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ธิษณะ อัศวโสวรรณ : คำตอบเจนัสจากเกจซูเปอรกราวิตี N = 4 ในสี่มิต.ิ ( JANUS SO-

LUTIONS FROM FOUR-DIMENSIONAL N = 4 GAUGED SUPERGRAVITY)

อ.ที่ปรึกษาวิทยานิพนธหลัก : ศ.ดร.ปริญญา การดำริห, 134 หนา.

งานวิจัยชิ้นนี้ไดทำการศึกษาคำตอบเจนัสจากเกจซูเปอรกราวิตี N = 4 ในสี่มิติที่มีเก
จกรุปเปน SO(4)×SO(4) เราพบวามีคำตอบเจนัสที่มีสมมาตรยิ่งยวด N = 2 และ N = 1

สำหรับเกจกรุป SO(4)×SO(4) ที่ถูกแยกเปน SO(3)×SO(3)×SO(3)×SO(3) จะมีดีฟอร
เมชั่นพารามิเตอรในกรุป SO(3) ทั้งสี่ตัว ไดแก α0, α, β1 และ β2 คำตอบที่มีสมมาตรยิ่งยวด
N = 2 ที่ถูกพบในชุดของสนามสเกลารที่มีสมมาตร SO(2)×SO(2)×SO(2)×SO(2) จะ
เปนผลเฉลยที่ผานจุด AdS4 ที่มีสมมาตรยิ่งยวด N = 4 และสมมาตร SO(4)×SO(4) ใน
ขณะที่คำตอบที่มีสมมาตรยิ่งยวด N = 1 ไมเพียงแตใหผลเฉลยที่ผานจุดวิกฤต AdS4 แบบ
ชัดแจงเทานั้นแตยังใหผลเฉลยที่ผานจุดวิกฤต AdS4 แบบไมชัดแจงอีกดวย จุดวิกฤตแบบไม
ชัดแจงดังกลาวที่มีสมมาตร SO(3)diag×SO(3)×SO(3) จะถูกพบในกรณีที่ β1 = 0 และ
จุดวิกฤต AdS4 แบบไมชัดแจงที่มีสมมาตร SO(3)×SO(3)diag×SO(3) จะถูกพบในกรณีที่
β1 =

π
2
คำอธิบายทางทฤษฎีสนามที่สอดคลองกับคำตอบขางตนคือ คำตอบที่มีสมมาตรยิ่งยวด

N = 2 จะสอดคลองกับความบกพรองคอนฟอรมอลที่มีสมมาตรยิ่งยวด N = (2, 0) หรือ
N = (0, 2) ในทฤษฎีสนามซูเปอรคอนฟอรมอลที่มีสมมาตรยิ่งยวด N = 4 และมีสมมาตร
SO(4)×SO(4) ในขณะที่คำตอบที่มีสมมาตรยิ่งยวด N = 1 จะสามารถอธิบายความบกพรอง
คอนฟอรมอลที่มีสมมาตรยิ่งยวด N = (1, 0) หรือ N = (0, 1) ในทฤษฏีสนามซูเปอรคอน
ฟอรมอลที่สอดคลองกับจุดวิกฤต AdS4 แบบไมชัดแจงที่มีสมมาตรตางกันทั้งสองแบบขึ้นอยู
กับคา β1

ภาควิชา . . . . . . . .ฟสิกส . . ลายมือชื่อนิสิต . . . . . . . . . . . . . . . . . . . . . . . .

สาขาวิชา . . . . . . . .ฟสิกส . . ลายมือชื่อ อ.ที่ปรึกษาหลัก . . . . . . . . . . . . . .

ปการศึกษา . . . . . . .2564. . . . . . . . . . . . . . . . . . . . .
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## 6270051423 : MAJOR PHYSICS
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TISSANA ASSAWASOWAN : JANUS SOLUTIONS FROM FOUR-DIMENSIONALN =

4 GAUGED SUPERGRAVITY. ADVISOR : PROF. PARINYA KARNDUMRI, Ph.D.,

134 pp.

We find new classes of Janus solutions that preserve N = 2 and N = 1 super-

symmetries in four-dimensional N = 4 gauged supergravity with SO(4)×SO(4) gauge

group. The SO(4)×SO(4) ∼ SO(3)×SO(3)×SO(3)×SO(3) includes four deformation

parameters α0, α, β1 and β2 for each SO(3) group. The N = 2 solutions found from

SO(2)×SO(2)×SO(2)×SO(2) truncation interpolate between SO(4)×SO(4) N = 4

AdS4 critical points while the N = 1 solutions connect not only trivial AdS4 critical

point but also non-trivial ones. These non-trivial N = 4 AdS4 critical points preserve

SO(3)diag × SO(3) × SO(3) symmetry, for β1 = 0, and SO(3)×SO(3)diag×SO(3) sym-

metry, for β1 = π
2 . In the dual theories, the N = 2 solutions correspond to N = 4

superconformal field theory (SCFT ) with SO(4)×SO(4) symmetry in the presence of

N = (2, 0) or N = (0, 2) conformal defects while the N = 1 solutions also holographically

describe N = (1, 0) or N = (0, 1) conformal defects within the N = 4 SCFT dual to

non-trivial AdS4 critical points depending on the values of β1.
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CHAPTER I

INTRODUCTION

The ultimate goal of high-energy physics is to construct the theory that unifies all

four fundamental forces into one theory called the theory of everything. The first step

had been achieved by the standard model that describes elementary particles named the

standard model. This is quite an effective model since electro-weak and strong interaction

can be clarified via one theory. However, the weakest point of this is that gravity is not

included. Hence, it cannot still be the theory of everything for that reason. Besides, in

the quantum gravity sense, the coupling constant from the theory defined by κ =
√
8πG

corresponds to UV divergences in the Feynman diagrams and cannot be renormalized.

In this theory, the UV divergence cannot be canceled by counter terms. Gravity is also

distinguished from the other three fundamental forces by its geometrical nature. Another

contrast between gravity and other fundamental forces is the hierarchy problem as an

enormous gap of energy between electro-weak, clearer depicted by 100 GeV, and quantum

gravity giving approximately 1019 GeV.

The problems above are solved mainly by the emergence of supersymmetry, a sym-

metry that unifies bosons and fermions. With the applications of supersymmetry, UV

divergences that seem problematic at first can even become softer. Another benefit of

having supersymmetry is that with the help of supersymmetry, the three-fundamental

forces excluding gravity can be unified at a certain scale, called grand unification.

After the introduction of supersymmetry, see [?, ?, ?, ?], there was an attempt to

construct a theory including gravity with supersymmetry. The gravity theory is gener-

ally described in terms of curved spacetime. It turns out that supersymmetry in a curved

spacetime must be promoted to a local symmetry. When combining all symmetries, in-

cluding supersymmetry that this system could have, the Poincare group is extended to



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

be a bigger group called super-Poincare, and the theory of curved spacetime with the

addition of supersymmetry is called supergravity, see [?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Super-

gravity is such an effective tool in constructing the theory of supersymmetric interaction.

However, the big drawback of all supersymmetric theories is that superpartners of parti-

cles have never been observed, possibly leading to the question that if they really exist

in the universe. Therefore, the reasonable assumption that can answer this question is

that supersymmetry may be spontaneously broken in our universe. In other words, our

spacetime is not a supersymmetric vacuum.

In string theory which represents as a one-dimensional object instead of a point

particle whose length is ls =
√
α’ and the tension T ∼ ls, elementary particles arise from

the mode of oscillation of the string, see [?, ?, ?, ?, ?]. A strongly compelling motivation

of this theory is the existence of graviton that does not emerge from any theories but

is effortlessly generated by the closed string, while the open string also encompasses

the gauge field. In addition, the UV cut-off is also provided by the length of string in

the theory. For this reason, superstring theory can be formulated as a quantum theory

combining all fundamental interactions with gravity. The effective field theory of ten-

dimension supergravity which is found by taking string length to zero or, equivalently,

the string’s tension close to infinity, where the string is now seen as a particle, is described

by supergravity theories. Further development of string theory shows that the different

five superstring theories might originate from an eleven-dimensional theory called M-

theory, with all string theories related to each other by dualities. Despite the precise form

of M-theory not being clearly known, its effective theory is given by eleven-dimensional

supergravity.

Although string or M-theory is the candidate theory that might unify all four-

fundamental forces, it is needed to be described in ten or eleven dimensions. This does

not match the reality since our universe is four-dimensional spacetime and leads to the

question that how the other six or seven dimensions come from. However, those six and

seven dimensions can be describable due to the idea of Kaluza-Klein reduction. The

method is to compactify extra dimensions into a compact internal manifold. Therefore,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

ten or eleven-dimensional spacetime can be written as

M =Md=4 ×Mint (1.1)

where Md=4 is our non-compact four-dimensional manifold and Mint is other compact

manifold withD−d dimensions whereD is 10 or 11. With this method of compactification,

massless fields in the string theory become massless and massive fields in four-dimensional

spacetime. Those massless fields are field contents of supergravity in four dimensions. It

can also be said that the string theory in ten dimensions can be reduced to supergravity

in four dimensions. Nevertheless, supergravity is not close to realistic model as it cannot

provide cosmological constant. Gauged supergravity is a supergravity with non-abelian

gauge symmetries and can give rise to cosmological constant. Besides, the introduction of

D-brane in string theory at low energy limit can lead to the effective theory in the form

of gauged supergravity.

D-brane or sometime called Dp-brane, standing for Dirichlet brane, is the object

where open string can end that extends in p spatial dimensions. With the existence of

D-brane, open string can have various orientations. It can not only start and end on the

same brane, but also start from one brane and end with another brane. Without D-brane,

there is only open string with Neumann boundary conditions. Spectrum of open string are

richer when the D-brane is present as there can be open string with Dirichlet boundary

conditions or even mixed boundary conditions. D-brane is a dynamical object that can

interact with open and closed strings. The action that includes the dynamics of D-brane

can give rise to gauged supergravity at low energy limit. One of the most well-known

examples of D-brane that leads to gauged supergravity is coincident N D3-branes in IIB

string theory in ten dimensions. At low energy limit, the string theory with coincident

N D3-brane can be described by supergravity on AdS5 × S5 where AdS5 is the five-

dimensional spacetime. The theory is effectively reduced to SO(6) gauged supergravity

in five dimensions with SO(6) corresponding to the isometry of S5.

To gauge supergravity theory, subgroup G0 of G, the global symmetry of the scalar



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

manifold that includes all scalars in theory, is promoted to be a local symmetry. During

the gauging procedure, vector fields in ungauged theory are coupled to other fields that

are charged under the gauge symmetry. The gauged supergravity with the local symmetry

groupG0 corresponds to the internal manifold with an isometry groupG0. For example, in

the first construction of this procedure in [?], SO(8) gauged supergravity can be described

by the compactification of eleven-dimensional supergravity on S7 SO(8) group. The

structure of this gauging is summarized in Figure 1.1, see [?,?,?] for more details.

Figure 1.1: A journey of gauge thoery in supergravity

An advent of the AdS/CFT correspondence proposed by Maldacena in [?], see

also [?, ?], is the first bridge where quantum theory and gravity can be conjecturally

linked to each other in a consistent manner. The correspondence claims that conformal

field theory in the limit of large N in d dimensions is dual to the compactification of

supergravity on (d + 1)-dimensional AdS space with a compact internal manifold. The

most well-known correspondence is four-dimensional N = 4 super-Yang-Mills (SYM) with

SU(N) gauge symmetry and type IIB supergravity on AdS5 × S5. This correspondence

or duality leads to various applications in several fields of studies, ranging from statistical

physics to high-energy physics. For example, in quantum field theory, a technique called

renormalization group (RG) has been introduced to solve the problem of infinities in the

calculation. The idea leads to the introduction of the β function describing the relation

between coupling constant g and energy scale µ. The β function at some g∗ such that



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

β(g∗) = 0 is called a conformal fixed point that can be deformed by some operator O∆ to

another conformal point. In the context of the AdS/CFT correspondence, the RG flow

of between two CFT s is described by solutions in gauged supergravity in the form of flat

domain wall. The metric (d+ 1 dimensions) takes the form as

ds2 = e2A(r)(ηµνdx
µdxν) + dr2, (1.2)

where A(r) is a warp factor that becomes a linear function to reproduce AdSd+1 space.

Previous works on domain walls can be found in [?,?,?,?,?,?] followed by the studies on

BPS flat domain wall in [?,?,?,?,?,?,?,?,?].

The BPS curved domain wall solutions in [?,?,?], later led to another holographic

solution called Janus that describes a conformal defect within conformal field theory. This

kind of solution can be obtained through AdSd-sliced domain wall

ds2 = e2A(r)(ds2AdSd
) + dr2 (1.3)

that preserves some amount of conformal symmetry SO(2, d − 1) corresponding to the

conformal symmetry on the defect instead of Poincare symmetry on a flat domain wall.

In this report, we will focus mainly on Janus solutions.

The first Janus solutions are not supersymmetric solutions, see [?,?]. The solutions

are solved from an ansatz of AdS-slice domain wall. The field theory interpretation

dual to this solution are further described in [?] and correlation functions in terms of

holographic description are given in [?]. After that, for decades, supersymmetric Janus

solutions are found in gauged supergravities with different gauge groups and dimensions,

see [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?]. Our scope of study is to

find Janus solutions from N = 4 gauged supergravity in four dimensions. The first Janus

solutions from N = 4 gauged supergravity has been found by compactification of eleven-

dimensional supergravity on tri-sasakian manifold studied in [?] where Janus solutions

interpolate between singular geometries. The next study is N = 4 gauged supergravity



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

with ISO(3) × ISO(3) gauge symmetry which admits only one AdS4 critical points,

see [?]. N = 4 SO(4) × SO(4) gauged supergravity gives Janus solutions interpolating

between trivial N = 4 AdS4 critical points. With such studies above, no Janus solutions

interpolate between other vacua apart from trivial ones.

Our work eventually provides Janus solutions interpolating between non-trivial crit-

ical points. By the application of symplectic deformation [?], more deformations param-

eters allow us to find more general structures and vacua as earlier studies on symplectic

deformation of SO(8) gauged supergravity are found in [?, ?, ?, ?]. We find Janus solu-

tions preserving N = 2 and N = 1 supersymmetries [?]. Despite N = 2 solutions from

SO(2)×SO(2)×SO(2)×SO(2) truncation giving only trivial critical points, we find that

these solutions are more general than the solutions found in [?]. Much more interesting

solutions are found in N = 1 supersymmetry since we finally find Janus solutions that

interpolate between non-trivial vacua.

This thesis is organized as follows. The main purpose of chapter II is to provide a

gist of supersymmetry in the construction of field contents in each multiplet with different

numbers of supercharges and provide the algebra corresponding to supersymmetry that

will be promoted to local symmetry in chapter III to build up supergravity. One of

the simplified reviews on supersymmetry is [?]. The main feature of chapter III is to

generalize supergravity with N > 2 and relevant symmetries for other fields with spin

different from zero. Once an ungauged theory is known, it is much more exciting to make

the theory become gauged supergravity in chapter IV, responsible for describing the string

theory compactified on different manifolds at low energy, see [?] a review and [?] for more

details. Moving to chapter V, the AdS/CFT duality, see [?, ?, ?], is clarified, and some

applications such as RG-flow found from flat domain wall metric are given. By making a

bit alteration of the flat domain walls to be AdS-sliced domain walls, the Janus solutions

are described in chapter VI. Besides, our new Janus solutions are also provided in this

chapter. Finally, we review recent Janus-related works from [?,?] and comment on some

possible future works in the last chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

SUPERSYMMETRY

Supersymmetry, the biggest symmetry of spacetime, is beneficial in solving many

theories. Some problems, especially in High-Energy physics, could not be solved without

supersymmetry. Supersymmetry claims that there is a superpartner particle with different

statistics for each particle, uniting between bosons and fermions.

In this chapter, some details of supersymmetry will be briefly discussed, starting

with a bit of history to give motivation and mainly focusing on the extension of the

Poincare group with the addition of supersymmetry named super-Poincare and the algebra

behind it, see [?,?].

2.1 History of supersymmetry

With the advent of supersymmetry, it had been developed throughout history. Im-

portant development will be given consecutively.

- In 1967, Coleman and Mandula proposed the “No-go theorem” that claims the

most generally possible symmetry can be explained by S-matrix being the direct product

between Poincare’ and internal symmetry.

- In 1971, Poincare’ algebra was extended by including spinor generator Qα, claimed

by Golfand Likhtman.

- In 1971, Applying supersymmetry in two-dimensional string theory was succeeded

by Ramond, Neveu-Schwarz, Gervais, and Sakita.

- In 1974, a complete field theory including supersymmetry in four dimensions was

created by Wess and Zumino.

- In 1975, Hagg, Lopuszanski, and Sohnius presented a generalized No-go theorem,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

adding both spinor generator and its Hermitian generator in Poincare’ algebra.

2.2 Lie group and Lie algebra

Lie group is a group that contains elements as smooth parameters. Each element of

a group can be described by a set of a finite number of parameters {αa, αb, ..., αN} where

N is a dimension of a group. Geometrically, because of the smooth property of elements

of a group, the Lie group can also be seen as a manifold. αa then is seen as a manifold

coordinate.

Normally, the group identity can be written with parameter αa = 0 where a =

1, 2, ..., N as

e = g(0, ..., 0) (2.1)

Since the neighbourhood of identity element denoted as 1 changes continuously,

we can find this neighbourhood by considering infinitesimal Taylor expansion around

g(0, ..., 0) as

g(dα) = g(0) + dαa
∂g

∂αa
|αa=0 (2.2)

= 1 + idαaTa (2.3)

where Ta is a generator of the group defined by

Ta = −i ∂g
∂αa

|αa=0 (2.4)

The elements far away from identity element can be found by

g(α) = lim
n→∞

(1 + i
αa

n
Ta)

n = eiα
aTa (2.5)
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The action between two elements of the group can be found by

g(α)g(β) = g(γ) (2.6)

eiα
aTaeiβ

bTb = eiγ
aTa (2.7)

Take ln to both sides of the equation to get

iγaTa = ln(1 + eiα
aTaeiβ

bTb − 1) (2.8)

With Taylor expansion of ln(1 +K) where K is

K = eiα
aTaeiβ

bTb − 1

= (1 + iαaTa −
1

2
(αaTa)

2 + ...)(1 + iβbTb −
1

2
(βbTb)

2 + ...)− 1

= iαaTa + iβbTb − αaTaβ
bTb −

1

2
(αaTa)

2 − 1

2
(βbTb)

2 + ... (2.9)

that leads to

iγaTa = K − 1

2
K2 + ...

= iαaTa + iβbTb − αaTaβ
bTb −

1

2
(αaTa)

2 − 1

2
(βbTb)

2 +
1

2
(αaTa + βbTb)

2 + ...

= iαaTa + iβbTb −
1

2
[αaTa, β

bTb] + ... (2.10)

which gives

[αaTa, β
bTb] = −2i(γc − αc − βc)Tc = iδcTc (2.11)

where δc can be redefined as

δc = αaβbfab
c (2.12)
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Placing this δc back in ?? to get

[αaTa, β
bTb] = iαaβbfab

c (2.13)

αaβb[Ta, Tb] = iαaβbfab
c (2.14)

[Ta, Tb] = ifab
cTc (2.15)

This is called Lie algebra as it tells about the structure of the group from structure

constant through the commutator between its generator that will depend on which the

group is. It is really important in Physics since Physic must face symmetry inevitably and

a symmetry can be identified from determining the Lie algebra relevant to that symmetry.

