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CHAPTER 1

INTRODUCTION

The ultimate goal of high-energy physics is to construct the theory that unifies all
four fundamental forces into one theory called the theory of everything. The first step
had been achieved by the standard model that describes elementary particles named the
standard model. This is quite an effective model since electro-weak and strong interaction
can be clarified via one theory. However, the weakest point of this is that gravity is not
included. Hence, it cannot still be the theory of everything for that reason. Besides, in
the quantum gravity sense, the coupling constant from the theory defined by x = /871G
corresponds to UV divergences in the Feynman diagrams and cannot be renormalized.
In this theory, the UV divergence cannot be canceled by counter terms. Gravity is also
distinguished from the other three fundamental forces by its geometrical nature. Another
contrast between gravity and other fundamental forces is the hierarchy problem as an
enormous gap of energy between electro-weak, clearer depicted by 100 GeV, and quantum

gravity giving approximately 1019 GeV.

The problems above are solved mainly by the emergence of supersymmetry, a sym-
metry that unifies bosons and fermions. With the applications of supersymmetry, UV
divergences that seem problematic at first can even become softer. Another benefit of
having supersymmetry is that with the help of supersymmetry, the three-fundamental

forces excluding gravity can be unified at a certain scale, called grand unification.

After the introduction of supersymmetry, see [?,?7,7, 7], there was an attempt to
construct a theory including gravity with supersymmetry. The gravity theory is gener-
ally described in terms of curved spacetime. It turns out that supersymmetry in a curved
spacetime must be promoted to a local symmetry. When combining all symmetries, in-

cluding supersymmetry that this system could have, the Poincare group is extended to



be a bigger group called super-Poincare, and the theory of curved spacetime with the
addition of supersymmetry is called supergravity, see [?,7,?, 27,7 7 7,7 7 ?]. Super-
gravity is such an effective tool in constructing the theory of supersymmetric interaction.
However, the big drawback of all supersymmetric theories is that superpartners of parti-
cles have never been observed, possibly leading to the question that if they really exist
in the universe. Therefore, the reasonable assumption that can answer this question is
that supersymmetry may be spontaneously broken in our universe. In other words, our

spacetime is not a supersymmetric vacuum.

In string theory which represents as a one-dimensional object instead of a point
particle whose length is I3 = Vo’ and the tension T ~ I, elementary particles arise from
the mode of oscillation of the string, see [?,?,7,7,?]. A strongly compelling motivation
of this theory is the existence of graviton that does not emerge from any theories but
is effortlessly generated by the closed string, while the open string also encompasses
the gauge field. In addition, the UV cut-off is also provided by the length of string in
the theory. For this reason, superstring theory can be formulated as a quantum theory
combining all fundamental interactions with gravity. The effective field theory of ten-
dimension supergravity which is found by taking string length to zero or, equivalently,
the string’s tension close to infinity, where the string is now seen as a particle, is described
by supergravity theories. Further development of string theory shows that the different
five superstring theories might originate from an eleven-dimensional theory called M-
theory, with all string theories related to each other by dualities. Despite the precise form
of M-theory not being clearly known, its effective theory is given by eleven-dimensional

supergravity.

Although string or M-theory is the candidate theory that might unify all four-
fundamental forces, it is needed to be described in ten or eleven dimensions. This does
not match the reality since our universe is four-dimensional spacetime and leads to the
question that how the other six or seven dimensions come from. However, those six and
seven dimensions can be describable due to the idea of Kaluza-Klein reduction. The

method is to compactify extra dimensions into a compact internal manifold. Therefore,



ten or eleven-dimensional spacetime can be written as

M = Md:4 X Mmt (1.1)

where My—,4 is our non-compact four-dimensional manifold and M;,; is other compact
manifold with D—d dimensions where D is 10 or 11. With this method of compactification,
massless fields in the string theory become massless and massive fields in four-dimensional
spacetime. Those massless fields are field contents of supergravity in four dimensions. It
can also be said that the string theory in ten dimensions can be reduced to supergravity
in four dimensions. Nevertheless, supergravity is not close to realistic model as it cannot
provide cosmological constant. Gauged supergravity is a supergravity with non-abelian
gauge symmetries and can give rise to cosmological constant. Besides, the introduction of
D-brane in string theory at low energy limit can lead to the effective theory in the form

of gauged supergravity.

D-brane or sometime called Dp-brane, standing for Dirichlet brane, is the object
where open string can end that extends in p spatial dimensions. With the existence of
D-brane, open string can have various orientations. It can not only start and end on the
same brane, but also start from one brane and end with another brane. Without D-brane,
there is only open string with Neumann boundary conditions. Spectrum of open string are
richer when the D-brane is present as there can be open string with Dirichlet boundary
conditions or even mixed boundary conditions. D-brane is a dynamical object that can
interact with open and closed strings. The action that includes the dynamics of D-brane
can give rise to gauged supergravity at low energy limit. One of the most well-known
examples of D-brane that leads to gauged supergravity is coincident N D3-branes in 11B
string theory in ten dimensions. At low energy limit, the string theory with coincident
N D3-brane can be described by supergravity on AdSs x S° where AdSs is the five-
dimensional spacetime. The theory is effectively reduced to SO(6) gauged supergravity

in five dimensions with SO(6) corresponding to the isometry of S°.

To gauge supergravity theory, subgroup Gg of G, the global symmetry of the scalar



manifold that includes all scalars in theory, is promoted to be a local symmetry. During
the gauging procedure, vector fields in ungauged theory are coupled to other fields that
are charged under the gauge symmetry. The gauged supergravity with the local symmetry
group g corresponds to the internal manifold with an isometry group Gy. For example, in
the first construction of this procedure in [?], SO(8) gauged supergravity can be described
by the compactification of eleven-dimensional supergravity on S7 SO(8) group. The

structure of this gauging is summarized in Figure 1.1, see [?,7,?] for more details.

[Supergravity inll

dimensions ] \

Torsion
p-form flux
Reduction on T7
Supergravity in 4 gauging . Gauged
dimensions - supergravity

Figure 1.1: A journey of gauge thoery in supergravity

An advent of the AdS/CFT correspondence proposed by Maldacena in [?], see
also [?,7], is the first bridge where quantum theory and gravity can be conjecturally
linked to each other in a consistent manner. The correspondence claims that conformal
field theory in the limit of large N in d dimensions is dual to the compactification of
supergravity on (d + 1)-dimensional AdS space with a compact internal manifold. The
most well-known correspondence is four-dimensional N = 4 super-Yang-Mills (SYM) with
SU(N) gauge symmetry and type IIB supergravity on AdSs x S°. This correspondence
or duality leads to various applications in several fields of studies, ranging from statistical
physics to high-energy physics. For example, in quantum field theory, a technique called
renormalization group (RG) has been introduced to solve the problem of infinities in the
calculation. The idea leads to the introduction of the S function describing the relation

between coupling constant ¢ and energy scale u. The § function at some g* such that



B(g*) = 0 is called a conformal fixed point that can be deformed by some operator Oa to
another conformal point. In the context of the AdS/CFT correspondence, the RG flow
of between two C'F'T’s is described by solutions in gauged supergravity in the form of flat

domain wall. The metric (d 4+ 1 dimensions) takes the form as
ds? = A0 (), datdz”) + dr?, (1.2)

where A(r) is a warp factor that becomes a linear function to reproduce AdSy;1 space.
Previous works on domain walls can be found in [?,?,7,?,?,?] followed by the studies on

BPS flat domain wall in [?,?,?,7,2, 2.2 7 7].

*y

The BPS curved domain wall solutions in [?,7?,?], later led to another holographic
solution called Janus that describes a conformal defect within conformal field theory. This

kind of solution can be obtained through AdSy-sliced domain wall
ds? = 24 (ds%ys,) + dr? (1.3)

that preserves some amount of conformal symmetry SO(2,d — 1) corresponding to the
conformal symmetry on the defect instead of Poincare symmetry on a flat domain wall.

In this report, we will focus mainly on Janus solutions.

The first Janus solutions are not supersymmetric solutions, see [?,?]. The solutions
are solved from an ansatz of AdS-slice domain wall. The field theory interpretation
dual to this solution are further described in [?] and correlation functions in terms of
holographic description are given in [?]. After that, for decades, supersymmetric Janus
solutions are found in gauged supergravities with different gauge groups and dimensions,
see [7,2,2,2,2,2,2,2.2,2,2,2,2,2,2,2,2,2,2.2,2,2,2,7,2,7,?]. Our scope of study is to
find Janus solutions from N = 4 gauged supergravity in four dimensions. The first Janus
solutions from N = 4 gauged supergravity has been found by compactification of eleven-
dimensional supergravity on tri-sasakian manifold studied in [?] where Janus solutions

interpolate between singular geometries. The next study is N = 4 gauged supergravity



with ISO(3) x ISO(3) gauge symmetry which admits only one AdSy critical points,
see [?]. N =4 5S0(4) x SO(4) gauged supergravity gives Janus solutions interpolating
between trivial N =4 AdS, critical points. With such studies above, no Janus solutions

interpolate between other vacua apart from trivial ones.

Our work eventually provides Janus solutions interpolating between non-trivial crit-
ical points. By the application of symplectic deformation [?], more deformations param-
eters allow us to find more general structures and vacua as earlier studies on symplectic
deformation of SO(8) gauged supergravity are found in [?,7,?7,?]. We find Janus solu-
tions preserving N = 2 and N = 1 supersymmetries [?]. Despite N = 2 solutions from
SO(2) x S0(2) x SO(2) x SO(2) truncation giving only trivial critical points, we find that
these solutions are more general than the solutions found in [?]. Much more interesting
solutions are found in NV = 1 supersymmetry since we finally find Janus solutions that

interpolate between non-trivial vacua.

This thesis is organized as follows. The main purpose of chapter II is to provide a
gist of supersymmetry in the construction of field contents in each multiplet with different
numbers of supercharges and provide the algebra corresponding to supersymmetry that
will be promoted to local symmetry in chapter III to build up supergravity. One of
the simplified reviews on supersymmetry is [?]. The main feature of chapter III is to
generalize supergravity with N > 2 and relevant symmetries for other fields with spin
different from zero. Once an ungauged theory is known, it is much more exciting to make
the theory become gauged supergravity in chapter IV, responsible for describing the string
theory compactified on different manifolds at low energy, see [?] a review and [?] for more
details. Moving to chapter V, the AdS/CFT duality, see [?,7,7?], is clarified, and some
applications such as RG-flow found from flat domain wall metric are given. By making a
bit alteration of the flat domain walls to be AdS-sliced domain walls, the Janus solutions
are described in chapter VI. Besides, our new Janus solutions are also provided in this
chapter. Finally, we review recent Janus-related works from [?,?] and comment on some

possible future works in the last chapter.



CHAPTER II

SUPERSYMMETRY

Supersymmetry, the biggest symmetry of spacetime, is beneficial in solving many
theories. Some problems, especially in High-Energy physics, could not be solved without
supersymmetry. Supersymmetry claims that there is a superpartner particle with different

statistics for each particle, uniting between bosons and fermions.

In this chapter, some details of supersymmetry will be briefly discussed, starting
with a bit of history to give motivation and mainly focusing on the extension of the
Poincare group with the addition of supersymmetry named super-Poincare and the algebra

behind it, see [?,7?].
2.1 History of supersymmetry

With the advent of supersymmetry, it had been developed throughout history. Im-

portant development will be given consecutively.

- In 1967, Coleman and Mandula proposed the “No-go theorem” that claims the
most generally possible symmetry can be explained by S-matrix being the direct product

between Poincare’ and internal symmetry.

- In 1971, Poincare’ algebra was extended by including spinor generator @, claimed

by Golfand Likhtman.

- In 1971, Applying supersymmetry in two-dimensional string theory was succeeded

by Ramond, Neveu-Schwarz, Gervais, and Sakita.

- In 1974, a complete field theory including supersymmetry in four dimensions was

created by Wess and Zumino.

- In 1975, Hagg, Lopuszanski, and Sohnius presented a generalized No-go theorem,



adding both spinor generator and its Hermitian generator in Poincare’ algebra.
2.2 Lie group and Lie algebra

Lie group is a group that contains elements as smooth parameters. Each element of

b ...,aN} where

a group can be described by a set of a finite number of parameters {a®, «
N is a dimension of a group. Geometrically, because of the smooth property of elements
of a group, the Lie group can also be seen as a manifold. a® then is seen as a manifold

coordinate.

Normally, the group identity can be written with parameter a® = 0 where a =

1,2,...,N as

Since the neighbourhood of identity element denoted as 1 changes continuously,

we can find this neighbourhood by considering infinitesimal Taylor expansion around

Jg
da) = dpe— . 2.2
g(da) = g(0) + da” 5 Z |a—o (2.2)

=1+ ida"T, (2.3)

where T, is a generator of the group defined by

. Jg

Ta - _Z%‘aazo

(2.4)

The elements far away from identity element can be found by

a

g(a) = lim (1+ i%Ta)n = ¢lo'Te (2.5)

n—oo



The action between two elements of the group can be found by

g(a@)g(B) = g9(v) (2.6)

i Tagib®Ty — i T (2.7)
Take In to both sides of the equation to get
T, = In(1 + ¢ Tee®To _ 1) (2.8)
With Taylor expansion of In(1 + K) where K is

s a - 2b
K:eza TaezBTb_l

— (1 +ia"T, - %(a“Ta)Q £ )1 +iBT — %(51?1}))2 +o)-1

1 1
= T, 4 if°Ty — T, B°T), — 5(oﬂTa)2 — 5(5’7Tb)2 + ... (2.9)

that leads to

1
T, = K — 51(2 + ...
1 1 1
= Ty +if"Ty — " Tuf"T, — (" T)* — S (B°Th)* + 5 (" T + B°T3)* + ...

= iaT, +i3°T, — %[a“Ta, BT + ... (2.10)
which gives
[T, BTy) = —2i(v¢ — a — B9)T,. = i6°T, (2.11)
where 6¢ can be redefined as

6¢ = a?B fup° (2.12)
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Placing this ¢ back in 7?7 to get

[Ty, 8°Ty) = ia® 3 fap’ (2.13)
a® B[y, Ty) = ia®B° fup (2.14)
[Ta’ Tb] = ifabcTc (215)

This is called Lie algebra as it tells about the structure of the group from structure
constant through the commutator between its generator that will depend on which the
group is. It is really important in Physics since Physic must face symmetry inevitably and

a symmetry can be identified from determining the Lie algebra relevant to that symmetry.
2.3 Graded algebra

In this section, we want to identify the symmetry called supersymmetry. However,
since Lie algebra is not enough to indicate algebra for supersymmetry, the Poincare algebra
abiding by Lie algebra structure must be extended in accordance with covering more
symmetries. The concept of graded Lie algebra is then necessarily introduced. A grade

of a generator can be defined by
To, Tp} = ToTp — (=)™ T, Ty = fopTe (2.16)

where n, = 0,1 is a grade of T, which is in a group Z,.

The product of two fermionic generators will result in bosonic genertaors due to

their grades equal to zero. This generally show that
[B,B'|=B”, [B,F|=F {F F}=B" (2.17)

where B and I are a bosonic and fermionic generator. Hagg-Lopuszanski-Sohnius theo-
. . . . : 1
rem proposed that possible fermionic generators must be in spinor representation (5, 0)®

1
(0, 5) of Lorentz group. This can be proved by considering the product of fermionic gen-
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1 .
erator in representation (j, j+ 5) for fermionic generator F*,i = 1, ..., N and its conjugate

4 1
F' in representation (j + 3 j)- The product can be shown as the following

. 1 1
{FZ7F]T}: (2j+§72]+§)
{FI,FI}: (25,25 +1) (2.18)

{(FITFIT} (25 +1,2))

The result must be in bosonic generator under Poincare group that has generators J*”
(a Lorentz generator), P* (a momentum generator), and t, (a generator of internal sym-
3 %) and (0, 0) respectively. More importantly,
fermionic generators with j > 0 cannot be closed the algebra {F, F'} to give bosonic gen-

metry) in representation (1,0) @ (0, 1), (

erators in Poincare’ group. Therefore, the only possible fermionic gernerators must have
9

j=0.

. 1 1
Let Qq; and Q% = (Qqi)' be fermionic generators in (5, 0) and (0, 5) respectively.
These generators are usually called supercharges. The indices ¢ = 1,2, ..., N refer to a
number of generators while a,b = 1,2 and d,l} = 1,2 are the spinor indices and their

conjugate respectively.

