

2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation was the first and most important step in
calculating the total energy of a many-body system [17]. The full Hamiltonian can be

written as following

= - Zl—l 2m le |7'1 |
zlz]e

_ Nnuc_ 2
Zli]lr iy = ZMV +5 Zlqt]l R, | (1)

The kinetic energy of electrons, the electron-nuclei interaction, the electron-electron
interaction, the kinetic energy of nuclei, and the nuclei-nuclear interaction, respectively,
are the five terms in the right-hand side of Eq. (1) where 77 is position of ith electron
and RI is position of Ith nucleus with charge Zj. They assumed the nuclei were at
equilibrium and only the electrons were moving because nuclei are heavier than

individual electrons. Therefore Eq. (1) can be written in a new form as shown below:

2

2
2 zje 1 e
Zl— Zl,[ |,r.i_RI | 2 Zli] |,ri_,r.j | ( )

12m

This is the Born-Oppenheimer approximation, which provides an acceptable energy for

a basic system but may be insufficient for solving more complex systems.

2.2 The Hohenburg-Kohn Theorem

The Hohenberg-Kohn theorems apply to any system in which electrons move under the
influence of a potential. Two theorems made by Hohenberg and Kohn are known to be

the DFT's starting point.



Theorem I: There is a one-to-one relation between the external potential and ground

state density for the interacting particles system in an external potential.

We can write the ground state wave function as a unique functional of the ground state
electron density. As a result, the ground state energy € can be written as a function of

the ground state density, as indicated in Eq. (3)

(WInol|Alp[nol) = eno) @

No (T‘) is electron density in a function of electron positions. E[TLO (T‘)] is an energy
in a function of density. Although the first Hohenberg—Kohn theorem mathematically
shows that an electron density functional exists, it explains nothing about the functional's

actual form.

Theorem II: The second Hohenberg—Kohn theorem defines an important property of the
functional and states that “the ground state energy can be determined by minimizing
total energy, which is a function of electron density by variational principle of the energy

functional”.

This can be expressed mathematically as seen below.

de[n(r)]

on n=ng

=0 (4)

&( is the exact ground state energy which correspond to ground state density 1 (T‘)

by €9 = &[no(7)]

2.3 Self-consistent Kohn-Sham equation

The structural phase transitions can be calculated using Density Functional Theory
(DFT), which is an excellent theoretical theory. In this study, DFT was used to examine
the structure properties of MgH, (FCC), MgH, (HCP), MgH,. The equation derived by

Kohn and Sham called the Kohn-Sham equation [14],



22 4 Vo (0] Y () = enihn(r) 5

where the effective potential is

Veff (1) = Vext () + Vy[n(r)] + Vic[n(r)] (6)

Vext(r) is external potential. VH [Tl(‘l‘)] is Hartree potential. ch [n(r)] is the

exchange correlation potential

with

Valn () = | %dr'
and

Vyolnr)] = 22

The first two terms, Vext(r) and VH [Tl(?")] can determine from the effective
potential, whereas the last term, ch [n(r)] is still unknown. The exchange correlation
potential, ch[n(r)] contains all quantum mechanical and explicit many-body
effects that are unknown. The Local Density Approximation (LDA) and the Generalised
Gradient Approximation (GGA) are two types of techniques for general correlation

exchange functions [18].



2.3.1 Local Density Approximation (LDA):

It is a type of density functional theory (DFT) approximations to the exchange—correlation
energy functional which is certainly based on the electronic density at each position in
space. The exchange—correlation energy can be approximated directly using a lot of
techniques. The local approximation obtained from the uniform electron gas concept
[19], on the other hand, is the most popular. The proposed approximation is thus given

by

Ext?[n(M)] = [ n(Mexd™ [n(r)]dr ™

where n(r) is the electronic density and Ef;lcom is the exchange-correlation energy
per particle of a homogeneous electron gas of charge density. However, in many
situations, such as in the case of rapidly varying density systems—-more complicated

systems, it is typically not appropriate to use LDA.

2.3.2 Generalised Gradient Approximation (GGA)

The electron density in most actual situations is unlikely to be uniform, making the LDA
method unworkable in many ways. Despite this, many attempts have been made to
develop the LDA by taking higher-order exchange-correlation energy components into
account. Consequently, not only is the electron density, n(r), included in the
exchange-correlation energy, but the gradient of density, VTL(T), is also taken into

account, which is expressed as

Exi4n(m)] = [ n(M)exc[n(r), Vn(r)]dr (®)

The self-consistent field (SCF) method is an iterative procedure for solve the Kohn-Sham

equation to obtain the effective potential, the starting value of the density is first



guessed. The total energies and Kohn-Sham orbitals are then calculated using the
equation. The new density is then derived from the Kohn-Sham orbitals that were just
calculated and applied to the next phase. This iterative method repeats itself until the
density convergence condition is satisfied. Finally, the output quantities, such as band
structures and density of states, are calculated using the converged density. Figure 2

shows the complete numerical procedure.