2.3 Graded algebra

In this section, we want to identify the symmetry called supersymmetry. However,

since Lie algebra is not enough to indicate algebra for supersymmetry, the Poincare algebra

abiding by Lie algebra structure must be extended in accordance with covering more

symmetries. The concept of graded Lie algebra is then necessarily introduced. A grade

of a generator can be defined by

[Ta, Tb} = TaTb − (−1)ηaηbTaTb = fab
cTc (2.16)

where ηa = 0, 1 is a grade of Ta which is in a group Z2.

The product of two fermionic generators will result in bosonic genertaors due to

their grades equal to zero. This generally show that

[B,B′] = B”, [B,F ] = F ′ {F, F ′} = B” (2.17)

where B and F are a bosonic and fermionic generator. Hagg-Lopuszanski-Sohnius theo-

rem proposed that possible fermionic generators must be in spinor representation (
1

2
, 0)⊕

(0,
1

2
) of Lorentz group. This can be proved by considering the product of fermionic gen-
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erator in representation (j, j+
1

2
) for fermionic generator F i, i = 1, ..., N and its conjugate

F i† in representation (j +
1

2
, j). The product can be shown as the following

{F i, F j†} : (2j +
1

2
, 2j +

1

2
)

{F i, F j} : (2j, 2j + 1)

{F i†, F j†} : (2j + 1, 2j)

(2.18)

The result must be in bosonic generator under Poincare group that has generators Jµν

(a Lorentz generator), Pµ (a momentum generator), and ta (a generator of internal sym-

metry) in representation (1, 0)⊕ (0, 1), (1
2
,
1

2
) and (0, 0) respectively. More importantly,

fermionic generators with j > 0 cannot be closed the algebra {F, F} to give bosonic gen-

erators in Poincare’ group. Therefore, the only possible fermionic gernerators must have

j = 0.

Let Qai and Q̄iȧ = (Qai)
† be fermionic generators in (

1

2
, 0) and (0,

1

2
) respectively.

These generators are usually called supercharges. The indices i = 1, 2, ..., N refer to a

number of generators while a, b = 1, 2 and ȧ, ḃ = 1, 2 are the spinor indices and their

conjugate respectively.

Generators Qai and Q̄iȧ are spinors under Lorentz group that have commutation

with Jµν as

[Qai, Jµν ] = i(σµν)
b
aQbi, [Q̄ȧi, Jµν ] = i(σ̄µν)

ȧ
ḃ
Q̄ḃi (2.19)

where σµν is a Lorentz generator in Weyl spinor representation which is defined by

σµν =
1

4
(σµσ̄ν − σν σ̄µ), σ̄µν =

1

4
(σ̄µσν − σ̄νσµ) (2.20)

where σµ = (−I, σi), σ̄µ = (I, σi) and σi is a 2× 2 Pauli matrices where i = 1, 2, 3. Other

algebras including both of commutators and anti-commutators are found by super-Jacobi

and considering their representations.

The result of {Qai, Q̄jȧ} must be in [(
1

2
, 0)⊗ (0,

1

2
)]S = (

1

2
,
1

2
). This shows that the
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product is a generator Pµ.

{Qai, Q̄jȧ} = −Cji σµaȧP
µ. (2.21)

Negative sign is from σµ = (I, σi).

Due to the result of {Qai, Q̄jȧ} being hermitain, Cji must be hermitian matrix and

can be diagonalized. Moreover, {Qai, Q̄jȧ} is always positive definite. Hence, Qai and Q̄jȧ
can have new definitions as Q′

ai =
Qai√
2ci

. Therefore, the commutator can be rewritten as

{Qai, Q̄jȧ} = −1

2
δji σµaȧP

µ (2.22)

Consider the commutator

[Qai, P
µ] = cijσ

µ
aȧQ̄

ȧj (2.23)

The product of antisymmetric tensor [(
1

2
, 0) ⊗ (

1

2
,
1

2
)]A = (0,

1

2
) is represented by Q̄ȧj .

Its conjugation is therefore shown by

[Q̄āi, Pµ] = −(cij)
†σ̄µȧaQaj (2.24)

From super-Jacobi identity,

[Pµ, [P ν , Qai]] + [P ν , [Qai, P
µ]] + [Qai, [P

µ, P ν ]] = 0 (2.25)

With [Pµ, P ν ] = 0, the equation ?? will be true when cc† = 0 because σµσ̄ν ̸= 0 so

[Pµ, Qai] = [Pµ, Q̄iȧ] = 0 (2.26)

{Qai, Qbj} is found by considering representation (
1

2
, 0)⊗(

1

2
, 0) = (0, 0)⊕(1, 0). Thereby,

the result will be

{Qai, Qbj} = −1

2
ϵabZ

ij +
1

2
σµνab Y

ij
µν (2.27)

where ϵab is the Levi-civita tensor, σµν is a Lorentz generator in the Weyl spinor repre-

sentation, Zij = −Zji is a scalar field and Y ij
µν = Y ji

µν = −Y ij
νµ is antisymmetric tensor.
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With [Pµ, Qai] = [Pµ, P ν ] = 0 and super-Jacobi identity

[Pµ, {Qai, Qbj}]− {Qbj , [Pµ, Qai]}+ {Qai, [Qbj , Pµ]} = 0, (2.28)

it can show that [Pµ, {Qai, Qbj}] = 0. This will result in Y ij
µν = 0 due to [Pµ, σνρ] ̸= 0.

A generator Zij is a scalar under Lorentz group so Zij must be in the form of

internal symmetry TA as

Zij = aAijTA (2.29)

where TA satisfies Lie algebra

[TA, TB] = fAB
CTC . (2.30)

Suppose Qai and Q̄iȧ transform under internal symmetry

[Qai, TA] = (SA)i
jQaj , [TA, Q̄

i
ȧ] = (S∗A)ijQ̄

j
ȧ (2.31)

where (SA)ji is a generator TA in the representation of a supercharge.

The equation ?? and [Pµ, TA] = 0 and super-Jacobi

[TA, {Qai, Q̄jȧ}] + {Qai, [Q̄jȧ, TA]} − {Q̄jȧ, [TA, Qai]} = 0 (2.32)

will give SA† = SA and super-Jacobi identity

[TA, {Qaj , Qbj}+ {Qai,[Qbj , TA]} − {Qbj , [TA, Qai]} = 0 (2.33)

will give rise to

[TA, Zij ] = (SA)
k
i Zik − (SA)

k
jZik. (2.34)
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Using ?? and ?? will show that

[Qai{Qbj , Q̄kċ}] + [Qbj{Q̄kċ , Qai}] + [Q̄kċ , {Qai, Qbj}] = 0. (2.35)

leading to [Q̄kȧ, Zij ] = [Qak, Zij ] = 0. Apart from these, it can also be shown

[Zik, Zkl] = ϵab[{Qai, Qbj}, Zkl] = 0 (2.36)

or aAkl[Zij , TA] = 0 which shows [Zij , TA] = 0 for any aAkl ̸= 0. Because of Zij commuting

with all generators, Zij will be central charge that seems like no interation on this charge.

In conclusion, all algebras of supersymmtery are shown by

[P ρ, Jµν ] = i(ηµρP ν − ηνρP ν), [P ν , P ν ] = 0

[Jµν , Jρσ] = −i(Jµσηνρ − Jνσηµρ + Jνρηµσ − Jµρηνσ)

[Pµ, Qai] = [Pµ, Q̄iȧ] = 0 {Qai, Q̄iȧ} = −1

2
δji σµaȧP

µ

[Qai, Jµν ] = i(σµν)a
bQbi, [Q̄ȧi, Jµν ] = i(σ̄ȧ)ḃQ̄

ḃi

{Qai, Qbj} = −1

2
ϵabZij , {Q̄iȧ, Q̄

j

ḃ
} = −1

2
ϵȧḃZ

ij

[Qai, TA] = (SA)i
jQaj , [Q̄iȧ, TA] = −(S∗A)ijQ̇

j
ȧ

Zij = aAijTA, [TA, TB] = fAB
CTC

. (2.37)

Also, there is a generator that does not commute with supercharge Qai called R-

symmetry. Let OA be a generator of this R-symmetry

[OA, Qai] = (UA)i
jQaj , [OA, Q

i
ȧ] = (UA)

i
jQ

j
ȧ. (2.38)

where (UQ)
i
j is a conjugate of (UA)ij .

Consider super-Jacobi identity

[[OA, OB], Qai] + [[OB, Qai], OA] + [[Qai, OA], OB] = 0 (2.39)
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will give

[UA, UB] = −fABCUC (2.40)

It shows that −(UA)i
j is the representation of R-symmetry. By Super-Jacobi

{[OA, Qai], Q̄jḃ}+ {[OA, Q̄jḃ], Qai}+ [{Qai, Q̄jḃ}, OA] = 0 (2.41)

and [Pµ, OA] = 0 lead to

−1

2
σµ
aḃ
Pµ[(UA)i

kδjk + (UA)
j
kδ
k
i ] = 0 (2.42)

or the other word

(UA)i
j = −(UA)

j
i = −((UA)j

i)∗. (2.43)

which shows (UA)i
j is an anti-hermitian matrix. Thus, R-symmetry of supersymmetry

with 4N supercharges is U(N)

2.3.1 Massless Representation

This representation refers to a massless particle in which P 2 = 0 and the momentum

is chosen to be kµ = (E, 0, 0, E)

Replacing kµ in the equation ??, the result will be

{Qai, Qjḃ} = δjiE

0 0

0 1

 . (2.44)

Central mass is not valid for massless particle. The rest of anticommutator will be

{Qai, Qbj} = {Q̄iȧ, Q̄ḃj} = 0. (2.45)

The equation ?? shows that

{Q2i, Q̄
j

2̇
} = Eδji (2.46)
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The equation ?? gives

[J,Qai] =
1

2
σbaQbi (2.47)

and its conjugate is

[J, Q̄iȧ] = −1

2
σḃȧQ

i
ḃ
. (2.48)

Focusing only on z-direction, the equation ?? and ?? become

[J3, Q2i] = −1

2
Q2i and [J3, Q̄

i
2̇
] =

1

2
Q̄i

2̇
. (2.49)

For simplicity, redefining âi =
Q2i√
E

and â†i =
Q̄i

2̇√
E

, a new algebra is rewritten as

{âi, â†j} = δij (2.50)

which gives the same sense of fermionic harmonic oscillator. Beginning with the lowest

state with the minimal helicity k, hmin, the algebra can be defined by

âi |k, h0⟩ = 0, J3 |k, h0⟩ = h0 |k, h0⟩ . (2.51)

Other higher states are found by raising the lowest state by â†i as

|k, h0 +
1

2
; i⟩ = â†i |k, h0⟩

|k, h0 + 1; i, j⟩ = â†i â
†
j |k, h0⟩

...

|k, h0 +
n

2
; i1, ..., in⟩ = â†i1 ...â

†
in
|k, h0⟩

...

|k, h0 +
N

2
; i1, ..., iN ⟩ = â†i1 ...â

†
iN

|k, h0⟩

(2.52)
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A state â†i1 ...â
†
iN

|k, h0⟩ has a number of possible states as

N
n

 =
N !

n!(N − n)!
(2.53)

A total number of states in massless representation is

D(N) =

N∑
n=0

N
n

 = (1 + 1)N = 2N (2.54)

In Lorentz symmetry, discrete symmetry called CPT symmetry says that all states with

helicity h must have states with helicity −h.

Quantum field theory under Lorentz symmetry allows particles to have helicity h

where −2 < h < 2 to exist. Eventually, hmax − hmin ≤ 4. From supposing hmin = h0

and hmax = h0 +
N

2
,

N

2
≤ 4

N ≤ 8 (2.55)

This shows that in four dimensions, the possible highest supersymmetry is N = 8, which

consists of 32 supercharges. In a different dimension, a number of supercharges remain

the same while an amount of supersymmetries can be altered.

For example, the simplest case N = 1, chiral multiplet or scalar multiplet with the

lowest-helicity state h0 = −1
2 has possible states as

|k,−1

2
⟩ , |k, 0⟩ = â† |k,−1

2
⟩ . (2.56)

which obviously have no CPT symmetry. According to CPT symmetry, (0, 12)−helicity

state must be included and the opposite-helicity state of |k, 0⟩ is also |k, 0⟩. Hence, all
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states in this multiplet are

|k,−1

2
⟩ , |k, 0⟩ , |k, 0⟩ , |k, 1

2
⟩ (2.57)

where |k,±1
2⟩ is described by Weyl spinor while two |k, 0⟩ are described by two scalars.

Another example is the multiplet with h0 = −1 called vector multiplet or gauge

multiplet. By the same idea, all states are therefore shown by

(|−1⟩ , |−1

2
⟩)⊕ (|1

2
⟩ , |1⟩) (2.58)

Supergravity multiplet with h0 = −2 that will be the main multiplet to find holo-

graphic solutions in gauged supergravity will have states as

(|−2⟩ , |−3

2
⟩)⊕ (|3

2
⟩ , |2⟩) (2.59)

where state |±2⟩ is a graviton while state |±3
2⟩ is a gravitino, a superpartner of a graviton.

As the process of finding field contents in each multiplet shown above, repeating

the same process with different N will give the field contents as shown at the Table 2.1.
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Table 2.1: Field contents for each multiplet for 1 ≤ N ≤ 8 in four dimensions

N smax s = 2 s = 3/2 s = 1 s = 1/2 s = 0

N = 1 2 1 1

3/2 1 1

1 1 1

1/2 1 1 + 1

N = 2 2 1 2 1

3/2 1 2 1

1 1 2 1 + 1

1/2 2 2 + 2

N = 3 2 1 3 3 1

3/2 1 3 3 1 + 1

1 3 + 1 3 + 3

N = 4 2 1 4 6 4 1 + 1

3/2 1 4 6 + 1 4 + 4

1 1 4 6

N = 5 2 1 5 10 10 + 1 5 + 5

3/2 1 5 + 1 10 + 5 10 + 10

N = 6 2 1 6 15 + 1 20 + 6 15 + 15

3/2 1 6 15 20

N = 7 2 1 7 + 1 21 + 7 35 + 21 35 + 35

N = 8 2 1 8 28 56 70

2.4 Supersymmetry transformations and algebra

In quantum field theory, the state of a particle can be constructed by a field operator

acting on a vacuum state. In this section, we begin such construction from a vacuum



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

state and raise the spin of a particle by a supercharge operator that leads to a spinor field

operator.

Let’s suppose Φ is the operator that can construct a particle with momentum pµ

and spin j as

|p, j⟩ = Φ |0⟩ . (2.60)

In a vacuum, supercharge will annihilate the vacuum state as

Qai |0⟩ = 0, Q̄ȧi |0⟩ = 0. (2.61)

Let’s Z is a field operator of |p, 0⟩ that can be built up from |0⟩ as

|p, 0⟩ = Z |0⟩ (2.62)

Qȧ that annihilates |p, 0⟩ can be written as

Q̄ȧ |p, 0⟩ = Q̄ȧZ |0⟩ = 0. (2.63)

This shows that Z commutes with Q̄ȧ written as

[Z, Q̄ȧ] = 0. (2.64)

Super-Jacobi identity

{[Z,Qa], Q̄ȧ} − {[Q̄ȧ, Z], Qa}+ [{Qa, Q̄ȧ}, Z] = 0, (2.65)

leads to

[{Qa, Q̄ȧ}, Z] = −1

2
σµaȧ∂µZ = 0. (2.66)
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|p, 12⟩ is brought up by Qa from the state |p, 0⟩ as

Qa |p, 0⟩ = QaZ |0⟩ = |p, 1
2
⟩ . (2.67)

Now, let’s define spinor field operator χa to construct spin-12 particle

χa |0⟩ = |p, 1
2
⟩ , (2.68)

or written as

χa = [Qa, Z]. (2.69)

Then, consider super-Jacobi identity

{Qa, [Qb, Z]} − {Qb, [Z,Qa]}+ [Z, {Qa, Qb}] = 0, (2.70)

and

{Qa, Qb} = 0, (2.71)

lead to

{Qa, χb} = {Qb, [Z,Qa]} = −{Qb, χa}. (2.72)

This is obviously seen that {Qa, χb} has anti-symmetric property under switching indices

a and b. Thereby, this can be written as

{Qa, χb} = ϵabF. (2.73)
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To find [Qc, F ], one may begin by

ϵab[Qc, F ] = [Qc, {Qa, χb} (2.74)

= −[Qa, {χb, Qc}]− [χb, {Qc, Qa}] (2.75)

= −ϵcb[Qa, F ] (2.76)

and make a contraction with ϵab to get

[Qc, F ] = 0. (2.77)

Another commutator is [Q̄ȧ, F ] that can be found by similar way as

ϵab[Q̄ȧ, F ] = [Q̄ȧ, {Qa, χb}] (2.78)

= −[Qa, {χb, Q̄ȧ}]− [χb, {Q̄ȧ, Qa}] (2.79)

=
1

2
σµbȧ[Qa, ∂µZ] +

1

2
σµaȧ[χb, Pµ] (2.80)

=
1

2
σµbȧ −

1

2
σµaȧ∂µχb, (2.81)

contracted by ϵab that results in

[Q̄ȧ, F ] = −1

2
∂µχ

aσµaȧ. (2.82)

This can be shown that all fields can close the algebra by considering the action of

supercharges, which means (Z, χa, F ) are in the same multiplet.

For any fields Φ, supersymmetry parameters and supercharges can lead to thier

transformation as

δΦ = [ϵ̄ȧQ̄
ȧ + ϵaQa,Φ]. (2.83)
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From this relation, supersymmetry of the multiplet above can be concluded as

δZ = [ϵ̄ȧQ̄
ȧ + ϵaQa, Z] = ϵa[Qa, Z] = ϵaχa, (2.84)

δχa = ϵc{Qc, χa} − ϵ̄ȧ{Q̄ȧ, χa} = Fϵa +
1

2
σµaȧϵ̄

ȧ∂µZ, (2.85)

δF = −ϵ̄ȧ[Q̄ȧ, F ] =
1

2
ϵ̄ȧ∂µχ

aσµaȧ. (2.86)

The content in this chapter shows precisely that the anti-commutator of super-

charges can generate momentum. This can be proved by considering supersymmetry

transformations in the form of algebra, including supersymmetry parameters as

[δ1, δ2]Φ = [ϵ̄1Q, [ϵ̄2Q,Φ]]− [ϵ̄2Q, [ϵ̄1Q,Φ]]. (2.87)

With super-Jacobi identity

[ϵ̄1Q, [ϵ̄2Q,Φ]] + [ϵ̄2Q, [Φ, ϵ̄1Q]] + [Φ, [ϵ̄1Q, ϵ̄2Q]], (2.88)

and ϵ̄2Q = Qϵ2 will give

[[δ1, δ2]Φ] = [ϵ̄α1Qα, Q̄
bϵ2b,Φ] = −1

2
ϵ̄1c

µϵ2[Pµ,Φ] = −1

2
ϵ̄1c

µϵ2∂µΦ (2.89)

As known that the algebra can point out the symmetry of theory, this algebra given

above will be the first step in construction of supergravity due to the constraint that

supergravity must admit supersymmetry as its local symmetry which will be explained

in the next chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SUPERGRAVITY

The previous chapter provides the procedure to find what field content should be

included in each multiplet. However, the theory cannot be described on the system

with curved space due to the addition of graviton, a particle that can cause gravity. To

broaden supersymmetry into gravitational theory, supersymmetry must play a role as

local symmetry. This theory that supersymmetry is promoted to be locally invariant is

called supergravity.