Generators (Qy; and QZ are spinors under Lorentz group that have commutation
with J* as

[Qaiy J/u/] - i(Uuu)ZQbiy [Qdiv J/.LV] = i(a-uV)ngi (219)
where o, is a Lorentz generator in Weyl spinor representation which is defined by

1 1
Opw = Z(Uuau —0y0yu), Ouw = 1(5/”1/ — 0uou) (2.20)

where 0, = (=1, 03), 6, = (I, 0;) and o; is a 2 x 2 Pauli matrices where ¢ = 1,2,3. Other
algebras including both of commutators and anti-commutators are found by super-Jacobi

and considering their representations.

iy 1 1 11
The result of {Qq;, @} must be in [(5, 0) ® (0, 5)]5 = (5, 5) This shows that the
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product is a generator P*.

{Qai» QLY = —Cloyqa P (2.21)

Negative sign is from o, = (I, 0%).

Due to the result of {Qg, Qfl} being hermitain, C’Z-j must be hermitian matrix and

can be diagonalized. Moreover, {Q;, Qfl} is always positive definite. Hence, Q4; and QZL

.. Qai
can have new definitions as Q’; =
vV QCZ'

. Therefore, the commutator can be rewritten as

Qi @1} = — 38l (222)

Consider the commutator
[Quiy P*] = cijot, QY (2.23)

11

1 _.
The product of antisymmetric tensor [(=,0) ® (5, 5)] 4 = (0, 5) is represented by Q%.

2 v
Its conjugation is therefore shown by

[Q™, P = —(ci)T6""* Quy (2.24)
From super-Jacobi identity,
[P*[PY, Qail] + [PV [Qais P]] + [Qas, [PH, PY]] = 0 (2.25)

With [P*, PY] = 0, the equation ?? will be true when cc’ = 0 because o#5" # 0 so

[P*, Qui] = [P*, Q] =0 (2.26)
1 1
{Qai, Qv;} is found by considering representation (5, 0)® (5, 0) = (0,0)@(1,0). Thereby,

the result will be

1 1
{Qui, Qv } = —§€abZ” + 5051, Yy, (2.27)

where €4, is the Levi-civita tensor, o*” is a Lorentz generator in the Weyl spinor repre-

sentation, Z% = —Z7" is a scalar field and Y}, = Y}/, = =Yy, is antisymmetric tensor.



13
With [P*, Qqi] = [P, P’] = 0 and super-Jacobi identity
[P#7 {Qaia Qb_]}] - {ij7 [PN’ Qai}} + {Qai7 [ija Pﬂ]} = 07 (228)

it can show that [P*, {Qas, Qp;}] = 0. This will result in Yy, = 0 due to [P*, 0"?] # 0.

A generator Z;; is a scalar under Lorentz group so Z;; must be in the form of

internal symmetry T4 as

Zij = aj;Ta (2.29)

where T4 satisfies Lie algebra
[Ta,Tg) = fap“Tc. (2.30)
Suppose Qq; and QY transform under internal symmetry
[Qais Tal = (S4)i?Quaj,  [Ta, Q4] = (Sx*)', Q) (2.31)

where (SA)g is a generator T4 in the representation of a supercharge.

The equation ?? and [P, T4] = 0 and super-Jacobi
(T {Qai QY] + {Qui, [@F, Tal} — {QF, [T, Qail} = 0 (2.32)
will give SAT = S§4 and super-Jacobi identity
(T4, {Quj, Quj} + {Qai,[Quj, Tal} — {Qbj, [T, Qui]} =0 (2.33)

will give rise to

[Ta, Zij) = (Sa)i Zix — (Sa)§ Zig. (2.34)
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Using 7?7 and 7?7 will show that
(Qai{Qus, QEY] + [ {QE, Qui}] + [QF. {Qui, Qe }] = 0. (2.35)
leading to [Q%, Zi;] = [Quk, Zij] = 0. Apart from these, it can also be shown
(Ziks Z1a) = €’ [{Quis Quj s Zia] = 0 (2.36)

or a‘k‘}l [Zij, Ta] = 0 which shows [Z;;,T4] = 0 for any a,fl # 0. Because of Z;; commuting

with all generators, Z;; will be central charge that seems like no interation on this charge.

In conclusion, all algebras of supersymmtery are shown by

[P, ) = i P = ?P"),  [P*, P"] =0
[JHV | JPT] = —i(JHon¥P — JVonhe 4 JVUPpho — JHPprO)

[P“,Qai] = [PMani] =0 {Qaia QZ} = _éégauadpu

[Qai, Juw] = z'(am,)abei7 Q% Ju] = i(5a)bQin‘ . (2.37)
{Qaiv ij} = —%eabZ,;j, {Qz, Q?;} ML _%Edbzij

[Qais Tal = (S4)i’ Qajy (@4 Tal = —(S*H)", Q]

Zij =aTa, [Ta,T5] = fas“Tc

Also, there is a generator that does not commute with supercharge Qg; called R-

symmetry. Let O4 be a generator of this R-symmetry
(04, Qail = (Ua)7 Qaj,  [04,Qh) = (Ua); Q1. (2.38)

where (UQ)ij is a conjugate of (U4).

Consider super-Jacobi identity

[[04,08], Qai] + [[OB, Qail, Oa] + [[Qui, Oa],OB] =0 (2.39)
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will give

[Ua,Upl = —fas“Uc (2.40)

It shows that —(U A)ij is the representation of R-symmetry. By Super-Jacobi

{[OAa Qai]? Qi} + {[OAa Q?)]a Qai} + [{Qaia QZ}? OA] =0 (241)

and [P*,04] = 0 lead to

1 , 4
—§JZBPM[(UA)Z-I“6£ + (Ua) 0K =0 (2.42)

or the other word

(Ua)? = ~(Ua); = =((Ua);")". (2.43)

which shows (UA)Z-j is an anti-hermitian matrix. Thus, R-symmetry of supersymmetry

with 4N supercharges is U (V)
2.3.1 Massless Representation

This representation refers to a massless particle in which P? = 0 and the momentum

is chosen to be k* = (FE,0,0, F)

Replacing k* in the equation 77, the result will be

{Qui,Q}} = 6E "0 (2.44)
0

Central mass is not valid for massless particle. The rest of anticommutator will be

{Qai, Quj} = {Q}, Qi } = 0. (2.45)

The equation 77 shows that

{Q2,Q}} = E] (2.46)
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The equation 7?7 gives

[J, Qui] = %UZQbi (2.47)

and its conjugate is

. 15 .
[/, Q4] = —50:Q) (248)
Focusing only on z-direction, the equation 7?7 and 7?7 become
[J3, Q2] = —§Q2i and  [Js, QQ] = 5@2- (2.49)

, Q:
For simplicity, redefining a; = % and &;r = —2 a new algebra is rewritten as

VE VE

{&ivd;} = dij (2.50)

which gives the same sense of fermionic harmonic oscillator. Beginning with the lowest

state with the minimal helicity k, hnin, the algebra can be defined by
ai lk,ho) =0, J3lk, ho) = ho |k, ho) . (2.51)
Other higher states are found by raising the lowest state by &I as

7

1
|k, ho + 5;z‘> =a! |k, ho)

|k, ho + 134, 5) = alal |k, ho)

(2.52)

n . . ~ A
|k, ho + 53 ey lp) = a;...ajn |k, ho)

N | . At A
‘k,hg + 5;11,...,ZN> = aT CLJr ‘k‘,ho)
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A state &;...dIN |k, ho) has a number of possible states as

N N!
R — 2.53
n!(N —n)! (2:53)
n
A total number of states in massless representation is
N (N
D(N)=Y_ =(1+1)N =2V (2.54)
n=0 n

In Lorentz symmetry, discrete symmetry called CPT symmetry says that all states with

helicity A must have states with helicity —h.

Quantum field theory under Lorentz symmetry allows particles to have helicity h

where —2 < h < 2 to exist. Eventually, hyaz — Amin < 4. From supposing b, = ho

N
and Az = ho + 5

= w2
VAN AN
o0 =

(2.55)

This shows that in four dimensions, the possible highest supersymmetry is N = 8, which
consists of 32 supercharges. In a different dimension, a number of supercharges remain

the same while an amount of supersymmetries can be altered.

For example, the simplest case N = 1, chiral multiplet or scalar multiplet with the

lowest-helicity state hg = —% has possible states as
1 1
k,—=), |k, 0)=allk,—2). 2.56
b= 1k 0) =af [k, ) (256)

which obviously have no CPT symmetry. According to CPT symmetry, (0, %)—helicity

state must be included and the opposite-helicity state of |k, 0) is also |k,0). Hence, all
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states in this multiplet are

1 1
ki=5)s I0), [R0), Ik 3) (2.57)

where |k, £3) is described by Weyl spinor while two |k, 0) are described by two scalars.

Another example is the multiplet with hg = —1 called vector multiplet or gauge

multiplet. By the same idea, all states are therefore shown by

1 1

(=1, 1=5) & (5),11) (2.58)

Supergravity multiplet with hg = —2 that will be the main multiplet to find holo-

graphic solutions in gauged supergravity will have states as

(172)5 =)@ (12, 12) (259)

where state |+2) is a graviton while state |:l:-§-> is a gravitino, a superpartner of a graviton.

As the process of finding field contents in each multiplet shown above, repeating

the same process with different N will give the field contents as shown at the Table 2.1.
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Table 2.1: Field contents for each multiplet for 1 < N < 8 in four dimensions

N Smaz $=2 s§=3/2 s=1 s=1/2 s=0
N=1 2 1 1

3/2 1 1

1 1 1

1/2 1 141
N=2 2 1 2 1

3/2 1 2 1

1 1 2 1+1

1/2 2 242
N=3 2 1 3 3 1

3/2 1 3 3 1+1

1 3+1 3+3
N=4 2 1 4 6 4 1+1

3/2 1 4 641 4+4

1 1 4 6
N=5 2 1 5) 10 10+1 5+5

3/2 1 5+1 1045 10410
N=6 2 1 6 15+1 20+6 15+15

3/2 1 6 15 20
N=T7 2 1 7+1 214+7 35421 35435
N=8 2 1 8 28 56 70

2.4 Supersymmetry transformations and algebra

In quantum field theory, the state of a particle can be constructed by a field operator

acting on a vacuum state. In this section, we begin such construction from a vacuum
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state and raise the spin of a particle by a supercharge operator that leads to a spinor field

operator.

Let’s suppose @ is the operator that can construct a particle with momentum p*

and spin j as

p,j) = 210). (2.60)

In a vacuum, supercharge will annihilate the vacuum state as

Qai |0> =0, Qdi |O> = 0. (261)

Let’s Z is a field operator of |p,0) that can be built up from |0) as

p,0) = Z0) (2.62)

@, that annihilates [p, 0) can be written as

Qalp,0) = QaZ 10) = 0. (2.63)

This shows that Z commutes with Q, written as

[Z,Qa] = 0. (2.64)
Super-Jacobi identity
{[Z,Qa), Qa} = {[Qa Z], Qa} + [{Qa: Qa}, Z] = 0, (2.65)
leads to
{Qa, Qa}, Z] = —%ag‘daﬂz = 0. (2.66)
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Ip, 1) is brought up by Q, from the state |p,0) as
1
Qa ‘p7 O> = QaZ ’0> = ‘p7 §> . (267)

Now, let’s define spinor field operator x, to construct spin—% particle

Xal0) =19 3). (2.68)
or written as
Xa = [Qa, Z]- (2.69)
Then, consider super-Jacobi identity
{Qa, [@Qs, Z]} —{Q. [Z, Qu]} + [Z,{Qa, Qu}] = O, (2.70)
and
{Qa, Qv} =0, (2.71)
lead to
{Qa, xp} = {Qu, [Z, Qal} = —{ Qb Xa}- (2.72)

This is obviously seen that {Qg, x»} has anti-symmetric property under switching indices

a and b. Thereby, this can be written as

{Qaa Xb} = eapF. (273)



To find [Q., F], one may begin by

Eab[Qa F] = [Qa {QmXb}
= _[Qaa {Xb7 Qc}] - [va {Qc; Qa}]

= _ecb[Qay F]

and make a contraction with €®® to get

[Qc, F] = 0.

Another commutator is [Qg, F] that can be found by similar way as

€ab[Qar F] = [Qa, {Qa, xb}]
= —[Qa, {xv, Qa}] = [xb, {Qa> Qu}]

1 1
= 'U;ja[QaaauZ] + —oh. Ixe, P

9 9 aa
1 i
= Qallfa = 50,%3“)(1)7

contracted by €* that results in

1
[Qa, F] = ) uXaUZa-
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(2.74)
(2.75)

(2.76)

(2.77)

(2.78)
(2.79)

(2.80)

(2.81)

(2.82)

This can be shown that all fields can close the algebra by considering the action of

supercharges, which means (Z, x,, F') are in the same multiplet.

For any fields ®, supersymmetry parameters and supercharges can lead to thier

transformation as

00 = [6Q% + “Q,, D).

(2.83)
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From this relation, supersymmetry of the multiplet above can be concluded as

07 = [€Q% + €*Qq, Z] = €*[Qu, Z] = €*Xa, (2.84)
. 1 .
5Xa = Ec{ch Xa} - ﬂ{Qa, Xa} = Feg + §Ugd€aauza (285)
. 1.
5F = —(Qa, F] = 50,0l (2.86)

The content in this chapter shows precisely that the anti-commutator of super-
charges can generate momentum. This can be proved by considering supersymmetry

transformations in the form of algebra, including supersymmetry parameters as

[01,02]® = [61Q, [©Q, ®]] - [©Q, [61Q, . (2.87)

With super-Jacobi identity
[ng’ [€2Q’ ¢H + [€2Qa [q)v ngH + [(I)a [ElQa gQQH? (288)
and €0Q = Qe will give
— ~b 1 — 1 —
[[01, 02]®] = [€]Qu, Q@ €25, P] = —gée €a[Py, ®] = —gfic €20, P (2.89)

As known that the algebra can point out the symmetry of theory, this algebra given
above will be the first step in construction of supergravity due to the constraint that
supergravity must admit supersymmetry as its local symmetry which will be explained

in the next chapter.



CHAPTER I11

SUPERGRAVITY

The previous chapter provides the procedure to find what field content should be
included in each multiplet. However, the theory cannot be described on the system
with curved space due to the addition of graviton, a particle that can cause gravity. To
broaden supersymmetry into gravitational theory, supersymmetry must play a role as
local symmetry. This theory that supersymmetry is promoted to be locally invariant is

called supergravity.

It is also said that supergravity is the gravitational theory having supersymmetry

as gauge symmetry that gives the algebra

61(0)Q, @)@ = ~ 5@ e ()d,8(). (3.1

Compared to the previous chapter, the difference of the algebra is spotted clearly
that supersymmetry parameters and a field are function of spacetime that is the indication

of local symmetry or gauge symmetry.
3.1 Fermionic fields in curved spacetime

Before encountering supergravity, behaviors of fermions in curved spacetime must

be clarified.

