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CHAPTER 1
INTRODUCTION

The existence of Hamiltonian decompositions of graphs is one of the well-known
problems which has been studied widely for a longtime, and the Hamiltonicity has
been generalized to hypergraphs in various definitions of Hamiltonian cycles. In
this dissertation, we mainly establish a construction of Hamiltonian decomposi-
tions of three families of hypergraphs based on two versions of Hamiltonian cycles.
The first definitions follows from Katona and Kierstead (KK-definition) defined in
[11]. We provide a KK-Hamiltonian decomposition for some complete 3-uniform
hypergraphs and some complete multipartite 3-uniform hypergraphs. The second
definition follows from Wang and Jirimutu (WJ-definition) defined in [16]. We
study a WJ-Hamiltonian decomposition for complete bipartite 4-uniform hyper-
graphs.

We start the first part of the dissertation by providing all required definitions
and notations, a brief history of the problems and overview of this dissertation.
Moreover, we give some well-known results on graph decompositions which are the

important tools of our construction.

1.1 Definitions and notations

The following notations will be used for the rest of this dissertation. A hyper-
graph H is an ordered pair (V(H), E(H)) where V(H) is a finite set of elements
and E(H) is a collection of non-empty subsets of V(#). The elements in V(H)
and E(H) are called vertices and hyperedges, respectively. We refer to V() and
E(H) as the vertex set and the hyperedge set of H, respectively. If each hyperedge
has size k, we say that H is a k-uniform hypergraph. A Hamiltonian cycle of hy-



pergraph is defined in several ways which we later provide four definitions of it in
Chapter II. A Hamiltonian decomposition of H is a family of Hamiltonian cycles
in a hypergraph H, {C1,Cs,...,C,,}, where each hyperedge in H is contained in
exactly one cycle in the family.

Our work focuses on two families of hypergraphs as follows. The first one is
a complete k-uniform hypergraph of order n with n > k vertices and £ > 2 on
the vertex set V', denoted by K% or KT(Lk)(V), which is a k-uniform hypergraph
on |V| = n vertices such that all k-subsets of the vertex set form its hyperedge
set. The other one is a complete t-partite k-uniform hypergraph on the vertex
set V. =ViUWU---UV, where |V;| = n; for all i € {1,2,...,t} and t > 2,
denoted by K,(l?n%,,,,m or Kﬁ?m,,,,,nt (Vi,Va, ..., V;) which is a k-uniform hypergraph
on |V| = >'_, n,; vertices such that

E(K® )={e:eCV]|e|]=kand |enV;| <kforie{l,2...,t}}.

n1,N2,...,1¢

In particular, if n; =n for all ¢ € {1,2,...,t}, K;i)n, _..n is denoted by Kt((]jz).
—_——

t

1.2 History and overview

The existence problem of Hamiltonian decompositions of hypergraphs is ex-
tended from those of graphs. A well-known result for graphs by Walecki [[] in
1892 says that the complete graphs of odd order can be decomposed into Hamil-
tonian cycles. Furthermore, any complete graph of even order in which a perfect
matching is removed also has a Hamiltonian decomposition.

Later on, this existence problem for graphs was extended into various versions
for k-uniform hypergraphs depending on the definition of Hamiltonian cycles. We
will discuss only four versions of Hamiltonian cycles, namely, Berge-Hamiltonian
cycles, KK-Hamiltonian cycles, WJ-Hamiltonian cycles and WX-Hamiltonian cy-
cles. We focus on the results for two families of hypergraphs; complete k-uniform

hypergraphs and complete t-partite k-uniform hypergraphs.



The first one was defined by Berge [3] in 1979; a Berge-Hamiltonian cycle of
hypergraph H(V, E) is a sequence vy, €g, V1, €1, ..., Un_1,€n_1,V, of all n vertices
in V and some n distinct hyperedges in F, such that the hyperedge e; contains
both v; and v;,1, where v, = vg. The study of Berge-Hamiltonian decompositions
of complete 3-uniform hypergraphs, KT(L?’), was completely solved in 1976 and 1994
by Bermond [4], and Verrall [15], respectively. In 2014, Kuhn and Osthus [12]
studied the existence of Berge-Hamiltonian decompositions of complete k-uniform
hypergraphs K,(@k) where 4 < k <n—1and n > 30.

In 1999, a new variation of Hamitonicity for k-uniform hypergraphs was defined
by Katona and Kierstead in [11] as follows: a KK-Hamiltonian cycle of k-uniform
hypergraph H(V, E) is a cyclic ordering C' = (v; vy -+ v,) of all n elements of
V' such that each k-tuple of consecutive vertices in C' is a hyperedge. A KK-
Hamiltonian cycle is a Berge-Hamiltonian cycle, but the other direction is not
always true. In 2010, Bailey and Stevens conjectured that a necessary condition
for the existence of a KK-Hamiltonian decomposition of K,(f), which states that
(7) is divisible by n, is also sufficient (which we call such an n “feasible”).

KK-Hamiltonian decompositions of complete 3-uniform hypergraph, Kr(bg), were
studied for feasible n by several authors in [2, 13, 18] and [10]. The results were
settled for n < 46, n # 43, and n = 2™ and m > 2, and also 4-uniform hypergraph,
KéA‘). By using “clique finding” method and “difference pattern” method, Bailey
and Stevens [2] in 2010 obtained a KK-Hamiltonian decomposition for Ké4) and
K where n = 7,8,10,11,16. Afterwards, Meszka and Rosa [13] modified the
“difference pattern” method to solve the problem for K where n < 32. Further-
more, the problem for K where n = 2™ and m > 2 was studied by Xu and Wang
[18] in 2002, and for 8 < n < 46, n # 13,19, 25, 31,43 was provided by Hong Huo
et al. [10] (published in Chinese) in 2015. While, for complete ¢-partite 3-uniform
hypergraphs, KK-Hamiltonian decompositions of K t((?;)L) when ¢t = 2 and t = 3, were
completely studied for all n by Xu and Wang [18] in 2002, and Boonklurb et al.
[6] in 2015, respectively.

In this dissertation, we establish a construction of KK-Hamiltonian decompo-



sitions of complete t-partite 3-uniform hypergraph K f(B’T)L) where t = 4,8 (mod 12)
for all positive integer n by using KK-Hamiltonian decompositions of Kt(?’). As the
matter of the fact that K t((gz)) = K. éf ), our results provide a recursive construction for
a KK-Hamiltonian decomposition of a complete 3-uniform hypergraph Kz(i) from
one of K. Our method solves the existence problem of infinitely many com-
plete t-partite 3-uniform hypergraphs and complete 3-uniform hypergraphs from
the initial ones.

On the other hand, hypergraphs have been introduced in database theory in or-
der to model relational database schemes. We mention two definitions of Hamilto-
nian cycles using a new definition of cycles introduced by Wang and Lee [[17] which
is defined to suit the structure properties of relational database in 1999 (Definition
a in Chapter II. In 2001, Wang and Jirimutu adopted the definition of cycles to
define a W.J-Hamiltonian cycle of k-uniform hypergraph H with |V (#H)| = n that
is a (k — 1)-dimensional cycle of length n. In [16], a WJ-Hamiltonian decompo-
sition of complete bipartite 3-uniform hypergraphs KT(LS% where n is a prime can
be constructed successfully (which is also satisfied KK-definition). This motivates
us to construct WJ-Hamiltonian decompositions of complete bipartite 4-uniform
hypergraphs K,(f,)z where n is prime.

In 2002, using the new definition of cycles in [17], Wang and Xu [[18] also defined
WX-Hamiltonian cycles of k-uniform hypergraph H that is a (k — 1)-dimensional
cycle which each vertex of H appears in exactly & — 1 nodes (common vertices
of consecutive hyperedges in a cycle). Then, they provided a WX-Hamiltonian
decomposition of K,(f’,)L and K where m = 2" and n > 2 (which is also satisfied
KK-definition).

This dissertation is organized as follows. The first chapter is the introduction
including definitions, notations and some well-known results of graph decompo-
sitions which are important tools in our constructions. Chapter II investigates
some properties of these four definitions of Hamiltonian cycles, and also proves

that WX-Hamiltonian cycles are KK-Hamiltonian cycles.

Chapter III is devoted to construct a KK-Hamiltonian decomposition of com-



plete t-partite 3-uniform hypergraph K t((ng) where t = 4,8 (mod 12) for all positive

integer n except when ¢t = 4 and n is even. Later, Chapters IV provides the con-
struction for K t(éz) when t = 4 and n is even. Finally, our recursive construction
provides the results for a KK-Hamiltonian decomposition of complete 3-uniform
hypergraph K. éf) from one of Kt(?’) which will be concluded in Chapters III and V1.

In Chapter V, we establish a WJ-Hamiltonian decomposition of complete bi-
partite 4-uniform hypergraph Kf;}% where n is a prime number using properties
of its hyperedges. Each WJ-Hamiltonian cycle in our construction is neither KK-
Hamiltonian cycle nor Berge-Hamiltonian cycle.

Finally, the last chapter concludes all of our results in the research including

some interesting open problems.

1.3 Graphs decompositions

Our constructions of Hamiltonian decompositions use several well-known re-
sults of graph decompositions such as 1-factorizations and Hamiltonian decom-
positions of graphs. A 1-factor of a a graph is a 1l-regular spanning subgraph.
A 1-factorization of graph is a decomposition of a graph into 1-factors. As a 2-
uniform hypergraph is a graph, we use the usual notations such as K, for K
and K, , for K,(f,)l In 1969, Harary [8] provided that K, has a 1-factorization only

when n is even and K, , has a 1-factorization for all positive integer n.

Theorem 1.3.1. [§]
(i) The complete graph K,, has a 1-factorization whenever n is even,
(i) The complete bipartite graph K., has a 1-factorization for all positive

integer n.

In this dissertation, we refer to a 1-factor by its edge set. More precisely, if
a 1-factor F' of Ko, (V) where V- = {1,2,...,2m} is written as {{j, f(j)} : j €
{1,2,...,m}}, then the vertex set V is automatically relabeled to be {1,2,...,m,
f(1), f(2),..., f(m)}. (For example, if ' = {{1,2},{3,4}} is a 1-factor of K,([4]),
then the vertices 1,2, 3 and 4 are relabeled to be 1, f(1),2 and f(2), respectively.)



The remaining tools are Hamiltonian decompositions of graphs and directed
graphs.
The complete graph K,, can be decomposed into Hamiltonian cycles only when

n is odd were proved by Hilton [9] in 1984.

Theorem 1.3.2. [9] Let n € N. The complete graph K, has a Hamiltonian

decomposition whenever n is odd.

Now, let us move to the decomposition of directed graph. We follows the
definitions from [7]. A digraph D consists of a finite nonempty set V(D) of vertices
and a set F(D) of ordered pairs of distinct vertices. Each element of E is a directed
edge. If (u,v) is a directed edge of a digraph, then u is said to be adjacent to v
and v is adjacent from u. A (directed) walk is a sequence (u = uy,ug, ..., ur = v)
of vertices of D such that w; is adjacent to u; ; for all: € {0,1,...,k—1}. A walk
is closed if u =v. A (directed) cycle is a closed walk of length at least 2 in which
no vertex is repeated except for the initial and terminal vertices. A cycle C'in D
is a Hamiltonian cycle if C' contains every vertex of D.

A complete digraph on n vertices is a digraph in which every pair u, v of distinct
vertices is connected by exactly two directed edges (u,v) and (v, u), denoted DK,,.
Bermond and Faber [p] showed that a Hamiltonian decomposition of DK, and
DK do not exist, while Tillson [14] proved that the decompositions of DK, exist

whenever n # 4, 6.

Theorem 1.3.3. [14] Let n € N. The complete digraph DK,, has a Hamiltonian

decomposition if and only if n # 4,6.



CHAPTER II
HAMILTONIAN CYCLES OF HYPERGRAPHS

Hamiltonian cycles of hypergraphs are generalized from those of graphs in sev-

eral ways. We focus on the following four definitions of Hamiltonian cycles;

1. Berge’s Definition,
2. Katona and Kierstead’s Definition,
3. Wang and Jirimutu’s Definition, and

4. Wang and Xu’s Definition.

In this chapter, we first give the definitions and examples of Hamiltonian cycles
of hypergraphs based on each definition. In Section Ell, we investigate the relation
of these four definitions. In Section , we recall certain results of the existence
of Hamiltonian decompositions of hypergraphs based on each definition.

The first classic one was defined by Berge in 1973. He generalized Hamiltonian

cycles in graphs to k-uniform hypergraphs as follows:

Definition 1. [B] A Berge cycle is a sequence (v, €9, U1, €1, - . ., Un—1, €p—1, Uy), and
Vo, U1y -+, Up—1€ V(H) and eg, €1, ..., 6,1 € E(H) are distinct elements, such that
the hyperedge e; contains both v; and v;y; where v, = vg. A Berge cycle is a

Berge-Hamiltonian cycle if {vg,vq,...,v, 1} is the vertex set V(H).

Example 1. Let K, 5(3) be the complete hypergraph on the vertex set V= {0, 1,2, 3,
4}. Consider

Cl = (O’ {O’ 37 1}7 17 {1’ 4’ 2}7 27 {27 O’ 3}’ 37 {37 17 4}7 4’ {47 27 0}7 0)7

Cy =1(0,{0,1,2},2,{2,3,4},4,{4,0,1},1,{1,2,3},3,{3,4,0},0).



Then, {C},C5} is a Berge-Hamiltonian decomposition of K §3). O

In 1999, Katona and Kierstead [11] provided the notion of a KK-Hamiltonian
cycle of k-uniform hypergraphs. This notion also satisfies the previous notion by

Berge while the other way is not always true.

Definition 2. [11] Let H be a k-uniform hypergraph. A KK-Hamiltonian cycle
is a cyclic ordering of the elements of V() such that each k-tuple of consecutive

vertices is a hyperedge.

Example 2. Let K%g) be the complete hypergraph on the vertex set V= {0, 1,2, 3,
4,5,6}. Based on KK-definition, the Hamiltonian cycle (1 24 6 0 5 3) consists of
hyperedges {1,2,4},{2,4,6},{4,6,0},{6,0,5},{0,5,3},{5,3,1} and {3,1,2}.

Moreover, the following collection is a Hamiltonian decomposition of KS’).

{(1246053),(1263405),(1345620),(1452036),(1653240)}.

Next, hypergraphs have been introduced in database theory in order to model
relational database schemes. Also in 1999, Wang and Lee [[17] introduced a new def-
inition of cycles in hypergraphs to suit the structure properties of relation database
In 2001, Wang and Jirimutu [[16] adopted the new definition of cycles to define a
WJ-Hamiltonian cycle.

Definition 3. Let C' = (eg, e1,...,6e,-1) be a sequence of hyperedges of H,
S; = e;Negq fori € {0,1,...,r—1} where indices of the hyperedges are considered
in the modulus r. We call S; a node and C' a cycle with the node sequence S =

(S0, S1, ..., Sp—1) if the following conditions are satisfied:
(p1) € # e; for i # j
(p2) S; #@ forie{0,1,...,r -1},
(p3) SiNS;# @ fori# j,

(p4) for any i € {0,1,...,7 — 1} there is no hyperedge e € E(H) such that

S;USip1USipe Ce.



C' is called a t-dimensional cycle of length r if t = min{|S;| : ¢ € {0,1,...,r—1}}.
If H is a k-uniform hypergraph and |V (H)| = n, then any (k — 1)-dimensional
cycle of length n in H is called a WJ-Hamiltonian cycle of H.

Example 3. Let K §4g be the complete bipartite 4-uniform hypergraph on vertex
set V.=V, UV, where V; ={0,2,4,6,8} and V5, = {1,3,5,7,9}. Let

C = (eg=140,2,1,5},e1 ={0,2,5,9},e5 = {0,2,3,9},e5 = {0,2,3, 7},
€4 = {Oa 27 17 7}765 = {274a 17 7}766 = {274737 7}a €r = {2747379}7

es ={2,4,5,9},e9 = {2,4,1,5}).
Then, the sequence of nodes in C'is

(So ={0,2,5}, 5, ={0,2,9}, S, = {0,2,3},5; = {0,2,7},S, = {2,1, 7},
55 - {2747 7}7 SG = {27473}7 S7 o {27479}7 SS 3 {27475}7 59 - {27 175}>

It can be verified directly that C' satisfies properties (pl) — (p4) and |S;| = 3 for
all . Thus, C' is a WJ-Hamiltonian cycle of K é?’g Note that vertices 6 and 8 do

not belong to any hyperedges in C', thus, C' is not a Berge-Hamiltonian cycle. [J

In 2002, using the definition of cycles in Definition H, Wang and Xu [18] also

defined another version of Hamiltonian cycles as follows.

