TOPOLOGY OPTIMIZATION FOR CNN USING NEUROEVOLUTION

Mr. Kevin Richard G. Operiano

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Electrical Engineering
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2021

Copyright of Chulalongkorn University

v A & [

nsnenaladmineiand niusdudulagliiTauinismiedseam

P1gAIU 311M NLas latasly

¥ =

Ineninusihuduniswesnsinnmumdngasimnssumansauiindin
anuiyimnssulii aadyimnssului
ANEIMINTTUANERS PURINTAINMINE Y
Unsfnw 2564

AUANSYRIPIAIN TN NS

Dissertation Title

By
Field of Study
Thesis Advisor

Thesis Co-advisor

TOPOLOGY OPTIMIZATION FOR CNN USING
NEUROEVOLUTION

Mr. Kevin Richard G. Operiano

Electrical Engineering

Associate Professor Wanchalerm Pora, Ph.D.

Professor Hitoshi Iba, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor of Philosophy

............................. Dean of the Faculty of Engineering

(Professor Supot. Teachavorasinskun, D.Eng.)

DISSERTATION COMMITTEE

............................. Chairman

(Associate Professor Supavadee Aramvith, Ph.D.)

............................. Thesis Advisor
(Associate Professor Wanchalerm Pora, Ph.D.)

............................. Thesis Co-advisor

............................. Examiner

(Assistant Professor Suree Pumrin, Ph.D.)

............................. Examiner

(Associate Professor Chaodit Aswakul, Ph.D.)

............................. External Examiner

(Associate Professor Ekachai Leelarasmee, Ph.D.)

iv

PR 3970 nuas Teweslu : nsvensladmiunzngadnsuddudulagly
TIWUIN1MUIEEaM (| TOPOLOGY OPTIMIZATION FOR CNN USING
NEUROEVOLUTION) 8./1USAwInenfinusuan : se.as. Juedu 1WUs, o1-

59NUTNEN9IU - A.AS. BIAT DUY 147 WU,

TutslifdiuandnsiaunaandnensalaseieUssaniodlitaudnua
Fudoutunniflediuusydvnmuesiiu lnssedndesnsyadoyauuslvguasnin-
ININIAUINEINN aglsAnNluu ke NUAATY WL NMIIATIRNNNNNITUITE
yndeyaisuaudiianaydamldenn lunsdilasmiednenaliannangniinldunnifios
wa SevhlAsaensivilvisudhiudeyaiAuly (overfitting) uanainil lalldnneui
anusadnfminginansiunasugdld nseenuuulasssrAEnuATUsEAVEa M
Feudeatulasmiedniudeddmudsmguazanumeisuaofinansgnegiann
InendnusiFweriaus W ius Rt nsmsUsramidledumaniilnenssalas
Pevszamiiivuimnzauignlnesnlusifdnivyadeyaniivue Tmuinismaeuss-
amduBsaldsuusadumalasnmsdnidenlnesssund wazinsgmirluldiulaseie
Uszanminiiloiisd seavsninandnenssulaglifidedinsnuliinudeyauda fe
nsuFuleegeinneu Iauinmmedssamanunsorumanidnenssulasaieyse-
amiflenvnadniiiieusiiuantnonssudednld mmeassilddidunstuduinns
Isﬁiﬁfmmmi‘vmssuwismwﬁﬂ%’wgaﬁwmﬂ'mmngULmeamausaqmmLLaJuETW
Wieuwhduaandnensniimunnsmeszaminly andaonsssdiaunmamelszam
ASF LAy RestNet-34 (91.59%, 91.00% and 89.25% mud19au) 31nA15NAans YOLOV3
flFsunmsiannnisfiennudnidios 47 $u Sauuane 63.8% Tuwugil YOLOVS de-
Fufinudn 106 U wafiauuiuguiios 52.9% uenaint agulin T munmanns

Uszamidiaueaunsaussgingussasanamuavesing inusatuil Wesanyigly

nsasiandnenssumadenlinulassiedn udligadedssdnsam

AV L Aranssulwi. . ANULRVONAS
a3 ... Amassulad L aneiintee. NUSnwINedwusuan

Uns@nen ... 2564 ... A0 Y0071NSINUSNWITI

6071451721: MAJOR ELECTRICAL ENGINEERING

KEYWORDS: NEUROEVOLUTION / CONVOLUTIONAL NEURAL NETWORKS /

IMAGE CLASSIFICATION / OBJECT DETECTION / TRANSFERABILITY
KEVIN RICHARD G. OPERIANO : TOPOLOGY OPTIMIZATION FOR CNN
USING NEUROEVOLUTION. ADVISOR : ASSOC. PROF. WANCHALERM
PORA, Ph.D., THESIS COADVISOR : PROFESSOR HITOSHI IBA, Ph.D., 147

pp.

In the recent years, the architecture of the convolutional neural networks has be-
come much deeper and more complex to improve their performance. Consequently, they
require large datasets and a considerable amount of computational resources. However,
in some applications such as medical imaging analysis, datasets are scarce and difficult
to collect. In these cases, deep networks cannot be trained enough, which makes them
susceptible to overfitting. Moreover, not all institutions have access to abundant compu-
tational resources. Designing a small network that performs as well as a deep network
requires expertise and a great effort. Neuroevolution is therefore proposed to automati-
cally discover an optimal convolutional neural network architecture for a given dataset.
Neuroevolution is a method inspired by natural selection and previously applied in arti-
ficial neural networks to optimize their architecture. With meticulous implementation,
neuroevolution can find small convolutional neural network architectures that are on par
with deep architectures. The experiments conducted confirm that different proposed
neuroevolution implementations can achieve accuracies comparable to those of deep ar-
chitectures as observed in the accuracies of the generic neuroevolution, steady-state neu-
roevolution, and ResNet-34 (91.59%, 91.00% and 89.25% respectively). In addition, the
neuroevolution performed in a specific object detection application with a limited dataset
(i.e., dangerous objects X-ray) has demonstrated that it can find architectures that have
modest depths but have performances similar to the deep network. In an experiment, the
YOLOvV3 with neuroevolution backbone has 47 blocks and 63.8% accuracy, whereas the
original YOLOv3 has 106 blocks and 52.9% accuracy. Conclusively, the proposed neu-
roevolution methods can achieve all the objectives of this dissertation as they effectively

aid in creating alternative architectures to deep networks but without performance loss.

Department : Electrical Engineering = Student’s Signature
Field of Study : ...Electrical Engineering = Advisor’s Signature

Academic Year : 2021 ... Co-advisor’s signature

Acknowledgements

I would like to express my deepest gratitude to the almighty God above who un-
waveringly sustains me right from the beginning, especially in these trying times that
challenged the whole of mankind. I thought I would give up somewhere along the way
and go home mentally broken. However, my constant communication with You through
prayers and meditations has made me strong, enough to endure the hardships even for
one day at a time. And now, here I am, still alive and well, and about to finish my degree
unbelievably. If I may share something, I would like to say that it is important to grow
our spirituality along with our intelligence because it gives worth to the works of our
hands and allows us to overcome even the unimaginable trials in life. It sums up in the

words I strive to live by, ora et labora, which means prayer and work.

I also would like to thank my Mom and Dad for being my light and pillar. Words
cannot express how grateful I am for everything that you have done for me. I dedicate my
Ph.D. degree to you. I would like to thank my siblings Erika and Allen for being there.
Your presence and amusing small talks gave me the strength to strive to become a better
big brother to you. I also acknowledge my relatives and friends who constantly pray for

me because that is the only and most important thing we can do given the circumstances.

I would like to give my sincere appreciation to my professors, Aj. Wanchalerm
who supported me tirelessly from the start of my Ph.D., and Iba-sensei who provided me
insights into the amazing world of evolution. I would like to thank my friends here at
Chulalongkorn University and the University of Tokyo for making this chapter of my life

enjoyable and memorable.

Last but not the least, I would like to give my gratitude to AUN/SEED-Net, the
Department of Electrical Engineering, and the International School of Engineering for the

scholarship and trust given.

vi

Contents

Page

Abstract (Thai) iv

Abstract (English) v

Acknowledgements vi

Contents e vii

List of Tables X

List of Figures xi
Chapter

1 Introduction 1

1.1 Motivation 1

1.2 Objectives 3

1.3 Scope of Work 3

1.4 Summary and Structure of the Thesis 3

2 Background Knowledge and Related Work 5

2.1 Machine Learning L 5

2.2 Artificial Neural Network 6

2.2.1 Developmentsin ANN 7

2.2.2 Implementation 8

2.3 Convolutional Neural Network 12

2.3.1 Developmentsin CNN 14

2.3.2 Implementation 21

2.3.2.1 Convolutional Block 22

2.3.2.2 Pooling Block 24

2.3.2.3 Rectified Linear Unit 25

2.3.2.4 Batch Normalization 25

2.3.3 Applications 26

2.3.3.1 YOLO Object Detection. 26

2.3.3.2 Novel Applications of CNN 28

2.3.4 Adversarial Attacks 30

2.4 Datasets and Data Augmentations 34

2.4.1 Common Datasets and Specialized Dataset 35

2.4.1.1 MNIST Dataset 35

2.4.1.2 CIFAR-10 Dataset 35

24.1.3 FMNIST Dataset 36

2.4.1.4 KMNIST Dataset 36

2.4.1.5 Dangerous Objects X-ray Dataset 37

2.4.2 Data Augmentations 37

2.4.2.1 Training Set Data Augmentations 38

viii

Chapter Page
2.4.2.2 Test-time Augmentations 41

2.5 Learning from trained Networks 42
2.5.1 Transfer Learning 42

2.5.2 Knowledge Distillation 44

2.6 Evolutionary Computation 46
2.6.1 Genetic Algorithm 46

2.6.2 Neuroevolution 48

2.7 Toward CNN and Neuroevolution Combination. 52
2.7.1 Developments in Neuroevolution Approaches to CNN 53

2.8 SUmMmMAary . .. o. .. 56

3 CNN Data Augmentations and Applications 59
3.1 Pre- and Post-training Data Augmentations. 59
3.1.1 Pre-TDA and Post-TDA Experiments 66

3.1.1.1 SOA Experiment 67

3.1.1.2 QA Experiment 68

3.1.1.3 QC Experiment 69

3.1.1.4 ZC Experiment 69

3.1.1.5 ZQC Experiment 70

3.1.1.6 QZC Experiment 71

3.1.2 Experiments Summary L 72

3.2 Hand Sign Language Detection and Recognition 73
3.3 SUummary 76

4 Neuroevolution for CNN Techniques and Applications s
4.1 Neuroevolution Techniques, 7
4.1.1 Generic Neuroevolution 78

4.1.2 Steady-state Neuroevolution 79

4.2 Learning from trained Networks Methods 81
4.2.1 Transfer Learning L oo 81

4.2.2 Knowledge Distillation 82

4.3 Neureovolution Applications 83
4.3.1 X-ray Object Detection 83

4.3.2 Transferability of Adversarial Examples Defense 86

44 SUMMATY . . . o oo 90

5 Neuroevolution for CNN Experiments 91

5.1 Neuroevolution Techniques, 91

ix

Chapter Page
5.2 Learning from trained Networks 94
5.2.1 Network Baselines 96
5.2.2 NECNN Networks with Transfer Learning 97
5.2.3 NECNN Networks with Knowledge Distillation 99
5.3 SUIMIMATY o o v o e e 100
6 Neuroevolution for CNN Applications 101
6.1 NECNN for X-ray Object Detection 101
6.2 NECNN as Transferability of Adversarial Examples Defense 106
6.2.1 Full-Dataset Experiment 108
6.2.1.1 Clean Accuracy and Adversarial Accuracy 108

6.2.1.2 Transferability of Adversarial Examples generated from
Standard Networks 110
6.2.1.3 Results on other Datasets 111
6.2.2 Reduced-Dataset Experiment 112
6.2.2.1 Clean Accuracy and Adversarial Accuracy 112
6.2.2.2 Results on Different Adversarial Attack Methods 113
6.2.2.3 Comparison with Standard Adversarial Defense Methods . . . 115
6.2.2.4 Results on other Datasets 116
6.3 SUIMIMATY o o o o o e e e e e e 117
7 Conclusion and Future Work 118
Appendix 133
Appendix A Publication 133

Vita

List of Tables

Table Page
3.1 Dangerous Objects X-ray Result Baselines 67
3.2 Single Objects Addition Experiment Results 67
3.3 Quadrant Addition Experiment Results 68
3.4 Quadrant Computation Experiment Results 69
3.5 Zoom Computation Experiment Results 70
3.6 Zoomed Quad Computation Experiment Results 70
3.7 Quad + Zoom Computation Experiment Results 71
3.8 Pre-TDA and Post-TDA Experiments Result Summary 72
5.1 Neuroevolution Hyperparameter Settings 92
5.2 Generic and Steady-state Neuroevolution Experiment Results. 92
5.3 Learning from trained Networks Baselines 96
5.4 Neuroevolution with Transfer Learning Experiment Results 98
5.5 Neuroevolution with Knowledge Distillation Experiment Results 99
6.1 List of YOLO Networks and NECNN Networks with their description 102
6.2 YOLO Networks and NECNN Networks Block Counts 102
6.3 YOLO Networks and NECNN Networks Parameter Sizes 105
6.4 YOLO Networks and NECNN Networks Experiment Results 105
6.5 YOLOv3 and NECNN network accuracies on 416px input size 106
6.6 Full-Dataset Clean and Adversarial Accuracies. 108
6.7 Transferability of Adversarial Examples from Standard Networks. 110
6.8 Full-Dataset Clean and Adversarial Accuracies on other Datasets 111
6.9 Reduced-Dataset Clean and Adversarial Accuracies 112
6.10 Fooling Rate on Different Adversarial Attack Methods 114
6.11 Fooling Rate Comparison with Standard Adversarial Defense Methods 115

6.12 Reduced-Dataset Clean and Adversarial Accuracies on other Datasets 116

List of Figures

Figure Page
2.1 Comparison of a neuron and a neural network node. 6
2.2 Artificial Neural Network Architecture Example. 7
2.3 Simple Artificial Neural Network Architecture. 9
2.4 Convolution Filter 11
2.5 Convolutional Neural Network Architecture Example. 11
2.6 Visualization of the CNN features on every layer 13
2.7 Neocognitron Architecture 14
2.8 LeNet-5 Architecture 15
2.9 AlexNet Architecture 15
2.10 VGG Architecture 16
2.11 Inception Module 17
2.12 GoogLeNet Architecture 18
2.13 Residual Block o 19
2.14 ResNet Architecture 20
2.15 DenseNet Architecture 21
2.16 Different CNN Networks Performance 21
2.17 Typical Components of CNN 22
2.18 Convolution Operation 22
2.19 Different Padding and Stride Combinations 23
2.20 Average Pooling and Max Pooling 24
2.21 ReLU Graph e 24
2.22 YOLOV2 Architecture (Darknet-19) L. 26
2.23 YOLOv2 Performance on PASCAL VOC 2007 Dataset 27
2.24 Examples of YOLOv2 Object Detection 28
2.25 YOLOV3 Architecture (Darknet-53) L. 29
2.26 YOLOv3 Performance on COCO dataset 29
2.27 Neural Style Transfer Examples 30
2.28 GAN produced Faces 31
2.29 Facial expressions and head movements transfer using GAN 32
2.30 Body movements transfer using GAN L. 33
2.31 Two-stream Architecture for Video Classification 33
2.32 Adversarial Attack Example 34
2.33 MNIST Dataset Examples 35
2.34 CIFAR-10 Dataset Examples 36
2.35 FMNIST Dataset Examples 37
2.36 KMNIST Dataset Examples 38
2.37 Raw Dangerous Objects X-ray Image Examples. 39
2.38 Synthesized Dangerous Objects X-ray Image Examples 40

xii

Figure Page
2.39 Geometric Transformation Examples 40
2.40 Color Space Transformation Examples, 41
2.41 Random FErasing Examples o 41
2.42 Image Mixing Examples 42
2.43 RICAP Image Mixing 43
2.44 Transfer Learning Benefits L L 43
2.45 Hard and Soft Labeling 44
2.46 Vanilla Knowledge Distillation Process 45
247 Genetic Operators 47
2.48 NEAT Genetic Encoding 49
2.49 NEAT Structural Mutations 50
2.50 Crossover Problem in Networks 50
2.51 NEAT Network Crossover it i 51
2.52 Genetic CNN Binary Encoding 52
2.53 Genetic CNN Binary Encoding for Standard Networks 53
2.54 Genetic CNN produced Networks, 54
2.55 CGP-CNN Genotype and Phenotype 55
2.56 CGP-CNN produced Networks 56
2.57 Tournament Selection and Aggressive Selection 57
2.58 Aggressive GP proposed Mutations L. 57
2.59 Aggressive GP produced Networks 58
3.1 Pre-Training Data Augmentations 60
3.2 Post-Training Data Augmentations 62
3.3 Post-TDA Dataset Filling Process 63
3.4 Raw and Synthesized Dangerous Objects X-ray 66
3.5 American Hand Sign Language (Alphabet) 73
3.6 Haar-like Features 74
3.7 Haar Cascades implemented on Hand Sign Language 74
3.8 Hand Sign Language Detection and Recognition System 75
3.9 Hand Sign Language Test Set Accuracies. 76
4.1 Basic Network for Neuroevolution Initialization 78
4.2 Generic Neuroevolution Process 78
4.3 Steady-state Neuroevolution Process 79
4.4 YOLOv3 Network Architecture. 84
5.1 Generic NE produced Network 94
5.2 Steady-state NE produced Network 95
5.3 Evolved ResNet-18 Network 97
6.1 NECNN-C10 Network Architecture.. 103
6.2 NECNN-XRI1 and NECNN-XR2 Network Architectures. 104

6.3 Integrated Gradients of Networks with GM 109

Figure
6.4 Simple Hand-engineered Networks Architecture.

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, the ability of neural networks to learn is being realized owing to
the developments in technology that were not present when neural network was first
conceptualized. Applications of neural networks can be found from spam detection in
emails, the projection of house prices, to recommender systems in music or video streaming
services. The one that caught the imagination of people and made them think that
neural networks are truly learning in the literal sense of the word, is the application
of convolutional neural network (CNN). CNN is a special type of neural network that
is specifically designed to handle images. The simplest application of CNN is image
classification, where it tries to put a label on the picture it has “seen”. It was developed
in the 1990s but did not live to its full potential due to the limitation in the computing
resources (LeCun et al., 1998). In 2012, when the computing power was finally ready, CNN
has been improved and proposed again (Krizhevsky et al., 2012). Immediately, it was able
to outperform all the leading image classification methods at the time. In four years since
its resurgence, it was able to surpass human-level performance in image classification (He
et al., 2016). From that point onward, the capabilities of neural networks are utilized in
many different applications. In one example, CNN is used in facial recognition to unlock
electronic devices. In another example, CNN is used in autonomous driving, which is

arguably one of the most difficult tasks to program due to the sheer number of variables.

As researchers try to push the limits of CNN capability, the architecture of CNNs
continue to grow in depth and complexity. Consequently, they require a large amount
of data and computational power to train properly. Big companies such as Google LLC
have access to massive amounts of resources to perform large-scale experiments whereas
normal institutions such as universities do not. Using a deep CNN architecture to train
and use for an application takes a significant amount of time. Furthermore, specialized
applications such as tumor detection have a limited amount of dataset images. A deep

network trained on a small dataset has several redundant weights that lead to problems

such as overfitting, which is the network perfectly identifying the whole training dataset
but fails to generalize to datasets it has not seen. Moreover, the deep architectures cannot
be deployed into devices that have limited memory (e.g., surveillance cameras). A small
network should address the problem but hand-engineering a small network that performs
on par with deep networks is not a simple task. The way neural networks learn is not
yet fully understood, which makes it difficult to develop exactly a high-performing small
architecture. Hence, hand-engineering a network requires numerous trial-and-error and

expertise.

During the development of neural networks in the 1980s, there are different meth-
ods proposed to train its weights. Omne of the methods, inspired by natural selection,
is called neuroevolution. Unlike the mathematical approaches to network training such
as backpropagation, neuroevolution uses a population of candidate solutions, where it
mutates the best or fittest solutions repeatedly for several generations to arrive at the
optimal solution. Since neuroevolution does not compute anything, it can optimize any
parameter of the neural network including the architecture. In 2002, a method called
neuroevolution of augmenting topologies (NEAT) was able to successfully optimize the
neural network weights and architecture together and subsequently achieved the state-
of-the-art performance on the double pole balancing without velocity task, which was
a very difficult benchmark (Stanley and Miikkulainen, 2002). Neuroevolution can effec-
tively optimize the architecture of neural networks. Therefore, neuroevolution can also
potentially discover small CNN architectures that have performances close to those of the

conventional deep CNN networks.

In this study, neuroevolution methods that discover optimal CNN architectures
are explored. The techniques proposed are inspired by the intuitions in the NEAT pa-
per (Stanley and Miikkulainen, 2002). Moreover, one of the advantages of using a conven-
tional deep network is transfer learning. The weights of the deep networks trained with
large-scale datasets are available online. Using the trained weights (e.g., as pretraining
weights) typically leads to training and performance boost. However, a customized net-
work architecture developed by neuroevolution cannot utilize the trained weights because
its architecture is different. Thus, various techniques to utilize the trained weights on
a neuroevolution-produced network are experimented. In addition, alternative ways to

transfer the learning of a trained network to the neuroevolution-produced network are

emphasized. Finally, the ability of neuroevolution to optimize the architecture of a CNN

for specific applications is examined.

1.2 Objectives

1. Combine CNN and Neuroevolution to optimize the weights and architecture auto-

matically.
2. Employ transfer learning intuition to reduce CNN-Neuroevolution training time.

3. Apply the created algorithm to a specific problem. (e.g. classification of microscopic

images)

1.3 Scope of Work

1. Produce a novel Convolutional Neural Network Architecture developed using trans-

fer learning intuition and neuroevolution techniques.

2. Use good practices in Deep Learning to improve the accuracy and reduce the com-

putational time.

(a) Achieve an accuracy of + 5% compared to CGP-CNN algorithm, a leading
Neuroevolution-CNN combination using the CIFAR-10 dataset.

(b) Achieve 70% training time when compared to that of the CGP-CNN algorithm.

(c) Achieve at least 85% accuracy from the specific application of the algorithm

1.4 Summary and Structure of the Thesis

The rest of the dissertation is organized as follows. The next chapter reviews the
related work and theories in artificial neural networks and convolutional neural networks.
Moreover, the datasets and data augmentations commonly used in CNN are discussed.
Methods of learning from a trained network are also explored in this chapter. Further-
more, neuroevolution and neuroevolution approaches to CNN are examined. In Chapter
3, the CNN experiments on specialized applications are described. Here, methods are
proposed to improve the training and utilization of the CNN. In Chapter 4, different neu-
roevolution approaches to CNN, methods to utilize the learning of a trained network, and

neuroevolution application methods are proposed. Chapter 5 describes the experiments

that evaluate the effectiveness of the approaches and methods proposed in the previous
chapter. Specific applications of the neuroevolution-produced CNN are demonstrated in
Chapter 6. Finally, the last chapter discusses the limitations and future directions of the

study and then concludes the dissertation.

CHAPTER I1

BACKGROUND KNOWLEDGE AND RELATED
WORK

In this chapter, the literature and theories from machine learning methods to neu-
roevolution approaches to CNN are discussed. In Section 2.1, machine learning methods
are introduced. Section 2.2 describes a brief history of the artificial neural network de-
velopment and also the theory that accompanies it. The development of a special type of
neural network called convolutional neural network in the 1990s and its resurgence in 2012
is discussed in Section 2.3. Additionally, the basic building blocks and the operation of
CNN are examined. Different applications of CNN are also reviewed in this section. Fur-
thermore, this section analyzes the vulnerability of CNN. In Section 2.4, the datasets and
data augmentations, which are fundamental components of CNN training are discussed.
The techniques that utilize a trained CNN to effectively train a different network are
reviewed in Section 2.5. Evolutionary algorithms which optimize the connection weights
and architectures of the artificial neural network are explored in Section 2.6. Finally, the

application of the evolutionary algorithms to CNN is examined in Section 2.7.
2.1 Machine Learning

Machine learning is a significant contributor to the information age. It is partic-
ularly ubiquitous in digital devices (e.g., computers, smartphones) that it has become
part of everyday life. Early machine learning applications are seen in spam detection in
emails, price predictions, etc. Afterward, it has developed to handle very complicated
tasks such as autonomous driving and natural language processing. Machine learning is
first defined as the study of giving computers the ability to learn without any explicit
programming (Samuel, 1959). In another definition, machine learning is the study of
algorithms that automatically improve with experience and data usage (Mitchell, 1997).
In the early developments of machine learning, the classical machine learning algorithms
are thoroughly explored, which include linear regression, logistic regression, k-nearest

neighbors (k-NN), decision trees, support vector machines (SVM), etc. In linear re-

Dendrite

Nucleus
Axon Terminal

Myelin Sheath

Figure 2.1: Comparison of a neuron and a neural network node.

gression, it uses a linear function to fit datasets (e.g., house prices) and predict values
given inputs (Kenney and Keeping, 1962). Logistic regression is a simple classification
algorithm that predicts the label of an input using binary (0 or 1) outputs (Nelder and
Wedderburn, 1972). The k-NN uses local approximation for classification and regression
applications (Altman, 1992). Decision tree is based on a tree structure that also solves
classification and regression problems (Quinlan, 1986). SVM uses kernels to derive a
new hyperplane for an entire training data and linearly separate them into their respec-
tive labels (Boser et al., 1992). However, there is an algorithm under machine learning
that has pushed the boundaries in the field. This immensely popular algorithm is called
neural network. Neural network is a model inspired by the neurons inside the human
brain (Rosenblatt, 1957; Minsky and Papert, 1969). Combined with the backpropagation
training method (Rumelhart et al., 1986), a huge amount of data, and powerful comput-
ing machines, neural network enables a wide variety of applications ranging from simple
face detection to being the core in autonomous driving, which is very sophisticated due

to the sheer number of parameters (Yurtsever et al., 2020).

2.2 Artificial Neural Network

Artificial neural network (ANN), fully connected neural network, or simply neural
network is a machine learning algorithm whose architecture is inspired by neuron connec-

tions in the human brain as shown in Fig. 2.1. It is a supervised learning algorithm that

Input Layer Output Layer

Hidden Layers

Figure 2.2: Artificial Neural Network Architecture Example.

needs an abundant amount of data to fully utilize its capabilities. With the development
of powerful computing machines and the availability of massive amounts of data in the
past decade, neural network has achieved tremendous success in the many complex ap-
plications (e.g., language translation) where classical machine learning algorithms have
failed. A neural network is composed of an input layer, hidden layers, and an output layer.
The input layer consists of nodes that correspond to the number of inputs. The number
of layers and nodes in the hidden layers depends on the design of the architecture. Similar
to the input layer, the number of nodes in the output layer corresponds to the output
required by the problem. In every layer, the nodes are all connected to the nodes of the
next layer as depicted in Fig. 2.2. Essentially, each node or neuron in a neural network
represents a mathematical function by computing the weighted sum of its input. A larger
weight implies more impact on the neuron output. After the weighted sum is obtained, it
is fed to a nonlinear function commonly known as the activation function (e.g., Sigmoid,
ReLU) to model complex functions while controlling the numerical representation (i.e.,
limit to computable values) (Hinton et al., 2006). The network learns by optimizing the
weights of the nodes using backpropagation with respect to the network cost (Rumelhart
et al., 1986). Owing to the sequence of complex functions of all the nodes in every layer,

the neural network can handle difficult and complicated applications.