Fermions which, in this case, is a spinor that has no symmetry under diffeomor-
phism, but rather has local Lorentz transformation (LLT), their forms can be written
as

Loy
)= 2" "o(x) (3.2)
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where My, is a Lorentz generator in a representation of ®(x). It should be noted that this
equation can also describe not only a fermionic field but also other fields. The difference
for such other fields is that My, will be a Lorentz generator in a representation of those

fields. The covariant derivative is defined by

1
D,® =0, + ngbMabcp. (3.3)

For a spinor, it is transformed as

——w*yap
Jiz)=e 4 () (3.4)
where its covariant derivative is shown by
D=0 Lo 3.5
/ﬂ/} =t uw + iwy Yab¥- ( . )

3.2 Torsion

Since supergravity is the theory of gravity coupled to fermionic fields, it generates
a term of torsion inevitably. Unlike the theory of general relativity, Christoffel symbol
having symmetry under switching indices as 'y, = I'),, cannot give a birth to torsion.
Torsion tensor is defined by

T% = de® + wi A € (3.6)

which has a component on coordinate basis as
T, = 2epe) + Qw@bey]b (3.7)

or veilbein basis as

Tope = Qabc + Whae — Weab (38)
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where Ty, = T} ey el Wape = €awpbe and Qp, = 2e) eaa[uey} are anholonomy coefficients.
Switching indices can give a relation

Wabe = w(e)abc + Kabc (39)

where w(e) is the function of veilbein without torsion and K. is a contorsion tensor

defined by

1

2
1

Ka[bc} =< _§(T[ab]c > T[bc]a + ﬂca]b)- (311)

w(e)abc = (Qabc - cha + Qcab) (3.10)

With the existence of torsion, connection Fﬂy will change into the form

I, = %gp)‘(augw\ +0u9ux — Ongu) — K. (3.12)
Antisymmetrizing I',, can give
=T, =Kyy® = K;)# =/T,,°. (3.13)
Spinor connection also allows to give curvature tensor in the form of two-form as
R = dw®, + w AW = %R#y“bd:n“ ANdzx’ = %Rcd“bec A el (3.14)

Besides, Bianchi identity is changed to

ViuRyy”" = =T

» AR, (3.15)

1%

but its covariant derivative remains the same as

DR, y™ =0 (3.16)
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Since D), always involves connection, their commutaotr can give the curvature tensor as
1 ab
[D,,D,]® = §RW M@ (3.17)

where My, is a Lorent generator in the appropriate representation of ®. Applied to vector

and spinor field,

[D,LM Du]va = R,u,uabvb (318)
1
[D/u Du]w = ZRuuab’Yabfl/}‘ (319)

3.3 N =1 Supergravity

Starting with the simplest model of supergravity, since the supergravity is the theory
of gravity, which acts as a particle named graviton, that has supersymmetry, its multiplet
called supergravity multiplet must comprise a particle with spin g which is later named
as gravitino. Gravitino v, where a is the spinor index and p is the spacetime index is

conventionally written by ,,.

To construct gravitino, the first step may begin by considering the product under

Lorentz group as
S)eG e, 5) (3.20)

3 1
It is clearly seen that the product can give a particle spin 5 via representation (5, ®
1 1
(1,

1

5) (5, 0) & (0, 5) can be traced out by gamma-traceless condition y#1),, = 0. Ac-
11 1 1

cordingly, the product (5, 5) ® [(0, 5) ® (5, 0)] altogether with v#),, = 0 will perfectly

3
describe E—spin particle whic is called "Rarita-Schwinger” field.

1, can as usual other gauge fields generally transforms as

Yu(x) = ¢L(m) = u(x) + Oue(x) (3.21)
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where €(x) is a spinor parameter.

The action of Rarita-Schwinger field is represented by

S =— / d*zi, PO, (3.22)

which gives a field equation

AP, = 0. (3.23)

Thus, the supergravity multiplet consisting of graviton e}, and gravitino ¢, has the

action given by
1
- 2k2

S /d4xe[e““eb”Rwab(w) — Py Dy (3.24)

where the first term refers to Einstein-Hilbert action and the second term is the action of

gravitino or Rarita-Scwinger field.

Gravitino is transformed covariantly as

1 a
D;ﬂ/}u = a;ﬂpu == Zw#b’)/ablbu- (325)

The action is invariant under supersymmetry transformation

a 1— a
dey, = 267 Y, and 0, = Dye (3.26)
where
1 a
Dye = e+ Zwub'yabe. (3.27)

3.4 General structure of supergravity with N > 2

Ungauged supergravity with N = 1 supersymmetry can be seen obviously that its
Lagrangian and supersymmetry transformations of fermionic fields can be shown explic-

itly. However, difficulty probably arises when it comes to the theory with N > 2. In this
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section, a general structure of supergravity with N > 2 will be clarified, see [?,7,?7,7,7,7,7].

Regarding to a growing numbers of supercharges, supersymmetries are adequate to
indicate a general structure clearly. For NV > 2 the Lagrangian of bosonic fields generally
has a form as

671[,3 =

R
5 puvt po

1 1 1
- iastamsa%t + ZIAZ(@F/?Z,FEW + geflRAz(@eWUFA F~  (3.28)
where e is a vielbein. Ry, and Iy, are real and imaginary part of matrix Ny, respectively.

The indices s,t = 1,...,ns represents all ng scalar fields. The index A, X = 1,...,n,

indicates a number of all vector fields.

From equation 7?7, G4, a metric of a scalar manifold, clearly indicates an infor-
mation of symmetries in the theory. As supergravity with N > 2 contains sufficient
supersymmetries to give a precise geometrical structure of scalar manifold, this scalars
manifold described as homogeneous symmetric space in the form of G/H show that G is

the isometry of the manifold and H is a subgroup of G.
3.4.1 Scalar manifold

Due to the rich symmetry of the structure on N > 2 supergravity, various scalar
can be described by scalar manifold where each scalar is the coordinate of this manifold.
This manifold has an isometry as g € G acting on ¢° generates transformation ¢® —
¢ (¢) = g o ¢° where o represents action of the g on ¢* which leave G invariant under

isometry
o ¢ls’ o ¢/t’
0¢* Ot

Gsi(¢'(0)) = Gst(9). (3.29)

Since holonomy group H is responsible for parallel transportation on a closed trajectory,
the connection will be entwined with this group. H group can be described in supergravity
by

H=HpxHp, (3.30)
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where Hr = U(N) is R-symmetry for N < 8 and Hr = SU(8) for only N = 8 and H,, is
compact group relevant to matter field. Generally, H = Hp for N > 4 due to the absence

of matter multiplet.

Manifold M = G/H is described by members of a group G in the form L(z). The
transformation of L(x) under g (member) G is found by multiplying with g on the left of

L(x) while the transformation under H is to multiply on the right as

L(x) — L'(z) = gL(x)h(x) (3.31)

By the choice of arbitrary local gauge symmetry under h(z), L(x) can be written in the
form of L(¢p(x)) called coset representation Lie algebra of G and H given by g and b can

be described in the form of coset space as

g=hat (3.32)

where b and t are an algebra of H and a complement. Homogeneous manifold gives that

[b,b] Ch, [btCt [{Chot (3.33)

This concludes that generator in h and t will be compact and non-compact generator

respectively.

A construction of L(¢) by a generator is called parameterization. Two ways of

parameterizations are described by solvable parameterization as

L=e"T (3.34)

as the first example where T;. r = 1, ..., n, is a generator of G5 while the second is unitary
parameterization as

L=e¢"Y (3.35)
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where Y is a basis vector of t

Geometrical structure of M is described by left-invariant 1-form defined by

Q=LtdL (3.36)

which satisfies Maurer-Cartan equation

dQ+QAQ=0 (3.37)

Due to 2 € g = h P t, Q then can be decomposed into P € t and Q € h as

Q=P+Q (3.38)

which is also written in the form of coordinate basis

Qrd¢” = P.de" + Q.do" (3.39)

This equation changed the form under the transformation of L(¢) will consequently show

that

Qgo¢) =h~"L7H(¢)g  d(gL(9)h) = h™ L7 (¢)dL(¢)h + h™'dh (3.40)

A global transformation under G results in dg = 0. The value h~'dh € b projected to

subspace h and t leads to

P(go¢)=h"'Ph
(3.41)
Q(go ¢) = htdh + h~1dh.

This obviously describes that P transforms linearly and () transforms as a gauge connec-

tion called composite connection.
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P can be written in the form of basis Y; where §,%,... are the tangent space indices

as

P = P%Y, (3.42)

and P* on the coordinate basis is
P* = Pide®. (3.43)
From the equation ??, left invariant 1-form veilbein P* transforms under G as
Pi(go¢) = hiPt (3.44)
Covariant derivative of L can be expressed together with @ as
DL=dL-LQ=LP, L 'DL=L"'4L-Q=P. (3.45)
This veilbein P satisfies veilbein’s postulate as the same as veilbein in spacetime as
DP=dP+QAP+PAQ=0. (3.46)
2-form curvature of manifold M can be found by
RQ)=dQ+QNQ=—-PAP (3.47)
The component of this curvature have its components
R(Q) = 3 Resdd” A do? (3.48)

where R.; = —[F,, Ps] € b.
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For any fields ®(z) on M, the covariant derivative can be defined as
D,®=0,24+Q,0® (3.49)

where Q o ® is the operation of @ acting on the representation that ® lives in. The

derivative of D,. satisfies Ricci identity
[Dy, Ds]® = R,50® (3.50)
The metric that is invariant under H is defined by the basis Y;
Nsi = kT (YY) (3.51)

where k is a positive constant depending on the representation of Y; leading to the metric
on M as
ds® = Gyd¢?det = P Pin,de*de’ = kTr(PP). (3.52)

The eq. 77 will show that the metric is invariant under G.
ds*(g o ¢) = ds*(6) (3.53)
The equation 77 can also be used to write the Lagrangian of scalar field as

1 1
Lscalar = §eG5t8M¢38“¢t = §ekTr(PHP”) (3.54)

3.4.2 Electric-magnetic duality and vector fields

A field strength tensor F| ;1}1/ can be used to define its dual tensor called magnetic

dual tensor

oL
Graw = Yo RAEFEV — Ipy * FEV (3.55)
pv



where

A 1 A
po
*F’MV - ‘2 eEIL“/pa-F

The Bianchi identity will bring up equation

VH(xGpw) =0, VH(*F)) =0

The definition ?? helps to write *F* in the form of F* and G* as

«FY = I"(Ryr FT — Gy)
where T2% is the inverse of matrix Iy
Duality of G in the equation ?? gives rise to
«Gp = (RIT'R+ DasF® — (RI7),”Gx,

Combining F A and Gy will form the vector 2n, dimensions

FA
gM =
Ga

This is used to write field equation and Bianchi identity as
dgM =0
and G can relate to its duality as

+G = —~CM($)G

34

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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where C is a symplectic matrix
C= ’ (3.63)

where I, is the n, x n, identity matrix and M has components as

RIT'R+1T —(RIHE
My = ( Js — (R0 (3.64)
atmg

and M is also symplectic matrix

MCM = C (3.65)

These all aforementioned ingredients help to write field equation and Einstein equa-

tion under the symmetry of duality

D0t ¢ = —é-GSthVOtMQW (3.66)

1
Ryp = Grs0ud" 000" + 5,G,,,MG,° (3.67)

3.4.3 Global symmetry

For supergravity N > 1, G symmetry is extended to be a symmetry of field equation.
It can be said that every transformation ¢ — g o ¢ has 2n, x 2n, matrix R, [g] that give
a transformation

G" = R, [gIM GV (3.68)
where R,[g]M N is g € G in a representation of vector and its hodge duality.

The explicit form of R, [g]A! can be expressed by

Ry[gMy = (3.69)
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* A found by duality transformation of FA will give constraints to R, [g]} as

1. R,[g]¥ must be symplectic matrix as

R,[g]TCR,[g] = C (3.70)

2. R,[g] leads M to transform as

M(g o ¢) = (Ry[g]™")"M(¢) Ry [g] " (3.71)

Because of the invariance of ??, matrix N’ = Rpy +ilpy, must transform under R, [g] as

_ Clgl + DlgIN(9)
Alg] + BlglN(¢)

N(go¢) (3.72)

Duality of R, can be also defined as Ry« = (R, )T and the constraint ?? leads (R, ')

to

(RV[g]_l)T = CRu[g](C> Ru*[g]MN = (CMPRV[Q]PQ(CNQ (3'73)

Matrix M can be transformed by simplectic matrix £ as
M’ = EMET (3.74)

where E € Sp(2n,,R). However, this transformation gives redundancy of matrix M.

Matrix E that gives different frames is

E € GL(n,,R) \ Sp(2n,,R)/R,-[G]. (3.75)

In general, symmetry of duality is not action’s symmetry, but the symmetry of
field equations and Bianchi identity. From equation 7?7, if B [g]A2 # 0, the equation is
rewritten to

’

FN = Alg]* o F* + Blg]**Gx. (3.76)
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However, R,[g] for g € G, generally has the form as

(3.77)

where B[g]**® = 0 and D = (A~Y)T. R,[g] can also be transformed by matrix SV g €

Sp(2n,,R)/U(n,) as R,[h] = S~'R,S that satisfies

Ry[h) R, =1 (3.78)

Let’s define coset representative in R, as

LAVE R 58N (3.79)

that leads to
R,[g|L(¢) = L(g o ¢) R, [h] (3.80)
forall g € G and h(¢, g) € H whereindices M, N,...=1,....2n, and M, N,....,.=1,...,2n,

indicate the transformation under G and H respectively

L can be used to write M as
Mun = CrpLEY LECRN (3.81)
With symplectic properties on R, [g] and orthogonal condition of R, [h] can give
M(go ) = (Rulg] ™) M(¢)Ry[g] ™" (3.82)

where M is invariant under H and can be used to write Lagrangian density of scalar as

Local = %ekTr[(M’lauM)(M’laf‘M)] (3.83)
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Thereby, bosons will transform under G as

6¢° = AkS (3.84)
OM = A%kSOM = A%(Ryu[ta]M + MR, [t.]T) (3.85)
0Gp = =N (ta)N "G, (3.86)

where (t)a™ holds symplectic condition as

(ta)N"Cnp = (ta) P Crar (3.87)

3.5 Fermionic field

For N > 2 supergravity, spinors live only in gravity and vector multiplets, cannot
transform under G, but transform locally under holonomy group H. Different super-
symmetries will give different fermions. A, B,.. = 1,.., N represent the fundamental
representation of Hgr = U(N) indices for 3 < N < 6 and Hg = SU(8) and 4,5 =1, ..,n
are indices of fundamental representation of H,, = SU(n) for N = 3 and H,, = SO(n)
for N = 4. The spinors that have no index are singlet while spinors with indices ABC
are antisymmetric rank-3 tensor of Hp representation. Fermion (4,4, xaBc, Aai) have

positive chirality as

Vspua = Yua,  VSXABC = XABC, V5AAi = A (3.88)

ABC’7 )\;4)

while their conjugate (11),‘:‘, X have negative chirality

sl =~y s APC = xABC it = a4 (3.89)

For N = 3,5,6, additional spinors are Aapci = \i€anc, X, x* which have negative chi-

rality as

Yshi = =Ny VX =X X = =X (3.90)
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Apart from these spinors, the remaining spinors will be all incuded as

A1 = (XABC: Adi),  VsAT = A~ (3.91)

It is interesting to see that bosons transform under GG, but not for H while fermions
transform under H, but not for G. These transformations under G and H are similar to

transformations under GCT and LLT under spacetime.

Due to fermions transforming under H, like under LLT in spacetime, there are

appropriate composite connections to describe covariant derivative as

D= Dyp + Qo (3.92)

where D, is covariant derivative of spacetime and @ o is an action of connection @ in

representation of . This will lead to kinetic term of fermionic fields
: = - I < T
Ly = ie"" (P, Dyhas — YapnDptbs) — 5e(Af YDA 4+ Ay D AT (3.93)

where second term is written explicitly as

1 _
ﬁe(XABCV“ DuxaBc + XaBcY ' Dux

1 — 4. _ ,
— ie(AAWDHAAi + Aaiy" DA (3.94)

1 - a

ie(AWLDMAI AP DA) = — ABC
This also takes the same form for additional fermions found in NV = 3,5, 6.

3.6 Completed Lagrangian of N > 2 supergravity

Using Cayley matrix as the following,it is more convenient to write the interaction

between bosons and fermions

(3.95)
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This is used to transform

R, = AR, AT (3.96)
into complex form.

Composite connection from Q = AR, [Q]A' will then be rewritten as
QY y = _ (3.97)

where indices A, ¥ can be separated into A, B, ... representing indices of Hg and 1, j are

indices of H,, and submatrix

B QABCD 0 B QABCD 0
Qhs, = M Qs | (3.98)
0 Qlj 0 Qi]

where Q48 cp and Qij are connections of Hg and H,, respectively.

