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Let IF, be the finite field of ¢ elements. For any equation E(X,Y) = 0 over
[F,, the equational graph of this equation is a digraph whose vertex set is F, and for
z,y € [F, there is the edge from = to y if E(z,y) = 0. In this work, we assume that
¢ —1 > k and work on the equational graph G (X, f) associated with the equation

(VP = FX)OYE = f(X))... AYE = f(X) =0

with variables X and Y, where f(t) € F,[t] and A is an element in F of order at
least k. We study strongly connectivity and the existence of Hamiltonian cycle of
the graph G®) (), f). Moreover, we classify the equational graph G® (), f) up to iso-
morphism where f(¢) is a permutation polynomial in I [t] and find some conditions

for the existence of components with small vertices.
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CHAPTER I
PRELIMINARIES

1.1 Directed graphs and equational graphs

A directed graph (digraph) G consists of a vertex set V(G) and an arc set E(G)
where a directed edge is an ordered pair of vertices in V(G), a direction of an edge
is indicated with an arrow, as in Figure @ below. This might happen that an edge

connects a vertex to itself and we obtain a loop.
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Figure 1.1: A directed graph G

be

For a directed graph, a vertex x is a predecessor of y if there is an edge from z
to y. Otherwise, x is a successor of y if there is an edge from y to x. The in-degree
of a vertex is the number of its predecessors and the out-degree of a vertex is the
number of its successors. Two directed graphs G and G5 are isomorphic if there
is a bijection 7 from V(G;) to V(G3) which preserves adjacency conditions, that
is, there is an edge from u to v in G; if and only if there is an edge from 7(u) in
to 7(v) in Ga. A (directed) path of length r from x to y in a directed graph is
a sequence of r 4+ 1 distinct vertices x = aq,as,...,a,,1 = y such that for every

s € {1,2,...,r} there is an edge from a, to asr1. A cycle in a directed graph is a



directed path (with at least one edge) whose first and last vertices are the same. If
a path in a directed graph visits each vertex exactly once, we call this Hamiltonian
path. A Hamiltonian cycle is a Hamiltonian path that is a cycle. For example, the
graph G in Figure @ has a Hamiltonian cycle, its Hamiltonian path is as follows:

a1 — Qg — A3 — A4 — A7q.

lhe— 0

Figure 1.2: The directed graph G with a Hamiltonian cycle

Note that a directed graph containing a Hamiltonian path may not have a Hamil-
tonian cycle. For instance, the directed graph H in Figure has no out-degree of
the vertex by, so a Hamiltonian cycle does not exist. But its Hamiltonian path is as

follows: by — by — bg — by — b5 — bﬁ =P bo.

AN

Figure 1.3: The directed graph H without Hamiltonian cycles

A directed graph is bipartite if its vertex set can be partitioned into two sets G,
and G2, where every edge in the graph goes from a vertex in (G; to a vertex in G,
and there is no adjacent edge between two vertices in the G; or G5. For exam-

ple, the graph G whose vertex set can be partitioned into two sets G; = {a,b} and

G = {c,d, e} (see Figure )



Figure 1.4: The bipartite graph G

A weak path in any digraph is a sequence ag, ay, . .., a, of distinct vertices for which
there is an undirected edge between a;_; and a; for each 1 = 1,2,...,r. A digraph
is said to be weakly connected if any two vertices can be joined by a weak path. We
say that a directed graph is strongly connected if it is possible to reach any vertex
starting from any vertex in a graph. A weakly connected component of a directed
graph is a maximal weakly connected subgraph. It is well known that a directed
graph can be partitioned into a disjoint union of weakly connected components. For
the notation, we abbreviate a component for a weakly connected component. A
strongly connected directed graph is always weakly connected, but a weakly con-

nected directed graph may not be strongly connected (see Figure )
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Figure 1.5: A non-strongly connected directed graph

Let IF, be the finite field of ¢ elements. For a function f on F,, we define the
functional graph of f as a digraph of ¢ vertices labeled by the elements of IF,, where
there is an edge from u to v if and only if f(u) = v. By working on polynomials over
[F,, Knoyagin et al. [4] found algorithms to estimate the number of non-isomorphism
functional graphs and provided an upper bound on the number of functional graphs.

Later, Mans et al. [B] provided algorithms on quadratic polynomials over finite



fields to approximate the number of connected functional graphs, the number of
graphs having a maximal cycle, the number of cycles of fixed size and the number
of components of fixed size.

Mans et al. [p] suggested that almost all of the functional graphs generated by
the polynomial f(t) = t* 4+ a € F,[t] are weakly connected.

More generally, for an equation over IF:
EX,Y)=0

with variables X and Y, we may define a digraph by letting elements in F, as vertices
and drawing an edge from u to v in [F, if and only if F(u,v) = 0. We call this graph

an equational graph associated with the above equation.
Mans et al. [6] studied the equational graph associated with the equation
E(X,Y) = (Y~ f(X))(\Y? = f(X)) =0

with variables X and Y, f(¢) is a polynomial over F,, where ¢ is odd and A is a

non-square element in F,. It is denoted by G@ (A, f) (see Figure @)

i /%

Figure 1.6: The equational graph G (3,2t + 4) over Z;

A polynomial f(t) in F,[t] is a permutation polynomial if the map x — f(x) gives
a bijection from I, onto itself. Mans et al. obtained properties on vertices when

f(t) is a permutation polynomial as follows.