Initial guess

n(r)

Calculate effective potential

Veﬁ‘ (1) = Voxt O) +Vggrtree [n]+ Vi [1]

Solve KS equation

{_ %Vz +V,, (r)}yf (r) =g, (r)

Calculate electron density

N
n(r) =¥ (N)¥(r)
i=l1

No

Self-consistent ?

Yes

Output quantities

Potential Energy, Static structure,
Born effective charges, etc...

Figure 2 Schematic of the SCF method



2.4 Calculation techniques in DFT
2.4.1 Plane wave basis set

Different types of problems in solids make it difficult to calculate the Kohn-Sham
equation for real materials. By considering simply a periodic solid that is invariant under
translational and rotational symmetries, the Bloch theorem can be applied to reduce this
difficult problem [20] . According to Bloch theorem, the electron wave function is plane
waves multiplied by a periodic function uﬁ (T‘) as solutions of the Schrodinger

equation.

Y (r) = up(r) e®” (©)

where K is a wave vector and 1 is a band index. The wave function and energy

eigenvalue must satisfy the condition

(k) =¢e(k+G) (10)

Yr (1) =Yg (1) (11)

with G being the reciprocal lattice vector. Consequently, the maximum value of

G, Gmax is associated to the kinetic cutoff energy by the expression

h2G2
— max (1 2)

gmax 2m

As for the periodic function, it's described as a sum of plane wave sets.
n — n iGj'r
we(r) =26 (ke™" (s
By plugging Eq. (13) into Eq. (9), the volumetric normalized electron wave function is

written as
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YE () = 52 G (ke T

2.4.2 The pseudopotential method of Projected Augmented Wave

The PAW (Projected Augmented Wave) approach was chosen to be used during whole
project. This methodology evolved gradually from the augmented plane wave method
with separating the wave function into two parts: partial wave expansions inside of
sphere and envelope function from outside sphere [21] . At the sphere boundary, the
envelope of function must be differentiable and totally matched. Because there are an
infinite number of partial waves near to the atomic core, the all-electron wave function,
lp, transformed into a fictional smooth function known as the auxiliary wave function. 1,D~
containing a smaller amount of partial wave basis. Within the sphere of volume .QR, Any
wave function, can be distributed as a linear combination of partial wave basis sets, as

well as the fictitious smooth wave function.
W) = X;a;|p;(r)) inside Qg and  (15)
|1/3(r)) =Y. b; |q§i(r)) Jinside Qg (16)

whereas the all-electron partial wave and the auxiliary partial wave outside the sphere

are

identical:

Qi(r) = ¢@;(7r) . outside Qr (17)
The all-electron partial wave is the solution to the radial Schrodinger equation for an
isolated atom, and the auxiliary wave function may be chosen from the all-electron
partial wave that matches the all-electron partial wave outside of the sphere. As a result,
the transformation operator, relates the additional wave function and the all-electron

wave function.
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) = T|) (18)
the transformation operator can be defined as follows
T = i + ZR SR (19)

The transformation operator is frequently done by adding the identity operator with the
sum of the atomic contributions at each specific site R as described in Eq (19). The
atomic contribution reflects the difference between the all-electron partial wave and the

auxiliary partial wave. Which is
Sr|®:) = 1d) — |b:) (20)

The new operator |Pi) described as the projection operator in atomic space that
represents the local character of a wave function [22]. The partial wave basis set must

be orthonormal to the operator.

(pm|$n) = Omn (21)

By using the mentioned property, the smooth wave function can be written as

|’~/;) = i |§51> (ﬁzll/;) (22)

By applying Eq. (19) into (22), we have

W) = (14 Xi(1p:) — [P N(B:]) 1), (23)

With the transformation operator which can write as

T=1+%:(1¢:) — |@:D(P:] (24)
the expected value of an arbitrary operator denoted byA:

(A) = Zn fn(¢n|A|¢n>
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= Zn fn(¢n|T+AT|lpn> (25)

fn is the occupation number.
(H — £5) |1/~)) =0 (26)
this equation can apply the PAW method to the Kohn-Sham equation.
H=1'Ht (27)

S=1Tr (28)

- -~

H is Hamiltonian matrix, H =T + V.

2.4.3 The cutoff energy and k-point mesh

The reciprocate space, also known as k-space, presents the Fourier transform of the
repeated periodic lattice in real space. The Kohn-Sham equation is solved in reciprocal
space with plane waves as basis sets in this research. Equation (14) yields a concrete
answer to the Kohn-Sham equation since there are an infinite number of plane-wave
basis sets. However, due to a shortage of processing resources, analyzing the exact
answer is difficult. As a result, Monkhorst and Pack still provide a limited but useful
number of plane-wave basis sets [23], which is influenced by the kinetic cutoff energy,
Ecut' which is represented by the highest value of the reciprocal lattice vector, Gmax-

The kinetic energy cutoff is now expressed as

hZ
Ecur = om |k + Graxl® (29)

The more kinetic cutoff energies and k-points there are, the more correctly the energy is

calculated; however, it also demands more processing resources.