It is also said that supergravity is the gravitational theory having supersymmetry

as gauge symmetry that gives the algebra

[ϵ̄1(x)Q, ϵ̄2(x)Q] = −1

2
ϵ̄1(x)γ

µϵ2(x)∂µΦ(x). (3.1)

Compared to the previous chapter, the difference of the algebra is spotted clearly

that supersymmetry parameters and a field are function of spacetime that is the indication

of local symmetry or gauge symmetry.

3.1 Fermionic fields in curved spacetime

Before encountering supergravity, behaviors of fermions in curved spacetime must

be clarified.

Fermions which, in this case, is a spinor that has no symmetry under diffeomor-

phism, but rather has local Lorentz transformation (LLT), their forms can be written

as

Φ′(x) = e
−
1

2
λabMab

Φ(x) (3.2)
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where Mab is a Lorentz generator in a representation of Φ(x). It should be noted that this

equation can also describe not only a fermionic field but also other fields. The difference

for such other fields is that Mab will be a Lorentz generator in a representation of those

fields. The covariant derivative is defined by

DµΦ = ∂µΦ+
1

2
ωabµ MabΦ. (3.3)

For a spinor, it is transformed as

ψ′(x) = e
−
1

4
ωabγab

ψ(x) (3.4)

where its covariant derivative is shown by

Dµψ = ∂µψ +
1

2
ωabµ γabψ. (3.5)

3.2 Torsion

Since supergravity is the theory of gravity coupled to fermionic fields, it generates

a term of torsion inevitably. Unlike the theory of general relativity, Christoffel symbol

having symmetry under switching indices as Γρµν = Γρνµ cannot give a birth to torsion.

Torsion tensor is defined by

T a = dea + ωab ∧ eb (3.6)

which has a component on coordinate basis as

T aµν = 2e[µe
a
ν] + 2ωab[µ eν]b (3.7)

or veilbein basis as

Tabc = Ωabc + ωbac − ωcab (3.8)
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where T abc = T aµνe
µ
b e
ν
c , ωabc = eµaωµbc and Ωabc = 2eµb e

ν
a∂[µe

a
ν] are anholonomy coefficients.

Switching indices can give a relation

ωabc = ω(e)abc +Kabc (3.9)

where ω(e) is the function of veilbein without torsion and Kabc is a contorsion tensor

defined by

ω(e)abc =
1

2
(Ωabc − Ωbca +Ωcab) (3.10)

Ka[bc] = −1

2
(T[ab]c − T[bc]a + T[ca]b). (3.11)

With the existence of torsion, connection Γρµν will change into the form

Γρµν =
1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν)−Kµν

ρ. (3.12)

Antisymmetrizing Γρµν can give

Γρµν − Γρνµ = Kνµ
ρ −Kµν

ρ = Tµν
ρ. (3.13)

Spinor connection also allows to give curvature tensor in the form of two-form as

Rab = dωab + ωac ∧ ωcb =
1

2
Rµν

a
bdx

µ ∧ dxν =
1

2
Rcd

a
be
c ∧ ed. (3.14)

Besides, Bianchi identity is changed to

∇[µRνρ]
στ = −T[µνλRρ]λστ , (3.15)

but its covariant derivative remains the same as

D[µRνρ]
ab = 0 (3.16)
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Since Dµ always involves connection, their commutaotr can give the curvature tensor as

[Dµ, Dν ]Φ =
1

2
Rµν

abMabΦ (3.17)

where Mab is a Lorent generator in the appropriate representation of Φ. Applied to vector

and spinor field,

[Dµ, Dν ]V
a = Rµν

a
bV

b (3.18)

[Dµ, Dν ]ψ =
1

4
Rµν

abγabψ. (3.19)

3.3 N = 1 Supergravity

Starting with the simplest model of supergravity, since the supergravity is the theory

of gravity, which acts as a particle named graviton, that has supersymmetry, its multiplet

called supergravity multiplet must comprise a particle with spin 3

2
which is later named

as gravitino. Gravitino ψαµ where α is the spinor index and µ is the spacetime index is

conventionally written by ψµ.

To construct gravitino, the first step may begin by considering the product under

Lorentz group as

(
1

2
,
1

2
)⊗ [(0,

1

2
)⊕ (

1

2
, 0)] = (

1

2
, 0)⊕ (0,

1

2
)⊕ (

1

2
, 1)⊕ (1,

1

2
). (3.20)

It is clearly seen that the product can give a particle spin 3

2
via representation (

1

2
, 1) ⊗

(1,
1

2
). (

1

2
, 0) ⊕ (0,

1

2
) can be traced out by gamma-traceless condition γµψµ = 0. Ac-

cordingly, the product (
1

2
,
1

2
) ⊗ [(0,

1

2
) ⊕ (

1

2
, 0)] altogether with γµψµ = 0 will perfectly

describe 3

2
-spin particle whic is called ”Rarita-Schwinger” field.

ψµ can as usual other gauge fields generally transforms as

ψµ(x) → ψ′
µ(x) = ψµ(x) + ∂µϵ(x) (3.21)
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where ϵ(x) is a spinor parameter.

The action of Rarita-Schwinger field is represented by

S = −
∫
d4xψ̄µγ

µνρ∂νψρ (3.22)

which gives a field equation

γµνρ∂νψρ = 0. (3.23)

Thus, the supergravity multiplet consisting of graviton eaµ and gravitino ψµ has the

action given by

S =
1

2κ2

∫
d4xe[eaµebνRµνab(ω)− ψ̄µγ

µνρDνψρ] (3.24)

where the first term refers to Einstein-Hilbert action and the second term is the action of

gravitino or Rarita-Scwinger field.

Gravitino is transformed covariantly as

Dµψν = ∂µψν +
1

4
ωabµ γabψν . (3.25)

The action is invariant under supersymmetry transformation

δeaµ =
1

2
ϵ̄γaψµ and δψµ = Dµϵ (3.26)

where

Dµϵ = ∂µϵ+
1

4
ωabµ γabϵ. (3.27)

3.4 General structure of supergravity with N > 2

Ungauged supergravity with N = 1 supersymmetry can be seen obviously that its

Lagrangian and supersymmetry transformations of fermionic fields can be shown explic-

itly. However, difficulty probably arises when it comes to the theory with N > 2. In this
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section, a general structure of supergravity withN > 2 will be clarified, see [?,?,?,?,?,?,?].

Regarding to a growing numbers of supercharges, supersymmetries are adequate to

indicate a general structure clearly. For N > 2 the Lagrangian of bosonic fields generally

has a form as

e−1LB =
R

2
− 1

2
Gst∂µϕ

s∂µϕt +
1

4
IΛΣ(ϕ)F

Λ
µνF

Σµν +
1

8
e−1RΛΣ(ϕ)ϵ

µνρσFΛ
µνF

Σ
ρσ (3.28)

where e is a vielbein. RΛΣ and IΛΣ are real and imaginary part of matrix NΛΣ respectively.

The indices s, t = 1, ..., ns represents all ns scalar fields. The index Λ,Σ = 1, ..., nv

indicates a number of all vector fields.

From equation ??, Gst, a metric of a scalar manifold, clearly indicates an infor-

mation of symmetries in the theory. As supergravity with N > 2 contains sufficient

supersymmetries to give a precise geometrical structure of scalar manifold, this scalars

manifold described as homogeneous symmetric space in the form of G/H show that G is

the isometry of the manifold and H is a subgroup of G.

3.4.1 Scalar manifold

Due to the rich symmetry of the structure on N > 2 supergravity, various scalar

can be described by scalar manifold where each scalar is the coordinate of this manifold.

This manifold has an isometry as g ∈ G acting on ϕs generates transformation ϕs →

ϕs
′
(ϕ) = g ◦ ϕs where ◦ represents action of the g on ϕs which leave Gst invariant under

isometry

Gs̄t̄(ϕ
′(ϕ))

∂ϕ′s
′

∂ϕs
∂ϕ′t

′

∂ϕt
= Gst(ϕ). (3.29)

Since holonomy group H is responsible for parallel transportation on a closed trajectory,

the connection will be entwined with this group. H group can be described in supergravity

by

H = HR ×Hm (3.30)
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where HR = U(N) is R-symmetry for N < 8 and HR = SU(8) for only N = 8 and Hm is

compact group relevant to matter field. Generally, H = HR for N > 4 due to the absence

of matter multiplet.

Manifold M = G/H is described by members of a group G in the form L(x). The

transformation of L(x) under g (member) G is found by multiplying with g on the left of

L(x) while the transformation under H is to multiply on the right as

L(x) → L′(x) = gL(x)h(x) (3.31)

By the choice of arbitrary local gauge symmetry under h(x), L(x) can be written in the

form of L(ϕ(x)) called coset representation Lie algebra of G and H given by g and h can

be described in the form of coset space as

g = h⊕ t. (3.32)

where h and t are an algebra of H and a complement. Homogeneous manifold gives that

[h, h] ⊂ h, [h, t] ⊂ t, [t, t] ⊂ h⊕ t (3.33)

This concludes that generator in h and t will be compact and non-compact generator

respectively.

A construction of L(ϕ) by a generator is called parameterization. Two ways of

parameterizations are described by solvable parameterization as

L = eϕ
rTr (3.34)

as the first example where Tr r = 1, ..., ns is a generator of Gs while the second is unitary

parameterization as

L = eϕ
sYs (3.35)
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where Ys is a basis vector of t

Geometrical structure of M is described by left-invariant 1-form defined by

Ω = L−1dL (3.36)

which satisfies Maurer-Cartan equation

dΩ+ Ω ∧ Ω = 0 (3.37)

Due to Ω ∈ g = h⊕ t, Ω then can be decomposed into P ∈ t and Q ∈ h as

Ω = P +Q (3.38)

which is also written in the form of coordinate basis

Ωrdϕ
r = Prdϕ

r +Qrdϕ
r (3.39)

This equation changed the form under the transformation of L(ϕ) will consequently show

that

Ω(g ◦ ϕ) = h−1L−1(ϕ)g−1d(gL(ϕ)h) = h−1L−1(ϕ)dL(ϕ)h+ h−1dh (3.40)

A global transformation under G results in dg = 0. The value h−1dh ∈ h projected to

subspace h and t leads to

P (g ◦ ϕ) = h−1Ph

Q(g ◦ ϕ) = h−1dh+ h−1dh.

(3.41)

This obviously describes that P transforms linearly and Q transforms as a gauge connec-

tion called composite connection.
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P can be written in the form of basis Yŝ where ŝ, t̂,... are the tangent space indices

as

P = P ŝYŝ (3.42)

and P ŝ on the coordinate basis is

P ŝ = P ŝs dϕ
s. (3.43)

From the equation ??, left invariant 1-form veilbein P ŝ transforms under G as

P ŝ(g ◦ ϕ) = hŝ
t̂
P t̂ (3.44)

Covariant derivative of L can be expressed together with Q as

DL = dL− LQ = LP, L−1DL = L−1dL−Q = P. (3.45)

This veilbein P satisfies veilbein’s postulate as the same as veilbein in spacetime as

DP = dP +Q ∧ P + P ∧Q = 0. (3.46)

2-form curvature of manifold M can be found by

R(Q) = dQ+Q ∧Q = −P ∧ P (3.47)

The component of this curvature have its components

R(Q) =
1

2
Rrsdϕ

r ∧ dϕs (3.48)

where Rrs = −[Pr, Ps] ∈ h.
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For any fields Φ(x) on M, the covariant derivative can be defined as

DrΦ = ∂rΦ+Qr ◦ Φ (3.49)

where Q ◦ Φ is the operation of Q acting on the representation that Φ lives in. The

derivative of Dr satisfies Ricci identity

[Dr, Ds]Φ = Rrs ◦ Φ (3.50)

The metric that is invariant under H is defined by the basis Yŝ

ηŝt̂ = kTr(YŝYt̂) (3.51)

where k is a positive constant depending on the representation of Yŝ leading to the metric

on M as

ds2 = Gstdϕ
sdϕt = P ŝŝP

t̂
t̂
ηŝt̂dϕ

sdϕt = kTr(PP ). (3.52)

The eq. ?? will show that the metric is invariant under G.

ds2(g ◦ ϕ) = ds2(ϕ) (3.53)

The equation ?? can also be used to write the Lagrangian of scalar field as

Lscalar =
1

2
eGst∂µϕ

s∂µϕt =
1

2
ekTr(PµP

µ) (3.54)

3.4.2 Electric-magnetic duality and vector fields

A field strength tensor FΛ
µν can be used to define its dual tensor called magnetic

dual tensor

GΛµν = −ϵµνρσ
∂L
∂FΛ

µν

= RΛΣF
Σ
µν − IΛΣ ∗ FΣ

µν (3.55)
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where

∗FΛ
µν =

1

2
eϵµνρσF

Λρσ (3.56)

The Bianchi identity will bring up equation

∇µ(∗GΛµν) = 0, ∇µ(∗FΛ
µν) = 0 (3.57)

The definition ?? helps to write ∗FΛ in the form of FΛ and GΛ as

∗FΛ = IΛΣ(RΣΓF
Γ −GΣ) (3.58)

where IΛΣ is the inverse of matrix IΛΣ.

Duality of GΛ in the equation ?? gives rise to

∗GΛ = (RI−1R+ I)ΛΣF
Σ − (RI−1)Λ

Σ
GΣ (3.59)

Combining FΛ and GΛ will form the vector 2nν dimensions

GM =

FΛ

GΛ

 (3.60)

This is used to write field equation and Bianchi identity as

dGM = 0 (3.61)

and G can relate to its duality as

∗G = −CM(ϕ)G (3.62)
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where C is a symplectic matrix

C =

 0 Inν

−Inν
0

 (3.63)

where Inν
is the nν × nν identity matrix and M has components as

MMN =

(RI−1R+ I)ΛΣ −(RI−1)ΓΛ

−(I−1R)∆Σ I∆Γ

 (3.64)

and M is also symplectic matrix

MCM = C (3.65)

These all aforementioned ingredients help to write field equation and Einstein equa-

tion under the symmetry of duality

Dµ∂
µϕs =

1

8
GstGTµν∂tMGµν (3.66)

Rµν = Grs∂µϕ
r∂νϕ

s +
1

2
GTµρMGνρ (3.67)

3.4.3 Global symmetry

For supergravityN > 1, G symmetry is extended to be a symmetry of field equation.

It can be said that every transformation ϕ→ g ◦ ϕ has 2nν × 2nν matrix Rν [g] that give

a transformation

GM = Rν [g]
M
NG

N (3.68)

where Rν [g]MN is g ∈ G in a representation of vector and its hodge duality.

The explicit form of Rν [g]MN can be expressed by

Rν [g]
M
N =

A[g]ΛΣ B[g]ΛΣ

C[g]ΛΣ D[g]Λ
Σ

 (3.69)
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∗FΛ found by duality transformation of FΛ will give constraints to Rν [g]MN as

1. Rν [g]MN must be symplectic matrix as

Rν [g]
TCRν [g] = C (3.70)

2. Rν [g] leads M to transform as

M(g ◦ ϕ) = (Rν [g]
−1)TM(ϕ)Rν [g]

−1 (3.71)

Because of the invariance of ??, matrix N = RΛΣ + iIΛΣ must transform under Rν [g] as

N (g ◦ ϕ) = C[g] +D[g]N (ϕ)

A[g] +B[g]N (ϕ)
(3.72)

Duality of Rν can be also defined as Rν∗ = (R−1
ν )T and the constraint ?? leads (R−1

ν )T

to

(Rν [g]
−1)T = CRν [g]C, Rν∗[g]M

N = CMPRν [g]
P
QC

NQ (3.73)

Matrix M can be transformed by simplectic matrix E as

M′ = EMET (3.74)

where E ∈ Sp(2nν ,R). However, this transformation gives redundancy of matrix M.

Matrix E that gives different frames is

E ∈ GL(nν ,R) \ Sp(2nν ,R)/Rν∗ [G]. (3.75)

In general, symmetry of duality is not action’s symmetry, but the symmetry of

field equations and Bianchi identity. From equation ??, if B[g]ΛΣ ̸= 0, the equation is

rewritten to

FΛ′
= A[g]ΛΣF

Σ +B[g]ΛΣGΣ. (3.76)
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However, Rν [g] for g ∈ Ge generally has the form as

Rν [g]
M
N =

A[g]ΛΣ 0

C[g]ΛΣ (A[g]−1)TΛ
Σ

 . (3.77)

where B[g]ΛΣ = 0 and D = (A−1)T . Rν [g] can also be transformed by matrix SNN̄ ∈

Sp(2nν ,R)/U(nν) as R̃ν [h] = S−1RνS that satisfies

R̃ν [h]
T
R̃ν [h] = I (3.78)

Let’s define coset representative in R̃ν as

L̃MN̄ = Rν [L]
M
NS

N
N̄ (3.79)

that leads to

Rν [g]L̃(ϕ) = L̃(g ◦ ϕ)R̃ν [h] (3.80)

for all g ∈ G and h(ϕ, g) ∈ H where indicesM,N, ... = 1, ..., 2nν and M̄, N̄ , ...,= 1, ..., 2nν

indicate the transformation under G and H respectively

L̃ can be used to write M as

MMN = CMP L̃
P
L̄ L̃

R
L̄CRN (3.81)

With symplectic properties on Rν [g] and orthogonal condition of R̃ν [h] can give

M(g ◦ ϕ) = (Rν [g]
−1)TM(ϕ)Rν [g]

−1 (3.82)

where M is invariant under H and can be used to write Lagrangian density of scalar as

Lscal =
1

8
ekTr[(M−1∂µM)(M−1∂µM)] (3.83)
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Thereby, bosons will transform under G as

δϕs = Λaksa (3.84)

δM = Λaksa∂sM = Λa(Rν∗[ta]M+MRν∗[ta]
T ) (3.85)

δGMµν = −Λa(ta)N
MGNµν (3.86)

where (ta)M
M holds symplectic condition as

(ta)N
NCNP = (ta)P

NCNM (3.87)

3.5 Fermionic field

For N > 2 supergravity, spinors live only in gravity and vector multiplets, cannot

transform under G, but transform locally under holonomy group H. Different super-

symmetries will give different fermions. A,B,… = 1,…, N represent the fundamental

representation of HR = U(N) indices for 3 ≤ N ≤ 6 and HR = SU(8) and i, j = 1,…, n

are indices of fundamental representation of Hm = SU(n) for N = 3 and Hm = SO(n)

for N = 4. The spinors that have no index are singlet while spinors with indices ABC

are antisymmetric rank-3 tensor of HR representation. Fermion (ψµA, χABC , λAi) have

positive chirality as

γ5ψµA = ψµA, γ5χABC = χABC , γ5λAi = λAi (3.88)

while their conjugate (ψAµ , χ
ABC , λAi ) have negative chirality

γ5ψ
A
µ = −ψAµ , γ5χ

ABC = −χABC , γ5λ
A
i = −λAi (3.89)

For N = 3, 5, 6, additional spinors are λABCi = λiϵABC , χ, χ
A which have negative chi-

rality as

γ5λi = −λi, γ5χ = −χ, γ5χ
A = −χA. (3.90)
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Apart from these spinors, the remaining spinors will be all incuded as

λI = (χABC , λAi), γ5λI = λI . (3.91)

It is interesting to see that bosons transform under G, but not for H while fermions

transform under H, but not for G. These transformations under G and H are similar to

transformations under GCT and LLT under spacetime.