Proposition 1.1.1. [6] Let f(t) be a permutation polynomial over F, where q is
odd. For the graph GP(\, f),

1. if f(0) # 0, then the vertex 0 has in-degree 1 and out-degree 2, the vertex f~1(0)
has in-degree 2 and out-degree 1, and the verter x (v # 0 and x # f~1(0)) has

in-degree 2 and out-degree 2, and



2. if f(0) = 0, then the vertex 0 has in-degree 1 and out-degree 1, and the vertex
x (x #0) has in-degree 2 and out-degree 2.

It follows from the above proposition that every vertex lies in a cycle and also
every edge lies in a cycle. It also implies that every Mans’ graph is not a bipartite
graph. Note that there is a strongly connected digraph whose some component does

not have a Hamiltonian cycle (see Corollary 3.8.2 of [2]). Mans et al. showed that

Theorem 1.1.2. /4] If f(t) is a permutation polynomial in F,[t] where q is odd,
then every component of the graph G (X, f) has a Hamiltonian cycle.

Some examples for the non-permutation polynomials were also provided in [6].
Mans et al. also analyzed the graphs and obtained some algorithms for searching
Hamiltonian cycles when f(t) is of degree 1,2 or 3. In addition, they [6] classified
the equational graphs G (A, f) up to isomorphism where f(t) is a permutation
polynomial of degree one (a linear polynomial). They showed that G (), at + b) is
isomorphic to G (A, t+a~'b) for any a # 0 and b € F,. Thus, they studied compo-
nents with 2,3 or 4 vertices of G& (), ¢ +b) for every b € F,. Their results suggested
that almost of graphs G?)(), f) are connected where f(t) is a linear polynomial in

F,[1].

1.2 The kth power mapping on finite fields

Let F, be the finite fields of ¢ elements. We write [ for its multiplicative group of
nonzero elements. Let & > 2 be a positive integer. Consider the kth power mapping
¢r on Fy given by ¢i(a) = a* for all a € F. The kernel of ¢, is {a € Fy : aF =1}
and the image of ¢ is {a* : a € Fx}, the set of the kth power elements. The

following result gives the structure of the multiplicative group F.

Theorem 1.2.1. /1] The multiplicative group Fy is a cyclic of order ¢ — 1. Iis

generators are called primitive elements of F,,.

Next, we discuss some basic tools in group theory. Let ¢ be the Euler ¢-function,
that is, a function counting positive integers up to a given natural number n that

are relatively prime to n.



Theorem 1.2.2. /3] Let G be a cyclic group of order n generated by a.

1. For each positive divisor d of n, the group G has exactly one subgroup of order

d, namely (a™?).

2. If d is a positive divisor of n, then the number of elements of order d in a
cyclic group G of order n is ¢(d).
3. > ¢(d) =n.
din
We proceed to compute the size of ker ;. By Theorem , if d | ¢ —1, then
the number of elements of order d in F* is ¢(d) and there are no elements of order

d in F otherwise. Since ker ¢y, consists of elements in F of order a divisor of k, by

Theorem (3), we have
[kergp| => Ha€Fy:o(a)=d}|= Y — é(d)=ged(k,q—1).

dlk d|ged(k,q—1)
It follows that
qg—1

In particular, we have gy is injective if and only if ged(k,q — 1) = 1, and in this

| im x| = [Fg/ ker pp| =

case, every element in F) is the kth power. On the other hand, if & | ¢ — 1, then
| ker ¢r,| = k and the polynomial #* — 1 splits into monic linear factors in F,[t] and
Fx/im ey is a cyclic group of order k. We can apply these observations to study
the generalized equational graphs introduced in Section @ of Mans et al. [6].

1.3 Our graphs

Let k > 2 be a positive integer. Assume that k < g — 1. Then there is an element A
in Fy of order at least k. A directed graph whose vertex set is F, and for z,y € F,

there is a directed edge from x to y if

(" = f(@)) " = f(2))... (Nl = f(a)) = 0.

is called the digraph associated with the polynomial f(t) € F,[t]. It is denoted by
G®(\, f). If ¢ is odd and k = 2, it is a Mans’ graph. Mans et al. suggested the

above equation in their comments in Section 7 of [6].



In this thesis, we use the kth power mapping to study the graph G*) (X, f) where
f(t) is a permutation polynomial in F,[t]. The work is organized as follows. In
Chapter E, we assume that A im ¢, generates the quotient group F /im @y and prove
that every vertex has a positive in-degree and out-degree in Section @ This implies
the strong connectivity of the graph. Moreover, if k | (¢ — 1), then a Hamiltonian
cycle exists. This proof is presented in Section @ together with some examples. In
Section @, we classify the equational graphs G® (), f) up to isomorphism where
f(t) is a permutation polynomial in F,[t]. Finally, we find some conditions for the

existence of components with three or four vertices in Section @



CHAPTER II
CONNECTIVITY AND HAMILTONIAN

CYCLES

2.1 In-degree, out-degree and strongly connectiv-
ity

Assume that \im ;, generates the quotient group Fy/im ¢,. This can easily hold

if A is a primitive element of IF, or the size of F/im ; is a small prime. First, we

study the in-degrees and out-degrees of every vertex of G®) (), f) where f(t) € F,[t]

is a permutation polynomial. It follows that every component of the graph G® (), f)

is strongly connected and the graph is not bipartite. We begin with an algebraic

lemma.