13

2.4.4 The geometry optimization

In computational physics, the Hartree-Fock (HF) technique is an approximation
approach for determining a quantum many-body system's wave function and energy in
a stationary state. The Hartree-Fock method attempts to estimate the solution of the
electronic Schrodinger equation, assuming that the wavefunction can be approximated
by a single Slater determinant consisting of one spin orbital per electron. In either case,
note that the solutions depend on the orbitals. The Hartree-Fock equations can be
solved numerically or they can be solved in the space spanned by a set of basis
functions (Hartree-Fock-Roothan equations) [24]. As a result, we must first guess some
initial orbitals before iteratively refining our guesses. Because of this, Hartree-Fock is
known as a self-consistent-field (SCF) method. The Hartree-Fock equations can be

defined as follows

[ xiCxr) = €xi(x1). (30)

where €; is the energy eigenvalue associated with orbital X;. The Hartree-Fock
equations are transformed into Roothaan equations by using a basis set. )?is the atomic

orbital basis functions, we have the expansion

Xi (xl) = I‘Lizl C[Ji)?[,t (31)
for each spin orbital LIt then leads into
f(xl) 2 Coidty(x1) = €; 20 Cyi Xy (x1). (32)

A matrix equation is obtained by multiplying )(;(xl) on the left-hand side and

integrating.
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2w Cyi f dx, )(;(x1)f(x1))?v(x1) =
€ Zv Cvi f dxl X;; (xl))Zv (xl)- (33)

This could be greatly simplified by using matrix element notation.
— * ~
S,uv = f dx, Xu (x1) 7y (x1), (34)

Ey = fdx1 )(;(x1)f(x1)fv(x1)- (35)

The Hartree-Fock-Roothaan equations can now be expressed as a matrix:

D FnCyi = € D Suv Cyi (36)

or

FC = SCe 37)

where €; is the orbital energy that is represented by a diagonal matrix €. Except for the
overlap matrix S, this is an eigenvalue equationTo make S disappear, one must perform
a basis transformation to an orthogonal basis, after which an eigenvalue equation can
be solved. Because F is depend on its own solution (via the orbitals), the method must
be repeated iteratively. This is why the solution of the Hartree-Fock-Roothaan equations

are often called the self-consistent-field method.

The process of arranging crystal structures in space so that their energies are
minimized is known as geometry optimization. The investigated structure is relaxed to
the point where each atom's net interatomic force is as close to zero as possible, and
the atomic positions stay constant. In DFT, however, the temperature is ignored; the
system in contact with any pressure value and T= 0 K reservoirs prefer the minimum

enthalpy.
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H=E+ PV (38)

Enthalpy is the sum of the internal energy and pressure times volume. The matrix of
lattice vector b = {a, b, C} and the coordinate Sj, [ = 1...N use to examine the
crystal structure by relate to h of N atoms in unitcell and V' = det (h) We use the
finite strain tensor as a free variable instead of the lattice vectors since the energy per
unit cell is a function of A and S;. The strain components have 9 dimensions and 3N,

the enthalpy now has a functional of (9 + 3N)-dimensional space [25].

H = H(e, 1,715,173, .. , 1) (39)
The force component is created by taking the first derivative of the enthalpy with respect
to the coordinates of atoms Xi :

0H
F = _G_Xi . (40)

Around the lowest Xmin’ the enthalpy variation is defined as

SH =~ (X = Xmin) - BIX = Xinin) @)

The Hessian matrix is denoted by B. The technique of quasi-Newton is being used to
reduce lattice parameters. The searching for the Xmin from the force for one relaxation

step is aided by the internal coordinates of pressured crystals [25]. The Xk is written as
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AXk - Hk Fk (42)
and

H=B"1

Despite HO being unidentified. The crystal structure eventually fulfills the external
pressure criterion and also has the smallest enthalpy, as determined by the algorithm,

when X reaches its minimum.