2.2.1 Developments in ANN

Although the monumental progress in neural network is recently being realized in

the last decade, the idea itself is as old as other machine learning algorithms. In 1958,

Frank Rosenblatt published a report describing the primitive form of neural network called
perceptron (Rosenblatt, 1958). With the aim of understanding the human brain, Rosen-
blatt experimented on neural network with one or two trainable layers only. He trained
the network by adjusting the input weights of the neurons depending on their effects on
the outputs. The weights that contribute to the correct neural network classification were
increased whereas the other weights were decreased. However, due to the simplicity of
its network architecture, perceptron could not model a complex real-world application
that it was supposed to do (Minsky and Papert, 1969). Aside from the computational
limitation at the time, the simple hill-climbing algorithm used to train perceptrons could
not scale to deep networks. In 1986, Rumelhart et al. (1986) introduced a method called
backpropagation, which could train deep networks effectively. Backpropagation uses par-
tial derivatives to compute the gradients of the error function starting from the output
layer propagating backward until the second layer. The gradients from the previous layer
are reused to compute the gradients of the current layer. Using the gradients to assess
the contribution of the weights to the correct and wrong answer, the weights are nudged
accordingly to push the network toward the correct answer. The introduction of back-
propagation has allowed deep neural network to develop good internal representations of
datasets similar to the hand-engineered features that required expertise to design. How-
ever, the problem of restricted computational resources persisted and thereby limited
the usability of the deep networks at the time. In 2012, when the computing power of
low-cost processors had been enough, a deep neural network called AlexNet delivered a
breakthrough performance in a renowned image classification competition (Krizhevsky
et al., 2012). The deep neural network combined with a large dataset and computing
power through parallel processing has greatly reduced the error rate to 15.3%; whereas
the second-best method is approximately 10% apart. Since then, neural networks have
been utilized in a wide variety of applications. Different variations of neural networks are
employed to tackle different problems (e.g., convolutional neural network for images and

recurrent neural network for natural language processing).

2.2.2 Implementation

Artificial neural network computes the prediction on an input by forward propaga-
tion. To demonstrate a simple forward propagation, consider an architecture composed

of an input layer, a hidden layer with one node, and an output layer as illustrated in

Input Output

Figure 2.3: Simple Artificial Neural Network Architecture.

Fig. 2.3. The prediction is computed by multiplying the input x with the weight w and
then adding the bias b. The result is modified by an activation function o. Formally, the

prediction ¢ is calculated as
gy =o(wz+D), (2.1)

where the activation function o can be a sigmoid function or a rectified linear unit (ReLU).
In recent applications, the ReLU is favored due to its ability to decrease the training

time (Nair and Hinton, 2010). The sigmoid function and the ReLU function are defined

o(z) = T —|—1€_Z (2.2)
and
o(z) = max(0, z) (2.3)

respectively. Using gradient descent, the network is optimized by minimizing the cost

function or the loss function

1 - i ~ (17 7 ~(2
J(w,b) = ——% ¢y logg® + (1 -y) log(1 — 5", (2.4)
i=1

where m is the dataset size.

To train the simple neural network shown in Fig. 2.3 or minimize the cost function,
the backpropagation algorithm is employed. The concept behind it is to adjust the weights
and biases of the network that heavily influence the prediction of the network. The
derivatives of the loss function with respect to the weights and biases are computed to
be able to adjust the weights and biases such that the loss decreases. Before explaining

backpropagation, as a shorthand, the equation that is fed to the activation function is

represented as
z=wr+b (2.5)
and the prediction as
Jg=a=o0(z). (2.6)

Normally, the prediction is not always activated but for the simplicity of the example, it

is activated. The loss function for an input example is also rewritten as

L(a,y) = —(ylog(a)) + (1 — y) log(1 — a)). (2.7)

Through the equations (2.5), (2.6) and (2.7), the required derivatives

OL(a,y) _ 0z 0a 9L(a,y)

ow Owdz Oa (2:8)

and

9L(a,y) _ 0z0a9dL(a,y)

b Obdz a (2.9)

can be calculated using chain rule. The derivative of the loss L(a,y) with respect to a is

o 3 —
do = W@y y M-y

Oa a l—a

: (2.10)

where da is used for shorthand. The derivative of a with respect to z is computed as

da

L) 2.11)

and using this value, the derivative of the loss L(a,y) with respect to z is calculated as

I L
_9L(ay) _ 9 (a,y),@:a_y’ (2.12)

dz 0z Oa 0z

where dz is employed as shorthand. Combining dz with g—; and %, the derivative of the

loss L(a,y) with respect to w is

_ 0L(a,y)

d
v ow

=x-dz (2.13)

10

11

e *e»

Figure 2.4: A 3 x 3 filter sweeping across a 4 x 4 image resulting in a 2 X 2 output (Dumoulin
and Visin, 2016).

FC Softmax

64x64x3 ?4"64;;'64
Input Image eature Map 32 x 32 x 128

32 x 32 x 64 Feature Map 16 x 16 x 128
Feature Map Feature Map

3x3x128
Pooling Convolutional Pooling O
Block Block Block

7x7x64

Convolutional
Block

B Outputs
B8 CNN Blocks

Figure 2.5: Convolutional Neural Network Architecture Example.

and the derivative of the loss L(a,y) with respect to b is

0L(a,y)

AT

=dz, (2.14)

where dw and db are their shorthands respectively. The weight and bias are updated by
subtracting the dw and db to the their current values. The respective computations are

defined as

w=w — adw (2.15)
and

b=1b— adb, (2.16)

where « is the learning rate. The backpropagation algorithm runs for many epochs until

the weight and bias of the network converge.

2.3 Convolutional Neural Network

The convolutional neural network (CNN) is a type of neural network that specializes
in image applications. Image applications are problematic to ANNs because ANNs take
an image as per pixel input. For example, a small 200 x 200 RGB image is equivalent to
200 x 200 x 3 = 120,000 input nodes. When the input nodes are multiplied with the first
hidden layer, which may consists of a relatively low number of 1,000 nodes, the number of
parameters suddenly becomes 120,000,000 (without the bias term). The computational
cost of the ANN in this case is considerably expensive. As a solution, CNN uses filters
or kernels as its learnable parameters instead of node weights. In an image, a pixel
typically has high correlations with its neighboring pixels and this can be exploited by
sharing the parameters of the pixels through sweeping a filter across the image as shown
in Fig. 2.4 (LeCun et al., 1998). A layer in CNN is composed of a group of filters called
the convolutional block. By sharing the features among image pixels using convolutional
blocks instead of one-to-one connections, the computational cost drops dramatically. To
illustrate the difference in parameter count, a common first convolutional block may have a
filter size of 7 x 7 with 64 channels (i.e., the number of filters). The number of parameters
in the first layer is 7 x 7 x 3 (RGB channels) x 64, which is only 9,408 (excluding the
bias term) compared to 120,000,000. Aside from the convolutional block, another basic
block used in CNN is called the pooling block or subsampling. The pooling blocks provide
translational invariance, which makes the network robust to small spatial differences in the
image by decreasing the image resolution. Effectively, the network can see larger portions
of the image due to the larger receptive field of the network (through decreased image
resolution). Moreover, this allows the network to develop more complex representations of
the image as the depth of the network increases. A simple CNN architecture is exhibited
in Fig. 2.5. In this figure, the CNN architecture consists of two sets of convolutional
block-pooling block combinations and a fully connected (FC) layer with the softmax at
the end.

Visualizing the results on each layer shows how the CNN architecture learns as
depicted in Fig. 2.6. In the first layer, the network learns the basic structure of the
images such as horizontal edges and vertical edges. The filters in this layer function as
edge detectors (e.g., Sobel X, Sobel Y). On the succeeding layer, the network starts to

learn complex structures such as circular and rectangular shapes, which may have been

12

13

Figure 2.6:

=
Layer 2 ‘ j

Visualization of the CNN features on every layer (Zeiler and Fergus, 2014).

U
US1 Ucy ssUC3
/ Uss
3 gl
Yo 4 AV IR i
1 1 ~N
A i
' i AN Ty
! 1 : - 1 :
i 1 1 ' REL
' ol o
/ | shared connections
. 1 = spatial filtering
input 1 / 1 1 T = convolution
pattern |) T - J
feature . -
extraction pooling recognition
(S-cells) (C-cells) (classification)

Figure 2.7: Neocognitron Architecture (Fukushima, 1980).

extracted from wheels, balls, etc. Toward the last layers, it can now detect more compli-
cated features such as dog faces and flowers. Thus, the CNN has a structured operation,
in which it learns from the basic structures of an image to complicated structures (Zeiler

and Fergus, 2014).
2.3.1 Developments in CNN

The roots of CNN can be traced back to the neocognitron. In 1980, Kunihiko
Fukushima proposed the neocognitron, which is inspired by the visual nervous system
found in vertebrates. The neocognitron structure, as seen in Fig. 2.7, is composed of al-
ternating simple cells (S-cells or lower order hypercomplex cells) and complex cells (C-cells
or higher order hypercomplex cells), which mimic the processing that occurs in the biolog-
ical simple cells and complex cells. The purpose of the S-cells, similar to a convolutional
block, is to perform feature extraction, whereas the C-cells, similar to a pooling block,
provide tolerance to position changes. Together, the local features extracted by the S-cells
(e.g., cat leg) are integrated by the C-cells to form global features (e.g., cat) (Fukushima,
1980).

The original implementation of the CNN, where its name is coined, is the LeNet

developed by Yann Lecun and his team between 1989 to 1998. It is experimented with

14

INPUT C1: feature maps C3: feature maps
i] s2:featuremaps 16@10X10 oy ¢ c5:layer g layer OUTPUT
16@5x5 120 84 10

/ GAUSSIAN

FULL CONNECTIONS
CONVOLUTIONS SUBSAMPLING ~ CONVOLUTIONS SUBSAMPLING CONNECTION

Figure 2.8: LeNet-5 Architecture (LeCun et al., 1998).

192 128 204

U T s dense

192 128 Max
Stride Max 128 Max pooling
of 4 pooling pooling

3 48

204 2048

Figure 2.9: AlexNet Architecture (Krizhevsky et al., 2012).

the handwritten single-digit dataset commonly known as the MNIST dataset. In this
work, the convolutional blocks and pooling blocks (subsampling) are proposed as the
basic building blocks of CNN. The LeNet architecture, as shown in Fig. 2.8, consists of
Conv-Pool-Conv-Pool-FC-FC blocks. Each convolutional block has a filter size of 5 x 5,
and the pooling type used then is average pooling. The total number of parameters is

60,000 (LeCun et al., 1998).

The potential of CNN is publicly realized from the work of Alex Krizhevsky on his
AlexNet in 2012. It marks the beginning of CNN superiority over the traditional image
processing techniques in various image-related applications. AlexNet is a reinforced CNN
architecture with more layers as illustrated in Fig. 2.9, and has a massive 60 million pa-
rameters. In that year, it is used as an entry to the ImageNet Competition, where it
shatters the object recognition records by logging in 15.3% error rate, which is lower than
that of the second best by almost 11% (Krizhevsky et al., 2012). Since then, enhanced
CNN variations have dominated the competition in the ensuing years and subsequently
reduced the error rate further to 3.57%, at which the CNN exceeds human-level perfor-
mance (He et al., 2016).

Aside from the huge amount of training parameters of the AlexNet architecture,

15

224 x224x3 224 x224x64

112 x 112 x 128

56|x 56 x 256
28 x 28 x 512

7x7x512

14 x 14 x 512 1x1x4096 1x1x1000

=) convolution+ReLU
) max pooling
fully nected+RelLU
softmax

Figure 2.10: VGG Architecture (Simonyan and Zisserman, 2014b).

which is mainly credited for its remarkable performance, there are also several good
practices that Krizhevsky et al. (2012) introduced to improve the performance of AlexNet.
Their key contributions are the following: First, they employ the ReLU (rectified linear
unit) (Nair and Hinton, 2010) as the activation function instead of tanh, which is the
standard at the time. Using ReLU, the AlexNet can reach 25% error rate six times faster
than when it uses tanh. Second, they implement the training process on multiple graphics
processing units (GPU) when the memory is only 3GB, since the training set contains 1.2
million images. As a result, the top-1 and top-5 error rates are reduced by 1.7% and 1.2%
respectively compared to using only one GPU. Third, they use overlapping pooling, which
has a stride smaller than the filter size, instead of the regular pooling, which has a stride
equal to or larger than the filter size. Overlapping pooling reduces the top-1 and top-5
error rates by 0.4% and 0.3% respectively. Fourth, to solve the problem of overfitting,
they introduce data augmentation and dropout. Data augmentation extends the training
set by mirroring the images, translating the images, and altering the image intensities
using PCA (principal component analysis). It reduces the top-1 error rate by more than
1%. Dropout, on the other hand, turns off the neurons in the FC layers randomly with
a probability of 0.5. It helps eliminate the reliance of the network on strong neurons and
regulates the contribution of all the neurons, thereby reducing overfitting and training
time. Lastly, other techniques such as momentum and decaying learning rate are likewise

used to make the network converge faster.

After the success of AlexNet, several works on CNN are developed to obtain a better

performance than the AlexNet. In 2014, one of the main networks developed is called

Filter
concatenation

ﬂ\

3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions) })

ﬂnions 1x1 convolutions 3x3 max pooling
P —

Previous layer

Figure 2.11: Inception Module (Szegedy et al., 2015).

VGG network (VGG-Net). The objective of VGG-Net is to significantly increase the
depth of the network and reduce the training time. VGG-Net has 138 million parameters,
which is twice the size of AlexNet. While still following the best practices established in
the AlexNet implementation, the key difference in VGG-Net is the use of small 3 x 3 filters
throughout the architecture instead of the varying filter sizes (11 x 11,5 x 5, and 3 x 3).
Whilst the filters are small, the number of channels is increased considerably to replicate
the receptive field of AlexNet. The VGG-Net architecture is shown in Fig. 2.10. The
simplicity and uniformity of VGG-Net are its novel contribution. In terms of performance,
it yields a top-5 error rate of 7.32% in the ImageNet competition, earning them the first

runner-up (Simonyan and Zisserman, 2014b).

Another main CNN developed in 2014 is the GoogLeNet network. It is even deeper
than the VGG-Net but it employs a module called inception to require far fewer param-
eters (4 million). The inception module, as shown in Fig. 2.11, combines convolutional
blocks with different filter sizes to avoid deciding on a specific size. It simply allows the
training process to decide which parameters are to be utilized. The outputs from the
different convolutional blocks are combined by concatenating them together, thereby in-
creasing the channel size. Since after the concatenation the output size becomes large,
it is regulated by using a 1 x 1 convolution (Lin et al., 2013), which is the critical op-
eration for keeping the number of parameters low. The 1 x 1 convolution manages the
dimensionality by reducing the channel size and consequently reduces the computational
cost on the 3 x 3 and 5 x 5 convolutions. Furthermore, it also attenuates redundant
filters. The GooglLeNet architecture is composed of stacked inception modules as shown
in Fig. 2.12. It also uses auxiliary classifiers during training, as seen in the additional

softmax layers, to ensure that the layers in the middle are learning properly. In terms of

17

18

A

SoftmaxActivation

DepthConcat @

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
5x5+1(S)

Conv

1x1+1(S) SoftmaxActivation

AveragePool
7X7+1(V)

Conv Conv MaxPool

1x1+1(S) 1x1+1(S) 3x3+1(S) i
DepthConcat
DepthConcat FC
Conv Conv Conv Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)
Conv Conv Conv Conv Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S) 1x1+1(S)
Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)
Conv Conv MaxPool AveragePool
1x1+1(S) 1x1+1(S) 3x3+1(S) 5x5+3(V)

DepthConcat

DepthConcat

Conv
1x1+1(S)

Conv
5x5+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

ctlivation

Conv Conv MaxPool

1x1+1(S) 1x1+1(S) 3x3+1(S)
MaxPool
3x3+2(S) MaxPool
3x3+2(S)
DepthConcat
DepthConcat
Conv Conv Conv Cony Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S) 1x141(S) Conv Conv Conv Conv

1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)

MaxPool
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

AveragePool
5x5+3(V)

Conv Conv MaxPool

1x1+1(5) [l 1x1+1(5) [l 3x3+1(5)
DepthConcat DepthConcat
Conv Conv Conv Conv
Conv Conv Conv Conv
LAl | | seel@) | | SEHUE) | | D) 1x1+1(5) [l 3x3+1(5) [l 5x5+1(5) [l 1x1+1(5)

MaxPool
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

Conv
1Ix1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

LocalRespNorm

A

Conv
3x3+1(S)

Conv
Ix1+1(V)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
7x7+2(S)

Figure 2.12: GoogLeNet Architecture made of stacked Inception Modules (Szegedy et al., 2015).

identity

Figure 2.13: Residual Block (He et al., 2016).

performance, it achieved a top-5 error rate of 6.67%), which beats the VGG-Net, and wins

the ImageNet competition in that year.

The network that paves way for a very deep CNN is the residual neural network
(ResNet). Similar to GoogLeNet, which breaks the convention of simply stacking con-
volutional and pooling blocks, ResNet also presents a key innovation in the architecture
through the introduction of skip connections. The obstruction that prevents the network
from becoming very deep is the so-called vanishing gradient. As the gradients are back-
propagated to the earlier layers of a deep network, the gradients become smaller and
smaller due to the repeated gradient approximation. Consequently, the vanishing gradi-
ent saturates or even degrades the performance of the network. As a solution, ResNet
uses skip connections or identity shortcuts as shown in Fig. 2.13 to fast track the input
x over the two weight layers F'(z). The main idea is that if the two weight layers in
the middle cannot learn any good features, they can at least become zero, and thus, the
output becomes simply x. Applying this idea to a network implies that for every addi-
tional residual block to the network, the output of the network can always revert to the
output when there is no additional residual block if the additional residual block cannot
add anything of value. The ResNet architecture is shown in Fig. 2.14. ResNet is an
important innovation in CNN because it allows networks to become very deep (e.g., 150
blocks) through skip connections. There are no apparent downsides to having very deep
networks aside from the high computational cost. As for the performance of ResNet, it
topped the 2015 ImageNet competition with the top-5 error rate of 3.57%, which surpasses

the human-level performance.

Building on the success of ResNet, the next CNN architecture development called
DenseNet utilizes skip connections even further. DenseNet uses a dense block, as depicted

in Fig. 2.15, which is composed of convolutional blocks. In a dense block, every layer is

19

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19

image

3x3 conv, 64

pool, /2
pool, /2

pool, /2

pool, /2

3x3 convy, 512
3x3 conv, 512

3x3 conv, 512

3x3 convy, 512

pool, /2

fc 4096

fc 4096
fc 1000

34-layer plain

image

34-layer residual

image

7x7 conv, 64, /2

7x7 conv, 64, /2 |

\
pool, /2 pool, /2
| 3x3 conv, 64 | | 3x3 conv, 64 |
v A
| 3x3 conv, 64 | | 3x3 conv, 64
| 3x3conv,64 | | 3x3cony, 64
v v
| 3x3 conv, 64 | | 3x3 conv, 64
| 3x3 conv, 64 | | 3x3 conv, 64
2 v
I 3x3 conv, 64 | | 3x3 conv, 64

3x3 conv, 128, /2

v
3x3 convy, 128

v

3x3 conv, 128

3x3 convy, 128

v

3x3 conv, 128

3x3 convy, 128

<t

3x3 conv, 128

3x3 conv, 128

<~

3x3 conv, 128

3x3 convy, 128

oy

3x3 cony, 128

3x3 conv, 128

DS

v

3x3 conv, 128

3x3 conv, 128

<

3x3 conv, 256, /2

2
I 3x3 conv, 256] [3x3 conv, 256
A 2
i 3x3 conv, 256 l [3x3 conv, 256
v

3x3 conv, 256

3x3 conv, 256

€

3x3 convy, 256

3x3 conv, 256

4

[3x3 conv, 256] [3x3 conv, 256
2

| 3x3conv,256 | | 3x3conv, 256
v

3x3 conv, 256

3x3 conv, 256

-«

3x3 conv, 256

3x3 conv, 256

€

3x3 convy, 256

3x3 conv, 256

<«

3x3 conv, 256

3x3 conv, 256

>

3x3 conv, 256

3x3 convy, 256

-«

3x3 conv, 512, /2

<«

3x3 convy, 512

DS

3x3 conv, 512

3x3 conv, 512

€

3x3 conv, 512

3x3 conv, 512

«

3x3 conv, 512

3x3 conv, 512

<«

3x3 conv, 512

3x3 conv, 512

avg pool

avg pool

fc 1000

fc 1000 |

Figure 2.14: ResNet Architecture (He et al., 2016).

21

Input
Prediction

9 Dense Block 1 9 Dense Block 2 o] Dense Block 3 -
H H H g ;: ‘horse”

Figure 2.15: DenseNet Architecture (Huang et al., 2017).

Inception-v4

80 80 -
— Inception-v3 [ResNet-152

ResNet-50 VGG-16 VGG-19

~
G

ResNet-101
’ ResNet-34
ResNet-18
o GooglLeNet
ENet

~
k=)

Top-1 accuracy [%]
Top-1 accuracy [%]
o
&

© BN-NIN
60 5M 35M - 65M - 95M - 125M - 155M
BN-AlexNet

55 AlexNet

L . 50
S S et (L AR A0 A0 ab <O gl (D b 0 5 10 15 20 25 30 35 40

Pke*i\ e,,y\%“» ?'t‘)\’et \\\B‘EOOQGG ;\e‘;\e‘;)e"k 2‘.\3\0(\) Operations [G-Ops]
Vv o° € €% €% Q&"“\@%\&Q

Figure 2.16: Different CNN networks and their performances on ImageNet dataset. The size of
the circle on the right graph indicates network parameters size (Canziani et al., 2016).

connected to all its preceding layers and obtains its input through the concatenation of the
ouputs of preceding layers. The concatenated input provides each layer with the collective
knowledge of the preceding layers. The connections on every layer allow the network to
have fewer channels, and thereby, lower the computational cost and total parameters
size. About the performance, DenseNet has outperformed the ResNet in the CIFAR-10
dataset with 3.6% to 6.41% respectively while having less than half of the parameters of
ResNet (Huang et al., 2017).

The networks discussed are tested in the same environment to objectively com-
pare their performances (Canziani et al., 2016). The summary of the discussed networks

performances is illustrated in Fig. 2.16.
2.3.2 Implementation

Despite the various changes and innovations in the CNN architecture, the basic
components of CNN remain the same. These components are a convolutional block and a
pooling block. In between the connection of these blocks, an activation function operation
(usually ReLU) and normalization are performed as shown in Fig. 2.17. A simple CNN
architecture can have two sets of convolutional-pooling block combinations, an FC layer,

and a softmax, wherein the output of the network is turned into a probability of classes

22

Convolutions ificati Contrast Pooling / Subsamplin
Rectification Normalisation g/ pling

= Bk el TRl 1L

Input Image

Figure 2.17: Typical Components of CNN (Jarrett et al., 2009)

Figure 2.18: Convolution operation. The numbers on the rightmost bottom corner of the 3 x 3
dark blue box are the filter values. The blue box and the green box represent the input and
output respectively. The output is obtained by multiplying the overlapping filter values and
image pixel values and then summing the products (Dumoulin and Visin, 2016).

or predictions as shown in Fig. 2.5.

2.3.2.1 Convolutional Block

The correlation of image pixels and their neighboring pixels is exploited to reduce
the parameters of neural network by using convolution filters or filters instead of the one-
to-one connections as the learnable parameters or weights. To perform the convolution
operation, the filter is first placed on the top leftmost corner of an image as shown in
Fig. 2.18 and multiplying the overlapping image pixels values and filter values. Then, the
products are summed to obtain the output. The process continues by sliding the filter
one pixel at a time until the whole image pixels are passed. Typically, a convolutional
block contains a lot of filters to extract different features of the input. The number of
filters in a convolutional block is called channels. The filter dimension depends on the

channels of the input. For example, an input image usually has 3 channels. Therefore, the

- ®e

a) Input: 4x4, Filter: 3x3, Padding: valid, Stride: 1, Output: 2x2

b) Input: 5x5, Filter: 3x3, Padding: same, Stride: 1, Output: 5x5

L 2

c) Input: 5x5, Filter: 3x3, Padding: valid, Stride: 2, Output: 2x2

Figure 2.19: Different padding and stride combinations (Dumoulin and Visin, 2016).

filter dimension is f x f x 3, where f is the filter size of choice. As observed in Fig. 2.18,
the size of the output decreases after performing the convolution. If the network is
deep, this becomes a problem because the output continues to shrink until it cannot be
convolved. As a solution, padding is used to extend the image and avoid a decrease in
size after a convolution operation. This type of padding is called same padding. If there
is no padding used, it is called wvalid. In very deep CNN architectures, same padding is
always used with convolutions. Another important detail in the convolution operation is
the stride. As mentioned earlier, the filter is slid by a pixel by default but this can be
adjusted according to preference. For example, the filter can slide every 2 pixels (stride
of 2), which effectively reduces the output size in half. Different paddings and strided
convolution are shown in Fig. 2.19. In summary, the basic convolutional block settings

that need to be configured are the filter size, number of channels, padding, and stride.

23

24

Average Pooling

Figure 2.20: Average Pooling and Max Pooling.

|

-40 -30 - -10 0 10 4 30 a0

Figure 2.21: ReLU Graph.

2.3.2.2 Pooling Block

The pooling or subsampling increases the receptive field of the CNN by reducing the
dimensions of the input. It makes the network robust to small differences in the positions.
There are two types of common pooling operation namely: the average pooling and max
pooling. Similar to a convolutional block, pooling uses a filter that slides throughout the
image pixels. By convention, the pooling filter size is 2 x 2 that slides with the stride of
2. The stride of 2 reduces the output size to half of the input size. Instead of multiplying
the filter parameters with the overlapped area of the image, pooling simply takes the
average of the image values in the overlapped area for the average pooling or takes the
largest number for the max pooling as shown in Fig. 2.20. Since the filter does not need
to learn anything, the pooling block does not have learnable parameters. In modern CNN
implementations, max pooling is generally favored over the average pooling because with
max pooling, the feature that has the highest contribution is extracted (Krizhevsky et al.,

2012).

2.3.2.3 Rectified Linear Unit

After the convolution operation is performed, the output is passed through an
activation function. The conventional activation function used in CNN is the rectified
linear unit (ReLU) (Nair and Hinton, 2010). The ReLU graph is illustrated in Fig. 2.21
and the operation is define as max(0, x), where x is the input. The ReLU function outputs
the same value as the input as long as the input value is positive. However, it replaces
negative input values with 0. The advantages of ReLU are that it reduces vanishing
gradients, increases sparsity in representations (due to the removal of negative values),
which helps in dense representations, and reduces computational time (Krizhevsky et al.,

2012).