These gain benefits in writing covariant derivative of 14,, xABc and A4; as

1
DMQ;Z)AI/ 5 8}L¢AV oz FﬁywAp + Zwuab’Yabd}Au + QEATZJBI/
il
Duxasc = OuxaBc + ~wuYavXac +3Qua” XBcyp (3.99)

4
1 .
D, XAt = 0L A & ZwuabVab/\Ai + Qualrpi + Q,A\Aj

This matrix also helps write veilbein of scalar manifold as P = AR, [P]Af
PM G = (3.100)

where

PAY = ) (3.101)
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and

Papcp Pagj
Prs — Beb TABj | (3.102)

Picp P;;

Supergravity with different supersymmetries has different components of Pxs, which

will be used to write L of scalar seperately as the followings. For N > 4,

_ 1
€ 1£scalar = @P;‘BCDPXBCD. (3103)
For N =6 and N =5,
_ 1
€ l‘cscalar = ﬂPfBCDPZBCD. (3104)
For N =4,
_ 1 1 .
e lﬁscalar — ﬂPfBCDPZBCD + ZP,LZLABPZB‘ (3105)
For N =3,
4 1
€ lﬁscalar 7 §P'LZ,,ABP543- (3106)

By the transformation of L(¢) under H, L(¢) can be redefined as L(¢) = L(¢)Af

which has components as

fA fAz‘ JFAAB JFA i
L=|" " o (3.107)
haap hai BB Ry

transforming under G and H as
Ry[g1L(¢) = L(g o ¢) Ry [h] (3.108)
and symplectic condition of L leads to

LiCL = C (3.109)
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where C = ACAT. Complex form is extended to left-invariant one-form as
Q° = AR QAT =L YL =P+ Q (3.110)

M can also be written as

M = CLLC (3.111)

and in the form of matrix f = (f 45) and h = (haap, ha;) as

—2hht  2hft +iI
M = . (3.112)
ofht — i1 —offf

Compared to ??, I and R can be written as
L oo 1itet 1 e\ e 1
1= _Q(f_ 1S R= 5(2h+z(f‘ O™ (3.113)

To couple vectors with fermions, antisymmetric tensor O% = (O/_\

s ORy) that transforms

under H as O;,, = R,[h]O,, in the form of bilinear of fermion is introduced to wrtie

duality in the equation ?7 as
«G = —CM(G + LO). (3.114)
This gives a definition of composite field strength tensor as
F. =—L'CG,, (3.115)

having components

ng/ = (FjuaFj\uy) = _(L*)NMCNPQ!]Z/ (3116)

With symplectic condition of R, [g], F,, can apparently be shown to transform under H.



Let’s define self-dual tensor and anti-self dual tensor by

1 .
Fo = MBusriv )

where

ot +
ix FT = 2F.

Therefore, component of self-dual and anti-self-dual tensor will become

+ +
F;, = —LiCG3,.
Also, with symplectic condition of I, it demonstrates that

- _NtAh
OZ\W—O v = 0.

Thus, ny will have components as

_ (pFAB i by Lo+
F;—i—u — (F;w ) wal’ §OAB/u/’ iOi,uzz)

and

_ 1 i _
F, =(-z0 AB,—io F F ).

9 mv pvr = ABuvd ©ipv

Beside, using equation 7?7, components of Gf are given by
G}t = NAzFJrE + iIAEfEFOf

and

GX = NAzF_E — iIAzflgOf
By using definition of Giw in the form

2t oL
+
¢ e QFEAu’

A,uu::l:
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(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)
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Lagrangian density of vector fields becomes

_1 U A e A pts
e Lyector = (NAEF;W F=r _NAEF‘L—L’; F* lw)

i 7 7 (3.126)
+ §(F+A‘“’IAEJTZFOFW + F M s f750),,).

The second term called Pauli term represents interaction between fermions and F Mil,A

tensor. where A7, Oy is shown by

OAB,uzx = 2¢Ap'y[p7;wryg]¢Bo + CAB,CI"EpC'Yw/’Yp)‘I + CAB,IJS\I’Y/W)\J (3'127)

and

Oipw = Ci A" 9" Ar + Ci N v X (3.128)

where CAB,CI, CaB.1J, C@AI and Cj 1y are coefficient tensor depending on different su-

pergravities.

From all ingredients mentioned above, it is sufficient tto write general Lagrangian

of N > 2 supergravity.

11 o
e 1L = B = SekTr(P.P") + %(NAZF;VAF*EW — NasFJAFP—5m)

e _ 1. :
+ e Lenvp (¢;?’71/Dp¢140 5 ¢AM’YVD/J¢£) Ik 5)‘17“2);1)\[ + )\I’Y'LLD/L)‘I
1

+ §(F+ANVIAZFFOFMV 16 F_AMVIAZfZEOEV)

+ My it 0,8° Por + Ny 4 0,6° PP

(3.129)

The last term indicates interaction between scalar and fermionic fields.



This Lagrangian has supersymmetry transformations as follows

A _ aA
dey, = €Y "Yay + €AY

_ 1 i
SAN =LA 0N = ngABOfB + 40 + hee.

P;4BCD5¢S — ZABCD P;AB(5¢S — EiAB

9

1
5'¢AM = DllﬁA + ngoABﬁypgfyﬂﬁB
3.
dxABc = Psapop0ud®y*e® + ZZFW[ABWVGC}
1

SAai = Pyiap0,o*y'e? + 1

o
zFWi'y €A
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(3.130)

For N = 3,5,6, there are additional fermions which transform under supersymmetry as

follows.
For N =3,
1
OA; = §P5¢A35M¢SVHEC€ABC-
For N =5,
1
ox = ﬂ‘fABCDEPsABCDa,ud)S'YuEE-
For N =6,

1 T~
OXF = ﬁGFABCDEPfBCDamﬁS’Y“fE 1 e

(3.131)

(3.132)

(3.133)



CHAPTER IV

GAUGED SUPERGRAVITY

This chapter gives a general review on gauging used in gauged supergravity by
embedding tensor formalism. The early section tells about the gauging procedure leading
to a change in a structure of supergravity given in chapter III. At the end of the chapter,
N = 4 gauged supergravity are provided since our scope of the research is to find the

Janus solutions in N = 4 gauged supergravity.
4.1 Gauging procedure

Gauging in supergravity is promoting a subgroup Gy of G to be a local symmetry.
In the context of Kaluza-Klein reduction, local gauge symmetry encodes the information
of the internal manifold that leads to more realistic model because of the presence of
scalar potential. To gauge the theory with Gg, the Lagrangian is required to be locally
invariant under Gy symmetry. The first condition to consider in gauging is a number n,,

of vector fields must be sufficient to gauge as

dim(Go) < n,. (4.1)

Beginning with gauge connection defined by
Q,, = gAMX; (4.2)
gn = 9AuA4R :
where g is an coupling constant and X3 is a generator of G which satisfies

(X3, Xg] = fisl Xz (4.3)



To make Gy be a closed group, f Aifo must satisfy Jacobi identity

r In_
fias fajp =0
X, can be written in symplectic matrix under R, representation as

£
X%, 0

£
—Xisp Xjs

Due to symplectic condition of X AM it gives a relation

N

——

5
X AD

f =
compared to SFA = 51%)‘%\2}72 and 6GM = §A(XA)NMQN, it determines that
e Xpah
which rewrite the equation 77 to
(R X g ==,
From this algebra, a generator further shows additional relation that
Ay

Xips)

called quadratic constraint and for Xj;pe # 0, symmetric under Pecci-Quin,
Xrs) =0

These two additional constraints are called together as linear constraint.

47

(4.4)

(4.5)

(4.7)

(4.8)

(4.9)

(4.10)
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Transforming under gauge connection under g(z) € Gy C G is described by
Uy = g(2)Qg ™" (2) + dg(z)g ™" (2). (4.11)
The connections generate 2-form curvature tensor R(Q2) = F' Ax i defined by
R(Q,) = ;(ng —Q, A0, (4.12)
Components of F, ;{\V are found by
FY = 0,48 — 0,40 4 gx;xhAL AT (4.13)
Total covariant derivative including gauge connection is defined by
V, =D, —gAlx; (4.14)
This derivative can be used to find Fl{XV as
[V Vil = —gF s X5 4. (4.15)

where ... represents a curvature tensor of spacetime and curvature tensor R(Q) in the
scalar manifold. Resulting from gauging that obviously relates to a new connection,

left-invariant one-form can be newly defined as
O, = L7'V,L =L Y9, — gALX;)L. (4.16)
With relation L='dL = P + Q, 15” and Qﬂ are redefined as

]5“ =P, - QA;/)P[\ and Qu =Qu— QAQQ[\ (4.17)



projected to t and b, it describes

Pi=L"'X;L|y and Qi =L 'X;Lly

transformed under gauging as

P(go¢)=h"'Ph and Q(g(z)o @) =h"'Qh+ h~'dh.

This also satisfies Maurer-Cartan equation for gauged form
AU+ QNQ = —gL 'R(Q,)L

projected on subspace t and b, it turns out that
)= —gF\P;

DP=dP+QAP+PA
RQ)=dQ+QAQ=—-PA

P—gFAQA.
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(4.18)

(4.19)

(4.20)

(4.21)

Furthermore, affected by this gauging, fermionic fields will have total covariant derivative

as

Vb =D+ Qo

(4.22)

In symplectic frame, embedding tensor is shown by ©3“ responsible for projecting

Lie algebra g, of G, whose generator is t,, on the algebra gg on gauge symmetry Gy as

X, =0,%,

(4.23)

where ©47 is in the product n, ® adj(G.) and A=1,2,3,...,n, and 0 = 1,2, ..., dimG..

Xy in a representation R, is written in the form

Xun® = R-[Xuln" = O0%.NT

(4.24)
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which is transformed under symplectic frame of the action as

_ N A
Xun® =(E N (BEYN Xy B (4.25)

4.2 Lagrangian density of gauged supergravity

To write complete Lagrangian density, many terms in ungauged theory have to be

adjusted which will be shed the light on in this section.

Let’s firstly consider kinetic term of fermionic fields. For gravitino,
Ly, = =iy’ a, + hec. (4.26)
whose supersymmetry transformation is given by
0au = Vuea+ ... (4.27)
This has an effecton its lagrangian density clarified by

0Ly,, = —261/?f'y“”pvyvpe,4 + 0= gezﬁf’y“”ng}D fAGB + ... (4.28)

For kinetic term of \!
Lor = —Lemtv, ! 4.29
=5 eArtVy, + ... (4.29)
whose supersymmetry transformation is

SN = PMyteq + .. (4.30)
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which gives an outcome
P A

_ . 1 - .
0Ly = —e/\lfy“'y”VMP,j“eA +.= ige)\fy’“’FA PMey+ .. (4.31)

These show that additional terms apart form which represented by ungauged supergravity

are

- A _ B
6Ly, ~ gﬁw”f’FyAp(L 'XLlp)a eB + ...

" . (4.32)
SLxr ~ gAY P (L X L) e + ...
By writing FAL™1X Ar in covariant form under G
FMAIXSL=FAERML ' XL = GM L' X)L (4.33)
From this relation, a new tensor called T-tensor can be introduced as
Pl L X 5 L (4.34)

where Ly, = (L7)V ;. Components of Ty; = Lz L' XL on the complex basis is
shown by
P

Tyn' =L Ly Xun " (L71)p (4.35)

With the relation Q; = EAMQM and Pj = EAMPM, T'y; can be seen in the form of Qs
and Py

Typ = L™ (Par + Qur).- (4.36)

To preserve supersymmetry, additional terms are needed to be introduced. One of

them is called Yakawa term defined by

eilﬁyukawa = g(—21/ju’y“V1/JI,BSAB -+ E\I’y'uwAuN]A + S\IAJM[J) + h.c. (4.37)
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This term plays a role as mass-like term of fermion. T-tensor can also be written in the

form Sap = Spa, NIA and M7y and their conjugate are

SAB — (Sap)*, NI, =N/, MY = (M- (4.38)

Apart from Yukawa term, supersymmetry transformation must be fixed in order to

preserve supersymmetry as well.

(51#,4 =V EA—gSAB’y 6B+...
" QN : (4.39)

(5)\] = p:‘["}/HGA + gN[AEA + ...
The additional terms involve Sag, IV, IA and M7y which are known as fermion-shift matrix.

According to new supersymmetry variations with additional fermion-shift term,
varying Yukawa term will create second order term of g. This will be cancled by a term
called ”scalar potential” that play a role like potential energy for gauged supergravity

system. It is defined by

1
Vi(e) = NQQ(NIANIA ~ 12855 ) (4.40)

In summary, a construction of gauged supergravity has been motivated by beginning
with an ungauged theory with replacing previous covariant derivative into total covariant
derivative including gauge connection. In order to preserve supersymmetry, Yukawa term

and scalar potential must be introduced as

e ' Lyauged = € Lungaugea(0 — V,dA — dA+ AN A)
+ g(=20u7" B Sap + Ny a Nt + MM M) + hee.

—V(p) (4.41)
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The lagrangian above is invariant under supersymmetry transformation as follows

St = ey iy + Eay by}
_ 1 3
0Ay =LAy 0" = S ap0," + 0], + he.
ABC ABC A A
PsB D(Sd)S:ZBD, PSZ B(S(Z)SZZZB

B i o B 5 (4.42)
5wAM - D:U'GA + ngUAB7 7#6 - QSAB€

3.
5xaBC = PsapcpOud®y'e? + 1 Fapr e + gNapcep

1
oM ai = Psiap0u¢yHe® + ZlFWﬂ“VGA + gNiaPes

4.3 A general structure of N = 4 gauged supergravity

Our scope of study is to find Janus solutions in N = 4 gauged supergravity. It
is much more convenient in finding such solutions to have a general structure of N = 4
gauged supergravity as being our tool. Generally, N = 4 gauged supergravity is coupled
to vector multiplets that lead to consisting of two multiplets, two of which are gravity

multiplet and vector multiplet.

The gravity multiplet has fields content
(eﬁ7 ?/),Z“ AZla Xiv 7_) (443)

while vector multiplet provides

(Af,, N, ™) (4.44)

The scalar field 7 is a complex scalar that contains dilaton ¢ and axion y parametrized
by SL(2,R). The indices p,v,... = 0,1,2,3 and j,7,... = 0,1,2,3 describe spacetime
and tanget space respectively. Fundamental representations of SO(6)r and SU(4)r R-

symmetry can be indicated to indices m,n =1,...,6 and 7,5 = 1,2, 3,4 respectively.

In vector multiplet, SO(6,n)/SO(6) x SO(6) coset is used to descibes 6n scalar

field ¢ where indices a,b =1, ...,n.
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For fermionic fields, they are determined by fundamental representation of SU(4) g ~

SO(6)r abiding by chirality projections as
Vs =1, ysx =X, A =N (4.45)
and its conjugation

VsWui = —WVui,  V5Xi = Xis  Vshi = =N\ (4.46)

Complex scalar 7 contain dilaton and axion as the form

T = x +ie? (4.47)
written in SL(2,R)/SO(2) coset as
+ie
Vo — etz [ % : (4.48)
1

6n scalars in vector multiplet ¢ is described by
Vit = W™, Var®) (4.49)

satifying
nuN = —Vu"VN" +Vu VN (4.50)

where nyn = diag(—1,-1,—-1,—-1,—-1,—-1,1,...,1) is a metric of SO(6,n) and index

A = (m,a) is from separating SO(6) x SO(n) index.

The bosonic lagrangian of N = 4 gauged supergravity can be written by

L SO T =V (4.51)

1 1

1 MN
L=—-R+ —0,MynO"'M -
¢ 2 16 " N 4(ImT)
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where e = /—g is the determinant of the veibein matrix. The scalar potential of this

equation can be found by

1 1 2
V= 7[faMNPf,BQRSMa'B[*MMQMNRMPS + (777MQ o MMQ)T]NRT]PS]
iG 3 3 (4.52)
- §faMNPfBQRS€QB MMNPQRS]

7 gcxM

The embedding tensor, which is earlier studied in [?,7,?,7] and foprnp, which play

a role in gauging, are clearly contributed in scalar potential and due to the emergence of
supersymmetric AdSy vacua, £*M is compulsorily required to be zero, see [?]. Hence, in

gauging method, the embedding tensor f,ynp will only be perfomed.