Due to fermions transforming under H, like under LLT in spacetime, there are

appropriate composite connections to describe covariant derivative as

Dµψ = Dµψ +Q ◦ ψ (3.92)

where Dµ is covariant derivative of spacetime and Q ◦ ψ is an action of connection Q in

representation of ψ. This will lead to kinetic term of fermionic fields

Lf = iϵµνρσ(ψ̄Aµ γνDρψAσ − ψ̄AµγνDρψ
A
σ )−

1

2
e(λ̄IγµDµλI + λ̄Iγ

µDµλ
I) (3.93)

where second term is written explicitly as

1

2
e(λ̄IγµDµλI + λ̄Iγ

µDµλ
I) = − 1

12
e(χ̄ABCγµDµχABC + χ̄ABCγ

µDµχ
ABC)

− 1

2
e(λ̄AiγµDµλAi + λ̄Aiγ

µDµλ
Ai) (3.94)

This also takes the same form for additional fermions found in N = 3, 5, 6.

3.6 Completed Lagrangian of N > 2 supergravity

Using Cayley matrix as the following,it is more convenient to write the interaction

between bosons and fermions

AM̄ N̄ =
1√
2

I iI

I −iI

 . (3.95)
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This is used to transform

Rν = AR̃νA
† (3.96)

into complex form.

Composite connection from Q = AR̃ν [Q]A† will then be rewritten as

QM̄ N̄ =

QΛ̄
Σ̄ 0

0 QΛ̄
Σ̄

 (3.97)

where indices Λ̄, Σ̄ can be separated into A,B,… representing indices of HR and i, j are

indices of Hm and submatrix

QΛ̄
Σ̄ =

QABCD 0

0 Qij

 , QΛ̄
Σ̄ =

QABCD 0

0 Qi
j

 (3.98)

where QABCD and Qij are connections of HR and Hm respectively.

These gain benefits in writing covariant derivative of ψAµ, χABC and λAi as

DµψAν = ∂µψAν − ΓρµνψAρ +
1

4
ωµ

abγabψAν +QBµAψBν

DµχABC = ∂µχABC +
1

4
ωµ

abγabχABC + 3Qµ[A
DχBC]D

DµλAi = ∂µλAi +
1

4
ωµ

abγabλAi +QµA
BλBi +QjµiλAj

(3.99)

This matrix also helps write veilbein of scalar manifold as P = AR̃ν [P ]A
†

P M̄ N̄ =

 0 P Λ̄Σ̄

PΛ̄Σ̄ 0

 (3.100)

where

P Λ̄Σ̄ =

PABCD PABj

P iCD P ij

 (3.101)
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and

PΛ̄Σ̄ =

PABCD PABj

PiCD Pij

 . (3.102)

Supergravity with different supersymmetries has different components of PΛ̄Σ̄ which

will be used to write L of scalar seperately as the followings. For N > 4,

e−1Lscalar =
1

48
PABCDµ PµABCD. (3.103)

For N = 6 and N = 5,

e−1Lscalar =
1

24
PABCDµ PµABCD. (3.104)

For N = 4,

e−1Lscalar =
1

24
PABCDµ PµABCD +

1

4
P iABµ PµAB. (3.105)

For N = 3,

e−1Lscalar =
1

2
P iABµ PµiAB. (3.106)

By the transformation of L̃(ϕ) under H, L̃(ϕ) can be redefined as L(ϕ) = L̃(ϕ)A†

which has components as

L =

fΛAB fΛi f̄ΛAB f̄Λi

hΛAB hΛi h̄ABΛ h̄iΛ

 (3.107)

transforming under G and H as

Rν [g]L(ϕ) = L(g ◦ ϕ)Rν [h] (3.108)

and symplectic condition of L leads to

L†CL = Ĉ (3.109)
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where Ĉ = ACA†. Complex form is extended to left-invariant one-form as

Ωc = AR̃ν [Ω]A
† = L−1dL = P +Q (3.110)

M can also be written as

M = CLL†C (3.111)

and in the form of matrix f = (fΛAB) and h = (hΛAB, hΛi) as

M =

 −2hh† 2hf† + iI

2fh† − iI −2ff†

 . (3.112)

Compared to ??, I and R can be written as

I = −1

2
(f−1)†f−1, R =

1

2
(2h + i(f−1)†)f−1 (3.113)

To couple vectors with fermions, antisymmetric tensorOM̄µν = (OΛ̄
µν , OΛ̄µν) that transforms

under H as O′
µν = Rν [h]Oµν in the form of bilinear of fermion is introduced to wrtie

duality in the equation ?? as

∗G = −CM(G + LO). (3.114)

This gives a definition of composite field strength tensor as

Fµν = −L†CGµν (3.115)

having components

FM̄µν = (F Λ̄
µν , FΛ̄µν) = −(L∗)NM̄CNPGPµν (3.116)

With symplectic condition of Rν [g], Fµν can apparently be shown to transform under H.
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Let’s define self-dual tensor and anti-self dual tensor by

F±
µν =

1

2
(Fµν± + i ∗ Fµν) (3.117)

where

i ∗ F± = ±F±
µν . (3.118)

Therefore, component of self-dual and anti-self-dual tensor will become

F±
µν = −L†CG±

µν . (3.119)

Also, with symplectic condition of L, it demonstrates that

O−
Λ̄µν

= O+Λ̄
µν = 0. (3.120)

Thus, F±
µν will have components as

F+
µν = (F+

µν
AB
, F+i

µν ,
i

2
O+
ABµν ,

1

2
O+
iµν) (3.121)

and

F−
µν = (−1

2
O−AB
µν ,− i

2
O−i
µν , F

−
ABµν , F

−
iµν). (3.122)

Beside, using equation ??, components of G±
Λ are given by

G+
Λ = NΛΣF

+Σ + iIΛΣf̄
ΣΓ̄OΓ̄ (3.123)

and

G−
Λ = N̄ΛΣF

−Σ − iIΛΣf
Σ
Γ̄ O

Γ̄ (3.124)

By using definition of G±
Λµν in the form

G±
Λµν = ±2i

e

∂L
∂F±Λµν

, (3.125)
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Lagrangian density of vector fields becomes

e−1Lvector =
i

4
(N̄ΛΣF

−Λ
µν F

−Σµν −NΛΣF
+Λ
µν F

+Σµν)

+
1

2
(F+ΛµνIΛΣf̄

ΣΓ̄OΓ̄µν + F−ΛµνIΛΣf
Σ
Γ̄O

Γ̄
µν).

(3.126)

The second term called Pauli term represents interaction between fermions and F±Λ
µν

tensor. where λI , OΛ̄ is shown by

OABµν = 2ψ̄Aργ
[ργµνγ

σ]ψBσ + CAB,C
I ψ̄Cρ γµνγ

ρλI + CAB,IJ λ̄
Iγµνλ

J (3.127)

and

Oiµν = Ci,A
I ψ̄Aρ γµνγ

ρλI + Ci,IJ λ̄
Iγµνλ

J (3.128)

where CAB,CI , CAB,IJ , Ci,AI and Ci,IJ are coefficient tensor depending on different su-

pergravities.

From all ingredients mentioned above, it is sufficient tto write general Lagrangian

of N > 2 supergravity.

e−1L =
1

2
R− 1

2
ekTr(PµP

µ) +
i

4
(N̄ΛΣF

−Λ
µν F

−Σµν −NΛΣF
+Λ
µν F

−Σµν)

+ ie−1ϵµνρσ(ψ̄Aµ γνDρψAσ − ψ̄AµγνDρψ
A
σ )−

1

2
λ̄IγµDµλI + λ̄Iγ

µDµλ
I

+
1

2
(F+ΛµνIΛΣf̄

ΣΓ̄OΓ̄µν + F−ΛµνIΛΣf
Σ
Σ̄O

Γ̄
µν)

+ λ̄IγµγνψBµ ∂νϕ
sPsIB + λ̄IγµγνψBµ∂νϕ

sP IBs

(3.129)

The last term indicates interaction between scalar and fermionic fields.
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This Lagrangian has supersymmetry transformations as follows

δeaµ = ϵAγaψAµ + ϵ̄Aγ
aψAµ

δAΛ
µ = LAM̄OM̄µ =

1

2
fΛABO

AB
µ + fΛiO

i
µ + h.c.

PABCDs δϕs = ΣABCD, P iABs δϕs = ΣiAB

δψAµ = DµϵA +
i

8
F−
ρσABγ

ρσγµϵ
B

δχABC = PsABCD∂µϕ
sγµϵD +

3

4
iF−
µν[ABγ

µνϵC]

δλAi = PsiAB∂µϕ
sγµϵB +

1

4
iF−
µνiγ

µνϵA

(3.130)

For N = 3, 5, 6, there are additional fermions which transform under supersymmetry as

follows.

For N = 3,

δλi =
1

2
PsiAB∂µϕ

sγµϵCϵ
ABC . (3.131)

For N = 5,

δχ =
1

24
ϵABCDEPsABCD∂µϕ

sγµϵE . (3.132)

For N = 6,

δχF =
1

24
ϵFABCDEP

ABCD
s ∂µϕ

sγµϵE +
i

4
F̃−
µνγ

µνϵF . (3.133)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

GAUGED SUPERGRAVITY

This chapter gives a general review on gauging used in gauged supergravity by

embedding tensor formalism. The early section tells about the gauging procedure leading

to a change in a structure of supergravity given in chapter III. At the end of the chapter,

N = 4 gauged supergravity are provided since our scope of the research is to find the

Janus solutions in N = 4 gauged supergravity.

4.1 Gauging procedure

Gauging in supergravity is promoting a subgroup G0 of G to be a local symmetry.

In the context of Kaluza-Klein reduction, local gauge symmetry encodes the information

of the internal manifold that leads to more realistic model because of the presence of

scalar potential. To gauge the theory with G0, the Lagrangian is required to be locally

invariant under G0 symmetry. The first condition to consider in gauging is a number nν

of vector fields must be sufficient to gauge as

dim(G0) ≤ nν . (4.1)

Beginning with gauge connection defined by

Ωgµ = gAΛ̂
µXΛ̂ (4.2)

where g is an coupling constant and XΛ̂ is a generator of G0 which satisfies

[XΛ̂, XΣ̂] = fΛ̂Σ̂
Γ̂XΓ̂ (4.3)
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To make G0 be a closed group, fΛ̂Σ̂
Γ̂XΓ̂ must satisfy Jacobi identity

f[Λ̂Σ̂
Γ̂f∆̂]Γ̂

Π̂ = 0. (4.4)

XΛ̂ can be written in symplectic matrix under Rν representation as

XΛ̂
M̂
N̂

= Rν [XΛ̂]
M̂
N̂

=

 XΛ̂
Σ̂
Γ̂

0

−XΛ̂Σ̂Γ̂ XΛ̂Σ̂
Γ̂

 (4.5)

Due to symplectic condition of XΛ̂
M̂
N̂

, it gives a relation

XΛ̂
Σ̂
Γ̂
= −XΛ̂Γ̂

Σ̂ (4.6)

compared to δF Λ̂ = ξΓ̂f Λ̂
Γ̂Σ̂
F Σ̂ and δGM̂ = ξΛ̂(XΛ̂)

M̂
N̂
GN̂ , it determines that

fΓ̂Σ̂
Λ̂ = −XΓ̂Σ̂

Λ̂ (4.7)

which rewrite the equation ?? to

[XΛ̂, XΣ̂] = −XΛ̂Σ̂
Γ̂XΓ̂. (4.8)

From this algebra, a generator further shows additional relation that

X(Γ̂Σ̂)
Λ̂ = 0 (4.9)

called quadratic constraint and for XΛ̂Γ̂Σ̂ ̸= 0, symmetric under Pecci-Quin,

X(Λ̂Γ̂Σ̂) = 0. (4.10)

These two additional constraints are called together as linear constraint.
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Transforming under gauge connection under g(x) ∈ G0 ⊂ G is described by

Ω′
g = g(x)Ωgg

−1(x) + dg(x)g−1(x). (4.11)

The connections generate 2-form curvature tensor R(Ω) = F Λ̂XΛ̂ defined by

R(Ωg) =
1

g
(dΩg − Ωg ∧ Ωg). (4.12)

Components of F Λ̂
µν are found by

F Λ̂
µν = ∂µA

Λ̂
ν − ∂νA

Λ̂
µ + gXΓ̂Σ

Λ̂AΓ̂
µA

Σ̂
ν (4.13)

Total covariant derivative including gauge connection is defined by

∇µ = Dµ − gAΛ̂XΛ̂. (4.14)

This derivative can be used to find F Λ̂
µν as

[∇µ,∇ν ] = −gF Λ̂
µνXΛ̂ + ... (4.15)

where ... represents a curvature tensor of spacetime and curvature tensor R(Q) in the

scalar manifold. Resulting from gauging that obviously relates to a new connection,

left-invariant one-form can be newly defined as

Ω̂µ = L−1∇µL = L−1(∂µ − gAΛ̂
µXΛ̂)L. (4.16)

With relation L−1dL = P +Q, P̂µ and Q̂µ are redefined as

P̂µ = Pµ − gAΛ̂
µPΛ̂ and Q̂µ = Qµ − gAΛ̂

µQΛ̂ (4.17)
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projected to t and h, it describes

PΛ̂ = L−1XΛ̂L|t and QΛ̂ = L−1XΛ̂L|h (4.18)

transformed under gauging as

P̂ (g ◦ ϕ) = h−1P̂ h and Q̂(g(x) ◦ ϕ) = h−1Q̂h+ h−1dh. (4.19)

This also satisfies Maurer-Cartan equation for gauged form

dΩ̂ + Ω̂ ∧ Ω̂ = −gL−1R(Ωg)L (4.20)

projected on subspace t and h, it turns out that

DP̂ = dP̂ + Q̂ ∧ P̂ + P̂ ∧ Q̂ = −gF Λ̂PΛ̂

R̂(Q̂) = dQ̂+ Q̂ ∧ Q̂ = −P̂ ∧ P̂ − gF Λ̂QΛ̂.

(4.21)

Furthermore, affected by this gauging, fermionic fields will have total covariant derivative

as

∇µψ = Dµψ + Q̂ ◦ ψ (4.22)

In symplectic frame, embedding tensor is shown by ΘΛ̂
σ responsible for projecting

Lie algebra ge of Ge, whose generator is tσ, on the algebra g0 on gauge symmetry G0 as

XΛ̂ = ΘΛ̂
σtσ (4.23)

where ΘΛ̂
σ is in the product nν ⊗ adj(Ge) and Λ̂ = 1, 2, 3, ..., nν and σ = 1, 2, ..., dimGe.

XM in a representation Rν∗ is written in the form

XMN
P = Rν∗ [XM ]N

P = ΘM
ataN

P (4.24)
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which is transformed under symplectic frame of the action as

XMN
P = (E−1)M

M̂
(E−1)N

N̂
XM̂N̂

P̂EP̂
P (4.25)

4.2 Lagrangian density of gauged supergravity

To write complete Lagrangian density, many terms in ungauged theory have to be

adjusted which will be shed the light on in this section.

Let’s firstly consider kinetic term of fermionic fields. For gravitino,

LψAµ
= −eψ̄Aµ γµνρ∇νψAρ + h.c. (4.26)

whose supersymmetry transformation is given by

δψAµ = ∇µϵA + ... (4.27)

This has an effecton its lagrangian density clarified by

δLψAµ
= −2eψ̄Aµ γ

µνρ∇ν∇ρϵA + ... = geψ̄Aµ γ
µνρF Λ̂

νρQ
B
Λ̂A
ϵB + ... (4.28)

For kinetic term of λI

LλI = −1

2
eλ̄Iγ

µ∇µλ
I + ... (4.29)

whose supersymmetry transformation is

δλI = P̂AIµ γµϵA + ... (4.30)
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which gives an outcome

δLλI = −eλ̄Iγµγν∇µP̂
AI
ν ϵA + ... =

1

2
geλ̄Iγ

µνF Λ̂
µνP

AI
Λ̂
ϵA + ... (4.31)

These show that additional terms apart form which represented by ungauged supergravity

are

δLψAµ
∼ gψ̄Aµ γ

µνρF Λ̂
νρ(L

−1XΛ̂L|h)A
B
ϵB + ...

δLλI ∼ gλ̄Iγ
µνρF Λ̂

µν(L
−1XΛ̂L|t)

IAϵA + ...

. (4.32)

By writing F Λ̄L−1XΛ̄L in covariant form under G

F Λ̄L−1XΛ̄L = F Λ̄EΛ̄
ML−1XML = GML−1XML. (4.33)

From this relation, a new tensor called T-tensor can be introduced as

TM̄ = LM̄NL−1XNL (4.34)

where LM̄N = (LT )NM̄ . Components of TM̄ = LM̄
NL−1XNL on the complex basis is

shown by

TM̄N̄
P̄ = LM̄MLN̄

NXMN
P (L−1)P

P̄
. (4.35)

With the relation QΛ̂ = EΛ̂
MQM and PΛ̄ = EΛ̂

MPM , TM̄ can be seen in the form of QM

and PM

TM̄ = LM̄M (PM +QM ). (4.36)

To preserve supersymmetry, additional terms are needed to be introduced. One of

them is called Yakawa term defined by

e−1LY ukawa = g(−2ψ̄µγ
µνψBν SAB + λ̄IγµψAµNI

A + λ̄IλJMIJ) + h.c. (4.37)
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This term plays a role as mass-like term of fermion. T-tensor can also be written in the

form SAB = SBA, NI
A and MIJ and their conjugate are

SAB = (SAB)
∗, N I

A = (NI
A)∗, M IJ = (MIJ)

∗. (4.38)

Apart from Yukawa term, supersymmetry transformation must be fixed in order to

preserve supersymmetry as well.

δψAµ = ∇µϵA − gSABγµϵ
B + ...

δλI = P̂AµIγ
µϵA + gNI

AϵA + ...

(4.39)

The additional terms involve SAB, NI
A and MIJ which are known as fermion-shift matrix.

According to new supersymmetry variations with additional fermion-shift term,

varying Yukawa term will create second order term of g. This will be cancled by a term

called ”scalar potential” that play a role like potential energy for gauged supergravity

system. It is defined by

V (ϕ) =
1

N
g2(NI

AN I
A − 12SABSAB) (4.40)

In summary, a construction of gauged supergravity has been motivated by beginning

with an ungauged theory with replacing previous covariant derivative into total covariant

derivative including gauge connection. In order to preserve supersymmetry, Yukawa term

and scalar potential must be introduced as

e−1Lgauged = e−1Lungauged(∂ → ∇, dA→ dA+A ∧A)

+ g(−2ψ̄µγ
µνψBν SAB + λ̄IγµψAµNI

A + λ̄IλJMIJ) + h.c.

− V (ϕ) (4.41)
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The lagrangian above is invariant under supersymmetry transformation as follows

δeaµ = ϵAγaψAµ + ϵ̄Aγ
aψAµ

δAΛ
µ = LAM̄OM̄µ =

1

2
fΛABO

AB
µ + fΛiO

i
µ + h.c.

PABCDs δϕs = ΣABCD, P iABs δϕs = ΣiAB

δψAµ = DµϵA +
i

8
F−
ρσABγ

ρσγµϵ
B − gSABϵ

B

δχABC = PsABCD∂µϕ
sγµϵD +

3

4
iF−
µν[ABγ

µνϵC] + gNABC
DϵD

δλAi = PsiAB∂µϕ
sγµϵB +

1

4
iF−
µνiγ

µνϵA + gNiA
BϵB

. (4.42)

4.3 A general structure of N = 4 gauged supergravity

Our scope of study is to find Janus solutions in N = 4 gauged supergravity. It

is much more convenient in finding such solutions to have a general structure of N = 4

gauged supergravity as being our tool. Generally, N = 4 gauged supergravity is coupled

to vector multiplets that lead to consisting of two multiplets, two of which are gravity

multiplet and vector multiplet.