2.4.5 Electronic band structure

The electronic band structure (or simply band structure) of a material in solid-state
physics explains the range of energy levels that electrons can have within it, as well as
the ranges of energy levels that they can't have. The ground-state wave function is given
by the Kohn-Sham equation solution, Eqg. (5), which also relates to the system's
Hamiltonian. The system's electrical characteristics are then determined by computing
the expected values of the total energy responsible for each k-vector. Which is obtained

by

(lpnkllﬁll/)nk) = €k Okir  (43)

The electronic band structure is produced by displaying the set of eigenvalues along
the high symmetry points over the first Brillouin zone after getting energies matching

each value of the wave vector k. When identifying if a crystal is an insulator, conductor,
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or semiconductor, the band structure can be examined. The band gap between the
valence and conduction bands is seen in figure 3. If the crystal is a conductor, the
conduction and valence bands will overlap, which means there is no band gap. The
crystal is a semiconductor when the energy gap between the conduction band and the
valence band is more than 0 and less than 3 eV. The energy gap between valence
bands and conduction band is too large for the electron to make the jump to escape
from its atom and be promoted to the valance band in insulators with a band gap

greater than 3 eV[26].

Conduction band

Electron energy

Valence band

Conductor Semiconductor Insulator

Figure 3 The energy band gap of conductor, semiconductor and insulator

By increasing the pressure to the crystal, the gap between the conduction and valence
bands can be changed. An insulator's valence band is completely filled with electrons.
The gap will close after applying pressure to the crystal, and some electrons flow to the

conduction band, making the crystal metal.
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2.4.6 Density of states

The quantity of all electrons permitted to occupy a specified level of energy is defined
as the total density of states. A probability density function is used to represent it

mathematically as a distribution. The DOS of nm—energy level is expressed as

g(&) = [8(e — e,(k)) (44)

when the integral is spread over the primitive cell. The energy eigenvalue accounting for
the n"-energy level is En (k) As a result, the partial density of states (PDOS) is defined

as the projection of each given atom's orbital onto the density of states.

2.4.7 Phonon’s calculation

Based on DFT calculations at 0 K, MgH, and MgH, structural tests under high pressure
were identified in this work. Although, DFT calculations show good agreement with the
experimental results in many situations, it cannot clearly prove the unique high-pressure
phase. In generally, crystal stability can be explained using phonon frequencies caused
by lattice dynamics. As a result, phonon calculations were used to verify the enthalpy-
pressure relationship's result. In the structure steady state coordinates, the expansion

must be done for the whole energy [27] , which are

. OE — 1 - kk' —
E — EO + Zk,a a‘l_l:ka - uk,a + Ezk,a,k’,a’ uk,a - Cba’al b ukl'al + °cc

(45)

The force which acts on atom can calculate as following

O0E
F, = 46
k,a al—ik’a ( )
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The force term is zero at equilibrium. The 3™ harmonic approximation and the higher

-

order terms believed to be irrelevant. Uy o is the vector of atomic displacements from
L ek N

equilibrium position. Cl)a o 'S the force constant matrix, which is

kk' 0%E
q) —_

=V = 47
ala, auk,aauk[’al ( >

DFT calculations are used to compute the force component. Then apply it to Newton's

equation of motion to get the matrix eigenvalue equation, which is
4
D&y = WméEm (48)

The dynamical matrix is

1 !
CDk’k " (49)

\/MkMk’ a,a

The phonon calculation result can be obtained from eigenvalue, (1)%1, This explains the

kk' o\
D, (q) =

frequency dispersion relationship of the structure. The square root of the eigenvalues of
the dynamical matrix is used to calculate phonon frequencies. Because these
eigenvalues can be positive or negative, phonon frequencies can be positive real or
imaginary numbers. In Quantum-ESPRESSO code produce negative values at imaginary
frequencies so If the phonon frequency is positive, the structure will be stable. If the

phonon frequency is negative, the structure will be instability.

2.4.8 Isotope effect

The replacement of an atom by one of its isotopes has proven to be very useful in the
study of reaction mechanisms. The discovery of the isotope effect in ordinary
superconductors was essential in the development of the Bardeen-Cooper-Schrieffer

(BCS) theory, Cooper pairs are formed by electrons interacting through lattice vibrations
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[28]. For example, the expression on the isotope coefficient ((X) for H,S superconductor

[29] in the function of the pressure was

= (50)

The electron-phonon pairing kernel has the following form

QaZ(Q)F(Q)

02-z2 (61)

K@) =2[ "do

Where 672 (.Q)F(.Q) is The Eliashberg functions [30]. In the Eliashberg formalism, the

depairing electron correlations are expressed by the the following:
* A *
p(wn) = w0(we — |wy|) (52)
We = 3Qmax (53)

,u* is the Coulomb pseudopotential. Qmax is the Debye frequency. B is the
Heaviside function. W is the cut-off frequency
The Coulomb pseudopotential was defined by Morel and Anderson [31].