Definition 4. [18] Let H be a k-uniform hypergraph. Then, any (k—1)-dimensional
cycle in H is called a WX-Hamiltonian cycle of H if each vertex of H appears in

exactly £ — 1 nodes.

Example 4. Let K§33) be the complete bipartite 3-uniform hypergraph on vertex
set V =V, UV, where V; ={0,2,4} and Vo = {1, 3,5}.

Figure Ell illustrates C;, Cy and C3 of K §“§ (V1, V4) which can be verified directly
that each cycle satisfies properties (pl) — (p4). Also in each cycle, each vertex in V'

appears in exactly two nodes and all nodes are of size two. Since each hyperedge



Ci = (e1, ez, €3, €4, €5)
€ el €2 €3 €4 €5
{0,1,2} | {1,2,3} | {2,3,4} | {3,4,5} | {4,5,0} | {5,0,1}
{0,3,2} | {3,2,5} | {2,5,4} | {5,4,1} | {4,1,0} | {1,0,3}
{0,5,2} | {5,2,1} | {2,1,4} | {1,4,3} | {4,3,0} | {3,0,5}

10

Figure 2.1: C4,C5 and C3 of Kéf)’??(Vl, V).

in K:,E?’g) is contained in exactly one cycle in the collection {Cy, Cy, C5}, we have

that the collection is a Hamiltonian decomposition of K. §3)

Moreover, these three cycles are KK-Hamiltonian cycles which can be written

as C;=(012345), C,=(032541)and C5=(052143).

2.1 The connection of four Hamiltonicity definitions

These four definitions of Hamiltonian cycles are related to each other as shown
in Figure @, and in this section, we will show the examples of cycles to verify this

figure.

Berge

Figure 2.2: The connection of the four definitions of Hamiltonian cycles of hyper-

graphs.

First, notice that KK-Hamiltonian cycles satisfy the other three definitions.
While, Berge-definition and WJ-definition are distinct because of cycles in Example
m and Example E In details, since the Berge-Hamiltonian cycle C of K, E()3) in

Example m has nodes of size one, C' is not a WJ-Hamiltonian cycle. Also, Example
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E illustrates a WJ-Hamiltonian cycle which is not a Berge-Hamiltonian cycle.
The next example shows a Hamiltonian cycle of a k-uniform hypergraph that
satisfying both Berge-definition and WJ-definition but it is not a KK-Hamiltonian

cycle.

Example 5. Let K§4) be the complete 4-uniform hypergraph on vertex set V' =
{1,2,3,4,5,6,7}. Let

C=(eg=11,2,3,4},e1 ={1,2,4,5},e0 = {1,2,5,6},e5 = {2,5,6, 7},

e =1{5,6,7,1},e5 ={6,7,1,2}, e = {7, 1,2,3}).
Then, the sequence of nodes in C' is

(SO = {1’ 274}781 = {17 2, 5}732 =T {27 5a6}a S3 = {5767 7}a Sy = {67 77 1}7
Sy = {7,1,2}, S = {1,2,3}).

It can be verified directly that C' satisfies properties (pl) — (p4) and |S;| = 3 for
all 2. Thus, C is a WJ-Hamiltonian cycle of K§4). Since C' can be written as
(3,e0,4,€1,2,€9,5,€3,6,e4,1, 65,7, ¢6,3), C is a Berge-Hamiltonian cycle. But the
vertex 2 belongs to six hyperedges in C'; thus, it is not a KK-Hamiltonian cycle. [

Finally, as Wang and Xu mentioned in [18] that a KK-Hamiltonian cycle is the
same as a WX-Hamiltonian cycle without a proof, we will provide the proof in the

next theorem.

Theorem 2.1.1. WX-Hamiltonian cycles and KK-Hamiltonian cycles are the

same.

Proof. Let H be a k-uniform hypergraph of order n. First, a KK-Hamiltonian

cycle of ‘H satisfies WX-definition since it is a (k — 1)-dimensional cycle, every

nodes are all distinct and each vertex of H in appears in exactly & — 1 nodes.
Next, let C' be a WX-Hamiltonian cycle of H and v € V(). Then, v appears

in exactly k£ — 1 nodes in C. It implies that v is contained in at least k hyperedges
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in C'. Since C has n hyperedges each of k vertices, a vertex v appears in exactly k
hyperedges.

Suppose that k—1 nodes containing v are not consecutive. Then, v is contained
in more than k£ hyperedges in C' which is impossible. Hence, £ — 1 nodes and k
hyperedges containing v are consecutive.

Let C' = (e, €,...,€,). Since C'is a (k—1)-dimensional cycle, e; and e;,_1 has
at least one common vertex. Since there are exactly n collections of k consecutive
hyperedges in C', we have that e;, e;11, ..., e;1r_1 have exactly one common vertex.
Then, we can order such n vertices in C' to be KK-Hamiltonian cycle as follows.
Let v; be the common vertex of k consecutive hyperedges, €;,€;.1,...,€;11_1. Since
e; and e;4y are disjoint, v; # v; if and only if ¢ # j. Hence, C' can be written as

C=(vyvy -+ vp). O

2.2 Literature review

The studies of Hamiltonian decompositions of complete uniform hypergraphs
and complete uniform multipartite hypergraphs based on four distinct definitions
are listed in this section for future references.

First, the study of Berge-Hamiltonian decompositions of complete 3-uniform

hypergraphs, Kff’), was completed by Bermond [5] in 1978 and Verrall [[15] in 1994.

Theorem 2.2.1. [5, 15| There exists a Berge-Hamiltonian decomposition of K

for all n > 3.

Then, in 2014, Kuhn and Osthus [12] studied the existence of Berge-Hamiltonian

decompositions of K& for many pairs of n, k where n > k > 3.

Theorem 2.2.2. [12] There exists a Berge-Hamiltonian decomposition of K&

where 4 < k <n—1 forn > 30.

Next, in 2010, Bailey and Stevens [2] conjectured that a necessary condition

for the existence of a KK-Hamiltonian decomposition of K,(Lk), which is that (Z)
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is divisible by n, is also sufficient (which we call feasible n). When k = 3, the
necessary condition becomes n = 1,2 (mod 3).

Several authors has studied KK-Hamiltonian decompositions of K% for some
feasible n as follows. Bailey and Stevens [2] use “clique finding” method and
“difference pattern” method, and Meszka and Rosa [13] modified the “difference
pattern” method in 2010.

Theorem 2.2.3. [2] There exists a KK-Hamiltonian decomposition of Ké4) and
K,(f)’) where n = 7,8,10, 11, 16.

Theorem 2.2.4. [13] There exists a KK-Hamiltonian decomposition of K,(f’) where

n is feasible and n < 32.

Furthermore, KK-Hamiltonian decompositions (originally, WX-definition) of
K when n = 2™ and m > 2 were studied by Xu and Wang [18] in 2002, and
when 8 < n < 46, n # 13,19,25,31,43 was provided by Hong Huo et al. [10]
(published in Chinese) in 2015.

Theorem 2.2.5. [18] There exists a KK-Hamiltonian decomposition (and WX-

Hamiltonian decomposition) of K,(f’) where n = 2™ and m > 2.

Theorem 2.2.6. [10] There erists a KK-Hamiltonian decomposition of K,(f’) where
n is feasible, 8 < n < 46 and n # 13,19, 25,31, 43.

KK-Hamiltonian decompositions of K t((ng) was studied by several authors. In
2001, when t = 2, the study of WJ-Hamiltonian decompositions of complete bipar-
tite 3-unifom hypergraphs, KT(L?,)Q, was begun by Wang and Jirimutu [[16] for prime
n. Then, WX-Hamiltonian decompositions of KT(;},)Z was completed for all n > 2 by
Xu and Wang [18] in 2002 based on WX-definition. By constructions, these two
results also satisfy KK-definition.

Theorem 2.2.7. [16] There exists W.J-Hamiltonian decompositions and KK-Hamil-

tonian decompositions of Kﬁl where n > 3 and n is prime.

Theorem 2.2.8. (18] There exists WX-Hamiltonian decompositions and KK-

Hamiltonian decompositions of K,(lgq)@ for alln > 3.
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Later on, in 2015, KK-Hamiltonian decompositions of complete tripartite 3-

uniform hypergraphs, Kff%,n, were completely studied by Boonklurb et al. [6].

Theorem 2.2.9. [6] There exists a KK-Hamiltonian decomposition of K,(Tgr)m for

all n > 3.



CHAPTER I11
HAMILTONIAN DECOMPOSITIONS OF COMPLETE
MULTIPARTITE 3-UNIFORM HYPERGRAPHS

3.1 Introduction

The Hamitonicity of cycles in hypergraphs in Definition B was defined by Ka-
tona and Kierstead in 1999 which states that KK-Hamiltonian cycle of H is a
cyclic ordering C' = (v vg --- v,) of all n elements of V' such that & consecutive
vertices form a hyperedge in E. In literatures, many authors have studied the
existence of KK-Hamiltonian decompositions of complete 3-uniform hypergraphs.
Bailey and Stevens [2] also conjectured that a necessary condition for the existence
of a Hamiltonian decomposition of Kfzk), which is that (Z) is divisible by n, is also
sufficient (which we call feasible n). Then, several authors have studied the prob-
lem for K,(LS) with feasible n where n < 46, n # 43, and n = 2™ and m > 2 (see
[2, 13, [10, 18]). Moreover, the existence problem for complete ¢-partite 3-uniform
hypergraphs K t(gz) was completely studied when ¢t = 2 and ¢ = 3 for all n in [1§]
and [6], respectively.

The main objective of this chapter is to construct a KK-Hamiltonian decompo-

sition of a complete t-partite 3-uniform hypergraph, K t((?’rz

j» when ¢ = 4,8 (mod 12).
Our construction also yeilds a recursive construction of a KK-Hamiltonian decom-

position of a complete 3-uniform hypergraph Kéf) from one of Kt(3).

Therefore,
together with the current results, we are able to construct a KK-Hamiltonian de-
composition of KT(LS) where n = 2™,5-2™,7-2™ and 11 - 2™ and m > 2. Remark
that unless stated otherwise, Hamiltonian cycles in this chapter always mean KK-

Hamiltonian cycles in Definition E .

Before starting our construction, we start with the following notations which
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we use throughout this chapter. As our work focuses on 3-uniform hypergraph

K®

H(n)> WE first classify hyperedges of K t(éz) into two types. Let e be a hyperedge of

K t((?;z), e is called a hyperedge of
Type 1 if e contains at most one vertex from each partite set, or

Type 2, otherwise (that is e contains two vertices from a partite set).

The following notations will be used for the rest of the chapter unless stated oth-

erwise.

n is the size of each partite set,

t is the number of partite sets of our complete multipartite 3-uniform hy-

pergraph,

7;(K(3)

t(n

i for ¢ € {1,2},

)) is the subhypergraph of K t(éz) consisting of all hyperedges of Type

ViUVaU---UV, where V; = {a,ab,...,a!} fori € {1,2,...,t} is the vertex
set of K t(gz)

We represent any Hamiltonian cycle of K t(a) by a cyclic ordering (or a cyclic
permutation) of all ¢tn vertices of K t((iz) In our construction, we write a Hamiltonian
cycle C as (P, Py --- P;) if vertices along the cycle C' are partitioned into paths
P; (a sequence of vertices) along the cycle. On top of that, each hyperedge in C'

is called

an inline hyperedge if it is a hyperedge within a path P; or,
a joint hyperedge if it contains vertices from two consecutive paths.
Definition 5. A Hamiltonian cycle D = (D(1) D(2) --- D(n)) of a hypergraph

of order n on the vertex set {1,2,...,n} is written in standard form if D(1) =1

and D(2) < D(n).

Note that we denote the set of integers {1,2,...,n} by [n]. Next, a necessary
condition for the existence of a Hamiltonian decomposition of K 15((373) is given in the

following theorem.
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Theorem 3.1.1. [fK ) has a Hamiltonian decomposition, thent = 1,2 (mod 3)
orn =0 (mod 3).

Proof. Assume that ¢ = 0 (mod 3), then 3 4 ¢t — 1 and 3 1 ¢t + 1. Since each
Hamiltonian cycle of K ®) () contains tn hyperedges, the number of hyperedges of
K((g) must be divisible by tn. Then, - ((%) = t(3)) = in(t — 1)(n(t + 1) — 3)

is an integer. It follows that n = 0 (mod 3). Therefore, ¢ = 1,2 (mod 3) or
= 0 (mod 3) as desired. O

Here, we focus on a construction of a Hamiltonian decomposition of K t(éz) when
t =0 (mod 4). Our construction method relies on the existence of Hamiltonian
decompositions of complete 3-uniform hypergraphs, Kt(?’). Note that a necessary
condition for such existence for K*) is t = 1,2 (mod 3) (see more details in [2])
which is also a part of the necessary condition for K ((3 )) in Theorem . There-

fore, our construction aims to solve the problem for K When t =4,8 (mod 12)

for all positive integer n which is concluded in Theorem @ as follows.

Theorem A. (Main theorem) Let n > 2 and t be a positive integer such that
t = 4,8 (mod 12). The complete multipartite 3-uniform hypergraphs Kt((?’rz) has a

Hamiltonian decomposition provided that

(1) t =4 and n is odd, or
(1) t > 8 and K ) has a Hamiltonian decomposition.

Our construction will create a collection of Hamiltonain cycles of K t((:z) con-

taining only hyperedges of the same type. The Subhypergraph Ti(K (372 ) will be
decomposed in Section B.2, while the subhypergraph 75(K, ) will be decomposed
into Hamiltonian cycles in Sections @ and @ dependlng on the parity of n.
Besides, Section is dedicated to establish a Hamiltonian decomposition of
complete multigraph 2K, which is an important tool for Section @ Finally, we

will prove our main theorem and provide the results for complete hypergraphs in

Section @
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3.2 Hamiltonian decomposition of ﬂ(Kt((?;z))

In this section, we will construct a Hamiltonian decomposition of the subhy-
pergraph 77 (K 5(32)) containing all hyperedges of Type 1 when ¢ = 0 (mod 4) in
Theorem . Our construction uses a Hamiltonian decomposition of Kt(g) and a
1-factorization of K, ,. Note that a necessary condition for such existence for Kt(?’)
ist = 1,2 (mod 3) (see more details in [2]) which is also a part of the condition in
Theorem @ To obtain only hyperedges of Type 1, the construction creates each
Hamiltonian cycle consisting of n paths of order t; each path contains one vertex

from each partite set.

Theorem B. Let n,t € N and t = 4,8 (mod 12). The hypergraph 7](Kt((373)) has a
)

Hamiltonian decomposition if Kt(3 has a Hamiltonian decomposition.

Hence, in this section, we constantly assume that ¢ = 4, 8 (mod 12) and Kt(?’)([t])
has a Hamiltonian decomposition Z. Let .# be a 1-factorization of the complete
bipartite graph K, ,(X,Y) where X = [n] =Y, which exists by Theorem .
(with some abuse of notation, X UY consists of distinct 2n vertices.) Note that
12| = §(t —1)(t — 2) and |.Z| = n. We aim to establish the following collection of

cycles in K t((:?b) ,

% ={CyD,F):i€{0,1,....n—1},D € J and F € F}.

The collection € will contain a total of |2||.%#|-n = %Q(t — 1)(t — 2) cycles.
Let D be any Hamiltonian cycle of Kt(?’)([t]) in 9 and F any l-factor of
K, (X,Y) in ., written

D =(D(1)D(2) --- D)) and F ={(j, f(j)) : j € X, f(§) € Y, j €{L,2,... . n}},

which D is written in standard form. As we need to distinguish the partite sets
containing vertices in an edge of 1-factor F', we represent each edge in F' by an

ordered pair instead of a set of vertices.
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We will construct n cycles from D and F as follows. For i € {0,1,...,n — 1},
define

where, for j € {1,2,...,n},

i _ D) D@2) D@ _D@) D) D) D(t-3) D(t—2) D(t—1) D(t)
Pi(D,F) = ajyy’ iy 577 QpGy Qe Qg - Gii - Qg @ GGy
and j + ¢ is considered in the modulus n.

Figure @ illustrates C;(D, F) in which the j'™ row represents path Pj(D,G)

and the m*" column consists of vertices from Vb(m)- In addition, for r € {0, 1, ..

i_
.
1}, vertices in the (4r +1)™ and the (4r+ 2)™ columns are the i"*-rotation of those
in Cy(D, F), the other columns (indicated by the framed columns) are left the same
as Co(D, F). Since t = 4,8 (mod 12), vertices along C;(D, F') alternate between

two fixed vertices and two i"-rotated vertices when compare to Cy(D, F).