The gravity multiplet has fields content

(eµ̂µ, ψ
i
µ, A

m
µ , χ

i, τ) (4.43)

while vector multiplet provides

(Aaµ, λ
ia, ϕma) (4.44)

The scalar field τ is a complex scalar that contains dilaton ϕ and axion χ parametrized

by SL(2,R). The indices µ, ν, ... = 0, 1, 2, 3 and µ̂, ν̂, ... = 0, 1, 2, 3 describe spacetime

and tanget space respectively. Fundamental representations of SO(6)R and SU(4)R R-

symmetry can be indicated to indices m,n = 1, ..., 6 and i, j = 1, 2, 3, 4 respectively.

In vector multiplet, SO(6, n)/SO(6) × SO(6) coset is used to descibes 6n scalar

field ϕma where indices a, b = 1, ..., n.
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For fermionic fields, they are determined by fundamental representation of SU(4)R ∼

SO(6)R abiding by chirality projections as

γ5ψ
i
µ = ψiµ, γ5χ

i = −χi, γ5λ
i = λi (4.45)

and its conjugation

γ5ψµi = −ψµi, γ5χi = χi, γ5λi = −λi (4.46)

Complex scalar τ contain dilaton and axion as the form

τ = χ+ ieϕ (4.47)

written in SL(2,R)/SO(2) coset as

Vα = eϕ/2

χ+ ieϕ

1

 . (4.48)

6n scalars in vector multiplet ϕma is described by

VMA = (VMm,VMa) (4.49)

satifying

ηMN = −VMmVNm + VMaVNa (4.50)

where ηMN = diag(−1,−1,−1,−1,−1,−1, 1, ..., 1) is a metric of SO(6, n) and index

A = (m, a) is from separating SO(6)× SO(n) index.

The bosonic lagrangian of N = 4 gauged supergravity can be written by

e−1L =
1

2
R+

1

16
∂µMMN∂

µMMN − 1

4(Imτ)2
∂µτ∂

µτ∗ − V (4.51)
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where e =
√
−g is the determinant of the veibein matrix. The scalar potential of this

equation can be found by

V =
1

16
[fαMNP fβQRSM

αβ [
1

3
MMQMNRMPS + (

2

3
ηMQ −MMQ)ηNRηPS ]

− 4

9
fαMNP fβQRSϵ

αβMMNPQRS ].

(4.52)

The embedding tensor, which is earlier studied in [?,?,?,?], ξαM and fαMNP , which play

a role in gauging, are clearly contributed in scalar potential and due to the emergence of

supersymmetric AdS4 vacua, ξαM is compulsorily required to be zero, see [?]. Hence, in

gauging method, the embedding tensor fαMNP will only be perfomed.

The matrix MMN , the inverse of matrix MMN , is written as

MMN = VMmVNm + VMaVNa. (4.53)

The MMNPQRS tensor is found by

MMNPQRS = ϵmnpqrsVMmVNnVP pVQqVRrVSs (4.54)

which is raised the indices by ηMN .

The Mαβ matrix is calculated by taking the inverse of matrix Mαβ shown by

Mαβ = Re(VαV∗
β) (4.55)

Supersymmetry variations of this theory are

δψiµ = 2Dµϵ
i − 2

3
Aij1 γµϵj (4.56)

δχi = −ϵαβVαDµVβγµϵi −
4

3
iAij2 ϵj (4.57)

δλia = 2iVaMDµVMijγµϵj − 2iA2aj
iϵj . (4.58)
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The definition of relavant fermion shift matrices can be given by

Aij1 = ϵαβ(Vα)∗VklMVNikVP jlfNPβM (4.59)

Aij2 = ϵαβVαVklMVNikVP jlfNPβM (4.60)

Aj2ai = ϵαβVαVaMVikNVP jkfβMN
P . (4.61)

The matrix VMij and VijM can be found by the ’t Hooft symbols as

VMij =
1

2
VMmGijm (4.62)

VijM = −1

2
VmM (Gijm)

∗ (4.63)

where Gijm obeys that

Gmij = (Gijm)
∗ =

1

2
ϵijklG

kl
m (4.64)

and the explicit form of matrix Gijm can be written by

Gij1 =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


, Gij2 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



Gij3 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, Gij4 =



0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0



Gij5 =



0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


, Gij6 =



0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


(4.65)

All of this structure will be used in finding Janus solutions in chapter VI.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

ANTI-DE SITTER SPACE AND

CONFORMAL FIELD THEORY

AdS/CFT correspondence, firstly proposed by Maldacena since 1997, mainly plays

a crucial role in making the calculation in quantum theory more easily than ever before.

Due to tedious results of calculations from quantum field theory, they are difficult to give

analytic explanations, most of which rather show numerically. Analytical solutions are

much more better in describing things in physics. However, luckily, the calculation from

quantum field theory can be converted to gravity theory, which usually provides solutions

analytically, through AdS/CFT correspondence.

This chapter will give the first introduction of AdS5/CFT4 duality, originated from

two perspectives of string theory. The following content, compelling to give better under-

standing of AdS/CFT , is the identical isometry between conformal field theory (CFT )

and anti-de sitter space (AdS). In the end, general princaiple of AdSd+1/CFTd will be

given.

5.1 Two perspectives of string theory

AdS/CFT correspondence is firstly originated from describing the dynamics of N

D3-branes from closed and open string perspectives. The end of this section will show

that due to the same dynamics of N D3-branes, two perspectives, compulsorily equivalent

to each other, give the duality between N = 4 Super Yang-Mills theory and AdS5 × S5.

5.1.1 Open string perspective

In this perspective, N coincident D3-branes coupled to the string with coupling

constant gs ≪ 1 regardless of massive sates show that an effective field theory will become

four-dimensional gauged theory with U(N) gauge symmetry where the coupling constant
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is gsN .

In ten dimensions, the supersymmetries halfly preserved by D3-brane give massless

state of the string representing N = 4 field theory on world volume of D3-brane. This

action of D3-brane is shown by

S = Sclosed + Sopen + Sint (5.1)

where Sclosed, Sopen and Sint are the actions of closed, open string and interaction between

these two types of string respectively.

With the limit of, E
√
α′ ≪ 1, the action will be reduced to

Sclosed =
1

2κ2

∫
d10x

√
−ge−2ϕ(R+ 4∂MR∂

MR+ ∂Mϕ∂
Mϕ+ ...). (5.2)

In the limit gs ≪ 1 that κ becomes small value, the metric gMN can be expanded as

gMN = ηMN + κhMN . (5.3)

Then, the action will approximately turns into

Sclosed ∼
1

2

∫
d10x(∂Mh∂

Mh+ ∂Mϕ∂
Mϕ+ ...), (5.4)

where hMN is the perturbation term of metric gMN from ηMN as gMN = ηMN + κhMN

and ϕ is the scalar field of the theory.

Sopen and Sint found by the Dirac-Born-Infel action are shown by

SDBI = − 1

(2π)3α′2gs

∫
d4xe−ϕTr

√
−det(gµν +Bµν + 2πα′Fµν), (5.5)
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The scalar ϕi(xµ) relates to xi+3

xi+3 = 2πα′ϕi (5.6)

along with the pullback gµν = P [g]µν

P [g]µν = gµν + (2πα′)(∂µϕ
igi+3,ν + gµ,j+3∂νϕ

j) + (2πα′)2gi+3,j+3∂µϕ
i∂νϕ

j (5.7)

and expanding e−ϕ = 1 − ϕ + ... and gMN = ηMN + κhMN can separate free fields and

interaction term as

Sopen = − 1

2πgs

∫
d4x[

1

4
FµνF

µν +
1

2
∂µϕ

i∂µϕi +O(α′)] (5.8)

Sint = − 1

8πgs

∫
d4xϕFµνF

µν + ... (5.9)

Vectors and scalars lie on adjoint representation of U(N), will give non-abelian gauge

theory with U(N) gauge symmetry. Thus, vector and scalar fields will be written in

U(N) representation as

Aµ = AaµT
a, ϕi = ϕiaT a (5.10)

where T a is a generator of the group. Therefore, kinetic term of gauge fields will change

to F aµνF aµν and the covariant derivative of scalar field will be made an adjustment to

Dµϕ
i = ∂µϕ

i + g[Aµ, ϕ
i] (5.11)

Besides, scalar potential is added

V =
1

2πgs

∑
i,j

Tr[ϕi, ϕj ]2 (5.12)
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Changing the scale of ϕ to
√
2κϕ, Sint can be estimated as

Sint ∼
∫
d4xκϕF 2 (5.13)

This interaction term will become 0 at the α′ → 0 since κ ∼ α′2 → 0. To conclude, with

this limit, there is no interaction term so only Sopen and Sclosed remain. Also, at this limit

Sopen will be reduced to

Sopen = − 1

gYM 2

∫
d4x[

1

4
F aµνF

aµν +
1

2
∂µϕ

i∂µϕi +O(α′)]. (5.14)

which reveals the bosonic sectors of N = 4 SYM where g2YM = 2πgs while the closed

string consequently represents supergravity in ten-dimensional flat spacetime.

5.1.2 Closed string

Coupled to N D3-branes with gsN → ∞, open string cannot be described in this

limit, but closed string showing that the brane is a charged object of RR field coupled to

field from IIB supergravity give an insight of ten-dimensional curved space where fields

from closed string live.

Supergravity in D-branes will give solutions as soliton. Dp-brane, which generally

halfly preserves supersymmetries, has Poincare’ symmetry in p + 1 dimensions and give

rotation symmetry in 9− p dimensions. The action can be shown by

S =
1

2κ2

∫
d10x

√
−g[e2ϕ(R+ 4∂Mϕ∂

Mϕ− 1

2(p+ 2)!
FM1...Mp+2

FM1...Mp+2)] (5.15)

For p = 3, the theory will give solutions of D3-brane as

ds2 = H− 1

2 ηµνdx
µdxν +H

1

2 δijdx
idxj (5.16)

eϕ = g2s , H = 1 +
L4

r4
, L4 = 4πgsNα

′2 (5.17)

C(4) = (H(r)−1 − 1)dx0 ∧ dx1 ∧ dx2 ∧ dx3 (5.18)
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where H(r) is a function of asymptotic flatness written as

H(r) = 1 + (
L

r
)7−p (5.19)

The thing needed to consider is to analyse ds2 where r ≫ L and r ≪ L. For r ≫ L,

ds2 become flat spacetime’s while r ≪ L show that

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ5

2 (5.20)

This is the product of metrices of five-dimensional anti-de sitter and five-sphere with

radius L. This limit is called near-horizontal limit. Therefore, at low-energy limit, closed

string perspective gives the existence of closed string living in flat spacetime and near

horizon.

5.2 AdS/CFT correspondence

From the previous section, two perspectives of string has a mutual component, IIB

supergravity in ten-dimensional spacetime. These two must be equivalent according to

describing the same system, the dynamics of N D3-branes. Thus the remaining compo-

nents, N = 4 SYM with SU(N) gaguge symmetry and IIB supergravity in AdS5 × S5

spacetime from open and closed strings perspectives respectively, rudimentarily dual to

each other. N = 4 SYM is the field theory with conformal symmetry, also known as

superconformal field theory. This equivalence seems likely to give the holography of AdS

and CFT , usually known as AdS/CFT duality.

This chapter will show that apart from N = 4 SYM equivalent to IIB supergravity

in AdS5×S5 spacetime, anti-de sitter space also gives the identical isometry as conformal

field theory.
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5.2.1 Conformal field theory

Conformal field theory is the symmetry that does not change the angle between

vector V µ and Uµ in d-dimensional space defined as

U.V

(U.U)(V.V )
=

UµVµ
UνUνV ρVρ

(5.21)

This will give the metric transformation as

g′µν(x
′) = e2ω(x)gµν(x) (5.22)

An operator of infinitesimal conformal transformation is shown by

U(a, ω, λ, b) = I + aµP
µ +

1

2
ωµνJ

µν + λD + bµK
µ (5.23)

where Pµ and Jµν are usual generators in Poincare group while D and Kµ are responsible

for scale ransformation and special conformal transformation. Scale transformation is

defined as

xµ
′
= λxµ (5.24)

and special transformation is given by

xµ
′
=

xµ + bµx2

1 + 2b.x+ b2x2
(5.25)

In accordance with closed group, the generators Pµ, Jµν , D and Kµ can form con-

formal algebra as the following

[Jµν , Jρσ] = 4η[µ[ρJσ]ν], [Pµ, Jνρ] = 2ηµ[νPρ]

[Kµ, Jνρ] = 2ηµ[νKρ], [Pµ,Kν ] = 2(ηµνD + Jµν)

[D,Pµ] = Pµ, [D,Kµ] = −Kµ

(5.26)
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Resulting from redefinition of the generators as

Jµν = Jµν , Jd,d+1 = D

Jµd =
1

2
(Kµ − Pµ), Jµ,d+1 =

1

2
(Pµ +Kµ),

(5.27)

it can be rewritten as

[Jab, Jcd] = 4η[a[cJd]b] (5.28)

Because of the above equation describing an algebra of SO(2, d) group, this conformal

group in d dimensionsis isomorphic to SO(2, d) group.

5.2.2 Anti-de sitter spacetime

Anti-de Sitter spacetime, the most symmetrical spacetime, is a hyperboloid space-

time with negative curvature

AdSd+1 can be defined on R2,d with signature (−,+,+, ...,+,−). Let Y A, A =

0, 1, ..., d, d+ 1 be rhe coordinate. The surface of this space is described by

Y AY BηAB = −(Y 0)2 − (Y d+1)2 +

d∑
i=1

(Y i)2 = −L2 (5.29)

which corresponds to metric

ds2 = ηABdY
AdY B (5.30)

It obviously shows that its isometry is SO(2, d) as the same as in conformal field theory.

Metric of AdSd+1 can be written in different coordinate systems, one of which can

be found by fixing Y A → (x0, xi, u) = (xα, u), i = 1, 2, ..., d− 1 as

Y 0 = Lux0, Y i = Luxi

Y d =
1

2u
[u2(L2 − x2)− 1], Y d+1 =

1

2u
[u2(L2 + x2) + 1]

(5.31)

where x2 = (−x0)2 +
∑d−1

i=1 = ηαβ is a Minkowski metric in d dimensions.
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Replacing Y A in ?? gives

ds2 = L2[
du2

u2
+ u2ηαβdx

αdxβ]. (5.32)

Chinging u to 1
z will provide other coordinates as

ds2 =
L2

z2
(ηαβdx

αdxβ + dz2) (5.33)

where (xα, z) is Poincare patch coordinates.

The other one is found by transforming

e
r

L =
L

z
(5.34)

resulting in

ds2 = e
2r

L ηαβdx
αdxβ + dr2 (5.35)

which is widely used in finding holographic solutions.

Curvature tensor of the AdSd+1 space is shown by

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ) (5.36)

where L is the radius of curvature of AdSd+1 that also leads to Ricci tensor and Ricci

scalar as

Rµν = − 1

L2
dgµν , R = − 1

L2
(d+ 1)d (5.37)

5.2.3 AdS5/CFT4 duality

AdS5 × S5 gives an isometry SO(2, 4) × SO(6) where SO(2, 4) is an isometry of

AdS5 and SO(6) is an isometry of S5. It is clearly seen that the isometry of AdS5

correspond to conformal symmetry of N = 4 SYM theory and isometry of S5 is dual to
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SU(4) R-symmetry. To conclude, symmetries between these two theories can be matched

as SO(2, 4) is responsible for isometry of AdS5 and CFT4 in the SYM theory while SO(6)

is dual to SU(4) R-symmetry of the SYM. By N = 4 SYM, all symmetries in the theory

can form a supergroup denoted as SU(2, 2|4) where SO(2, 4)×SO(6) ∼ SU(2, 2)×SU(4)

that 2, 2 in SU(2, 2|4) is from SU(2, 2) while 4 in SU(2, 2|4) is from SU(4).

Duality between AdS5 × S5 and N = 4 SYM theory then implies that there is

always map one-to-one from a field in AdS5 × S5 to an operator in N = 4 SYM theory

and the fields and operators must lie in SU(2, 2|4) representation.

5.3 AdS in (d+ 1) and CFT in d dimensions

From the previous section, AdS5 × S5 and N = 4 SYM theory demonstrate that

there is always a map one-to-one between fields in AdS5 × S5 and operators in N = 4

SYM. This idea is broaden to apply in different dimensions as fields in AdSd+1×MD−d−1

dual to superconformal field theory in d dimensions called AdSd+1/CFTd

5.3.1 Correlation function

Correlation function in quantum theory is linked to physical qualtity found by

< ϕ(x1)ϕ(x2)...ϕ(xn) > (5.38)

This is the expression of n-points function. It is normally calculated by path integral as

< ϕ(x1)ϕ(x2)...ϕ(xn) >= N
∫

Dϕ(x1)...ϕ(xn)eiS (5.39)

where S is an action of the system and N is the normalization constant. It can be also

found by generating function by the definition

Z[J ] =< ei
∫
ddxJ(x)ϕ(x) >= N

∫
DeiS+i

∫
ddxJ(x)ϕ(x) (5.40)
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Using generating function, correlation is in the form

⟨ϕ(x1)ϕ(x2)...ϕ(xn)⟩ = (i)n
δnZ[J ]

δJ(x1)...δJ(xn)
(5.41)

where now J(x) is called source.

Generally, generating functional Z[J ] is precise to independent fields with order 2

in the action, but for the action involving interaction terms, the generating function is

needed to adjust its form a little as

Z[J ] = N
∫

DϕeiS0+i
∫
ddxJ(x)ϕ(x)+i

∫
ddxgϕ(x)m (5.42)

where S0 is the action of independent fields.

AdS/CFT proposes that correlation function of operators in superconformal field

theory

< O(x1)...O(xn) > (5.43)

can be found by gravity theory of AdSd+1 by generating function

Z[Φ(0)] =< e
∫
ddxΦ(0)(x)O(x) >CFT (5.44)

where Φ(0)(x) is the field Φ(z, x) at the boundary of AdSd+1.

The above equation shows that the operator O(x) has dimensions ∆ dual to Φ(z, x)

that has dimensions d−∆ because the total dimensions of O(x) and Φ(0)(x) must be d.

Therefore, Φ(z, x) must be in the form Φ(z, x) ∼ zd−∆Φ(0)(x). At z → 0, AdS/CFT

will give

ZCFT = Zstring
∣∣
limz→0Φ(z,x)z∆−d=Φ(0)(x)

(5.45)

At the limit of small α′ and gs, it can be estimated that

Zstring
∣∣
limz→0Φ(z,x)z∆−d=Φ(0)(x)

= eiSsupergravity
∣∣
limz→0Φ(z,x)z∆−d=Φ(0)(x)

(5.46)
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where Ssupergravity is the action of supergravity. Duality of AdS/CFT at low energy can

be written as

⟨e
∫
ddxΦ(0)(x)O(x)⟩CFT = eiSsupergravity

∣∣
limz→0Φ(z,x)z∆−d=Φ(0)(x)

(5.47)

From this result, it is said that correlation function of superconformal field theory is found

by the action on mass-shell of supergravity.