2.3.2.4 Batch Normalization

To speed up the training process, the training set is normalized according to their
variances to widen the contours of the learning problem and thereby, ease the optimization
for algorithms such as gradient descent. The hidden layers are also normalized to improve
the training but the shuffling of datasets every training epoch changes the distribution
of the hidden neurons, which causes the internal covariate shift. Consider a network
that is trained with binary classification to detect the presence of a dog. For instance,
two consecutive batches have different representations of a dog. The first batch contains
the faces of a dog and the second batch contains the full body of a dog. If the two
batches are fed to the network, the feature space of the hidden layer for every batch will
have a considerable shift in the distribution called covariate shift. This slows down the
training because the hidden layers need to learn different distributions every time until it
converges. To avoid the large changes in distribution, the output in the hidden layers are
normalized using batch normalization (loffe and Szegedy, 2015). Batch normalization is
normally applied to the output of the hidden layers before the activation function. It is
implemented using the Algorithm 1. In the algorithm, the learnable parameters v and 8
are used to change the mean of the distribution and learn the appropriate values that fit
the hidden layer distribution. As a result, batch normalization lowers the covariate shift
of the hidden layer distribution by fixing the mean and variance. Despite the changes
in the distribution as the input changes, the mean and variance stay the same, which

stabilizes the output values. It also helps lessen the effect of the changes in the previous

25

26

Algorithm 1 Batch Normalizing Transform applied to the output x over a mini-batch. (Toffe
and Szegedy, 2015)

Input: Values of z over a mini-batch: B = {z1. . };
Parameters to be learned: ~, 8
Output: {y; = BN, g(;)}
1 U % >, x; > mini-batch mean
2 0f < = > (x; — pp)® > mini-batch variance

3. T; + S=EB » pormalize
o%+e

4 y; < Y2 + = BN, 5(z;) > scale and shift

Type Filters Size/Stride Output
Convolutional 32 3x3 224 x 224
Maxpool 2x2/2 112 x 112
Convolutional 64 3x3 112 x 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3 X3 56 x 56
Convolutional 64 1x1 56 x 56
Convolutional 128 3 X3 56 X 56
Maxpool 2x2/2 28 x 28
Convolutional 256) 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x3 28 x 28
Maxpool 2x2/2 14 x 14
Convolutional 512 3 X3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional =22 3x3 14 x 14
Maxpool 2 x2/2 TxT
Convolutional 1024 3x3 TXT7
Convolutional 512 1x1 TxT7
Convolutional 1024 3 x3 TxXT
Convolutional 512 1x1 TXT7
Convolutional 1024 3 X3 7TXT
Convolutional 1000 1x1 TXT
Avgpool Global 1000
Softmax

Figure 2.22: YOLOv2 Architecture (Darknet-19) (Redmon and Farhadi, 2017).

hidden layers, and thus, allows faster and stable training.
2.3.3 Applications

2.3.3.1 YOLO Object Detection

The architectures previously discussed are all applied to image classification. How-
ever, there are also other significant works in the development of CNN for other appli-
cations such as object detection. Object detection locates objects in an image (e.g., cars,
bikes) and places bounding boxes and labels on them. One of the important CNNs de-
veloped for object detection is called YOLO (you only look once) (Redmon and Farhadi,
2017). YOLO combines the bounding box regression and classification in the same net-

work, which makes it fast and suitable for real-time processing. The YOLOv2, which is

'
5 80 J— "
] Faster R-CNN 550512: 48%45 ZO
(2] Resnet ' l/
G ' 416416
' SSD300

8 Faster R-CNN : [e) 352x352
o .

Fast R-CNN '
% e : 288x288
=} ! o
E R-CNN :
> o :
< . YOLO
- : o
c |]
GJ |]
= 60+ '
° 30 50 100

Frames Per Second

Figure 2.23: YOLOv2 Performance on PASCAL VOC 2007 Dataset (Redmon and Farhadi,
2017).

a notable version of the network, has achieved 76.8% mAP (mean average precision) on
PASCAL VOC 2007 dataset at 67 FPS (frames per second). When the FPS is reduced
to 40, its mAP increases to 78.6%, which is better than its contemporary networks. The
YOLOv2 has an architecture called Darknet-19 for its feature extraction. Darknet-19
has 19 convolutional blocks with 5 max pooling scattered in the middle as illustrated in
Fig. 2.22. The improvements of YOLOv2 over its predecessor are the following: First, it
uses convolutions with anchor boxes that improve the bounding box predictions. Second,
it employs 224 x 224 images for training the feature extraction network on image clas-
sification, and then, 448 x 448 images for fine-tuning the network on object detection,
all of which makes the training easier and raises the mAP by 4%. Third, it uses batch
normalization on all convolutional blocks. Fourth, it utilizes dimension clusters, which
take advantage of the bounding box patterns among different problem domains to create
better bounding box sizes that fit the detected object. With these improvements, the
YOLOvV2 outperforms other object detection networks as reported in Fig. 2.23. The ex-
ample image object detections are shown in Fig. 2.24. However, YOLOv2 has a problem
detecting small objects that are close to each other. The YOLOv3 addresses the limi-
tations of YOLOv2 by applying the developments in CNN for image classification. The
most distinct change in YOLOvV3 is the use of skip connections. Its feature extraction
network, Darknet-53, has 53 convolutional blocks that employ skip connections. It is
considerably deeper than Darknet-19. Consequently, it solves the problem with small
object detection and once more improves the performance. The YOLOv3 architecture is

shown in Fig. 2.25 and its performance comparison to other object detection networks is

27

28

Figure 2.24: Examples of YOLOv2 Object Detection (Redmon and Farhadi, 2017).

shown in Fig. 2.26.

2.3.3.2 Novel Applications of CNN

In addition to object detection, CNN can also be applied to novel applications. One
of the novel applications of CNN is to create a painting. The ability of the weights of
CNN to characterize an image can be exploited to extract the key attributes of an image.
Subsequently, the weights can be employed to reimagine an image into the so-called “style”
of a previously seen image. This technique is called neural style transfer and an example

is exhibited in Fig. 2.27 (Gatys et al., 2016). Moreover, the CNN can be configured

29

Type Filters Size Output
Convolutional 32 3x3 256 x 256
105 Convolutional 64 3x3/2 128x128
931 block Convolutional 32 1 x1
1| Convolutional 64 3x3
Residual 128 x 128
Convolutional 64 1 x 1

81st block
128 3x3/2 64x64
2x| Convolutional 128 3x 3

A | - ¥
| block C i
s
'y ° Qe (X (X o q i
Y | Convolutional 256 3x3/2 32 x32
Convolutional 128 1 x 1
615t 8x| Convolutional 256 3 x3
l Residual 32x32

Skip
Connection |

q Residual 64x64

block Upsameling Upsamplin [i 512 3x3/2 16x16
9 Convolutional 256 1 x 1
8x| Convolutional 512 3x3
Residual 16 x 16
C 1024 3x3/2 _8x8
Convolutional 512 1 x 1
. Convolutional Block 4x| Convolutional 1024 3 x 3
. N Residual 8x8
Evaluation ‘Avgpool Global
Connected 1000

Softmax

Figure 2.25: YOLOv3 Architecture (Darknet-53) (Redmon and Farhadi, 2018).

38+ W voLovs
x RetinaNet-50
RetinaNet-101
36 @ Method mAP__time
{B] SSD321 280 61
| [C] DSSD321 280 85
& 34 [D] R-FCN 29.9 85
(@) [E] SSD513 31.2 125
Ot [F] DSSD513 332 156
[G] FPN FRCN 362 172
RetinaNet-50-500 32.5 73
30 RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198
YOLOv3-320 28.2 22
o8+ YOLOv3-416 31.0 29
YOLOv3-608 33.0 51
| |) i
50 100 150 200 250

inference time (ms)

Figure 2.26: YOLOv3 Performance on COCO dataset (Redmon and Farhadi, 2018).

to have two networks competing to outperform each other. This is known as generative
adversarial networks (GANSs), in which one network tries to classify images correctly called
the discriminator network, and another network tries to fool the discriminator network
by creating fake image examples called the generator network (Goodfellow et al., 2020).
In one of its study using celebrity faces as the dataset, the generator network becomes
exceptionally well at fooling the discriminator network that it can be tweaked to produce
faces that do not exist but looks genuine (Karras et al., 2017). The realistic faces are
shown in Fig. 2.28. Another study also used GANs to transfer the facial movements from
a source video to a target video, which is exhibited in Fig 2.29 (Kim et al., 2018). Aside
from the facial movements, body postures can also be transferred between the source
video and the target video. In a different study, the dance moves from a source video
are mimicked by a target video (Chan et al., 2019). The sample images can be seen in
Fig. 2.30. Finally, in addition to image recognition, CNN can also be applied in action
recognition (i.e., video recognition). One of the implementations of action recognition is

by employing two CNNs that extract different information from a video. The evaluation

30

Figure 2.27: Neural Style Transfer Examples (Gatys et al., 2016).

of each network is combined to produce a prediction. In the work of Simonyan and
Zisserman (2014a), they used the first network to classify still frames (spatial recognition
stream) and the second network to classify the motion between the frames using optical

flow (temporal recognition stream). The network architecture is shown in Fig. 2.31.

2.3.4 Adversarial Attacks

Despite the immense success of the CNN, it has been discovered that it has a
vital weak point in its learning. A subtly and deliberately perturbed image, which looks
normal to the human eyes, can cause the network to catastrophically mislabel it with
high confidence. The image depicted in Fig. 2.32 shows that when the panda image on
the left is added with the calculated image perturbation in the middle, the resultant
image or adversarial example can fool the network with high probability. Although the

31

Figure 2.28: GAN produced faces (top) and closest real face images (bottom) (Karras et al.,
2017).

image in the middle looks similar to a noise image, it is actually composed of carefully
calculated values designed to maximize the error of the network. Therefore, it causes
the network to mislabel the adversarial example with high confidence (Goodfellow et al.,
2015). The susceptibility of CNN to adversarial examples indicates that despite the CNN
exceeding human-level performance in image classification, it is not using the same method

as humans to evaluate images.

One of the methods to produce adversarial examples (i.e., images that fool the net-
work) is using the fast gradient sign method (FGSM). In FGSM, the gradients of the loss
with respect to the input are used to slightly perturb the image to the direction of the
gradients, which effectively increases the error (Goodfellow et al., 2015). It is a simple
adversarial attack method that can generate adversarial examples quickly. Consequently,
there are techniques developed that can resist this kind of attack (e.g., image filtering
techniques) (Das et al., 2017). However, this adversarial attack can be reinforced by
repeating the perturbation on the input image, which is called projected gradient de-
scent (PGD) (Madry et al., 2018). Thus, PGD creates strong adversarial examples where
many adversarial defenses struggle to fully defend the network. A peculiar and critical
characteristic of the adversarial examples is that these can be used to fool other CNNs
without any additional perturbations, also known as transferability. Transferability of
adversarial examples poses several potential concerns to systems using CNN (e.g., pedes-

trian detection) because direct access to these systems is not necessary to compromise

32

PN PN PN PN

Figure 2.29: Facial expressions and head movements transfer (Kim et al., 2018).

them. Several studies are done to understand and try to prevent transferability (Szegedy
et al., 2013; Biggio et al., 2013; Goodfellow et al., 2015; Papernot et al., 2016; Liu et al.,
2016; Papernot et al., 2017; Moosavi-Dezfooli et al., 2017; Tramer et al., 2017; Dong et al.,
2018; Demontis et al., 2019). The characteristics of networks with high transferability
between them are the following: First, networks tend to converge into similar functions
when trained with the same dataset despite their differences in the architecture, parame-
ters, hyperparameters settings, etc (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2017;
Tramer et al., 2017). Second, complex networks are more susceptible to transferability
than simple networks and the skip connections can be employed to increase transferabil-
ity (Demontis et al., 2019; Wu et al., 2019). Third, the networks with high transferability
of adversarial examples exhibit aligned gradients (Liu et al., 2016; Demontis et al., 2019).
Lastly, the extent of transferability is correlated to the similarity of network architectures.
Networks with high architectural similarity tend to have high transferability (Papernot
et al., 2016; Tramer et al., 2018).

There are many proposed solutions to address the problem of adversarial attacks.
From the input perspective, the input images are filtered to remove the effects of the
perturbation caused by the adversarial attacks. This line of techniques includes, JPEG
compression (Das et al., 2017), bit squeezing (Xu et al., 2017), bilateral filtering (Xie et al.,

2019), etc. Another proposed solution is to include adversarial examples in the training

'y

b

ﬁ

Source Subject Target Subject 1 Target Subject 2 Source Subject Target Subject 1 Target Subject 2

Figure 2.30: Body movements transfer (Chan et al., 2019).

Sbatiél stream ConvNet

conv1 || conv2 || conv3 || conv4 ([conv5 | fullé full7 oftmax
7x7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 | | pool 2x2

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 [conv5 | fullé fullz oftmax
7X7x96 |[5x5x256 || 3x3x512 [|3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

- norm. || pool 2x2 pool 2x2
multi-frame pool 2x2

tical flow

P

Figure 2.31: Two-stream Architecture for Video Classification (Simonyan and Zisserman, 2014a).

set of the network, known as adversarial training (Goodfellow et al., 2015). The notable
adversarial training methods are free adversarial training (Shafahi et al., 2019) and fast
adversarial training (Wong et al., 2019). Adversarial training works well in making the
network robust to adversarial examples but the additional training cost (i.e., adversarial
examples generation and additional training images) is the main drawback. Furthermore,
there are various proposed solutions to tackle specifically the transferability of adversarial
examples. Since the aligned gradients of networks indicate high transferability, some
studies suggest reversing the direction of the gradients (Kariyappa and Qureshi, 2019;
Jalwana et al., 2020). Moreover, evolving an architecture that is robust to transferability
is also recently introduced by a handful of studies. Devaguptapu et al. (2020) proposed
to use differentiable architecture search (DARTS) (Liu et al., 2018a) to find architectures
that are robust to transferability. Kotyan and Vargas (2020) used neuroevolution to

search for robust networks. To make the search effective and less exhaustive, several

+.007 x =
v (Ve (0.2.9) ign(v,.0(0,2,))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 2.32: Adversarial Attack Example. A network that classifies the panda image as a panda
can be fooled by adding the calculated image perturbation in the middle to the panda image.
The output image still resembles a panda to the human eyes but causes the network to mislabel
it as a gibbon with high confidence (Goodfellow et al., 2015).

works incorporated adversarial training in the architecture search. Liu and Jin (2021)
utilized DARTS with adversarial training, in which they found more robust networks
than without adversarial training. Other studies employed oneshot neural architecture
search (Cai et al., 2019) with adversarial training to find a family of robust networks (Guo

et al., 2020; Xie et al., 2021).

2.4 Datasets and Data Augmentations

Datasets are important components of the deep neural network. As deep neural
network continues to grow in depth, the size of the datasets also increases to effectively
train the network parameters or weights. With sufficient dataset images, a deep neural
network can highly perform tasks such as image recognition, object detection. There
are several conventional datasets used to benchmark the performance of a network (e.g.,
CIFAR-10, ImageNet). These kinds of datasets have large sizes because they can be easily
collected. For example, ImageNet is a compilation of normal images that can be taken
from everyday life situations (e.g., a walking dog) (Russakovsky et al., 2015). Conversely,
there are datasets that are obtained from specialized applications and thus have limited
datasets. For example, X-ray of cancer tumor has limited datasets because it requires a
specific machine to collect data and positive examples are relatively scarce. To extend a
limited dataset, a technique called data augmentation is employed. An example of data
augmentation is horizontally flipping an image, which creates a mirrored version of the
image as a new example. This technique can also be applied to conventional datasets
to further improve the performance of a network. Krizhevsky et al. (2012) employed

horizontal flip in their work on AlexNet, which shattered the image classification records

34

olofololols[solo[Of
NEENEENEEN
BN RNEEENSE
5 5 () (I EI E M I (F1
clefrleleinfricin <
1 21 B 1 S EY TR A e
RS S N E S ES LN ENES-
NMESISSINSISNS-

00| M[a 4 |50 [% [[on|ov [B
o[ololwslololog

Figure 2.33: MNIST

o)

ataset Examples (Lim et al., 2016).

in the ImageNet competition at the time.

2.4.1 Common Datasets and Specialized Dataset

The common datasets utilized in convolutional neural network (CNN) are intro-
duced here. The datasets are MNIST, CIFAR-10, FMNIST, and KMNIST, which are
used to train a network for image classification. In addition, a specialized dataset on

dangerous objects X-ray is also introduced, which is used for object detection.

2.4.1.1 MNIST Dataset

The MNIST dataset consists of handwritten single-digit images as illustrated in
Fig. 2.33. It has 10 classes corresponding to each 0-9 digits. Each image is black and
white and the size is 28 x 28 pixels. The training set has 60,000 images and the test set
has 10,000 images (LeCun et al., 1998).

2.4.1.2 CIFAR-10 Dataset

The CIFAR-10 dataset is comprised of natural images as shown in Fig. 2.34. The
dataset has 10 classes, which are airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, and truck. Each image is colored with the size of 32 x 32 pixels. The training set

36

Airplane ﬁ% L of ..="’-
putomonie (o) o e e i il i)
o Eimald WES ¥ B
%tﬂﬁ%l..l.vl

mgﬂlﬁﬂaﬁﬂﬂdl
oo [M e i 8 W B
ool N e Y [R S TR
s [e ol e T
ok ol s 0] 8

Figure 2.34: CIFAR-10 Dataset Examples (Krizhevsky et al., 2009).

has 50,000 images, whereas the test set has 10,000 images (Krizhevsky et al., 2009).

2.4.1.3 FMNIST Dataset

The Fashion-MNIST (FMNIST) dataset is created to become an alternative to the
MNIST dataset, which has become a simple dataset for deep neural network. Most deep
networks can easily achieve 99% accuracy on the MNIST test set and FMNIST tries to
provide a harder dataset. The example images are shown in Fig. 2.35. Similar to MNIST,
it has 10 classes namely: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot. Each image is grayscale with the size of 28 x 28 pixels. The dataset has
60,000 training images and 10,000 test images (Xiao et al., 2017).

2.4.1.4 KMNIST Dataset

The Kuzushiji-MNIST (KMNIST) contains old Japanese character writing as de-
picted in Fig. 2.36. The dataset contains 10 classes with each class representing a hiragana
character as seen on the leftmost column in Fig. 2.36. Each image has black and white
colors with the size of 28 x 28 pixels. This dataset also has 60,000 training images and
10,000 test images (Clanuwat et al., 2018).

Dress

Coat

Sandal

Shirt

Sneaker

Figure 2.35: FMNIST Dataset Examples (Xiao et al., 2017).

2.4.1.5 Dangerous Objects X-ray Dataset

The dangerous objects X-ray dataset contains the X-ray of banned objects in air-
ports. The dataset classes are scissors, knives, and bottles. Every image is grayscale with
an average size of 600 x 600 pixels on the length and width. As seen in Fig. 2.37, an
image may contain an object, two overlapping objects, or multiple overlapping objects.
Since this dataset is for object detection, the bounding box and class information of each
object in an image are recorded in the labels. The dataset has 662 training set images
and 442 test set images. Furthermore, to increase the limited dataset size, there are also
synthesized dangerous objects X-ray images, which are shown in Fig. 2.38. The synthe-
sized images are created by applying traditional image processing techniques on the raw
X-ray images and combining the objects extracted. The synthesized images provide an

additional 3010 images to the training set (Zou et al., 2018).

2.4.2 Data Augmentations

In 2012, AlexNet incited the resurgence of interest in CNNs when it accomplished
new records in image classification whilst beating traditional image processing techniques.
It credited data preparation as one of the reasons for its success. In data preparation,

data augmentations are applied to the training images (e.g., mirroring, cropping, etc.)

37

Figure 2.36: KMNIST Dataset Examples (Clanuwat et al., 2018).

to make the network invariant to image perturbations. By applying simple geometric
transformations to the images, the small changes in the images can significantly extend
the training dataset, and thereby, increase network accuracy. A deep network can overfit
a dataset due to the sheer number of its weights but data augmentations can reduce
overfitting by altering the input image in every epoch (Krizhevsky et al., 2012). Therefore,
the network is forced to learn only the important features of a dataset. Furthermore,
data augmentations are invaluable to specialized and limited datasets such as dangerous
objects X-ray, which is discussed in Section 2.4.1.5. Through data augmentations, more

information can be extracted from a small dataset.

2.4.2.1 Training Set Data Augmentations

Typically, data augmentations are applied to the training images during the network
training process. It creates myriads of image variations through simple image perturba-
tions (e.g., flipping, rotation, etc.) to extract more information from the dataset (Esteva
et al., 2017). In addition, the majority of data augmentations are developed for the image
classification (Shorten and Khoshgoftaar, 2019). The data augmentations that modify
the shape of the image are called geometric transformation. The examples of geometric
transformation, as shown in Fig. 2.39, are horizontal flip, rotation, cropping, scaling, etc.
In contrast, there are data augmentations that adjust the RGB channels of an image to

highlight or accentuate a particular image feature. These are called color space trans-

38

>

| i

V4

a) Single object
X’

b) Two overlapping objects

E E

c) Multiple overlapping objects

Figure 2.37: Raw Dangerous Objects X-ray Image Examples (Zou et al., 2018).

formation or photometric augmentation. The examples of these augmentations are white
balance, histogram equalization, etc. as exhibited in Fig. 2.40 (Wu et al., 2015; Mikotla-
jezyk and Grochowski, 2018). Finally, there are data augmentations that introduce noise
to the image to make the network robust. Examples of these data augmentations are
random erasing and cutout regularization, which patch an image with a random block—
usually black— to remove information from the image (DeVries and Taylor, 2017; Zhong
et al., 2020). Through the image occlusions, these augmentations help the network to
focus also on other parts of an image before deciding on a label. These augmentations

are shown in Fig. 2.41.

Recent advances in data augmentation focus on combining two or more images to
create a new image. In one study, two images are crudely combined by taking the per-
pixel average of two images. Unexpectedly, this has resulted in an accuracy increase in
CIFAR-10 benchmark, although the scientific basis is still ongoing research (Inoue, 2018).
A more intuitive approach is to combine images using alpha blending. In alpha blending,

an image is turned translucent to allow it to be overlaid on top of another image. In this

39

40

Figure 2.38: Synthesized Dangerous Objects X-ray Image Examples (Zou et al., 2018).

Original Image Horizontal Flip Rotation

1
i

g, o5 >
v \
X |
x ' i
3 2

Figure 2.39: Geometric Transformation Examples.

way, the images are still visually understandable. This technique has also increased the
network performance (Zhang et al., 2017). Various methods to mix two images are further
explored in the work of Summers and Dinneen (2019), which is shown in Fig. 2.42. One of
their best image integration was able to reduce the CIFAR-10 error by 1.6%. Interestingly,
Takahashi et al. (2020) have combined 4 different images by cropping each image with a
specific size such that the 4 images can be arranged to form an image. Consequently, the
label for the produced image is a soft label with class values depending on the ratio of
each image in the integrated image. The soft label forces the network to concentrate on
4 different areas of an image on every image example. As a result, the network focuses

on vital portions of an image and remarkably increases performance. The example image

41

Contrast +20% Hist.equalization White balance Sharpen
- g 4 i;, % ™ o

& 3

W

- i3
e o a®

5
o
i
¢

Figure 2.40: Color Space Transformation Examples (Mikolajczyk and Grochowski, 2018).
& l‘ abe, l‘

! A F

Figure 2.41: Random Erasing Examples.

is shown in Fig. 2.43.

2.4.2.2 Test-time Augmentations

Although not very common, data augmentations can also be applied to the test
set images before network evaluation. This procedure is called test-time augmentation.
Test-time augmentations allow a more robust network prediction by showing multiple
viewpoints of an image rather than only an unperturbed image. In statistics, test-time
augmentations are compared to ensemble learning, in which multiple models create a
consensus on the final prediction. In contrast, deep neural network uses an image that is
augmented to form an ensemble of viewpoints. The evaluation of the network on all the
augmented images is averaged to obtain the final network prediction. Radosavovic et al.
(2018) implemented this approach to label unlabeled images from the internet and use
these pseudo-labels to train a semi-supervised network. In addition, test-time augmenta-
tions are used to apply the 10-crop testing procedure on AlexNet and ResNet (Krizhevsky
et al., 2012; He et al., 2016). The 10-crop testing procedure augments a test image by
taking an image crop on each image corner, center, and also the equivalent on the image
horizontal flip. The average of the predictions on all the 10 augmented images is used as
the final prediction. Moreover, test-time augmentations can also measure the robustness
of a network, in which the drop in accuracy of the network indicates its sensitivity to
image perturbations (Minh et al., 2018). Furthermore, test-time augmentations using

geometric transformations are found to be effective in classifying skin lesion (Matsunaga

Generalized

J/

Figure 2.42: Image Mixing Examples. Linear methods shows alpha blending. Generalized shows
different image mixing methods (Summers and Dinneen, 2019).

et al., 2017), and these are more effective when combined with data augmentation in the

training phase (Perez et al., 2018).

2.5 Learning from trained Networks

2.5.1 Transfer Learning

Transfer learning is a method in deep neural network in which the learning of a
network on a particular task is repurposed for another task. The motivation of transfer
learning is attributed to the hierarchical nature of representations in CNN. From the first
layer to the last layer of a network, the features extracted grow in complexity. Particu-
larly, the initial layers act as low-level feature extractors such as edge detectors, whereas
the final layers detect complex features such as faces (Zeiler and Fergus, 2014). This
learning behavior is common to CNNs, which allows the reuse of the trained weights
to another application as initialization. As a result, the network has faster convergence
and higher performance improvement, especially when the new dataset is similar to the
previous dataset the network is trained on. The transfer learning can exhibit three po-
tential benefits, which are a higher start, higher slope, and higher asymptote as shown in
Fig. 2.44 (Torrey and Shavlik, 2010). A higher start implies a higher starting accuracy,

a higher slope implies a steeper rate of network improvement, and a higher asymptote

42

Figure 2.43: Four images are combined with varying ratio sizes to form an image (Takahashi
et al., 2020).

higher slope higher asymptote
o | | e
[&] =y
C o
©
£ .
o I T with transfer
E —— without transfer
ol higher start

training

Figure 2.44: Potential benefits of transfer learning (Torrey and Shavlik, 2010).

implies a higher convergence value.

There are two methods to apply transfer learning to a network. The first method is
feature extraction, in which the trained network is utilized as a fixed feature extractor. In
feature extraction, the weights of a trained network are frozen and only the last layer is
used to train the network on a new dataset. This method is particularly effective when the
previous dataset and the new dataset share features (e.g., wolf dataset and dog dataset)
because only the last layer, which differentiates the datasets, is needed to be retrained.
In addition, this technique is also useful for small datasets (e.g., medical X-rays). Using
the learning of a network on large-scale and challenging datasets can help small datasets
compensate for the lack of numbers in training a deep network. The second method is fine-
tuning. Fine-tuning is similar to feature extraction but the main difference is the retraining
of trained network weights. Depending on the size and similarity of the new dataset to
the previous dataset, the network layers to be retrained can be adjusted. If the new
dataset is small, the first few layers, which extract generic features, can be fixed to avoid

overfitting. However, when the new dataset is large, the whole network can be retrained,

43

Hard labels 0 1 0 0
cow dog cat car
Soft labels 10° 0.9 0.1 107

Figure 2.45: Difference between the hard and soft labels in knowledge distillation (Liu et al.,
2018b).

in which the trained weights are utilized as initialization. Compared to initializing the
network with random weights, the trained weights can accelerate the network convergence
and improve performance. This is attributed to the minimal adjustments needed in the

network weights since these are already tuned as opposed to random weights.

Transfer learning is a powerful technique to facilitate the training of a deep network.
The similarity of datasets in CNN makes it a standard procedure to train networks.
Although the efficiency of transfer learning decreases as the new task becomes more
and more different than the initial task, it is still beneficial to initialize the network with
trained weights rather than random weights. Finally, in some tasks, fine-tuning a network
does not hamper the performance of the network on its initial task (Yosinski et al., 2014;

Sharif Razavian et al., 2014).

2.5.2 Knowledge Distillation

Very deep networks have achieved remarkable success in various fields such as com-
puter vision. However, the complexity that accompanies very deep networks has hindered
the deployment of these networks to real-life applications, particularly on small devices
such as surveillance cameras. To address this kind of issue, a model compression method
is proposed to transfer the information from a large model to a small model without sub-
stantial accuracy drop by training the small model to imitate the behavior of the large
model (Bucilud et al., 2006). The idea of using a large model to teach a small model is
later known as knowledge distillation in the deep neural network literature (Hinton et al.,
2015). The concept of knowledge distillation is to train a student network to imitate how
the teacher network evaluates an input to gain performance comparable to the teacher
network. The supervision signal from a teacher network, which is referred to as knowl-
edge, guides the student network in imitating the teacher network. For example, in an

image classification task, the logits (i.e., final layer output) of a teacher network contain

44

Distillation

Distillation
Loss

Targets

e Soft Student Ground
T= Targets Loss Truth Label

Figure 2.46: Vanilla Knowledge Distillation Process (Gou et al., 2021).

knowledge that is not found in the training dataset. In a dataset set, a dog image has
a one-hot label of one for the dog class and zero for the other classes. However, in the
teacher evaluation, the dog class may have a high probability and low probability for the
cat class but the probability for the car class is many times lower than the cat. This
difference in labeling is shown in Fig. 2.45. In another example, the teacher evaluation
on handwritten digit 6 may be closer to digit 8 than digit 1. This classes relationship

learned by the teacher is known as the dark knowledge.

A typical knowledge distillation set-up consists of a large and trained teacher net-
work and a small network. To share the knowledge learned by the teacher network to
the student network, during the student network training, an input image is fed to both
the teacher and student networks. Their respective logits are compared and the calcu-
lated difference becomes the distillation loss. Furthermore, the student still calculates
the cross-entropy loss on its evaluation and the ground truth label, which is now referred
to as the student loss. The new loss of the student network is the sum of the student
loss and distillation loss. The summary of the training process is shown in Fig. 2.46.
Adding the distillation loss to the typical cross-entropy loss encourages the student to not
only learn the correct labels of the images but also learn how the images classes relate to
other classes. As a result, the student network can perform better with teacher network

knowledge than simply relying on the dataset labels.