Lemma 2.1.1. Assume that ged(k,q — 1) = d. Let f(t) be a polynomial in F[t]
and let © € F, with f(x) # 0. Then there exists | € {0,1,...,d — 1} such that
A f(x) € im pg. Moreover, for j € {0,1,... k — 1}, there exists y € Fx such that
NyF = f(z) if and only if j = l+md for somem € {0,1,...,k/d—1}. In particular,

the number of y’s in Fy such that
(" = f@)* = f(@) ... (WY = f(x)) =0
is k.
Proof. Let j € {0,1,...,k —1}. Suppose that there exists y € F such that Nyk =
f(x). Since A\7'f(x) € imy, f(z) = MNg* for some g € F. Then My* = NgF,

so M7t = (gy~')¥ € im . Since the order of Aim gy is d = [F/imgy|, we have
a1 G -1).



Conversely, we suppose that j = [ + md for some m € {0,1,...,k/d — 1}. Since

the order of Aim gy, is d, we have
A f(x)im g = A7 f(2) im g = im @y,.

Then A7/ f(z) € im ¢, so A7/ f(z) = y* for some y € Fy\.

Finally, for each j = [ mod d, the number of y’s such that My* = f(x) is d
because | ker x| = d. Since the number of j’s in {0,1,... &k — 1} such that j =
mod d is k/d, it follows that our desired number is k. O

Proposition 2.1.2. Let f(t) be a permutation polynomial in F,[t]. For the graph
GW(A, 1),

1. if f(0) =0, then the vertex O has in-degree 1 and out-degree 1, and the vertex
x (x # 0) has in-degree k and out-degree k, and

2. if f(0) # 0, then the vertex 0 has in-degree 1 and out-degree k, the vertex f~1(0)
has in-degree k and out-degree 1, and the vertex x (x # 0 and x # f~1(0)) has

in-degree k and out-degree k.

Proof. 1. Assume that f(0) = 0. We first count the in-degree and out-degree of the

vertex 0. Let u be a successor of the vertex 0. Then,
NEDEGE = (uF = £(0)) (M = £(0)) ... (W 1u¥ — £(0)) = 0,

and so u = 0. Hence, the vertex zero has in-degree 1. Let v be a predecessor of the
vertex 0. Then, f(v) =0 = f(0). Since f is a one-to-one, v = 0. The vertex 0 has
out-degree 1. Next, we let  be a nonzero vertex in IF,. Since f is one-to-one and

f(0) =0, we have f(z) # 0. By Lemma , there are k successors of z. Now, we

let s be a predecessor associated with x. Then
(a* = f(s))(Aa" = f(s))... N7k — f(s)) = 0.

Therefore, s = f~1(Ma*) where j € {0,1,...,k — 1} gives k solutions.

2. Assume that f(0) # 0. By Lemma , there are k successors of the vertex
0. Let v be a predecessor of the vertex 0. Then f(v) = 0 and so v = f71(0) # 0

because f is one-to-one. Therefore, there is only one predecessor of the vertex 0.
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Now, we let ¢ be a successor of f~1(0). Then, N*=D/2¢8* =0, so ¢ = 0. Next,

we let h be a predecessor of f~1(0). Then,

(710" = FR)YAGTHO)* = F(R) . N THTH0)* = f(R) =0,

so h = f7YATI(f71(0))*) where j € {0,1,...,k — 1}. Since f(0) # 0, f~1(0) # 0.
Hence, the vertex f~1(0) has in-degree 1 and out-degree k.

Lastly, let = be a vertex such that x # 0 and x # f~(0). Then f(x) # 0. By
Lemma , there are k successors of z. Let s be a predecessor associated with x.
Then

(@* = f(s)(Aa® = f(s)) ... (A" 71a® = f(s)) = 0.
Thus, s = f~}(Ma") where j € {0,1,...,k —1}. Since = # 0, the vertex s varies k

solutions. N

Remark. From the above proposition, if £ > 3 and f(¢) € F,[t], then there is no
components of G®(\, f) with two vertices. Mans et al. gave a condition in which

G@ (), f) has a component with two vertices (see Proposition 4.5 of [6]).

Lemma 2.1.3. Let f(t) be a permutation polynomial in F,[t]. Then every vertex
of GFN(\, f) lies in a cycle, and every edge of GF (X, f) lies in a cycle. Moreover,

every component of the graph is strongly connected.

Proof. Let C be a connected component of G*¥)(\, f). By Proposition , every
vertex must be adjacent to some vertex in F,. Thus, we will show that, if there is
an edge from x to y, then there is a path from the vertex y to the vertex x and
thus we obtain our desired cycle. Proposition also says that every vertex in
FF, has positive in-degree as well as out-degree. Let G be a subgraph of G® (), f)
that we start from x, then we draw the predecessors of z, and the predecessors of
the predecessors of z, and so on. On the other hand, we let G5 be a subgraph of
G® (), f) that we start from y, then we draw the successors of y, and the successors
of the successors of y, and so on.

Next, we show that there is a common vertex in the subgraphs G; and Gs.
Suppose that G; and G5 have no common vertex. Then, the edge from x to y is not

in (G1, and also not in Gs.
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Case 1. G5 does not contain the vertex 0. So y # 0 and y # f~1(0). By Proposition
, in G, the vertex y has out-degree k and in-degree at most k — 1. Nonetheless,
any other vertex in Gy has out-degree k and in-degree at most k. Therefore, the sum
of out-degrees in (G5 is not equal to the sum of in-degrees in (G5, a contradiction.