Vba)y Vbey Vbe) Voba Vo) Vbe -+ Vbe-3) Vbe-2y Vbe-1) Vb
D) DE D(3) D D(5) D6 D(t-3) D(i—2 D(t-1) D
Ci(D,F) = (ay}; a‘f((lii) ay’? af((1)> ars; af((lJ)ri) ea? af((1+i)) ay"Y af((l))
p(1) DE) D) D) D(5) D6) D(-3) D(t-2) D(t-1) D()
Gotit Cpats) | %2 " Op) | %24i” Cpaiy  ooo o Oovi o Cpeq) @2 Ay(2)
D(1) D(2) D(3) D4 D(5) _D(6) D(t—3) D(t-2) D(t—1) _D(t)
nti Qi) |9 ey | Pk vy Gk Q) O |)

Figure 3.1: Hamiltonian cycle C;(D, F').

Example 6. Figure @ illustrates the three Hamiltonian cycles Co(D, F'), C1(D, F)
and Cy(D, F') of ﬂ(Ké:()’;)) constructed from a Hamiltonian cycle D = (D(1) D(2) - - -
D(8)) and a 1-factor F' = {(j, f(4)), : 7 € {1,2,3}}. Each vertex a} in the cycle
C;(D, F) is represented by its subscript £. The last column duplicates the first
column. The solid lines indicate two consecutive vertices in the same path, while

the dash lines indicate two consecutive vertices from different paths.

Next, Lemma guarantees that certain hyperedges are used to construct
cycles in €. For D € 9 and & C %, let E(D, <) stand for the collection of
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T T T T T T T FL, 1
Co(D, F) = T > 7 > T g " v
3 &) 3 3] 3 T3 3 f(3) *3
Vb ) V) Vi Vi Vi) Vb Vis) Vb
,,,,
3 73) 3 7(3) 3 73) 3 7() >3
Vb Vb V) Vi) Vb(s) Vb() Vo) V) Vo)

Figure 3.2: Co(D, F),Cy(D, F) and Cy(D, F) of Ti(K{)).

hyperedges of all cycles constructed by D and all F' € /. When & = {F},
we write E(D, F) instead. In other words, E(D,F) = (') E(Ci(D, F)) and

E(D, 7) = Upes Uiy B(GI(D, F)).

Lemma 3.2.1. E(D,.%) contains all hyperedges from the collection
A={{a??, a7 0l DY i gk € [n], 0 € [1]}-

Proof. Let F € #. Let €i(1),€5(2),...,€4(t) be the sequence of ¢ hyperedges

along the path P{(D,F ) in C;(D, F), beginning with the two inline hyperedges

; D(2 D(3) D4
“(1) = {a? ]+l ,af(ﬁl), 1 SN HRhs {af((jli), a; ( ),af((j))} and so on. Note that

they are inline hyperedges except the last two hyperedges are joint hyperedges
connecting P}(D, F) and Pj,,(D, F), Then, for { € [t — 2],

e

(

{a]DJfl), a?((fil? a; £+2)} if =1 (mod 4),

(+1)  D(l+2 o
{fm’%( )’af((j) '}, it =2 (mod 4),

{af( ) ?((f)—l—l)’ aﬁf”)}, if ¢ =3 (mod 4),

D(+1) D(t+2 e
{ @ )’ J+(z )7a’f((j+i))}7 if =0 (mod 4),
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ei(t—1) = {af(t ,a?((jt)), jJ:_ﬁ)} and €}(t) = {a J), ﬁﬁll),af ;112“)} where the
operation ¢ + j in D(i + j) is considered in the modulus ¢.

First, let ¢ be odd. Then, each hyperedge, e;'»(é), contains two vertices in Vp )
and Vp(e11) induced by the ordered pair (7, f(j)) or (j +14, f(j +4)) in the 1-factor
F.

Let By = {{aZ®"", f(( )m),a CmtN. 2y € [n],m € [4]}. Then, we have

that

D) D((+1 D(¢+2 . .
Br= {1 J+(w f(j:_z))’aj(+)}:ZG{Oalv---an_l},] € [n],l e[t —2],

(=1 (mod 9} U {{al,al S0 al"} i€ {0,1,...,n -1},
jelnltelt—21.0=3 (mod 4} U{{a?* ", aPW) alD})

= {ei(0):ie€{0,1,....n—1},j € [n], L€ [t],{ =1,3 (mod 4)}
C E(D,F).

Now, for hyperedges eé- (¢) in Cy(D, F) when (¢ is even, since each hyperedge
contains two vertices in Vp(e41) and Vpey induced by the ordered pair (7, (7))
or (j+1, f(j+1)) in the 1-factor F, we can conclude in the similar way that

= oy a0, a MY ay € [n)m € 3]}
= {e}(ﬁ): ie€{0,1,...,n—1},j € [n],£ € [t],£=2,0 (mod 4)}
c B(D,F).

Finally, let e € A, written e = {a2“, a?“*" o} for some u, v, w € [n] and
¢ e [t]. If ¢ is odd, consider v and v as vertices in two partite sets in K, ,(X,Y).
Then, there exists F' = {(j, f'(y)) : 7 € {1,2,...,n}} € F such that v = f'(u).
Since (u, f'(u)) is an edge in F', e = {af(ﬁ),af,((ﬁl),aw(@r?)} € B C E(D,F").
Similarly, if ¢ is even, then there exists F”" = {(j, f"(4)) : 7 € {1,2,...,n}} € F
and z € [n] such that w = f"(v), u = f"(2) and (v, f”(v)) is an edge in F"”. Thus,

D /+1 DEQ
e—{af,,()) ay (+), f”(+ }ECF//CE(D,F”). L]
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Lemma 3.2.2. For i € {0,1,...,n — 1}, Cy(D,F) is a Hamiltonian cycle of
71( t(n)

Proof. A path P}(D, F) in C;(D, F) contains one vertex from each partite set since
D is a Hamiltonian cycle of Kt(g)([t]). Note that in Co(D, F), each path P)(D, F)
is determined by an edge (j, f(j)) in F. Since F' is a l-factor, all nt vertices
in Co(D, F) are distinct. When compare Pj(D,F) to P(D, F), vertices from
the partite sets Vpumt1) and Vpumo) are determined by (j + ¢, f(j + 7)) instead
of (7, f(y )) for m € {1,2,...,£ —1}. It means that C;(D, F) is a Hamiltonian
cycle of K for all 2. Moreover, three consecutive vertices in C;(D, F') always

come from three different partite sets. Hence, C;(D, F') is a Hamiltonian cycle of
Ti(KG)): a
-
Now, we are ready to prove Theorem .

Proof of Theorem E % is a collection of Hamiltionian cycles of T(K ((372)) by
Lemma B.2.9. It remains to show that % is a decomposition of Ti(K t( )) Let
E(%) be the set of all hyperedges of all cycles in €. Hence, F (%) contains a total
of 2t 2L(t — 1)(t — 2) hyperedges of Type 1 (counted repeatedly). Since the number
of hyperedges of Type 1 in K t((yz) is also ”—t(t — 1)(t — 2), it suffices to show that
each hyperedge of Type 1 in K 15((372) is in at least one cycle in €.
Let e be a hyperedge of Type 1 containing vertices from V,,, V;, and V,, written
e = {ab,al,al } where u,v,w € [n|. Without loss of generality, there exists a
unique Hamiltonian cycle D € & such that p = D({),q = D({ + 1) and r =
D(¢+2) for some ¢ € [t]. Then, e = {at?,al al“**}. By Lemma , €€

E(D, %) C E(€). Therefore, € is a Hamiltonian decomposition of 7T ( t(i)) O

3.3 Hamiltonian decomposition of 75(K 75(52)) where n is even

In this section, we decompose the subhypergraph 75(K t((ST)L)) containing all hy-

peredges of Type 2 when n is even in the following theorem.
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Theorem C. Let n,t € N. The subhypergraph E(Kt((?;z)) has a Hamiltonian de-

composition if n and t # 4,6 are even.

Hence, in this section, we constantly assume that n and ¢ are even such that
t # 4,6. The construction is similar to one in Section @, but here we use a
Hamiltonian decomposition of DK, instead of Kt(g) and a 1-factorization of K,
instead of K, ,. To have only hyperedges of Type 2 in the cycles, we will create
each cycle comprised with § paths of length 2¢, where each path contains two
vertices from each partite set.

Let 2 be a Hamiltonian decomposition of D K;([t]) and ¢ be a 1-factorization of
the complete graph K, ([n]), which exist by Theorem ast # 4,6 and Theorem
as n is even, respectively. We aim to establish the following collection of cycles
in K t((g 73),

¢ ={Ci(D,G):i€{0,1,....5 -1}, De Zand G € ¥}.

Thus, ¢ will contain a total of §(n—1)(t—1) cycles. Now, let D be any Hamiltonian
cycle of DK([t]) in Z and G any 1-factor of K,,(|n]) in ¢, written

D= (D(1) D(2)---D(t)) and G = {{j, g(j)} : j € {1,2,..., 5}},

where D(1) = 1. Consequently, the vertex set [n] of K, is relabeled according to G

tobe {1,2,...,%,9(1),9(2),...,9(5)}. Thus, all vertices in Vp ) are automatically

D(£) D) D) D() D(£)
2yl Gy By ,ag(n)} for all

¢ € [t]. (For example, if G = {{1,2},{3,4}} is a 1-factor of K,([4]), then the

relabeled according to G to be {af)(e), a

vertices 1,2,3 and 4 could be relabeled to be 1,¢(1),2 and g(2), respectively.)
We will construct § cycles from D and G as follows. Fori € {0,1,...,5 — 1},
define
C.(D.G) = (Pi(D,G) Fi(D,G) -+ PL(D,G))
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where, for j € {1,2,..., 3},

PID,G) = a”D aP0) PO (PO (D6 (D) D(t-1) ,D(t=1) D) D)

Ajri Qg(iiy 5 9G)  Yi+i Qg(ri) 0 B gG+i) Y Q)

and j + 1 is considered in the modulus 3.

Vba) Vba)y Vbe) Vbey Vbe) Vbe) ++ Vbe-1) Vbe-1y Vbe Vb
o D(1) _D(1) D(2) D(2) D(3) D(3) D(t—1) _D(t—1) D(t) D)
G(D.G)= (@ Ggapy | G0 )y | G Ggiiys oo G Ggaay | G0 Gy
D(1) D(1) D(2) D(2) D(3) D(3) D(t—1) _D(t—1) D(t) D(t)
24 Qo+ | P2 Q) 2i Gyo4i) oo 24i Bg(a+i) Gy Gy
D) _D(1) D2) D(2) aP®) D) D(t—1) D(t—1) D(t) _D(t)

nyi Ggariy | On Ogmy [ 0ayi gcasy - Gnyy o Goonyy | n Gy |)

Figure 3.3: Hamiltonian cycle C;(D, G).

In the same fashion as in Figure @, Figure @ illustrates C;(D,G) where
the framed columns indicate fixed columns. Note that both (2m — 1) and (2m)*"
columns consist of vertices from Vi for m € {1,2,...,t}. Since t is even, vertices

in Cy(D, G) are alternate between two fixed vertices and two i*"-rotated vertices.

Example 7. Figure @ illustrates the three Hamiltonian cycles Cy(D, G), C1(D, G)
and Cy(D, G) of E(Ké(é)) constructed from D = (D(1) D(2)--- D(8)) and 1-factor
G ={{J,90)}: 7 € {1,2,3}}. Each vertex aj is represented in the figure by its
subscript ¢. The last column duplicates the first column. The solid lines indi-

cate two consecutive vertices in the same path, while the dash lines indicate two

consecutive vertices from different paths.

For D € 9 and G € ¥, let E(D, G) stand for the collection of hyperedges of
all cycles constructed by D and G. In other words, E(D,G) = [J24, LI E(Ci(D,Q)).

Lemma 3.3.1. E(D,G) contains hyperedges in the following two collections.

(@) A={{a;™, ayV,a; "} d,j € [2],m € [t]} and

D(m) D(m+1 D(m+1 .. n
(0) B ={{ag”,af " al DY e [2]m e [t}
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Figure 3.4: Co(D,G),Cy(D,G) and Cy(D, G) of To(KLy).

Proof. Let €(1),€5(2),...,€5(2t) be a sequence of 2t hyperedges along the path

P?(D G) in Ci(D,G) beginning with the two inline hyperedges €}(1) = {aﬁ(g),

PP, ¢i(2) = {20, 4P PO

]+Z ) @; gy O B0 } and so on. Note that they are inline

hyperedges except the last two hyperedges which are joint hyperedges connecting
P/(D,G) and P}, ,(D,G). Then, for m € [t — 1],

J+1

§
{aﬁ;n)’ af(ﬁi)? aJ‘D(mH)}a if m =1 (mod 2),
ei(2m —1) =
D(m D(m D(m+1 / o
{aj( )7%(2 ) ]—I—z )} iIfTm=0 (mod 2),
\
{aﬁgnjz)’ a; 7o, afé’;m)}, if m=1 (mod 2),
e§(2m) =
D(m) D(m+l D(m+1) . .
{a’g(J Qi Qg b, ifm =0 (mod 2),
oP® D) D(t+1)  D(t+1)
(2t - 1) - {a 7 g(]) ) ]+1+1 } and €. (2t) {a ]) , j+1+’L 7a’g(3+1+l)}

We claim that {ej(2m —1):7 € {0,1,...,5 —1},j € [5],m € [t]} = A and
{ei(2m): i€ {0,1,...,5 —1},j € [3],m € [t]} = B.
First note that for each m € [t], a hyperedge €}(2m — 1) contains two vertices

in D(m) induced by an edge {j,9(j)} or {j +i,9(j + i)} in the 1-factor G. In
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addition, the other vertex in €}(2m — 1) is in D(m + 1) with subscript j or j + i.
Since for each j € [§], {j +¢ (mod %) : i € {0,1,...,%5 — 1}} = [§], we have that

a7 ag ™ VY i€ 0,1, 8 — 1}, € [2],m € [t],m is odd} U

{{d’ D(m) D(m7 ]_Hm—f—l)} €{0,1,...,2 —1},j € [2],m € [t],m is even}

equals to A as claimed.
Similarly, we can show that {e’(2m): i € {0,1,...,5 —1},j € [3],m € [t]} =
B. Since €({) € E(D,G) for all i € {0,1,...,5 —1},j € [5] and £ € [2t],

E(D,G)=AUB, O

Lemma 3.3.2. For i € {0,1,...,5 — 1}, Cy(D,G) is a Hamiltonian cycle of
7—2( t(n )

Proof. Each path P}(D,G) in C;j(D,G) contains two vertices from each partite
set since D is a Hamiltonian cycle of DEKy([t]). In Co(D,G), each path P)(D,G)
is determined by an edge {j,¢(j)} in G. Since G is a 1-factor, all nt vertices in
Co(D, G) are distinct. When compare P}(D,G) to PP(D,G), vertices from the
partite set Vp(am—1) are determined by {j +1,g(j +1)} instead of {j, g(j)} for m €
{1,2,..., %} Hence, C;(D,G) are Hamiltonian cycles for all i. Moreover, three
consecutive vertices in C;(D, G) are from two partite sets. The cycle contains only

hyperedges of Type 2. Therefore C;(D, GG) is a Hamiltonian cycle of 75 (K ) ) O

t(n)

Now, we are ready to prove our main result of this section.

Proof of Theorem B ¢ is a collection of Hamiltionian cycles of 7§(K ®) ) by
Lemma . It remains to show that ¢ is a decomposition of 75 (K )) Let E(%)
denote the set of all hyperedges of all cycles in . Hence, E(%) contains a total

of ”7%(71 —1)(t — 1) hyperedges of Type 2 (Counted repeatedly). Since the number

of hyperedges of Type 2 in Kt((g)) is also %t (n —1)(t — 1), it suffices to show that

each hyperedge of Type 2 in K (( )) is in at least one cycle in % .

Let e be any hyperedge in E(K( ) ))- Then, e = {af}, a}}, af,} for some u,v,w €

u) v w

[n] and p, q € [t] where p # ¢ and u # v. Since Z is a Hamiltonian decomposition
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of DK([t]), there exist exactly two distinct Hamiltonian cycles, say D and D’ in
2 such that (p, q) and (g, p) are the directed edges in D and D', respectively. Then

p=D(r)and ¢ = D(r+1), and

p=D'(s+1)and g = D'(s).

for some r,s € [t]. Since ¢ is a 1-factorization of K,([n]), there exists unique

G={{g)}:je{l,2,....,5}} € 4 and ¢ € [%] such that without loss of

generality, u = ¢ and v = g(c); thus, {a}, a}} = {a,a;,}. Consequently, there

u’r v c?

exists a unique d € [§] such that w = d or w = g(d).