2.6 Evolutionary Computation

2.6.1 Genetic Algorithm

Genetic algorithm is a metaheuristic approach to search for optimized solutions to
problems, inspired by natural selection. It uses a population of potential solutions that
undergo a series of selection, crossover, and mutation operators for many generations to
search for the fittest individual or optimal solution (Mitchell, 1998). A simple genetic

algorithm process can be summarized by the following steps:

Step 1. Randomly generate a population of potential solutions (to a problem)
Step 2. Calculate the fitness of each individual in the population

Step 3. Select the individuals based on their fitness

Step 4. Apply the genetic operators to the selected individuals to produce children
Step 5. Replace the individuals in the population with the children

Step 6. Repeat the process from Step 2 for the next generation until the final generation

count is reached

In Step 1, the individuals in a population are generated using GTYPE (genotype
or chromosomes), which carries the genetic codes of a solution, and PTYPE (phenotype),
which is the physical manifestation of the genotype (Iba et al., 2009). For example, the
GTYPE can represent the number of nodes and layers in a neural network and PTYPE
can represent the actual neural network with its connections and weights. In Step 2,
fitness is a measure of the capability of an individual to address the main problem (e.g.,
accuracy). The fitness of each individual is computed to recognize individuals that can
potentially bring the population closer to the optimal solution. In Step 3, based on
the fitness, the individuals are selected to undergo genetic operators that will form the
new population. There are many ways to perform selection but the common techniques
are roulette-wheel selection and tournament selection. The roulette-wheel selection, also
known as the fitness-proportionate selection, is the simplest selection method. It creates

a roulette where the probability of each individual to be chosen is proportional to its

46

Mutation

A B C D E FESS M A B C d E F

Inversion

a b ¢ d e f

Crossover

1 2 3 D E F

e
Figure 2.47: Genetic Operators (Iba et al., 2009).

fitness. The probability of each individual being selected is computed as

2
(1 Zf?

where f; is the fitness of the i-th individual. The roulette-wheel is “spun” and the indi-

(2.17)

vidual, which is represented by the area where the “ball” lands, is selected. On the other
hand, tournament selection holds a tourney for Sy number of randomly chosen individuals
that will compete using their fitnesses. The S; is the size of each tourney and the number
of tourneys is equivalent to the number of individuals. The “winner” of each tourney
becomes the selected individual. Other selection methods include the elite strategy, in
which the best individual in the current population is carried over to the next generation
without mutations. The concept behind this is to guarantee that the next population
does not incur performance degradation due to mutations. Another selection method is
the steady-state selection where only a certain number of low-performing individuals are

replaced by the children.

In Step 4, each selected individual is applied with a genetic operator, which can
be mutation, inversion, or crossover. The genetic operators are inspired by biological
reproduction. Mutation and inversion have originated from asexual reproduction, whereas
crossover has originated from sexual reproduction (Fontanari and Meir, 1990; Collins
and Jefferson, 1992). Although the implementation of genetic operators depends on the
properties of individuals, the concept of genetic operators can simply be illustrated on
a GTYPE. For instance, the GTYPE of every individual in a population is represented
by a six-character string. As shown in Fig. 2.47, mutation changes one of the characters

into another kind, inversion swaps two characters inside the string, and crossover uses two

47

48

individuals which exchange or “cross” a certain subset of the string (Iba et al., 2009). After
each selected individual is evolved, they replace the current individuals in the population
for the next generation as in Step 5. The process from Step 2 repeats until the final

generation count is reached or the termination criterion is met.
2.6.2 Neuroevolution

Neuroevolution is the evolution of artificial neural network using genetic algorithm.
In the 1980s, backpropagation was a popular algorithm to train artificial neural network.
However, despite the success of backpropagation, it is vulnerable to getting trapped in a
local minimum of an error function. Moreover, it cannot find the global minimum of a
multimodal and/or nondifferentiable error functions (Hertz et al., 2018). To address this
issue, a small group of researchers adopts the genetic algorithm to optimize the connection
weights. This is called fixed-topology neuroevolution, where the architecture is precon-
ceived and only the connection weights are modified. Evolving the connection weights as
a method of network training has two phases. First is the representation of the connection
weights, which can be binary representation (Holland et al., 1992; Goldberg and Holland,
1988) or real-number representation (Montana et al., 1989; Bartlett and Downs, 1990).
Second is the evolutionary process in which the genetic operators or search operators (e.g.,
mutation, crossover) are used in conjunction with the representation scheme (Yao, 1999).
Evolutionary training is an attractive approach because it can work better on complex,
multimodal, and nondifferentiable surfaces. Furthermore, it can be applied directly to
different kinds of ANN (e.g., recurrent ANN), eliminating the need to develop a training
method. In some studies, evolutionary training is even combined with backpropagation
to generate better results. The genetic algorithm is utilized to locate good regions in
space (near-optimal initial connection weights) and then backpropagation performs the
local search by fine-tuning the initial weights (Belew et al., 1991; Lee, 1996; Topchy and
Lebedko, 1997).

Although the connection weights can be trained well using neuroevolution, the
capability of an ANN to process information depends on its architecture or topology. Most
of the topology designing process relies on human expertise and experience. However,
the topology can be designed using neuroevolution. Automatic topology design has two

types. The first type is the constructive algorithm, where it starts with the smallest

Genome (Genotype)

Node [Node [Node 2|Node 3[Node 4|Node 5
Genes | Sensor|Sensor |Sensor [Hidden{Hidden:
Input [Input |Input [Hidden[Output

Connect. |In 1 In 2 In 2 In3 In 4 In 5
Genes |Out 4 Out 4 Out 5 Out 5 Out 5 Out 4
Weight 0.7(Weight 0.5|Weight 0.5(Weight 0.2{Weight 0.4/ Weight 0.6
Enabled |(Enabled |DISAB [Enabled |Enabled |Enabled
Innov 1 |Innov3 |Innov4 [Innov5 |Innov6 |Innov 10
Network (Phenotype) 3
4
1 2 3

Figure 2.48: NEAT Genetic Encoding (Stanley and Miikkulainen, 2002).

network configuration (e.g., minimum layer, minimum nodes) and gradually makes it
complex. On the other hand, the second type is the destructive algorithm where it
does the opposite. It starts with the most complex networks and gradually removes
the unnecessary components. Similar to the connection weights evolution, architecture
evolution has two phases. The first phase is architecture genotype representation. When
all the details of the architecture (number of hidden layers, connection, etc.) are encoded,
it is called direct encoding (Whitley et al., 1990; Miller et al., 1989). However, if some
details are omitted (e.g., connection details) and left for the training process to decide,
it is called indirect encoding (Kitano, 1990; Harp et al., 1989). The second phase is the
genetic operators used to evolve the architecture. Evolving the architectures has shown
to be effective in applications such as supervised training (Chen et al., 1993) but it has
difficulties in evaluating the fitness correctly due to the absence of weights information
and subsequently makes the evolution inefficient (Angeline et al., 1994). As a result, there
are several works published on evolving the topology and weights simultaneously (Koza

and Rice, 1991; Angeline et al., 1994; Yao and Liu, 1998, 1997).

The advantage of evolving both the topology and weights over a fixed topology
and evolving weights is not yet firmly established. Gruau et al. (1996) have argued
that evolving the topology saves time and effort on applying trial-and-error on topology
design in fixed-topology neuroevolution. They supported this argument by solving the
hardest pole-balancing benchmark at the time using their proposed method called cellular
encoding. However, the same benchmark was later solved by a fixed-topology method
called enforced subpopulations that is 5 times faster. Therefore, the argument for evolving

architecture has been nullified (Gomez et al., 1999).

49

50

113 14 5 6 113 1[4 5 6| 7
[l—>4 P—>4 [2—>5[3->5(4—>5 |—>4 [2—>4[2—>5[3—>5]4—>5|3—>4
IDIS IDIS

Mutate Add Connection s

13[4 5 6 13[4 5 6819
1 —>42->4[2->5[3->5[4—>5| [1->4 [2—>4 2—>5|3—>5|4—>5(3—>6/6—>5
DIS DIS | DIS

Mutate Add Node

5

Crossovers: [A.B.A] [C.BC]

(both are missing information)

Figure 2.50: Crossover problem in topology evolving algorithms. It is problematic due to the
missing information when two network parts are recombined (Stanley and Miikkulainen, 2002).

A seminal work that established the importance of topology and weights evolu-
tion is proposed by Stanley and Miikkulainen (2002) called neuroevolution of augmenting
topologies (NEAT). The authors asserted that if the evolution of the structure along with
the connection weights is properly designed, then it can significantly enhance the perfor-
mance of the network. In one of the NEAT performance evaluations, it has outperformed
the leading fixed-topology neuroevolution in the standard double pole balancing without
velocity task, which due to its difficulty, only two algorithms were able to solve it at the
time. Specifically, NEAT is 25 times faster than cellular encoding and 5 times faster than
enforced subpopulations. NEAT has three crucial aspects that are responsible for its suc-
cess. First is tracking the genes of a network through historical marking. Every network
individual in NEAT is encoded using direct encoding as shown in Fig. 2.48 and recorded
in the historical marking. The mutations applied on the networks are add node and add
connection as shown in Fig. 2.49. Historical marking also allows better crossover of two

networks, which is previously omitted in topology evolving algorithms due to the detri-

Parent1 Parent2

6 7 8
4->5| 1->6| 6—>4
IDISAB IDISAB

1 2 4 5 6 1 2 3 4
1->4|2—>4 | 2->5 | 3—>5 | 4->5 1->4 | 2—>4 | 3—>4 | 2->5

%
.4

disjoint
1 2 5 6
Parentl| 1->4 | 2->4 2-55 | 3->5 | 4->5
DISABl
1 2 3 4 6 7 8
Parent2 1>4 | 2—>4 | 3—>4|2->5 4->5| 1->6| 6—>4
IDISAB DISAB|
disjoint ©eXCess excess
. . 1 2 3 4 S} 6 7 8
Offsprmg 1->4 | 2—>4 | 3->4 | 2->5 | 3->5 [4->5 | 1->6| 6—>4
IDISAB| DISABl

Figure 2.51: Crossover proposed in NEAT. The networks are essentially combined using the
historical marking to prevent loss in information (Stanley and Miikkulainen, 2002).

mental effect of recombining parts of two networks as illustrated in Fig. 2.50. In contrast
to common crossover techniques, the crossover proposed in NEAT essentially combines
the architecture of two networks to avoid loss in information as shown in Fig. 2.51. Sec-
ond, since historical marking can divide a population into species based on topological
similarity, NEAT proposes speciation to protect diversity. In speciation, individuals with
similar topologies compete within their own niche instead of the whole population. In this
way, the emerging structures are protected from being eliminated by the reigning struc-
ture immediately and allow them to develop before competing with other niches in the
population. Lastly, it minimizes the dimensionality of networks by initializing the popula-
tion with the most basic network structure—no hidden nodes. Typically, neuroevolution
algorithms initialize the population with random topologies (Angeline et al., 1994; Gruau
et al., 1996) but it is not known whether the random topologies are necessary to produce
good networks. Moreover, these are costly to optimize since more connections in a network
correspond to more dimensions to be searched. However, by initializing from the most
basic network structure, NEAT avoids optimizing and building from unnecessary random

structures and only maintains structures that are relevant to the problem. In addition, by

o1

92

Stage 1 Encoding Area

POOL1 | next stage

INPUT

32x32x3 16 X 16 x 32
Stage 2 Encoding Area
prev. stage POOLl conv@64 pooling POOL2
-------- * —»&:;--0—»
16 x 16 x 32 Code: 0-00-100-0101 8 x 8 x 64

Figure 2.52: Genetic CNN fixed-length binary string encoding (Xie and Yuille, 2017).

searching through a small number of weight dimensions, NEAT also significantly reduces

the required number of generations to arrive at a solution.

2.7 Toward CNN and Neuroevolution Combination

The convolutional neural network (CNN) architecture continually grows in depth to
improve its performance. However, it is not known whether the hand-engineered conven-
tional CNN architectures are optimal for a given dataset or application. Since researchers
have demonstrated the ability of neuroevolution to optimize the connection weights and
architecture of ANNs, different studies are also recently proposed to apply neuroevolution
to CNN. However, unlike the neuroevolution methods for ANN, the proposed neuroevo-
lution methods for CNN are typically concerned with architecture optimization only and
leave the weights optimization to backpropagation. Omne of the reasons for this is the
architecture depth of CNNs. The deep CNN architectures make it impractical to opti-
mize the weight using neuroevolution. Moreover, the training methods (e.g., momentum,
weight decay) developed for CNN allow better weights optimization. Instead, the focus
of neuroevolution is to evolve CNN architectures, which have complex parts (e.g., con-
volutional block, pooling block, skip connections) unlike ANN with simple nodes. As
discussed in Section 2.3, the CNN architecture plays a crucial role in the performance of

the network.

conv layer conv layer conv layer

U 1 1
conv layer conv layer conv layer
conv layer
I conv layer
conv layer

conv layer conv layer
conv layer conv layer
conv layer conv layer

U
conv layer conv layer conv layer

VGGNet ResNet DenseNet
K=4 K=4 K=4
Code: 1-01-001 Code: 1-01-101 Code: 1-11-111

Figure 2.53: Fixed-length binary string encoding of VGGNet, ResNet, and DenseNet (Xie and
Yuille, 2017).

2.7.1 Developments in Neuroevolution Approaches to CNN

Xie and Yuille (2017) proposed genetic CNN to automatically design the network
architecture. To facilitate the evolution, CNN architectures are represented by a fixed-
length binary string as shown in Fig. 2.52. The authors divided a CNN architecture
into stages where each consists of convolutional blocks and pooling blocks combination.
As seen in Fig. 2.52, each node in the encoding area corresponds to a convolutional
block. If a block has multiple inputs, the sum of those inputs is taken. Furthermore,
each convolutional block is followed by batch normalization and ReLU. The first and last
nodes are not encoded. The binary string only encodes the connections in the intermediate
nodes, in which 1 indicates a connection and 0 indicates no connection. In the stage 1,
the binary string 1 —00 — 111 can be interpreted as A1 — A2, A1 — A3, A2 — A3, Al —
A4, A2 — A4, A3 — A4. This type of encoding can also represent the building blocks
of conventional CNN architectures, which are shown in Fig. 2.53. After encoding the
network, the binary string is subjected to genetic operators (e.g., mutation) to evolve.
Afterward, the binary string is converted back to a network and trained normally. The
example network architectures produced by genetic CNN can be seen in Fig. 2.54. The
best networks produced have performed an error rate of 7.10% and 29.03% on the CIFAR-
10 and CIFAR-100 datasets respectively. On the CIFAR-10 dataset, the total execution

time took 17 GPU-days using 50 generations and 20 individuals.

Another approach to applying neuroevolution to CNN is proposed by Suganuma
et al. (2017) called CGP-CNN. Instead of binary encoding, the authors used Cartesian

93

Chain-Shaped
Networks
v" AlexNet
v VGGNet

Multiple-Path
Networks
v" GoogleNet

{Code: 0-117
101-0001

N
'
'

Highway
Networks
v Deep ResNet

{Code: 0-11-
\ _101-0001 i

Figure 2.54: Two structures learned independently by genetic CNN (Xie and Yuille, 2017).

genetic programming (CGP) to represent the network and subsequently evolve them. The
example genotype and phenotype of a network are shown in Fig. 2.55. The blocks used in
evolution are convolutional block, resblock (resembling a ResNet block), max pooling, and
average pooling. In addition, the authors introduced two types of skip connections, which
are concatenation and summation, unlike genetic CNN that has summation only. The
concatenation, which resembles GoogleNet and DenseNet operations, takes two inputs
and simply stacks them. On the other hand, summation, which resembles the ResNet
operation, sums the input together. If the input sizes are different, the smaller input
is padded with zeroes and then summed with the larger input. There are two main
configurations tested. The first configuration, called ConvSet, uses convolutional block
and all the pooling and skip connection blocks. The second configuration, called ResSet,
is the same as ConvSet but replaces the convolutional block with the resblock. The
produced network architectures for each configuration are exhibited in Fig. 2.56. The
best evolved networks have achieved an error rate of 6.75% and 5.98% using the ConvSet
and ResSet configurations respectively on the CIFAR-10 dataset. The network produced
by the ResSet configuration took 14 days to complete the evolution process.

54

1 3 5
conv | | conv pool
0 (32, 3) (64, 5) (max) 7
s — >
pool conv
(max) 4 64, 3) 1 sum Convolution
64 output channels
3x3 receptive field
(Node no.)
co| BIEIAC ||cs| E e I ||m| 600 DR P
____________________ . 32 output channels LT] 2x2 receptive field
"""""" 3x3 receptive filed LIV stride 2

Figure 2.55: Example genotype (left) and phenotype (right) of a network using CGP. The
phenotype corresponds to the CNN network architecture (Suganuma et al., 2017).

The neuroevolution approaches to CNN discussed previously have taken significant
time and resources to produce their respective best network. However, there is a proposed
neuroevolution that prioritizes the limited resources to evolve CNN architectures. This
method is called aggressive genetic programming (GP) (Li et al., 2018). In this method,
the CNN architectures are encoded using an acyclic graph, in which a node represents a
block (e.g., convolution, pooling, FC, concatenation, etc.). The main difference in this
method is the use of aggressive selection as shown in Fig. 2.57. In aggressive selection, the
fittest individuals are taken and only they produce children networks by applying different
mutations. It is different from tournament selection, where individuals with average fitness
can be selected. The reason behind this approach is to avoid developing individuals that
may be replaced along the course of evolution since the aim is to save resources. However,
the diversity of the population suffers in this strategy. To alleviate this problem, the
authors complemented the aggressive selection with numerous mutations. In addition to
adding blocks to the network, altering the blocks and removing the blocks are also included
as separate mutations. The mutation process can be seen in Fig. 2.58. The networks
discovered for CIFAR-10 and CIFAR-100 datasets are shown in Fig. 2.59. The best
networks produced have achieved 90.52% and 68.04% accuracy on CIFAR-10 and CIFAR-
100 datasets, which took 72 GPU-hours and 184 GPU-hours respectively to complete the

evolution.

The neuroevolution for CNN architectures is typically used for image classifica-
tion. However, the architectures developed by neuroevolution can also specialize in other
applications. In one study, the YOLOv2 architecture is evolved to improve the object

detection performance on dangerous objects X-ray (Tsukada et al., 2020). Another study

%)

CB (128, 3)

[[cB64.3 [cB 28,3 |
! A

CB (128,3) CB (128,3) |
~

e

CB (32,5)
!

‘ Sum ‘

CB (32,5)

Concat Concat

| !

[cB 283 | [cB64.3) |

RB (128, 3)

(a) CGP-CNN (ConvSet) (b) CGP-CNN (ResSet)

Figure 2.56: The networks produced by the CGP-CNN on two configurations (Suganuma et al.,
2017).

proposed to use neuroevolution to replace the feature extraction network of the YOLOv3
with an optimized architecture (Operiano et al., 2020). Moreover, a separate study pro-
posed to utilize neuroevolution to search for CNN architectures that are robust to the

transferability of adversarial examples (Kotyan and Vargas, 2020).

2.8 Summary

In summary, this chapter starts with the discussion about ANN as an algorithm
inspired by the biological neurons in the brain that automatically learns to produce a de-
sired output without explicit programming. The potential of ANNs are visually realized in
the applications of CNN, a special type of neural network designed for image processing.
The developments in CNN such as training techniques, architecture changes, are carefully
reviewed in this chapter. In addition, the common datasets used for benchmarking CNNs
and data augmentations that extend the information provided by datasets are explored.
Furthermore, since training a deep CNN network requires a significant amount of data and
computational resources, taking advantage of the learning of a trained network to effec-
tively train a different network is examined in this chapter. CNN architectures continue

to grow deeper to increase their performance but they need large datasets and compu-