Case 2. G4 contains the vertex 0. If f(0) = 0, then C contains only the vertex 0
which is impossible. So f(0) # 0. If y = 0, then z = f~1(0) is not in Gy, and hence

any other vertex in GGo has in-degree at most k£ and out-degree k. It follows that

k+ k(]V(G2)| — 1) = the sum of out-degrees in the subgraph Gs
= the sum of in-degrees in the subgraph Gs
<0+ k(|V(G)] - 1)

which is absurd. For the case y = f~1(0), we have a successor of y must be a vertex
0, |V(Gs)| > 2, and in Gy, the vertex f7!(0) has in-degree at most k¥ — 1 and out-
degree 1. By Proposition , we obtain the sum of in-degrees in the subgraph G,
is at most (k — 1) + 1+ k(|V(G2)| — 2) and the sum of out-degrees in the subgraph
Go equals to 1+ k(|V(Gy)| — 1). Since, in G5, the sum of in-degrees is equal to the

sum of out-degrees, we have
L+ E(V(G2)l = 1) <k +k([V(G2)| - 2),

so 1 < 0 which is a contradiction. Thus, we may assume that y # 0 and y # f~1(0),
so any other vertex z in the subgraph Gy which is not 0 and f~1(0) has out-degree

k and in-degree at most k. Hence,

k+k+ 14 k(|]V(G2)| — 3) = the sum of out-degrees in the subgraph Gs
= the sum of in-degrees in the subgraph G5
<(k—1)+14+k+k(|V(Gs)| —3)

which is also a contradiction, and we can conclude that G; and G5 have a common

vertex. L]

Proposition 2.1.4. Assume that q is odd. If f(t) is a permutation polynomial in
F,[t], then the graph G®) (X, f) is not a bipartite graph.



12

Proof. Assume that the graph G*)()\, f) is a bipartite graph. Then the vertex set
is divided into two disjoint subsets, say GG; and Gs, where there is no adjacent edge
between two vertices in the same vertex subset G; or G5. Thus, there is no loops in
G®(X, f) and so f(0) # 0. Without loss of generality, we suppose that f~(0) € G,
and 0 € Gy. Let |G1] = m and |G3] = n. By Proposition , the sum of out-
degrees of the vertices in G equals k(m — 1) + 1, and the sum of in-degree of the
vertices in Gy is equal to k(n—1)+41. Since G®) (), f) is a bipartite graph, the sum of
out-degrees of the vertices in GG; and the sum of in-degrees of the vertices in Gy are

equal. Hence, m = n and ¢ = m +n is an even integer which is a contradiction. [

2.2 Existence of Hamiltonian cycles

Next, we obtain some conditions for the existence of a Hamiltonian cycle in the

graph G® (A, f).

Theorem 2.2.1. If k| (¢ — 1) and f(t) is a permutation polynomial in F[t], then

every component of the graph G®(\, f) has a Hamiltonian cycle.

Proof. Suppose on the contrary that there exists a component C in G*)(\, f) which
does not have a Hamiltonian cycle. By Lemma , we can choose a maximal
cycle, say M, in C. So the cycle M cannot be enlarged and does not go through all
vertices of C. Also, there is a vertex in M whose successor is outside M. Let zy be
a vertex in M such that y, is a successor of z( outside the cycle M. If yo = 0, then
xo has out-degree at least 2 which is impossible. Thus, yy # 0, and so the in-degree
of yo is k.

Next, we show that yy has a predecessor outside M. Suppose that all predecessors

of yy are inside the cycle M. Let uy be a predecessor of yy. Then

(o — f(u0) (Mo — f(uo)) ... (N "lyg — f(uo)) = 0.

Since f is one-to-one, ug = f~1(Ayk) for some I € {0,1,...,k—1}. Since k | (¢—1),

there is a primitive kth root of unity w in F,. Then, for each i € {0,1,..., k — 1},

((@'yo)® = Fluo))(Mw'yo)* = f(uo)) ... (A7 (w'yo)* = f(uo)) = 0.
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Thus, k vertices f~1(y§), FOE), ..., f7HO* 1y have common successors yg, wyo,
W yYo, . .., wF lyg and 7o = fH(Nyh) for some [ € {0,1,...,k—1}. Since the vertex
Yo is outside the cycle M, the successor of x( inside the cycle M is w?y, for some
jo € {1,2,...,k — 1}. Since yo,wyo, w?yo, ..., w* lyy are common successors of
F7YE), 72O, . FE(OFyE), there is a predecessor of 3y whose out-degree is
at least k 4+ 1, a contradiction. Hence, there is a predecessor of gy, outside the cycle
M, say zy. By Lemma , the edge from z; to yg lies in a cycle, say C;. If the
cycle C does not intersect M, then we can enlarge the cycle M by cutting edges by
edges from g to w0y, and from 2y to yo (see the figure below), which contradicts

the maximality of M, so C| must intersect M.

Cycle M

° A Oy Cycle Cy
/ \.w’yo Z.o/ '\.