* u
1+uln (—=
U (wzn

W, is the characteristic electron frequency. Logarithmic phonon frequency Wiy is

expressed by

Qmax az(Q)F(Q
wpm = exp 2 f, ™ d0 20 (0)]s5)

—(1+2) ]

*(140.47472)) (56)

KgT, = w;exp [(/’l—ﬂ

The electron-phonon coupling constant A is derived from
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=2
A= 12 [ me dﬂw (57)

Thus

l[ _ (1”‘)(”0-4747/1)(#*)2]

2 (A—u*(1+0.47472))2 (58)

a =

For superconducting material, the critical temperature is inversely proportional to square

root of isotopic mass M

1
Te=13 (59)
T.=—~ a=05
C_m;a— (60)

3. CALCULATION DETAILS

In this work, we calculated the structures of MgH,, MgH, (HCP), MgH, under pressure
between 0-300 GPa in order to determine the formation enthalpy and electronic property
of their structures under high pressure by using density functional theory (DFT) which
were numerically calculated. We also substituted the hydrogen atoms with deuterium (D)
to determine the dynamical stability under high pressure. The total energy was to be
reported and applied to examine the electronic band structures, DOS and phonon

dispersion.
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3.1 Structure

In this work MgH, (FCC), MgH, (HCP), MgH, structures in figures 4, 5 and 6 were
chosen as models to find stable structures under high pressure to be used as a basic

model for calculating the critical temperature in the future work.

Table 1. Lattice parameters of MgH, (FCC), MgH, (HCP), MgH, at the atmospheric

pressure (0 GPa).

Structure Space a b o} Density Volume
group / : ) (g/cma) -
(A) (A) (A) (A)
MgH, Fm-3m 3.367 3.367 3.367 1.62 26.999
MgH, | P6/mmm 3.074 3.074 3.534 2.64 28.917
MgH, Fm-3m 3.327 3.327 3.327 1.74 26.042




Figure 4 The Fm-3m structure of MgH, or the face centered cubic

Figure 5 The P6/mmm structure of MgH, or hexagonal close packed

23
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Figure 6 The Fm-3m structure of MgH, or the face centered cubic

Quantum Espresso Package [15] was used to examine the physical characteristics of
MgH,, MgH, (HCP), MgH, and substituted the hydrogen atoms with deuterium (D). The
pseudopotentials for the core and valence electrons were described using the projector
augmented wave technique (PAW) [32] . We used the Perdew-Burke-Ernzerhof (PBE)
functional for the generalized gradient approximation (GGA). The convergence test
needs to be achieved systematically to accurately assessed physical quantities with the

aid of DFT.

3.2 Convergence test

Convergence tests are crucial for determining the correctness of the system's total
ground-state energy. A convergence test is a method of improving the input script for a
simulation in order to make optimum use of limited computer resources. To determine
the simulation's accuracy and dependability, it's important to identify an optimal initial
setting for study. The kinetic cutoff energies and k-point meshes are the parameters that
must be optimized. Convergence test is a technique of increasing the effectiveness of
limited computer resources by optimizing the input script for a simulation. To determine
the simulation's correctness and reliability, it's important to identify a suitable setup for

research for a certain system. Convergence testing of the MgH,(FCC) structure can be
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divided into 2 parts. The k-point mesh of 4 x 4 x 4 was chosen and kept as a fixed value,
after which the cutoff energies ranging from 30 to 120 Ry were varied, and each of the
calculated total energies corresponding to each of the cutoff energies was plotted in
Figure 7. The energies immediately decrease during the cutoffs from 30 to 120 Ry, as

shown in Figure 7.

MgH (FCC)
-142.8
[ |

-143.0 +
’g -143.2 H
)
&
>
&
S -143.4 1
5
(=1
m
= |
£ -1436
=

] I\-
T—E—a—n E—s—n
-143.8
T T T T ' T . T T T .
20 40 60 80 100 120
Energy cutoff(Ry)

Figure 7 The convergence test of total energy with the energy cutoff for FCC in MgH,
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The cutoff energy of 80 Ry was chosen for the remainder of the calculations because
when the cutoff is larger, the difference in calculating the total energy of this system is
even smaller. The difference between cutoff energies of 80 and 90 Ry is less than 0.01

eV, which is technically acceptable.

MgH (FCC)
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4 6 8 10 12
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Figure 8 The convergence test of total energy with the k point mesh for FCC in MgH,,

In the second part, the cutoff energy of 80 Ry was chosen and kept as a constant value,
after which the set of k-point from 4 x 4 x 4 to 12 x 12 x 12 were varied and plotted in
figure 8. The energy curve fluctuates a little initially, but it tends to stabilize at 11 x 11 x
11. The set of k-point 11 x 11 x 11 and 12 x 12 x 12 has the total energy difference less
than 0.0001 eV, so thus the k-point of 12 x 12 x 12 was chosen. Other physical
properties of the MgH,(FCC) structure were calculated using the cutoff energy of 80 Ry

and the k-point mesh of 12 x 12 x 12 as input parameters.
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The same processes are used in the MgH,(HCP) convergence test in figure 9, with the
k-point 4 x 4 x 4 kept as a fixed parameter, and the cutoff energies ranging from 40 to
120 Ry. During the cutoffs from 40 to 120 Ry, the total energies decrease. Because the
difference in cutoff energies between 80 and 90 Ry is less than 0.01 eV, the 80 Ry cutoff

energy was chosen to be the same as MgH, (FCC).
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Figure 9 The convergence test of total energy with the energy cutoff for HCP in MgH,

The second procedure is the k point test, which uses an 80 Ry cutoff energy as a fixed
parameter, followed by the k-point meshes test from 4 x 4 x 2 t0 12 x 12 x 2 in figure 10.
The results revealed that the obtained energy fluctuates. As a result, additional tests

were carried out to assess the total energy's stability.