If w = d, then e can be written as {a- ", a>", a7V}, By Lemma (a),

g(c)
e € E(D,G) € E(?). If w=g(d), then e can be written as {G?I(SH),af(/c()SH)a
af(ld()S)}' By Lemma (b), e € E(D',G)C E(%). Therefore, ¢ is a Hamiltonian

decomposition of T3 (K ®)

t(n) ). []

3.4 Hamiltonian decomposition of 7;(K t((gr)b)) where n is odd

The last construction will decompose the subhypergraph 7s(K t((?;z)) containing
all hyperedges of Type 2 when n is odd. Similar to Theorem B in Section @, the
construction works for an even t. However, the construction uses quite different

technique. The following is our main result in this section.

Theorem D. Let n,t € N where n > 3. The subhypergraph B(Kféj’g)) has a

Hamiltonian decomposition if t is even and n is odd.

Our construction requires a certain decomposition of 2-fold complete graph 2K,

which we first construct it in Section .

3.4.1 The Canonical Decompositions of 2K,

The 2-fold complete graph, 2K, is a multigraph on n vertices with any pair of

vertices is joined by exactly two edges. As our construction in Section @ requires
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a Hamiltonian decomposition of 2K, when n is even with certain properties, we
will provide the decomposition along with such properties named the Canonical
Decomposition 9 as follows.

Let n be even integer. Define
@:{D)\:EAUE%_,_}\ CAE {1,2,...,71—1}}

where E, = {{z,n},{z —d,v+1d} :i € {1,2,...,% — 1}} such that its operation

is taken modulo n — 1.

Example 8. An illustration of Dy and D4 in & when n = 6. Then,
Dy =(164352)and Dy=(126453)

Figure @ illustrates Dy and D4 where red pairs and blue pairs are joined by solid

and dash lines, respectively.

Figure 3.5: Dy, Dy, D3, Dy and D5 in & when n = 6.

Lemma 3.4.1. & is a collection of Hamiltonian cycles of the 2-fold complete graph
2K, ([n]) for all even n.

Proof. We write Ey = {eg = {A\,n},e; ={A—i,A+i}:ie€{1,2,...,5 —1}} and
Eniy=1{ho = {5 +An}phi = {5 +A—i, 5+ A+id} i € {1,2,...,5 — 1}}.
Then we order all edges in Dy by alternating between edges in Exzy and En,y
as follows; eg, hn_y,e1,hn_y,... en_y, hog which is {n, A}, {A\ A+ 11 {A+1,\ -
L {A=1A+2}, . {A+5 -1, A=5+1}, {A+5,n}. Remark that \—3+1 € en 4

and A+ 2 € hg are the same because of the operations in the modulus n—1. Hence,
5 P
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Dy=(mn X A+1 A=1 X+2 --- A+ %) and it is a Hamiltonian cycle of

2K, ([n)). [

Theorem 3.4.2. Let n be an even integer. & is a Hamiltonian decomposition of

the 2-fold complete graph 2K,(|n]).

Proof. By Lemma , D, is a Hamiltonian cycle. Note that {F) : A € {1,2,...,
n—1}} is a 1-factorization of K,([n]). Since each edge of K,([n]) is an edge
in two cycles in & which are Dy and Dz, for some A\, Z is the Hamiltonian

decomposition of the 2-fold complete graph 2K, ([n]). O

By the proof of Lemma , the consecutive edges of a cycle Dy = (D,(1)
D(2) -+ Dx(n)) are alternate between an edge in Ey and Ex ). Furthermore, if
{D\(1), Dx(2)} € E, for each Dy € 2, 2 is called the Canonical Decomposition

of 2K, [n]. It follows that in any Canonical Hamiltonian cycle Dy,

Ey={{Dr(2j ~ 1), Da(2j)}:j € {1,2,...,2}} and

Esy={{Da(2)), Da(2i+1)}:5€{1,2,...,5}},

and edges in £y and Ex iy will be referred to as red pairs and blue pairs, respec-
tively. This will be used in our construction in Section @

Since {E) : A € {1,2,...,n — 1}} and {Ea;y 1 A € {1,2,...,n — 1}} are
1-factorizations of K, ([n]), any pair {p,q} in K,([n]) is a red pair once in D, and
a blue pair once in Dy for some A\, \' € {1,2,...,n — 1}. Hence, we can conclude

this fact in Proposition for future reference.

Proposition 3.4.3. Let n € N be even and & the Canonical Decomposition of
2K,([n]). For any p,q € [n] where p # q, Then, {p,q} is a red pair and a blue pair

once in 9.

3.4.2 The construction

For the rest of this section, we constantly assume that n is odd, n > 3 and t is

even.
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Let 2 be the Canonical Decomposition of 2K;([t]) and 2 a Hamiltonian de-
composition of K, ([n]) which always exists by Theorem 3.4.9 as ¢ is even and
Theorem as n is odd, respectively.

We again construct the following collection % of Hamiltonian cycles of 75 (K t((?;z))

in which each cycle is composed of % paths of length 2n.
¢ ={Ci(D,Q):i€{0,1,....,.n—1},D € P and Q € 2}.

Thus, ¢ will contain a total of §(n — 1)(¢ — 1) cycles. Unlike the two previous
subsections, here each path contains vertices from only two partite sets. For each

pair of Hamiltonian cycles
D=(D(1) D(2) --- D(t)) € Z and Q = (Q(1) Q(2) --- Q(n)) € 2

which are written in standard form. Consequently, the vertex set [n] of K, is
relabeled according to @ to be {Q(1),Q(2),...,Q(n)}. Thus, all vertices in V(g
are automatically relabeled according to ) to be aQD((g, ag((g, ceey ag((fl)) forall ¢ € [t].

We will construct n Hamiltonian cycles, C;(D, Q) where i € {0,1,...,n — 1},
of E(Kéa)) in the collection €. For each i € {0,1,...,n — 1}, C;(D, Q) consists

of % paths, written

Ci(D,Q) = (P{(D,Q) Py(D,Q) ... Pi(D,Q))

where each path Pj"(D7 Q) consists of 2n vertices from Vp(zj_1) and Vp(o;) ordered

as follows. For all j € {1,2,..., L},
P;<D7Q):bn 1 bp—1 co -+ by o1 b1 ocp,

where for r € {1,2,...,n},

_ D@Gr) D)
br=aqesh s O = Qi)
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. 25 — 1, ifT:norT:"T“,
z(j,r) =
27, otherwise and

2(j,r) € {27 = 1,25} ~{z(, )}

except the case when n =3 and r = 2, x(j,2) = 25 and z(j,2) = 2j — 1.

We say that C;(D, Q) is the i** rotation of Cy(D, Q). In other words, Cy(D, Q)

is an initial cycle which is rotated n — 1 times to create additional n — 1 cycles.

Example 9. An illustration of Co(D, Q) ofﬂ(KEE?;)) when

D = (D(1) D(2)---D(8)) and Q = (Q(1) Q(2) --- Q(9)).

Figure @ shows the Hamiltonian cycle Cy(D, Q) of T1(K éf’;)) constructed from D
and () where each vertex ag((f)) is represented by Q(¢) in column Vp(,). The solid
lines join two consecutive vertices in the same path, while the dash lines join two

consecutive vertices from different paths. Figure @ shows the values z(j,r) and

Figure 3.6: Co(D, Q) of ﬂ(Ké?g)).

Z(j,r) for the superscripts of vertices b, and ¢, in P]Q(D, @), respectively.

From our construction, we have the following two observations of C;(D, Q)

which will later be referred to in Lemma . Given a path P;(D, @), Observation
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x(j,r) of b, and z(j,r) for ¢,

bg ¢ bs ca by c3 bg ey bs c5 by cg by ¢ by cg by ¢
P)(D,Q)
PY(D,Q) 1 1 21 2 1 2 1 1 2 2 1 2 2 2 1 2 2
P)(D,Q) 3 3 4 3 4 3 4 3 3 4 4 3 4 3 4 3 4 4
P)(D,Q) 5 5 675 675 675 5 6 6 5 675 675 6 6
PY(D,Q) 7 7 8 7 8 7 8 7 7 8 8 7 8 7 8 7 8 8

Figure 3.7: The values z(j,7) and Z(j,r) for vertices b, and c¢,, respectively.

1° reveals two partite sets in the path and Observation 2° shows the order of vertices

in each partite set along the path.

Observation 1°

Observation 2°

Lemma 3.4.4. For i € {0,1,..

To(K)).

In each path Pf(D, @), the superscripts D(z(j,r)) and

D(z(j,r)) indicate the partite sets in {Vp(2;-1), Vp(ej)} for
b, and ¢, respectively. All shaded columns and unshaded
columns in Figure @ correspond to Vp(g;j—1) and Vp(j) for

je{1,2,... L}, respectively.

In each path Pj(D,Q), the subscripts Q(r +1) for b, and c,
determines the vertices in the position r + ¢ of the partite
set ordered by ) which is invarient for each path in the
cycle Ci(D, Q). Furthermore, the subscripts of the shaded
entries form an arithmetic sequence with difference 1 in the
modulus n, while those of the unshaded entries in Figure
@ form an arithmetic sequence with difference —1 in the
modulus n. For example, Figure @ illustrate when ¢ = 0,
the sequence from shaded entries is 9,1,2,3,4,5,6,7,8 and
the sequence from unshaded entries is 8,7,6,5,4,3,2,1,9 as

shown in .

n—1}, Ci(D,Q) is a Hamiltonian cycle of



33

P]Q(D,Q) by | c1 | bs | ca| by |c3|bs | ca|bs|cs|ba|Co|bs|Cy|b2|Cg|bi]|co

Figure 3.8: P]Q(D, Q) with shaded entries from Vp(y;_1) and unshaded entries from

Vb(2j)-

Proof. Since @ is a Hamiltonian cycle of K,([n]), for each j € {1,2,...,L}, a
path P;(D,Q) contains all 2n vertices from Vp(g;—1) and Vp(j). Since D is a
Hamiltonian cycle of 2/K,([t]), paths Pj(D,Q) and P}(D,Q) are disjoint for all
j # L. Then, C;(D, Q) is a Hamiltonian cycle. Moreover, any three consecutive
vertices in C;(D, Q) always come from exactly two partite sets. Thus, C;(D, Q)
contains only hyperedges of Type 2 as desired. [

We will next discuss the properties of hyperedges of Type 2 corresponding to
2.

Definition 6. A hyperedge with (p,q)-partite sets is a hyperedge of Type 2 con-

taining two vertices in V), and one vertex in V.

Let e be a hyperedge with (p, ¢)-partite sets. Then, e = {a®,a?,al} for some
u # v € [n]. Consider u and v as vertices of K,([n]), there exists a unique Q) € 2

such that {u,v} € E(Q). As @ is written in standard form, there exists a unique

s € [n] such that {a?,aP} = {a’é(s),ag(s 41y} Consequently, there exists unique
d€{0,1,...,n—1} such that af, = ag,,, ;- Therefore, e = {a(, ), 411y Wsra)}-

Hence, given 2, each hyperedge with (p, g)-partite sets can be written in a unique
form; thus, we can define the delta value of each hyperedge with (p, ¢)-partite sets

in our construction as follows.

Definition 7. Let 2 be a Hamiltonian decomposition of K,,([n]). For each hyper-
edge e with (p, ¢)-partite sets written e = {ag(s),ag(erl),an(Hd)} where Q € 2,
the delta value of e, denoted by d(e), is d. It follows that there are n possible delta
values in {0,1,...,n — 1} denoted by D.

Example 10. Figure @ illustrates the delta values of hyperedges in the cycle
Co(D, Q) in Example g Since vertices in this cycle are relabeled according to D
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and @, the delta values of hyperedges are depending on Hamiltonian cycle ). As
each three consecutive vertices along the cycle form a hyperedge, we label its delta

value at the middle vertex of each hyperedge.

Figure 3.9: Delta values of hyperedges in Cy(D, Q) of ﬂ(Ké?;)).

Remark 3.4.5. For i € {0,1,...,n — 1}, the i*-rotation of an initial cycle

Co(D, Q) preserves the delta values of hyperedges in the resulting cycle.

Lemma will investigate the delta values of all hyperedges in an initial
cycle Cy(D, @), which yields the result for other cycles C;(D, Q) in € by Remark
. We begin by observing properties of hyperedges in P]Q(D, Q) regarding to
red pairs and blue pairs in D in the next remark.

For j € {1,2,..., L}, let ;(1),e;(2),...,€e;(2n —2) be 2n — 2 inline hyperedges
along the path PjO(D, @) and e;j(2n—1), e;(2n) be two joint hyperedges connecting
P)(D,Q) and P}, ,(D,Q). Let Ip and Jp be the collections of red pairs and
blue pairs in D, respectively. In other words, Ip = {{D(2j —1),D(2j)}: j €
{1,2,..., 5}y and Jp = {{D(24),D(2j + 1)} : j € {1,2,..., 5} }.

Remark 3.4.6. The following statements hold.

(1) For ¢ e {1,2,...,2n},
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(i) The set of inline hyperedges in PJQ(D, Q) consists of hyperedges with (D(2j —
1), D(2j))-partite sets and hyperedges with (D(2j), D(25 — 1))-partite sets
where {D(2j—1), D(2j)} is a red pairin Ip. Moreover, forl € {1,2,...,2n},

ife1(€) is with (D(1), D(2))-partite sets, then e;({) is with (D(2j—1), D(27))-
partite sets, and
if e1(0) is with (D(2), D(1))-partite sets, then e;(¢) is with (D(2j), D(2j —

1))-partite sets.
(111) The set of joint hyperedges connecting P(D,Q) and P} (D, Q), consists of

e;(2n — 1) with (D(2j), D(2j + 1))-partite sets and

e;(2n) with (D(2j + 1), D(27))-partite sets
where {D(27), D(2j + 1)} is a blue pair in Jp.
Lemma 3.4.7. The cycle Co(D, Q) consists of the following:

(i) for each red pair {x,y} € Ip, one inline hyperedge with (x,y)-partite sets of
delta value X, and one inline hyperedge with (y,x)-partite sets of delta value

A, for each A € D\ {0}, and

(13) for each blue pair {z,y} € Jp, one joint hyperedge with {(x,y)-partite sets of
delta value 0, and one joint hyperedge in with (y, x)-partite sets of delta value
0.

Proof. The number of hyperedges in the statements (i) and (i) are t(n — 1) and ¢,
respectively. Since |E(Cy(D, Q))| = tn, it remains to show that Cy(D, Q)) contains
hyperedges in the statements (¢) and (7).

By Remark , it suffices to consider only the first 2n hyperedges of Cy(D, Q),
e;(1),e;(2),...,ej(2n) when j = 1. For convenience, rewrite a hyperedge e; () as
e(l). Then, e(1),e(2),...,e(2n) are formed by three consecutive vertices in the

sequence of the following 2n + 2 vertices,

/ /
bn C1 bn—l Cy ... b2 Cn—1 b1 Cn bn Ci.
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where PY(D,Q) =b, ¢ by_1 ¢o ... by ¢u1 b1 ¢, and P(D,Q) =1, ¢
Let p= D(1), ¢ = D(2) and w = D(3).

Claim 1: 6(e(2n — 1)) = 0 = 6(e(2n)). It holds straightforwardly as e(2n — 1) =

{b1,cn, U} = {aé Q(n ) oyt and e(2n) = {cn, b, e} = {aq 1> Oy A1) -
Therefore, statement (i) follows from Remark B.4.6 - ) and Claim 1.

Now we will find the delta values of the remaining 2n — 2 inline hyperedges,
d(e(f)) when £ € {1,2,...,2n—2}. By the construction of the path PY(D,Q), one
can observe that vertices b, and ¢, come from partite sets which are complement to

each other in {V},, V,} (see Figure @) This implies that for ¢ € {1,2,...n — 1},

e() is with (p, g)-partite sets if and only if e(2n — 1 — ¢) is with (g, p)-partite sets,
(3.1)

e(?) is with (g, p)-partite sets if and only if e(2n — 1 — ¢) is with (p, ¢)-partite sets.
(3.2)

Statements (@) and (@) together with the fact that the list of subscripts
of vertices in path P)(D, Q) is symmetrical about the middle of the path (see
Figure @), we have that for £ € {1,2,...,n— 1},

3(e(f)) = 8(e(2n — 1 — 0)). (3.3)

Consequently, it is enough to determine only the delta values of the first n — 1

hyperedges.

Claim 2: The delta values of e(1),e(2),...,e(n — 1) spans the set D~ {0}.
We verify separately for n = 3 and 5. If n = 3, then §(e(1)) = 2 and d(e(2)) = 1.
If n =5, then d(e(1)) =4, d(e(2)) = 3, d(e(3)) =2 and d(e(4)) = 1.
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Now, let n > 7. First, it can be verified that
de(l))=n—1,0(e(n—1)) =1 and d(e(n — 2)) = 2.