o6

57

Conventional Tournament Selection Aggressive selection

@O @0 00 000 - 0O
~~~~~ XY B
copy L

“u

- 09 00 00 000
[ i i | !
e 0@ 00 00 0@ O

Figure 2.57: Comparison of tournament selection and aggressive selection. The aggressive selec-
tion takes the fittest individuals in the population and these individuals are mutated differently

to produce children. (Li et al., 2018).
q

Add Con s— c

global_pooling

global_pooling
l global_pooling

global_pooling

Figure 2.58: CNN mutation process of Aggressive GP (Li et al., 2018).

tational power to train them properly. Therefore, evolutionary methods that discover
optimal networks which perform similar to deep networks are also explored. The evolu-
tionary methods for ANN are first surveyed, and then the relatively novel evolutionary

approaches to CNN are examined.



58

concatl

concatl I

concat2

concat2

concat3

global_pooling

global_pooling

iy

Figure 2.59: CNN architectures discovered by Aggressive GP for CIFAR-10 (left) and CIFAR-100
(right) datasets (Li et al., 2018).



CHAPTER I11

CNN DATA AUGMENTATIONS AND APPLICATIONS

Convolutional neural networks (CNN) is a machine learning technique that achieves
phenomenal performance in applications such as image classification and object detection.
However, the performance of a CNN varies greatly depending on the tuning of hyper-
parameters (e.g., learning rate and data preparation) as demonstrated in the AlexNet
training method (Krizhevsky et al., 2012). In Section 3.1, a data augmentation method
is proposed to improve the performance of a CNN that is trained on a small dataset.
Furthermore, CNN can be combined with different algorithms to create a specialized ap-
plication. In Section 3.2, a CNN is combined with Haar Cascades to detect and recognize

alphabet hand sign language.

3.1 Pre- and Post-training Data Augmentations

CNN usually relies on huge datasets to learn the proper features of an object from an
image and generalize well on images it has not seen before. However, there are specialized
applications that have limited datasets. For example, dangerous objects X-ray dataset has
limited images due to the difficulty in data collection and reluctance of X-ray companies
to share data which can jeopardize public safety. To address the dataset limitation,
several methods are proposed to extract more information from the dataset such as data
synthesis (Zou et al., 2018), in which a new set of images are created by cutting and
combing existing images, and data augmentation (Krizhevsky et al., 2012), in which the

image is slightly modified to create new image examples (e.g., image mirroring).

In this section, there is a total of six novel data augmentations proposed to help the
CNN increase its accuracy or mean average precision (mAP) on object detection. The
dataset used is the dangerous object X-ray dataset as shown in Section 2.4.1.5, which
contains prohibited items such as knives, scissors, and bottles. The first two data aug-
mentations are the simple objects addition and quadrant addition, which are both applied
on the images before training and collectively denoted as Pre-training data augmenta-

tions (Pre-TDA). The last four data augmentations are the quadrant computation, zoom



60

Pre-training Data Augmentations

Input Image Pre-TDA Output Notes
SOA Objects are extracted
, ® / from the input image

\ /| canvas.

/ \ / f and inserted on a blank

QA 1t Config: quad images
only
- \/f\
] 2" Config: quad images
4 _‘\/ = FAY combined with SOA
& ‘\ ' objects
‘ Q 1t Config
L fo
l\‘{
2nd Config

Figure 3.1: The Pre-TDA are shown here. In simple objects addition, an image is inserted with
a random object from the training set to become a new image example. In quadrant addition,
an image is divided into quadrants to produce new images. Moreover, a random object can also
be inserted into a quadrant image to make a complex new image.

computation, zoomed quad computation, and quad + zoom computation, which are ap-
plied to the images during test-time. These four augmentations are collectively denoted

as Post-training data augmentations (Post-TDA).

Simple objects addition (SOA) is a data augmentation that automatically combines
objects from different images into a blank image canvas arbitrarily. Since the objects are
from X-ray images, the objects can overlap. The overlapping area is dealt with by applying
the darkest pixel between the two images. In the second data augmentation, which is
quadrant addition (QA), an image is divided into four parts or quadrants. Although
there is a possibility that an object inside the image is cut into multiple parts, the piece
of that object in a quadrant will retain its label as long as the area of the part is more than
35% of the total area of the whole object. Subsequently, the quadrant, which is one-fourth
of the image is placed on a blank image canvas to become a new image (denoted as quad
image). Moreover, the quad image can be populated with the extracted objects from SOA.
The intuition of the QA data augmentation is to break the pattern of object arrangements.

Since the X-ray dataset has limited images, most of the images tend to look similar and



differ only with some displaced objects. This similarity makes the network associate the
objects together and the detection rate drops when they are separated. Furthermore, the
division helps the network detect a partially represented object. Both the SOA and QA

data augmentations are shown in Fig. 3.1.

In the Post-TDA, the augmentations are applied to the test set images during
network evaluation. This helps increase the confidence of a network during the prediction
by showing many viewpoints of the same image to the network. Although the test set
images are typically untouched to have a fair measure of the network performance, the
goal of Post-TDA is not to increase the network performance unreasonably and compare
it to other networks. Instead, the aim of Post-TDA is to extend the network capability
to detect objects that is clearly bounded by the limited dataset. An increase in the
network performance is important in real-life applications such as in dangerous objects

X-ray detection.

The first Post-TDA is the quadrant computation (QC). Similar to QA, the input
image is divided into quadrants and form quad images. The image and its corresponding
quad images are fed to the network to find dangerous objects. The quad images are
support images, which provide additional viewpoints for the network in case it fails to
detect all the dangerous objects in the uncut image. To test the effectiveness of the
QC data augmentation, two datasets of comparison are utilized. The first dataset is
the original test set and the second dataset is the combination of the original test set
images and quad images. To fill the second test set, each image in the test set and its
corresponding quad images, as a group, are compared. If the original test image has
higher accuracy, which means the network properly identifies the objects, it will be added
to the second dataset. However, if the quad images have higher accuracy collectively,
which means the network identifies the objects better when divided into quadrants, then
these images are added to the second set. The process repeats until all the images in the
test set are processed. Afterward, the complete second set is evaluated and compared to
the performance of the first dataset. The process described is summarized by equations

(3.1) and (3.2).

Let I; be an input image, Q(I;) as the corresponding quad images of I;, O as

the output dataset of the QC procedure, and AP(Il;) as the accuracy or mean average

61



Qc

ZC

ZQC

Input Image

62

Post-training Data Augmentations

Post-TDA Output

o \/.,\

= AN
,‘g\\/’ \/, 4 \/’
AT EIN

E 1&\/\ o / \
Zoom: .8x, .9x, 1x, 1.1x, 1.2x
“ YA \(\ \/\ 3/.,\
_ — —
o AN R <

Zoom: .8x, .9x, 1x, 1.1x, 1.2x

Notes
An input image is divided equally into
four parts. Each will be inserted to a
blank canvas with the size similar to
the input image size.

The input image undergoes zooming
and the magnification level that has the
highest object detection will be used.

Each quad image will undergo
magnification. The quad magnification
that has the highest accuracy will be
used.

Figure 3.2: Different Post-TDA are shown here. In quadrant computation, the input image is
divided into quadrants as support images. In zoom computation, the image is zoomed into 4
levels to obtain the optimal magnification. In zoomed quad computation, the quad images are
zoomed into 4 levels to obtain the optimal magnification of each quad image.

precision (mAP) function. Given a set of test images {I;, Io, . .

is constructed as

where

{4}
Q)

S; =

if AP(I;) < AP(Q(L)) |

., In}, O (i.e., second set)

if AP(I;) > AP(Q(L,))

(3.2)

The example images are shown in Fig. 3.2 and the process can be visualized in Fig. 3.3.



63

== ~ (N s
( ‘ \ ( New \
: Test Set I " \ /, I Dataset |
1 ! : ‘M\, \ if AP(I) 2 AP(Q(I})) === | ;§j\‘ ; :
A @ Ju
: I I :
. : T
: I . I :
: I I !
I | . [

| [
| : :.< \/.,\ | :

| [
, | if AP(I;) < AP(QU)) => | :
: ! o | = : !
: Iy | ' | :
: I I :
i I
oo . o) oo .

Figure 3.3: To fill a new dataset with the combination of the original and quad images, each
image in the test set is compared with its corresponding quad images through their accuracy. If
the original test image has higher accuracy than the corresponding quad images collectively, the
original image will be added to the dataset. Otherwise, the quad images will be added to the
dataset instead of the original image.

The second Post -TDA is zoom computation (ZC). In this data augmentation, the
image is magnified to different magnification sizes to let the network find objects in the
size that matches its learned features. If the network detects an object in a different
magnification than the original image size, it implies that there is a slight mismatch
between the training set and the test set. Although the network is trained, it is not
object size invariant enough due to a limited dataset. Similar to QC, the effectiveness of
7C is quantified by comparing two datasets, which are comprised of first, the original test
set images, and second, the combination of original and zoomed test set images. Before
filling the second set, each image in the test set is magnified into four magnification levels
(i.e., .8x, .9x, 1.1x, and 1.2x). Together with the original image (i.e., 1x), there are five
images that are evaluated by the network. For each test image, the magnification level
that has the highest accuracy is added to the second set. After the second set is completed,
it is evaluated by the network as a whole dataset and compared with the first dataset.
The ZC images are shown in Fig. 3.2. The process encapsulated by equations (3.3) and
(3.4). The I; and AP(I;) definitions are the identical to the QC equations. Let Z(1;) be
the zoomed images of I; (i.e., four magnification levels and original size), and O as the

output dataset of ZC method. Given a set of test images {I1, I2, ..., In}, O is constructed



as
N
0:=JS, (3:3)
1=1
where
S; = {argmaXfGZ(L)AP(I_)}. (3.4)

The third Post-TDA is the zoomed quad computation (ZQC), which is the combi-
nation of the previous methods. In ZQC, the images are divided into quadrants, and the
quad images are presented in four magnification levels as in ZC. Hence, the quad images
can give focus to certain portions of an image and the corresponding magnification can
give a wider object size representation. Similar to QC, the images produced by ZQC are
used as support images during application. Again, there are two datasets of comparison
as explained in the previous methods. To fill the second set, each test set image is divided
into quadrants. Then, every quad image is subjected to multiple magnification levels,
and the size that has the highest accuracy is used. As a result, the quad images can have
different magnification levels. Afterward, the original test set image is compared to its
corresponding size-optimized quad images to fill the second set similar to QC. The ZQC
images are shown in Fig. 3.2. The ZQC process is summarized in equations (3.5)— (3.7),
in which equation (3.6) compares the test images and their corresponding zoomed quad

images, and equation (3.7) obtains the best magnification level of each quad image.

The I;, Q(I;), AP(I;) are defined in the previous methods. Let Z(q) be the five
magnifications of a quad image similar to the ZC, T; as the selected zoomed quad images
with the highest accuracies, and O as the output dataset of ZQC. Given a set of test
images {I1,Is,...,In}, O is produced as

O .= U SZ', (3'5)
where

(I} it AP(I;) > AP(T})

T,  if AP(I;) < AP(T})

64



65

and

T := {argmaxye 5, AP(I) | ¢ € Q(1i)}. (3.7)

The final Post-TDA is the quad and zoom computation (QZC). QZC is the com-
bination of zoom computation and zoomed quad computation. The ZC outputs the best
magnification for each test set image, whereas ZQC outputs the best magnification for the
corresponding quad images. Essentially, QZC combines the advantages of ZC and ZQC
to produce an optimal dataset configuration. As performed in the previous Post-TDA
methods, the QZC employs two datasets to measure its effectiveness. To create the sec-
ond set, the output dataset of ZC on a given test set is compared to the output dataset of
ZQC on the same test set. Whichever has the higher accuracy between the image and its
corresponding quad images collectively are added to the second set as shown in Fig. 3.3.
It should be noted that ZQC uses the original test images and not their best-magnified
image counterpart. The QZC process is summarized in equations (3.8) — (3.11). Equation
(3.9) evaluates the images produced by equations (3.10) and (3.11) and takes the best
image representation. Equation (3.10) produces the best magnification of test images and

equation (3.11) produces the best magnification of their corresponding quad images.

The I;, Q(I;), AP(I;), Z(1;), and Z(q) are defined in the previous methods. Let
G; be the selected magnification of an input test image similar to ZC output, and 7T; be
the corresponding selected zoomed quad images identical to ZQC output. Given a set of

test images {I1, Io,...,In}, the output dataset of QZC experiment O is constructed as

0:=|Js: (38)
where

G; it AP(G;) > AP(T;)
S; = , (3.9)

T, if AP(G;) < AP(T})

G; = {argmaxl-(ez([i)AP(f{)}, (3.10)



Synthesized Images

Figure 3.4: Raw and synthesized images of dangerous objects X-ray (Zou et al., 2018).

and

T, := {argmaxpc 5, ) AP(I) | ¢ € Q(L;)}. (3.11)

3.1.1 Pre-TDA and Post-TDA Experiments

There are six experiments conducted to evaluate each data augmentation proposed.
The dataset utilized in the experiments is the dangerous objects X-ray as discussed in
Section 2.4.1.5. From the dataset paper (Zou et al., 2018), three experiment results
are obtained as benchmarks. The first experiment used a raw X-ray dataset, which has
662 training images and 442 test images, on the YOLOv2. Conversely, the second and
third experiments employed synthesized images (i.e., images created from processing the
training images), which are 331 and 3010 images respectively in addition to the raw
images. The example raw and synthesized images are shown in Fig. 3.4. However, since
the network used in the experiments is YOLOv3, two additional benchmarks are produced.
The first YOLOv3 benchmark uses the raw dataset only, whereas the second YOLOv3
benchmark uses the raw dataset with additional 500 synthesized images. The benchmarks

are summarized in Table 3.1.

66



67

Table 3.1: The benchmark for the dangerous objects X-ray. The accuracies on YOLOv2 are
obtained from the results in the dangerous objects X-ray paper, whereas the YOLOv3 results
are produced.

Benchmark Details Accuracy

YOLOv2 Raw Dataset (662 Train Set, 442 Test Set) 84.20%
YOLOv2+4Synthl  Raw Dataset + 331 Synthesized Train Set 84.91%
YOLOv2+4Synth2 Raw Dataset + 3010 Synthesized Train Set 86.42%
YOLOv3 Raw Dataset (662 Train Set, 442 Test Set) 84.66%
YOLOv3+4Synthl  Raw Dataset + 500 Synthesized Train Set 86.21%

Table 3.2: The benchmarks are compared with the SOA results. The SOA has three configura-
tions, which are raw dataset with 1-2 objects, raw dataset with 3-4 objects, and raw dataset with
3-4 objects and class balancing. Adding SOA with class balancing improves the performance of
the network.

Benchmark Accuracy
YOLOv2 84.20%
YOLOv2+Synthl 84.91%
YOLOv2+4Synth2 86.42%
YOLOv3 84.66%
YOLOv3+Synthl 86.21%
SOA Accuracy
Raw + SOA 1-2 83.19%
Raw + SOA 3-4 86.41%

Raw + SOA 3-4 with CB  87.50%

3.1.1.1 SOA Experiment

In the SOA experiment, the objects are extracted from the training set and ran-
domly added to the training images to create new images automatically. There are three
configurations of SOA used. The first configuration adds 1-2 objects randomly to images,
whereas the second and third configurations add 3-4 objects. However, the third config-
uration adds objects with class balancing (i.e., using more objects from classes that have
low accuracies). For each configuration, 500 images are generated and added to the raw

dataset as dataset extension during training.

The experiment results in Table 3.2 show that adding more objects (i.e., SOA 3-4)



68

Table 3.3: The benchmarks are compared with the QA results. The QA has two configurations,
which are raw dataset with quad images, and raw dataset with quad images and SOA objects.
Extending the dataset with quad images improves the performance of the network.

Benchmark Accuracy

YOLOv2 84.20%
YOLOv2+Synthl  84.91%
YOLOv2+Synth2  86.42%
YOLOv3 84.66%
YOLOv3+Synthl 86.21%

QA Accuracy

Raw + QA 86.70%
Raw + QA + SOA  87.00%

to the training images reinforces the object features to the network, which results in high
accuracies. Moreover, if the objects are consciously added through class balancing, the
network can improve its learning on weak classes. For example, the network has low accu-
racies on the scissors and knife classes because they look similar. Supplying SOA objects
more on scissors and knives improves network performance. The difference between SOA
and synthesizing images is that synthesizing images requires expertise and image process-
ing to combine images, in which the synthesized images can look different than the raw
images. Hence, even adding approximately 3000 synthesized images (YOLOv2+Synth2)
may not significantly improve the network performance. The results show that SOA can

be a substitute for synthesizing images.

3.1.1.2 QA Experiment

In the QA experiment, the quad images of the training images are collected, and
then, 500 quad images are randomly selected as dataset extension. The QA has two
configurations, which are quad images only and quad images combined with SOA objects.
As shown in Table 3.3, adding quad images to the training set slightly increases the
network accuracy over the YOLOv3+Synthl. Moreover, adding SOA objects to the quad
images slightly increases the network accuracy even more than quad images only. The
QA results are comparable to those of the SOA, which implies that although the different
features are highlighted between the QA and SOA, the outcome is still similar. The SOA



69

Table 3.4: The QC data augmentation method is applied on the QA trained networks because
QC utilizes quad images. Then, the results are compared with the YOLOv3+Synthl and the
QA trained networks. Using quad images as additional viewpoints for the network improves its
ability to detect objects.

Benchmark Accuracy

YOLOv3+Synthl 86.21%
Raw + QA 86.70%
Raw + QA + SOA 87.00%

QC Accuracy

Raw + QA 88.26%
Raw + QA + SOA  87.40%

helps the network learn by reinforcing whole object representations, whereas QA helps

the network learn by teaching cropped object representations.

3.1.1.3 QC Experiment

The QC data augmentation is evaluated as described in Section 3.1. Since QC
is a Post-TDA, it utilizes trained networks that it will try to improve the performance.
For the QC experiment, the networks employed are the QA trained networks because
these are trained with quad images. The results in Table 3.4 demonstrate that using
quad images of every test image as additional viewpoints for the network improves the
performance of the network. Despite the network being trained with limited images, the
network learning can be extended by providing different viewpoints of the same image.
Notably, the improvement in the network trained by the second configuration of QA has
a small improvement after using QC. This is attributed to the additional SOA objects

that the network has to learn aside from the cropped object representation.

3.1.1.4 ZC Experiment

The ZC data augmentation is evaluated as described in Section 3.1. Since ZC does
not utilize image division as in QC, any trained network can be utilized with ZC. To
test the effectiveness of the ZC method, the YOLOv3, best SOA network (from Sec-
tion 3.1.1.1), and best QA network (from Section 3.1.1.2) are applied with ZC. As shown

in Table 3.5, obtaining the optimal magnification of test images significantly improves the



70

Table 3.5: The ZC method is applied on the YOLOv3, best SOA network, and best QA net-
work. The results are compared with the same networks to confirm whether ZC improves the
performance of the networks. The results show that ZC can provide the object size that fits the
features learned by the network, thereby improving the network performance.

Benchmark  Accuracy

YOLOv3 84.86%
SOA (Best) 87.50%
QA (Best) 87.00%

7C Accuracy

YOLOv3 88.72%
SOA (Best) 88.98%
QA (Best) 89.02%

Table 3.6: The ZQC data augmentation is applied to QA trained networks because ZQC utilizes
quad images. The results are compared with the YOLOv3+Synthl, best SOA network, and
best QA network. Providing the appropriate size of the quad images using ZQC improves the
performance of the network.

Benchmark Accuracy
YOLOv3+Synthl 86.21%
QA (Best) 87.00%
QC (Best) 88.26%
7QC Accuracy
Raw 4+ Quad 89.91%

Raw + Quad + SOA  88.86%

performance of all the networks tested. Furthermore, the results imply that the networks
have learned the object features properly but due to the small dataset, the object size
variation is not well represented. Therefore, ZC can help networks trained with limited

datasets to identify objects that have sizes different from the dataset.

3.1.1.5 ZQC Experiment

The performance of ZQC is evaluated as depicted in Section 3.1. In contrast to
7C, the ZQC subjects the quad images to different magnification instead of the original
image only. The networks from the QA experiment are used to apply ZQC because ZQC



Table 3.7: The QZC data augmentation method is applied to networks trained by QA because it
utilizes quad images. Since QZC is the combination of the Post-TDA methods, the QZC results
are compared with all the best Post-TDA networks. The results show that the QZC can provide
a wide representation of an image, and therefore achieve significant improvement in the network
performance compared to previous Post-TDA methods.

Benchmark Accuracy
YOLOv3+Synthl 86.21%
QC (Best) 87.40%
ZC (Best) 89.02%
ZQC (Best) 88.86%
QZC Accuracy
Raw + Quad 91.25%

Raw + Quad + SOA  90.39%

utilizes quad images. The baselines are the YOLOv3+Synth1, best QA network, and best
QC network. As shown in Table 3.6, the ZQC method improves the performance of the
networks. When the QA results are compared with ZQC results, the accuracy increase is
consistent. Therefore, obtaining the proper quad image size can prevent possible object

size mismatches, which results in better network detection.

3.1.1.6 QZC Experiment

The performance of QZC data augmentation is evaluated as depicted in Section 3.1.
The QZC is the culmination of all the Post-TDA methods, in which a test image is repre-
sented in multiple ways. The best magnification of a test image and the best magnification
of its corresponding quad images are used to help the network detect the objects in the
image. The QZC results are compared to YOLOv3+Synthl and all the previous Post-
TDA methods. The results in Table 3.7 demonstrate a significant improvement provided
by the QZC method. The wide variety of viewpoints in QZC has helped the network
detect objects more accurately. In particular, when the QZC result is compared with
the YOLOv3+Synthl result, there is a remarkable increase of 5% in accuracy. These
improvements cannot simply be obtained by training a network with a limited dataset re-
gardless of the number of epochs and hyperparameters tuning. Therefore, the Post-TDA
methods are helpful to the network during the application, especially the QZC method.

71



72

Table 3.8: The summary of experiments result. Among the data augmentations applied on the
training set, the SOA data augmentation yields the best accuracy. On the other hand, among the
data augmentations applied on test-time, the QZC, which is the combination of all Post-TDA
methods, yields the best accuracy.

Pre-TDA

YOLOv2+Synth2  YOLOv3+Synthl SOA (Best) QA (Best)

Accuracy 86.42% 86.21% 87.50% 87.00%
Post-TDA
QC (Best) ZC (Best) ZQC (Best) QZC (Best)
Accuracy 88.26% 89.02% 89.91% 91.25%

3.1.2 Experiments Summary

There are different ways to extract more information from a limited dataset. In
the original paper of the dangerous objects X-ray, the authors used synthesized images
to extend the image count. However, synthesizing images requires knowledge in image
processing and time to design new images. Moreover, the synthesized images may look dif-
ferent from the raw image as seen in Fig. 3.4, which results in a small increase in accuracy
even with substantially more images (e.g., YOLOv2+Synth2). The data augmentations
in the Pre-TDA are proposed to draw out more information from a limited dataset. It
uses the bounding box information from the labels of the training set to automatically
obtain the objects in an image and attach them to the training set images randomly to
create new images. Since the objects extracted do not undergo image processing, the
produced images match the training set images. As shown in Table 3.8, even a simple
SOA method can outperform networks with synthesized images. Therefore, the proposed

Pre-TDA methods can help networks increase their accuracy during training.

Networks that are trained on limited datasets can only reach a certain accuracy
ceiling. After reaching that certain accuracy, even with network modification, hyper-
parameters tuning, longer training times, or data augmentations, the accuracy cannot
increase substantially. The cause of the problem is the small dataset, in which the fea-
ture that can be extracted are finite. It is one of the reasons why the success of deep
neural networks is predicated on a deep network and massive dataset. Since in specialized

applications, the dataset is usually limited, Post-TDA are proposed. Post-TDA are data



%?®§%?
20l
SEER RN

Figure 3.5: American Hand Sign Language (Alphabet) (Abner, 2014).

augmentations that are applied during test-time. It aims to provide the network with mul-
tiple viewpoints of the test image to increase its chances of detecting objects. Essentially,
the Post-TDA try to match the image to the features learned by the network. In applica-
tions such as baggage checks, it is important to detect dangerous objects, and Post-TDA
increase that possibility. As seen in Table 3.8, the QZC has achieved 91.25%, which is a
substantial 5% increase from the YOLOv3 benchmark. This increase cannot be achieved
by training on the limited dataset alone. Hence, the proposed Post-TDA methods can

significantly help networks trained on limited datasets extend their capability.

3.2 Hand Sign Language Detection and Recognition

Alphabet hand sign language, as shown in Fig. 3.5, is used by hearing-impaired
individuals to communicate words that do not have a gesture such as proper names.
Developments in computer vision have made it possible to locate and identify hand signals
in an image or stream of images (i.e., a video). In this section, a method is proposed to
detect the location of a hand in an image, and subsequently identify it. The relative
quickness of Haar Cascades compared to a deep CNN is utilized to localize a hand in an
image, and then, the ability of CNN to classify images with high accuracy is utilized to
identify the letter that the cropped hand image represents.

73



1. Edge features

1 I=R 2\

@ ® (@ @@

2. Line features
mmEE S$Xe
@ ® © @ @ ¢ (h

3. Center-surround features

.
@ (b;

Figure 3.6: Haar-like Features (Lienhart and Maydt, 2002).

Figure 3.7: Haar Cascades implemented on hand sign language.

To detect the hand in an image, a Haar Classifier algorithm is employed (Viola and
Jones, 2001). A Haar Classifier uses a set of cascade functions, which are trained using
numerous positive images (i.e., images with the target object) and negative images (images
without the target object), to detect the target objects in images. During training, Haar-
like features are collected to extract features, which are calculated on adjacent rectangular
regions at a distinct location in a detection window. The sum of pixel intensities in each
region and the difference between the sums are consecutively calculated. These features
measure the difference in intensity between the desired regions. The Haar-like features are
shown in Fig. 3.6. Integral images are also employed to extract features from large images.
Afterward, Adaboost training is implemented to train the classifier to use the features
that best detect the target objects. Finally, a series of weak classifiers are combined using
cascading classifiers to create a strong classifier. The Haar Cascades implemented on the

hand sign language detection can be seen in Fig. 3.7.

After the hand region is extracted from the image, it is fed to the CNN to identify

the letter it represents. The CNN architecture is made up of two consecutive convolution-

74



(2Mr

Y

Figure 3.8: Hand Sign Language Detection and Recognition System.

pooling blocks, followed by a fully connected layer and a softmax layer. The network
architecture is small because there are limited training images. The dataset consists of
200 images per letter in the English alphabet, in which two persons contributed exactly
half of the dataset. The letter J and Z are excluded because they need hand motions to
represent the letter. A total of 4800 images are divided into 4320 training images and 480
test images. Each image has a size of 200 x 200 pixels. The training epoch is set to 50,

and the learning rate is 0.009. The optimizer used is adam optimizer.

The overall hand sign language detection and recognition system is summarized in

the following steps:

Step 1. The video coming from the webcam is treated as a stream of images
Step 2. Haar Cascades is used to extract the hand region from the image.

Step 3. The hand image is pre-processed using thresholding and morphological operators

to remove the background.
Step 4. The pre-processed hand image is fed to the CNN for classification.

Step 5. The output letter is displayed on the screen.

The process is shown in Fig. 3.8.

The test set results are displayed in Fig. 3.9. The total accuracy on the images from
the first person and second person are 95.42% and 83.33% respectively. The combined
accuracy is 89.38%. Most of the letters are correctly classified by the CNN but it has some



Letter M-Y

Percentage (%)
3

Percentage (%)
9
g
T
7
e e

O O

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

G H

Testset] @Testset2 M Average Accuracy Testset] mTestset2 M Average Accuracy

It O O 00|

! i
! |
3 i
Q S

C D E F

Figure 3.9: Accuracies on Hand Sign Language Test Set.

problems with images that look similar. For example, the letters K and V have similar
shapes in hand sign language, as well as letters M and N. As a result, the CNN tends to
select a letter over the other as seen in the letters M and N results. Nevertheless, as a

hand sign language detection and recognition system, the proposed method is successful.

3.3 Summary

In this chapter, novel data augmentations on both training and test-time are pro-
posed to improve the object detection of a network trained on a limited dataset. The data
augmentation methods in the training improve the accuracy of a network by automati-
cally generating new images using the objects extracted in the training set and adding the
new images to the training set. Therefore, the network can learn more information from
the training set. In addition, the data augmentation methods in the test-time improve
the performance of a network by presenting different viewpoints of the input image such
as magnifying the image in different levels. By matching the input image attributes with
the learning of the network, the network can detect objects better. These methods are
valuable to networks that have their performance limited by a small dataset. In another
application in the chapter, the CNN is proposed to combine with Haar Cascades for hand
sign language detection and recognition. The fast object detection of Haar Cascades and
the accurate image classification of CNN produce a decent hand sign language detection

recognition system.

76



CHAPTER IV

NEUROEVOLUTION FOR CNN TECHNIQUES AND
APPLICATIONS

Neuroevolution is a powerful approach to automatically design an optimal network
architecture. It uses evolutionary algorithms to find architectures that yield the best
accuracies and can compete with the best hand-engineered networks such as ResNet (Sun
et al., 2020). In Section 4.1, different proposed techniques to apply neuroevolution to
CNN are carefully explained. Moreover, the proposed methods to utilize the learning of a
trained network to neuroevolution-produced networks are discussed in Section 4.2. Aside
from image classification, neuroevolution can also be utilized in different applications such
as object detection and adversarial defense. In Section 4.3, the proposed neuroevolution
methods to discover optimal CNN architectures for different applications are explained

in detail.
4.1 Neuroevolution Techniques

The neuroevolution framework designed for convolutional neural network (CNN)

can be summarized by the following steps.

Step 1. Initialize a population of networks
Step 2. Train the individual networks
Step 3. Evaluate each network using a fitness function

Step 4. Select and mutate the fit individuals to form the next population for the next

generation

Step 5. Repeat the process in Step 2 until the end of the set generation

There are two configurations of neuroevolution tested, which are generic neuroevolution
and steady-state neuroevolution. Depending on the configuration, the steps are applied

differently.



- N e EEEEEEEEE, pmEmmmEEEEEEEE .- AN yEEEEEEE ...
] [ 4 ]
Generation N L Tournament 1 1! 1y Generation N+1
X 1 i . Mutate ' i
Population 1 ! Selection ' 1 Population
] ]
]
; 1 ! - : ! New Network #1 S
Network #1 Fitness: 45 | ! Network #3 Fitness: 51 1 Eli Fitness: 57
Randomly 1 L] (Elite)
e Networks 1 1y
1 ! 1 ! )
1 ! 1 !
Network #2 Fitness: 42 1 [ .
: ' Network #1 1 ! Network #6 Fitness: 48 | " 1 New Network #2  Fitness: n/a
! Fitness: 45 [ "
00000 . ' | 00000 |,
! 1 ! !
! 1 : . ]
]