28
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Figure 10 The convergence test of total energy and the k point set for HCP in MgH,, (n x
nx2)

In figure 11 the first two k values were set to 12 by the test, which ranged from 12 x 12 x
21012 x 12 x11. The findings revealed that the difference in energy between the k-point
meshes of 12 x 12 x 8 and 12 x 12 x 9 is less than 0.0001 eV, therefore the 12 x 12 x 8 k-
point mesh was chosen. In order to calculate the structure of MgH, (HCP), the cutoff

energy of 80 Ry and the k-point mesh of 12 x12 x 8 were utilized as input parameters.
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Figure 11 The convergence test of total energy and the k point set for HCP in MgH, (12

X 12 xn)

4. RESULTS AND DISCUSSIONS

4.1 The convex hull of Mg—H system

This section carefully describes all processes within this work as follows: First, we
calculate the enthalpy of MgH, and MgH, at 0-300 GPa then simulate the structure of
pure hydrogen (HCP, monoclinic) and pure magnesium (HCP, BCC) to determine the
enthalpy at pressure 0-300 GPa for calculate the enthalpy difference of MgH,, MgH, to
find the convex hull curve comparing with the enthalpy difference between Mg and H.

The hydrogen phases that use in the calculation are P6,/m at 0 — 50 GPa and C2/c at
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100-300 GPa [33]. We calculated the formation enthalpy of Mg, H, using a fractional

representation of Mg, ,H, with respect to its decomposition into Mg and H as

AH(Mgl—xHx)
= HWMg;_xH,) — [(1 —x) X H(Mg) + x X H(H)]

where x is the concentration of H. The formation enthalpies from 0 to 300 GPa were

evaluated as the difference in the enthalpy of the predicted Mg-H system.

Mg H
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—8—P=50 GPa
-0.06 4 —e— P=100 GPa
|| —&—P=150GPa
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-0.08 | —e— P=250 GPa
|| —=—P=300GPa MgH, 4
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S
(e
=
|

'0.10 T T T T T T T >[ T
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H/(Mg+H)

Figure 12 The enthalpy per atom of MgH, (FCC) and MgH, (FCC) are presented in the
form of the convex hull (solid markers refer to a stable structure, whereas transparent

markers refer to a meta-stable structure)



31

The convex hulls in figure 12 showed that the Fm-3m structure of MgH, is
thermodynamically stable between 100-300 GPa and 0-200 GPa for MgH,. Moreover, at
150 GPa and above, MgH, becomes more energetically favorable than MgH,. The D
atoms were also used instead of the H atoms. Despite this, the enthalpies per atom of
MgH, and MgD, are exactly equivalent because the pseudopotentials are identical; the
only difference is the masses of H and D. Structures that exist on the convex hull are
either thermodynamically stable or meta-stable and can be synthesized in principle.
From the results we can find the calculation of electronic band structure, density of

states and phonon dispersion of stable structures from the convex hull.

Mg H
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Figure 13 The enthalpy per atom of MgH, (HCP) and MgH, (FCC) are presented in the
form of the convex hull (solid markers refer to a stable structure, whereas transparent

markers refer to a meta-stable structure)
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However, the convex hulls of MgH, (HCP) and MgH, (FCC) in figure 13 show that the
enthalpies per atom of the MgH, (HCP) structure are unstable at every pressure. As a
result, we decided not to look into the structure's electronic band structure, density of
states, or phonon dispersion calculations. Therefore, there are 4 types of structural
examination remaining in this project which are MgH, (FCC), MgH, (FCC), MgD, (FCC)

and MgD, (FCC).

4.2 The phonon dispersion

Due to the finite size of the simulated material system, the first Brillouin zone is frequently
sampled with a set of discrete k points in computational works. A k point represents a
point in the reciprocal space, similar to a R point, which represents a point in the direct
space. The first Brillouin zone is necessary for studying crystals' electrical, thermal, and

optical properties. The first Brillouin zone of FCC crystals is seen in figure 14.