S N

.\./v.xo yo.\o/

Let x1 be a vertex in '] and also in M such that, along with the cycle C, the path
from x; to yo does not intersect with M, except the vertex x;. Similarly, we can
find a successor y; # 0 of z; outside the cycle M, and there exists a predecessor of
y; outside M, say z;. By Lemma , the edge from z; to y; lies in a cycle, say Cs.
As before, the cycle 'y must intersect M, and there exist a vertex say x», in Cy and
also in M such that along the cycle Cs, the path from x5 to y; does not intersect M
except the vertex zo. Then we draw vertices s, w21, 25 and the edges among them
as before. Repeating this previous process, we obtain a sequence of vertices in M,

T, X1, T2, ... in a similar manner (see the next figure).
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Since M is a finite cycle, x, = x,, for some n < m. Without loss of generality,
we assume that n = 0. Since w/™y,, is a successor of x,,, in the cycle M, we have
Ym = wW'yo for some [ € {0,1,..., k —1}. Also, there is a path from ¥,, to 2,,_; and
there is an edge from 2z, to ¥, = w'yy, shown in the next figure.

Cycle M

Xm = Xo a)j"yg Xm-1 w]m_lym—l
Ym-1 / Zm-1
. j ] i . .
Thus C : o, wYg, -+ o, Ton 15 Yty -+« 5 205 Ym = W' Y05 Zm—1, W™ Y,_1 is a cycle in C

extending M which contradicts the maximality of M. Therefore, every component

has a Hamiltonian cycle. ]

Example 2.2.2. Consider the finite field Z3[i], where i* = —1 in Z3, A = 1 + i and
f(t) =t. Indeed, f(t) is a permutation polynomial over Zs[i] and ged(4,9 — 1) = 4.
From Figure @, the graph G@W(1 + i,t) over Zs[i] has two components and its
Hamiltonian paths are as follows: 0 = 0and 1 —¢—1——-1——-1—71—> 1417 —

-t =1 —=>—14+1—>1—1.

Figure 2.1: The graph G¥ (1 44, t) over Zsi]
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Example 2.2.3. If f(t) € F,[t] is not a permutation polynomial, then there is a
graph G® (), f) whose component does not have a Hamiltonian cycle. For example,
in Zz, f(t) =3+ 1 € Z;[t] is not a permutation polynomial and we consider \ = 3.
From Figure @, the graph G©®)(3,#> + 1) has only one component and there is no
predecessor of vertices 3,5 and 6. Hence, the Hamiltonian cycle does not exist.
On the other hand, f(t) = t* € Z[t] is not a permutation polynomial but every
component of the graph G®(2, %) over Z; has a Hamiltonian cycle (see Figure @)

Figure 2.3: The graph G®)(3,t%) over Z;
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CHAPTER III
FURTHER RESULTS

3.1 Isomorphism Classses

Throughout this section, we assume that ¢ is odd and fix a non-square element c¢ in
F,. We work on isomorphism classes of the graph G (3)()\, at+0b) where a,b € F, with
a # 0. We shall distinguish a # 0 in two cases, namely, square and non-square, as

follows.

Proposition 3.1.1. Let a # 0 in F, and b € F,, the graph G®(\ % + b) is
isomorphic to the graph G® (A, t 4+ a~>b).

Proof. Let T be the bijection map on IF)* defined by 7(r) = a~tzr for all z € F,. To

show that 7 preserves the adjacency conditions, we let 4 and v be in F, and compute

(v = (@Pu+1b)) (M* = (@Pu+1b)) (A0 — (aPu+1b)) =0

a3 (0 = (Pu+b))a® (W = (Pu+b))a™® (AW — (Pu+b) =0

& ((a')® = (@ 'u+a7%)) (AMa"')® = (@ tu+a73b)) (A2 (e 0)® — (e tu+a7%)) =0
& ((1(0)* = (r(u) + a7%b)) (M7 (v))* = ((u) + a~?b)) (N(7(v))* = (7(u) + a~b)) = 0.

Hence, 7 is an isomorphism from the graph G®)(\, a?t+b) onto the graph G (X, t +
a=3b). O

Proposition 3.1.2. Assume that a is a non-square element in Fx and b € F,.
Then ac is a square element and the graph G® (X, at +b) is isomorphic to the graph
GO\, ¢t + B73b) where B € F, and 5? = ac.

Proof. Consider the square mapping ,. Since ker @, = {1, =1}, [F/im py| = 2,

1

SO aim @y = cim s = ¢~ tim . Then ac € im s, so ac = 3? for some 3 € Fy. Let
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7 be the bijection map on F, defined by 7(z) = 7'z for all z € F,. To show that

T preserves the adjacency conditions, we let u and v be in [F,. Since

(0% = (au + b)) (\W® — (au+ b)) (A\0® — (au + b)) =0
& (cv® = [(B%u) + b]) (eA(v)? = [(B%u) + be]) (A*(v)® = [(B%u) +be]) = 0

& B3 (ev® = [(B%u) + cb]) B2 (eA(v)® = [(B%u) + b]) B2 (cA?(v)® = [(B°u) +be]) = 0

& (c(B7 )% = (B ) + B73cb]) (eA(B'0)® = (B u) + B77bc]) (eX*(B7)° = [(B7u) + B%be]) =0

& ((B710)* = [ (B u) + 87%0]) (MB™10)® = [T (B ) + B770]) (WP(B71)? = [¢7 (B w) + B77]) = 0
S ((r@)* = [ (7 (@) +087°]) (M (©)? = [eH(7(w) +887°]) (W (7(v)* = [¢}(7(w) +b577]) =0,

7 is an isomorphism from the graph G® (X, at+b) onto the graph G® (X, t+573b). O

By Propositions Bl]] and B.l.j, we may focus the study on the graphs G®) (X, ¢+
b) and G® (), ct + b) where b € F,,. In addition, we have

Proposition 3.1.3. The graphs G®)(\,t) and G®) (X, ct) are not isomorphic.
Proof. Consider the equation
(X = X)(AX? = X)(\’X? - X) =0.

