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กำหนดให Fq เปนฟลดจำกัดที่มีสมาชิก q ตัว สำหรับแตละสมการ E(X,Y ) = 0 เหนือ
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x และ y ใน Fq มีเสนเชื่อมจาก x ไปยัง y ก็ตอเมื่อ E(x, y) = 0 ในงานวิจัยครั้งนี้ เราสมมติให
q − 1 ≥ k และศึกษากราฟเชิงสมการ G(k)(λ, f) ที่สอดคลองกับสมการ

(Y k − f(X))(λY k − f(X)) . . . (λk−1Y k − f(X)) = 0
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นี้เราสามารถจำแนกกราฟเชิงสมการ G(3)(λ, f) เชิงสมสัณฐานเมื่อ f(t) เปนพหุนามใน Fq[t] และหา
เงื่อนไขบางอยางของการมีอยูของสวนประกอบที่มีจำนวนจุดยอดไมมาก
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Let Fq be the finite field of q elements. For any equation E(X, Y ) = 0 over

Fq, the equational graph of this equation is a digraph whose vertex set is Fq and for

x, y ∈ Fq there is the edge from x to y if E(x, y) = 0. In this work, we assume that

q− 1 ≥ k and work on the equational graph G(k)(λ, f) associated with the equation

(Y k − f(X))(λY k − f(X)) . . . (λk−1Y k − f(X)) = 0

with variables X and Y , where f(t) ∈ Fq[t] and λ is an element in F×
q of order at

least k. We study strongly connectivity and the existence of Hamiltonian cycle of

the graph G(k)(λ, f). Moreover, we classify the equational graph G(3)(λ, f) up to iso-

morphism where f(t) is a permutation polynomial in Fq[t] and find some conditions

for the existence of components with small vertices.
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CHAPTER I
PRELIMINARIES

1.1 Directed graphs and equational graphs

A directed graph (digraph) G consists of a vertex set V (G) and an arc set E(G)

where a directed edge is an ordered pair of vertices in V (G), a direction of an edge

is indicated with an arrow, as in Figure 1.1 below. This might happen that an edge

connects a vertex to itself and we obtain a loop.

Figure 1.1: A directed graph G

For a directed graph, a vertex x is a predecessor of y if there is an edge from x

to y. Otherwise, x is a successor of y if there is an edge from y to x. The in-degree

of a vertex is the number of its predecessors and the out-degree of a vertex is the

number of its successors. Two directed graphs G1 and G2 are isomorphic if there

is a bijection τ from V (G1) to V (G2) which preserves adjacency conditions, that

is, there is an edge from u to v in G1 if and only if there is an edge from τ(u) in

to τ(v) in G2. A (directed) path of length r from x to y in a directed graph is

a sequence of r + 1 distinct vertices x = a1, a2, . . . , ar+1 = y such that for every

s ∈ {1, 2, . . . , r} there is an edge from as to as+1. A cycle in a directed graph is a



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

directed path (with at least one edge) whose first and last vertices are the same. If

a path in a directed graph visits each vertex exactly once, we call this Hamiltonian

path. A Hamiltonian cycle is a Hamiltonian path that is a cycle. For example, the

graph G in Figure 1.2 has a Hamiltonian cycle, its Hamiltonian path is as follows:

a1 → a2 → a3 → a4 → a1.

Figure 1.2: The directed graph G with a Hamiltonian cycle

Note that a directed graph containing a Hamiltonian path may not have a Hamil-

tonian cycle. For instance, the directed graph H in Figure 1.3 has no out-degree of

the vertex b0, so a Hamiltonian cycle does not exist. But its Hamiltonian path is as

follows: b1 → b2 → b3 → b4 → b5 → b6 → b0.

Figure 1.3: The directed graph H without Hamiltonian cycles

A directed graph is bipartite if its vertex set can be partitioned into two sets G1

and G2, where every edge in the graph goes from a vertex in G1 to a vertex in G2

and there is no adjacent edge between two vertices in the G1 or G2. For exam-

ple, the graph G whose vertex set can be partitioned into two sets G1 = {a, b} and

G2 = {c, d, e} (see Figure 1.4).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Figure 1.4: The bipartite graph G

A weak path in any digraph is a sequence a0, a1, . . . , ar of distinct vertices for which

there is an undirected edge between ai−1 and ai for each i = 1, 2, . . . , r. A digraph

is said to be weakly connected if any two vertices can be joined by a weak path. We

say that a directed graph is strongly connected if it is possible to reach any vertex

starting from any vertex in a graph. A weakly connected component of a directed

graph is a maximal weakly connected subgraph. It is well known that a directed

graph can be partitioned into a disjoint union of weakly connected components. For

the notation, we abbreviate a component for a weakly connected component. A

strongly connected directed graph is always weakly connected, but a weakly con-

nected directed graph may not be strongly connected (see Figure 1.5).

Figure 1.5: A non-strongly connected directed graph

Let Fq be the finite field of q elements. For a function f on Fq, we define the

functional graph of f as a digraph of q vertices labeled by the elements of Fq, where

there is an edge from u to v if and only if f(u) = v. By working on polynomials over

Fq, Knoyagin et al. [4] found algorithms to estimate the number of non-isomorphism

functional graphs and provided an upper bound on the number of functional graphs.

Later, Mans et al. [5] provided algorithms on quadratic polynomials over finite



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

fields to approximate the number of connected functional graphs, the number of

graphs having a maximal cycle, the number of cycles of fixed size and the number

of components of fixed size.

Mans et al. [5] suggested that almost all of the functional graphs generated by

the polynomial f(t) = t2 + a ∈ Fq[t] are weakly connected.

More generally, for an equation over Fq:

E(X,Y ) = 0

with variables X and Y , we may define a digraph by letting elements in Fq as vertices

and drawing an edge from u to v in Fq if and only if E(u, v) = 0. We call this graph

an equational graph associated with the above equation.