Network #3 Fitness: 51 | : Nfztwork #2 : 1 1y
: 1 Fitness: 42 [ Network #4 Fitness: 53 : 1
P
000060 | x :
L '
L Network #4 o [ .
Network #4 Fitness: 53 | 1 Fitness: 53 ' e .
1 [ ]
! Tournament Size ! LN |
- 1 1 L |
B 1 ! LI ]
] LI |

AT T W OE E m Em o M M W W W W W o E Em mom o

78

. 2% ‘eemmmmm=m== ! e n s s s scs s e e e e me- i -
1. Train until the k-th 2. Perform tournament 3. Mutate all the selected 4. Fill the new population
network. selection until k-1 networks with the elite network and
networks are chosen. mutated networks.

Figure 4.2: Generic neuroevolution process. The process starts by training all the networks in
the population and obtaining their fitness (i.e., accuracy). Subsequently, networks are randomly
selected with the tournament size (e.g., three networks). The fittest network in the tournament
will fill a slot in the mutation area, which has a total of (population size minus one) slots. The
tournament continues until all the slots are filled. Then, the networks in the mutation area are
mutated one by one and become part of the new population for the next generation. The last
new population slot for the next generation is filled by the fittest individual from the previous
generation without mutation.

4.1.1 Generic Neuroevolution

In the generic neuroevolution, the networks, which form the population in Step 1,
are all initialized to have a basic network architecture as shown in Fig. 4.1. The intuition
behind this is to let the networks grow into complicated structures that suit the dataset
instead of starting from unoptimized complicated structures (Stanley and Miikkulainen,
2002). Moreover, this setting saves computational costs by slowly growing the network
architectures. In Step 2, all the networks are trained using the standard CNN training
procedure. Subsequently in Step 3, each network in the population is evaluated with a
fitness function, which is the network accuracy on the test set. The selection in Step 4
is specific to generic neuroevolution. After assigning the fitness to each network, all the

networks in the population are replaced by networks using tournament selection except



79

i S SAE E E E EEEEEEEEEEEE®E®EEEE "= .=  FemEEEEEEes e e - -~
N 1 )

: Generatu.)n N V& Mutation Train Child Network 1 : Gegeratllotr_r N+1

. Population o [ opulation

1 "] Mutate Child Network Fitness: 36 : ¥

1 | Network #1 Fitness: 36 |1 ! Each W !

1 (] —0—0—@— 1 New Network #1 Fitness: 36

1 o o @ "] Network LI

1 L : '

: Conv | Pool | Strd | Sum | Conc. ] : c%"" P(SOI S'gd s‘(j)m Co(;\c.

1 Conv | Pool | Strd | Sum | Conc. 'L 2 1 0 0 0 L.

[ 3 0 0 0 0 'L L

1 I Yemmmm= LI

1 | = mm == 1 New Network #2 Fitness: 37

1 ! . 1 ]

| Network#2 Fitness: 37 | A | Child Network Fitness: 36 '

] : : Selection s C%nv P<1)ol S:)rd Sl(.l)m Co1nc.

! Conv | Pool | Strd | Sum | Conc. elect

[] 3 1 0 0 1 [} Conv | Pool | Strd | Sum | Conc. better

1 ] : 2 1 0 0 0 Fitness

! ! New Network #3

1 (I ] . Fitness: 36

1 Network #3 Fitness: 33 [ | 4 (Child Network)

] LI Get Network #3 Fitness: 33 ¥ —m—

' 't Closest 1 !

1 Conv | Pool | Strd | Sum | Conc. Network p !

: 2 1 0 0 0 e using Conv | Pool | Strd | Sum [ Conc. [ : Conv | Pool | Strd | Sum [ Conc.

. - - Spectrum 2 1 0 0 0 L. 2 1 0 0 0

] : L] : 1

T A Vi m mmemmmemmmm e mmm o mEm o mmeEmeEmEEEm L - 14

Figure 4.3: Steady-state neuroevolution process. The process starts by training all the individ-
uals in the population and obtaining their accuracy. Next, each network in the population will
produce a child network through mutation, and every child is trained to obtain its fitness. Each
child is compared to the architecturally closest network in the population using the spectrum. If
the child has better fitness, it replaces the architecturally closest network in the population. Af-
ter all the children networks are evaluated, the process repeats from the first network producing
a child network, which implies a new generation.

for the last one. In the tournament selection, a subset of the population is obtained and
the best network individual in the subset fills the network population slot as explained
in Section 2.6.1. This procedure repeats to fill the new population until the penultimate
network slot. Afterward, these networks are mutated as part of the evolution process. For
the last network slot in the new population, the best network also known as the elite in the
previous population is carried over to the new population without any mutation, which
is also called elitist selection. This ensures that the performance of the new population
does not decrease on the next generation. The process from Step 2 is repeated until the

last generation. The generic neuroevolution implementation is shown in Fig. 4.2.

4.1.2 Steady-state Neuroevolution

Steady-state neuroevolution is inspired by the steady-state genetic algorithm (Agapie
and Wright, 2014; Vargas and Murata, 2016). Generic neuroevolution is a good approach
when the number of network individuals is large enough to be able to find potential
best architectures in a large search space. However, since CNNs have inherently deep
architectures to effectively learn the dataset features, training each network in the pop-

ulation repeatedly every generation is computationally expensive and time-consuming.



80

As a solution to this issue, steady-state neuroevolution is proposed. In Step 1, instead
of initializing the networks with the basic network architecture as in generic neuroevolu-
tion, they are initialized to have diverse architectures using the spectrum-based niching
method (Vargas and Murata, 2016). Each network architecture is represented by an ar-
ray called spectrum. The spectrum consists of the network properties namely: number of
convolutional blocks, number of pooling blocks, number of strided convolutional blocks,
number of summation blocks, and number of concatenation blocks. The distance between
two networks is measured by calculating the Euclidean distance between their respective

spectrum. The distance between networks Ny, N, is computed as

dspec(N1, N2) = ||spec(N1) — spec(Na)|, (4.1)

where spec(NN;) denotes the spectrum of network N; and || - || is the Euclidean norm.
Next, in step 2, the networks in the population are trained with the standard CNN
training. Afterward, the process changes from the typical neuroevolution implementation.
Fach network in the population produces two to three children networks by aggressive
mutation (i.e., multiple mutations on the network). The children are also trained and
their fitness (i.e., test set accuracy) is compared to the closest network in the population
using the spectrum. If a child network has better fitness than its closest network, the child
replaces it in the population. The process from networks producing children to children
replacing individuals in the population is repeated through all the generations. A basic

implementation of the steady-state neuroevolution is shown in Fig. 4.3.

Contrary to generic neuroevolution, steady-state neuroevolution does not rely on
the population size to encourage diversity among the networks and find the best architec-
tures. Instead, the combination of diverse population initialization, aggressive mutation,
and individual network replacement when it is outperformed, allows steady-state neu-
roevolution to be effective even on a small population (e.g., steady-state and generic
neuroevolution using four and twelve networks respectively). If diverse population ini-
tialization and aggressive mutation are applied in generic neuroevolution with a small
population, the networks will simply converge into similar architectures due to popu-
lation replacement every generation and fail to evolve into good network architectures.
Moreover, the networks in the steady-state neuroevolution are trained only once unlike

in the generic neuroevolution where the whole population is trained. Finally, in steady-



state neuroevolution, the individuals in the population are ensured to have better accuracy

along with the generations.

The mutations in both neuroevolution configurations are done by adding, modify-
ing, or deleting a convolutional block, pooling block, or strided convolutional block. In
addition, the summation block, which sums the output channels of two prior blocks, and
the concatenation block, which concatenates the output channels of two prior blocks are
added as skip connection blocks. In the summation block, if the output channels of two
prior blocks do not match, the smaller output channel is padded with zeroes to match

the larger output channel before adding them together.

4.2 Learning from trained Networks Methods

Using the learning of a trained network is beneficial for improving the training and
performance of another network. One of the well-known techniques that uses this concept
is transfer learning. The key idea in transfer learning is to reuse the weights or features
extracted from a dataset to another dataset in order to reduce training time and compen-
sate for the features provided by a small dataset. Transfer learning is effective in CNNs
because CNNs share the same low-level feature extractor in their first few layers. Transfer
learning makes standard networks (e.g., ResNet), even with very deep architectures useful
to train with different datasets. However, transfer learning is not directly accessible to
neuroevolution-produced networks due to the complexity of their architectures. There-
fore, two transfer learning methods are modified to apply to neuroevolution-produced
networks. In addition, another technique that uses the learning of a trained network,
which is called knowledge distillation, is also applied to neuroevolution-produced net-
works. In knowledge distillation, instead of using the weights of a trained network, the
response of a trained network (e.g., logits) to an input is used to guide the learning of the
target network. With this method, the learning of a trained network can be transferred

to a network even with a different architecture.

4.2.1 Transfer Learning

There are two types of transfer learning methods incorporated to neuroevolution
training. The first type is fine-tuning, where the weights of a network trained on a dif-

ferent dataset (e.g., ImageNet dataset) are used as initial weights of the target network.

81



Next, the target network is evolved using neuroevolution to further optimize its architec-
ture to the dataset in addition to the weights optimization of the training process. The
second type of transfer learning is feature extraction. In feature extraction, the weights
transferred to the target network are frozen. Subsequently, the network is evolved using
neuroevolution while keeping the weights from the trained network the same through the
generations. Neuroevolution essentially adds blocks that are necessary to improve the

performance of the target network.
4.2.2 Knowledge Distillation

In knowledge distillation, as discussed in Section 2.5.2; the learning of a trained
network or teacher network is shared to another network or student network through
their logits (Hinton et al., 2015). Both networks are fed with the same image and the
logits (i.e., the output of the last layer) of each network is fed to the modified softmax.
The modified softmax function has a parameter called temperature denoted as T, which

regulates the importance of each logits. The modified softmax is formally defined as

pi= P/ (4.2)
Zj exp(z;/ T)

where z; denotes the logits of a network at i-th class, p; denotes the probability of an
input belonging to i-th class, and T as the temperature. When 7' — oo, the probability
between the classes becomes the same. However, when 7' — 0, the probability between
the classes becomes a one-hot label, that is the class with the highest probability has
a value of 1 while other classes become zero. Since in knowledge distillation, the class
probability assignment of the teacher network is to be taught to the student network, the
T should properly be adjusted. Subsequently, the distillation loss, which encourages the

student network to match its logits with the teacher network, is defined as

LD(p(Ztv T)vp(Z57 T)) = Z _pi(zti) T)log(pi(zsiv T))’ (43)

(2

where z; and z; are the logits of the teacher network and student network respectively.
The distillation loss is added to the cross-entropy loss of the student network, which makes

the total loss defined as

L=Lcg+ Lp. (4.4)

82



83

The combination of the two losses encourages the student network to optimize its pa-
rameters not only to output correct image labels but also output logits similar to that
of the teacher network. This method is tested with neuroevolution-produced networks to
evaluate whether a trained network can help improve the performance of neuroevolution-

produced networks.

4.3 Neureovolution Applications

To concretely demonstrate the effectiveness of neuroevolution in discovering optimal
network architectures, it is applied to two specific problems in deep neural networks. First,
neuroevolution is used to find good architectures for detecting dangerous objects in X-ray
images. Second, neuroevolution is tasked to find network architectures that are robust to

the transferability of adversarial examples.

4.3.1 X-ray Object Detection

In this application, a CNN is fed with X-ray images that contain dangerous objects.
The aim of CNN is to perform object detection, which is creating a bounding box around
dangerous objects while correctly labeling them in the process. In contrast to image
classification, object detection is more complicated because it combines localization of
objects and image classification. In addition, applications that use specialized images
such as X-ray datasets as shown in Fig. 2.37, tend to have a limited number of images.
This is due to the difficulty in data collection and scarcity of resources (e.g., cancer
tumors). In the case of dangerous objects X-rays, companies are reluctant to divulge such
datasets publicly over the risk of jeopardizing security. Thus, tackling this issue is a good

measure for the capability of neuroevolution.

To combine object localization and image classification in CNNs, there are special-
ized network architectures and training evaluations to effectively extract the necessary
information from the dataset. One of the most successful implementations of object de-
tection in CNN is the YOLO algorithm (Redmon and Farhadi, 2018). The YOLOv3 has
a network architecture called Darknet-53 as seen in Fig. 4.4. It is an iteration from its
previous version that utilizes skip connections to create a deep network. The YOLOv3
has 53 convolutional blocks as opposed to 19 from the previous version. The improvement

solves different problems including the ability to detect small objects.



84

= = = = == = e e e e e = ===,

I Backbone

,T'

Upsampllng
Upsampling 1

1st
Evaluation
block

105"
block

Connectlon block block

2nd
Evaluation

block ard

Evaluation
block

Figure 4.4: YOLOv3 Network Architecture.

Applying a deep YOLOvV3 network to a specialized application such as dangerous
objects X-ray detection, which has limited images, may not be optimal. It is because a
limited dataset does not need a deep network architecture. The YOLOv3 architecture can
be divided into two sections as seen in Fig 4.4. The first section, which constitutes the bulk
of the architecture, is similar to the architecture of ResNet with skip connections every
few convolutional blocks. This section is denoted as backbone. The second section, which
is comprised of evaluation blocks, upsampling blocks, and long skip connections from the
backbone is denoted as evaluation. The evaluation is responsible for calculating the loss of
input images. Since the backbone has numerous convolutional blocks, neuroevolution is
proposed to create a substitute architecture that maintains or improves the performance of
the original backbone while reducing the number of blocks and optimizing the architecture

to the specific dataset (i.e., dangerous objects X-ray).

The neuroevolution configuration used in this application is the generic neuroevolu-
tion. Under this configuration, there are two methods proposed to create a new backbone
for the YOLOV3. The first method uses a different dataset and application (i.e., CIFAR-
10 dataset and image classification) to create a network using neuroevolution, and then,
the produced network replaces the YOLOv3 backbone. The second method, on the other
hand, replaces the backbone of YOLOv3 with a basic network and uses multiple copies
of it to form a neuroevolution population. The population of YOLOv3 networks with a

basic backbone undergoes neuroevolution where the backbone mutates every generation



85

Algorithm 2 Algorithm for NECNN-C10

Input: b: basic network, s: size of population, I: max network block count, ¢: training length
Output: F: output network

1. P={Ny,Na,...,Ng} plnitialize the all the networks with the network architecture b

2: for i =1,2,...,(I't) do

3: for each N in P do

4: N = Train(N)

5. end for

6: if ¢ mod ¢ =0 then

7 for j=1,2,...,sdo

8: C; = Evaluate(NN;) >Evaluate the fitness of each network, which is the accuracy
9: end for

10: for j=1,2,...,s do

11: M; = TournamentSelection(C, P)
12: end for

13: for j =1,2,...,s do

14: N; = Mutation(M;)

15: end for

16:  end if

17: end for

18: for j=1,2,...,s do

19:  C; = Evaluate(NV;)

20: end for

21: return SelectBest(C, P)  >Select the best network using the fitness

to optimize the architecture to the dataset. The first and second methods are summarized

in Algorithms 2 and 3 respectively.

In Algorithm 2, the neuroevolution population is initialized with s number of in-
dividual networks. All the individual networks have the same basic architecture b. The
networks are trained with the CIFAR-10 dataset for ¢ epochs and the networks are evalu-
ated for fitness, which is the image classification accuracy. Afterward, s — 1 networks are
selected using tournament selection. The selected individuals are mutated and replaces
the current individuals in the next generation of population. For the last individual slot
in the population, the elite individual from the current population is copied to the next
generation of the population. Then, the cycle from the training of networks in the popu-
lation repeats [ times. After the evolution has finished, the best individual network F' in

the population is returned and becomes the YOLOv3 backbone.

Conversely, in Algorithm 3, neuroevolution directly evolves a population of YOLOv3
networks with a basic backbone. During initialization, the population is filled with s
number of the same YOLOv3 network with a basic backbone. Each individual in the

population is trained with the dangerous objects X-ray dataset for ¢ epochs and subse-



86

Algorithm 3 Algorithm for NECNN-XR

Input: b: YOLOv3 with basic backbone, s: size of population, I: max network block count, t:
training length, e: refine epoch count
Output: F: output network
1. P={Ny,Na,...,Ng} plnitialize the all the networks with the network architecture b
2: fori=1,2,...,(I't) do
3 for each N in P do
4 N = Train(N)
5. end for
6: if i mod t =0 then
7
8
9

for j=1,2,...,s do
C; = Evaluate(N;) pEvaluate the fitness of each network, which is the accuracy

: end for
10: M=SelectBest(C, P) >Select the best network using the fitness
11: for j=1,2,...,s do
12: if j =1 then
13: Ny, =M
14: end if
15: N; = Mutate(M)
16: end for
17.  end if
18: end for

19: for j=1,2,...,s do

20:  C; = Evaluate(N;)

21: end for

22: K=SelectBest(C, P)

23: fori=1,2,...,e do

24: K = Train(K) >Refining the best network
25: end for

26: return K

quently evaluated for fitness. Since the application is object detection, the fitness is the
mean average precision of the network. In contrast to Algorithm 2, only the best network
from the current population is mutated every time to fill the s — 1 population slots for
the next generation. The reason behind this is the considerably high computational cost
of training a YOLOv3 network compared to a regular CNN for image classification. The
final population slot for the next generation is again filled by the best network from the
current network without mutations. After the evolution, the best network is obtained
from the population and trained further for e epochs. The refined network is returned as

F.

4.3.2 Transferability of Adversarial Examples Defense

One of the most intriguing problems in deep neural networks is adversarial attacks
as discussed in Section 2.3.4. Adversarial attacks can fool the network into misclassifying

images by slightly perturbing the image pixels, which are not visible to the human eye.



87

Furthermore, an attacked image, known as adversarial example, designed for a specific
network can astonishingly fool another network without additional perturbations. To
combat the transferability of adversarial examples, most researches focus on improving
the network training process (e.g., adversarial training) or filtering the input images (e.g.,
JPEG compression) (Guo et al., 2018; Shafahi et al., 2019; Wong et al., 2019). How-
ever, there are recent and limited researches that try to find networks that are robust
to adversarial examples from the architecture perspective. Thus, as a contribution to
the literature, a method to use neuroevolution to find robust network architectures is

proposed.

Although most standard networks (e.g., ResNet, DenseNet, etc.) share transfer-
ability of adversarial examples between them, it has been empirically observed that the
extent of transferability depends on the similarity of the network architecture. The more
architectural similarities two networks share, the higher the transferability of adversarial
examples is shared between them. Therefore, neuroevolution is proposed to find net-
work architectures that can resist transferability. However, using neuroevolution alone to
find such networks requires complex mutation procedures and a large number of genera-
tions (Kotyan and Vargas, 2020). To make the architecture search efficient, a technique
called gradient misalignment (GM) is combined with neuroevolution. The networks that
share high transferability between them also exhibit aligned input gradients (Liu et al.,
2016; Demontis et al., 2019). The gradient misalignment technique aligns the direction of
input gradients of a network opposite to those of the network where the adversarial exam-
ples are generated. Using this technique alone can make a network robust but combining
it with neuroevolution produces a significantly more robust network as demonstrated in
the experiments. Moreover, GM allows neuroevolution to use simpler network mutations
and a smaller number of generations than the previous study. Formally, neuroevolution
with GM is proposed to find networks that are robust to the transferability of adversarial

examples for this application.

The neuroevolution configuration utilized in this application is the steady-state
neuroevolution. As such, it follows the neuroevolution process described in Section 4.1.2.
The main differences in the neuroevolution implementation of this application are the
training procedure and the fitness function. As mentioned before, GM is combined with

neuroevolution, and it is done by adding the GM loss to the cross-entropy loss of the net-



work being trained. To calculate the GM loss, the network that generates the adversarial
examples, denoted as reference network, is employed. During the training of a network,
the images fed to the network are also fed to the reference network. Afterward, the cosine
similarity of the input gradients of the network being trained and the reference network
are obtained as the GM loss Lgn, which measures how much the input gradients are
misaligned. Formally, given a dataset D, the average cosine similarity of networks f. and

fr are calculated as follows:

(4.5)

1 Vals (x,y), Vil (z,
Lot — 3 |< f(2,9), Valy, (2,9))

D] wagep 1Valr @ DI Valy, (2, 9)

where |D| denotes the size of dataset, (-, ) denotes the inner product of vectors, and | - ||

is the Euclidean norm. The total network loss of the network being trained becomes
L =Lcg + Alawm, (4.6)

where A is a hyperparameter. The A hyperparameter is adjusted carefully according to
the characteristics of a dataset. If A is too large, the network does not learn the correct
image labels because it only focuses on the misalignment of input gradients. In contrast,
if the X is too small, the network fails to misalign its input gradients with respect to the
reference network. With the GM loss added to the total loss of a network, the network
is encouraged to have misaligned input gradients without explicitly interfering with the
network learning process and weights. In this way, the network weights can converge into
values that learn the correct labels of images while having misaligned input gradients
with respect to the reference network. The networks trained with the GM loss are the

individuals in the neuroevolution population and their children.

Since the task of neuroevolution is to find networks that are robust to transferabil-
ity of adversarial attacks while maintaining good accuracy on unperturbed images, the
accuracy on unperturbed images (i.e., clean accuracy) and accuracy on adversarial exam-
ples (i.e., adversarial accuracy) are both used to evaluate the fitness of a network. The
fitness of a network is defined as the minimum between clean accuracy and adversarial

accuracy.

F = min(ACL,AAD), (4.7)

88



89

Algorithm 4 Neuroevolution with GM

Input: s: size of population, n: number of children to produce, d: minimum network distance,
g: number of generations
Output: F': evolved networks after neuroevolution
1: P={N;,Na,...,Ng} > Initialize the population by s candidate networks Ny, ..., Ny with
minimum network distance d.
2: fort=1,2,...,9 do
3 for each N in P do
4 {C1,C4,...,C,} = mutation(N)
5: for j=1,2,...,ndo
6: N; = train(C;) > Train with loss Eq. (4.6).
7 N* = arg min dspec(N',C;) > Find the closest network
N’eP

8: if F(N*) < F(C;) then
9: Replace N* with Cj.
10: end if

11: end for

12: end for

13: end for

14: return P

where Acy, is the clean accuracy and Auxp is the adversarial accuracy. By using the
minimum between the clean and adversarial accuracies, the lower bound of both accuracies
will always increase through the course of evolution. If the fitness is not designed properly,
the neuroevolution tends to prioritize one accuracy over the other. However, the proposed
fitness function gives priority to both values so that the network does not reduce the

transferability of adversarial examples at the cost of clean accuracy.

The neuroevolution with GM framework is summarized in Algorithm 4. Given
a population s, number of children n, minimum network distance d, and number of
generations g, the process starts by initializing a population of s networks with a minimum
network distance of d to each other. Each network in the population produces n children
through aggressive mutation. Subsequently, each child is trained with GM and compared
to the network in the population P with the least network distance. If there are multiple
networks with the least network distance, the first closest network is used. However,
the probability that this will occur is low due to the combination of aggressive mutation
and spectrum-based niching. During the comparison, if the child has better fitness than
the closest network, the child replaces the closest network in the population. The cycle
continues until the last generation. At the end of the process, the population of evolved
networks is returned as output F'. The evolved networks in F' are trained further to refine

the weights.



4.4 Summary

In summary, this chapter presents the different neuroevolution approach to CNN
techniques, which are generic neuroevolution and steady-state neuroevolution. Moreover,
the methods that use a trained network to help improve the training of another net-
work such as transfer learning are discussed. The techniques to apply these methods to
neuroevolution-produced networks are proposed. Finally, the proposed methods to use
neuroevolution to discover optimal network architectures specifically for dangerous ob-
jects X-ray detection and transferability of adversarial examples defense applications are

also explained in this chapter.

90



CHAPTER V

NEUROEVOLUTION FOR CNN EXPERIMENTS

In the neuroevolution for CNN experiments, the methods detailed in Chapter 4 are
demonstrated. The experiments are divided into two parts. The first part, neuroevolution
techniques, examines the different implementations of neuroevolution, which is discussed
in Section 5.1. The second part, Learning from trained networks, explores the effects of
adding transfer learning, and knowledge distillation to neuroevolution, which is examined

in Section 5.2.

5.1 Neuroevolution Techniques

Neuroevolution is an algorithm used to evolve network architectures to optimize
them for a particular dataset or application. There are two configurations of neuroevo-
lution (NE) that are experimented with in this section. The first configuration is generic
neuroevolution, and the second is steady-state neuroevolution, which are both discussed
in Sections 4.1.1 and 4.1.2 respectively. The neuroevolution-produced CNN, denoted
as NECNN;, are generated with the following experiment hyperparameters. In the first
configuration, the population is initialized to have 10 networks, each with the basic ar-
chitecture as shown in Fig. 4.1. The selection method is tournament selection with a
tournament size of three. The maximum block (e.g., convolutional block) count for each
network is 30 blocks, excluding the fully connected layers. The batch size is fixed at 128,
and the optimizer is stochastic gradient descent (SGD). In the second configuration, the
population count is four networks that are randomly designed to have at least a network
distance of 4 to each other. Each network in the population produces two children every
generation. The total number of generations is 30, and the maximum block count for
each network is 30. Similar to the first configuration, the batch is fixed to 128, and the
optimizer is SGD. For the other hyperparameters such as learning rate, they are fixed to
the default PyTorch DNN library (Paszke et al., 2019) settings without fine-tunings to
establish an objective comparison between the networks. For each configuration, the best
network produced is trained further for 500 epochs from scratch to ensure that the ac-

curacies converge into stable values. The hyperparameter settings for each configuration



Table 5.1: Neuroevolution hyperparameter settings.

Population Network Init.  Mutations per Gen. Generations
Generic NE 10 basic 9 networks 25
Steady-state NE 4 random 8 networks 30

Max Blocks Batch Size Optimizer Fine-tuning Epoch
Generic NE 30 128 SGD 500
Steady-state NE 30 128 SGD 500

Table 5.2: The NECNN networks evolved using the generic neuroevolution and steady-state
neuroevolution are compared. Furthermore, the ResNet-18 and ResNet-34 are also used as
baselines. Learning from a trained network is also employed by using transfer learning and
knowledge distillation on the networks. The NECNN networks have performed better than the
ResNet networks on all comparisons.

ResNet and NECNN Networks

ResNet-18 ResNet-34 Generic NE Steady-state NE

Accuracy 89.21% 89.25% 91.59% 91.00%

ResNet Networks with Transfer Learning

ResNet-184+-TL ResNet-34+TL

Accuracy 88.78% 89.87%

ResNet and NECNN Networks with Knowledge Distillation

ResNet-18+KD  ResNet-34+KD  Generic NE+KD  Steady-state NE+KD

Accuracy 90.99% 91.90% 92.87% 92.38%

are summarized in Table 5.1.

The network architectures produced by the generic NE and steady-state NE are
compared to the ResNet-18 and ResNet-34. The ResNet networks are trained with the
same settings as the NECNN networks. In terms of block count, the NECNN is about the
same as the ResNet-18 when all the blocks (e.g., convolutional, skip connection, etc.) are
counted. Moreover, since the use of transfer learning is a common practice in the training
of standard networks such as ResNet, it is also employed as a comparison. For the transfer
learning settings, the trained network weights are obtained from training the ResNet on
the ImageNet dataset. The trained weights are used as pre-training or initialization to the

ResNet networks. In line with learning from a trained network, knowledge distillation, as

92



93

discussed in Section 4.2.2 is also applied on NECNN and ResNet networks. In knowledge
distillation, the teacher network utilized is refined in CIFAR-10 to have an accuracy of

94.38%.

As reported in Table 5.2, the NECNN networks from both NE configurations out-
perform the ResNet networks. In particular, despite having fewer blocks than ResNet-34,
the optimized NECNN network architectures have higher accuracies than ResNet-34.
Training the ResNet-34 with transfer learning slightly improves its performance but it is
still lower than NECNN networks. The knowledge distillation improves both the ResNet
and NECNN network accuracies and the increase is roughly the same for all the networks
when compared to their vanilla versions. Thus, the NECNN networks have the best per-
formance in all comparisons. The results demonstrate that the two configurations of NE
are capable of producing network architectures that can perform at the same level as

standard networks such as ResNet but with an optimized architecture.

The network architectures produced by generic NE and steady-state NE are shown
in Fig. 5.1 and 5.2. The NECNN from generic NE has a total of 26 blocks, which is
comprised of 17 convolutional blocks, 2 pooling blocks, 5 skip connection blocks, and 2
fully connected layers. On the other hand, the NECNN from steady-state NE has a total
of 32 blocks, which consist of 9 convolution blocks, 7 pooling blocks, 14 skip connection
blocks, and 2 fully connected layers. The NECNN from generic NE is evolved for 25
hours, whereas the steady-state NECNN is evolved for 71 hours. These evolution peri-
ods are substantially lower than CGP-CNN, in which the shortest evolution period took
13.7 days (Suganuma et al., 2017). In addition, the highest accuracy for the CGP-CNN
network, which is 94.02%, is only higher than NECNN network by 1.15%. Moreover, com-
pared to generic NECNN, the steady-state NECNN has higher architectural complexity.
This is attributed to the aggressive mutation and spectrum-based niching applied to the
population networks. The aggressive mutation creates sophisticated block combinations
through repeated mutations, whereas spectrum-based niching allows very different archi-
tectures to survive along with the generations. In contrast, generic NE uses only one
mutation every generation. Furthermore, it also uses tournament selection in a relatively
small population (i.e., 10 individuals) that lets a particular block combination prevail
among the individuals and survive along with the generations. For these reasons, the net-

work architecture produced by generic NE tends to be relatively simpler than steady-state



eConvqutionaI Block
GStrided Convolutional Block