If X is a square element in [, then there are seven solutions associated with the
equation, and if A is non-square, then there are five solutions of the equation. It
follows that there are at least five fixed vertices in G®)(\,t). Next, we consider

another equation
(X3 — cX)(AX3 — eX)(N2X3 —cX) = 0.

Since X? = A2cand X? = c are insolvable, the equation has at most three solutions.
Thus, there are at most three fixed vertices of the graph G®(\,ct). Hence, the
number of fixed vertices of G®(\,¢) and G®) (A, ct) are different, so they are not

isomorphic. [
Proposition 3.1.4. Let a # 0 and h € F,. Then the graph G®(\ at + h) is
isomorphic to the graph G® (X, at — h).

Proof. Let T be the bijection on F, defined by 7(z) = —x for all x € F,. To show

that 7 preserves the adjacency conditions, we let u and v be in I, and compute

(v® = (au+h)) (\® = (au+ h)) (A0® — (au+h)) =0
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Thus, we have the proposition. O

Proposition 3.1.5. If a1, ay € F, then the graph G®(X, ait) and G®) (X, ast + b)

with b # 0 are not isomorphic.

Proof. Since b # 0, G®) (X, ast + b) has no vertex with in-degree 1 and out-degree 1
by Proposition (2). However, the vertex 0 in G® (A, a;t) has in-degree 1 and

out-degree 1, so both graphs are not isomorphic. O

Proposition 3.1.6. Assume that 3 | (¢ — 1). Let a # 0 and i,j € {0,1,2}. If
A is an element of order 3 in F, then the graph GO (N, at + X' is isomorphic to
GO\ at + N).

Proof. Let T be the bijection map on F, defined by 7(z) = M ~'z for z € F,. To

show that 7 preserves the adjacency conditions, we let v and v be in F,. Since

(v* = (au+ X)) (AW° = (au+ X)) (W0® = (au+ X)) =0
S N7 (0P = (au+ ) N7 (A = (au + X)) N (W0 — (au+ X)) =0
& ((1(v))° = (a7(u) + N)) (M1 (v))* = (ar(u) + X)) (A*(7(0))° = (ar(u) + N)) =0,

we have the proposition. [

Proposition 3.1.7. If¢g =3 mod 4, then the graphs G®(\, —t+1) and G® (\, t+1)

are not isomorphic.

Proof. Suppose that both graphs are isomorphic with an isomorphism 7. By Propo-
sition (2), 0 is the only vertex in G® (X, —t 4+ 1) whose in-degree is 1 and
out-degree is 3. Then only the vertex 7(0) in G& (), ¢ + 1) has in-degree 1 and out-
degree 3, so 7(0) = 0. Moreover, 1 is only vertex in G®(\, —t + 1) whose in-degree
is 3 and out-degree is 1. Thus, only the vertex 7(1) in G (A, + 1) has in-degree 1

and out-degree 3, so 7(1) = —1. Since

(1 = (=041)) (AM1)* = (-0 +1)) (\*(1)° = (—0+1)) =0,
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there exists an edge from the vertex 0 to 1 in G®) (X, —t + 1). Since ¢ = 3 mod 4,
we know that —1 is non-square, so A2 + 1 # 0. On the other hand, we note that

((=1)° = (0+1)) (AM(=1)> = (0+ 1)) (N*(=1)> = (0+ 1))
= (=2)(=A = 1)(=X* = 1) #0,

there is no edges from the vertex 0 to —1 in G&(\, ¢ + 1). However, since 7
preserves the adjacency condition, there is an edge from 7(0) = 0 to 7(1) = —1 in

G® (A, t+1). Hence, we have a contradiction, so both graphs are not isomorphic. [

Example 3.1.8. In Z; with A\ = 2, by Prop081tlons 3.1.1 to B - we have at most
eight isomorphism classes of the graph G®)(\, at + b) where a,b € Z; with a # 0 as

shown in the following table.

G2, ~t) ®)(2,1)

G (2, ~t+1) 3)(2,t+1)
GO (2,—t + 2) ®)(2,t+2)
GO (2,~t 4+ 4) ®)(2,t+4)

Since the order of \ is 3, by Proposition , the number of isomorphism classes
is at most four, and it equals four by Proposition as shown in the next table.

G2, —t+1) | GO t+1)

3.2 Components with small number of vertices

In this section, we first study the number of vertices in a component of G*)(\, f)
where f(t) is a permutation polynomial in F [t] and k| (¢ — 1). This allows us to
study the components of G® (A, f) of small vertices. We show some conditions for

the existence of a component with three or four vertices of our desired graphs.

Lemma 3.2.1. Assume that k | (¢ — 1) and f(t) is a permutation polynomial in
F,[t]. Let C be a component in GO (N, f) with the number of vertices nc. Then

1. if 0 is not a vertex of C, then n¢ is divisible by k, and
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2. if 0 is a vertex of C, then ne — 1 is divisible by k.

Proof. Define
£ ={(z,y) 12,y € V(C) and y* = f(2)}.

For y € V(C), we write

Ay ={(z,y) 12 € V(C) and y* = f(x)}.