Mans et al. [6] studied the equational graph associated with the equation

E(X, Y ) = (Y 2 − f(X))(λY 2 − f(X)) = 0

with variables X and Y , f(t) is a polynomial over Fq, where q is odd and λ is a

non-square element in Fq. It is denoted by G(2)(λ, f) (see Figure 1.6).

Figure 1.6: The equational graph G(2)(3, 2t+ 4) over Z7

A polynomial f(t) in Fq[t] is a permutation polynomial if the map x 7→ f(x) gives

a bijection from Fq onto itself. Mans et al. obtained properties on vertices when

f(t) is a permutation polynomial as follows.

Proposition 1.1.1. [6] Let f(t) be a permutation polynomial over Fq where q is

odd. For the graph G(2)(λ, f),

1. if f(0) ̸= 0, then the vertex 0 has in-degree 1 and out-degree 2, the vertex f−1(0)

has in-degree 2 and out-degree 1, and the vertex x (x ̸= 0 and x ̸= f−1(0)) has

in-degree 2 and out-degree 2, and
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2. if f(0) = 0, then the vertex 0 has in-degree 1 and out-degree 1, and the vertex

x (x ̸= 0) has in-degree 2 and out-degree 2.

It follows from the above proposition that every vertex lies in a cycle and also

every edge lies in a cycle. It also implies that every Mans’ graph is not a bipartite

graph. Note that there is a strongly connected digraph whose some component does

not have a Hamiltonian cycle (see Corollary 3.8.2 of [2]). Mans et al. showed that

Theorem 1.1.2. [6] If f(t) is a permutation polynomial in Fq[t] where q is odd,

then every component of the graph G(2)(λ, f) has a Hamiltonian cycle.

Some examples for the non-permutation polynomials were also provided in [6].

Mans et al. also analyzed the graphs and obtained some algorithms for searching

Hamiltonian cycles when f(t) is of degree 1, 2 or 3. In addition, they [6] classified

the equational graphs G(2)(λ, f) up to isomorphism where f(t) is a permutation

polynomial of degree one (a linear polynomial). They showed that G(2)(λ, at+ b) is

isomorphic to G(2)(λ, t+ a−1b) for any a ̸= 0 and b ∈ Fq. Thus, they studied compo-

nents with 2, 3 or 4 vertices of G(2)(λ, t+ b) for every b ∈ Fq. Their results suggested

that almost of graphs G(2)(λ, f) are connected where f(t) is a linear polynomial in

Fq[t].

1.2 The kth power mapping on finite fields

Let Fq be the finite fields of q elements. We write F×
q for its multiplicative group of

nonzero elements. Let k ≥ 2 be a positive integer. Consider the kth power mapping

φk on F×
q given by φk(a) = ak for all a ∈ F×

q . The kernel of φk is {a ∈ F×
q : ak = 1}

and the image of φk is {ak : a ∈ F×
q }, the set of the kth power elements. The

following result gives the structure of the multiplicative group F×
q .

Theorem 1.2.1. [1] The multiplicative group F×
q is a cyclic of order q − 1. Its

generators are called primitive elements of Fq.

Next, we discuss some basic tools in group theory. Let ϕ be the Euler ϕ-function,

that is, a function counting positive integers up to a given natural number n that

are relatively prime to n.
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Theorem 1.2.2. [3] Let G be a cyclic group of order n generated by a.

1. For each positive divisor d of n, the group G has exactly one subgroup of order

d, namely ⟨an/d⟩.

2. If d is a positive divisor of n, then the number of elements of order d in a

cyclic group G of order n is ϕ(d).

3.
∑
d|n

ϕ(d) = n.

We proceed to compute the size of kerφk. By Theorem 1.2.2, if d | q − 1, then

the number of elements of order d in F×
q is ϕ(d) and there are no elements of order

d in F×
q otherwise. Since kerφk consists of elements in F×

q of order a divisor of k, by

Theorem 1.2.2 (3), we have

| kerφk| =
∑
d|k

|{a ∈ F×
q : ◦(a) = d}| =

∑
d|gcd(k,q−1)

ϕ(d) = gcd(k, q − 1).

It follows that

| imφk| = |F×
q / kerφk| =

q − 1

gcd(k, q − 1)
.

In particular, we have φk is injective if and only if gcd(k, q − 1) = 1, and in this

case, every element in F×
q is the kth power. On the other hand, if k | q − 1, then

| kerφk| = k and the polynomial tk − 1 splits into monic linear factors in Fq[t] and

F×
q / imφk is a cyclic group of order k. We can apply these observations to study

the generalized equational graphs introduced in Section 1.1 of Mans et al. [6].

1.3 Our graphs

Let k ≥ 2 be a positive integer. Assume that k ≤ q− 1. Then there is an element λ

in F×
q of order at least k. A directed graph whose vertex set is Fq and for x, y ∈ Fq

there is a directed edge from x to y if

(yk − f(x))(λyk − f(x)) . . . (λk−1yk − f(x)) = 0.

is called the digraph associated with the polynomial f(t) ∈ Fq[t]. It is denoted by

G(k)(λ, f). If q is odd and k = 2, it is a Mans’ graph. Mans et al. suggested the

above equation in their comments in Section 7 of [6].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

In this thesis, we use the kth power mapping to study the graph G(k)(λ, f) where

f(t) is a permutation polynomial in Fq[t]. The work is organized as follows. In

Chapter 2, we assume that λ imφk generates the quotient group F×
q / imφk and prove

that every vertex has a positive in-degree and out-degree in Section 2.1. This implies

the strong connectivity of the graph. Moreover, if k | (q − 1), then a Hamiltonian

cycle exists. This proof is presented in Section 2.2 together with some examples. In

Section 3.1, we classify the equational graphs G(3)(λ, f) up to isomorphism where

f(t) is a permutation polynomial in Fq[t]. Finally, we find some conditions for the

existence of components with three or four vertices in Section 3.2.
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CHAPTER II
CONNECTIVITY AND HAMILTONIAN

CYCLES

2.1 In-degree, out-degree and strongly connectiv-

ity

Assume that λ imφk generates the quotient group F×
q / imφk. This can easily hold

if λ is a primitive element of Fq or the size of F×
q / imφk is a small prime. First, we

study the in-degrees and out-degrees of every vertex of G(k)(λ, f) where f(t) ∈ Fq[t]

is a permutation polynomial. It follows that every component of the graph G(k)(λ, f)

is strongly connected and the graph is not bipartite. We begin with an algebraic

lemma.