5.3.2 A map between operators and fields

Let’s consider the metric of AdSd+1

ds2 = gmndx
mdxn =

L2

z2
(ηµνdx

µdxν + dz2) (5.48)

where L is a radius of AdSd+1. The action of scalar field ϕ is

S =
1

2

∫
dzddx

√
−g(gmn∂mϕ∂nϕ+m2ϕ2) (5.49)

which gives the Klein-Gordon’s equation

2g −m2ϕ =
1√
−g

∂m(
√
−ggmn∂nϕ)−m2ϕ (5.50)

For the AdSd+1, This equation can be written as

2g(AdSd+1) =
1

L2
[z2∂2z − (d− 1)z∂z + z2ηµν∂

µ∂ν ] (5.51)

ηµν∂
µ∂ν gives a solution of wave equation in d dimensions. Besides, ϕ(z, x) can be written

in the form of Fourier’s transformation

ϕ(z, x) =

∫
ddp

(2π)d
eip

µxµϕ(z, p) (5.52)
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Let’s consider the solution of ϕ(z, x) at z → 0 by supposing ϕ(z, x) as

ϕ(z, x) = eip
µxµϕ(z) (5.53)

Klein-Gordon’s equation in the equation ?? will give

z2∂2zϕ(z)− (d− 1)z∂zϕ(z)− (m2L2 + p2z2)ϕ(z) = 0 (5.54)

where p2 = pµpµ = pµpνηµν

In the limit z → 0, there are two independent solutions written as

ϕ±(z) = z∆± (5.55)

where ∆± are the solutions of equation

m2L2 = ∆(∆− d) (5.56)

exactly written as

∆± =
d

2
±
√
d2

4
+m2L2 (5.57)

From the equation, it is obviously seen that ∆+ will be greater than ∆− and ∆++∆− =

d. ϕ+(z) and ϕ−(z) usually are known as normalizable and non-normalizable solution

respectively. ∆± can be defined only when

m2L2 ≥ −d
2

4
(5.58)

The minimum of this limit is ∆min = −d
2

4
called Breitenlohner-Freedman (BF) bound.

This shows the bound that allows which scalars to exist.
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5.4 Holographic renormalization group

The calculation in quantum field theory usually encounter infinity which is diffi-

cult to explain physically. There is a technique called renormalization playing a role in

canceling out this unexplainable infinity. The procedure involves making an alteration

of dimensions on parameter such as coupling constant or masses of fields. Function β

defined by

β = µ
∂g

∂µ
, (5.59)

is responsible for describing the relation between coupling constant g and scale of energy

µ. To have a value of g depending on scale of energy, it means that in some certain scale of

energy, infinity may be avoidable due to the minimized g(µ). More importantly, at some

g∗ that gives β(g∗), coupling constant no longer depends on scale of energy at this point.

Due to the invariance of coupling constant under changing energy scale, the theory that

remains the same no matter the size of energy scale changed resembles conformal field

theory that has a symmetry under scaling transformation. This point where β(g∗) = 0 is

accordingly called conformal fixed point or critical point.

The conformal field theory at the fixed point can be deformed to quantum field

theory, which has no conformal symmetry, by operator O∆ with dimension ∆ as

SQFT = SCFT +

∫
ddxϕ0(x)O∆(x), (5.60)

where ϕ0(x) is a source of perturbation. Since this deformation can describe the flow

from conformal fixed points, it is possible that the flow can start from one conformal

point at high energy (UV level) and terminate at the other conformal points at low

energy (IR level) if that space has more than one critical points. This process is called

renormalization group that determines the deformation from one critical point to the

other along the energy scale µ.
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5.4.1 Asymptotically anti-de Sitter space

The AdSd+1/CFTd correspondence describes the duality between string theory

compactified on AdSd+1 ×MD−d−1 and quantum field theory on d dimensions. At low

energy, the string theory in AdSd+1×MD−d−1 can be depicted as gauged supergravity in

d+ 1 dimensions where the internal manifold MD−d−1 can be seen as a local symmetry

or the identical gauge group promoted to be locally invariant in the theory. The purpose

of this duality is to illustrate the RG-flow from a conformal point to one another. An

appropriate space to describe the flow is that the space AdSd+1 that must be a little

adjusted to be asymptotically AdSd+1 written in short as AAdSd+1. Their boundaries

reproduce AdSd+1 space holographically describing the flow of deformation of CFTd.

For AAdSd+1 providing more AdSd+1 critical points, there are possibilities in explaining

RG-flow from conformal UV to IR point. This kind of solutions is called holographic

RG-flow.

5.4.1.1 Domain wall metric

To obtain the holographic RG-flow solutions, we must find an appropriate AAdS

space. One of this kind of space is domain wall taken in the form of metric as

ds2 = e2A(r)ηµνdx
µdxν + dr2. (5.61)

We must not forget that this metric must reproduce AdSd+1 at the boundaries. Compared

to AdSd+1 metric

ds2 = e
2r

L ηµνdx
µdxν + dr2, (5.62)
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Condition of reproducing AdSd+1 is A(r) must be a linear function as A(r → ∞) = kr,

where k is a constant that determines the radius of AdSd+1 as

kr =
r

L
, (5.63)

L =
1

k
. (5.64)

It is noticeable that changing energy scale µ in quantum field theory corresponds to

changing coordinate r in gravity side. The holographic β function can be written by

βs =
dϕs

dr
. (5.65)

5.4.2 Vacua of gauged supergravity

A vacua in gauged supergravity with Lorentz symmetry preserved provides a classi-

cal background where only non-vanishing scalar fields appear. In other words, apart from

scalar fields, other fields vanish. At this point, scalar fields become constant denoted by

ϕs0 which can be found by

∂V

∂ϕs

∣∣∣
ϕ0

= 0, (5.66)

where V (ϕ0) is a scalar potential at the vacua. The vacua at ϕ = ϕ0 can also preserve

some amount of supersymmetry. At vacuum, other fields including fermions vanish as

seen that the vacuum state |0⟩ acted by supercharge, the state will be annihilated. This

can be written in the form of supersymmetry variation as

δf(x) = ⟨0| [ϵ̄Q, f̂(x)] |0⟩ = 0, (5.67)

where f(x) is a fermionic field and f̂(x) is a fermionic field operator. This can be concluded

that supersymmetry transformations of fermionic fields are zero is the condition to find

supersymmetric vacua.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

JANUS SOLUTIONS

With a little of adjustment from flat to AdS-sliced domain wall metric, this can

describe defect or interface of conformal field theory. The metric is given by

ds2AdSd+1
= e2Ads2AdSd

+ dr2, (6.1)

which is clearly seen that ηµνdxµdxν replaced by ds2AdSd
that preserves SO(2, d − 1)

symmetry corresponding to the symmetry of the conformal defect. Conformal defect has

benefits in many aspects in physics, ranging from statistical physics to high-energy par-

ticle. In the context of AdS/CFT correspondence, conformal defect can be also describe

in the gravity side as a solution called Janus. Non-supersymmetric Janus was first in-

troduced in [?], found on an ansatz of AdS-sliced domain wall from the theory of IIB

supergravity. After that there were several publications clarifying the essence of Janus

solutions. The description in equivalent field theory was given in [?] and correlation func-

tion was calculated holographically in [?]. Due to the clearer of Janus’s features, a large

number of Janus solutions has been researching continuously, most of which can preserve

supersymmetry and turn the solutions supersymmetric.

For deeply diving in the motivation, a little brief of original Janus will be given.

6.1 Original Janus solutions

The first step is to consider the deformation on AdS5 space on the ansatz

ds2 = f(µ)(dµ2 + ds2AdS4
) + ds2S5 (6.2)
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with assuming that ϕ depend only on µ

ϕ = ϕ(µ) (6.3)

and the field

F5 = 2f(µ)
5

2dµ ∧ ωAdS4
+ 2ωS5 (6.4)

where ωAdS4
and ωS5 are volume forms of AdS4 and S5 respectively.

The equation of motion and Bianchi identity in IIB supergravity are found by

Rαβ −
1

2
∂αϕ∂βϕ− 1

4
F 2
αβ = 0 (6.5)

∂α(
√
ggαβ∂βϕ) = 0 (6.6)

∗F5 = F5 (6.7)

dF5 = 0 (6.8)

These equations can be solved together and get

ϕ′(µ) =
c0

f3/2(µ)
(6.9)

f ′f ′ = 4f3 − 4f2 +
c20
6

1

f
. (6.10)

This may be depicted that the potential in the function of f allows zero-energy particle

to move only in the region at fmin to ∞ as Figure 6.1.
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Figure 6.1: Potential plotted in function of f

Then, the equation ?? is solved that

µ =

∫ f

fmin

df̃

2
√
f̃3 − f̃2 + c20

24
1
f̃

. (6.11)

As the equation ??, the solution of ϕ(µ) can be found by the integration with µ as

ϕ(µ)− ϕ(−µ) =
∫ µ0

−µ0

c0dµ

f3/2(µ)
. (6.12)

Together with the ??, the boundary of integral can be changed to corresponding region

of f as

ϕ(µ)− ϕ(−µ) = 2

∫ ∞

fmin

c0df

2f3/2
√
f3 − f2 + c20

24
1
f

(6.13)

The solution of ϕ(µ) is shown numerically by Figure 6.2 with different c0. The

important feature here of this solution is dilaton will take the constant at the maximum

and minimum of µ.
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Figure 6.2: Profile of dilaton field with different c0

With adopting the Poincare patch of the slice of AdS4, a picture of corresponding

conformal mapping is two half-spaces with different gauge coupling constants on each

space attached each other at the wedge which breaks SO(2, 4) symmetry of the space

into SO(2, 3) symmtery of the wedge.

From the dictionary of AdS/CFT , the dual field theory is N = 4 SYM theory in

four dimensions with the boundary of two half spaces where the gauge coupling constant

on each space corresponding to dilaton field that takes a constant at ±µ. The relation

between constant dilaton at the boundary and gauge coupling constant of SYM theory

can be given by

µ = +µ0,
g2YM
4π

= eϕ
+
0 , µ = −µ0,

g2YM
4π

= eϕ
−
0 . (6.14)

6.2 Procedure to solve BPS equations

Instead of finding the solution by solving Einstein equation that depict non-supersymmteric

Janus’s configuration, supersymmteric Janus solutions can be found by BPS equations

to consider whether there are ways to preserve supersymmtries from determining Killing

spinors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

In four dimensions, chiral projection can be applied for Majorana spinors

ϵi =
1

2
(1 + γ5)ϵ

i
M , ϵ =

1

2
(1− γ5)ϵ

i
M (6.15)

ϵ̄i =
1

2
ϵ̄iM (1 + γ5), ϵ̄i =

1

2
ϵ̄iM (1− γ5) (6.16)

where ϵiM are Majorana spinors and γ5 is purely imaginary.

The process starts with considering supersymmetry transformations in N = 4

gauged supergravity in chapter IV written by

δψiµ = 2Dµϵ
i +

2

3
Aij1 γµϵj (6.17)

δχi = −ϵαβVαDµVβγµϵi −
4

3
iAij2 ϵj (6.18)

δλia = 2iVaMDµVMijγµϵj − 2iA2aj
iϵj . (6.19)

and AdS3-sliced domain wall ansatz

ds2 = e2A(r)(e2ρ/ldx21,1 + dρ2) + dr2 (6.20)

To solve BPS equations together with the ansatz, the scalars will depend radially only

on r to ensure that scalars are invariant under SO(2, 2) symmetry of the AdS3 and the

projector is needed to be imposed as

γrϵ
i =Mϵi, γrϵi =M∗ϵi (6.21)

where MM∗ = 1. This means M can be written as

M = eiΛ (6.22)

where Λ is a real phase. Let’s define

ϵ = eiΛ/2ε. (6.23)
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This leads to

γrε
i = εi, γrεi = εi. (6.24)

Replacing the projector along with the ansatz in the variation of gravitino, the equation

turns into

(A′γr +
1

l
e−Aγρ)ϵi +Wϵi = 0. (6.25)

The equation can also become

(A′)2 = − 1

l2
e−2A +W2. (6.26)

by making complex conjugation. It should be noted that W2 = W 2 where W is a real

superpotential. According to ?? and ?? that should compatibly get along together, one

can see that an appropriate projection of γρ should be

γρϵ
i = iκeiΛϵi, −→ γρε

i = iκεi (6.27)

The compatibility needs

κ2 = 1. (6.28)

All of this set of equations will give

(A′ +
iκ

l
e−A)eiΛ = W. (6.29)

Now, the materials above along with other two supersymmetry transformations of

remaining fields as

δχi = −ϵαβVαDµVβγµϵi −
4

3
iAij2 ϵj , (6.30)

δλia = 2iVaMDµVMijγµϵj − 2iA2aj
iϵj , (6.31)

are well prepared to find supersymmetric Janus solutions and will be used later to find

new classes of Janus solutions in our work.
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6.3 A general behavior of Janus solutions

This subsection provides general behavior of Janus solutions and slightly illustrates

the difference between Janus solutions and holographic RG-flow.

6.3.1 Turning point and analysis on critical points

First of all, to analyze the behavior on Janus solutions, we must show the general

from of their BPS equation after making the calculation in AdS3-sliced domain wall ansatz

that can be shown generally by

ϕ′i = terms of A
′

W

∂W

∂ϕi
+ terms of κe

−A

l

∂W

∂ϕi
(6.32)

where W is a real superpotential and derivative of of the warp factor A′(r) is given by

A′2 =W 2 − e−2A

l2
(6.33)

where ϕi is a scalar field related to the theory. It should be noted that in RG-flow

solutions, there is no terms of κe−A

l
∂W
∂ϕi

appearing in the BPS equations and A′ = W

for warp factor derivative. This is interestingly noticeable that above equations will be

accordingly recovered to BPS equations for holographic RG-flow where l → ±∞ which

is reasonable as ansatz of AdS-sliced domain wall is reduced to flat domain wall at the

condition of huge radius of sliced AdS.

Despite the addition of κe−A

l
∂W
∂ϕi

of Janus-type BPS equations different from RG-

flow’s, their analysis and implication on critical points are the same. Since critical points

normally emerge at r → ± ∞, A(r) will be come linear function at the points and eA(r)

is enormously growing. Thus, κe−A

l
∂W
∂ϕi

can be suppressed and now our BPS equations for

Janus are the same as holographic RG-flow’s.

For details on critical points, as known that critical points are normally found at

r → ±∞ that reproduces the space into AdS space, one may calculate the radius of this
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AdS by the behavior of warp factor A from A′ equations. Beginning with

A′2 =W 2 − e−2A

l2
, (6.34)

at large r, e−2A

l2 will become as small as it can be neglected. Moreover, in general, W

takes a constant at critical points which is denoted by W0. The equation thus turns into

A′2 =W0
2, (6.35)

A′ = ±W0, (6.36)
dA

dr
= ±W0, (6.37)

A = ±W0r. (6.38)

The scalar potential V can be generally written in the form of W as

V = k1G
ab ∂W

∂Φa
∂W

∂Φb
–k2W 2. (6.39)

At r → ±∞, W becoming constant W0 leads to

V0 = −k2W 2
0 , (6.40)

W0 =

√
−V0
k2
, (6.41)

where V0 is V (r) at the boundary. Moving back to the ansatz of AdS3-sliced domain wall,

ds2 = e2A(e2ρ/ldx21,1 + dρ2) + dr2, (6.42)

= e2(A+ρ/l)dx21,1 + e2Adρ2 + dr2. (6.43)
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For very large r, A will dominate ρ/l in e2(A+ρ/l) and the metric can become

ds2 = e2Adx21,1 + e2Adρ2 + dr2, (6.44)

= e2A(dx21,1 + dρ2) + dr2, (6.45)

= e2A(ηµνdx
µdxν) + dr2. (6.46)

Placing A = ±W0r into ?? will lead to

ds2 = e±2W0r(ηµνdx
µdxν) + dr2. (6.47)

Compared to AdS4 ansatz

ds2 = e
2r

L (ηµνdx
µdxν) + dr2, (6.48)

it is obvious to see that

L =
1

W0
, (6.49)

or in terms of V0

L =

√
−k2
V0
. (6.50)

The sign ± in A = ±W0 is just the indication where the boundary of r is whether it is

r → +∞ or r → −∞.

To sum up, at critical points where r → ±∞, the space can be clearly seen as AdS4

and the radius of this AdS4 is calculated by L = 1
W0

=
√

− k2
V0

.

Also, one special feature on Janus’s behavior that should be put the emphasis on

is that A′2 =W 2 − e−2A

l2 gives a possibility to have a turning point A′ = 0 where we can

shift the coordinate r to r = 0 so that the value of A(r) at this turning point can be
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denoted by A(0) found by

A′(0) =

√
W 2 − e−2A

l2
= 0. (6.51)

Obviously, the value under the square root must be zero so

e−2A(0)

l2
=W 2(0), (6.52)

A(0) = −1

2
ln l2W 2(0). (6.53)

The existence of a turning point found in Janus solutions lead to distinguished feature

from RG-flow as the Janus solutions can possibly start and move back to the same critical

point. Unlike holographic RG-flow, such solutions will interpolate between a critical point

and the other critical point or a critical point to a singularity.

6.3.2 Holographic description on Janus solutions

For holographic description, the AdS4 at the boundary corresponds to SCFT3. The

flow of Janus solutions can be holographically described as two-dimensional conformal

defect that interpolates between a critical point to the other one that we should not

forget that by the behavior of Janus solutions mentioned earlier, these points can be the

same. For more details, AdS4 and SCFT3 correspond to each other because of having

the same SO(2, 3) symmetry. During the flow of the solutions, SO(2, 3) symmetry will be

broken to SO(2, 2) symmetry that describes two-dimensional conformal defect in SCFT3

6.4 New supersymmetric Janus solution

Supersymmteric Janus solution has been studying with various gauge groups, di-

mensions and supersymmetries, some of which can be found in [?, ?, ?, ?, ?, ?, ?, ?, ?, ?,

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Our work aimed to find new classes of Janus

solution from four-dimensional gauged supergravity. After trying many ways, we found

SO(4) × SO(4) gauge group and application of symplectic deformations can provide us

new supersymmetric Janus solutions. These Janus solutions have N = 1 and N = 2
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supersymmetries.

6.4.1 SO(4)× SO(4) gauge symmetry deformed by free parameters

We begin to find the solutions in N = 4 gauged supergravity coupled to n = 6

vector multiplets where its general structure is provided in chapter IV. Then, using sym-

plectic deformation in [?], SO(4)×SO(4) gauge group can be deformed with deformation

parameters α0, α, β1 and β2, corresponding to electric-magnetic phases in each SO(3)

decomposed from SO(4)× SO(4) gauge group, written as

f+m̂n̂p̂ = −g0 cosα0ϵm̂n̂p̂, f−m̂n̂p̂ = g0 sinα0ϵm̂n̂p̂ (6.54)

f+m̃ñp̃ = g cosαϵm̃ñp̃, f−m̃ñp̃ = g sinα0ϵm̃ñp̃ (6.55)

f+âb̂ĉ = h1 cosβ1ϵâb̂ĉ f−âb̂ĉ = h1 sinβ1ϵâb̂ĉ (6.56)

f+ãb̃c̃ = h2 cosβ2ϵãb̃c̃, f−ãb̃c̃ = h2 sinβ2ϵãb̃c̃ (6.57)

where g0, g, h1 and h2 are gauge coupling constant in four SO(3) group and indices

M = (m̂, m̃, â, ã), for m̂, m̃, â, ã = 1, 2, 3 corresponds to SO(6, 6) in fundamental repre-

sentation. This kind of components of embedding tensor are provided in [?] and rewritten

in the conventions of [?]. In our work, for simplicity, we can set α0 = 0 by the trans-

formation of global symmetry of SL(2,R) × SO(6, n) and α = π
2 due to providing an

equivalent theory for any α > 0.

6.4.2 N = 2 Janus solutions

N = 2 solutions can be found by the truncation of scalars in SO(4)×SO(4) gauge

group into SO(2) × SO(2) × SO(2) × SO(2) whose is the subgroup of SO(4) × SO(4).