4

S

N

Figure 14 The FCC lattice's first Brillouin zone, which includes the high symmetry k

points and directions [34]
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Table 1. The first Brillouin zone of an fcc lattice. K = uby + vb, + Wby

Symmetry points [kx' ky, kz] Description
(u,v,w)
[':(0,0,0) [0,0,0] Center of the Brillouin zone
X:(0,1/2,1/2) [0,2TU/a,0] Center of a square face
L: (1/2,1/2,1/2) [TUa,TUa,TUa] Center of a hexagonal face
W (1/4,3/4,1/2) [Tt/a,2Tl/a,0] Corner point
U: (1/4,5/8,5/8) [TU/2a,2T/a,Tl/2a] Middle of an edge joining a

hexagonal and a square

face

K: (3/8,3/4,3/8) [3TT/2a,3TT/2a,0] Middle of an edge joining

two hexagonal faces

The real space and reciprocal space primitive translation vectors are:

al—z(x+z“),a2——(5c‘+y),(_i3=5 y+2),
N 218N Y, RN Y Aol .
b1=7(x—ky+kz),b2=7(x+ky—kz),

In the process of calculating the phonon frequency, we tested the MgH, and MgD,
structure at 0 GPa as shown in figure 15 and 16 with the first Brillouin zone W-L-G-X-W-
K.
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Figure 15 Phonon dispersion of MgH, at 0 GPa
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Figure 16 Phonon dispersion of MgD, at 0 GPa
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The results showed that the phonon frequencies of MgH, and MgD, at 0 GPa did not
match the predictions, indicating that the structure was unstable. In the calculations,
there are two forms of phonons that are acoustic phonons and optical phonons. In
general, acoustic phonons usually converge to zero at the center of the Brillouin Zone
and optical phonons exhibit non-zero frequency at the Brillouin Zone center. The

frequency of the MgH, structure is higher than that of the MgD,, structure.
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Figure 17 Phonon dispersion of MgH, at 100 GPa
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The results of the calculations occur the same way at other pressures. Figure 17, 18 and
19 show the MgH, phonon frequency at 100, 150, and 200 GPa. The results indicate that
a part of the phonon frequency is negative, implying that the phonon dispersion is
unstable. We tried raising the k point resolution to 24 x 24 x 24, but the phonon result
remained negative. However, the test results of the MgD,, structure at 100, 150, and 200
GPa cannot give the results of the calculations by using the same variables. Therefore,

we focus on the next structures which are MgH, and MgD,.

MgH, at 100 GPa
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Figure 20 Phonon dispersion of MgH, at 100 GPa

From the phonon calculation in figure 20, the results of Phonon dispersion of MgH, at
100 GPa show that the frequency of phonon in Fm-3m structure of MgH, at 100 GPa has
negative value. Therefore, the stability of MgH, structure under this pressure is unstable.
At 150 GPa and above, MgH, becomes more energetically favorable than MgH,.The

phonon dispersion of MgH, structure at 150 and 200 GPa are showed in figure 21 and
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22 and we discovered that the phonon frequency of MgH, increases as pressure
increases. The increased pressure on the structures increases the frequencies of all
modes, but the magnitude of the increase varies. The high frequency modes show a
significant shift in frequency with pressure, whereas the acoustic modes are almost
unchanged. This means that pressure has no influence on the effective force constants

for the low frequency modes, or even slightly decreases them.
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Figure 21 Phonon dispersion of MgH, at 150 GPa
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MgH, at200 GPa
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Figure 22 Phonon dispersion of MgH, at 200 GPa

MgD, at 150 GPa
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Figure 23 Phonon dispersion of MgD, at 150 GPa
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MgD, at 200 GPa
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Figure 24 Phonon dispersion of MgD, at 200 GPa

In figure 23 and 24 the results of the calculations occur the same way at MgD,, structure,
the phonon dispersion results show that all the frequency of phonon in Fm-3m structure
of MgD, at 150 and 200 GPa have positive value and when pressure is increased, the
phonon frequency also increases, like in MgH,, although the optical mode of MgD, is
lower than the optical mode of MgH,. As a result, the MgD, structure is assumed to be

stable over this operating pressure.
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Figure 25 Phonon dispersion of MgH, at 300 GPa
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Figure 26 Phonon dispersion of MgD, at 300 GPa
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Figures 25 and 26 illustrate two examples of phonon dispersion at 300 GPa. At the same
K point, the phonon frequencies of H of MgH, are higher than those of D of MgD,. This is
the so-called isotope effect [25], which may be seen when hydrogen atoms (H) are
substituted with deuterium atoms (D). Deuterium is actually twice as heavy as hydrogen

in terms of mass. As a result, the phonon frequencies containing hydrogen atom
vibrations are V2 times greater than those involving deuterium atom vibrations as

1
w X \/_ﬁ The phonon frequencies below 750 cm’in figure 25 belong to the vibrations
of the Mg atoms, according to a detailed examination. In Figure 26, these frequencies
are mainly preserved. The phonon frequencies in figure 25 above 750 cm™, on the other

hand, correspond to hydrogen atom vibrations. Figure 26's related modes have a

1
frequency that is ﬁ time of figure 25's. These are caused by the heavier deuterium
atoms' vibrations. Future superconducting critical temperature calculations will be

based on these phonon dispersion studies.