°Pooling Block
eSummation Block
°COncatenation Block

Fully-connected Block

!

Figure 5.1: Generic NE produced network.

network architecture but more complicated than standard networks (e.g., VGG).

5.2 Learning from trained Networks

Utilizing the learning of a trained network is considered one of the good practices
in training deep neural networks. Standard networks (e.g., ResNet, VGG, etc.) are com-
monly trained on large-scale datasets such as ImageNet. The network learning or weights
acquired from these trainings can be utilized to train the network on new applications such
as CIFAR-10, X-ray datasets, etc. This method is called transfer learning as discussed in
Section 2.5.1. The first few layers of a network, regardless of the dataset, operate in the
same way as a low-level feature extractor. As a result, the weights on these layers can
be used directly as weights initialization or pre-training to train the network on a new

dataset. Furthermore, if the new dataset is similar to the dataset the network weights are

94



OConvolutionaI Block
GStrided Convolutional Block

GPooIing Block

°Summation Block
°Concatenation Block |
Fully-connected Block l

Figure 5.2: Steady-state NE produced network.

trained with, these weights of the network can be entirely frozen except for the last layer
to train on the new dataset, which is called feature extraction. Implementing transfer
learning can accelerate network convergence and reduce training time. In this experi-
ment, the ways to incorporate transfer learning to NE are explored. Generally, transfer
learning cannot be used in NE because the network architecture changes every generation
in NE. The weights of a standard network (e.g., ResNet) simply cannot fit those of the
NECNN network. Thus, different methods are experimented with.

In addition, another technique, which uses the learning of a trained network to
teach another network, called knowledge distillation is employed. In knowledge distilla-
tion as discussed in Section 2.5.2; instead of using the weights of the trained network,

the network is used as a teacher to help another network or student network converge

95



96

Table 5.3: The baseline networks are ResNet-18 recreated using self-implemented blocks (NB),
NECNN with 40 blocks, and ResNet-18, which is evolved using steady-state NE to have 40
blocks.

Baseline Networks

ResNet-18(NB) NECNN-40  ResNet-18(NB)+NE

Accuracy 86.73% 90.28% 91.48%

to better weights. The logits or the values in the last layer of a teacher network reflect
the function it represents. By encouraging the student network to emulate the logits of
the teacher network, the student network can effectively learn better weights and subse-
quently, perform better. In this section, knowledge distillation is also experimented to
help networks learn, especially the NECNN networks, which cannot normally use transfer

learning to learn from trained networks.

5.2.1 Network Baselines

For the baselines, there are three networks used, which are trained with the same
settings as in Section 5.1. The first network is a ResNet-18 network but reimplemented
using the blocks utilized in NE, which is denoted as ResNet-18(NB). There are slight
differences between the original ResNet-18 and ResNet-18(NB) that contributed to the
dip in the accuracy of ResNet-18(NB). However, since the blocks in NE are used, ResNet-
18(NB) architecture can be evolved using NE. The ResNet-18(NB) has approximately 30
blocks. The second network is NECNN evolved with 40 blocks. Lastly, the third network
is ResNet-18(NB), which is evolved using NE for 20 generations to gain 10 more blocks.

The intuition of creating the last network is to refine the ResNet architecture using NE.

The accuracies of the baseline networks are shown in Table 5.3. The results show
that using a successful hand-engineered architecture such as ResNet-18 with NE can evolve
into a better network. Although NECNN-40 and ResNet-18(NB)+NE have the same block
count, the latter performs better. The results also demonstrated that a good network
architecture can be used as a starting architecture for NE. Instead of inheriting the weights
to learn better as in transfer learning, the network architecture can be inherited to evolve
better. The ResNet-18(NB)+NE network architecture can be seen in Fig. 5.3. After
the evolution, ResNet-18(NB)+NE only maintains the ResNet structure for the first few



A Inp

ut
ResNet Blocks
Arrangement

.

..............

—~

° Convolutional Block
o Strided Convolutional Block

o Pooling Block
e Summation Block

o Concatenation Block |

Fully-connected Block l

Continue to A

Figure 5.3: This network is ResNet-18(NB), which is evolved using NE to add 10 more blocks.
The blocks inside the green dotted rectangle resembles the ResNet architecture.

blocks as shown inside the green dotted rectangle. In the entirety of the architecture, it
can be observed that NE populated the network with abundant skip connection blocks

linking different parts of the architecture.

5.2.2 NECNN Networks with Transfer Learning

To understand the effects of transfer learning on the evolution of networks using NE,
two transfer learning configurations are experimented. Each configuration has training
settings that are the same as in Section 5.1. The first configuration is the fine-tuning,
in which the networks are initialized with the weights of the network trained on another

dataset. In this experiment, the weights come from the ImageNet dataset training. Under

97



98

Table 5.4: The results of combining transfer learning with NE are shown below. Adding fine-
tuning transfer learning to NE does not improve the accuracy, whereas adding feature extraction
transfer learning to NE slightly improves the accuracy of the network compared to the baseline.

Fine-tuning TL Feature extraction TL
ResNet-18(NB)  ResNet-18(NB)+NE ResNet-18(NB)  ResNet-18(NB)+NE
Accuracy 87.84% 87.78% 77.99% 88.38%

the fine-tuning, two networks are utilized. The first network is simply using the trained
weights as initialization and then train normally. The second network is also initialized by
the trained weights but undergoes evolution similar to the baseline network. The second
transfer learning configuration is the feature extraction. It also uses two networks as in
the first configuration but the main difference is the freezing of parameters. For the first
network, after initializing it with the trained weights, the parameters are frozen except
for the last layer. Similarly, the second network also has frozen weights but the blocks
that are added during evolution can be trained. Furthermore, if an original block that
has a frozen weight is replaced during evolution, the replacement block can be trained

again. The results are shown in Table 5.4.

As expected, using the transfer learning as fine-tuning to ResNet-18(NB) yields
better performance. Using the trained weights as initialization provides a good starting
point for the network than learning from random weights. However, adding NE to the
same network (ResNet-18(NB)+NE) does not improve the performance, which is also at-
tributed to the trained weights. Since the ResNet-18(NB) can now converge better due to
the trained weights, when using steady-state NE, the child networks cannot easily replace
their parents. It results in many generations passing in NE without change in the popula-
tion networks. In contrast to fine-tuning, the feature extraction transfer learning resulted
in a decrease in performance for ResNet-18(NB). With only the final layer of the network
being available to train, it shows that the weights in the final layer are not enough to shift
the network learning from ImageNet to CIFAR-10. However, the difficulty in training
the network with feature extraction is taken advantage of by NE. Since the networks in
the NE population cannot converge easily, these can be simply replaced by their children
networks. The better evolution process resulted in a network (ResNet-18(NB)+NE) that
has the highest accuracy among the four networks. The experiments indicate that using

transfer learning with NE can slightly improve performance but they are not very com-



Table 5.5: The networks from the baseline in Table 5.3 are retrained with knowledge distillation.
The teacher network is refined with CIFAR-10, which has 94.38% accuracy. All of the networks
have remarkably increased their performance.

Knowledge Distillation

ResNet-18(NB) NECNN-40  ResNet-18(NB)+NE

Accuracy 88.07% 91.79% 93.29%

patible with each other. If the ResNet-18(NB)+NE from feature extraction is compared
to the ResNet-18(NB)+NE from the baseline, the difference is 3.1%, which shows that
NE can perform better without transfer learning. Thus, a different method should be

employed to learn from a trained network.

5.2.3 NECNN Networks with Knowledge Distillation

The last method to learn from a trained network is knowledge distillation. In
contrast to transfer learning, which shares network learning through network weights,
knowledge distillation shares network learning by teaching a student network to evaluate
inputs similar to the teacher. As explained in Section 4.2.2, the logits of the teacher
network and the student network are compared, and the difference becomes an additional
loss to the student network to encourage the student to output logits similar to the
teacher. Since only logits are being compared in knowledge distillation, it can be applied
to NECNN networks easily. In the experiments, the networks in the baseline are retrained
with knowledge distillation as student networks. The teacher network is the same network
used in Section 5.1, which is refined in CIFAR-10 to have an accuracy of 94.38%. The

results are reported in Table 5.5.

The results demonstrate that sharing the learning of the teacher network through
knowledge distillation can notably increase the performance of networks. The ResNet-
18(NB)+NE has remarkably achieved 93.29% accuracy, which has increased by 1.81%
from the baseline result. Furthermore, the increase is approximately the same for the
other two networks. Therefore, knowledge distillation is a powerful method to guide the
networks to learn better weights than simply relying on the training dataset. In addition,
knowledge distillation is a suitable technique to make the NECNN networks learn from a

trained dataset since any network architecture can be used unlike in transfer learning.

99



100

5.3 Summary

In this chapter, the neuroevolution techniques, which are generic neuroevolution
and steady-state neuroevolution, are experimented with. The results show that both
techniques have produced network architectures that have remarkable performances in
the CIFAR-10 dataset. Moreover, training the neuroevolution-produced networks with
knowledge distillation further improves the network performances. In contrast, trans-
fer learning does not provide substantial benefits to neuroevolution-produced network

training.



CHAPTER VI

NEUROEVOLUTION FOR CNN APPLICATIONS

The neuroevolution for CNN applications are experiments in which neuroevolution
is employed in real-world CNN problems. The first application is discussed in Section 6.1.
In this application, neuroevolution is used to evolve small backbones (network architec-
tures) that replace the deep backbone of YOLOv3. The small backbone is optimized to
the dangerous objects X-ray dataset, which has limited images, unlike the large backbone
of YOLOv3, which has redundant parameters. The second application is expounded in
Section 6.2. This application uses neuroevolution to evolve robust networks that reduce
the transferability of adversarial examples. Adversarial examples are images generated
by adversarially attacking a network, and these images can also fool other networks with-
out any modification. However, the extent of the transferability of adversarial examples
(i.e., fooling other networks) varies with the architecture design. Therefore, neuroevolu-
tion is utilized to discover exceptional architectures that can lower the transferability of

adversarial examples significantly.

6.1 NECNN for X-ray Object Detection

In this application, the YOLOv3 network is compared to the YOLOv3 network that
has its backbone replaced with NECNN (i.e., neuroevolution-produced CNN) network.
As shown in Fig. 4.4, the YOLOv3 backbone, which is enclosed with a dashed rectan-
gle, has a deep architecture with 81 blocks and skip connections similar to ResNet. To
examine the significance of the backbone to the whole YOLOv3 architecture, different
backbones of YOLOv3 are created from the original YOLOv3 backbone by trimming it.
The first network is YOLOv3 with transfer learning weights (i.e., weights pre-trained on
ImageNet). The second YOLOv3 network is simply the original network with random
initialization. The third network is called YOLO Med, which is YOLOv3 but has its
backbone trimmed to match the block count of the NECNN backbones. The last network
is YOLO Tiny, which is a network resembling YOLOv2. It does not utilize skip connec-
tions and contains only one evaluation block. For the NECNN backbones, there are three

networks used in the experiment, which are all generated using the generic neuroevolu-



102

Table 6.1: List of YOLO networks and NECNN networks with their description.

Network Description

YOLOv3+TL YOLOv3 Arch. with Transfer Learning
YOLOv3 YOLOv3 Arch. with random initialization
YOLO Med YOLOvV3 Arch. with backbone significantly decreased
YOLO Tiny Architecture that resembles YOLOv2

NECNN-C10 Backbone produced by Alg. 2 with YOLOv3 evaluation
NECNN-XR1  Backbone produced by Alg. 3 with YOLOv3 evaluation
NECNN-XR2  Backbone produced by Alg. 3 with YOLOv3 evaluation

Table 6.2: YOLO Networks and NECNN Networks Block Counts.

Network Block Count
YOLOv3+TL 106 blocks
YOLOv3 106 blocks
YOLO Med 55 blocks
YOLO Tiny 23 blocks

NECNN-C10 49 blocks (24 backbone + 25 evaluation)
NECNN-XR1 47 blocks (22 backbone + 25 evaluation)
NECNN-XR2 50 blocks (25 backbone + 25 evaluation)

tion. The first one is NECNN-C10, which is evolved using Algorithm 2. The second and
third networks are NECNN-XR1 and NECNN-XR2, which are evolved using the Algo-
rithm 3 with slight modifications in the neuroevolution parameters. The summary of the

networks experimented with is shown in Table 6.1.

The YOLOv3 has a total of 106 blocks, which consist of convolutional blocks,
upsampling blocks, skip connections, etc. YOLO Med and YOLO Tiny have 55 blocks
and 23 blocks respectively. Conversely, the NECNN-C10 backbone has 24 blocks that
are comprised of convolutional blocks, pooling blocks, summation blocks, etc. When the
NECNN-C10 is combined with the YOLOv3 evaluation, which has 25 blocks, the total
architecture block count becomes 49 blocks. NECNN-XR1 and NECNN-XR2 have 47 and

50 blocks respectively. The summary of the network block counts is shown in Table 6.2.

Furthermore, the parameter size of each network, measured in megabytes (MB) is
also compared. For the YOLO networks, YOLOv3 has the largest parameter size with
242 MB, followed by YOLO Med with 136 MB and YOLO Tiny with 34 MB. For the
NECNN networks, NECNN-C10 has 46 MB on the backbone and 42 MB on the evaluation



103

o

eConvolum‘

oStrided Convolutional Block

GPooIing Block

°Summation Block

oConcatenation Block /

Figure 6.1: NECNN-C10 Network Architecture.

that is 88 MB in total. NECNN-XR1 and NECNN-XR2 have a total of 197 MB and 174
MB respectively. Notably, NECNN-C10 has a low parameter size despite having a similar
block count with NECNN-XR networks. This is due to the evolution process in Algorithm
2, which allows more skip connections that have blocks in it as shown in Fig. 6.1. On the
other hand, NECNN-XR networks produced using Algorithm 3 have a more constrained
evolution because the networks are already connected to the YOLOv3 evaluation. The
effects of the constraint on NECNN-XR networks resulted in fewer skip connections as
shown in Fig. 6.2, which has preserved the parameter size on every block. The summary

of the network parameter sizes is shown in Table 6.3.

The training parameters used for all the networks are the same to establish an
objective comparison. The batch size is fixed to 32 and the input size is 128. The data
augmentation utilized is horizontal flip only. To obtain the results, every network is

trained for 1000 epochs multiple times and averaged. The metric used to measure the



104

e Convolutional Block

o Pooling Block
e Summation Block

° Concatenation Block

NECNN-XR1 NECNN-XR2

Figure 6.2: NECNN-XR1 and NECNN-XR2 Network Architectures.

performance of the networks is the mean average precision (mAP), which is the standard
metric in object detection. The dataset employed is the dangerous objects X-ray, which
has 662 training images and 442 testing images. Each image has an average size of 600

x 600 pixels. The example raw X- images are shown in Fig. 3.4.

The results of the training are shown in Table 6.4. YOLOv3 has an mAP of 52.9%.
However, initializing YOLOv3 with transfer learning increases its mAP to 65.1%. YOLO
Med and YOLO Tiny have low mAPs with 47.9% and 47.7% respectively. Moreover,
NECNN-C10, NECNN-XR1, and NECNN-XR2 have decent mAPs with 60.8%, 63.8%,
and 62.5% respectively.



105

Table 6.3: YOLO Networks and NECNN Networks Parameter Sizes.

Network Parameters Size (MB)
YOLOv3+TL 242
YOLOv3 242
YOLO Med 136
YOLO Tiny 34

NECNN-C10 88 (46 backbone + 42 evaluation)
NECNN-XR1 197 (155 backbone + 42 evaluation)
NECNN-XR2 174 (132 backbone + 42 evaluation)

Table 6.4: The mAP of the YOLO networks and NECNN networks. YOLOv3+4TL has the
highest mAP among the YOLO networks, whereas NECNN-XR1 has the highest mAP among
the NECNN networks.

Network Accuracy (mAP)
YOLOv3+4+TL 65.1%
YOLOv3 52.9%
YOLO Med 47.9%
YOLO Tiny 47.7%
NECNN-C10 60.8%
NECNN-XR1 63.8%
NECNN-XR2 62.5%

The performance of the YOLO networks is within the expectations because when
similarly structured networks (e.g., convolution-convolution and convolution-convolution-
convolution networks) that mainly differ in depth are compared, the deeper network usu-
ally corresponds to better accuracy. However, depending on the size of the dataset, the
deeper network may become a disadvantage. When the dataset size is limited, the deeper
network cannot be properly trained as it tends to overfit the dataset and consequently
fails to generalize. In this experiment, the object detection application is complicated
enough to prevent the overfitting of YOLOv3. However, the backbone of YOLOvV3 is
still redundant as observed in the performance of small and optimized NECNN networks.
The produced backbones (i.e., NECNN networks) are designed to have comparable per-
formances with the unaltered YOLOv3. Unexpectedly, the NECNN networks have out-
performed the YOLOv3 by at least 7%. It shows that the limited dataset cannot fully
train the deep architecture of the YOLOv3. However, YOLOv3 with transfer learning
weights has performed the best, and it is attributed to the weights that are refined us-
ing another dataset (i.e., ImageNet). The network layers or blocks in YOLOv3+TL are



106

Table 6.5: The mAP of the YOLOv3+TL and NECNN-C10 networks when trained on a bigger
input size of 416 x 416 pixels.

Network Accuracy (mAP)
YOLOv3+TL 86.6%
NECNN-C10 84.0%

trained feature extractors, which are refined by the limited X-ray dataset. In the case of
YOLOvV3, the limited X-ray dataset used to create its feature extractors cannot compete

with the feature extractors of YOLOv3+TL.

The NECNN backbones have achieved better mAP than the YOLO networks with
the exception of YOLOv3+TL. Despite having a lower number of blocks compared to
YOLOv3, the NECNN networks utilize skip connections and multiple blocks in the skip
connections to compensate for the lack of depth. Furthermore, the small backbone pro-
vided by the NECNN networks has made the training process easier than deep networks,
especially with the limited dangerous objects X-ray dataset.

Finally, the results presented are in the range of ~60% because of the small input
size that is 128. If the input size is increased to 416 (default image size for YOLO),
the accuracy increases into the range of ~80% because the accuracy is directly propor-
tional to the input size. However, for the sake of faster computation in this proof of
concept, a smaller input size is utilized. Table 6.5 shows the mAP of the NECNN-C10
and YOLOv3+TL networks when trained using the input size of 416 x 416 pixels.

6.2 NECNN as Transferability of Adversarial Examples Defense

In this application, neuroevolution (NE) is utilized to evolve network architectures
that are robust to the transferability of adversarial examples. Particularly, neuroevolution
is combined with gradient misalignment (GM) to produce architectures that have high
accuracy on unperturbed images (i.e., clean accuracy) and high robustness to adversarial
examples (i.e., adversarial accuracy) generated by a reference network. Four networks
are being compared, which are the following: (i) two NE4+GM networks, which are the
top two networks produced by the NE with GM method as summarized in Algorithm 4;

a reference network, which is employed to generate the adversarial examples; and (iii) a



107

reference network with GM, which is a network that has the same architecture as the
reference network and is trained with GM. The networks in (ii) and (iii) are collectively

denoted as the baseline networks.

To obtain the NE+GM networks, steady-state neuroevolution is employed. The NE
population is initialized with four or five network individuals called candidate networks.
The architecture of the candidate networks is randomly designed to have at least a network
distance of four to each other. Each candidate network is trained for 20 epochs. During the
training of the networks, the batch size is set to 128, and the remaining hyperparameters
(e.g., learning rate) are set to the default PyTorch DNN library settings (Paszke et al.,
2019) without fine-tuning. This is done to maintain an objective comparison between
the NE+GM networks and the baseline networks. The NE evolves the networks for
50 generations, where each candidate network produces two children through aggressive
mutation (i.e., multiple mutations on a network). Subsequently, the children are trained
with GM for 20 epochs. Note that the number of epochs increases by five every 10
generations to account for the network complexity of the candidate networks after several
generations. This implementation also helps lower the computational cost and time since
the simple networks in the first few generations can converge with small epochs. At the
end of the NE process, the top two networks from the final population are refined by
training them for another 1000 epochs to ensure that the clean accuracy and adversarial
accuracy converge to a stable value. Afterward, the refined networks are used as the

NE+GM networks.

Two main experiments are explored in this application. The first experiment uti-
lizes a full-dataset, and the second experiment utilizes a reduced-dataset. In the first
experiment, the following datasets are used: CIFAR-10, MNIST, and KMNIST. In ad-
dition, ResNet-18, VGG, DenseNet, and SqueezeNet (Iandola et al., 2016) are used as
network models. The baseline networks and the NE4+GM networks are evaluated using
the datasets and the adversarial examples generated by the reference network and the
introduced network models. The evaluation metrics used to measure the performance of
the baseline and NE+GM networks are the clean accuracy, which is the percentage of
correctly classified images on a test set, and adversarial accuracy, which is the percentage
of correctly classified images on an adversarially attacked test set. The first experiment

demonstrates that the NE4GM networks have notably higher adversarial accuracies than



108

Table 6.6: The clean accuracy and adversarial accuracy of the baseline networks and NE+GM
networks trained with a full dataset is shown here. In this table, the full CIFAR-10 dataset
is employed. The NE4+GM networks have remarkably higher adversarial accuracy (i.e., lower
transferability of adversarial examples) than the reference network without GM (Ref. Network)
and with GM (Ref. Network+GM).

Ref. Net. Ref. Net.+GM  NE+GM Net. 1 NE+GM Net. 2

Clean Acc. 78.40% 80.82% 81.09% 80.62%
Adv. Acc. (Loo-PGD) 23.10% 42.90% 54.12% 53.27%

the baseline networks while maintaining good clean accuracy.

In the second experiment, the reduced versions of the aforementioned datasets are
employed to test whether the neuroevolution with GM method can also work well with
limited datasets. Several specialized applications utilize limited datasets (Operiano et al.,
2020; Shaikhina and Khovanova, 2017; Zhang and Ling, 2018; Oh et al., 2020; Wang et al.,
2020) such as the dangerous objects X-ray and it is important that the proposed method
is dataset size agnostic. Since the datasets used are limited, the baseline networks are
replaced by simple hand-engineered networks to compensate for the dataset size. The
second experiment demonstrates that even with a limited dataset, the produced NE4+GM

networks can still attain high clean accuracy and good adversarial accuracy.

6.2.1 Full-Dataset Experiment

6.2.1.1 Clean Accuracy and Adversarial Accuracy

In this subsection, the clean accuracies and adversarial accuracies of the baseline
and NE+GM networks trained on full-dataset are compared. For the reference network,
ResNet-34 is employed. The reference network, together with PGD with Lo, norm (Leo-
PGD) are used to generate the adversarial example equivalent of all the test set images
in CIFAR-10. The results of the baseline networks and NE4+GM networks are shown in
Table 6.6. When the clean accuracies are compared, the NE+GM networks have higher
results than the reference network. Moreover, it is noteworthy that the NE+GM networks
have achieved a remarkable increase in the adversarial accuracy with a difference of at
least 31% against the reference network and 11% against the reference network with GM.
The results on the reference network with GM indicate that the NE can successfully find

more robust network architectures, which help GM to misalign input gradients better,



109

Original Image Reference Network

-1.00 -0.75 -050 -0.25 000 025 050 075 100

NE + GM Network

-1.00 -0.75 -050 -0.25 000 025 050 075 100 -1.00 -0.75 -050 -0.25 000 025 050 075 100

(dist. from Ref. Net. : 0.687) (dist. from Ref. Net. : 1.297)

Figure 6.3: Integrated gradients (Sundararajan et al., 2017) of the reference network, reference
network with GM, and NE4+GM network show the focus areas of every network using the relative
values in the range of [—1, 1]. Through the comparison of the colors on the same pixel locations, it
can be observed that the focus areas of the reference network with GM (lower left) and NE+GM
network (lower right) have complementary colors to that of the reference network, which suggests
dissimilarity in the input gradients. Moreover, the total pixel distance of the NE4+GM network
(1.297) against the reference network is higher than that of the reference network with GM
(0.687). It implies that the NE4+GM network input gradients are more dissimilar to those of the
reference network.

than the reference network architecture.

The capability of GM to misalign input gradients of networks can be visually con-
firmed using integrated gradients (Sundararajan et al., 2017). In Fig. 6.3, there are three
networks used, which are the reference network, reference network with GM, and the
NE+GM network. Each network shows its input gradients values through the color over-
lay on the pixels of the example image. The red color indicates a negative direction,
whereas green indicates a positive direction. If the upper right box is observed, it can be
seen that the color of the pixels in the reference network changes into the complementary
color in the reference with GM and NE+GM networks. The change in pixel colors shows
that the direction of the input gradient becomes the opposite. The same occurrence can
be observed in other boxes, which implies that GM can successfully encourage networks

to misalign their input gradients with respect to the reference network. In addition, the



110

Table 6.7: The adversarial robustness of the baseline networks and NE+GM network against
the adversarial examples from different networks are presented here. NE4+GM network shows
consistent robustness while the two baselines do not.

Ref. Network  Ref. Network+GM  NE+GM Network

ResNet-18 36.84% 47.40% 53.99%
VGG 42.98% 52.35% 55.23%
DenseNet 36.67% 48.44% 53.93%
SqueezeNet 44.23% 52.48% 55.09%

total pixel distance of the NE4GM network with the reference network is higher than
those of the reference network with GM with the reference network (1.297 and 0.687 re-
spectively). Thus, the proposed NE with GM framework can find network architectures

that misalign input gradients better than the reference network architecture.

6.2.1.2 Transferability of Adversarial Examples generated from Standard Net-

works

The robustness of the NE+GM networks is also tested with the adversarial examples
generated by other networks. In addition to the reference network (ResNet-34), there are
four sets of adversarial examples generated from the CIFAR-10 test set using the network
models namely: ResNet-18, VGG, DenseNet, and SqueezeNet. In Table 6.7, the reference
network exhibits the lowest adversarial accuracies, which demonstrates its vulnerability
to the transferability of adversarial examples from the network models. Training the
reference network architecture with GM improves the adversarial accuracies by 5-10%
depending on the network type. However, the NE4+GM network has remarkably consistent
adversarial accuracies (lowest transferability), regardless of the architecture type of the
source of adversarial examples. These accuracies have significantly outperformed the
reference network and reference network with GM, which is attributed to the superior

network produced by the NE with GM method.

Additionally, it has been observed that the results in Table 6.7 support the idea that
the extent of transferability varies depending on the type and similarity of the networks.
For example, the reference network has a higher transferability of adversarial examples
from the ResNet-18 than the VGG network. This is because the reference network, which
uses the ResNet-34 architecture, shares similarities with the ResNet-18, which both use



111

Table 6.8: The baseline networks and the NE+GM network produced in Section 6.2.1.1 are
retrained using MNIST and KMNIST datasets. Among the networks, the NE4GM network has
the best clean accuracy and adversarial accuracy.

MNIST

Ref. Net. Ref. Net.+GM  NE+GM Net.

Clean Acc. 97.71% 97.73% 99.10%
Adv. Acc.(Lso-PGD)  87.90% 95.50% 98.10%
KMNIST

Ref. Net. Ref. Net.+GM  NE+4GM Net.

Clean Acc 95.69% 96.06% 97.51%
Adv. Acc.(Loo-PGD) 75.80% 89.10% 94.40%

skip connections. VGG does not employ skip connections. Therefore, the difference in
architecture has made adversarial examples from the VGG less effective on the reference
network. This observation also holds true on DenseNet, which uses skip connections,
and SqueezeNet, which does not use skip connections similar to ResNet. The reference
network is more vulnerable to adversarial examples from DenseNet than SqueezeNet. In
contrast, though the NE+GM network employs skip connections, it is designed in such a
way that it can resist adversarial attacks from networks with skip connections. Moreover,
it is also robust to adversarial attacks from networks without skip connection, resulting

in a consistently robust network.

6.2.1.3 Results on other Datasets

The NE4+GM networks produced in Section 6.2.1.1 are tested by retraining (i.e.,
training from scratch) them with different datasets, which are MNIST and KMNIST
datasets. Similar to the previous experiment, the adversarial examples for each dataset
are obtained by adversarially attacking all the test set images using the reference network
and PGD with Lo, norm. The NE4+GM network, as shown in Table 6.8, has achieved
remarkable clean and adversarial accuracies on both datasets, which agrees with the
results in Table 6.6. Although the NE+GM network architecture is optimized for the
CIFAR-10 dataset, it has outperformed the reference network with GM in all comparisons
on different datasets. This performance is attributed to the abundant features provided by
CIFAR-10 to evolve a particularly robust NE4+GM network. Thus, the NE4+GM network

can adjust its parameters to the features of different datasets such as MNIST and still



112

Table 6.9: The clean accuracy and adversarial accuracy of baseline networks, an additional
baseline network that is a simple hand-engineered network with GM (denoted as HE. Net.
+GM), and NE+GM network trained with a reduced dataset (i.e., reduced CIFAR-10) is shown
here. The results show that the NE4+GM networks have the best clean accuracy while having
comparable adversarial accuracy with reference network with GM.

Ref. Net. Ref. Net.+GM  HE. Net.4+GM  NE+4+GM Net. 1 NE+GM Net. 2

Clean Acc. 50.00% 53.40% 55.40% 57.80% 56.20%
Adv. Acc. 8.80% 63.06% 43.32% 63.17% 63.56%

maintain a good performance.

6.2.2 Reduced-Dataset Experiment

6.2.2.1 Clean Accuracy and Adversarial Accuracy

In this subsection, the clean accuracy and adversarial accuracy of the baseline and
NE+GM networks trained on a reduced dataset are compared. To create a reduced
CIFAR-10 dataset, the full CIFAR-10 training set is decreased from 50,000 images down to
10,000 images (1,000 images per label), and the test set from 10,000 images down to 1,000
images (100 images per label). The adversarial examples from the reduced test set are
generated again using the reference network and the PGD with Lo, norm. With a limited
dataset, the reference network is changed into a simple hand-engineered network because
a deep network such as ResNet-34 is hard to train using a small dataset. In addition
to the baseline networks, which are the reference network and reference network with
GM, another simple hand-engineered network with GM is introduced. The simple hand-
engineered networks consist of convolutional blocks, pooling blocks, and skip connection
blocks that are no more than 10 blocks in total. The architecture detail of the simple

hand-engineered networks is shown in Fig. 6.4.

As reported in Table 6.9, the networks that are trained with GM achieve better
clean accuracy than the reference network. In particular, the NE4+GM networks have
achieved better clean accuracy than all the networks. This result confirms the capac-
ity of neuroevolution to find better and optimal network architectures. The adversarial
accuracies of the reference network with GM and the NE4+GM networks are compara-
ble but they are surprisingly higher than their respective clean accuracies. Although

this result is counterintuitive, it has not been observed in the full-dataset experiment.



113

Input Input

Conv.
Filt: 3x3
Out: 32

v v

(a) Simple Hand-engineered Network (b) Simple Hand-engineered Network
(Reference Network) (Additional Baseline Network)