Lemma 2.1.1. Assume that gcd(k, q − 1) = d. Let f(t) be a polynomial in Fq[t]

and let x ∈ Fq with f(x) ̸= 0. Then there exists l ∈ {0, 1, . . . , d − 1} such that

λ−lf(x) ∈ imφk. Moreover, for j ∈ {0, 1, . . . , k − 1}, there exists y ∈ F×
q such that

λjyk = f(x) if and only if j = l+md for some m ∈ {0, 1, . . . , k/d−1}. In particular,

the number of y’s in Fq such that

(yk − f(x))(λyk − f(x)) . . . (λk−1yk − f(x)) = 0

is k.

Proof. Let j ∈ {0, 1, . . . , k − 1}. Suppose that there exists y ∈ F×
q such that λjyk =

f(x). Since λ−lf(x) ∈ imφk, f(x) = λlgk for some g ∈ F×
q . Then λjyk = λlgk,

so λj−l = (gy−1)k ∈ imφk. Since the order of λ imφk is d = |F×
q / imφk|, we have

d | (j − l).
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Conversely, we suppose that j = l +md for some m ∈ {0, 1, . . . , k/d− 1}. Since

the order of λ imφk is d, we have

λ−jf(x) imφk = λ−lf(x) imφk = imφk.

Then λ−jf(x) ∈ imφk, so λ−jf(x) = yk for some y ∈ F×
q .

Finally, for each j ≡ l mod d, the number of y’s such that λjyk = f(x) is d

because | kerφk| = d. Since the number of j’s in {0, 1, . . . , k − 1} such that j ≡ l

mod d is k/d, it follows that our desired number is k.

Proposition 2.1.2. Let f(t) be a permutation polynomial in Fq[t]. For the graph

G(k)(λ, f),

1. if f(0) = 0, then the vertex 0 has in-degree 1 and out-degree 1, and the vertex

x (x ̸= 0) has in-degree k and out-degree k, and

2. if f(0) ̸= 0, then the vertex 0 has in-degree 1 and out-degree k, the vertex f−1(0)

has in-degree k and out-degree 1, and the vertex x (x ̸= 0 and x ̸= f−1(0)) has

in-degree k and out-degree k.

Proof. 1. Assume that f(0) = 0. We first count the in-degree and out-degree of the

vertex 0. Let u be a successor of the vertex 0. Then,

λk(k−1)/2uk2 = (uk − f(0))(λuk − f(0)) . . . (λk−1uk − f(0)) = 0,

and so u = 0. Hence, the vertex zero has in-degree 1. Let v be a predecessor of the

vertex 0. Then, f(v) = 0 = f(0). Since f is a one-to-one, v = 0. The vertex 0 has

out-degree 1. Next, we let x be a nonzero vertex in Fq. Since f is one-to-one and

f(0) = 0, we have f(x) ̸= 0. By Lemma 2.1.1, there are k successors of x. Now, we

let s be a predecessor associated with x. Then

(xk − f(s))(λxk − f(s)) . . . (λk−1xk − f(s)) = 0.

Therefore, s = f−1(λjxk) where j ∈ {0, 1, . . . , k − 1} gives k solutions.

2. Assume that f(0) ̸= 0. By Lemma 2.1.1, there are k successors of the vertex

0. Let v be a predecessor of the vertex 0. Then f(v) = 0 and so v = f−1(0) ̸= 0

because f is one-to-one. Therefore, there is only one predecessor of the vertex 0.
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Now, we let c be a successor of f−1(0). Then, λk(k−1)/2ck
2
= 0, so c = 0. Next,

we let h be a predecessor of f−1(0). Then,

((f−1(0))k − f(h))(λ(f−1(0))k − f(h)) . . . (λk−1(f−1(0))k − f(h)) = 0,

so h = f−1(λ−j(f−1(0))k) where j ∈ {0, 1, . . . , k − 1}. Since f(0) ̸= 0, f−1(0) ̸= 0.

Hence, the vertex f−1(0) has in-degree 1 and out-degree k.

Lastly, let x be a vertex such that x ̸= 0 and x ̸= f−1(0). Then f(x) ̸= 0. By

Lemma 2.1.1, there are k successors of x. Let s be a predecessor associated with x.

Then

(xk − f(s))(λxk − f(s)) . . . (λk−1xk − f(s)) = 0.

Thus, s = f−1(λjxk) where j ∈ {0, 1, . . . , k − 1}. Since x ̸= 0, the vertex s varies k

solutions.

Remark. From the above proposition, if k ≥ 3 and f(t) ∈ Fq[t], then there is no

components of G(3)(λ, f) with two vertices. Mans et al. gave a condition in which

G(2)(λ, f) has a component with two vertices (see Proposition 4.5 of [6]).

Lemma 2.1.3. Let f(t) be a permutation polynomial in Fq[t]. Then every vertex

of G(k)(λ, f) lies in a cycle, and every edge of G(k)(λ, f) lies in a cycle. Moreover,

every component of the graph is strongly connected.

Proof. Let C be a connected component of G(k)(λ, f). By Proposition 2.1.2, every

vertex must be adjacent to some vertex in Fq. Thus, we will show that, if there is

an edge from x to y, then there is a path from the vertex y to the vertex x and

thus we obtain our desired cycle. Proposition 2.1.2 also says that every vertex in

Fq has positive in-degree as well as out-degree. Let G1 be a subgraph of G(k)(λ, f)

that we start from x, then we draw the predecessors of x, and the predecessors of

the predecessors of x, and so on. On the other hand, we let G2 be a subgraph of

G(k)(λ, f) that we start from y, then we draw the successors of y, and the successors

of the successors of y, and so on.