For the remaining cases, note that d(e(2)) = n — 2 and d(e(3)) = 4, and let
¢ € {4,5,...n—3}. By Observations 1° and 2°, if ¢ is even, then e({ —2) =

Qs_1)) (i) for some r,s € [n];

{a aaZg@ 7«+1} and e(() = {afg(r—i-l) a
thus, d(e()) = d(e(¢ — 2)) — 2. Similarly, if £ is odd, then d§(e(€)) = d(e(¢ — 2)) +2.

Thus,

d(e(f —2)) —2, if £ is even,
o(e(f)) =
§e(t—2)) +2, if £is odd

where 0(e(2)) =n — 2 and §(e(3)) = 4. That is,

{6(e(2)),d(e(4)),...,0(e(n =5)),d(e(n—3))} ={n—2,n—4,...,5,3}, and
{6(e(3)),d(e(5)),...,0(e(n —6)),0(e(n—4))} ={4,6,...,n —5,n — 3}.

Hence, the claim is completed.

From Claim 2, and statements (@), (@) and (@), we have that for A €
D~ {0}, and the collection of inline hyperedges {e(1),e(2),...,e(2n—2)} contains
exactly one hyperedge with (p, g)-partite sets of delta value A, and one hyper-
edge with (g, p)-partite sets of delta value A. Therefore, by Remark (EI), the
statement (@) is proved. O

Now, we are ready to prove that ¢ is a Hamiltonian decomposition of T (K’ f(?’qz))
Let E(%’) denote the set of all hyperedges of all cyclesin €. For D € 2 and Q € 2,
let £(D, Q) stand for the collection of hyperedges of all cycles constructed by D
and Q. In other words, E(D, Q) = U~y E(Cy(D,Q)).

Proof of Theorem @ Since the size of E(T5(K, ))) and E(%) are the same, it
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is enough to show that each hyperedge of T5(K 1:(2)) is contained in at most one
cycle in €.

Let e € F(%) be any hyperedge with (z, y)-partite sets for some distinct x,y €
[t]. Assume that e € E(D, Q) for some D € 2 and Q € 2. There exist a unique
Q € 2, a unique s € [n] and a unique d € {0,1,...,n — 1} such that

e = {a(s), W (s+1): A(sray } a0d 0(€) = d.

Then, Q = Q. By the property of 2 in Proposition , there exist unique
D, D’ € 9 such that {x,y} is a red pair in D and a blue pair in D’. Thus, D = D
or D'. By Lemma and the uniqueness of d, a hyperedge e cannot be both an
inline hyperedge in E(D, @) and a joint hyperedge in E(D’, Q) at the same time.
Thus, we will consider the following two cases depending on d.

Case 1 d # 0. By Lemma , e is an inline hyperedge in F(D, Q). Then,
it suffices to show that inline hyperedges with (z, y)-partite sets of the same delta
value in E(D, Q) are distinct. Now, let A € D \ {0}. By Lemma (ﬁ), since
Co(D, Q) has only one hyperedge with (x,y)-partite sets of delta value A, such
hyperedge can be written as {ag(m), TSty aé(m +/\)} for a unique m.

For i € {1,2,...,n — 1}, since C;(D, Q) is the i*" rotation of Cy(D, Q), and
the rotation preserves the delta values of hyperedges, the cycle C;(D, Q) also
contains exactly one hyperedge with (x,y)-partite sets of delta value A, namely
{@G i) G140 Wmirsa - S {0G 015y Wpms1) Wamiren} # 10Q0mry
A 14k): ayQ(m+/\+k)} if and only if j # k, all hyperedges with (z,y)-partite sets
of delta value A in F(D, Q) are distinct.

Case 2 d = 0. By Lemma , e is a joint hyperedge in F(D’, Q). Similarly
to the proof of Case 1, we can show that joint hyperedges with (z,y)-partite sets
of the delta value 0 in E(D’, Q) are distinct.

Hence, by these two cases, each hyperedge of Type 2 of K t((?’rz) is contained in at

most one cycle in €. Therefore, € is a Hamiltonian decomposition of 75 (K t((:z)) O]
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3.5 Conclusions

The results in Sections @—@ provide a construction of a Hamiltonian decom-
position of Kt((gz) when ¢ = 4,8 (mod 12) excepts when ¢ = 4 and n is even. As the
assumption in Theorem [B includes all requirements in Theorems @ and @, we can

conclude Theorem @ as follows:

Theorem @ (Main theorem) Let n > 2 and t be a positive integer such that
t = 4,8 (mod 12). The complete multipartite 3-uniform hypergraphs K t((g;z) has a

Hamiltonian decomposition provided that

(1) t =4 and n is odd, or

(i7) t > 8 and K® has o Hamiltonian decomposition.

Proof. Let t be a positive integer such that t = 4,8 (mod 12). If ¢ > 8, then assume
that K¥ has a Hamiltonian decomposition. Then, Ti(K 1:((373)) has a Hamiltonian
decomposition by Theorem @, and To(K 1:((372)) has a Hamiltonian decomposition by
Theorems @ and E

However, when ¢ = 4, we cannot apply Theorem @ to decompose To(K t((?;z))
which n is even. While, Theorems B and E still work (since the hyperedge set of
K f’) form a Hamiltonian cycle). Therefore, ng’i) has a Hamiltonian decomposition

only when n is odd. [

Here, we connect our results to the complete uniform hypergraphs. By a simple

3)

but essential fact that K t((2

) = KQ(f), together with our main theorem when n = 2,
we have that the existence problem of Hamiltonian decompositions of complete

3-uniform hypergraphs can be recursively solved as follows.

Theorem 3.5.1. Lett > 8 such thatt = 4,8 (mod 12). If K™ has a Hamiltonian

decomposition, so does Kéf).



CHAPTER IV
HAMILTONIAN DECOMPOSITIONS OF COMPLETE
4-PARTITE 3-UNIFORM HYPERGRAPHS

4.1 Introduction

The existence problem of KK-Hamiltonian decompositions of complete 3-unifo-

rm hypergraphs, K have been studied when ¢ = 2 and ¢t = 3 in [1§] and [6].

n)=
Chapter III establishes a construction of a KK-Hamiltonian decomposition of K t((rZ)
when ¢ = 4,8 (mod 12) excepts when ¢ = 4 and n is even which we separately
construct KK-Hamiltonian decompositions of 77 (K t((?’rz)) and To(K t((g;z)) In details,
in Theorem [B in Chapter III, we use a KK-Hamiltonian decomposition of K, 4 to
construct one of 77 (K ))) and in Theorem E in Chapter III, we use a Hamiltonian
decomposition of DK, to construct a KK-Hamiltonian decornposMon of Ta( 1t(n)).

In fact, to construct a KK-Hamiltonian decomposition of K ) when t = 4
and n = 2m, since K ) has trivial Hamiltonian decomposition, the subhyper-
graph T; (K, )) can be decomposed into KK-Hamiltonian cycles by Theorem | I
While, we cannot provide a KK-Hamiltonian decomposition of the subhypergraph
E(Kﬁz)m ) by Theorem @ since a Hamiltonian decomposition of DK, does not ex-
ist. Then, we dedicate this chapter to decompose a complete 4-partite 3-uniform
hypergraph, K ((%m) into KK-Hamiltonian cycles. The following is our main theo-

rem of the chapter.

Theorem 4.1.1. Ki?;m) has o KK-Hamiltonian decomposition for all positive

mteger m.

Thus, Hamiltonian cycles in this chapter always mean KK-Hamiltonian cycles

in Definition E Also, the notations in this chapter are the same as Section Ell in
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Chapter III. Hence, to construct a Hamiltonian decomposition of K ®) " in Theo-

4(2m)
rem , it remains to construct one of the subhypergraph E(Ki‘?%m)) containing
all hyperedges of Type 2. The construction is revealed in Sections and @
depending on the parity of m.
We will construct a collection of Hamiltonian cycles where each cycle consists
of two paths of order 4m. The construction uses the following tools:
the collection of 4-tuples 2 ={(1,2,3,4),(1,3,4,2),(1,4,2,3)} and
a 1-factorization .# of Ky, ([2m]) which always exists by Theorem .

Now, we aim to establish the following two collections of cycles in K ®) Wwhich

4(2m)

are
¢ ={C{D,F):te{0,1,....m—1},D € 2, and F € Z} for odd m, and

¢ ={Cy(D,F),Cy(D,F):t€{0,1,....2-1},D € 2, and F € .Z} for even m.

in Sections @ and @, respectively.
Thus, each collection will contain 3m(2m — 1) cycles. For the construction, let

D be any tuple in &, and F' any 1-factor of Ky, ([2m]) in %, written

D:<p7Q7raS) andF:{{jaf(j)} :je {172""’m}}’

consequently, the vertex set [2m] of Ky, is relabeled according to F' to be {1,2, ...,
m, f(1),f(2),..., f(m)}. Thus, all vertices in V, are automatically relabeled ac-
cording to F' to be {af,d3,... a%, %1y, 2y ...,a‘;}(m)} for all x € {p,q,r, s}
(For example, if F' = {{1,2},{3,4}} is a 1-factor of K,([4]), then the vertices
1,2,3 and 4 could be relabeled to be 1, f(1),2 and f(2), respectively.)

3)

We will construct m Hamiltonian cycles of E(Ki@ ) in € from D and F when

m)

m is odd in Section @, namely

C()(D,F), Cl(D,F), ey Cm_l(D,F) and
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m Hamiltonian cycles of E(Kii’%m)) in € from D and F when m is even in Section

@, namely
Co(D,F), C\(D,F), ..., Cu_y(D,F), Co(D,F), C{(D,F), ..., Cu_4(D,F).

Then, we later show that both collections are Hamiltonian decompositions of

E(Ki?;m)) in each section.

4.2 Hamiltonian decomposition of B(ngm)) where m is odd

Let m be an odd integer. We define Cy(D, F') where t € {0,1,...,m — 1} to

consist of two paths of order 4m, written

where for j € {1,2},

(p.q), ifj=1,
(z,y) =
(r,s), if 7 =2, and
i 2 Y Y
Py = aiy, W5 (144) @p(m+t) oyt
y y
Ay Ura4t)  Dpm-t14t) Dm—1+t
a®, a®, .. a’ .. a”,
G O (G e B i
Yy Yy
U1t Cim—1t+t)  Cpa+e) 44
y y
Ut @ (mt1) @r1+t) aj 1t

We say that Cy(D, F) is the t""-rotation of Cy(D, F). In other words, Cy(D, F')
is an initial cycle which is rotated m — 1 times to create additional m — 1 cycles.

Example 11. An illustration of Co(D, F') which are in the construction of Ki?%m)

when m =5, D = (1,3,4,2) and F = {{j,f(4)} : 7 € {1,2,3,4,5}}. In Figure
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@, each vertex aj in the cycle Cy(D, F') is represented by its subscript ¢. The
solid lines join two consecutive vertices in the same path, while the dash lines join

two consecutive vertices from different paths.

Figure 4.1: Cy(D, F) of E(Ki?io)).

Lemma 4.2.1. Let D € 2, F € .Z andt € {0,1,....m —1}. CyD,F) is a

Hamiltonian cycle of E(Ki?%m)).

Proof. Write D = (p,q,r,s) € 2, we have that P} consists of 4m vertices from V,,
and V, and, P} consists of 4m vertices from V,. and V5. Since (p, ¢, 7, s) is a permu-
tation of {1,2,3,4} and F' is a 1-factor of Ks,,, the 8m vertices in Cy(D, F’) are all
distinct. Furthermore, the construction yields that any three consecutive vertices
in Cy(D, F) are always from only two partite sets. Therefore, all hyperedges in
Cy(D, F) are of Type 2. H

Next, let us observe a certain property of hyperedges in %(ngm)). Recall that
a hyperedge with (p, q)-partite sets stands for a hyperedge of Type 2 containing two
vertices in V, and one vertex in V,, (Definition B in Chapter IIT). Let e be a hyper-
edge with (x,y)-partite sets where x # y, written e = {a?, a*, a¥}. Now, consider
u,v as vertices in Ky, ([2m]). Since .# is a 1-factorization of Ky, ([2m]), there
exists a unique F' = {{j, f(j)} : 7 € {1,2,...,m}} € F such that {u,v} € E(F).
According to F', without loss of generality, there exists a unique i € {1,2,...,m}
where u and v are relabeled as i and f(i), respectively. In such vertex set relabeled

by F', we also consider w as another vertex. Then, there exists a unique j such
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that w is relabeled as 7 or f(7). Thus, e must be one of the followings:

{az7af } or {az7af ])}

Consequently, given two partite sets in order, we can define the length of each

hyperedge of Type 2 from such partite sets as follows.

Definition 8. Let (z,y) € {(p,q): p,q € {1,2,3,4},p # q} and e a hyperedge of
Type 2 with two partite sets V,, and V,,. Then, there exist a unique F' = {{j, f(j)} :
j€{1,2,...,m}} €.Z and unique i, j € {1,2,...,m} such that e can be written

in one of the following four distinct forms,

{azvafz)7a]} {ama’f(z } {CL], fG)? z} and {CL afc(z)}

Define the length with respect to (z,y) of hyperedge e by

i—j, ife={af, aj;),aj} or {af, ay ), af},

£(ac,y)(e):
(i —j), ife={af ajq. a5} or {aj, ay ), af, ;-

where ¢ — j and (i — j)" are considered in the modulus m. Then, there are 2m

possible lengths in {0,1,...,m —1,0',1,...,(m — 1)’} denoted by .Z.

Remark 4.2.2. Let e be a hyperedge with {(x,y)-partite sets, x,y € {1,2,3,4},
v #y. Layle) = € if and only if Liym(e) = —L (in the modulus m). In
particular, L) (e) and Ly, 1) (e) are both zero (0 and 0') or both nonzero.

Moreover, in the construction, as the partite sets of vertices are determined
by D € 2, we consider the length of hyperedges in Cy(D, F') according to D as

follows.

Definition 9. Let D = (p,q,7,5) € Z,F € % and e € Cy(D,F). Then, e is
a hyperedge of Type 2 with (z,y)-partite sets or (y, z)-partite sets for a unique
(z,y) € {(p,q),(q,7), (r,s),(s,p)}. The length of a hyperedge e is L) (e).
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Example 12. Figure @ illustrates the lengths of hyperedges in the cycle Cy(D, F)
in Example EI As each three consecutive vertices along the cycle form a hyperedge,

we label its length at the middle vertex of such hyperedge.

Figure 4.2: Lengths of hyperedges in Cy(D, F') of E(Ki?io)).

The next lemma discusses the lengths of hyperedges in Cy(D, F'), which yields
the same result for other cycles in 4 as a rotation of an initial cycle preserves the

lengths of hyperedges in a new cycle.

Lemma 4.2.3. Let D = (p7Q7r78) € -@7F S JOZ.; ID = {(pJQ)J(T7S>} and JD =
{(q,7),(s,p)}. The cycle Co(D, F) consists of the following:

(1) for (z,y) € Ip, one inline hyperedge with {x,y)-partite sets of length A\ and
one inline hyperedge with (y, z)-partite sets of length X, for each A € £~ {0},

(13) for (z,y) € Jp, one joint hyperedge with {(x,y)-partite sets of length 0 and
one joint hyperedge with (y,x)-partite sets of length 0.

Proof. Let F' € .Z, written F = {{j, f(j)} : 7 €{1,2,...,m}}. Let ey, eq,...,e8m
be 8m hyperedges around the cycle Cy(D, F') orderly, beginning with the first four
inline hyperedges e; = {a{, a} ), }, e2 = {a} ), af,). ab} €3 = {df ). al, as},
€4 = {a‘ﬁn,ag,a;@)} and so on. Note that e,_1, €4m, €gm_1 and eg,, are joint hy-
peredges while the others 8m — 4 hyperedges are inline hyperedges.

By our construction, the lengths of inline hyperedges of PY and PY have the

same spectrum. More precisely, for £ € {1,2,... 4m — 2},

ﬁ(l’#]) (65) = ﬁ(r,s) (64m+g) .
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For ¢ € {4m — 1,4m}, e, and eyn¢ are joint hyperedges satisfying L ,)(er) =
L (s p)(eam+e). Then, it suffices to determine the lengths the first 4m hyperedges.
It is clear that Ly ,y(€am—1) = 0 and L) (esm) = 0, that is, the lengths of joint
hyperedges are all 0. Thus, the statement (i) is proved.

For other hyperedges, Table Ell reveals the length of inline hyperedge e, where
Ce{1,2,... 4m — 2}

esarr where d € {0,1,....,m — 1} and 4d + k < 4m — 2

& Cadtk Lp,q)(€4d+k)
1 {a11)+d7 a7(1+d)7 a;(m—d)} (]. + 2d (mOd m))/

2 | {dfiay gy Gmeal (1 4+ 2d (mod m))’

3 1 {afpmay Yn—ar as, .} 2 + 2d (mod m)

4| {a},_4 a’§+d, afc(%d)} 2 4 2d (mod m)

Table 4.1: Lengths of e1,es, ..., €4n_2.