Then
= U A= U6
yev(C) yeVv(C)
because f is one-to-one. Hence || = > 1=n¢. For z € V(C), we write
yeV(C)

B, ={(z,y) :y € V(C) and y* = f(x)},

and so £ = |_| B, a disjoint union.
zeV(C)
1. Let x € V(C). Assume that B, # (. Then there exists y € V(C) such that

y* = f(x), so f(x) = (yw?)* for all j € {0,1,...,k—1} and w is an element of order
kin FY. Since z € V(C),yw’ € V(C) for all j € {0,1,...,k —1}. Thus, |B,| = k
because y # 0. Hence, we have shown that |B,| is either 0 or k, so nec = > |B,]
is divisible by k. e

2. If f(0) = 0, then |V(C)| = 1 by Proposition (1). Suppose that f(0) # 0.
Then |Bs-1(g)| = 1. Let z € V(C)\{f~*(0)}. Assume that B, # 0. Then there exists
y € V(C) such that y* = f(2), so f(2) = (yw?)* for all j € {0,1,...,k—1} and w is
an element of order k in F*. Since z € V/(C),yw’ € V(C) forall j € {0,1,...,k—1}.
Thus, |B,| = k because f(z) # 0. Hence, we have shown that |B.| is either 0 or k,

sone—1= > |B.| is divisible by k. O
zeV(O\{f~1(0)}

Example 3.2.2. Lemma may not hold if k1 (¢ — 1). For example, the graph
G®)(2,t + 2) over Zs has a component with five vertices whereas the vertex 0 is in

this component (see Figure @)
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)
Figure 3.1: The graph G®)(2,t + 2) over Zs

Proposition 3.2.3. Assume that 3 | (¢—1). If a € F,, then the graph G& (A, t + a)

has a component with three vertices if and only if a = 0 and the order of X is 3.

Proof. Let C be a component of the graph G®)(\ ¢t + a) with three vertices. By
Lemma ,0& V(C) and so f71(0) € V(C). By Proposition , each vertex of
C has in-degree 3 and out-degree 3. Since 3 | (¢ — 1), we can let w be a primitive 3rd
root of unity in F. Let x be a vertex of C and y be a successor of z. By Lemma
, y® = X7z + a) for some I € {0,1,2}, so y,wy and w?y are vertices of C. We
have only one possibility of C displayed below.

wy.—».wy

\/

Also, we have three predecessors of y, namely 2 — a, \y®> — @ and \?y® — a. Hence,

we obtain system of equations
Y —a=uwy (3.2.1)

My —a =wly (3.2.2)

N3 —a = why (3.2.3)
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where {7, j,k} = {0,1,2}. By (3.2.1) and (3.2.2), we have
A= 1)y = (W —why. (3.2.4)
By (3.2.2) and (3.2.3), we have

A= 1Dy? = (W =)y, (3.2.5)

wh — W

wt’

So, by (3.2.4) and (3.2.5), we obtain A = and hence \* = 1. By (3.2.1),

(3.2.2) and (3.2.3), we have a = 5(1+A+A?)y® = 0. For the converse, the component

/12. —’.)\

\/

of G®)(\,t) has three vertices. O

Proposition 3.2.4. Assume that q is odd and 3 | (¢ —1). For each a € Fy, there is
no component of the graph GO(\,t + a) with four vertices.

Proof. Suppose on a contrary that the graph G ().t + a) has a component with
four vertices, say C. By Lemma , the vertex 0 € V(C) and a # 0. Let y be
a successor of the vertex 0. By Lemma , y® = X\la for some [ € {0, 1,2}, so
y,wy and w?y are vertices of C. Since —a is a nonzero predecessor of the vertex 0,
we have —a = yw’ for some j € {0,1,2} and so all successors of the vertex 0 are
—a, —aw and —aw? where w is a primitive 3rd root of unity in F,. By Lemma
the vertex 0 has in-degree 1, and so the vertices —aw as well as —aw? have three
common successors —a, —aw and —aw?. We have only one possibility of C displayed

below.
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O J @

In addition, there are three predecessors of —a, namely —a® — a, —\a® — a and
—X2a® — a. Hence, we obtain
N(—a))=0+a (3.2.6)
N(=a)®= —aw+a (3.2.7)
Xy = —gwiia (3.2.8)
where {1, j, k} = {0,1,2}. By the above equations, we have
M LN = (w=1)(N = \Y). (3.2.9)

We next permute i, j, k in six cases as follows.

Case 1. i = 0,7 =1 and k = 2. By (3.2.9), we have A = w — 1. But, from (3.2.6)
and (3.2.7), we have A\ = —w + 1 which implies that 2 = 0, a contradiction.

Case 2. 1 =0,j =2 and k = 1. By (3.2.9), we have A = w. But, from (3.2.6) and
(3.2.8), we have A = —w? + 1 and thus 2 = 0 which is a contradiction.

Case 3. t =1,7 =0 and k = 2. By (3.2.9), we have A = —w. But, from (3.2.6) and
(3.2.7), we have A = —— and so 2 = 0 which is impossible.

1—w

Case 4. i =1,7 =2 and k = 0. By (3.2.9), we have A = —w?. But, from (3.2.6) and

(3.2.8), we have A = — and thus 2 = 0 which is impossible.

1—w?

Case 5.1 =2,7 =0and k = 1. By (3.2.9), we have A = =~ But from (3.2.7) and

1-w”

(3.2.8), we have A = w + 1 and so 2 = 0 which is absurd.

Case 6. i =2,j =1 and k = 0. By (3.2.9), we have A = —=. But from (3.2.7) and

1

(3.2.8), we have A = 1= which also implies that 2 = 0, a contradiction.