Next, we show that there is a common vertex in the subgraphs G1 and G2.

Suppose that G1 and G2 have no common vertex. Then, the edge from x to y is not

in G1, and also not in G2.
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Case 1. G2 does not contain the vertex 0. So y ̸= 0 and y ̸= f−1(0). By Proposition

2.1.2, in G2, the vertex y has out-degree k and in-degree at most k−1. Nonetheless,

any other vertex in G2 has out-degree k and in-degree at most k. Therefore, the sum

of out-degrees in G2 is not equal to the sum of in-degrees in G2, a contradiction.

Case 2. G2 contains the vertex 0. If f(0) = 0, then C contains only the vertex 0

which is impossible. So f(0) ̸= 0. If y = 0, then x = f−1(0) is not in G2, and hence

any other vertex in G2 has in-degree at most k and out-degree k. It follows that

k + k(|V (G2)| − 1) = the sum of out-degrees in the subgraph G2

= the sum of in-degrees in the subgraph G2

≤ 0 + k(|V (G2)| − 1)

which is absurd. For the case y = f−1(0), we have a successor of y must be a vertex

0, |V (G2)| ≥ 2, and in G2, the vertex f−1(0) has in-degree at most k − 1 and out-

degree 1. By Proposition 2.1.2, we obtain the sum of in-degrees in the subgraph G2

is at most (k − 1) + 1 + k(|V (G2)| − 2) and the sum of out-degrees in the subgraph

G2 equals to 1 + k(|V (G2)| − 1). Since, in G2, the sum of in-degrees is equal to the

sum of out-degrees, we have

1 + k(|V (G2)| − 1) ≤ k + k(|V (G2)| − 2),

so 1 ≤ 0 which is a contradiction. Thus, we may assume that y ̸= 0 and y ̸= f−1(0),

so any other vertex z in the subgraph G2 which is not 0 and f−1(0) has out-degree

k and in-degree at most k. Hence,

k + k + 1 + k(|V (G2)| − 3) = the sum of out-degrees in the subgraph G2

= the sum of in-degrees in the subgraph G2

≤ (k − 1) + 1 + k + k(|V (G2)| − 3)

which is also a contradiction, and we can conclude that G1 and G2 have a common

vertex.

Proposition 2.1.4. Assume that q is odd. If f(t) is a permutation polynomial in

Fq[t], then the graph G(k)(λ, f) is not a bipartite graph.
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Proof. Assume that the graph G(k)(λ, f) is a bipartite graph. Then the vertex set

is divided into two disjoint subsets, say G1 and G2, where there is no adjacent edge

between two vertices in the same vertex subset G1 or G2. Thus, there is no loops in

G(k)(λ, f) and so f(0) ̸= 0. Without loss of generality, we suppose that f−1(0) ∈ G1

and 0 ∈ G2. Let |G1| = m and |G2| = n. By Proposition 2.1.2, the sum of out-

degrees of the vertices in G1 equals k(m − 1) + 1, and the sum of in-degree of the

vertices in G2 is equal to k(n−1)+1. Since G(k)(λ, f) is a bipartite graph, the sum of

out-degrees of the vertices in G1 and the sum of in-degrees of the vertices in G1 are

equal. Hence, m = n and q = m+n is an even integer which is a contradiction.

2.2 Existence of Hamiltonian cycles

Next, we obtain some conditions for the existence of a Hamiltonian cycle in the

graph G(k)(λ, f).

Theorem 2.2.1. If k | (q − 1) and f(t) is a permutation polynomial in Fq[t], then

every component of the graph G(k)(λ, f) has a Hamiltonian cycle.

Proof. Suppose on the contrary that there exists a component C in G(k)(λ, f) which

does not have a Hamiltonian cycle. By Lemma 2.1.3, we can choose a maximal

cycle, say M , in C. So the cycle M cannot be enlarged and does not go through all

vertices of C. Also, there is a vertex in M whose successor is outside M . Let x0 be

a vertex in M such that y0 is a successor of x0 outside the cycle M . If y0 = 0, then

x0 has out-degree at least 2 which is impossible. Thus, y0 ̸= 0, and so the in-degree

of y0 is k.

Next, we show that y0 has a predecessor outside M . Suppose that all predecessors

of y0 are inside the cycle M . Let u0 be a predecessor of y0. Then

(yk0 − f(u0))(λy
k
0 − f(u0)) . . . (λ

k−1yk0 − f(u0)) = 0.

Since f is one-to-one, u0 = f−1(λlyk0) for some l ∈ {0, 1, . . . , k−1}. Since k | (q−1),

there is a primitive kth root of unity ω in Fq. Then, for each i ∈ {0, 1, . . . , k − 1},

((ωiy0)
k − f(u0))(λ(ω

iy0)
k − f(u0)) . . . (λ

k−1(ωiy0)
k − f(u0)) = 0.
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Thus, k vertices f−1(yk0), f
−1(λyk0), . . . , f

−1(λk−1yk0) have common successors y0, ωy0,

ω2y0, . . . , ω
k−1y0 and x0 = f−1(λlyk0) for some l ∈ {0, 1, . . . , k− 1}. Since the vertex

y0 is outside the cycle M , the successor of x0 inside the cycle M is ωj0y0 for some

j0 ∈ {1, 2, . . . , k − 1}. Since y0, ωy0, ω
2y0, . . . , ω

k−1y0 are common successors of

f−1(yk0), f
−1(λyk0), . . . , f

−1(λk−1yk0), there is a predecessor of y0 whose out-degree is

at least k + 1, a contradiction. Hence, there is a predecessor of y0 outside the cycle

M , say z0. By Lemma 2.1.3, the edge from z0 to y0 lies in a cycle, say C1. If the

cycle C1 does not intersect M , then we can enlarge the cycle M by cutting edges by

edges from x0 to ωj0y0 and from z0 to y0 (see the figure below), which contradicts

the maximality of M , so C1 must intersect M .