With some abuse of notation, we refer to (A +2)" as A’ + 2 . Then, it can
be noticed further that the sequence of the lengths of inline hyperedges satisfies a

recurrence relation

£(p,q)(€€) = E(pvq)(€€—4) +2

for £ € {5,6,...,4m — 2} where Ly qg(e1) = 1, Lpgles) = 1, Lpgles) = 2,
Lpq)(es) = 2.

Now, all inline hyperedges with (p, ¢)-partite sets in Cy(D, F') are hyperedges
e, for all ¢ = 0,1 (mod 4) and ¢ < 4m — 1. Since the modulus m is odd, the

recurrence relation yields that the lengths of such 2m — 1 inline hyperedges span

the set .Z ~\ {0} (see Tables @ and ) That is,
{Lpgler): £=0,1 (mod 4), € {1,2,...,4m — 2}} = .Z ~ {0}

Similarly, inline hyperedges with (g, p)-partite sets in Cy(D, F') are hyperedges
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14 1|59 m=3 |mtl ) m )  4m =7 | 4m—3
Lpagle) [ 171315 |- | (m=2) 0 20 [ (m=3) | (m—-1)

Table 4.2: Lengths of e, where £ =1 (mod 4) and ¢ < 4m — 2.

0 als| 12| | mt | mer] mus | [y 8| dm—4
Lopgle [214] 6 |- |m—1 1 3 e lm—4 ] m—2

Table 4.3: Lengths of e, where / =0 (mod 4) and ¢ < 4m — 2.

eo for all £ = 2,3 (mod 4) and ¢ < 4m — 2 which also have lengths spanning the
set Z ~\ {0} as follows.

{Lpopler): £=2,3 (mod 4), € {1,2,...,4m —2}} = £~ {0}.

Hence, for A € Z ~ {0}, Co(D, F) contains exactly one hyperedge with (p, ¢)-
partite sets of length A, and one hyperedge with (g, p)-partite sets of length .
Therefore, the statement (&) is proved. N

Now, we are ready to prove that % is a Hamiltonian decomposition.

Notations
Let E(%) be the set of all hyperedges of all cycles in €.

For D € 2 and & C Z, let E(D, <) stand for the collection of hyperedges
of all cycles in € constructed by D and all F € «/. When & = {F}, we
write E(D, F') instead.

In other words, BE(D,.Z) = Uy, Uy E(Ci(D, F)) and
E(D,F) = UZBIE(CZ(D’F))

Theorem 4.2.4. The subhypergraph Tg(ng ) has a Hamiltonian decomposition

m)

when m s odd.
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Proof. Let 2 ={(1,2,3,4),(1,3,4,2),(1,4,2,3)}, & a l-factorization of Ks,, and
¢ ={Cy(D,F):te€{0,1,....m—1},D € P and F € F}.

By Lemma , % is a collection of Hamiltionian cycles of T5(K (3)

4(2m))- 1t Temains

to show that € is a decomposition of E(Ki‘?;m)).
First, we consider an essential property of &. The following two collections [

and J contain ordered pairs induced by Z;
I={(p,q),(r,s): (p,q,r,s) € 2} ={(1,2),(1,3),(1,4),(3,4),(4,2),(2,3)} and

J = {(Q7T)7 (S,p)i (p, q,T, S) € @} = {(27 3)7 (374)7 (47 2>’ (47 1)7 (27 1)7 (3’ 1)}
Given D = (p,q,r,s), E(D, %) consists of

(¢) inline hyperedges with partite sets V,, and V,, and with partite sets V, and
Vs, and

(i7) joint hyperedges with partite sets V;, and V., and with partite sets V; and V.

Since any pair of elements in {1, 2, 3,4} occurs once in [ and once in J, each pair of
partite sets is used to construct inline hyperedges once and joint hyperedges once.
Note that the number of hyperedges in E(%) is 24m?(2m — 1) counted repeat-

edly. Since the number of hyperedges of Type 2 in K ®) s also 24m?*(2m — 1), it

4(2m)

suffices to show that each hyperedge of Type 2 is contained in at most one cycle
in €.

Let e € E(%) be a hyperedge with (z,y)-partite sets, say e = {a%,a?,a}.
Assume that e € E(D, F) for some D € 2 and F € .%. By the property of 2, x
and y appear together in both I once and J once. Then, there exist unique D, D’ €
2 which pair of partite sets V, and V,, are used to construct inline hyperedges in
E(D,#) and joint hyperedges in E(D',.#). Then, D = D or D'. Therefore,
e € E(D,#)U E(D',%). Moreover, since .# is a 1-factorization of Ky, there
exists a unique F' = {{7, f(j)} : 7 € {1,2,...,m}} € F such that {u,v} € E(F).



49

Thus, F = F. Therefore, e € E(D,F) U E(D’, F). By Remark , it is enough
to consider the following two cases.

Case 1 L, ) (e) and L, (e) are not 0. By Lemma , e is an inline hyper-
edge in F(D, F'). To conclude that e is in at most one cycle, it suffices to show that
inline hyperedges with (x, y)-partite sets of the same length in F(D, F’) are distinct.
Let A € {1,2,...,m —1}. By Lemma - , Co(D, F) has only one hyperedge
of length A with (z,y)-partite sets which is {af,a%,),a;_,} for a unique i. For
t€{1,2,...,m — 1}, since Cy(D, F) is the t"-rotation of Cy(D, F) and the rota-
tion preserves the lengths of hyperedges, the cycle Cy(D, F) also contains exactly
one hyperedge of length A with (z,y)-partite sets, namely {a7,,, %, ai_\ . }-
Since {af,, aiﬁ(iﬂ), aj sy # {05, afc(iw), aj_y.,) if and only if ¢ # w, all hyper-
edges of length A are distinct. Let v € {0',1,...,(m — 1)’}. Similarly, by Lemma
(I) and the rotation of cycles, all hyperedges of length 7 are distinct.

Case 2 L(,,(e) and L, . (€e) are both 0. By Lemma [1.2.3 , e is a joint hy-
peredge in E (D', F'). Similarly, by Lemma (El) and the rotation of cycles, all
hyperedges of length 0 in E(D’, F') are distinct.

Hence, each hyperedge is contained in at most one cycle in €. Therefore, € is

a Hamiltonian decomposition of To( f()gm)) O

4.3 Hamiltonian decomposition of E(Kﬁ’%m)) where m is

even

Let m be an even integer, say m = 2u. We have two initial cycles Cy(D, F') and
Co(D, F), each of which is rotated which rotates p — 1 times to create additional

w—1cycles. Fort € {0,1,...,u— 1},

Ci(D,F)= (P! Pi) and Cy(D,F)= (P, P,)
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where

(pq), ifj=1,
(2,y) = and
(rys), ifj=2
t p p q q
Py = a1+ @t (14¢) riou+t) @2ptt
p p q q
Ao+t A (2+1) pop—1+t)  Y2u-1+t
p p q q
Dyt Dp(utt) Cpurite)  Qpti+t
p p q q
ptrtt  Cputise)y Yt Ayt
p p q q
op—1+t Apu—14t)  Lf+t) A2+t
p p q q
Qoptt  Aputt) p1+1) a1yt
—=t
_ p p q q
Pi=apqy e @24t r(2p+t)
p p q q
@t (o4t o1t Aop—1+t  Afop—141)
p D q q
) Butt - Opgare D(urire)
p p q q
Ceurits) Qi+t  Qutt @ (putt)
p p q q
Crou—1+t)  Dp—14t D24t Af(2+t)
p p q q
Af(2p+t) @iyt 144 A(144)

We say that Cy(D, F) and Cy(D, F) are the t*"-rotation of Co(D, F) and Cy(D,
F), respectively.

Example 13. An illustration of the two initial cycles Co(D, F) and Co(D, F)
3)

(2m

m =26, D =(1,3,4,2) and F = {{j,f(J)} : j € {1,2,3,4,5,6}}. In the Figures
@(a) and @(a), each vertex a? in the initial cycles Co(D, F) and Cy(D, F) is
represented by its subscript ¢. Moreover, Figures @(b) and Q(b) illustrate the

which are in the construction of a Hamiltonian decomposition of Ki ) when

lengths of hyperedges. As each three consecutive vertices along the cycle form a

hyperedge, we label its length at the middle vertex of such hyperedge.
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@ (b)

Figure 4.3: (a) Co(D, F) of E(Kf’)

(12)) and (b) the lengths of hyperedges in
Co(D, F).

Figure 4.4: (a) Co(D,F) of E(Kii(?m) and (b) the lengths of hyperedges in
Co(D, F).

Now, we will prove that % is a Hamiltonian decomposition.

Notations

For any set A, 2A denotes a multi-set containing two repeated elements of

each element in A.
Let E(%) be the set of all hyperedges of all cycles in €.

For D € 2 and & C .F, let E(D, o) stand for the collection of hyperedges
of all cycles in % constructed by D and all F € o/. When & = {F}, we
write E(D, F') instead.

In other words, E(D, F) = /=y E(Cy(D, F))U -, E(Cy(D, F)) and
E(D,7) = Upes (UiZg E(Ci(D, F)) UULL, E(Cy(D, F))).
Theorem 4.3.1. The subhypergraph %(ngm)) has a Hamiltonian decomposition

when m is even.
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Proof. We will define the collection € of Hamiltonian cycles and prove that € is
the decomposition of B(Ki‘?;m)) by using the lengths of hyperedge.

1. The construction.
Let m = 2u, 9 = {(1,2,3,4),(1,3,4,2),(1,4,2,3)}, F a l-factorization of
Ky, ([2m]) and

€ ={CyD,F),C{(D,F):t€{0,1,....,u—1},D€ 2, and F € F}.
Let D € & and F € %, written

D= (p,qr,s)and F = {{j, F(G)} : € {1.2,....m}}.

Similar to Lemma , the cycles Cy(D, F) and Cy(D, F) constructed by D and
F are Hamiltonian cycles of E(Ki?%m)), thus, € is a collection of Hamiltionian

cycles of To(K fg’;m)) It remains to show that & is a decomposition of B(Ki?%m)).

2. The length of hyperedges.

We write 8m hyperedges in E(Cy(D, F)) and 8m hyperedges in E(Cy(D, F))
in order around the cycles as ey, eq, ..., ey, and €1,6s, ..., €y, respectively, be-
ginning with

e1 = {ai, afy, af,, } and ex = {a} ), afy,, a3, } and so on, and
e1 = {af), a,a3,} and € = {ay, a3, aj,,, } and so on.
Note that Cy(D, F') is defined exactly the same as in Section @, except even

m. Besides, here we rotate Cy(D, F) to construct additional % — 1 cycles instead

of m — 1 cycles. By our construction, for £ € {1,2,...,4m — 2},

'C(p,q) (ee) = 'C(T,S) (Camre)-

For ¢ € {4m — 1,4m}, e, and e4n¢ are joint hyperedges satisfying L ,)(er) =
L (s p)(€am+e). Then, it suffices to determine the lengths of the first 4m hyperedges.
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First, we consider the following two observations of hyperedges of the same length.

Observation 1° Since m is even, the lengths of e, and es,, ¢ are the same for
¢e{1,2,...,2m}. In particular, for £ € {1,2,...,2m — 2},

eam+e and e, are the pt-rotation of each other.

: o : _ q p p _ q
Observation 2° Since ez = {1114 Q1o 10} and ean = {aly,
r T : _ th :
al g af(Ht)}, if p = r, then ey, and ey,, are the p"*-rotation

of each other, so are ey,,_1 and e4,,_1.

Next, we have that ey, is an inline hyperedge of length 0 with (p, ¢)-partite
sets, and ey, is a joint hyperedge of length 0 with (r, ¢)-partite sets.

For £ = 0,1 (mod 4), ¢ < 4m and ¢ # 2m,4m, e, is an inline hyperedge with
(p, q)-partite sets in Co(D, F) of length X # 0. Tables @ and @ show such

lengths.

14 418 12| ... 2m—4 | 2m | 2m+4 | 2m+8 | 2m+12 | ... | dm —4 || 4m
Lengthofe, |2 4|6 |...| m—2 0 2 4 6 ool m=2 0
Table 4.4: Lengths of e, where £ =0 (mod 4) and ¢ < 4m.

l 1519 ...]2m—=3 [|[2m+1|2m+5 |2m+7 | ... | 4m —3
Lengthofe, | 1/ |3 [5 | ... | (m—1y]| v 3 5 || (m=1)

Table 4.5: Lengths of e, where £ =1 (mod 4) and ¢ < 4m.

Let A ={2,4,...,m—2}U{1",3,...,(m—1)}. By Observation 1°, the set of
the lengths of 2m — 2 inline hyperedges with (p, ¢)-partite sets in Co(D, F) is

{Lpg(ee): €=0,1 (mod 4),0 € {1,2,...,4m — 2} \ {2m}} = 2.4,.

For the lengths of e, where ¢ = 2,3 (mod 4) and ¢ < 4m, we have the similar
results for hyperedges with (g, p)-partite sets and (g, r)-partite sets as follows.
eom—1 and ey, 1 are hyperedges of length 0. By Observation 1°, the set of lengths
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of 2m — 2 inline hyperedges with (g, p)-partite sets in Cyo(D, F) is
{Lpgle): €=2,3 (mod 4),0 € {1,2,...,4m — 2} \ {2m — 1}} = 2.4.

Next, consider the lengths of hyperedges in Co(D, F). Observe that Cy(D, F)
is a modification of Cy(D, F') by swapping af and af for all z € {p,q,r, s} and
i € [m]. Thus, for £ € {1,2,...,8m} and A € {0,1,...,m — 1},

L(e,) = N if and only if L(es) = A,

L(g,) = X if and only if L(e,) = X'

Then, the lengths of all joint hyperedges and inline hyperedges €2,,_1, €2m, €2m—_1
and €y, are 0'. Let %% = {2/,4',...,(m — 2)'}U{1,3,...,m — 1}. The remaining
2m —2 inline hyperedges with (p, ¢)-partite sets in Co(D, F') have lengths spanning
the multiset 2.7, (see Tables @ and @) Also, 2m — 2 inline hyperedges with
(q, p)-partite sets have lengths spanning the multiset 2.%.

l 4 18 112|...| 2m—4 | 2m | 2m+4 2m+8 | 2m+12 | ... | 4m—4 || 4m
Length ofe, |2/ |4 | 6 |... | (m=2)| 0 2 4/ 6’ o (m=2) | O

Table 4.6: Lengths of & where £ =0 (mod 4) and ¢ < 4m.

14 11519 ...12m=3 ||2m+1 |2m+5 | 2m+7| ... | 4m —3
Length ofe, | 1/ |3 |5 | ... | (m—1) 1 3 5 e | (m=1Y

Table 4.7: Lengths of & where £ =1 (mod 4) and ¢ < 4m.

Hence, inline hyperedges with (p, ¢)-partite sets (or (g, p)-partite sets) in both
Co(D, F) and Cy(D, F) except those of lengths 0 and 0’ have lengths spanning the
multiset 2.27 U 2.%. Remark that the multiset 2.4 U2.%, = 2.2 ~ 2{0,0'}.

Let (x,y) € {(p,q), (q,p), (r,5), (s,7)}. In conclusion, we have that for \; € £,
Co(D, F') contains exactly two hyperedges of length A\; with (z, y)-partite sets, and
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for \y € %, Cy(D, F) contains exactly two hyperedges of length Ay with (x,y)-

partite sets.

3. The decomposition.
We will use the lengths of hyperedges in the cycles to prove that € is the

3))

(2m))- By a similar argument as in Theorem , we

decomposition of E(Kﬁ
count the number of hyperedges in E(%) and in £ (E(Ki?%m))) It suffices to show
that any hyperedge of Type 2 with (x,y)-partite sets is contained in at most one
cycle in E(%).

Now, let e € E(%). Assume that e € E(D,F) for some D € 9 and F €
% . Similarly to the proof of Theorem , the essential property of & implies
that each pair of partite sets is used to construct inline hyperedges once and
joint hyperedges once. Then, there exist unique D', D" € & and a unique F’' =
{4, ')} 7 €{1,2,...,m}} € .Z such that e is an inline hyperedge in E(D’, F")
or a joint hyperedge in E(D", F'). Thus, F = F and D = D or D’. By Remark
, it is enough to consider the following two cases.

Case 1 L, ) (e) and L) (e) are not in {0,0'}. Then, e is an inline hyperedge
in E(D', F'). Since hyperedges in the same Hamiltonian cycle are always distinct,
to conclude that e is in at most one cycle, we will claim that hyperedges with
(x,y)-partite sets of the same length excepts 0 and 0/ in E(D’, F') are all distinct.