The matrix Masn, the inverse of matrix MM is written as

Myn =V V™ + Var*Vne. (4.53)

The MMNPQES tensor is found by
My NPQRS = €mnpars VM YN" VPPV VR Vs* (4.54)

which is raised the indices by 7™,

The M*? matrix is calculated by taking the inverse of matrix M, shown by

Mo = Re(VaV5) (4.55)

Supersymmetry variations of this theory are

) 2
oy, = 2Dy€" — §A7i]’y“ej (4.56)
. 4
ox' = =PV, D, Vgyte' — 347 (4.57)

ON: = 20V, M D Variyte; — 2iAgg;tel. (4.58)



56

The definition of relavant fermion shift matrices can be given by

A7 = e Vo) VeV VR 115 (4.59)
AY = PV VM yyvpdt (7 (4.60)
Ay = PV VMV NV fann (4.61)

The matrix V)% and VijM can be found by the 't Hooft symbols as

T N
Var'l = V"Gl (4.62)
1 .
Vit = =5 Vm M (GR) (4.63)
where G, obeys that
iy L K
Gmij = (G)" = 5€igkiGm (4.64)

and the explicit form of matrix G can be written by

0 1 0 O 0O 01 o0
s -1 0 0 0 i 0 00 —1
GIJ_ , GQJ_
Orn 4 g ¢0s Al -1 0 0 O
0 0 -1 0 0O 1 0 O
0 0 0 1 0 ¢ 0 O
0 0 10 s |1 00 0
Gg]: , G4J:
0 -1 0 0 0 0 0 —2
-1 0 00 0 0 2z O
0O 0 2 0 0 0 0 =2
y 0O 0 0 = y 0 0 — 0
GY = , GY = (4.65)
- 0 0 0 0 ¢« 0 O
0 —2 0 0 - 0 0 0

All of this structure will be used in finding Janus solutions in chapter VI.



CHAPTER V

ANTI-DE SITTER SPACE AND

CONFORMAL FIELD THEORY

AdS/CFT correspondence, firstly proposed by Maldacena since 1997, mainly plays
a crucial role in making the calculation in quantum theory more easily than ever before.
Due to tedious results of calculations from quantum field theory, they are difficult to give
analytic explanations, most of which rather show numerically. Analytical solutions are
much more better in describing things in physics. However, luckily, the calculation from
quantum field theory can be converted to gravity theory, which usually provides solutions

analytically, through AdS/CFT correspondence.

This chapter will give the first introduction of AdS5/C FTj duality, originated from
two perspectives of string theory. The following content, compelling to give better under-
standing of AdS/CF'T, is the identical isometry between conformal field theory (CFT)
and anti-de sitter space (AdS). In the end, general princaiple of AdSyy1/CFTy will be

given.
5.1 Two perspectives of string theory

AdS/CFT correspondence is firstly originated from describing the dynamics of N
D3-branes from closed and open string perspectives. The end of this section will show
that due to the same dynamics of N D3-branes, two perspectives, compulsorily equivalent

to each other, give the duality between N = 4 Super Yang-Mills theory and AdSs x S°.
5.1.1 Open string perspective

In this perspective, N coincident D3-branes coupled to the string with coupling
constant g5 < 1 regardless of massive sates show that an effective field theory will become

four-dimensional gauged theory with U(N) gauge symmetry where the coupling constant
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is gsIN.

In ten dimensions, the supersymmetries halfly preserved by D3-brane give massless
state of the string representing N = 4 field theory on world volume of D3-brane. This

action of D3-brane is shown by
S = Sclosed + Sopen + Sint (51)

where Sciosed, Sopen and Siynt are the actions of closed, open string and interaction between

these two types of string respectively.

With the limit of, Ev/a’ < 1, the action will be reduced to
Selosed = 2%2 d%z/=ge ??(R + 40p ROM R + 0y 0™ ¢ + ...). (5.2)
In the limit gs < 1 that k¥ becomes small value, the metric gasn can be expanded as
gMN = NMN + Khun. (5.3)
Then, the action will approximately turns into
Setosed ~ % / A2 (D0 hM b+ On 6™ + ), (5.4)

where hpsn is the perturbation term of metric gy from nyny as guny = nun + Khun

and ¢ is the scalar field of the theory.

Sopen and it found by the Dirac-Born-Infel action are shown by

1
Sppr = — p / d4xe*¢Tr\/ —det(gu + By + 21/ F,), (5.5)
S

(2m)3a/?
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The scalar ¢(z#) relates to z*+3

23 = 21a/ ¢ (5.6)

along with the pullback g, = Plg]u

P[g]w/ = Gguv + (QWa/)(auﬁbigH-?),u + gu,j+3al/¢j) + (2770‘,)2gi+3,j+3au¢i81/¢j (5-7)

and expanding e=® = 1 — ¢ + ... and gyn = nun + khayy can separate free fields and

interaction term as

_ 1 4 1 uv 1 (FAYTRI) !

Sopr = — 5 / B[ Fyu PP 4 0,60 + O(a)] (5.8)
L 4 [11%

St = g / d ¢ ™ 4 . (5.9)

Vectors and scalars lie on adjoint representation of U(N), will give non-abelian gauge
theory with U(NN) gauge symmetry. Thus, vector and scalar fields will be written in

U(N) representation as
A;L = AZTa7 ¢z ol ¢iaTa (510)

where T is a generator of the group. Therefore, kinetic term of gauge fields will change

to I, F'“"” and the covariant derivative of scalar field will be made an adjustment to

D,u¢i = 8,u¢i + g[A#, (bz] (5'11)

Besides, scalar potential is added

_ 1 7 112
V= o, ;Tr[cb &) (5.12)
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Changing the scale of ¢ to v/2k¢, Sint can be estimated as
Sint ~ / d*zrpF? (5.13)

This interaction term will become 0 at the o/ — 0 since x ~ a/> = 0. To conclude, with
this limit, there is no interaction term so only Sopen and Sgjoseq remain. Also, at this limit

Sopen Will be reduced to

1 4 1 v 1 ; ; /
Sopen = _gYM2 /d l‘[ZFﬁyFau + 58;@18’%’ + O(a )] (514)
which reveals the bosonic sectors of N = 4 SYM where g3-,, = 2mgs while the closed

string consequently represents supergravity in ten-dimensional flat spacetime.
5.1.2 Closed string

Coupled to N D3-branes with gsN — 0o, open string cannot be described in this
limit, but closed string showing that the brane is a charged object of RR field coupled to
field from IIB supergravity give an insight of ten-dimensional curved space where fields

from closed string live.

Supergravity in D-branes will give solutions as soliton. Dp-brane, which generally
halfly preserves supersymmetries, has Poincare’ symmetry in p + 1 dimensions and give

rotation symmetry in 9 — p dimensions. The action can be shown by

S 1/dwﬂz\/—g[ew(R—l-élaMgb@Mgb— 5 L

T o gy M F )] (5.15)

p+2

For p = 3, the theory will give solutions of D3-brane as

ds? = H_%nw,dx“dx” + Hééijd:ridxj (5.16)
L4
=g H=1+ I L* = 4ng,No/? (5.17)

Cuy = (H(r)™t = 1)da® A dat A da® A da® (5.18)
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where H(r) is a function of asymptotic flatness written as

H(r)=1+ (E)H’ (5.19)

r

The thing needed to consider is to analyse ds? where r > L and r < L. For r > L,

ds® become flat spacetime’s while r < L show that

dZ—ﬁ da*dx” chﬂ L2d0s? 5.20
s* = Tgwdatds” + —zdr? + L*d0; (5.20)

This is the product of metrices of five-dimensional anti-de sitter and five-sphere with
radius L. This limit is called near-horizontal limit. Therefore, at low-energy limit, closed
string perspective gives the existence of closed string living in flat spacetime and near

horizon.
5.2 AdS/CFT correspondence

From the previous section, two perspectives of string has a mutual component, 11B
supergravity in ten-dimensional spacetime. These two must be equivalent according to
describing the same system, the dynamics of N D3-branes. Thus the remaining compo-
nents, N = 4 SYM with SU(N) gaguge symmetry and IIB supergravity in AdSs x S°
spacetime from open and closed strings perspectives respectively, rudimentarily dual to
each other. N = 4 SYM is the field theory with conformal symmetry, also known as
superconformal field theory. This equivalence seems likely to give the holography of AdS
and CFT, usually known as AdS/CFT duality.

This chapter will show that apart from N =4 SYM equivalent to IIB supergravity
in AdSs x S° spacetime, anti-de sitter space also gives the identical isometry as conformal

field theory.
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5.2.1 Conformal field theory

Conformal field theory is the symmetry that does not change the angle between

vector V# and U* in d-dimensional space defined as

“w
uv _ Urv, (5.21)
o.u)(v.v) uvu,vev,
This will give the metric transformation as
(@) = €D g, (z) (5.22)
An operator of infinitesimal conformal transformation is shown by
1
U(a,w,\,b) =1+ a,P" + QWWJW + AD + b, K" (5.23)

where P# and J*¥ are usual generators in Poincare group while D and K* are responsible
for scale ransformation and special conformal transformation. Scale transformation is
defined as

= Xzt (5.24)

and special transformation is given by

, zH + b2

W
1+ 2b.x + b2x?

(5.25)

In accordance with closed group, the generators P*, J* D and K* can form con-

formal algebra as the following

[Juwrs Jool = 41 donys [Bus Jupl = 201 By
[Kw JVp] = 277#[qu]7 [P;u KV] = 2(77,UVD + JW) (5'26)

[D,P,] = P,, (D, K,] =—-K,
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Resulting from redefinition of the generators as

J,ul/ = J;u/v Jd,d-‘,—l =D (5 27)

1 1
Ku_Pu)v Jpd1 = §(PM+KM)»

Jud = 5(

it can be rewritten as

[Jabs Jed] = 4njafeTapp) (5.28)

Because of the above equation describing an algebra of SO(2,d) group, this conformal

group in d dimensionsis isomorphic to SO(2, d) group.
5.2.2 Anti-de sitter spacetime

Anti-de Sitter spacetime, the most symmetrical spacetime, is a hyperboloid space-

time with negative curvature

AdSy.q can be defined on R?>? with signature (—, 4, +,...,+,—). Let Y4 A =

0,1,....,d,d + 1 be rhe coordinate. The surface of this space is described by

d
YAYBT]AB = _(Y0)2 — (Yd+1)2 == Z(Y’L)2 — _L2 (529)
i=1
which corresponds to metric
ds? = napdYAdy® (5.30)

It obviously shows that its isometry is SO(2,d) as the same as in conformal field theory.

Metric of AdSg11 can be written in different coordinate systems, one of which can

be found by fixing Y4 — (29, 2%, u) = (2%, u),i = 1,2,...,d — 1 as

Yo = Luxo, Y = Lua’
d 1

1
Y¢= %[UQ(L2 —2?)—1], vi¢l= ﬁ[zﬂ(LQ + %) + 1]

(5.31)

where 22 = (—z%)% + Z?;ll = 1o is @ Minkowski metric in d dimensions.
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Replacing Y4 in ?? gives

ds?—L?[d—“QJru2 dz®daz” 5.32
= 2 Napdz®dz”]. (5.32)

Chinging u to % will provide other coordinates as

L2
ds® = ?(nafgdazad:ﬂﬁ + dz?) (5.33)

where (2%, z) is Poincare patch coordinates.

The other one is found by transforming

T L
L == 5.34
ek == (534)
resulting in
ds* = e%na[gdwadmﬂ + dr? (5.35)
which is widely used in finding holographic solutions.
Curvature tensor of the AdS;.1 space is shown by
1
R,uupa = _ﬁ(gupgua - guagup) (536)

where L is the radius of curvature of AdSg4; that also leads to Ricci tensor and Ricci
scalar as

1 1
Ruy =~ 7509, R =—75(d+1)d (5.37)

5.2.3 AdSs5/CFTy duality

AdSs x 8% gives an isometry SO(2,4) x SO(6) where SO(2,4) is an isometry of
AdS5 and SO(6) is an isometry of S°. It is clearly seen that the isometry of AdSs

correspond to conformal symmetry of N = 4 SYM theory and isometry of S° is dual to
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SU(4) R-symmetry. To conclude, symmetries between these two theories can be matched
as SO(2,4) is responsible for isometry of AdSs and C'F'Ty in the SYM theory while SO(6)
is dual to SU(4) R-symmetry of the SYM. By N =4 SYM, all symmetries in the theory
can form a supergroup denoted as SU (2, 2|4) where SO(2,4) x SO(6) ~ SU(2,2) x SU(4)
that 2,2 in SU(2,2[4) is from SU(2,2) while 4 in SU(2,2|4) is from SU(4).

Duality between AdSs x S® and N = 4 SYM theory then implies that there is
always map one-to-one from a field in AdSs x S° to an operator in N = 4 SYM theory

and the fields and operators must lie in SU(2, 2|4) representation.
5.3 AdS in (d+1) and CFT in d dimensions

From the previous section, AdSs x S° and N = 4 SYM theory demonstrate that
there is always a map one-to-one between fields in AdSs x S° and operators in N = 4
SYM. This idea is broaden to apply in different dimensions as fields in AdSz,; x MP—4=1

dual to superconformal field theory in d dimensions called AdSyy1/CFTy
5.3.1 Correlation function

Correlation function in quantum theory is linked to physical qualtity found by
< o(x1)p(x2)...0(xp) > (5.38)
This is the expression of n-points function. It is normally calculated by path integral as
< G0)8(w2)b(n) >=N [ Dolar).dln)e’ (539)

where S is an action of the system and A is the normalization constant. It can be also

found by generating function by the definition

Z[J] —< ez’fd‘in(z)d)(a:) >— N/Dei5+ifdde(m)¢(m) (540)
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Using generating function, correlation is in the form

(O(1)0(2) - 0(an)) = ()" 5J($‘j§? E;f}(xn) (5.41)

where now J(x) is called source.

Generally, generating functional Z[J] is precise to independent fields with order 2
in the action, but for the action involving interaction terms, the generating function is

needed to adjust its form a little as
Z[J) = N/ngeiSO“fddzJ(r)¢(x)+ifddw9¢(r)’" (5.42)

where Sy is the action of independent fields.

AdS/CFT proposes that correlation function of operators in superconformal field

theory
< O(x1)...0(xy) > (5.43)

can be found by gravity theory of AdS;11 by generating function
Z[®(g)] =< &/ o0 EOE > opy (5.44)

where @ () is the field ®(z,z) at the boundary of AdSg;1.

The above equation shows that the operator O(x) has dimensions A dual to ®(z, z)
that has dimensions d — A because the total dimensions of O(z) and ® y(x) must be d.

Therefore, ®(z,2) must be in the form ®(z,z) ~ zd_A@(o)(az). At z — 0, AdS/CFT

will give
ZCFT = ZString‘limz40<1>(z,ac)zA*d:<I>(o)(I) (545)
At the limit of small o’ and g, it can be estimated that
Z tri | — eiSsupergravity (5 46)
SUINg | im0 ®(z,x)22 ~4=P (o) () lim._o®(z,2)z2~ 4= (o) (z) ’
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where Sgupergravity 15 the action of supergravity. Duality of AdS/CFT at low energy can

be written as

<€f d?z® o) (ac)O(z)> iSsupergravity (547)

CFT = € lim, 0 ®(2z,2)22~4=P o) (z)

From this result, it is said that correlation function of superconformal field theory is found

by the action on mass-shell of supergravity.
5.3.2 A map between operators and fields

Let’s consider the metric of AdSg;1

L2
ds® = gppdz"dz™ = ?(nwdx“dx” + dz?) (5.48)

where L is a radius of AdSg;1. The action of scalar field ¢ is
1
S = 2/d,zddﬂr:\/—g(gm" i POnd + m2p?) (5.49)

which gives the Klein-Gordon’s equation

%y = m = (/=0 0u) ~ m0 (5.50)

For the AdSyy1, This equation can be written as

)

Og(AdSai1) = 7

(2207 — (d — 1)20, + 2%1,,,010"] (5.51)

N 00" gives a solution of wave equation in d dimensions. Besides, ¢(z,x) can be written

in the form of Fourier’s transformation

d
¢@m:/d%ﬂ%mMn (5.52)



Let’s consider the solution of ¢(z,z) at z — 0 by supposing ¢(z, z) as

d(z,x) = eip“x“qﬁ(z)

Klein-Gordon’s equation in the equation 77 will give

220%¢(2) — (d — 1)20.4(2) — (M?L? 4+ p*22)¢(z) = 0

where p? = pF'p, = PP N

In the limit z — 0, there are two independent solutions written as

d1(2) = 2R

where A4 are the solutions of equation

m2L% = A(A < d)

exactly written as

68

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

From the equation, it is obviously seen that A, will be greater than A_ and Ay +A_ =

d. ¢4+(z) and ¢_(z) usually are known as normalizable and non-normalizable solution

respectively. Ay can be defined only when

d2
212

m2L% > ——

- 4

2

(5.58)

The minimum of this limit is Ayn = -7 called Breitenlohner-Freedman (BF) bound.