Let x1 be a vertex in C1 and also in M such that, along with the cycle C1, the path

from x1 to y0 does not intersect with M , except the vertex x1. Similarly, we can

find a successor y1 ̸= 0 of x1 outside the cycle M , and there exists a predecessor of

y1 outside M , say z1. By Lemma 2.1.3, the edge from z1 to y1 lies in a cycle, say C2.

As before, the cycle C2 must intersect M , and there exist a vertex say x2, in C2 and

also in M such that along the cycle C2, the path from x2 to y1 does not intersect M

except the vertex x2. Then we draw vertices y2, ωj2y2, z2 and the edges among them

as before. Repeating this previous process, we obtain a sequence of vertices in M ,

x0, x1, x2, . . . in a similar manner (see the next figure).
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Since M is a finite cycle, xn = xm for some n < m. Without loss of generality,

we assume that n = 0. Since ωjmym is a successor of xm in the cycle M , we have

ym = ωly0 for some l ∈ {0, 1, . . . , k − 1}. Also, there is a path from ym to zm−1 and

there is an edge from z0 to ym = ωly0, shown in the next figure.

Thus C : x0, ω
j0y0, . . . , xm−1, ym−1, . . . , z0, ym = ωly0, zm−1, ω

jm−1ym−1 is a cycle in C

extending M which contradicts the maximality of M . Therefore, every component

has a Hamiltonian cycle.

Example 2.2.2. Consider the finite field Z3[i], where i2 = −1 in Z3, λ = 1+ i and

f(t) = t. Indeed, f(t) is a permutation polynomial over Z3[i] and gcd(4, 9− 1) = 4.

From Figure 2.1, the graph G(4)(1 + i, t) over Z3[i] has two components and its

Hamiltonian paths are as follows: 0 → 0 and 1− i → 1 → −1 → −1− i → 1 + i →

−i → i → −1 + i → 1− i .

Figure 2.1: The graph G(4)(1 + i, t) over Z3[i]
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Example 2.2.3. If f(t) ∈ Fq[t] is not a permutation polynomial, then there is a

graph G(k)(λ, f) whose component does not have a Hamiltonian cycle. For example,

in Z7, f(t) = t3 + 1 ∈ Z7[t] is not a permutation polynomial and we consider λ = 3.

From Figure 2.2, the graph G(3)(3, t3 + 1) has only one component and there is no

predecessor of vertices 3, 5 and 6. Hence, the Hamiltonian cycle does not exist.

On the other hand, f(t) = t3 ∈ Z7[t] is not a permutation polynomial but every

component of the graph G(3)(2, t3) over Z7 has a Hamiltonian cycle (see Figure 2.3).

Figure 2.2: The graph G(3)(3, t3 + 1) over Z7

Figure 2.3: The graph G(3)(3, t3) over Z7
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CHAPTER III
FURTHER RESULTS

3.1 Isomorphism Classses

Throughout this section, we assume that q is odd and fix a non-square element c in

Fq. We work on isomorphism classes of the graph G(3)(λ, at+b) where a, b ∈ Fq with

a ̸= 0. We shall distinguish a ̸= 0 in two cases, namely, square and non-square, as

follows.

Proposition 3.1.1. Let α ̸= 0 in Fq and b ∈ Fq, the graph G(3)(λ, α2t + b) is

isomorphic to the graph G(3)(λ, t+ α−3b).

Proof. Let τ be the bijection map on F×
q defined by τ(x) = α−1x for all x ∈ Fq. To

show that τ preserves the adjacency conditions, we let u and v be in Fq and compute
(
v3 − (α2u+ b)

) (
λv3 − (α2u+ b)

) (
λ2v3 − (α2u+ b)

)
= 0

⇔ α−3
(
v3 − (α2u+ b)

)
α−3

(
λv3 − (α2u+ b)

)
α−3

(
λ2v3 − (α2u+ b)

)
= 0

⇔
(
(α−1v)3 − (α−1u+ α−3b)

) (
λ(α−1v)3 − (α−1u+ α−3b)

) (
λ2(α−1v)3 − (α−1u+ α−3b)

)
= 0

⇔
(
(τ(v))3 − (τ(u) + α−3b)

) (
λ(τ(v))3 − (τ(u) + α−3b)

) (
λ2(τ(v))3 − (τ(u) + α−3b)

)
= 0.

Hence, τ is an isomorphism from the graph G(3)(λ, α2t+b) onto the graph G(3)(λ, t+

α−3b).

Proposition 3.1.2. Assume that a is a non-square element in F×
q and b ∈ Fq.

Then ac is a square element and the graph G(3)(λ, at+ b) is isomorphic to the graph

G(3)(λ, c−1t+ β−3b) where β ∈ Fq and β2 = ac.

Proof. Consider the square mapping φ2. Since kerφ2 = {1,−1}, |F×
q / imφ2| = 2,

so a imφ2 = c imφ2 = c−1 imφ2. Then ac ∈ imφ2, so ac = β2 for some β ∈ F×
q . Let
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τ be the bijection map on Fq defined by τ(x) = β−1x for all x ∈ Fq. To show that
τ preserves the adjacency conditions, we let u and v be in Fq. Since(
v3 − (au+ b)

) (
λv3 − (au+ b)

) (
λ2v3 − (au+ b)

)
= 0

⇔
(
cv3 − [(β2u) + cb]

) (
cλ(v)3 − [(β2u) + bc]

) (
cλ2(v)3 − [(β2u) + bc]

)
= 0

⇔ β−3
(
cv3 − [(β2u) + cb]

)
β−3

(
cλ(v)3 − [(β2u) + bc]

)
β−3

(
cλ2(v)3 − [(β2u) + bc]

)
= 0

⇔
(
c(β−1v)3 − [(β−1u) + β−3cb]

) (
cλ(β−1v)3 − [(β−1u) + β−3bc]

) (
cλ2(β−1)3 − [(β−1u) + β−3bc]

)
= 0

⇔
(
(β−1v)3 − [c−1(β−1u) + β−3b]

) (
λ(β−1v)3 − [c−1(β−1u) + β−3b]

) (
λ2(β−1)3 − [c−1(β−1u) + β−3b]

)
= 0

⇔
(
(τ(v))3 − [c−1(τ(u)) + bβ−3]

) (
λ(τ(v))3 − [c−1(τ(u)) + bβ−3]

) (
λ2(τ(v))3 − [c−1(τ(u)) + bβ−3]

)
= 0,

τ is an isomorphism from the graph G(3)(λ, at+b) onto the graph G(3)(λ, t+β−3b).