We can find this coset representative by starting with SO(6, 6) generators in fundamental

representation as

(tMN )P
Q = 2δQ[MηN ]P (6.58)
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whose non-compact generator is written by

Yma = tm,a+6. (6.59)

We can use this non-compact generator to build up the coset representative of SO(2) ×

SO(2)× SO(2)× SO(2) as

V = eϕ1Y33eϕ2Y36eϕ3Y63eϕ4Y66 (6.60)

The next step is to get AdS3-slice domain walls ansatz as

ds2 = e2A(r)(e
2ρ

l dx21,1 + dρ2) + dr2 (6.61)

where l is a radius of AdS3 and dx21,1 = ηαβdx
αdxβ , α, β = 0, 1 represents flat Minkowski

space. Then, we will perform the same process as previously mentioned and get the

equations

A′2 =W 2 − 1

l2
e−2A (6.62)

ϵî = eρ/2lϵ̃î (6.63)

where, now, W in our case is W = |W| that can be found by

W =
2

3
α̂ (6.64)

where α̂ is the eigenvalue of Aij1 . In this case, we found that Aij1 is represented by

Aij1 = diag(A−,A+,A+,A−) (6.65)
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6.4.2.1 Consideration on broken supersymmetries

Since different eigenvalues of Aij1 lead to different superpotentials, it might not be

able to solve the BPS equations. To avoid this inconsistency, an amount of supersymme-

tries must be broken or some scalar fields must be truncated out. By breaking supersym-

metry with no truncation of scalar fields, there are two possibilities of choosing superpo-

tential whether it is W+ = 2
3A+ or W− = 2

3A−. These two choices correspond to N = 2

where details will be clarified through variation of gravitino field δψiµ = Dµϵ
i − 2

3A
ij
1 γµϵj

below

δψ1
µ = Dµϵ

1 − 2

3
A11

1 γµϵ1 (6.66)

δψ2
µ = Dµϵ

2 − 2

3
A22

1 γµϵ2 (6.67)

δψ3
µ = Dµϵ

3 − 2

3
A33

1 γµϵ3 (6.68)

δψ4
µ = Dµϵ

4 − 2

3
A44

1 γµϵ4 (6.69)

where A11
1 = A44

1 = A− and A22
1 = A33

1 = A+.

If we want to choose 2
3A− to be our superpotential. The question is how we can deal

with W+ = 2
3A+ that A+ appears in the eigenvalues of Aij1 that will always come out in

δψiµ. The way to ensure that A+ will not mess up with our calculation is to force ϵ2 and

ϵ3 to zero as we could see in the equations above that δψ2
µ = 0 and δψ3

µ = 0. However,

since ϵ2 and ϵ3 are Killing spinors, vanishing Killing spinors accordingly lead to broken

supersymmetries. Thereby, choosing W− = 2
3A− to be our superpotential corresponds to

breaking N = 4 to N = 2 because of two vanishing Killing spinors (ϵ2 and ϵ3). We can

also repeat the same process for selecting superpotential W = W+, but ϵ1 and ϵ4 will be

broken instead.

For one eigenvalue is chosen, supersymmetries then are broken to N = 2. In our

calculation, we choose W− = 2
3A−. Then, due to some broken supersymmetries, ϵ2 and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

ϵ3 are zero inevitably and superpotential become

W = W−

=
1

2
e−ϕ/2[coshϕ4[g coshϕ3(eϕ sinα+ i cosα)− g0 sinhϕ1 sinhϕ3]

− g0 coshϕ1(coshϕ2 + i sinhϕ2 sinhϕ4) + ig sinα coshϕ3 coshϕ4χ] (6.70)

Besides, for the existence of superpotential, scalar potential can also be written as

V = −2Grs
∂W

∂Φr
∂W

∂Φs
− 3W 2

= −1

4
e−ϕ[g2(1 + cos 2α) + 2g20 + 2g2 sinαχ(2 cosα+ sinαχ)]

− 1

2
eϕg2 sin2 α+ 2gg0 sinα coshϕ1 coshϕ2 coshϕ3 coshϕ4, (6.71)

where Φr = (ϕ, χ, ϕ1, ϕ2, ϕ3, ϕ4) and Grs is the inverse of the matrix shown below.

6.4.2.2 Lagrangian of kinetic term

Substituting the coset representative SO(2) × SO(2) × SO(2) × SO(2) into the

lagrangian of N = 4 gauged supergravity, the kinetic term turns into

Lkin =
1

2
GrsΦ

r ′Φs′

= −1

4
(ϕ′2 + e−2ϕχ′2)− 1

16
[6 + cosh 2(ϕ2 − ϕ3)

+ cosh 2(ϕ2 + ϕ3) + 2 cosh 2ϕ4(cosh 2ϕ2 cosh 2ϕ3 − 1)]ϕ′21

− coshϕ2 coshϕ4 sinhϕ3 sinhϕ4ϕ′1ϕ′2 − coshϕ3 coshϕ4 sinhϕ2 sinhϕ4ϕ′1ϕ′3

+ sinhϕ2 sinhϕ3ϕ′1ϕ′4 −
1

2
cosh2 ϕ4ϕ

′2
2 − 1

2
coshϕ4ϕ′23 − 1

2
ϕ′24 .

(6.72)

From this term, scalar matric Grs can be extracted and shown explicitly by

Grs =


−2 0 01×4

0 2e2ϕ 01×4

04×1 04×1 Gr′s′

 (6.73)
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where Gr′s′ and indices r′, s′ = 1, 2, 3, 4 shown by

Gr′s′ =



A1 B1 B2 B3

B1 A2 B4 B5

B2 B4 A3 B6

B3 B5 B6 A4


, (6.74)

where

A1 = − sech2 ϕ2 sech2 ϕ3, A2 = − sech2 ϕ3 sech2 ϕ4 − tanh2 ϕ3,

A3 = sech2 ϕ2 tanh2 ϕ4 − 1, A4 = −1

2
sech2 ϕ2 sech2 ϕ3(1 + cosh 2ϕ2 cosh 2ϕ3),

B1 = sechϕ2 sechϕ3 tanhϕ3 tanhϕ4, B2 = sechϕ2 sechϕ3 tanhϕ2 tanhϕ4,

B3 = − sechϕ2 sechϕ3 tanhϕ2 tanhϕ3, B4 = − tanhϕ2 tanhϕ3 tanh2 ϕ4,

B5 = tanhϕ2 tanh2 ϕ3 tanhϕ4, B6 = tanh2 ϕ2 tanhϕ3 tanhϕ4

6.4.2.3 Critical points in the N = 2 solutions

We find the critical points from the procedure given in chapter V. It can show that

where ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0,

ϕ = ln(− g0
g sinα), (6.75)

and

χ = −cosα
sinα . (6.76)

can give the critical point. It is obviously seen that dilaton and axion depend on α.

Nonetheless, owning to choosing α = π
2 and g0 = −g, this allows us to shift ϕ and χ to
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zero as

ϕ = ln [− −g
g sin π

2

], (6.77)

= ln 1, (6.78)

= 0, (6.79)

and

χ = −cosπ/2
sinπ/2 , (6.80)

= 0. (6.81)

Now, all scalars vanish so this critical point of AdS4 is at the origin of scalar manifold

which obviously preserves N = 4 supersymmetry with SO(4)×SO(4) symmetry. As seen

that dilaton and axion field can be shifted by choosing g0 = −g and α = π
2 , this crical point

will be shifted to the origin of the scalar manifold SL(2,R)/SO(2)× SO(6, 6)/SO(6)×

SO(6) where all scalar fields are zero. From this point, we can calculate the scalar

potential at the vacuum

V0 = −3g2, (6.82)

and convert this into the radius of this AdS4 as

L =

√
− 3

V0
=

1

g
. (6.83)

With the positive constant g, the critical points become supersymmetric N = 4 SO(4)×

SO(4) vacuum.
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6.4.2.4 BPS equations

From now on, all materials is prepared to find BPS equations that can be found as

A′2 +
1

l2
e−2A =W 2 (6.84)

ϕ′ = −4
A′

W

∂W

∂ϕ
− 4eϕ

κe−A

lW

∂W

∂χ
(6.85)

χ′ = −4e2ϕ
A′

W

∂W

∂χ
+ 4eϕ

κe−A

lW

∂W

∂ϕ
(6.86)

ϕ′1 = G1r′ A
′

W

∂W

∂Φ̂r′
− 2 sechϕ2 sechϕ3 sechϕ4

κe−A

lW

∂W

∂ϕ3
(6.87)

ϕ′2 = G2r′ A
′

W

∂W

∂Φ̂r′
+
κe−A

lW
(2 sechψ4 tanhϕ3 tanhϕ4

∂W

∂ϕ3

− 2 sechϕ4
∂W

∂ϕ4
) (6.88)

ϕ′3 = G3r′ A
′

W

∂W

∂Φ̂r′
+
κe−A

lW
(2 sechϕ2 sechϕ3 sechϕ4

∂W

∂ϕ1

− 2 sechϕ4 tanhϕ3 tanhϕ4 + 2 sechϕ4 tanhϕ2 tanhϕ3
∂W

∂ϕ2
) (6.89)

ϕ′4 = G4r′ A
′

W

∂W

∂Φ̂r′
+
κe−A

lW
(−2 sechϕ4∂W

∂ϕ2

− 2 sechϕ4 tanhϕ2 tanhϕ3
∂W

∂ϕ3
) (6.90)

Clearly seen, with l → ∞, these solutions is recovered to holographic RG-flow

solutions in [?]. Besides, these solutions is much more general as giving Janus solutions

in [?] that preserve SO(2)×SO(2)×SO(2)×SO(3) or SO(2)×SO(2)×SO(3)×SO(2)

symmetry by trucating scalar ϕ1 and ϕ3 or ϕ2 and ϕ4 to zero.

These BPS equations can give numerical solutions with different α provided in

Figure 6.3. Our solutions are calculated with assuming g = 1, κ = 1, l = 1 and g0 =

−g sinα and for the phase parameters, α = π
2 and α0 = 0. It should be emphasized again

that all α > 0 equivalent to α = π
2 . The solutions interpolate between SO(4) × SO(4)

AdS4 critical point. The corresponding theory from the field theory side is SO(2) ×

SO(2)× SO(2)× SO(2) two-dimensional defect within three-dimensional N = 4 SCFT

theory with SO(4) × SO(4) symmetry. Different values of κ = ±1 lead the defect to
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N = (2, 0) or N = (0, 2) supersymmetry respectively.

6.4.3 N = 1 Janus solutions

Performing to find Janus solutions on SO(3)diag × SO(3) symmetry relies on coset

representative

V = eϕ1Ŷ1eϕ3Ŷ3 (6.91)

where Ŷ1 and Ŷ3 are non compact generator defined by

Ŷ1 = Y11 + Y22 + Y33 + Y44, Ŷ3 = Y51 + Y62 + Y73 + Y84 (6.92)

From these generators, Aij1 will be

Aij1 = diag(A,B,B,B). (6.93)

Choosing A in our calculation, the superpotential becomes

W =
1

2
eϕ/2[gcosh3ϕ3 + h1 sinβ1(i sinhϕ1 − coshϕ1 sinhϕ3)3]

+
1

2
e−ϕ/2[g(coshϕ1 + i sinhϕ1 sinhϕ3)3 − (sinhϕ1 + i coshϕ1 sinhϕ3)3h1 cosβ1]

+
1

2
e−ϕ/2[igcosh3ϕ3 + h1 sinβ1(sinhϕ1 + i coshϕ1 sinhϕ3)3]χ (6.94)

Putting on the emphasis on considering to determine residual supersymmetry, ϵ2, ϵ3 and

ϵ4 are required to be zero as admitting consistent BPS equations for choosing A to be

superpotential. Thus, the solutions that will be found from this case must preserve N = 1

supersymmetry. Superpotential can also be given in terms of W as

V = 4(
∂W

∂ϕ
)2 + 4e2ϕ(

∂W

∂χ
)2 +

2

3
sech2 ϕ3(

∂W

∂ϕ1
)2 +

2

3
(
∂W

∂ϕ3
)2 − 3W 2 (6.95)
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6.4.3.1 Critical points in N = 1 case

This sector can give three supersymmtericAdS4 critical points which will be entailed

below. For simplicity of the calculation for the rest of these solutions, α and g0 will be

substituted by π/2 and −g respectively. The first critical point is trivial N = 4 AdS4

with SO(4) × SO(4) symmetry where all scalars vanish. The other two special critical

points are emerged from the deformation of the parameter β1 as

i) β1 = 0; ϕ3 = χ = 0, ϕ1 =
1

2
ln(h1 + g

h1 − g
)

ϕ = −1

2
ln(1− g2

h21
), V0 = − 3g2h1√

h21 − g2
, L =

√√
h21 − g2

g2h1

ii) β1 = π/2; ϕ1 = χ = 0, ϕ3 =
1

2
ln(h1 + g

h1 − g
)

ϕ =
1

2
ln(1− g2

h21
), V0 = − 3g2h1√

h21 − g2
, L =

√√
h21 − g2

g2h1

Critical point i has SO(3)diag ×SO(3)×SO(3) symmetry while residual symmetry

SO(3)×SO(3)diag ×SO(3) is found on critical point ii. These two critical points can be

checked that N = 4 supersymmtery is preserved resulting from all identical eigenvalues

of Aij1 where χ = ϕ1 = 0 or χ = ϕ3 = 0. Since the case ϕ1 = 0 or ϕ3 = 0 does not provide

consistent BPS equations, there is no Janus solutions for this case. Also, χ = 0 along with

keeping ϕ1 and ϕ3 gives inconsistent BPS equations. Hence, the possible Janus solutions

must keep ϕ1 and ϕ3 that preserve N = 1 supersymmetry due to vanishing ϵ2, ϵ3 and ϵ4

for choosing A as the superpotential while RG-flow in [?] can provide both N = 1 and

N = 4 solutions.
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6.4.3.2 BPS equations

By choosing mentioned superpotential above, BPS equations can be given by

ϕ′ = −4
A′

W

∂W

∂ϕ
− 4eϕ

κe−A

lW

∂W

∂χ
(6.96)

χ′ = −4e2ϕ
A′

W

∂W

∂ϕ
+ 4eϕ

κe−A

lW

∂W

∂ϕ
(6.97)

ϕ′1 = −2

3
sech2 ϕ3

A′

W

∂W

∂ϕ1
− 2

3
sechϕ3

κe−A

lW

∂W

∂ϕ3
(6.98)

ϕ′3 = −2

3
ϕ3
A′

W

∂W

∂ϕ3
+

2

3
sechϕ3

κe−A

lW

∂W

∂ϕ1
(6.99)

and the metric function is

A′2 +
e−2A

l2
=W 2 (6.100)

These equations are also reduced to the RG-flow solutions in [?] at l → ∞.

The numerical solutions solved from the equations above will be separated into

three sets. The first one is the solutions interpolating between trivial AdS4 N = 4

SO(4)× SO(4) vacua with different values of β1 in Figure 6.4 whose dual field theory is

N = 4 SCFT3 invariant under SO(4)×SO(4) group with N = 1 conformal defects inside.

The second set is for β1 describing the solutions that interpolate between critical points i

in Figure 6.5 which has SO(3)diag×SO(3)×SO(3) symmetry. The final set is the solutions

that interpolate between critical points ii found at β1 = π
2 with SO(3)×SO(3)diag×SO(3)

symmetry in Figure 6.6. These two latter solutions with non-trivial critical points can

be described holographically by N = 4 SCFT3 with SO(3)diag × SO(3) × SO(3) and

SO(3)×SO(3)diag×SO(3) symmetry respectively withN = (1, 0) orN = (0, 1) conformal

defects, depending on the value of κ, included.

The numerical solutions interpolating between critical points i are represented by

pink lines while cyan lines are solutions interpolating between trivial critical points for

clear comparison with non-trivial one. Also, the Janus solutions interpolating between

critical points ii in yellow lines are compared to purple lines which represent the solutions

interpolating between trivial AdS4 vacua.
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Figure 6.3: The N = 2 Janus solutions that interpolate between trivial N = 4 SO(4)×
SO(4) AdS4 critical points with using constant paremeter κ = 1, l = 1, g = 1 g0 =
−g sinα and α = π

2 (red), α = π
3 (blue), α = π

4 (green), α = π
6 (purple),
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(b) χ(r) solution
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Figure 6.4: The N = 1 Janus solutions that interpolate between SO(4)×SO(4) N = 4
AdS4 critical points with using constant paremeter κ = l = g = 1 g0 = −g and β1 = 0
(cyan), β1 = π

2 (purple), β1 = π
3 (blue), β1 = π

4 (green), β1 = π
6 (red)
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Figure 6.5: The N = 1 Janus solutions (pink) that interpolate between SO(3)diag ×
SO(3) × SO(3) N = 4 AdS4 critical points i) with using constant paremeters κ = l =
g = 1 and g0 = −g
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Figure 6.6: The N = 1 Janus solutions (yellow) that interpolate between SO(3) ×
SO(3)diag × SO(3) N = 4 AdS4 critical points ii) with using constant paremeters κ =
l = g = 1 and g0 = −g



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII

CONCLUSIONS AND COMMENTS

Our scope of study in this work is to find Janus solutions from four-dimensional

N = 4 gauged supergravity with SO(4) × SO(4) gauge symmetry. We found that with

symplectic deformation, see [?], applied to SO(4)× SO(4) ∼ SO(3)× SO(3)× SO(3)×

SO(3) gauge group, four deformations parameters for each SO(3) group are expected to

give richer structure of the theory. The setting of these parameters is summarized below

as

α0 for SO(3)1

α for SO(3)2

β1 for SO(3)3

β2 for SO(3)4

where 1, 2, 3, 4 are just labels for the four SO(3) groups and

α0 = 0 because of the transformation of SL(2,R)

α =
π

2
because of giving the equivalent theories for any α > 0

β1 and β2 are free parameters.

The presence of these free parameters leads us to find two classes of Janus solutions

comprising N = 2 and N = 1 supersymmetries.
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7.1 N = 2 solutions

The N = 2 case admits only one critical point at ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 and

ϕ, χ can also vanish by fixing α = π
2 and g0 = −g. Obviously, this critical point is the

trivial N = 4 AdS4 critical point with SO(4) × SO(4) symmetry. Since there are no

other critical points found in this case, the N = 2 Janus solutions that are discovered in

SO(2)×SO(2)×SO(2)×SO(2) sector can interpolate only between AdS4 trivial critical

point. For the holographic description on the field theory side, the solutions correspond

to a two-dimensional conformal defect or interface that preserves N = (2, 0) or N = (0, 2)

supersymmetries that depends on the value of κ within the SCFT3 with SO(4)× SO(4)

symmetry.

7.2 N = 1 solutions

The N = 1 case provides much more exciting structure since β1 appears in the

superpotential that give more possibility to have non-trivial critical points. As expected,

there are not only trivial critical point of AdS4 but also two non-trivial critical points,

is obtained from β1 = 0 and β1 = π/2 as critical points i and ii respectively. The

solutions that can interpolate between trivial AdS4 critical point correspond to two-

dimensional conformal defects preserving N = 1 supersymmetry within N = 4 SCFT3

with SO(4) × SO(4) symmetry. Critical point i has SO(3)diag × SO(3) × SO(3) as a

residual symmetry while SO(3)× SO(3)diag × SO(3) residual symmetry is preserved for

critical point ii. Due to χ = ϕ1 = 0 at critical point ii and χ = ϕ3 = 0 in critical

point i giving the same eigenvalues of Aij1 , all supersymmetries are unbroken. Thus,

these critical points preserve N = 4 supersymmetry. The N = 1 solutions that are

found from SO(3) × SO(3)diag sector with appropriate boundary conditions then can

interpolate between these critical points with β1 = 0 and β1 = π/2 for critical point

i and ii respectively. This can also be depicted by a holographic picture as the non-

trivial critical point i and ii correspond to SCFT3 with SO(3)diag × SO(3) × SO(3)

and SO(3) × SO(3)diag × SO(3) symmetry respectively. The solutions that preserve

some amount of conformal symmetry are dual to two-dimensional conformal defects with
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N = (1, 0) or N = (0, 1) supersymmetries, depending on the value of κ, preserved on the

defect.