This shows the bound that allows which scalars to exist.
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5.4 Holographic renormalization group

The calculation in quantum field theory usually encounter infinity which is diffi-
cult to explain physically. There is a technique called renormalization playing a role in
canceling out this unexplainable infinity. The procedure involves making an alteration
of dimensions on parameter such as coupling constant or masses of fields. Function

defined by

8= (5.59)

is responsible for describing the relation between coupling constant g and scale of energy
. To have a value of g depending on scale of energy, it means that in some certain scale of
energy, infinity may be avoidable due to the minimized g(u). More importantly, at some
g* that gives 3(g*), coupling constant no longer depends on scale of energy at this point.
Due to the invariance of coupling constant under changing energy scale, the theory that
remains the same no matter the size of energy scale changed resembles conformal field
theory that has a symmetry under scaling transformation. This point where 5(g*) = 0 is

accordingly called conformal fixed point or critical point.

The conformal field theory at the fixed point can be deformed to quantum field

theory, which has no conformal symmetry, by operator O with dimension A as
SQFT = SCFT + /dd$¢o($)0A($), (560)

where ¢o(x) is a source of perturbation. Since this deformation can describe the flow
from conformal fixed points, it is possible that the flow can start from one conformal
point at high energy (UV level) and terminate at the other conformal points at low
energy (IR level) if that space has more than one critical points. This process is called
renormalization group that determines the deformation from one critical point to the

other along the energy scale p.
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5.4.1 Asymptotically anti-de Sitter space

The AdSgi1/CFT,; correspondence describes the duality between string theory
compactified on AdSy,.; x MP~41 and quantum field theory on d dimensions. At low
energy, the string theory in AdSgyq x MP~91 can be depicted as gauged supergravity in
d + 1 dimensions where the internal manifold MP~9~1 can be seen as a local symmetry
or the identical gauge group promoted to be locally invariant in the theory. The purpose
of this duality is to illustrate the RG-flow from a conformal point to one another. An
appropriate space to describe the flow is that the space AdS;y1 that must be a little
adjusted to be asymptotically AdSg+1 written in short as AAdSg41. Their boundaries
reproduce AdSg11 space holographically describing the flow of deformation of CFTy.
For AAdSg.1 providing more AdSg11 critical points, there are possibilities in explaining
RG-flow from conformal UV to IR point. This kind of solutions is called holographic
RG-flow.

5.4.1.1 Domain wall metric

To obtain the holographic RG-flow solutions, we must find an appropriate AAdS

space. One of this kind of space is domain wall taken in the form of metric as
ds® = eQA(T)nw,dm“dac” + dr?. (5.61)

We must not forget that this metric must reproduce AdSy11 at the boundaries. Compared

to AdSg4+1 metric

ds® = e%nlwd:v”dx” + dr?, (5.62)
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Condition of reproducing AdSg41 is A(r) must be a linear function as A(r — o) = kr,

where k is a constant that determines the radius of AdS;4; as

kr = (5.63)

= s

(5.64)

It is noticeable that changing energy scale p in quantum field theory corresponds to
changing coordinate r in gravity side. The holographic 8 function can be written by
do®

B = (5.65)

5.4.2 Vacua of gauged supergravity

A vacua in gauged supergravity with Lorentz symmetry preserved provides a classi-
cal background where only non-vanishing scalar fields appear. In other words, apart from
scalar fields, other fields vanish. At this point, scalar fields become constant denoted by

¢§ which can be found by

oV
0¢° lgo

=0, (5.66)

where V(¢p) is a scalar potential at the vacua. The vacua at ¢ = ¢ can also preserve
some amount of supersymmetry. At vacuum, other fields including fermions vanish as
seen that the vacuum state |0) acted by supercharge, the state will be annihilated. This

can be written in the form of supersymmetry variation as

5f(x) = (0] [€Q, f(2)]|0) =0, (5.67)

where f(x) is a fermionic field and f(z) is a fermionic field operator. This can be concluded
that supersymmetry transformations of fermionic fields are zero is the condition to find

supersymmetric vacua.



CHAPTER VI

JANUS SOLUTIONS

With a little of adjustment from flat to AdS-sliced domain wall metric, this can

describe defect or interface of conformal field theory. The metric is given by
dsidsd+1 = ezAdsidsd + dr?, (6.1)

which is clearly seen that 7,,dx*dz" replaced by dsidsd that preserves SO(2,d — 1)
symmetry corresponding to the symmetry of the conformal defect. Conformal defect has
benefits in many aspects in physics, ranging from statistical physics to high-energy par-
ticle. In the context of AdS/CFT correspondence, conformal defect can be also describe
in the gravity side as a solution called Janus. Non-supersymmetric Janus was first in-
troduced in [?], found on an ansatz of AdS-sliced domain wall from the theory of IIB
supergravity. After that there were several publications clarifying the essence of Janus
solutions. The description in equivalent field theory was given in [?] and correlation func-
tion was calculated holographically in [?]. Due to the clearer of Janus’s features, a large
number of Janus solutions has been researching continuously, most of which can preserve

supersymmetry and turn the solutions supersymmetric.
For deeply diving in the motivation, a little brief of original Janus will be given.
6.1 Original Janus solutions

The first step is to consider the deformation on AdSs space on the ansatz

ds® = f(p)(dp® + ds%ys,) + dss (6.2)
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with assuming that ¢ depend only on pu

and the field

Fy = 2f(u)2dp A wags, + 2wss (6.4)

where waqgs, and wgs are volume forms of AdS; and S® respectively.

The equation of motion and Bianchi identity in IIB supergravity are found by

Rop — %aaqsam = iFgﬁ = (6.5)
8a(v/99°°90) = 0 (6.6)

«F5 = F (6.7)

dF5 =0 (6.8)

These equations can be solved together and get

i — €0
o) = TRy (6.9)
21

/el 3 2 CﬁO;
hsa{wisne s 5 (6.10)

This may be depicted that the potential in the function of f allows zero-energy particle

to move only in the region at fp:, to co as Figure 6.1.
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Figure 6.1: Potential plotted in function of f

Then, the equation 77 is solved that

= = <
min 2 f3 f2 —'l—

= (6.11)
24§
As the equation ??, the solution of ¢(u) can be found by the integration with p as

8w — (- = | ‘; .

(6.12)
Together with the ??, the boundary of integral can be changed to corresponding region
of f as

o — o =2 [ Codf

Fmin 2f3/2, [ 3 — 2 4 %%

(6.13)

The solution of ¢(u) is shown numerically by Figure 6.2 with different ¢yg. The

important feature here of this solution is dilaton will take the constant at the maximum
and minimum of pu.

74
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Figure 6.2: Profile of dilaton field with different ¢

With adopting the Poincare patch of the slice of AdSy, a picture of corresponding
conformal mapping is two half-spaces with different gauge coupling constants on each
space attached each other at the wedge which breaks SO(2,4) symmetry of the space

into SO(2, 3) symmtery of the wedge.

From the dictionary of AdS/CFT, the dual field theory is N = 4 SYM theory in
four dimensions with the boundary of two half spaces where the gauge coupling constant
on each space corresponding to dilaton field that takes a constant at +u. The relation
between constant dilaton at the boundary and gauge coupling constant of SYM theory

can be given by

Gy & G o
W= +po, = e, = — i, =%, (6.14)
47 47

6.2 Procedure to solve BPS equations

Instead of finding the solution by solving Einstein equation that depict non-supersymmteric
Janus’s configuration, supersymmteric Janus solutions can be found by BPS equations
to consider whether there are ways to preserve supersymmtries from determining Killing

spinors.
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In four dimensions, chiral projection can be applied for Majorana spinors

1 . 1 ,

¢ =51+, =51 =)y (6.15)
) 1 . 1.

€= 563\4(1 +75), €& = 553\4(1 —75) (6.16)

where €', are Majorana spinors and s is purely imaginary.

The process starts with considering supersymmetry transformations in N = 4

gauged supergravity in chapter IV written by

) ) A

o, = 2Dy + §A11]fy#ej (6.17)
. —s .

5x' = —€*PV, D, Vgyhet — 3i47e; (6.18)

N =20V, M D, Variytej — 2iAgg el (6.19)

and AdSs-sliced domain wall ansatz
ds? = 24 (er/lda:il +dp?) + dr? (6.20)

To solve BPS equations together with the ansatz, the scalars will depend radially only
on r to ensure that scalars are invariant under SO(2,2) symmetry of the AdSs and the

projector is needed to be imposed as
et = Me;,  re; = M*e (6.21)
where M M* = 1. This means M can be written as
M =t (6.22)
where A is a real phase. Let’s define

e =M%, (6.23)
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This leads to

wsi =g Y& = et. (6.24)

Replacing the projector along with the ansatz in the variation of gravitino, the equation
turns into

1 .
(A + e~y )es + Wel = 0. (6.25)

The equation can also become

L 24
(A)? = — e 24 w2, (6.26)
by making complex conjugation. It should be noted that W? = W?2 where W is a real
superpotential. According to ?7? and 77 that should compatibly get along together, one

can see that an appropriate projection of v should be

Vo€ = ikehe,  — Vet = ike; (6.27)
The compatibility needs
K2 =1. (6.28)
All of this set of equations will give
(A" + Ee_A)eiA = W. (6.29)

l

Now, the materials above along with other two supersymmetry transformations of

remaining fields as

) 4
ox' = —€*PV, D, Vel — SiATe, (6.30)

SN, = 20V, M DV iyt ej — 2iAgased (6.31)

are well prepared to find supersymmetric Janus solutions and will be used later to find

new classes of Janus solutions in our work.
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6.3 A general behavior of Janus solutions

This subsection provides general behavior of Janus solutions and slightly illustrates

the difference between Janus solutions and holographic RG-flow.
6.3.1 Turning point and analysis on critical points

First of all, to analyze the behavior on Janus solutions, we must show the general
from of their BPS equation after making the calculation in AdS3-sliced domain wall ansatz
that can be shown generally by

A OW ke~ A OW

¢; = terms of — + terms of

W 0¢; I 0¢;

(6.32)

where W is a real superpotential and derivative of of the warp factor A’(r) is given by

67214

12

AZ=Ww? _ (6.33)

where ¢; is a scalar field related to the theory. It should be noted that in RG-flow

solutions, there is no terms of =4 . %V appearing in the BPS equations and A’ = W

for warp factor derivative. This is interestingly noticeable that above equations will be
accordingly recovered to BPS equations for holographic RG-flow where | — 4+oo which
is reasonable as ansatz of AdS-sliced domain wall is reduced to flat domain wall at the

condition of huge radius of sliced AdS.

Ke”

Despite the addition of =5 2 % of Janus-type BPS equations different from RG-

flow’s, their analysis and implication on critical points are the same. Since critical points

normally emerge at r — =+ oo, A(r) will be come linear function at the points and e4(")

. . —A .
is enormously growing. Thus, * g—;‘/_ can be suppressed and now our BPS equations for

Janus are the same as holographic RG-flow’s.

For details on critical points, as known that critical points are normally found at

r — 4oo that reproduces the space into AdS space, one may calculate the radius of this
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AdS by the behavior of warp factor A from A’ equations. Beginning with

6_2‘4

2 _ 2
AP = W2 -

(6.34)

at large r, ‘ﬁ—jA will become as small as it can be neglected. Moreover, in general, W

takes a constant at critical points which is denoted by Wy. The equation thus turns into

A”? = W2, (6.35)
A = +Wy, (6.36)
dA

=W, (6.37)
A = £Wr. (6.38)

The scalar potential V' can be generally written in the form of W as

ow ow

V = kiG® = kW2 ~
BT T (6.39)
At r — 400, W becoming constant Wy leads to
Vo=—kWg, (6.40)

Woo -2 (6.41)
ko

where Vj is V(1) at the boundary. Moving back to the ansatz of AdSs-sliced domain wall,

ds® = eQA(eQ”/ld:r%’l +dp?) + dr?, (6.42)

= 62(A+p/l)dxil + e24dp? + dr?. (6.43)
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For very large r, A will dominate p/l in e2(A+r/l) and the metric can become

ds® = eQAdxil + e dp? + dr?, (6.44)
= e*A(dz? | + dp?) + dr?, (6.45)
= eQA(Ude“dx”) + dr?. (6.46)

Placing A = +Wyr into 7?7 will lead to

ds? = X2V (n,, dat dx¥) + dr?. (6.47)
Compared to AdS, ansatz
ds? = e%(nwjdx“dw”) + dr?, (6.48)
it is obvious to see that
o L, (6.49)
Wo

or in terms of Vj

_ |k
L= e (6.50)

The sign + in A = +W) is just the indication where the boundary of r is whether it is

r — +00 0or r— —oQ.

To sum up, at critical points where r — 400, the space can be clearly seen as AdSy

and the radius of this AdSy is calculated by L = W%) =/t

Also, one special feature on Janus’s behavior that should be put the emphasis on

is that A2 = W?2 — E;ZQA gives a possibility to have a turning point A’ = 0 where we can

shift the coordinate r to r = 0 so that the value of A(r) at this turning point can be
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denoted by A(0) found by

A0) =4/W2 - —— =0. (6.51)

Obviously, the value under the square root must be zero so

e—24(0) )
—— = W0), (6.52)
A(0) = —% In 2W2(0). (6.53)

The existence of a turning point found in Janus solutions lead to distinguished feature
from RG-flow as the Janus solutions can possibly start and move back to the same critical
point. Unlike holographic RG-flow, such solutions will interpolate between a critical point

and the other critical point or a critical point to a singularity.

6.3.2 Holographic description on Janus solutions

For holographic description, the AdSy at the boundary corresponds to SCFT3. The
flow of Janus solutions can be holographically described as two-dimensional conformal
defect that interpolates between a critical point to the other one that we should not
forget that by the behavior of Janus solutions mentioned earlier, these points can be the
same. For more details, AdS4 and SCFT3 correspond to each other because of having
the same SO(2, 3) symmetry. During the flow of the solutions, SO(2, 3) symmetry will be

broken to SO(2,2) symmetry that describes two-dimensional conformal defect in SCFT3

6.4 New supersymmetric Janus solution

Supersymmteric Janus solution has been studying with various gauge groups, di-
mensions and supersymmetries, some of which can be found in [?,?,?,?7, 72,7277 7,7,
20,0 7,7, 2,77, Our work aimed to find new classes of Janus
solution from four-dimensional gauged supergravity. After trying many ways, we found
SO(4) x SO(4) gauge group and application of symplectic deformations can provide us

new supersymmetric Janus solutions. These Janus solutions have N = 1 and N = 2
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supersymmetries.

6.4.1 SO(4) x SO(4) gauge symmetry deformed by free parameters

We begin to find the solutions in N = 4 gauged supergravity coupled to n = 6
vector multiplets where its general structure is provided in chapter IV. Then, using sym-
plectic deformation in [?], SO(4) x SO(4) gauge group can be deformed with deformation
parameters ag, «, (1 and f2, corresponding to electric-magnetic phases in each SO(3)

decomposed from SO(4) x SO(4) gauge group, written as

Jamap = —90COS QEmnps  f-map = 9o SIN QEmnp (6.54)
frimap = g€OS Q€map, f-map = gsin aoemagp (6.55)
frape = hicos Bregz,  f_upo = hasinBieg, (6.56)
frape = hacos Bacszs,  [_zze = hasin Baegz, (6.57)

where g¢o,g,h1 and he are gauge coupling constant in four SO(3) group and indices
M = (m,m,a,a), for m,m,a,a = 1,2,3 corresponds to SO(6,6) in fundamental repre-
sentation. This kind of components of embedding tensor are provided in [?] and rewritten
in the conventions of [?]. In our work, for simplicity, we can set ag = 0 by the trans-
formation of global symmetry of SL(2,R) x SO(6,n) and o = 5 due to providing an

equivalent theory for any a > 0.
6.4.2 N = 2 Janus solutions

N = 2 solutions can be found by the truncation of scalars in SO(4) x SO(4) gauge
group into SO(2) x SO(2) x SO(2) x SO(2) whose is the subgroup of SO(4) x SO(4).
We can find this coset representative by starting with SO(6, 6) generators in fundamental
representation as

(tarn) P9 = 2803 )P (6.58)
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whose non-compact generator is written by
Yma - tm,a+6- (659)

We can use this non-compact generator to build up the coset representative of SO(2) x

S0(2) x SO(2) x SO(2) as

Y = 6¢1Y336¢2Y36 e¢3Y63 e¢4Y66 (660)

The next step is to get AdSs-slice domain walls ansatz as
ds® = 62A(’")(e27pda:%,1 + dp?) + dr? (6.61)

where [ is a radius of AdS3 and d:c%,l = naﬁdxo‘dxﬁ, a, § =0, 1 represents flat Minkowski
space. Then, we will perform the same process as previously mentioned and get the

equations

A2 == L 2A (6.62)

€ = eP/2g (6.63)
where, now, W in our case is W = |W]| that can be found by

W=Za (6.64)

[SSR )

where & is the eigenvalue of Aij . In this case, we found that Ailj is represented by

A = diag(A_, Ay, Ay A (6.65)
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6.4.2.1 Consideration on broken supersymmetries

Since different eigenvalues of Aij lead to different superpotentials, it might not be
able to solve the BPS equations. To avoid this inconsistency, an amount of supersymme-
tries must be broken or some scalar fields must be truncated out. By breaking supersym-
metry with no truncation of scalar fields, there are two possibilities of choosing superpo-
tential whether it is W, = 7.A+ or W_ = 2.A These two choices correspond to N = 2
where details will be clarified through variation of gravitino field 51% = DueZ — gAllj Vu€j

below

5% = Dyt 3A1 e (6.66)
5% = Dy — = A (6.67)
(wi =Dyed — fAl V€3 (6.68)
(Wﬁ: u€ - Al Vu€4 (6.69)

where A}l = A1t = A_ and A2 = A3 = A,.