By Propositions 3.1.1 and 3.1.2, we may focus the study on the graphs G(3)(λ, t+

b) and G(3)(λ, ct+ b) where b ∈ Fq. In addition, we have

Proposition 3.1.3. The graphs G(3)(λ, t) and G(3)(λ, ct) are not isomorphic.

Proof. Consider the equation

(X3 −X)(λX3 −X)(λ2X3 −X) = 0.

If λ is a square element in Fq, then there are seven solutions associated with the

equation, and if λ is non-square, then there are five solutions of the equation. It

follows that there are at least five fixed vertices in G(3)(λ, t). Next, we consider

another equation

(X3 − cX)(λX3 − cX)(λ2X3 − cX) = 0.

Since X2 = λ−2c and X2 = c are insolvable, the equation has at most three solutions.

Thus, there are at most three fixed vertices of the graph G(3)(λ, ct). Hence, the

number of fixed vertices of G(3)(λ, t) and G(3)(λ, ct) are different, so they are not

isomorphic.

Proposition 3.1.4. Let a ̸= 0 and h ∈ Fq. Then the graph G(3)(λ, at + h) is

isomorphic to the graph G(3)(λ, at− h).

Proof. Let τ be the bijection on Fq defined by τ(x) = −x for all x ∈ Fq. To show
that τ preserves the adjacency conditions, we let u and v be in Fq and compute(

v3 − (au+ h)
) (

λv3 − (au+ h)
) (

λ2v3 − (au+ h)
)
= 0
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⇔
(
−v3 − (−au− h)

) (
−λv3 − (−au− h)

) (
−λ2v3 − (−au− h)

)
= 0

⇔
(
(−v)3 − (a(−u)− h)

) (
λ(−v)3 − (a(−u)− h)

) (
λ2(−v)3 − (a(−u)− h)

)
= 0

⇔
(
(τ(v))3 − [a(τ(u))− h]

) (
λ(τ(v))3 − [a(τ(u))− h]

) (
λ2(τ(v))3 − [a(τ(u))− h]

)
= 0.

Thus, we have the proposition.

Proposition 3.1.5. If a1, a2 ∈ F×
q , then the graph G(3)(λ, a1t) and G(3)(λ, a2t + b)

with b ̸= 0 are not isomorphic.

Proof. Since b ̸= 0, G(3)(λ, a2t+ b) has no vertex with in-degree 1 and out-degree 1

by Proposition 2.1.2 (2). However, the vertex 0 in G(3)(λ, a1t) has in-degree 1 and

out-degree 1, so both graphs are not isomorphic.

Proposition 3.1.6. Assume that 3 | (q − 1). Let a ̸= 0 and i, j ∈ {0, 1, 2}. If

λ is an element of order 3 in F×
q , then the graph G(3)(λ, at + λi) is isomorphic to

G(3)(λ, at+ λj).

Proof. Let τ be the bijection map on Fq defined by τ(x) = λj−ix for x ∈ Fq. To

show that τ preserves the adjacency conditions, we let u and v be in Fq. Since

(
v3 − (au+ λi)

) (
λv3 − (au+ λi)

) (
λ2v3 − (au+ λi)

)
= 0

⇔ λj−i
(
v3 − (au+ λi)

)
λj−i

(
λv3 − (au+ λi)

)
λj−i

(
λ2v3 − (au+ λi)

)
= 0

⇔
(
(τ(v))3 − (aτ(u) + λj)

) (
λ(τ(v))3 − (aτ(u) + λj)

) (
λ2(τ(v))3 − (aτ(u) + λj)

)
= 0,

we have the proposition.

Proposition 3.1.7. If q ≡ 3 mod 4, then the graphs G(3)(λ,−t+1) and G(3)(λ, t+1)

are not isomorphic.

Proof. Suppose that both graphs are isomorphic with an isomorphism τ . By Propo-

sition 2.1.2 (2), 0 is the only vertex in G(3)(λ,−t + 1) whose in-degree is 1 and

out-degree is 3. Then only the vertex τ(0) in G(3)(λ, t+ 1) has in-degree 1 and out-

degree 3, so τ(0) = 0. Moreover, 1 is only vertex in G(3)(λ,−t+ 1) whose in-degree

is 3 and out-degree is 1. Thus, only the vertex τ(1) in G(3)(λ, t+ 1) has in-degree 1

and out-degree 3, so τ(1) = −1. Since

(
13 − (−0 + 1)

) (
λ(1)3 − (−0 + 1)

) (
λ2(1)3 − (−0 + 1)

)
= 0,
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there exists an edge from the vertex 0 to 1 in G(3)(λ,−t + 1). Since q ≡ 3 mod 4,

we know that −1 is non-square, so λ2 + 1 ̸= 0. On the other hand, we note that

(
(−1)3 − (0 + 1)

) (
λ(−1)3 − (0 + 1)

) (
λ2(−1)3 − (0 + 1)

)
= (−2)(−λ− 1)(−λ2 − 1) ̸= 0,

there is no edges from the vertex 0 to −1 in G(3)(λ, t + 1). However, since τ

preserves the adjacency condition, there is an edge from τ(0) = 0 to τ(1) = −1 in

G(3)(λ, t+1). Hence, we have a contradiction, so both graphs are not isomorphic.

Example 3.1.8. In Z7 with λ = 2, by Propositions 3.1.1 to 3.1.5, we have at most

eight isomorphism classes of the graph G(3)(λ, at+ b) where a, b ∈ Z7 with a ̸= 0 as

shown in the following table.