The lengths of hyperedges in Co(D’, F') and hyperedges in Co(D’, F') are in
2 U{0} and % U {0}, respectively. Since £ U {0} and % U {0’} are disjoint
and Cy(D, F) is a modification of Cy(D, F), it is enough to show that hyperedges
of the same length excepts 0 and (' with (x,y)-partite sets in (J'") E(Cy(D', F"))
are distinct.

Let A € A ~A{1l,3,...,(m —1)'}. Then, Cyo(D’, F') contains exactly two
distinct hyperedges of length A with (x, y)-partite sets and By Observation 1°, such
two hyperedges are p-rotation of each other, say {a?, A%y a;_\} and {af, ,, @4 )

a%’ﬂhA} for a unique ¢ € [m]. By the proof of Theorem , hyperedges of the

same length obtained by the rotation are all distinct. Since we rotate each initial
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cycle in our construction at most y — 1 times, hyperedges obtained from rotating
such two hyperedges are all distinct. Hence, hyperedges with (x,y)-partite sets of
length A in U;:OI E(Cy(D', F")) are all distinct. Similarly, for v € {1",3,...,(m —
1)}, hyperedges with (x,y)-partite sets of length  in /=) E(Cy(D’, F')) are all
distinct. Our claim holds.

Case 2 L, (e) and L, (e) are in {0,0'}. Then, e is an inline hyperedge in
E(D',F') or a joint hyperedge in E(D",F’). By Remark , L4 (e) and
L y.z)(e) are both 0 or both 0.

Suppose that L) (e) = 0 = L, z)(e). It is enough to show that hyperedges
of the length 0 with (z,y)-partite sets in E(D’, F') U E(D", F’) are distinct. By
Observation 2°, inline hyperedge of length 0 with (x,y)-partite sets in Co(D’, F")
and a joint hyperedge with (x,y)-partite sets in Co(D", F') are the p'"-rotation
of each other. From the same reason in the proof of Case 1, all inline hyperedges
and joint hyperedges with (z,y)-partite sets of length 0 in (J!—y) E(Cy(D’, F"))
U, E(Cy(D", F')) are all distinct.

Similarly, if L, (e) = 0" = L2)(e), then we can conclude that hyperedges
with (z,y)-partite sets of length 0/ in | /=, E(C,(D', F')) Uy E(C/(D", F"))
are all distinct.

By these two cases, any hyperedges of Type 2 is contained in at most one cycle
in ¢, and therefore, ¢ is a Hamiltonian decomposition of E(Kﬁg) ). ]

(2m)

4.4 Conclusion and further remark

3)

(9my) I this chapter

The construction of a Hamiltonian decomposition of E(Ki

uses mainly the following tools:
(1) the collection of 4-tuples Z = {(1,2,3,4),(1,3,4,2),(1,4,2,3)} and

(2) a l-factorization .# of Ky,,([2m]) which always exists by Theorem .

For each cycle in our construction,  and .% are used to arrange partite sets and

vertices in each partite set, respectively.
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We actually can extended this technique to create a Hamiltonian decomposi-

tion of 7’2(Kt((:2)

Sections @ and @ by replacing the collection & with the Canonical Decompo-

) when t > 4 and n = 0 (mod 2). We generalize the construction in

sition of 2K;. This technique works because the following two properties are the

same;

(7) the property of the Canonical Decomposition of 2K, in Proposition
and

(77) the property of the collection & that each pair of partite sets is used to

construct inline hyperedges once and joint hyperedges once.

Then, the modified construction gives a Hamiltonian decomposition of T5(K t((?z))

when t > 4 and n =0 (mod 2).



CHAPTER V
HAMILTONIAN DECOMPOSITIONS OF COMPLETE
BIPARTITE 4-UNIFORM HYPERGRAPHS

5.1 Introduction

Hypergraphs have been introduced in database theory in order to model rela-
tional database schemes. A new definition of cycles in hypergraphs (Definition E
in Chapter IT) was introduced in 1999 by Wang and Lee [17] which defined to suit
the structure properties of relation database in computer science. In 2001, Wang
and Jirimutu [16] adopted this new definition of cycles to define a WJ-Hamiltonian
cycle in Definition a (Chapter IT) which states as follows. Let C' = (eg, €1,...,€,-1)
be a sequence of hyperedges of H and S; = e;Ne;yq fori € {0,1,...,r — 1} where
e, = €g. We call S; a node and C a cycle with the node sequence S = (Sp, Sy, . . .,

S,_1) if the following conditions are satisfied:
(p1) e # e; fori #
(p2) S; # @ forie {0,1,...,r — 1},
(p3) Si N\ S; # @ for i # j,

(p4) for any i € {0,1,...,r — 1} there is no edge e € E(H) such that

S;USit1U Sy Ce.

C is called a t-dimension cycle of length r if t = min{|S;| : i € {0,1,...,r —1}}.
If H is a k-uniform hypergraph and |V(#H)| = n, then any (k — 1)-dimension
cycle of length n in H is called a WJ-Hamiltonian cycle of H.
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Remark first that Hamiltonian cycles in this chapter always mean WJ-Hamilto-
nian cycles. Wang and Jirimutu [[16] was studied a Hamiltonian decomposition of
complete bipartite 3-uniform hypergraph Kég,)l where n is prime in 2001. This work
motivates us to construct a Hamiltonian decomposition of 4-uniform hypergraph
K,(f% where n is prime. We focus on bipartite hypergraph K,(;},)@(Vl, Vs) where V; =

Z., and Vo = Z,. Moreover, to distinguish the partite sets, we will use a notation

of vertices for elements in Z,, as follows.
Vi={0,1,...,n—1} and V5 = {0,1,...,n — 1}.

We first consider a necessary condition for the existence of Hamiltonian decom-

. (4) , 4) . (on o
position of Ky . Note that the number of hyperedges in K, is (4) — 2(4) =
2 (n —1)(Tn — 11).

Lemma 5.1.1. If Kff}% has a Hamiltonian decomposition, then n = 0,1,5 (mod 8).

Proof. If a decomposition exists, the number of hyperedges in K,(f% must be divis-
ible by the number of hyperedges of each Hamiltonian cycle which is 2n. Hence,
35(n = 1)(7n — 11) is an integer, which implies that n = 0,1,5 (mod 8) as de-
sired. [

Next, we classify hyperedges of 4-uniform hypergraph Kffr)l into three types

depending on the number of members from partite set V;. In particular, hyperedges

of each type can be written as follows,
Type 1: {a; z,y, z},
Type 2 : {a@,b; z,y} and
Type 3 : {a@,b,c ; v}

for some a,b,c,x,y,2z € Z,. Let 7;(KT(L4,)1) denote the subhypergraph of Kq(f% con-
sisting of all hyperedges of Type i for i € {1,2,3}. Note that Kff,)l) = Uleﬁ(K,(f%).
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First, we partition the hyperedge set of Ky(f% into collections of hyperedges
named patterns in Section @ Our construction uses difference pattern of hy-
peredges from the construction of a KK-Hamiltonian decomposition of 3-uniform
hypergraph K% in [2] to create a WJ-Hamiltonian decomposition of 4-uniform
hypergraph KT(L?%. We use difference pattern to partition the hyperedge set of
Ti(KY)) and T5(K)) in Subsection . While the hyperedge set of 7§(K,(L42L) is
partitioned by pair-pattern in Subsection .

In Section @, we construct two kinds of collections of Hamiltonian cycles
which the first one containing hyperedges of the same type and, the other one
containing hyperedges of two types. Our method creates a collection of Hamilto-
nian cycles from two collections of hyperedges which each collection has the same
difference pattern or pair-pattern. Finally, we apply these collections to construct

a Hamiltonian decomposition of Kg}% where n is prime in Section @

5.2 Pattern of hyperedges

First, we can partition the hyperedges into collections of hyperedges called

patterns as follows.

Definition 10. Let e = {vy,vq,..., v} € E(K,(f%) and
a'(e) = {vy +i,v9 +14,...,v5 + i} foreach i € {0,1,...,n — 1},

where v; + ¢ is considered in the modulus n. The pattern of e is the collection
P(e) = {e,ale),a*(e),...,a"(e)}.
Lemma 5.2.1. Letn > 3 be an odd integer. Then, |P(e)| = n foranye € E(KT(LZLT)L)

Proof. Let e € E(Kr(ﬁ)z) Note that |P(e)| < n as each orbit has size at most n.
If e is of Type 1 (or Type 3), then all hyperedges in the pattern P(e) are distinct
because they contain a distinct vertex from V; (or V5, respectively).

Assume that e is of Type 2. Write e ={u, v ; x,y} where u,v € V; and x,y €
Va. Suppose that there exists ¢ € {1,2...,n — 1} such that e = a'(e). Then
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x =y+1i (mod n) and y = x+1¢ (mod n) which imply that 2 = 0 (mod n). This is
a contradiction as n is an odd number. Thus, each pattern of hyperedges contains

exactly n hyperedges. [
Remark 5.2.2. The following statements hold.
(1) All hyperedges in any pattern are of the same type.

(ii) P({@; b,c,d}) =P({0;b—a,c—a,d—a}) and,
P{a,b;c,d})=P{0,b—a;c—a,d—a}) or P{0,a—b;c—b,d—b}).

Lemma 5.2.3. Let n > 3 be an odd integer. Let
5271 = U{b,c,d}gVQ,P({6 1 b> G, d}),

% = Ua§%7{c7d}gv2 P({G,a NG, d}) and

Then, 4 is a disjoint union and E(Z(Kr(f,)@)) = for alli € {1,2,3}.

Proof. Obviously, o7, C E (Z(Kf”)l)) By Remark (zz), any hyperedge of Type
1 or Type 3 is contained in @7 or of3 respectively. For any hyperedge of Type
2, {@,b ; c,d}, is contained in both P({0,b—a ; ¢ — a,d — a}) and P({0,a — b ;
¢ —b,d —b}). Since either a —b < Z or b—a < 2, {@,b ; c,d} is contained in
afy. Thus, E(’E(Kfﬁ%)) = o for all i € {1,2,3}. It remains to show that 7 is a
disjoint union.

Note that P({0 ; b,c,d}) # P({0 ; u,v,w}) if and only if {b,c,d} # {u,v,w}.
Thus, 4 is a disjoint union; so does ||. Now, consider «%. Let {0,u ; v,w}
and {0,a ; b, ¢} be hyperedges of Type 2 where a,u € {1,2...,%*} and a # .
Suppose {0,@ ; b,c} € P({0,u ; v,w}). Then

{0,a;b,¢c} =a'({0,u; v,w}) ={i,u+i;v+iw+i}

for some i € {1,2...,n — 1}. It implies that i = @ and u 4 ¢ = 0. Since n is odd,

u=—a=n—a>"" which is a contradiction. Therefore, P({0,a ; b,c} ) # P(
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{0,% ; v,w}) if @ # w. Besides, P({0,a ; b,c}) # P( {0,a ; v,w}) if and only if
{b,c} # {v,w}. Thus, 4% is a disjoint union. O

Next, we will group hyperedges in some patterns of hyperedges of each type
together depending on some common properties of hyperedges in the patterns.
Certain properties of hyperedges of each type will be investigated separately in

two subsections.

5.2.1 Hyperedges of Type 1 and Type 3

As each hyperedge of Type 1 contains three vertices from V5, we will classify
hyperedges of Type 1 depending on a property of a triple of vertices from V5. The
property is the difference pattern of triple of elements in Z,, that Bailey and Steven
studied in [2] to investigated the existence of a KK-Hamiltonian decomposition of

3-uniform hypergraph K.

Definition 11. [2] Let 7' = {a,b,c} be a triple of distinct elements of V; or
Vy. Then, its difference pattern, m(T') is the equivalence class of ordered triples
containing all cyclic rotations of (b—a,c—b,a —¢) and (b —c,a —b,c — a) (where

the differences are taken modulo n).

We will use above terminology for hyperedges of Type 1 and Type 3 in our
4-uniform hypergraph Kff%.

Definition 12. A difference pattern of a hyperedge of Type 1 {v ; a,b,c} (or
hyperedge of Type 3 {@,b,¢ ; v}) is defined by 7({a, b, c}).

Example 14. In Kg?m, difference patterns of hyperedge of Type 1, {0 ; 1,4,7}

and hyperedge of Type 3, {3,11,5 ; 2}, are

7({1,4,7}) = {(3,3.7),(3,7,3),(7,3,3), (10, 10,6), (10,6, 10), (6, 10, 10)} and

7({3,11,5}) = {(2,6,5), (6,5,2), (5,2,6), (8,7,11),(7,11,8), (11, 8,7)},

respectively.



63

Since three differences sum to zero, if we know that the first two differences are
x and y, then the third is —z —y. By some abuse of notation, we use (z,y, —x — )
to denote the whole equivalence class that contains it. For convenience in our
work, we will represent 7({a,b,c}) where a,b,c € Z, and a < b < ¢ by one of the

cyclic rotations of ordered triple (b — a,c — b,a — ¢). For examples,

7({1,4,7}) =(3,3,7) or (3,7,3) or (7,3,3).

7({3,11,5}) = (5,2,6) or (2,6,5) or (6,5,2).

Note that an order triple (z, y, 2) represents the class {(z, v, 2), (v, 2, z), (2, 2, y),
(—y,—x,—2),(—x,—2,—y), (—2,—y, —x) }. Thus, from any order triple (z,y, z) we
can find its unique class.

Furthermore, when n is not divisible by 3, Bailey and Steven [2] can find the
number of triples with the same difference pattern. This number is also the number
of patterns of hyperedges of Type 1 (or Type 3) with the same difference pattern
in Kfﬂ.

Lemma 5.2.4. [2] Suppose that n is not a multiple of 3. Then, there are exactly n
triples of elements in Z,, with the same difference pattern. Moreover, the number

of distinct difference pattern of element of Z,, is + (")

n\3

However, there are important terminologies of difference pattern from [2] in

Definition @ We also introduce some more terminologies to use in this chapter

in Definition .

Definition 13. [2] A difference pattern (x, x,n—2z) is called an isosceles difference
pattern, and the two difference patterns (z,y,n —x —y) and (y,z,n —x — y) is

called a conjugate pair. Besides, we also say that (x,y,n —x — y) is conjugate to

(y,x,n—x—y).

Definition 14. A difference pattern (z,y,n — z — y) where x,y,n — x — y are

all distinct, is called a non-isosceles difference pattern. Furthermore, a hyperedge
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with isosceles or non-isosceles difference pattern is called isosceles hyperedge or

non-isosceles hyperedge, respectively.
Remark 5.2.5. The following statements hold.
(1) An isosceles difference pattern (x,x,n — 2x) is conjugate to itself.

(13) If a conjugate pair (x,y,n —x —y) and (y,x,n —x —y) are two distinct

different difference patterns, then x,y,n —x —y are all distinct.

(1ii) Each difference pattern is either isosceles or mon-isosceles with a unique

conjugate pair.

It can be noticed that hyperedges of the same pattern also have the same
difference pattern. Then, we can group hyperedges in some patterns together by

their difference patterns.

Definition 15. Z(z,y,n—x —y) and &' (x,y,n —x —y) are the collections of all
hyperedges of Type 1 and Type 3 of Kff% with difference pattern (z,y,n —z —y),

respectively.

Consequently, we can partition £ (7'1([(,24%)) depending on their difference pat-

tern in the following remark.

Remark 5.2.6. Let n be an odd integer where n is not a multiple of 3. Then,

ETED) =] | Zaen-22)|J]| | P@yn-z-y).

1<z<nzl 1<zy<nst

TAYFN—T—Y
| v#n—zr—y

where P(x,y,n — 2 —y) = Upcicny PUO; 4,2 +4,2 +y +i}) and
| P (x,y,n —x —y)| =n’

Proof. Obviously, Ulgmg%l Pz, y,n—x—y) C BE(Ti(K)). Let P({0; b, c,d})
C E(Ti(KSY)) where b < ¢ < d. Then, the difference pattern of {0 ; b,c,d} is
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(c —b,d —c,b—d). Without loss of generality, ¢ — b,d — ¢ < ”T_l Then, P({0
; bye,d}) € Ulgwg%l P(x,y,n —r —y). By Remark (2d), the union of
isosceles patterns and non-isosceles patterns is a disjoint union.

Note that P({0 ; b,c,d}) # P({0 ; u,v,w}) if and only if {b,c,d} # {u,v,w}.
Since n is not a multiple of 3, {i,z + i,z +y + i} # {j,z + j,x +y + j} for all
1 # j. It follows that

PH0; i, 2 +i, o +y+i}) #PH0; o+ 4,2 +y+5}).

Therefore, | 2(x,y,n —x — y)| = n?. ]

Example 15. The collections of hyperedges of Type 1 of Kéflg with difference
pattern (2,2,1) and (1, 1,2) are the following.