Figure 6.4: Simple Hand-engineered Networks Architecture.

Hence, this behavior is regarded as distinct to limited datasets. Finally, the NE4+GM
networks have better adversarial accuracy than the hand-engineered network with GM,
which shows that the extent of transferability of adversarial examples can be reduced

when the network architecture is properly designed.
6.2.2.2 Results on Different Adversarial Attack Methods

To examine the impact of the type of adversarial attack on the robustness of the
NE+GM networks produced in Section 6.2.2.1, different adversarial attacks are tested.
There are three adversarial attacks tested, which are PGD with Lo, norm, PGD with Lo
norm (L2-PGD), and FGSM. Each adversarial attack generates its adversarial examples
on all the reduced CIFAR-10 test set images. The evaluation metric used in this exper-
iment is the fooling rate because with the small dataset, the average clean accuracy is
relatively low, and the high misclassification of the unperturbed images can obscure the

actual performance of the networks on adversarial examples. The fooling rate is based



114

Table 6.10: The fooling rate under three adversarial attack methods (lower is better). NE+GM
networks perform best for most of the attack methods.

Ref. Net.4+GM  HE. Net.4+GM NE+GM Net. 1 NE+4+GM Net. 2

Loo-PGD 17.42% 30.26% 16.10% 18.77%
L2-PGD 36.04% 36.41% 28.83% 31.19%
FGSM 69.07% 54.36% 60.26% 65.21%

on the ratio of images that changes labels when adversarially attacked. It implies that
the images before being adversarially attacked can be correctly classified by the network.
For each adversarial attack method, the fooling rate of a network from the baseline and
NE+GM networks is computed by extracting all the images that are correctly labeled by
both the network being tested and the reference network. Next, the extracted images are
adversarially attacked using the adversarial attack method to generate adversarial exam-
ples. Subsequently, the adversarial images are evaluated by the network being tested, and

the percentage of mislabeled adversarial examples is obtained as the fooling rate result.

As shown in Table 6.10, the fooling rate results in the Lo-PGD agrees with Ta-
ble 6.9 as expected. Lo-PGD usually generates weaker adversarial attacks than the Leo-
PGD. Consequently, the networks trained with GM have lower results on Lo-PGD than
Loo-PGD because the input gradients of the reference network are more susceptible to
Loo-PGD. The stronger the adversarial attack, the more effective misalignment of input
gradients becomes in reducing transferability. Still, among the networks, the NE+GM
networks have the lowest fooling rate on Lo-PGD adversarial attack. The FGSM adversar-
ial attack is the weakest among the three techniques. To easily compare the performance
of the networks in FGSM, its perturbation level is adjusted to output stronger adversarial
attacks but with very obvious image perturbations to the human perception. The hand-
engineered network with GM has outperformed all the networks with the lowest fooling
rate unexpectedly. One of the reasons NE4+GM networks have not performed best is due
to the adversarial attack method used in the evolution, which is L..-PGD. However, the

NE+GM networks still have performed better than the reference network with GM.



115

Table 6.11: The fooling rate of the baseline networks and NE+GM network are compared to
different adversarial defense methods. The free adversarial training and fast adversarial training
are denoted as A.T. (Free) and A.T. (Fast) respectively in this table. The results show that
NE+GM networks can perform better than other adversarial defense methods (lower is better).

Ref. Net. Ref. Net.+GM  HE. Net.+GM  NE+4+GM Net.

L-PGD 85.00% 22.80% 24.20% 22.40%
JPEG Comp. Bilateral Filt. A.T. (Free) A.T. (Fast)
Lo-PGD 84.4% 48.80% 51.00% 43.80%

6.2.2.3 Comparison with Standard Adversarial Defense Methods

The NE4+GM networks are compared to several adversarial defense methods to
measure the effectiveness of the proposed NE with GM method. In the adversarial de-
fense group, there are two image filtering methods, which are JPEG compression (Guo
et al., 2018) and bilateral filtering (Xie et al., 2019), and two adversarial training meth-
ods, which are free adversarial training (Shafahi et al., 2019) and fast adversarial train-
ing (Wong et al., 2019) that are employed. All the adversarial defense methods are applied
on the reference network to evaluate the performance of each adversarial defense method.
Since the dataset is still limited, the fooling rate is used as the evaluation metric. In con-
trast to the image extraction method presented in Section 6.2.2.2, the images extracted
for this experiment are obtained from the reduced CIFAR-10 test set that are correctly
classified by the reference network only. Subsequently, the extracted images are adversar-
ially attacked using the reference network and the L..-PGD. The adversarial examples
generated are used for all the adversarial defense methods, including the baseline and
NE+GM networks as well. Note that the fooling rate described in this section is modified

to account for the image filtering methods that cannot classify images on their own.

In Table 6.11, the results show that the image filtering techniques, specifically the
JPEG compression, do not demonstrate a strong adversarial attack due to the passive
nature of the defense technique. However, the NE4+GM network shows strong defense
because the NE with GM method actively searches for the architectural solutions, which
makes the network it produces robust even with the strong adversarial attacks such as
Loo-PGD. In the case of fast and free adversarial training methods, the limited dataset

has hindered the ability of these techniques to produce good results. Otherwise, a large



116

Table 6.12: The baseline networks and the NE4+GM network produced in Section 6.2.2.1 are
retrained using other datasets (i.e., MNIST, FMNST, and KMNIST dataset). Although the
results between the reference network with GM and NE+4+GM network are comparable in the
FMNIST and KMNIST datasets, the NE4+GM network consistently performs well on clean

accuracy and adversarial accuracy across all the datasets.

MNIST
Ref. Net. Ref. Net.+GM  NE+GM Net.
Clean Acc. 93.20% 92.30% 89.10%
Adv. Acc.(Loo-PGD) 63.40% 77.00% 84.50%
FMNIST
Ref. Net. Ref. Net.+GM  NE+GM Net.
Clean Acc 88.90% 85.90% 87.00%
Adv. Acc.(Loo-PGD)  51.20% 82.90% 81.90%
KMNIST
Ref. Net. Ref. Net.+GM  NE+GM Net.
Clean Acc. 85.40% 86.80% 86.60%
Adv. Acc.(Lo-PGD) 56.90% 83.50% 83.70%

dataset such as the full CIFAR-10 applied on adversarial training techniques produces
good performance. However, when using a limited dataset, balancing the clean accuracy
and the adversarial accuracy on the adversarial training techniques produces fooling rates
that are significantly higher than those of the reference network with GM, hand-engineered
network with GM, and NE4+GM network.

6.2.2.4 Results on other Datasets

The robustness of the NE+GM networks produced in Section 6.2.2.1 is tested with
different reduced datasets, similar to the experiment in Section 6.2.1.3. The datasets used
in this experiment are the MNIST, FMNIST, and KMNIST datasets. Each dataset, as in
Section 6.2.2.1, is reduced to the same training set and test set counts as in the reduced
CIFAR-10 dataset and the adversarial examples are generated in the same manner. As
shown in Table 6.12, the reference network has the best clean accuracies in the MNIST
and FMNIST datasets in exchange for the worst accuracies on its adversarial accuracies
counterparts. In contrast, the reference network with GM and the NE+GM network have
managed to balance the clean and adversarial accuracies with the exception of the MNIST

dataset, in which the reference network with GM has a significantly lower adversarial



117

accuracy than the NE4+GM network. The decent performance of the NE+GM network
on datasets that it is not optimized for is attributed to the limited features provided
by the reduced CIFAR-10 dataset. Unlike the NE4+GM network produced for the full
CIFAR-10 dataset, the NE+GM network produced for the reduced CIFAR-10 dataset is

relatively unrefined.

6.3 Summary

In this chapter, the experiments conducted on utilizing neuroevolution to discover
optimal architectures for different applications are discussed. In the first application,
neuroevolution finds small network architectures that can replace the deep backbone of
YOLOv3 without a decrease in performance. Moreover, the size of the small network
architecture is less than half the YOLOv3 backbone. In the second application, neu-
roevolution combined with gradient misalignment discovers networks that are robust to
the transferability of adversarial examples. The NE4+GM networks even outperform the
reference network trained with gradient misalignment. This chapter demonstrates that
neuroevolution has a valuable contribution in automatically designing networks for spe-

cific applications.



CHAPTER VII

CONCLUSION AND FUTURE WORK

The success of a convolutional neural network is predicated on its very deep archi-
tecture and a large dataset that trains it. Although this combination has led to achieving
great performance in various applications and even surpassing human-level performance in
image classification, it requires a considerable amount of computational power. However,
this amount of resources is not accessible to most researchers. Moreover, the very deep
network architecture is not always the optimal depth to train different datasets, especially
specific applications which have limited datasets. Furthermore, designing a small network
that can compete with deep networks requires expertise and a great effort in trial-and-
error since the inner workings of the network are not yet fully understood. Therefore, it
is pertinent to develop architectures that are optimized to datasets and perform as well

as very deep and complex networks.

Neuroevolution is a method that employs a genetic algorithm to search and opti-
mize the connection weights and architecture of an artificial neural network. Using the
guidelines in NEAT, which is one of the best implementations of neuroevolution, the ar-
chitecture of the convolutional neural network optimized with neuroevolution is proposed.
The experiments on neuroevolution techniques demonstrated that neuroevolution discov-
ers network architectures that perform on par with standard networks such as ResNet.
Moreover, transfer learning is a common technique to utilize the learning of a trained
network to another network. However, since neuroevolution produces different architec-
tures, it cannot utilize the trained weights. Instead, knowledge distillation can be used to
guide the training of a neuroevolution-produced network with a trained network as con-
firmed by the experiments. Through knowledge distillation, the neuroevolution-produced
network can have performance boosts. Finally, neuroevolution is also tested to optimize
the convolutional neural network architecture for specific applications (i.e., dangerous ob-
ject X-ray detection). In one application, neuroevolution established that it can discover
networks that are significantly smaller than the standard deep networks and still have
comparable performance. In another application, neuroevolution found architectures that
are robust to the transferability of adversarial attacks, particularly when combined with

gradient misalignment.



119

The experiments and applications conducted for neuroevolution proved that it can
significantly help the convolutional neural network to a great extent. It helps researchers
to harness the ability of a convolutional neural network that accommodates their require-
ments without needing considerable computation resources and expertise. Many future
directions can be explored in neuroevolution for convolutional neural networks. For ex-
ample, the evolutions of the architecture and the optimization of weights using backprop-
agation may be studied further to understand their relationship. When it is understood,
the basic building blocks of convolutional neural networks can be established and even
the trained weights can be transferred and utilized. Furthermore, it can offer some un-
derstanding on how the networks learn during training. All of these are considered as a

continuation of this study.



References

Abner, N. 2014. There once was a verb: the predicative core of possessive and nominal-

ization structures in american sign language. Sign language & linguistics 17 (06

2014)

Agapie, A. and Wright, A. H. 2014. Theoretical analysis of steady state genetic algorithms.
Applications of mathematics 59.5 (2014): 509-525.

Altman, N. S. 1992. An introduction to kernel and nearest-neighbor nonparametric

regression. The american statistician 46.3 (1992): 175-185.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. 1994. An evolutionary algorithm that
constructs recurrent neural networks. IEEE transactions on neural networks 5.1

(1994): 54-65

Bartlett, P. and Downs, T. 1990. Training a neural network with a genetic algorithm.

University of Queensland.

Belew, R., Mclnerney, J., and Schraudolph, N. 1991. Evolving networks: using genetic

algorithms with connectionist learning.

Biggio, B., Corona, 1., Maiorca, D., Nelson, B., Srndi¢, N., Laskov, P., Giacinto, G., and

Roli, F. 2013. Evasion attacks against machine learning at test time. In Joint

european conference on machine learning and knowledge discovery in databases,

pp- 387-402.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. 1992. A training algorithm for optimal

margin classifiers. In Proceedings of the annual workshop on computational

learning theory, pp. 144-152.

Bucilug, C., Caruana, R., and Niculescu-Mizil, A. 2006. Model compression. In

Proceedings of the ACM SIGKDD international conference on knowledge

discovery and data mining, pp. 535-541. : ACM.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. 2019. Once-for-all: train one network

and specialize it for efficient deployment. In International conference on learning

representations.



121

Cangziani, A., Paszke, A., and Culurciello, E. 2016. An analysis of deep neural network

models for practical applications. arXiv preprint arXiv:1605.07678 (2016)

Chan, C., Ginosar, S., Zhou, T., and Efros, A. A. 2019. Everybody dance now. In
Proceedings of the IEEE/CVF international conference on computer vision, pp.

5933-5942. : IEEE.

Chen, D., Giles, C. L., Sun, G.-Z., Chen, H., Lee, Y.-C., and Goudreau, M. W. 1993. Con-
structive learning of recurrent neural networks. In IEEE international conference

on neural networks, pp. 1196-1201. : IEEE.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. 2018.
Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718

(2018)

Collins, R. J. and Jefferson, D. R. 1992. The evolution of sexual selection and female

choice. In Toward a practice of autonomous systems: proceedings of the first

european conference on artificial life, pp. 327-336.

Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Chen, L., Kounavis, M. E., and
Chau, D. H. 2017. Keeping the bad guys out: protecting and vaccinating deep
learning with jpeg compression. arXiv preprint arXiv:1705.02900 (2017)

Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C.,
and Roli, F. 2019. Why do adversarial attacks transfer? explaining transferabil-

ity of evasion and poisoning attacks. In Proceedings of the USENIX conference

on security symposium, pp. 321-338.

Devaguptapu, C., Agarwal, D., Mittal, G., and Balasubramanian, V. N. 2020. On
adversarial robustness: a neural architecture search perspective. arXiv preprint

arXiv:2007.08428 (2020)

DeVries, T. and Taylor, G. W. 2017. Improved regularization of convolutional neural

networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and Li, J. 2018. Boosting adversarial

attacks with momentum. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 9185-9193. : IEEE.




122

Dumoulin, V. and Visin, F. 2016. A guide to convolution arithmetic for deep learning.

arXiv preprint arXiv:1603.07285 (2016)

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S.
2017. Dermatologist-level classification of skin cancer with deep neural networks.

volume 542, pp. 115-118. : Nature Publishing Group.

Fontanari, J. F. and Meir, R. 1990. The effect of learning on the evolution of asexual

populations. Complex systems 4.4 (1990)

Fukushima, K. 1980. Neocognitron: a self organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position. Biological cybernetics

36.4 (1980): 193 202.

Gatys, L. A., Ecker, A. S.; and Bethge, M. 2016. Image style transfer using convolu-

tional neural networks. In The IEEE conference on computer vision and pattern

recognition. : TEEE.

Goldberg, D. E. and Holland, J. H. 1988. Genetic algorithms and machine learning.
(1988)

Gomez, F. J., Miikkulainen, R., et al. 1999. Solving non-markovian control tasks with

neuroevolution. In IJCAI, volume 99, pp. 1356-1361.

Goodfellow, 1., Shlens, J., and Szegedy, C. 2015. Explaining and harnessing adversarial

examples. In International conference on learning representations.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. 2020. Generative adversarial networks.

Communications of the acm 63.11 (2020): 139-144.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. 2021. Knowledge distillation: a survey.
International journal of computer vision 129.6 (2021): 1789-1819.

Gruau, F., Whitley, D., and Pyeatt, L. 1996. A comparison between cellular encoding and

direct encoding for genetic neural networks. In Proceedings of the first annual

conference on genetic programming, pp. 81-89.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L. 2018. Countering adversarial

images using input transformations. In International conference on learning

representations.



123

Guo, M., Yang, Y., Xu, R., Liu, Z., and Lin, D. 2020. When nas meets robustness: in

search of robust architectures against adversarial attacks. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pp. 631-640.
: IEEE.

Harp, S. A., Samad, T., and Guha, A. 1989. Towards the genetic synthesis of neu-

ral network. In Proceedings of the third international conference on Genetic

algorithms, pp. 360-369.

He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778. : IEEE.

Hertz, J., Krogh, A., and Palmer, R. G. 2018. Introduction to the theory of neural

computation. CRC Press.

Hinton, G., Vinyals, O., and Dean, J. 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

Hinton, G. E., Osindero, S., and Teh, Y.-W. 2006. A fast learning algorithm for deep
belief nets. Neural computation 18.7 (2006): 1527-1554.

Holland, J. H. et al. 1992. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 2017. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 4700-4708. : IEEE.

landola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.
2016. Squeezenet: alexnet-level accuracy with 50x fewer parameters and< 0.5

mb model size. arXiv preprint arXiv:1602.07360 (2016)

Iba, H., Hasegawa, Y., and Paul, T. K. 2009. Applied genetic programming and machine

learning. CRC Press.

Inoue, H. 2018. Data augmentation by pairing samples for images classification. arXiv

preprint arXiv:1801.02929 (2018)




124

Ioffe, S. and Szegedy, C. 2015. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine

learning, pp. 448-456.

Jalwana, M. A., Akhtar, N., Bennamoun, M., and Mian, A. 2020. Orthogonal deep models
as defense against black-box attacks. IEEE Access 8 (2020): 119744-119757.

Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al. 2009. What is the best multi-stage
architecture for object recognition? In IEEE 12th international conference on

computer vision, pp. 2146-2153. : IEEE.

Kariyappa, S. and Qureshi, M. K. 2019. Improving adversarial robustness of ensembles

with diversity training. arXiv preprint arXiv:1901.09981 (2019)

Karras, T., Aila, T., Laine, S., and Lehtinen, J. 2017. Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196
(2017)

Kenney, J. F. and Keeping, E. 1962. Linear regression and correlation. Mathematics of

statistics 1 (1962): 252-285.

Kim, H., Garrido, P., Tewari, A., Xu, W., Thies, J., Niessner, M., Pérez, P., Richardt, C.,
Zollhofer, M., and Theobalt, C. 2018. Deep video portraits. ACM transactions
on graphics 37.4 (2018): 1-14.

Kitano, H. 1990. Designing neural networks using genetic algorithms with graph genera-

tion system. Complex systems 4 (1990): 461-476.

Kotyan, S. and Vargas, D. V. 2020. Evolving robust neural architectures to defend from
adversarial attacks. CEUR workshop proceedings 2640 (2020)

Koza, J. R. and Rice, J. P. 1991. Genetic generation of both the weights and architec-

ture for a neural network. In International joint conference on neural networks,

volume 2, pp. 397-404. : TEEE.

Krizhevsky, A., Hinton, G., et al. 2009. Learning multiple layers of features from tiny
images. (2009)

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. 2012. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, pp. 1097-1105.




125

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86.11 (1998): 2278-2324.

Lee, S.-W. 1996. Off-line recognition of totally unconstrained handwritten numerals
using multilayer cluster neural network. IEEE transactions on pattern analysis

and machine intelligence 18.6 (1996): 648-652.

Li, Z., Xiong, X., Ren, Z., Zhang, N., Wang, X., and Yang, T. 2018. An aggressive genetic
programming approach for searching neural network structure under computa-

tional constraints. arXiv preprint arXiv:1806.00851 (2018)

Lienhart, R. and Maydt, J. 2002. An extended set of haar-like features for rapid ob-
ject detection. In Proceedings of international conference on image processing,

volume 1. : IEEE.

Lim, S.-H., Young, S., and Patton, R. 2016. An analysis of image storage systems for

scalable training of deep neural networks.

Lin, M., Chen, Q., and Yan, S. 2013. Network in network. arXiv preprint arXiv:1312.4400
(2013)

Liu, H., Simonyan, K., and Yang, Y. 2018a. Darts: differentiable architecture search. In

International conference on learning representations.

Liu, J. and Jin, Y. 2021. Multi-objective search of robust neural architectures against

multiple types of adversarial attacks. Neurocomputing 453 (2021): 73-84.

Liu, X., Wang, X., and Matwin, S. 2018b. Improving the interpretability of deep neural
networks with knowledge distillation. In IEEE international conference on data

mining workshops, pp. 905-912. : IEEE.

Liu, Y., Chen, X., Liu, C., and Song, D. 2016. Delving into transferable adversarial
examples and black-box attacks. arXiv preprint arXiv:1611.02770 (2016)

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. 2018. Towards deep

learning models resistant to adversarial attacks. In International conference on

learning representations.

Matsunaga, K., Hamada, A., Minagawa, A., and Koga, H. 2017. Image classification
of melanoma, nevus and seborrheic keratosis by deep neural network ensemble.

arXiv preprint arXiv:1703.03108 (2017)




126

Mikotajczyk, A. and Grochowski, M. 2018. Data augmentation for improving deep
learning in image classification problem. In International interdisciplinary phd

workshop, pp. 117-122. : IEEE.

Miller, G. F., Todd, P. M., and Hegde, S. U. 1989. Designing neural networks using
genetic algorithms. In ICGA, volume 89, pp. 379-384.

Minh, T. N., Sinn, M., Lam, H. T., and Wistuba, M. 2018. Automated image data
preprocessing with deep reinforcement learning. arXiv preprint arXiv:1806.05886

(2018)

Minsky, M. and Papert, S. 1969. Perceptron: an introduction to computational geometry.

The MIT Press, Cambridge, expanded edition 19.88 (1969): 2.

Mitchell, M. 1998. An introduction to genetic algorithms. MIT press.

Mitchell, T. 1997. Machine learning. (1997)

Montana, D. J., Davis, L., et al. 1989. Training feedforward neural networks using genetic

algorithms. In IJCAI, volume 89, pp. 762-767.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. 2017. Universal adver-

sarial perturbations. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1765-1773. : IEEE.

Nair, V. and Hinton, G. E. 2010. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the international conference on machine learning,

pp- 807-814.

Nelder, J. A. and Wedderburn, R. W. 1972. Generalized linear models. Journal of the
royal statistical society: Series A 135.3 (1972): 370-384.

Oh, Y., Park, S., and Ye, J. C. 2020. Deep learning covid-19 features on cxr using
limited training data sets. IEEE transactions on medical imaging 39.8 (2020):
2688-2700.

Operiano, K. R. G., Iba, H., and Pora, W. 2020. Neuroevolution architecture backbone for
x-ray object detection. In IEEE symposium series on computational intelligence,

pp. 2296-2303. : IEEE.




127

Papernot, N., McDaniel, P., and Goodfellow, I. 2016. Transferability in machine learning;:
from phenomena to black-box attacks using adversarial samples. arXiv preprint

arXiv:1605.07277 (2016)

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A. 2017.

Practical black-box attacks against machine learning. In Proceedings of the

ACM on asia conference on computer and communications security, pp. 506—

519. : ACM.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
7., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. 2019. Pytorch: an imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,

E., and Garnett, R. (ed.), Advances in neural information processing systems,

pp. 8024-8035. : Curran Associates, Inc.

Perez, F., Vasconcelos, C., Avila, S., and Valle, E. 2018. Data augmentation for skin

lesion analysis. In OR 2.0 context-aware operating theaters, computer assisted

robotic endoscopy, clinical image-based procedures, and skin image analysis, pp.

303-311. : Springer.

Quinlan, J. R. 1986. Induction of decision trees. Machine learning 1.1 (1986): 81-106.

Radosavovic, 1., Dollar, P., Girshick, R., Gkioxari, G., and He, K. 2018. Data distillation:

Towards omni-supervised learning. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4119-4128. : IEEE.

Redmon, J. and Farhadi, A. 2017. Yolo9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7263-7271.

: IEEE.

Redmon, J. and Farhadi, A. 2018. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767 (2018)

Rosenblatt, F. 1957. The perceptron, a perceiving and recognizing automaton project

para. Cornell Aeronautical Laboratory.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review 65.6 (1958): 386.




128

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning representations by
back-propagating errors. Nature 323.6088 (1986): 533-536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. 2015. Imagenet large scale visual recognition

challenge. International journal of computer vision 115.3 (2015): 211-252.

Samuel, A. L. 1959. Some studies in machine learning using the game of checkers. IBM

journal of research and development 3.3 (1959): 210-229.

Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer, C., Davis, L. S., Taylor,
G., and Goldstein, T. 2019. Adversarial training for free! In Proceedings
of the international conference on neural information processing systems, pp.

3358-3369.

Shaikhina, T. and Khovanova, N. A. 2017. Handling limited datasets with neural networks
in medical applications: a small-data approach. Artificial intelligence in medicine

75 (2017): 51-63.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. 2014. Cnn features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, pp. 806-813.

: IEEE.

Shorten, C. and Khoshgoftaar, T. M. 2019. A survey on image data augmentation for

deep learning. volume 6, p. 60. : Springer.

Simonyan, K. and Zisserman, A. 2014a. Two-stream convolutional networks for action
recognition in videos. In Advances in neural information processing systems, pp.

568-576.

Simonyan, K. and Zisserman, A. 2014b. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)

Stanley, K. O. and Miikkulainen, R. 2002. Evolving neural networks through augmenting
topologies. Evolutionary computation 10.2 (2002): 99-127.

Suganuma, M., Shirakawa, S., and Nagao, T. 2017. A genetic programming approach

to designing convolutional neural network architectures. In Proceedings of the

genetic and evolutionary computation conference, pp. 497-504. : ACM.




129

Summers, C. and Dinneen, M. J. 2019. Improved mixed-example data augmentation.
In TEEE winter conference on applications of computer vision, pp. 1262-1270. :

IEEE.

Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Lv, J. 2020. Automatically design-
ing cnn architectures using the genetic algorithm for image classification. IEEE

transactions on cybernetics 50.9 (2020): 3840-3854.

Sundararajan, M., Taly, A., and Yan, Q. 2017. Axiomatic attribution for deep networks.

In International conference on machine learning, pp. 3319-3328.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, 1., and Fergus,
R. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. 2015. Going deeper with convolutions. In The IEEE

conference on computer vision and pattern recognition. : IEEE.

Takahashi, R., Matsubara, T., and Uehara, K. 2020. Data augmentation using random
image cropping and patching for deep cnns. volume 30, pp. 2917-2931. : IEEE.

Topchy, A. and Lebedko, O. 1997. Neural network training by means of cooperative evo-

lutionary search. Nuclear instruments and methods in physics research section a:

accelerators, spectrometers, detectors and associated equipment 389.1-2 (1997):

240-241.

Torrey, L. and Shavlik, J. 2010. Transfer learning. In Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques, pp. 242—

264. : 1GI global.

Tramer, F., Boneh, D., Kurakin, A., Goodfellow, I., Papernot, N., and McDaniel, P. 2018.

Ensemble adversarial training: attacks and defenses. In International conference

on learning representations.

Tramer, F., Papernot, N., Goodfellow, 1., Boneh, D., and McDaniel, P. 2017. The space
of transferable adversarial examples. arXiv preprint arXiv:1704.03453 (2017)

Tsukada, R., Zou, L., and Iba, H. 2020. Evolving deep neural networks for x-ray based

detection of dangerous objects. In Deep neural evolution, pp. 325-355. : Springer.




130

Vargas, D. V. and Murata, J. 2016. Spectrum-diverse neuroevolution with unified neural
models. IEEE transactions on neural networks and learning systems 28.8 (2016):

1759-1773.

Viola, P. and Jones, M. 2001. Rapid object detection using a boosted cascade of simple

features. In Proceedings of the IEEE computer society conference on computer

vision and pattern recognition, volume 1. : IEEE.

Wang, D., Mo, J., Zhou, G., Xu, L., and Liu, Y. 2020. An efficient mixture of deep and
machine learning models for covid-19 diagnosis in chest x-ray images. Plos one

15.11 (2020): €0242535.

Whitley, D., Starkweather, T., and Bogart, C. 1990. Genetic algorithms and neural net-
works: optimizing connections and connectivity. Parallel computing 14.3 (1990):

347-361.

Wong, E.; Rice, L., and Kolter, J. Z. 2019. Fast is better than free: revisiting adversarial

training. In International conference on learning representations.

Wu, D., Wang, Y., Xia, S.-T., Bailey, J., and Ma, X. 2019. Skip connections matter: on the
transferability of adversarial examples generated with resnets. In International

conference on learning representations.

Wu, R., Yan, S., Shan, Y., Dang, Q., and Sun, G. 2015. Deep image: Scaling up image
recognition. arXiv preprint arXiv:1501.02876 7.8 (2015)

Xiao, H., Rasul, K., and Vollgraf, R. 2017. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747
(2017)

Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K. 2019. Feature denoising for

improving adversarial robustness. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pp. 501-509. : IEEE.

Xie, G., Wang, J., Yu, G., Zheng, F., and Jin, Y. 2021. Tiny adversarial mulit-objective
oneshot neural architecture search. arXiv preprint arXiv:2103.00363 (2021)

Xie, L. and Yuille, A. 2017. Genetic cnn. In Proceedings of the IEEE international

conference on computer vision, pp. 1379-1388. : IEEE.




131

Xu, W., Evans, D., and Qi, Y. 2017. Feature squeezing: detecting adversarial examples
in deep neural networks. arXiv preprint arXiv:1704.01155 (2017)

Yao, X. 1999. Evolving artificial neural networks. Proceedings of the IEEE 87.9 (1999):
1423-1447.

Yao, X. and Liu, Y. 1997. A new evolutionary system for evolving artificial neural

networks. IEEE transactions on neural networks 8.3 (1997): 694-713.

Yao, X. and Liu, Y. 1998. Making use of population information in evolutionary artificial
neural networks. IEEE transactions on systems, man, and cybernetics, part b

28.3 (1998): 417-425.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. 2014. How transferable are features in

deep neural networks? In Advances in neural information processing systems,

pp. 3320-3328.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. 2020. A survey of autonomous
driving: common practices and emerging technologies. IEEE access 8 (2020):

58443-58469.

Zeiler, M. D. and Fergus, R. 2014. Visualizing and understanding convolutional networks.

In European conference on computer vision, pp. 818-833.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. 2017. mixup: beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Zhang, Y. and Ling, C. 2018. A strategy to apply machine learning to small datasets in

materials science. Npj computational materials 4.1 (2018): 1-8.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. 2020. Random erasing data
augmentation. In AAAIL pp. 13001-13008.

Zou, L., Tanaka, Y., and Iba, H. 2018. Dangerous objects detection of x-ray images

using convolution neural network. In International conference on security with

intelligent computing and big-data services, pp. 714-728.




APPENDIX



APPENDIX A

PUBLICATION

International Journal Publication

1. Kevin Richard G. Operiano, Wanchalerm Pora, Hitoshi Iba, and Hiroshi Kera.
Evolving Architectures with Gradient Misalignment toward Low Adversarial Trans-

ferability. In 2021 IEEE Access.

International Conference Publications

1. Kevin Richard G. Operiano, Hitoshi Iba, and Wanchalerm Pora. Neuroevolution
Architecture Backbone for X-ray Object Detection. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI).

2. Kevin Richard G. Operiano, Pann Mya Hmue, Wanchalerm Pora, and Suree Pumrin.
American Alphabet Hand Sign Language Detection and Recognition Using Haar
Cascades and Convolutional Neural Networks. In 2018 11th Regional Conference on

Electrical and Electronic Engineering.



134

Vita
NAME Kevin Richard G. Operiano
DATE OF BIRTH 21 February 1992
PLACE OF BIRTH Antipolo City, Rizal, Philippines

INSTITUTIONS ATTENDED De La Salle University - Manila, Philippines
HOME ADDRESS B3 L6 Pines Hill St. Ridgemont Exec. Vill. Cainta

Rizal, Philippines



	Cover (English)
	Cover (Thai)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Background knowledge and related work
	Chapter III CNN data augmentations and applications
	Chapter IV Neuroevolution for CNN techniques and applications
	Chapter V Neuroevolution for CNN experiments
	Chapter VI Neuroevolution for CNN applications
	Chapter VII Conclusion and future work
	References
	Appendix
	Vita