G(3)(2,−t) G(3)(2, t)

G(3)(2,−t+ 1) G(3)(2, t+ 1)

G(3)(2,−t+ 2) G(3)(2, t+ 2)

G(3)(2,−t+ 4) G(3)(2, t+ 4)

Since the order of λ is 3, by Proposition 3.1.6, the number of isomorphism classes

is at most four, and it equals four by Proposition 3.1.7 as shown in the next table.

G(3)(2,−t) G(3)(2, t)

G(3)(2,−t+ 1) G(3)(2, t+ 1)

3.2 Components with small number of vertices

In this section, we first study the number of vertices in a component of G(k)(λ, f)

where f(t) is a permutation polynomial in Fq[t] and k | (q − 1). This allows us to

study the components of G(3)(λ, f) of small vertices. We show some conditions for

the existence of a component with three or four vertices of our desired graphs.

Lemma 3.2.1. Assume that k | (q − 1) and f(t) is a permutation polynomial in

Fq[t]. Let C be a component in G(3)(λ, f) with the number of vertices nC. Then

1. if 0 is not a vertex of C, then nC is divisible by k, and
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2. if 0 is a vertex of C, then nC − 1 is divisible by k.

Proof. Define

E = {(x, y) : x, y ∈ V (C) and yk = f(x)}.

For y ∈ V (C), we write

Ay = {(x, y) : x ∈ V (C) and yk = f(x)}.

Then

E =
∪

y∈V (C)

Ay =
∪

y∈V (C)

{(f−1(yk), y)}

because f is one-to-one. Hence |E| =
∑

y∈V (C)
1 = nC. For x ∈ V (C), we write

Bx = {(x, y) : y ∈ V (C) and yk = f(x)},

and so E =
⊔

x∈V (C)

Bx, a disjoint union.

1. Let x ∈ V (C). Assume that Bx ̸= ∅. Then there exists y ∈ V (C) such that

yk = f(x), so f(x) = (yωj)k for all j ∈ {0, 1, . . . , k− 1} and ω is an element of order

k in F×
q . Since x ∈ V (C), yωj ∈ V (C) for all j ∈ {0, 1, . . . , k − 1}. Thus, |Bx| = k

because y ̸= 0. Hence, we have shown that |Bx| is either 0 or k, so nC =
∑

x∈V (C)
|Bx|

is divisible by k.

2. If f(0) = 0, then |V (C)| = 1 by Proposition 2.1.2 (1). Suppose that f(0) ̸= 0.

Then |Bf−1(0)| = 1. Let z ∈ V (C)\{f−1(0)}. Assume that Bz ̸= ∅. Then there exists

y ∈ V (C) such that yk = f(z), so f(z) = (yωj)k for all j ∈ {0, 1, . . . , k− 1} and ω is

an element of order k in F×
q . Since z ∈ V (C), yωj ∈ V (C) for all j ∈ {0, 1, . . . , k−1}.

Thus, |Bz| = k because f(z) ̸= 0. Hence, we have shown that |Bz| is either 0 or k,

so nC − 1 =
∑

z∈V (C)\{f−1(0)}
|Bz| is divisible by k.

Example 3.2.2. Lemma 3.2.1 may not hold if k ∤ (q − 1). For example, the graph

G(3)(2, t + 2) over Z5 has a component with five vertices whereas the vertex 0 is in

this component (see Figure 3.1).
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Figure 3.1: The graph G(3)(2, t+ 2) over Z5

Proposition 3.2.3. Assume that 3 | (q− 1). If a ∈ Fq, then the graph G(3)(λ, t+ a)

has a component with three vertices if and only if a = 0 and the order of λ is 3.

Proof. Let C be a component of the graph G(3)(λ, t + a) with three vertices. By

Lemma 3.2.1, 0 ̸∈ V (C) and so f−1(0) ̸∈ V (C). By Proposition 2.1.2, each vertex of

C has in-degree 3 and out-degree 3. Since 3 | (q−1), we can let ω be a primitive 3rd

root of unity in F×
q . Let x be a vertex of C and y be a successor of x. By Lemma

2.1.1, y3 = λ−l(x + a) for some l ∈ {0, 1, 2}, so y, ωy and ω2y are vertices of C. We

have only one possibility of C displayed below.

Also, we have three predecessors of y, namely y3 − a, λy3 − a and λ2y3 − a. Hence,

we obtain system of equations

y3 − a = ωiy (3.2.1)

λy3 − a = ωjy (3.2.2)

λ2y3 − a = ωky (3.2.3)
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where {i, j, k} = {0, 1, 2}. By (3.2.1) and (3.2.2), we have

(λ− 1)y3 = (ωj − ωi)y. (3.2.4)

By (3.2.2) and (3.2.3), we have

λ(λ− 1)y3 = (ωk − ωj)y. (3.2.5)

So, by (3.2.4) and (3.2.5), we obtain λ =
ωk − ωj

ωj − ωi
, and hence λ3 = 1. By (3.2.1),

(3.2.2) and (3.2.3), we have a = 1
3
(1+λ+λ2)y3 = 0. For the converse, the component

of G(3)(λ, t) has three vertices.

Proposition 3.2.4. Assume that q is odd and 3 | (q− 1). For each a ∈ Fq, there is

no component of the graph G(3)(λ, t+ a) with four vertices.

Proof. Suppose on a contrary that the graph G(3)(λ, t + a) has a component with

four vertices, say C. By Lemma 3.2.1, the vertex 0 ∈ V (C) and a ̸= 0. Let y be

a successor of the vertex 0. By Lemma 2.1.1, y3 = λ−la for some l ∈ {0, 1, 2}, so

y, ωy and ω2y are vertices of C. Since −a is a nonzero predecessor of the vertex 0,

we have −a = yωj for some j ∈ {0, 1, 2} and so all successors of the vertex 0 are

−a,−aω and −aω2 where ω is a primitive 3rd root of unity in Fq. By Lemma 2.1.1

the vertex 0 has in-degree 1, and so the vertices −aω as well as −aω2 have three

common successors −a,−aω and −aω2. We have only one possibility of C displayed

below.
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In addition, there are three predecessors of −a, namely −a3 − a,−λa3 − a and

−λ2a3 − a. Hence, we obtain

λi(−a)3 = 0 + a (3.2.6)

λj(−a)3 = −aω + a (3.2.7)

λk(−a)3 = −aω2 + a (3.2.8)

where {i, j, k} = {0, 1, 2}. By the above equations, we have

λk − λj = (ω − 1)(λj − λi). (3.2.9)

We next permute i, j, k in six cases as follows.