If we want to choose %.A, to be our superpotential. The question is how we can deal
with W, = %AJ,— that A4 appears in the eigenvalues of Aij that will always come out in
(WL. The way to ensure that A4 will not mess up with our calculation is to force €3 and
€3 to zero as we could see in the equations above that &ﬂi = 0 and 5¢2 = 0. However,
since €2 and e3 are Killing spinors, vanishing Killing spinors accordingly lead to broken
supersymmetries. Thereby, choosing W_ = 2A to be our superpotential corresponds to
breaking N = 4 to N = 2 because of two vanishing Killing spinors (e2 and €3). We can
also repeat the same process for selecting superpotential W = W, , but €; and €4 will be

broken instead.

For one eigenvalue is chosen, supersymmetries then are broken to N = 2. In our

calculation, we choose W_ = %A,. Then, due to some broken supersymmetries, €2 and
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€3 are zero inevitably and superpotential become
W=WwW_

1
= 567¢/2 [cosh ¢p4[g cosh ¢3(e? sin o + i cos a) — go sinh ¢y sinh ¢s]

— go cosh ¢1(cosh ¢g + i sinh @9 sinh ¢4) + ig sin « cosh ¢3 cosh ¢4 x] (6.70)

Besides, for the existence of superpotential, scalar potential can also be written as

oW oW
0P 03

V = —-2G"* — 3W?

1
= —Ze*‘z’[gQ(l + cos 2a)) + 293 + 2¢2 sin ax(2 cos a + sin ay)]

1
— §e¢92 sin & + 2¢go sin a cosh ¢ cosh ¢ cosh ¢z cosh da, (6.71)

where ®" = (¢, x, b1, ¢2, @3, 4) and G is the inverse of the matrix shown below.
6.4.2.2 Lagrangian of kinetic term

Substituting the coset representative SO(2) x SO(2) x SO(2) x SO(2) into the

lagrangian of N = 4 gauged supergravity, the kinetic term turns into

1
Ekin = §GTS(I>T/(DS/

1 , J5LU) 1
= =7 (07 +e7X?) — 5[6 4 cosh 2(62 — 3)
+ cosh 2(¢p2 + ¢3) + 2 cosh 2¢4(cosh 2¢ cosh 23 — 1)]¢72 (6.72)

— cosh ¢ cosh ¢4 sinh ¢3 sinh ¢4¢] ¢ — cosh ¢3 cosh ¢4 sinh g sinh P4 P

1 1 1
+ sinh ¢ sinh ¢3¢ ¢ — 3 cosh? ¢4¢/22 -3 cosh ¢4¢§2 — §¢ﬁf.

From this term, scalar matric G,s can be extracted and shown explicitly by

—2 0 O]_><4
G”"=1 0 22 0144 (6.73)

! o7
O04x1 O4x1 G"°
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where G™'¢" and indices 7/, s’ = 1,2, 3,4 shown by

Ay By By B3

.. |B A, B, B
g = |70 P T T (6.74)

Bs Bs Bg As

where

A; = —sech? ¢y sech? ¢35, Ay = —sech? @3 sech? ¢4 — tanh? ¢s,

Az = sech? gptanh® pg — 1, Ay = —% sech? ¢ sech? @3(1 + cosh 2¢, cosh 2¢3),
Bj1 = sech ¢ sech ¢3 tanh ¢p3 tanh ¢4, By = sech ¢ sech ¢3 tanh ¢o tanh ¢y,

B3 = — sech ¢ sech ¢ tanh ¢ tanh ¢, By = — tanh ¢y tanh ¢s tanh? ¢y,

Bs = tanh ¢ tanh? @3 tanh ¢y,  Bg = tanh? ¢s tanh ¢ tanh ¢4

6.4.2.3 Ceritical points in the N = 2 solutions

We find the critical points from the procedure given in chapter V. It can show that

where ¢1 = ¢2 = ¢3 = Ppa =0,

g0
= In(— .
¢ = In( gsma), (6.75)
and
Y = — 5% (6.76)
SN v

can give the critical point. It is obviously seen that dilaton and axion depend on a.

Nonetheless, owning to choosing o = 5 and go = —g, this allows us to shift ¢ and x to
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7Z€ro as
-9

=In[— 6.77

o=ml-—L) (6.77)

—Inl, (6.78)

=0, (6.79)

and

cos /2

T sinw/2’ (6.80)

= 0. (6.81)

Now, all scalars vanish so this critical point of AdSy is at the origin of scalar manifold
which obviously preserves N = 4 supersymmetry with SO(4) x SO(4) symmetry. As seen
that dilaton and axion field can be shifted by choosing go = —g and a = 7, this crical point
will be shifted to the origin of the scalar manifold SL(2,R)/SO(2) x SO(6,6)/SO(6) x
SO(6) where all scalar fields are zero. From this point, we can calculate the scalar

potential at the vacuum

Vo = —3g2% (6.82)

and convert this into the radius of this AdSy as

L=y/-= == (6.83)

With the positive constant g, the critical points become supersymmetric N = 4 SO(4) x
SO(4) vacuum.
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6.4.2.4 BPS equations

From now on, all materials is prepared to find BPS equations that can be found as

A? 4 llze—m = W2 (6.84)
A OW ke~ A OW
= 4 4e? :
¢ W o ¢ TIW oy (6.85)
A oW ke~ A OW
X e il (6.86)
/A/ 8W *A aW
1r
¢ =G Wod ZW 56a (6.87)
AW ke 4 ow
oy =G> W aer N7 (2sech )y tanh ¢3 tanh ¢y —— 36,
— 2sech ¢y W) (6.88)
¢4
_A
b3 = Qgr/;;lvgg + HleVV (2 sech ¢ sech ¢3 sech ¢y Z/

— 2sech ¢4 tanh ¢3 tanh ¢4 + 2 sech ¢4 tanh ¢ tanh ¢3§Z/) (6.89)
2

JAOW ke A oW

2 sech 42~
Waer T L 2sech ¢

w
¢3) (6.90)

¢4 — g47‘

0
— 2sech ¢4 tanh ¢9 tanh ¢3 3

Clearly seen, with [ — oo, these solutions is recovered to holographic RG-flow
solutions in [?]. Besides, these solutions is much more general as giving Janus solutions
n [?] that preserve SO(2) x SO(2) x SO(2) x SO(3) or SO(2) x SO(2) x SO(3) x SO(2)

symmetry by trucating scalar ¢; and ¢3 or ¢ and ¢4 to zero.

These BPS equations can give numerical solutions with different « provided in
Figure 6.3. Our solutions are calculated with assuming ¢ =1, k = 1, I = 1 and g9 =
—gsina and for the phase parameters, @ = § and ap = 0. It should be emphasized again
that all & > 0 equivalent to a = 5. The solutions interpolate between SO(4) x SO(4)
AdSy critical point. The corresponding theory from the field theory side is SO(2) x
SO(2) x SO(2) x SO(2) two-dimensional defect within three-dimensional N =4 SCFT

theory with SO(4) x SO(4) symmetry. Different values of k = %1 lead the defect to
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N = (2,0) or N = (0,2) supersymmetry respectively.
6.4.3 N =1 Janus solutions

Performing to find Janus solutions on SO(3)qiag X SO(3) symmetry relies on coset

representative

Y = efi¥igdats (6.91)

where Y; and Y3 are non compact generator defined by
Vi = Y11 + Yoo + Va3 + Yau, V3 = Va1 + Yoo + Vo3 + Yay (6.92)
From these generators, Aij will be
A" = diag(A, B, B, B). (6.93)
Choosing A in our calculation, the superpotential becomes

1
W = §e¢/2 [gcosh®p3 + hy sin By (i sinh ¢1 — cosh ¢y sinh ¢3)?]

1
+ §ef¢/2[g(cosh ¢1 + isinh ¢y sinh ¢3)® — (sinh ¢1 + i cosh ¢y sinh ¢3)>hy cos B1]

1
+ 5e—<f>/ 2ligcosh®ps + hy sin B (sinh ¢ + i cosh ¢y sinh ¢3)%] ¢ (6.94)

Putting on the emphasis on considering to determine residual supersymmetry, €2, €3 and

¢t are required to be zero as admitting consistent BPS equations for choosing A to be

superpotential. Thus, the solutions that will be found from this case must preserve N = 1

supersymmetry. Superpotential can also be given in terms of W as

2 OW

oW
3 00,

V= 4(%)2 + 4e%(

ow 2 ow
5)2 t3 sech? g3(5—)% +

2 2
5o, ) —3W (6.95)
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6.4.3.1 Critical points in N =1 case

This sector can give three supersymmteric AdSy critical points which will be entailed
below. For simplicity of the calculation for the rest of these solutions, o and gg will be
substituted by 7/2 and —g respectively. The first critical point is trivial N = 4 AdS,
with SO(4) x SO(4) symmetry where all scalars vanish. The other two special critical

points are emerged from the deformation of the parameter 5, as

) 1. hi+g
Z) ﬁl 07 ¢3 X ) ¢1 2 n(hl _g)
2 2 2 _ 2
6= -tma-9y, Vo— -9 L;g
2 hi Vi =g 9
1 hi+g
”) /81 7T/ ) ¢1 X 07 ¢3 2 (hl _g)
1 2 2h h2— 2
p=m(VZ Ly g4 S0 g [YMZS
2 hy hl—QQ g°hy

Critical point 7 has SO(3)diag X SO(3) X SO(3) symmetry while residual symmetry
SO(3) x SO(3)diag x SO(3) is found on critical point 7. These two critical points can be
checked that N = 4 supersymmtery is preserved resulting from all identical eigenvalues
of Aij where x = ¢1 = 0 or x = ¢3 = 0. Since the case ¢; = 0 or ¢3 = 0 does not provide
consistent BPS equations, there is no Janus solutions for this case. Also, x = 0 along with
keeping ¢1 and ¢3 gives inconsistent BPS equations. Hence, the possible Janus solutions
must keep ¢1 and ¢ that preserve N = 1 supersymmetry due to vanishing €2, €3 and €*
for choosing A as the superpotential while RG-flow in [?] can provide both N = 1 and

N = 4 solutions.
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6.4.3.2 BPS equations

By choosing mentioned superpotential above, BPS equations can be given by

AW | et OW

4 6.96
¢ = W 0¢ W 0x ( )
A OW ke A OW
! — 74 2(1)7 4 ¢ .
% e W o0 + W 06 (6.97)
, 2, AOW 2 ke A OW
= ——sech” p3——— — — — 6.98
1= —gsec oy — g sech g T 5 (6.98)
2 AOW 2 ke~ A OW
- — sech — .
0 =~ 30377 g 3 50y i o (6.99)
and the metric function is
2, € & 2
A m = w (6.100)

These equations are also reduced to the RG-flow solutions in [?] at [ — oo.

The numerical solutions solved from the equations above will be separated into
three sets. The first one is the solutions interpolating between trivial AdSy N = 4
SO(4) x SO(4) vacua with different values of 81 in Figure 6.4 whose dual field theory is
N = 4 SCFT; invariant under SO(4) x SO(4) group with N = 1 conformal defects inside.
The second set is for 5y describing the solutions that interpolate between critical points 4
in Figure 6.5 which has SO(3)qiag X SO(3) x SO(3) symmetry. The final set is the solutions
that interpolate between critical points i found at 81 = 5 with SO(3) x SO(3)giag x SO(3)
symmetry in Figure 6.6. These two latter solutions with non-trivial critical points can
be described holographically by N = 4 SCFT3 with SO(3)diag X SO(3) x SO(3) and
SO(3)x SO(3)diag X SO(3) symmetry respectively with N = (1,0) or N = (0, 1) conformal

defects, depending on the value of k, included.

The numerical solutions interpolating between critical points ¢ are represented by
pink lines while cyan lines are solutions interpolating between trivial critical points for
clear comparison with non-trivial one. Also, the Janus solutions interpolating between
critical points 47 in yellow lines are compared to purple lines which represent the solutions

interpolating between trivial AdSy vacua.
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Figure 6.3: The N = 2 Janus solutions that interpolate between trivial N = 4 SO(4) x
SO(4) AdSy critical points with using constant paremeter k = 1, 1 =1, g = 1 gy =

—gsina and a = § (red), a = § (blue), a = 7 (green), a = § (purple),
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Figure 6.4: The N = 1 Janus solutions that interpolate between SO(4) x SO(4) N =4
AdS, critical points with using constant paremeter k =l =¢g=1¢gy = —g and 81 =0
(Cya'n)7 /81 = % (purple), ﬁl = % (blue)7 51 = % (green)7 ﬁl = % (red)
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Figure 6.5: The N = 1 Janus solutions (pink) that interpolate between SO(3)giag X
SO(3) x SO(3) N =4 AdS, critical points i) with using constant paremeters k = [ =
g=1land go=—yg
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CHAPTER VII

CONCLUSIONS AND COMMENTS

Our scope of study in this work is to find Janus solutions from four-dimensional
N = 4 gauged supergravity with SO(4) x SO(4) gauge symmetry. We found that with
symplectic deformation, see [?], applied to SO(4) x SO(4) ~ SO(3) x SO(3) x SO(3) x
SO(3) gauge group, four deformations parameters for each SO(3) group are expected to
give richer structure of the theory. The setting of these parameters is summarized below

as

a for SO(3);
o for SO(3)2
b1 for SO(3)3

B for SO(3)4

where 1,2, 3,4 are just labels for the four SO(3) groups and

ap =0 because of the transformation of SL(2,R)

™
a=g because of giving the equivalent theories for any o > 0

81 and (9 are free parameters.