4.3 The electronic band structures

The band gap in conductors, insulators and semiconductors refers to the energy
difference (in electron volts) between the top of the valence band and the bottom of the
conduction band in graphs of the electronic band structure of materials. Therefore, the
band gap is an important factor in determining a solid's electrical properties. In the first
Brillouin zones, the examined band structures for all phases along their high symmetry
directions (W-L-G-X-W-K) in the energy range -12 eV to 12 eV and the Fermi energy is
set to zero in all of the plots. Figure 27 shows the band structure of MgH, at 0 GPa and
electronic density of states (DOS) which the character of the bands crosses the Fermi
level and the calculation of MgD, at 0 GPa show in figure 28 which give the same result
as MgH,. The calculations show that the valence and conduction bands in MgH, and
MgD, structure have an indirect band gap overlap. This indicates that they are metallic.
However, this calculation at zero pressure uses the PBE-GGA, which tends to

underestimate band gaps [35].
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MgD, at 0 GPa
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Figure 28 The electronic band structures of MgD, at 0 GPa
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When we calculate the energy band gap at higher pressure as in the example in figure
29, which is the result of MgH, at 150 GPa and figure 30 which is the result of MgD, at
150 GPa. They found that the characteristics of the energy band gap were still
overlapped and when pressure is increased, the band structure also increases. The
band minimum near the Fermi level is at X point with associated with Mg atom and the
band maximum is at gamma point associated with H atom. This indicates that MgH, and
MgD, at 150 GPa behave as metallic in nature, but the calculation is from PBE-GGA,
which can underestimate band structure. Unfortunately, these structures turned out to
be unstable in the phonon calculation from the results mentioned in phonon dispersion

results.
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We also estimated the electronic band structure of MgH, and MgD, at pressures
ranging from 150 to 300 GPa, which are stable due to the convex hull. Figures 31 and
32 show an example of the electronic band structure and electronic density of states
(DOS) of MgH, and MgD, at 150 GPa. The valence bands cross the Fermi level and
overlap with the conduction bands, as shown by the electronic structures and their DOS.
Near the Fermi level, the band minimum is at the W point associated with the Mg atom,
while the band maximum is at the gamma point associated with the H atom. As a result,
under pressure, MgH, and MgD, are metallic. However, there is no difference between
the electronic structures of MgH, and MgD, at this level of DFT computations. The
results of MgH, and MgD, are still metallic under pressure at 300 GPa and also give the
exact same value of energy band structure and density of state as shown in figure 33

and figure 34.
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MgD, at 300 GPa
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Figure 34 The electronic band structures of MgD, at 300 GPa

In the future, the work that can be extended in this work is to determine the critical
1

temperature. The critical temperature is related TC X a)De_N_FV. Wp is the Debye
frequency which relate to the phonon dispersion. NF is the density of electron at the
Fermi level which relate to the electronic structure of this work. V' is the electron-phonon
interaction. However, V is computationally costly and will be investigated further in the

future.
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5. CONCLUSIONS AND SUGGESTIONS

In this research, we have calculated the convex hull of MgH,(FCC), MgH,(HCP) and
MgH, under pressure from 0-300 GPa by using DFT. We observed that MgH,(HCP) is
unstable at all pressures, while MgH, is stable between 100 - 300 GPa and becomes
more energetically favorable than MgH,(FCC) from 150 GPa. Between 0 - 200 GPa,
MgH.(FCC) is thermodynamically stable so we removed MgH,(HCP) from the remaining

of the calculation. The phonon calculations confirmed that MgH, is dynamically stable at

1
high pressure, and due to the isotope effect, the phonon frequencies of MgD, are ﬁ

times lower than those of MgH,. However, even after increasing the computational
resolution, the MgH, and MgD, results are unstable under pressures ranging from 0 to
200 GPa. The electrical band structures of MgH, and MgD, and electronic density of
states (DOS) were also described, which appear to be identical including MgH, and
MgD, as well. As a result of having the same potential but the weight of deuterium has
no effect on the electrical band structures and electronic density of states. For
suggestion, at zero pressure, PBE-GGA can underestimate band structure so we may
use the new functional in band structure calculation which are significantly more
accurate with experiment such as the GGA suggested by Engle and Vosko and the
modified Becke-Johnson exchange correlation potential by Trans and Blaha [36]. And
we suggest that partial density of states (PDOS) can use to describe the contribution at

Fermi level better than the density of state for the future work.
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