Hence, we obtain a contradiction and so there is no components with four ver-

tices. o
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Proposition 3.2.5. Assume that q is even and 3 | (¢—1). If a € F,, then the graph
GO\t +a) has a component with four vertices if and only if the order of \ is 3
and a = \° for some i € {0,1,2}.

Proof. Since charF, = 2, we have ker ¢y = {1}. Let C be a component of the graph
GO (Nt + a) with four vertices. By Lemma , 0 ¢C and a # 0. Let y be a
successor of the vertex 0. By Lemma , y> = A la for some | € {0,1,2}, so
y,wy and w?y are vertices of C. Since —a is a nonzero predecessor of the vertex 0,
we have —a = yw’ for some j € {0,1,2} and so all successors of the vertex 0 are
—a, —aw and —aw? where w is a primitive 3rd root of unity in F,. By Lemma
the vertex 0 has in-degree 1, and so the vertices —aw as well as —aw? have three
common successors —a, —aw and —aw?. We have only one possibility of C displayed

below.

() ()

-0 @ @ —10?
O @

3

In addition, there are three predecessors of —a, namely —a® — a,—Aa® — a and

—\2a® — a. Hence, we obtain

N(—a))=0+a (3.2.10)
N(—a)® = —aw +a (3.2.11)
MN(—a)? = —aw? +a (3.2.12)

where {i,7,k} = {0,1,2}. By the above equations, we have
1+ A+ N)(=a) =4a=0

because charF, = 2. So, we have \*> = 1. By equations (3.2.10), (3.2.11) and

(3.2.12), we again have

N(—=a”) = (a®)(1 - w)(1 — w?) = 3a® = d°,
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so a® =1 and hence a® = 1 because | ker 5| = 1. For the converse, the component

{)

1 L —— A FT"

O ———r 0 .
— Al

has four vertices. [

Example 3.2.6. Let Fy = {a+ba : a,b € Zy and a®+a+1 = 0} X Zy[t]/{(t*+t+1).
Let f(t) = t 4 a be a linear permutation polynomial in F4[t]. Let C be a component
in G® (A, f) not containing the vertex 0. By Lemma , the number of vertices
in C is a multiple of 3. Let D be a component containing the vertex 0. Then the
number of vertices in D is 3d + 1 for some d € {0,1}. If d = 0, then there is a graph
containing a component with three vertices, for example, G® (a,t) (see Figure @)
If d = 1, then there is a graph containing a component with three vertices such
as G®(a,t + a) (see Figure @) Our desired A is provided by Proposition .
Hence, any graph G®)(\, ¢ 4 a) is isomorphic to the graph in Figure @ or Figure

B4

Figure 3.2: The graph G®(a, ) over F,
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Figure 3.3: The graph G® (a,t + a) over Fy

Example 3.2.7. Let f(t) = t+ a be a permutation polynomial in Z;[t]. Let C be a
component in G& (), f) not containing the vertex 0. By Lemma , the number of
vertices in C is a multiple of 3. Let D be a component containing the vertex 0. Then
the number of vertices in D is 3d 4 1 for some d € {0,1,2}. The graph G® (X, f)
does not have a component with four vertices by Proposition , so d is 0 or 2.
If d = 0, then there are two possibilities of our desired graphs. The first one is a
graph containing a component with six vertices, for example G®(3,¢) (see Figure
@) Another one is a graph containing two components with three vertices such
as GO (4,t) (see Figure @) This desired A is given by Proposition as well.
If d = 2, then there is an equational graph G (X, f) with 7 vertices, for instance
G®(3,t41) (see Figure @) Hence, by working on small components, we find that
the graph G®)(\,t + a) is isomorphic to the graph in Figure @ or Figure @ or

Figure @

Figure 3.4: The graph G (4,t) over Z,
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Figure 3.5: The graph G®)(3,t) over Z;

(@\ﬂ

Figure 3.6: The graph G®) (3, + 1) over Z;




28

BIBLIOGRAPHY

[1] D. S. Dummit, R. M. Foote, Abstract Algebra, 2nd edn, Prentice-Hall Inc.,
London, 1999.

[2] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.

[3] A.G. Joseph, Contemporary Abstract Algebra, 10th edn, Taylor & Francis
Group, LLC, 2021.

[4] S.V. Knoyagin, F. Luca, B. Mans, L. Mathieson, M. Sha, L.LE. Shparlinski,
Functional graphs of polynomials over finite fields, J. Comb. Theory, Ser. B
116 (2016), 87-122.

[5] B. Mans, M. Sha, L.LE. Shparlinski, D. Sutantyo, On functional graphs of
quadratic polynomials, Ezp. Math., 28 (2019), 292-300.

[6] B. Mans, M. Sha, J. Smith, D. Sutantyo, On the equational graphs over finite
fields, Finite Fields Appl., 64 (2020), 1-31.



Name

Date of Birth

Place of Birth

Education

VITA

Mr. Wachirawit Chaifongsri
May 30, 1998
Chiang Rai, Thailand

B.Sc. (Mathematics), Chulalongkorn University, 2020

29



	Abstract(Thai)
	Abstract(English)
	Acknowledgements
	Contents
	PRELIMINARIES
	Directed graphs and equational graphs
	The kth power mapping on finite fields
	Our graphs

	CONNECTIVITY AND HAMILTONIAN CYCLES
	In-degree, out-degree and strongly connectivity
	Existence of Hamiltonian cycles

	FURTHER RESULTS
	Isomorphism Classses
	Components with small number of vertices

	BIBLIOGRAPHY
	VITA