Case 1. i = 0, j = 1 and k = 2. By (3.2.9), we have λ = ω − 1. But, from (3.2.6)

and (3.2.7), we have λ = −ω + 1 which implies that 2 = 0, a contradiction.

Case 2. i = 0, j = 2 and k = 1. By (3.2.9), we have λ = ω. But, from (3.2.6) and

(3.2.8), we have λ = −ω2 + 1 and thus 2 = 0 which is a contradiction.

Case 3. i = 1, j = 0 and k = 2. By (3.2.9), we have λ = −ω. But, from (3.2.6) and

(3.2.7), we have λ = 1
1−ω

and so 2 = 0 which is impossible.

Case 4. i = 1, j = 2 and k = 0. By (3.2.9), we have λ = −ω2. But, from (3.2.6) and

(3.2.8), we have λ = 1
1−ω2 and thus 2 = 0 which is impossible.

Case 5. i = 2, j = 0 and k = 1. By (3.2.9), we have λ = ω
1−ω

. But from (3.2.7) and

(3.2.8), we have λ = ω + 1 and so 2 = 0 which is absurd.

Case 6. i = 2, j = 1 and k = 0. By (3.2.9), we have λ = 1
ω−1

. But from (3.2.7) and

(3.2.8), we have λ = 1
1+ω

which also implies that 2 = 0, a contradiction.

Hence, we obtain a contradiction and so there is no components with four ver-

tices.
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Proposition 3.2.5. Assume that q is even and 3 | (q−1). If a ∈ Fq, then the graph

G(3)(λ, t + a) has a component with four vertices if and only if the order of λ is 3

and a = λi for some i ∈ {0, 1, 2}.

Proof. Since charFq = 2, we have kerφ2 = {1}. Let C be a component of the graph

G(3)(λ, t + a) with four vertices. By Lemma 3.2.1, 0 ̸∈ C and a ̸= 0. Let y be a

successor of the vertex 0. By Lemma 2.1.1, y3 = λ−la for some l ∈ {0, 1, 2}, so

y, ωy and ω2y are vertices of C. Since −a is a nonzero predecessor of the vertex 0,

we have −a = yωj for some j ∈ {0, 1, 2} and so all successors of the vertex 0 are

−a,−aω and −aω2 where ω is a primitive 3rd root of unity in Fq. By Lemma 2.1.1

the vertex 0 has in-degree 1, and so the vertices −aω as well as −aω2 have three

common successors −a,−aω and −aω2. We have only one possibility of C displayed

below.

In addition, there are three predecessors of −a, namely −a3 − a,−λa3 − a and

−λ2a3 − a. Hence, we obtain

λi(−a)3 = 0 + a (3.2.10)

λj(−a)3 = −aω + a (3.2.11)

λk(−a)3 = −aω2 + a (3.2.12)

where {i, j, k} = {0, 1, 2}. By the above equations, we have

(1 + λ+ λ2)(−a3) = 4a = 0

because charFq = 2. So, we have λ3 = 1. By equations (3.2.10), (3.2.11) and

(3.2.12), we again have

λ3(−a9) = (a3)(1− ω)(1− ω2) = 3a3 = a3,
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so a6 = 1 and hence a3 = 1 because | kerφ2| = 1. For the converse, the component

has four vertices.

Example 3.2.6. Let F4 = {a+bα : a, b ∈ Z2 and α2+α+1 = 0} ∼= Z2[t]/⟨t2+t+1⟩.

Let f(t) = t+ a be a linear permutation polynomial in F4[t]. Let C be a component

in G(3)(λ, f) not containing the vertex 0. By Lemma 3.2.1, the number of vertices

in C is a multiple of 3. Let D be a component containing the vertex 0. Then the

number of vertices in D is 3d+1 for some d ∈ {0, 1}. If d = 0, then there is a graph

containing a component with three vertices, for example, G(3)(α, t) (see Figure 3.2).

If d = 1, then there is a graph containing a component with three vertices such

as G(3)(α, t + α) (see Figure 3.2). Our desired λ is provided by Proposition 3.2.5.

Hence, any graph G(3)(λ, t + a) is isomorphic to the graph in Figure 3.2 or Figure

3.3.

Figure 3.2: The graph G(3)(α, t) over F4
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Figure 3.3: The graph G(3)(α, t+ α) over F4

Example 3.2.7. Let f(t) = t+ a be a permutation polynomial in Z7[t]. Let C be a

component in G(3)(λ, f) not containing the vertex 0. By Lemma 3.2.1, the number of

vertices in C is a multiple of 3. Let D be a component containing the vertex 0. Then

the number of vertices in D is 3d + 1 for some d ∈ {0, 1, 2}. The graph G(3)(λ, f)

does not have a component with four vertices by Proposition 3.2.4, so d is 0 or 2.

If d = 0, then there are two possibilities of our desired graphs. The first one is a

graph containing a component with six vertices, for example G(3)(3, t) (see Figure

3.4). Another one is a graph containing two components with three vertices such

as G(3)(4, t) (see Figure 3.5). This desired λ is given by Proposition 3.2.3 as well.

If d = 2, then there is an equational graph G(3)(λ, f) with 7 vertices, for instance

G(3)(3, t+1) (see Figure 3.6). Hence, by working on small components, we find that

the graph G(3)(λ, t + a) is isomorphic to the graph in Figure 3.4 or Figure 3.5 or

Figure 3.6.

Figure 3.4: The graph G(3)(4, t) over Z7
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Figure 3.5: The graph G(3)(3, t) over Z7

Figure 3.6: The graph G(3)(3, t+ 1) over Z7
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