7.3 Some comments and recent Janus-related works

Since SO(3)diag in [?] sector involves both β1 and β2 parameters, they could provide

more vacua and new holographic solutions including Janus solutions owing to different

values of those parameters. Another further future study would be the study of a holo-

graphic interpretation in dual field theory interms of relevant generators and correlation

function. It is also much more compelling to find ways of uplifing these solutions in

four dimensions to higher-dimensional theories that might give a possibility to explain

conformal defects in string theory.

A few of the recent Janus-related works on finding holographic solutions including

Janus solutions are [?] and [?]. These papers show that the holographic solutions including

RG-flow and Janus solutions are found from three-dimensionalN = 8 gauged supergravity

with SO(8) gauge symmetry using the embedding tensor formalism that depends on a

free parameter α. The α parameter appears in the two copies of the superconformal group

D1(2, 1;α) describing the isometry of AdS3 × S3 ×S3 ×S1 that admits 16 supercharges,

see [?] and [?]. With the choices of α and different truncations of scalar fields, new

solutions and vacua are discovered with [?] for the case of α = 1 and general α in [?].

It should be highlighted that writing the embedding tensor with free parameter is

such a compelling procedure to find new holographic solutions. As seen in the recent

publications [?], [?] and our work, all use the same aforementioned technique. It is

very interesting that the inclusion of deformation parameters in different gauge groups

in gauged supergravity would lead to a richer structure of critical points and holographic

solutions that await us to discover.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX I

GENERAL RELATIVITY AND GEOMETRY

OF SCALAR MANIFOLD

With the structure of general relativity, familiar mathematics applicable in classical

theory is not sufficient. For this case, tensor calculus must be introduced. Besides, this

advanced subject is a foundation in researching theoretical physics, especially in high-

energy physics.

This chapter will give a short review on tensor calculus then move to the emphasis

on veilbein formalism whose concepts are developed and adopted in the geometry of the

scalar manifold entailed at the end of the chapter

A.1 Tensor calculus in general relativity

Due to the curved space that is not usual flat space, a distance between any two

points in the space is no longer given by the Euclid’s geometry. Some information encoding

the curvature of the space is necessary in measuring how far between those mentioned

two points. That information is displayed by the metric gµν as

ds2 = gµνdx
µdxν . (A.1)

This is the square of the infinitesimal between any two points in the space.

Quantities in curved manifold can be explained by geometrical object called tensor.

Tensor with rank (k, l) can be written by

T (k,l) = Tµ1...µk
ν1...νl∂µ1

⊗ ...⊗ ∂µ1
⊗ dxν1 ⊗ ...⊗ dxνk (A.2)
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Since the tensor on the curved manifold living on the tangent space of the manifold

must be defined. To find its derivative, connection is introduced to how much the tensor

is varied from point to point. Particularly, this is also important in writing covariant

derivative which is defined by

∇µT
µ1...µk

ν1...νk = ∂µT
µ1...µk

ν1...νk + Γµ1

µλT
λ...µk

ν1...νl + ...Γµk

µλT
µ1...λ

ν1...νl

− Γλµν1T
µ1...µk

λ...νl − ...− ΓλµνlT
µ1...µk

ν1...λ.

(A.3)

The connection shown above is named ”Christoffel” connection symmetric under switching

indices µ and ν, also known as torsion free condition which does not produce torsion, given

by

Γρµν = Γρνµ (A.4)

and the matric compatibility is defined by

∇ρgµν = 0. (A.5)

With two equations above, they can give the connection in the relation with metric as

Γρµν =
1

2
gλσ(∂µgλν + ∂νgλµ − ∂λgµν). (A.6)

As all the quantities shown above cannot give how much curved of the manifold is,

in order to find the curvature of the space, some value must be defined and that quantity

is Riemann tensor given by

Rρλµν = ∂µΓ
ρ
νλ − ∂νΓ

ρ
µλ + ΓρµσΓ

σ
νλ − ΓρνσΓ

σ
µλ (A.7)

Riemann tensor with contraction of the indices can lead to lower-rank tensor which also

give the information on the curvature. The results are Ricci tensor and Ricci scalar which
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are shown respectively as follows

Rµν = Rλµλν , R = Rµµ = gµνRµν . (A.8)

Those definitions which give details on curved manifold altogether with the energy-

momentum tensor is a perfect bridge to construct Einstein equation

Rµν −
1

2
gµνR = 8πGTµν (A.9)

where the right hand side of the equation is called Einstein tensor

Gµν = Rµν −
1

2
gµνR (A.10)

which gives the vanishing divergence as

∇µGµν = 0. (A.11)

Also, the divergence of energy-momentum tensor always leads to conservation of energy

that is always true in the univers

∇µT
µν = 0. (A.12)

A.2 Differential form

p− form Ap on the coordinate basis is defined by

Ap =
1

p!
Aµ1...µp

dxµ1 ∧ ... ∧ dxµp (A.13)

where the basis of p− form is given by

dxµ1 ∧ ... ∧ dxµp = p! = dx[µ1 ⊗ ...⊗ dxµp]. (A.14)
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Higher-rank form can be built by the product of two lower-rank form. For example,

the product between p− form Ap and q− form Bq will give (p + q)− form (A ∧ B)p+q

form as

A ∧B =
1

p!q!
Aµ1...µp

Bν1...νq ∧ ... ∧ dxµ1 ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνq (A.15)

whose component is

(Ap ∧Bq)µ1...µpν1...νq =
(p+ q)!

p!q!
A[µ1...µp

Bν1...νq] (A.16)

The wedge product is not symmetric under commutativity. Switching the positions of Ap

and Bq are represented by

Ap ∧Bq = (−1)pqBq ∧Ap (A.17)

(p+ 1)− form is found by the derivative called ”exterior derivative” defined as

dAp =
1

p!
∂[µAµ1...µp]dx

µ1 ∧ ... ∧ dxµp (A.18)

whose component is shown by

(dAp)µ1...µp+1
= (p+ 1)∂[µ1

Aµ2...µp+1]. (A.19)

Mixing the exterior derivative and wedge product give the relation

d(Ap ∧Bq) = dAp ∧Bq + (−1)pAp ∧ dBq. (A.20)

More generally, another derivative that change p− form to (p − 1)− form by the
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vector V = V µ∂µ

iV ωp = V (ω) =
1

p!
V µωµ1...µp

∂µ(dx
µ1) ∧ dxµ2 ∧ ...dxµp

=
1

(p− 1)!
V µωµµ2...µp

dxµ2 ∧ ... ∧ dxµp .

(A.21)

The other construction of different form is constructed by hodge duality which

transforms p− form into (n− p)− form where n is the dimension of the manifold

∗(dxµ1 ∧ ... ∧ dxµp) =
1

(n− p)!
ϵν1...νn−p

µ1...µpdxν1 ∧ ... ∧ dxνn−p . (A.22)

whose component are shown by

(∗ωp)µ1...µn−p
=

1

p!
ϵµ1...µn−p

ν1...νpων1...νp . (A.23)

With the various constructions of different form, lie derivative can be written using

d and iV as

LV ωp = (diV + iV d)ωp. (A.24)

Integral on the manifold is given by compact formula with the benefit in differential

form as

ϵ =
1

n!

√
|g|ϵµ1...µn

dxµ1 ∧ ... ∧ dxµn =
√

|g|dnx (A.25)

where

dnx =
1

n!
ϵµ1...µn

dxµ1 ∧ ... ∧ dxµn . (A.26)

By the relation,

ϵµ1...µn
ϵµ1...µn = −n! (A.27)
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?? can also be written as

dxµ1 ∧ ... ∧ dxµn = −ϵµ1...µndnx (A.28)

A.3 Veilbein formalism

In more complicated manifold, sometimes, usual metric is rather tedious and diffi-

cult to calculate things in the manifold. Fortunately, the brink of vielbein eaµ contributes

the help in easier calculation. This first is found by

gµν(x) = eaµ(x)e
b
ν(x)ηµν (A.29)

which encodes the relation between spacetime on curved manifold and the flatness of

tangent space.

Like the introduction of usual Christoffel connection, connection related to tangent

space and curved spacetime can be described by the first veilbein postulate as

∂µe
a
µ − Γρµνe

a
ρ + ωµ

a
be
b
ν = 0. (A.30)

With the switching indices µ and ν from the above equation, torsion tensor can be found

as

T aµν = eaρT
ρ
µν = 2Γρµνe

a
ρ = ∂[µe

a
ν] + ω[µ

a
b
ebν] (A.31)

where 2− form torsion is defined by

T a =
1

2
T aµνdx

µ ∧ dxν = dea + ωab ∧ eb. (A.32)

This can also lead to Riemann tensor with tangent indices involved as

Rµν
a
b = 2(∂µω

a
ν]b

) + ω[µ
a
c
ω[µ

a
c
ων]

c
b
. (A.33)
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Specially, its 2− form curvature tensor is given by

Rab =
1

2
Rµν

a
bdx

µ ∧ dxν (A.34)

which can also be found by the connection as

Rab = dωab + ωac ∧ ωcb. (A.35)

From the metric compatibility and definition of veilbein, they further provide rela-

tion

ωacη
bc = −ωbcηac ⇐⇒ ωab = −ωba. (A.36)

With Biachi identity, it gives that

dT a + ωab ∧ T b = Rab ∧ eb (A.37)

dRab + ωac ∧Rcb − ωbc ∧Rca = 0. (A.38)

Since fermions must be transformed under the tangential Lorentz group SL(2,C),

there are no ways to describe fermions on the curved spacetime without the introduction

of veilbein. Let’s first review a little of gamma matrix in which fermions must be involved.

The gamma matrices abide by the relation {γa, γb} = 2ηab. Each element of γ-

matrices are found by

γa =

 0 σa

σ̄a 0

 ; σa = (1, σI); σ̄a = (1,−σI) (I = 1, 2, 3). (A.39)

where σI is the Pauli matrices as

σ1 =

0 1

1 0

 ; σ2 =

0 −i

i 0

 ; σ3 =

1 0

0 −1

 . (A.40)
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With the link between γµ and γa, they can be shown that γµ(x) = eµa(x)γa gives

{γµ, γν} = 2gµν(x) (A.41)

while γ5 is defined by

γ5 =
i

4!
ϵabcdγ

aγbγcγd =
ie

4!
ϵµνρσγ

µγνγργσ =

−1 0

0 1

 . (A.42)

Let’s define

γa1...ak = γ[a1 ...γak] (A.43)

with definitions of γ5 will hold that

γ5γa = − i

3!
ϵabcdγ

bcd; γ5γabc = iϵabcdγ
d; (A.44)

γ5γabc = iϵabcdγ
d; γ5γabcd = iϵabcd. (A.45)

Complex conjugation of Dirac spinor is defined by

ψ̄ = ψ†γ0; ψc = Cψ̄T (A.46)

where C is a charge conjugation matrix where C = −iγ2γ0 and satisfies

C−1γµC = (γµ)T ; C = C∗ = −CT = −C−1 (A.47)

which is used to give that

(Cγa1...ak)T = −(−1)k(k+1)/2Cγa1...ak (A.48)

χ̄cγ
a1...akλ = (−1)k(k+1)/2λ̄cγ

a1...akχ (A.49)

(χ̄cγ
a1...akλ)∗ = (−1)kχ̄γa1...akλc (A.50)
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while Majorana spinor is defined by

ψ = ψc = Cψ̄T (A.51)

which leads to Fierz identity as

λχ̄ = −1

4
(χ̄λ)− 1

4
(χ̄γ5λ)γ5 − 1

4
(χ̄γµλ)γµ +

1

4
(χ̄γ5γµλ)γ5γµ +

1

8
(χ̄γµνλ)γµν . (A.52)

Some helpful relations, frequently found, in calculations of γ−matrices are shown

by

γµνγ
ρ = 2γµ]δ

ρ
ν] = 2γ[µδ

ρ
ν] + ieϵµν

ρσγ5γσ (A.53)

γµνγ
ρσ = γµν

ρσ − 4δ
[ρ
[µγν]

σ] − 2δρσµν (A.54)

γ[ργµνγ
σ] = γµν

ρσ + 2δρσµν = 2(δρσµν +
ie

2
ϵµν

ρσγ5) (A.55)

γργ
µ1...µkγρ = 2(−1)k(2− k)γµ1...µk . (A.56)

Another benefit in hodge duality is giving the definitions of self-dual and anti-self-

dual tensor of metric

F±
µν =

Fµν ± i ∗ Fµν
2

=⇒ ∗F±
µν = ∓iF±

µν . (A.57)

With the presence of γ−matrices, it can show some interesting relations that

F+
µνγ

µνϵ∗ = F−
µνγ

µνϵ∗ = 0 (A.58)

and

F+
µνγ

µνγρϵ∗ = −4F+
ρνγ

νϵ∗; F+
µνγ

µνγρϵ
∗ = 0 (A.59)

F−
µνγ

µνγρϵ
∗ = −4F−

ρνγ
νϵ∗; F−

µνγ
µνγρϵ∗ = 0. (A.60)
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where ∗ indicates the positive and negative chiralities under SU(N) representation as

γ5ϵ∗ = ϵ∗, γ5ϵ∗ = −ϵ∗. (A.61)

A.4 Geometry on scalar manifold

Since supergravity involve with a large number of scalar fields, sometimes, tedious

calculation of things in the theory would have not been possible to complete without the

help of symmetry. In order to fix the problem, scalars must be put together on the same

Riemannian non-compact manifold called scalar manifold Mscal where ns is the dimension

of the manifold, real scalar fields are represented through curved indices s, t, r, ... while

tangent indices are shown by s̄, t̄, r̄, .... ϕs, a scalar field, is now a local coordinate of

this manifold with the metric tensor described by Gst(ϕ). With the adaptation of curved

manifold from the previous section, veilbein one-form P s̄ = P s̄
t dϕ

t and its dual basis on

tangent space Ks̄ = Pt
s̄ are allowed to be defined where Pt

s̄ and P s̄
t are their inverse each

other.

Gst(ϕ) = Pss̄(ϕ)Ptt̄(ϕ)ηs̄t̄ (A.62)

where ηs̄t̄ is H−invariant matrix.

The same as usual is when metric of curved and tangent space are defined, it will

be the time for connection that must satisfy the first veilbein postulate as

DsPtr̄ = ∂sPtr̄ − ΓrstPrr̄ +Qs
r̄
t̄Ptt̄ = 0. (A.63)

The next step is to find the rank-2 curvature tensor which is given by

R(Q)t̄s̄ = dDt̄
s̄ +Qt̄

r̄ ∧Qr̄
s̄ =

1

2
Rst

t̄
s̄dϕ

s ∧ dϕt. (A.64)

It is noticeable through the aforementioned conventions that diffeomorphisms also
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exists on the manifold as the relation

ϕs → ϕ′s : Gs̄t̄(ϕ′(ϕ))
∂ϕ′s

′

∂ϕs
∂ϕ′t

′

∂ϕt
= Gst(ϕ). (A.65)

Due to the property of a transitive action of the manifold Mscal, any point P in

the manifold are invariant under the action of group H which is the subgroup pf G. One

can fix any other point O to P by

∀g ∈ G → ∃P ∈ Mscal : g ·O = P (A.66)

where g ∈ G, P ∈ Mscal and · represents action of G on the manifold.

Since this is not one-to-one action, there are other g′ that can send the same O to

the same P as

g ·O = P, g′ ·O = P → g−1g′ ·O = O → g′ ∈ gH ′. (A.67)

The H−connection Q can be formulated by considering the commutation

[Ks,Kt] = fs̄t̄
IJI + fs̄t̄

r̄Kr̄ (A.68)

where Ks is a basis of K and JI is a basis of H. To construct the quantity that describes

all structures on the manifold, left-invariant one-form on g must be introduced as

Ω = L−1dL = P +Q′ (A.69)

where P on K and Q′ on H are veilbein and the connection respectively.

With the structure of Maurer-Cartan equation as

dΩ+ Ω ∧ Ω = 0, (A.70)
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its projection on K is represented by

dP s̄ +Q′s̄
t̄ ∧ P t̄ +

1

2
fr̄t̄

s̄P r̄ ∧ P t̄ = 0. (A.71)

The need in definition

DP s̄ = dP s̄ +Qs̄
t̄ ∧ P t̄ = 0 (A.72)

leads to the introduction of connection one-form Qs̄
t̄ as

Qs̄
t̄ = Q′s̄

t̄ +∆Qs̄
t̄. (A.73)

One can also so write

∆Q[r̄
s̄
t̄]
=

1

2
fr̄t̄

s̄. (A.74)

Compatibility of metric can give

∆Qr̄
s̄
t̄ =

1

2
(fr̄t̄

s̄ + fs̄′ t̄
r̄ηr̄′r̄η

s̄′s̄ + fs̄′r̄
r̄′ηr̄′ t̄η

s̄′s̄) (A.75)

In differential geometry, lie group on of manifold Gs has an association with lie

algebra ξ. One can Mscal ∼ Gs = eξ. A generator of ξ Ts, s = 1, ..., ns obeys the algebra

[Tr, Ts] = Crs
tTt (A.76)

where Ts can be projected on K and H as

Ts = Ks̄ + Js̄; Ks̄ ∈ K, Js̄ ∈ H. (A.77)

Coset representative of Mscal can be defined with the generator Ts and scalar field
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as

L(ϕs) = exp (ϕsTs) ∈ GS (A.78)

Decomposed in terms of Ks̄ and Js̄, Ω can be splitted into

Ω = L−1dL = PsTs = PsKs̄ + PsJs̄ = P +Q. (A.79)

Maurer-Cartan equation can give

dPs +
1

2
Crt

sPr ∧ Pt = 0. (A.80)

The metric on Mscal is resembled with veilbein formalism as it is written as

ds2 = (Ω,Ω) = PsPtηr̄s̄ = P s̄P t̄ηr̄s̄. (A.81)

With P s = P s̄, Livi-Civita connection can be shown by

DP r̄ +Qr̄
t̄ ∧ P t̄ = 0 (A.82)

where Qs̄
t̄ can be written as

Qs̄
t̄ =

1

2
(Cr̄t̄

s̄ + Cs̄′ t̄
r̄ηr̄′r̄η

s̄′s̄ + Cs̄′r̄
r̄′ηr̄′ t̄η

s̄′s̄)P r̄ (A.83)

According to a general structure of supergravity, the group H takes place in the

symmetry under which fermions are invariant. The covariant derivative with the addition

of H−invariant connection is defined by

Dµ = ∇µ +Qµ (A.84)
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which is used to write the covariant derivative of fermionic fields, for example, gravitino

field as

DµψAν = ∇µψAν +QµA
BψBν = ∂µψAρ +

1

4
ωµ,abγ

abψAν +QµA
BψBν . (A.85)

This idea is extended to the theory with more additions of local symmetry, which

in this case is gauge symmetry. The connection Ωgµ is called gauge connection which

will changed the form of covariant derivative to total covariant derivative with gauge

connection included as

Dµ = Dµ +Ωgµ (A.86)
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