The presence of these free parameters leads us to find two classes of Janus solutions

comprising N = 2 and N = 1 supersymmetries.
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7.1 N = 2 solutions

The N = 2 case admits only one critical point at ¢1 = ¢2 = ¢3 = ¢4 = 0 and
¢, x can also vanish by fixing o = § and go = —g. Obviously, this critical point is the
trivial N = 4 AdSy critical point with SO(4) x SO(4) symmetry. Since there are no
other critical points found in this case, the N = 2 Janus solutions that are discovered in
SO(2) x SO(2) x SO(2) x SO(2) sector can interpolate only between AdSy trivial critical
point. For the holographic description on the field theory side, the solutions correspond
to a two-dimensional conformal defect or interface that preserves N = (2,0) or N = (0, 2)
supersymmetries that depends on the value of x within the SCFT3 with SO(4) x SO(4)

symmetry.
7.2 N =1 solutions

The N = 1 case provides much more exciting structure since 1 appears in the
superpotential that give more possibility to have non-trivial critical points. As expected,
there are not only trivial critical point of AdSy but also two non-trivial critical points,
is obtained from ;1 = 0 and 1 = m/2 as critical points 7 and 4i respectively. The
solutions that can interpolate between trivial AdSy critical point correspond to two-
dimensional conformal defects preserving N = 1 supersymmetry within N = 4 SCFT3
with SO(4) x SO(4) symmetry. Critical point i has SO(3)giag x SO(3) x SO(3) as a
residual symmetry while SO(3) x SO(3)diag X SO(3) residual symmetry is preserved for
critical point 7. Due to x = ¢1 = 0 at critical point ¢ and x = ¢3 = 0 in critical
point ¢ giving the same eigenvalues of Ailj, all supersymmetries are unbroken. Thus,
these critical points preserve N = 4 supersymmetry. The N = 1 solutions that are
found from SO(3) x SO(3)4iag sector with appropriate boundary conditions then can
interpolate between these critical points with 51 = 0 and 1 = 7/2 for critical point
1 and 44 respectively. This can also be depicted by a holographic picture as the non-
trivial critical point i and ¢ correspond to SCFT3 with SO(3)giag X SO(3) x SO(3)
and SO(3) x SO(3)diag X SO(3) symmetry respectively. The solutions that preserve

some amount of conformal symmetry are dual to two-dimensional conformal defects with
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N = (1,0) or N = (0, 1) supersymmetries, depending on the value of k, preserved on the

defect.
7.3 Some comments and recent Janus-related works

Since SO(3)diag in [?] sector involves both 1 and (B parameters, they could provide
more vacua and new holographic solutions including Janus solutions owing to different
values of those parameters. Another further future study would be the study of a holo-
graphic interpretation in dual field theory interms of relevant generators and correlation
function. It is also much more compelling to find ways of uplifing these solutions in
four dimensions to higher-dimensional theories that might give a possibility to explain

conformal defects in string theory.

A few of the recent Janus-related works on finding holographic solutions including
Janus solutions are [?] and [?]. These papers show that the holographic solutions including
RG-flow and Janus solutions are found from three-dimensional N = 8 gauged supergravity
with SO(8) gauge symmetry using the embedding tensor formalism that depends on a
free parameter a. The o parameter appears in the two copies of the superconformal group
DY(2,1; a) describing the isometry of AdS3 x S3 x S3 x S! that admits 16 supercharges,
see [?] and [?]. With the choices of a and different truncations of scalar fields, new

solutions and vacua are discovered with [?] for the case of & = 1 and general « in [?].

It should be highlighted that writing the embedding tensor with free parameter is
such a compelling procedure to find new holographic solutions. As seen in the recent
publications [?], [?] and our work, all use the same aforementioned technique. It is
very interesting that the inclusion of deformation parameters in different gauge groups
in gauged supergravity would lead to a richer structure of critical points and holographic

solutions that await us to discover.



APPENDIX I

GENERAL RELATIVITY AND GEOMETRY

OF SCALAR MANIFOLD

With the structure of general relativity, familiar mathematics applicable in classical
theory is not sufficient. For this case, tensor calculus must be introduced. Besides, this
advanced subject is a foundation in researching theoretical physics, especially in high-

energy physics.

This chapter will give a short review on tensor calculus then move to the emphasis
on veilbein formalism whose concepts are developed and adopted in the geometry of the

scalar manifold entailed at the end of the chapter
A.1 Tensor calculus in general relativity

Due to the curved space that is not usual flat space, a distance between any two
points in the space is no longer given by the Euclid’s geometry. Some information encoding
the curvature of the space is necessary in measuring how far between those mentioned

two points. That information is displayed by the metric g, as

ds? = g dztda”. (A1)

This is the square of the infinitesimal between any two points in the space.

Quantities in curved manifold can be explained by geometrical object called tensor.

Tensor with rank (k,1) can be written by

TED = prrete 9, ® .. ®,, ®dE" ® ... @ dz¥* (A.2)
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Since the tensor on the curved manifold living on the tangent space of the manifold
must be defined. To find its derivative, connection is introduced to how much the tensor
is varied from point to point. Particularly, this is also important in writing covariant
derivative which is defined by

vuTulmﬂkyl...I/k == 8;/_[1'1“m'u'kljl...ylC + FHB\T)\M'“I“ V1.1 + --'FZKT!LL“)\VL..VL

: (A.3)

A A b
— Fm,lTul ‘uk/\ml,l — . — FW,ZT'“1 ‘u",/ln_)\.

The connection shown above is named ”Christoffel” connection symmetric under switching
indices p and v, also known as torsion free condition which does not produce torsion, given
by

) (A.4)

and the matric compatibility is defined by
With two equations above, they can give the connection in the relation with metric as

1
F/ij/ — ig/\o(aug)\ll = 81/9)\# N 8)\guu)- (AG)

As all the quantities shown above cannot give how much curved of the manifold is,
in order to find the curvature of the space, some value must be defined and that quantity
is Riemann tensor given by

RP

Ay = aﬂl—‘ﬁ)\ - 8’/Fp)\ + Ialon — FleUFZ)\ (A7)

n pnot vA

Riemann tensor with contraction of the indices can lead to lower-rank tensor which also

give the information on the curvature. The results are Ricci tensor and Ricci scalar which



101

are shown respectively as follows

Ry =Ry, R=R'\y=g"“Ry. (A.8)

Those definitions which give details on curved manifold altogether with the energy-

momentum tensor is a perfect bridge to construct Einstein equation

1
Ruy = 59 R = 87G T (A.9)

where the right hand side of the equation is called Einstein tensor

1
G,ul/ i R,uy > §QW/R (A].O)
which gives the vanishing divergence as
ViG,, = 0. (A.11)

Also, the divergence of energy-momentum tensor always leads to conservation of energy

that is always true in the univers

V,.T* = 0. (A.12)

A.2 Differential form

p— form A, on the coordinate basis is defined by

1
Ap = = Ay, dx? AN dat (A.13)

p!

where the basis of p— form is given by

dz" A A dat = p! = delm @ L @ datel, (A.14)
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Higher-rank form can be built by the product of two lower-rank form. For example,
the product between p— form A, and ¢— form B, will give (p + ¢q)— form (A A B)pq4

form as

1
ANB = —
pl

q'AMmupBul,.,Vq Ao Ndatt Ndxtr N datt A LN dat (A.15)

whose component is

(p+q)!
plq!

(Ap A Bq),ul...,upul...uq = (A.16)

[:u'l---,u/pBVI---Vq]

The wedge product is not symmetric under commutativity. Switching the positions of A,
and B, are represented by

A, ABy= (—1"B, A A, (A.17)

(p+ 1)— form is found by the derivative called "exterior derivative” defined as
dA—laA dzt daxt A18
p—a[u f1.opp] AT N AN d (A.18)
whose component is shown by

(dAP)H1~-~#p+1 = (p + 1)8[M1AH2--~NP+1]' (A.19)

Mixing the exterior derivative and wedge product give the relation

d(A, AN By) = dA, AN By + (—1)P A, A dB,,. (A.20)

More generally, another derivative that change p— form to (p — 1)— form by the
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vector V = V*#9,

1
ivwy =V (w) = avl‘wul._'upau(dxﬂl) Adzte A L dpte
L (A.21)
= oV e 42t A A et

The other construction of different form is constructed by hodge duality which

transforms p— form into (n — p)— form where n is the dimension of the manifold

1
*(dxtt AN datr) = ﬁeylmynw“l‘“”?dxl’l Ao Adxtr. (A.22)
n—p)!
whose component are shown by
1 Vi,
(*wp)#lwﬂn—p = I_)Teu1“',u'7l—p Wy, ..y (A23)

With the various constructions of different form, lie derivative can be written using

d and iy as

,vap = (div -+ ’ivd)wp. (A.24)

Integral on the manifold is given by compact formula with the benefit in differential

form as

1
€= —VIglew .y, datt AN datt = /g|d" T (A.25)
n!

where

1
= T S (A.26)
n:

By the relation,

6“1---”716“1“.‘“" = _n' (A27)
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7?7 can also be written as

dzt A Ndahn = —etrobndlty (A.28)

A.3 Veilbein formalism

In more complicated manifold, sometimes, usual metric is rather tedious and diffi-

cult to calculate things in the manifold. Fortunately, the brink of vielbein ej; contributes

the help in easier calculation. This first is found by

9w (@) = € ()en ()0 (A.29)

which encodes the relation between spacetime on curved manifold and the flatness of

tangent space.

Like the introduction of usual Christoffel connection, connection related to tangent

space and curved spacetime can be described by the first veilbein postulate as

Oney, — 't €5 + wuabeg = 0. (A.30)

With the switching indices i and v from the above equation, torsion tensor can be found

as

T = egT? 1 = 210,€5 = ey + wy, " eny (A.31)

where 2— form torsion is defined by
1
T = ST wdat A da” = de® + ') A eb. (A.32)
This can also lead to Riemann tensor with tangent indices involved as

Ry, = 20u0,) + Wi Wi @iy (A.33)
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Specially, its 2— form curvature tensor is given by

1
R = 5 R d* A da” (A.34)

which can also be found by the connection as

R = dw®, + w® A w. (A35)

From the metric compatibility and definition of veilbein, they further provide rela-
tion

R L = R (A.36)

With Biachi identity, it gives that

dT® + W'y AT? = R% A €b (A.37)

dR® 4+ w3 AR® — . A R® = 0. (A.38)

Since fermions must be transformed under the tangential Lorentz group SL(2,C),
there are no ways to describe fermions on the curved spacetime without the introduction

of veilbein. Let’s first review a little of gamma matrix in which fermions must be involved.

The gamma matrices abide by the relation {y?,~%} = 2n%. Each element of -

matrices are found by

v = . ov=(1,00); F'=(@1,-0l) (I=1,2,3). (A.39)

ol — . g2 = Lo = ) (A.40)



With the link between v* and %, they can be shown that v*(z) =

") = 29" (2)

while 7° is defined by

-1 0
ie
75 4,6abcd7a7b76’yd 4‘6;11/;;0'7 '7 '7 ’Y
0 1
Let’s define
,yal...ak _ ’7[a1---"}/ak]
with definitions of 4° will hold that
Y Ya = 3,€abcd’7 VY Yabe = t€abed®;
'75'7abc = ieabcd’}/d; 757abcd = t€qbcd-
Complex conjugation of Dirac spinor is defined by
=9 =09t
where C' is a charge conjugation matrix where C' = —iy27? and satisfies

cyrc =" c=cr=-C"=-C""

which is used to give that

(C,yall..ak)T _ 7(71)k(k+1)/20,ya1.‘.ak
Xc,yal...ak)\ _ (_1)k(k+1)/25\c,ya1...akx

()chyalmak)\)* = (_1)k>z,ya1...ak)\c
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(x)y* gives

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.A7)

(A.48)
(A.49)

(A.50)
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while Majorana spinor is defined by

Y=t =CPT (A.51)

which leads to Fierz identity as
A*——E*)\—E*E‘/\ 5—1*“)\ 1*5% 5 }*“”A A.52
X = 4(X ) 4(><’7 )Y 4(><'7 )7u+4(x7 YHX)y w+8(x7 )V (A52)

Some helpful relations, frequently found, in calculations of y—matrices are shown

by
Yr* = 2%455} = 27[u55] + ie€, " Vs (A.53)
P P <2 (a0
e
o) 2 3R = 282 + G ™) (55)
Yy AP = 2(—1)R(2 = k)t (A.56)

Another benefit in hodge duality is giving the definitions of self-dual and anti-self-
dual tensor of metric

By i dy

=) |
FW— 5

SDIWVERSIZ i rs . (A.57)
With the presence of y—matrices, it can show some interesting relations that

FiAte. = Fo"e =0 (A.58)
and
v

Fj Yy = —4F;lr,’y”6*; F;/y””'ype* =0 (A.59)

FoA"ype" = —4AF, 4"’ F 4" 6. = 0. (A.60)
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where * indicates the positive and negative chiralities under SU(N) representation as

Ve, =€y, ~F = —¢". (A.61)

A.4 Geometry on scalar manifold

Since supergravity involve with a large number of scalar fields, sometimes, tedious
calculation of things in the theory would have not been possible to complete without the
help of symmetry. In order to fix the problem, scalars must be put together on the same
Riemannian non-compact manifold called scalar manifold M., where ng is the dimension
of the manifold, real scalar fields are represented through curved indices s,t,r, ... while
tangent indices are shown by 5,¢,7,.... ¢° a scalar field, is now a local coordinate of
this manifold with the metric tensor described by Gs:(¢). With the adaptation of curved
manifold from the previous section, veilbein one-form P* = Pfd¢! and its dual basis on
tangent space K5 = P are allowed to be defined where P! and P; are their inverse each

other.

Gst(9) = P ($) P (d)nsr (A.62)

where g7 is H—invariant matrix.

The same as usual is when metric of curved and tangent space are defined, it will

be the time for connection that must satisfy the first veilbein postulate as

DP" = 0P — TP + Qs P! = 0. (A.63)

The next step is to find the rank-2 curvature tensor which is given by

_ _ B 1 _
R(Q)!,=dD's+ Q% N Q"5 = iRsttgdgts A do'. (A.64)

It is noticeable through the aforementioned conventions that diffeomorphisms also
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exists on the manifold as the relation

o ¢/s’ o ¢lt’

8¢5 W - gst<¢) (A'65)

¢" = ¢" 1 Gu(d'(0))

Due to the property of a transitive action of the manifold M., any point P in
the manifold are invariant under the action of group H which is the subgroup pf G. One

can fix any other point O to P by

Ve G — dPeMyuy: ¢g-O=P (A.66)

where g € G, P € M and - represents action of G on the manifold.

Since this is not one-to-one action, there are other ¢’ that can send the same O to

the same P as

g-0=P, ¢-0=P — gl .0=0-4¢cgH. (A.67)

The H—connection @ can be formulated by considering the commutation

(K, K] = fgfIJI + fgffKF (A.68)

where K is a basis of R and Jy is a basis of £). To construct the quantity that describes

all structures on the manifold, left-invariant one-form on g must be introduced as

Q=L Y4dL=P+Q (A.69)

where P on £ and Q' on §) are veilbein and the connection respectively.

With the structure of Maurer-Cartan equation as

dQ+QAQ =0, (A.70)



its projection on R is represented by

_ _ -1 -
dPS+Q’S;APt+§fF;SP’”/\Pt:0.

The need in definition
DP® =dP° + Q°; AP =0
leads to the introduction of connection one-form Q%; as

Q% = Q"; + AQ%:.

One can also so write
. 1 A
AQ['Fsﬂ 33 ifffs'

Compatibility of metric can give

%, 1 = — o' =/ =l
AQ"r = §(ff£8 + for neen® * A for nem® )
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(A.T1)

(A.72)

(A.73)

(A.74)

(A.75)

In differential geometry, lie group on of manifold G4 has an association with lie

algebra £. One can Mgy ~ G5 = €. A generator of £ T}, s = 1,

[Tm Ts] = CrstTt

where T can be projected on K and §) as

T5:K§+J§; ngﬁ, Jgef).

..., s obeys the algebra

(A.76)

(A.77)

Coset representative of M., can be defined with the generator T and scalar field



111

as

L(¢°) = exp (¢°T5) € G (A.78)

Decomposed in terms of Kz and Jz, € can be splitted into

Q=L1L =P, =P°Ks + PJs =P + Q. (A.79)

Maurer-Cartan equation can give

1
dP* + §CTtSPT APt =0. (A.80)

The metric on M., is resembled with veilbein formalism as it is written as
ds® = (9,9) = P*Plnss = P Pliys. (A.81)
With P$ = P%, Livi-Civita connection can be shown by
DPT + Qs AP =0 (A.82)

where Q%; can be written as

s 1 5 F 5’5 7 55\ pF
Q= §(Cff + Csi e’ + Cys' npn® )P (A.83)

According to a general structure of supergravity, the group H takes place in the
symmetry under which fermions are invariant. The covariant derivative with the addition

of H—invariant connection is defined by

D,=V,+Q, (A.84)
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which is used to write the covariant derivative of fermionic fields, for example, gravitino

field as

1
D,uwAu = vu¢AV + Q,u,ABwBV = a,LﬂbAp + Zw,u,abfyabwAu + QuABley- (A85)

This idea is extended to the theory with more additions of local symmetry, which
in this case is gauge symmetry. The connection €1y, is called gauge connection which
will changed the form of covariant derivative to total covariant derivative with gauge

connection included as

D, = Dy + Qg (A.86)



Name

Date of Birth

Place of Birth

Education

113

BIOGRAPHY

Mr. Tissana Assawasowan
7 January 1997
Nakhon Si Thammarat, Thailand

B.S. (Physics), Prince of Songkla University