2(2,2,1) =P({0;0,2,4}) UP({0; 1,3,5}) UP({0; 2,4,1}) UP({0 ; 3,0,2})U
P({0; 4,1,3})

P2(1,1,2) =P({0; 1,2,3}) UP({0; 2,3,4}) UP({0 ; 3,4,0}) UP({0 ; 4,0,1})U
P({0;0,1,2})

Similarly, patterns of hyperedges of Type 3 are concluded in Remark .

Remark 5.2.7. Letn be an odd integer where n is not a multiple of 3. Then,

E(%(Knl,ln» = U yl(maxan_zx) U U @/(w,y,n—a:—y) ,
1<e<ngt 1<zy<nst
TEYFN—T—Y
| v#n—zr—y

where P'(z,y,n — 2 —y) = Upcijcns PULx + 1,2 +y +1; 0}) and

L@'(x,y,n—x—yﬂ - TL2.
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5.2.2 Hyperedges of Type 2

Each hyperedge of Type 2 contains a pair of vertices from each partite set.
Similar to hyperedge of Type 1, we will classify hyperedges of Type 2 depending

on their properties of two pairs of vertices from two partite sets.

Definition 16. Let {u,7} C Vi (or {u,v} C V3). The length of a pair {u,v} (or
{u,v}) are min{v —u, u—v} where v—u and u—v are considered in the modulus 7.
Remark that since both V; and V; are Z,, all possible lengths are in {1,2,. .., L%J }
denoted by L.

Definition 17. Let e ={Z,7 ; u,v} be a hyperedge of Type 2 of Kff%. Then,
pair-pattern of e is an ordered pair (a,b) where a and b are the lengths of {z,y}

and {u,v}, respectively.

It can be noticed that hyperedges of the same pattern also have the same
pair-pattern. Then, we can group hyperedges in some patterns together by their

pair-patterns.

Definition 18. Bé(a, b) is the collection of all hyperedges with pair-pattern (a, b)
of K,(f%.

Therefore, we can partition the set of hyperedges of Types 2 depending on its

pair-pattern.

Remark 5.2.8. Let n be an odd integer. The collection of patterns of hyperedges
of Type 2,
E(T(KS)) = | Z(a.b)

a,bell
where P(a,b) = Uicicn1 P({0,@ ; 4,1 + b}) and |P(a,b)| = n.

Proof. Let P({0, T ; y,2}) € E(T3(K\4)), and a and b lengths of {0, z} and {y, 2},
respectively. Obviously, P({0,7 ; v, z}) € Umbeb@(a, b).

Note that P({0,@ ; b, c}) # P({0,a ; v,w}) if and only if {b, c} # {v,w}. Since
nis odd, {i,i + b} # {j,j + b} for all i # j. Thus, P({0,a ; i,i + b}) # P({0,a ;
4,j+b}) for all i # j. Therefore, |2 (a,b)| = n?. O
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Example 16. The collections of hyperedges of Type 2 in K 5545) with pair-patterns

(2,2) and (2,1) are the following.

2(2,2) =P({0,2;0,21) UP({0,2 ; 1,3}) UP({0,2 ; 2,4}) UP{0,2 ; 3,0})U
P({0,2 ; 4,1}) and

2(2,1) =P({0,2; 0,11 UPH{0,2;1,2}) UP({0,2 ; 2,3 UP{D,2 ; 3,4})U
P({0,2; 4,0}).

5.3 Imitial cycles

To construct the Hamiltonian cycles in our decomposition, we first create an
initial Hamiltonian cycle C' with hyperedges from 2n distinct patterns. The set of
all hyperedges with such 2n patterns will be partitioned into n Hamiltonian cycles

resulting from rotating C' n times.

Definition 19. Let C' be a cycle of Kr(f,)z. Then, the i** rotation of C' that is the
cycle C'+1 obtained by adding ¢ in the modulus n to each vertex of each hyperedge
ein C.

Example 17. Let C = {e; = {0,1;0,3},e5 = {1;0,3,1},...,¢e9
be a cycle in K é45) . Then, the 2" rotation of C is

{4,0;2,0}}

C+2={e=1{2,3;2,0},¢, ={3;2,0,3},...,eq ={1,2; 4,2}}.

Hamiltonian cycles in Lemmas - will be our initial cycles. Each
initial cycle except the last one in Lemma contains 2n hyperedges from 2n

distinct patterns. While our initial cycle in Lemma is created by a special
construction for the case n = 5 which contain 2n hyperedges from the same pattern.

To claim that each initial cycle in our constructions is a Hamiltonian cycle,
it suffices to show that all nodes are of size three, and all hyperedges and all
nodes are distinct. Recall that in C' = (eg, €1,...,€,_1), a node S; is ¢; N e;4 1 for

i€{0,1,...,n— 1} where e, = €.
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Remark 5.3.1. Let C' = (eg,e1,...,6,-1) be a hyperedge sequence of length n in
k-uniform hypergraph. If e; # e; and S; # S; for i # j and |S;| = k — 1 for all
i€{0,1,...,n— 1}, then C is a Hamiltonian cycle.

Proof. (pl)—(p3) in Definition E are immediately satisfied. Let ,j € {0,1,...,n—
1}. Since |S;| =k —1and S5; # S, for all i # j, we have S; U S;+1 = €;41. Then,
|S;US;11USa| = |eir1Uesra| = k+1 because all hyperedges are distinct. However,
each hyperedge contains k vertices, (p4) is followed. Therefore, C'is a cycle. Since

C'is (k — 1)-dimensional cycle of length n, it is a Hamiltonian cycle. [

In the construction, there are two kinds of initials cycles. The first one is a
collection of cycles containing hyperedges of the same type which is constructed
in Section and the other one is a collection of cycles containing hyperedges
of two types constructed in Section . For convenience, if € is a collection of

cycles, then we denote E (%) be the set of all hyperedges of all cycles in €.

5.3.1 Initial cycles with hyperedges of the same type

Each Hamiltonian cycle in this section contains only hyperedges of the same
type. We begin with a cycle using only hyperedges of Type 2 in Lemma .
Then, we establish cycles containing only hyperedges of Type 1 and Type 3 in

Lemma and in Lemma , respectively.

Let Cys(a, b, ) denote the cycle of K,(f% with 2n hyperedges defined by

Cos(a,b,c) ={ e ={0,a; ci,c(i+1)},

enii ={a,a+b;cn—1i),c(n—1—14)}:i€{0,1,...,n—1}}.

Lemma 5.3.2. Let a,b,c € L, a # b and ged(e,n) = 1. Then, Co(a,b,c)
is a Hamiltonian cycle of K,(f% with 2n hyperedges; one from each pattern in
P(a,¢)U P(b,c). Moreover, if € = {Cys(a,b,c)+i:i€{0,1,...,n—1}}, then
E(€) = P(a,¢)U P (b,c).
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Proof. The nodes of Cy(a, b, c) are the following. Fori € {0,1,...,n— 2 },

:{6’6’ C<Z+1)}7 Sn-f-lz{a?l_)a c(n—l—z)},
Sn—1={a; 0,c(n—1)} and Sy, ={a; 0,c}.

We have S,,_1 # S3,_1 and both of them are different from the other nodes since
ged(e,n) = 1 and these two nodes contain only one vertex from V;. Since {a, 0} #
{a,b}, we have S; # S, for all i, j. Fori # j, since ged(c,n) = 1, we have S; # S;
and Sy4; # Spy;. Thus, the nodes of Cyy(a, b, ¢) are all distinct.

Next, we will show that all hyperedges in Cas(a, b, ¢) are from distinct patterns

which also implies that they are all distinct. Observe that

Since ged(e,n) =1 and a,b, ¢ € L, we have

U Ple;) = U P{0,a; i,i+c}) = P(a,c) and

1<i<n—1 1<i<n—1
U Pln)= | PHOD ;i i—c}) = 2P(b,c)
1<i<n—1 1<i<n—1
Hence, e, eq,...,e,_1 are from distinct patterns in 35(@, ¢) and
€ny €nil, - - -, €2, are from distinct patterns in @(b, c).
Since a # b, all hyperedges in Css(a, b, ¢) are distinct. By Remark , the cycle
Cas(a, b, ¢) is a Hamiltonian cycle of K| r(;% Let € be the collection of cycles resulting
from the rotations of Cy(a,b,c), € = {Cyp(a,b,c) +i : i € {0,1,...,n — 1}}.
Therefore, E(€) = P(a,c) U P (b, c). O

Example 18. In K é? , Figure @ illustrates 10 hyperedges of Type 2 in Cs5(1,2,2)
with distinct patterns from (1,2) U £(2,2) and its nodes.
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€) | €1 | €2 | €3 | €4 | €5 | € | E7|ER | EY
I [ ) B I I R R So | S1 | Ss| S5 | Su|Ss| S| S| Ss]|S
0(0(0|0|0|T|T|T|T|1 - j‘f e e f‘j’
Vil 111112 0/0 O0|0|O0|T|T|T1T|1T 1
1/1|1|1/1(3|3|3|3]|3 Vil oo oo o
1|1 1T|/1|1(3|3|3|3 3

02411303 ]1|4]?2
Vy Vy| 2 4‘1 310(3[1]4 2‘0

2141130314210

Figure 5.1: Hyperedges of Type 2 and nodes in Cys(1,2,2) of Kéjg.

Let C41(a,b) denote the cycle of KT(L%% with 2n hyperedges defined by

Cn(a, b) = { €o; — {6 ; bZ,bZ + a, bi + b},

62i+1:{6;bz’—l—a,bi+b,bz’+b+a}:i€{0,1,...,n—1}}.

Lemma 5.3.3. Let 0 < a < b < m, 2a # n, 2a # 2b and ged(b,n) = 1. If
a,b—a and n — b are all distinct, then Cy1(a,b) is a Hamiltonian cycle of Kff}%
with 2n hyperedges; one from each pattern in Z(a,b—a,n—b)U P (b—a,a,n—>b).
Moreover, if € = {Ci1(a,b) +1i :i € {0,1,...,n — 1}}, then E(¥¢) = P(a,b—
a,n—>b)UX(b—a,a,n—Db).

Proof. The nodes of C11(a,b) are the following. Fori € {0,1,...,n— 1},
So; ={0; bi+a,bi+b} and So; 11 = {0 ; bi+b,bi + b+ a}.

Let i,7 € {1,2,...,n — 1} such that i # j. Since 2a # n, we have {bi + b, bi +
b+a} # {bj +0b,bj + b+ a} which implies that Sg; 11 # Sgjy1. Since 2a # 2b
and 2a # b, we have {bi + a,bi + b} # {bj + a,bj + b} and {bi + a,bi + b} #
{bj 4+ b,bj + b+ a},respectively. These imply that Sg; # Sy; and Sg; # Saj+1. We
also have Sy; # Sa;11 since 0 < b < n. Thus, the nodes of C4;(a,b) are all distinct.

Next, we will show that all hyperedges in Ci;(a,b) are from distinct patterns

which also imply that they are all distinct.
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Note that

P(es;) =P({0 ; bi, bi + a,bi + b}) and
P<€2i+1) :'P({G ; bi, bi +b— a, bi + b})

Since ged(b,n) = 1,

U Plew) = U P({0;4,i+a,i+b})=P(a,b—a,n—0b) and

1<i<n—1 1<i<n—1
U Plegiy1) = U PHO0;4,i+b—a,i+b})=P(b—a,a,n—0).
1<i<n-—1 1<i<n—1

Since a,b — a and n — b are all distinct, and b — a > 0, difference patterns
(a,b—a,n—>b) and (b— a,a,n—b) are distinct which this pair is a conjugate pair.
Hence, €g, €9, ..., €,_o are from distinct patterns in &(a,b — a,n — b) and

€1,€s,...,6es,_ 1 are from distinct patterns in Z(b — a,a,n — b).
Then, all hyperedges in Cy(a,b,c) are distinct. By Remark , the cycle
C11(a,b) is a Hamiltonian cycle of K,(f,)L. Let & be the collection of cycles resulting
from the rotations of Cys(a, b, c), € = C11(a,b), {Ci1(a,b)+i: i€ {0,1,...,n—1}}.
Therefore, E(%¢) = Z(a,b—a,n —b)U Z(b— a,a,n —b). O

Example 19. In Kéfl?), Figure @ illustrates 14 hyperedges of Type 2 in C4(1, 3)
with distinct patterns from Z(1,2,4) U #(2,1,4) and its nodes.

Let Cs3(a,b) denote the cycle of K,(f% with 2n hyperedges defined by

033((1, b) = { €o; = {%, Zb+ a,ib+ b 3 O},

egiv1 = {ib+a,ib+bib+b+a;0}:i€{0,1,...,n—1}}.

Lemma 5.3.4. Let 0 < a < b < n, 2a # n, 2a # 2b and ged(b,n) = 1. If
a,b—a and n — b are all distinct, then Cs3(a,b) is a Hamiltonian cycle of Kfﬂ
with 2n hyperedges; one from each pattern in Z(a,b—a,n—b)U X (b—a,a,n—"b).
Moreover, if € = {Cs3(a,b) +i :i € {0,1,...,n — 1}}, then E(¥¢) = & (a,b —
a,n—>b)U X' —a,a,n—>b).
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Figure 5.2: Hyperedges of Type 1 and nodes in Cy;(1,3) of K%).

5.3.2 Initial cycles with hyperedges of two types

We create an initial Hamiltonian cycle Cis(a, b) containing hyperedges of Types
1 and 2 in Lemma . Then, define Css(a, b) containing hyperedges of Types 2
and 3 in Lemma . Moreover, for the case that n = 5, we have to construct the
special initial cycle Ch2(a, a)(d) with some certain properties of in Lemma .

First, let Cis(a, b) denote the cycle of Kg}% with 2n hyperedges defined by

012(6%5) = { €2; = {E ) b(i = 1)75@ b(i i 1)},

egir1 = {ai,a(i+1) ; bi,b(i+1)}:i€{0,1,...,n—1}}.

Lemma 5.3.5. Let a,b > 0, 2b # n and ged(a,n) = ged(b — a,n) = 1. Then,
Cis(a,b) is a Hamiltonian cycle of KS}% with 2n hyperedges; one from each pattern
in P(b,b,n—2b)UP(a,b). Moreover, if € = {Ca(a,b)+i:i € {0,1,...,n—1}},
then E(€) = 2(b,b,n — 2b) U P(a,b).

Proof. The nodes of Ci5(a,b) are the following. For i € {0,1,...,n — 1},

Soi = {ai ; bi,b(i + 1)} and Seipr = {a(i + 1) ; bi,b(i + 1)}.

For i # j, since ged(a,n) = 1, we have ai # aj and a(i + 1) # a(j + 1) which
imply that Sy # Si; and Syip1 # Saj41, respectively. Since 2b # n, we have
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{bi,b(i + 1)} # {bj, b(j + 1)} which implies that Sy; # Szj41 for all ¢, j. Thus, the
nodes of Cis(a,b) are all distinct.

Next, we will show that all hyperedges in C2(a,b) are from distinct patterns
which also implies that they are all distinct. Observe that

Pley;) =P({0;i(b—a) —b, i(b—a), i(b—a) +b}) and
Plezis1) = P({0,a; i(b—a), i(b—a)+0b}).

Since ged(b — a,n) = 1, we have

U Plea)= |J P({0;i—bii+b}) = 2P(bbn—2b)and

1<i<n—1 1<i<n—1
U P(e2it1) U P{0,@;i,i+b}) = P(a,c).
1<i<n-—1 1<i<n—1
Hence, ey, €9, ..., e9,_2 have distinct patterns in (b, b,n — 2b) and
€1,€3,...,€a,_1 have distinct patterns in gz(a, c).

Therefore, Ci2(a, b) is a Hamiltonian cycle of Kff}% by Remark . Moreover,
let € be the collection of cycles resulting from the rotations of Cis(a,b), € =
{Cis(a,b)+i:i€{0,1,...,n—1}}. Therefore, B(€) = 2 (b,b,n —2b) U P(a,b).

H

Example 20. In Kéjg, Figure @ illustrates 10 hyperedges of Type 2 in Ci5(1,2)
with distinct patterns from £2(2,2,1) U 2(1,2) and its nodes.

ey | e1 | ex|es|ey|es|eg|er|es|eg

7 0 ? 1 f 2 ? 3 % 4 % So | Si| Sy | Ss|Si|Ss|Sel|Ss|Ss|So
1 2 3 4 O||wv|o0o|1T|1|2|2 33|44 0
3 0 2 4 1lof|w|ojol2l2lalal1]1]|3]3

VolO0lO0O]| 22144111313 212141417113 ]3]01]0
22441113300

Figure 5.3: Hyperedges of Type 1 and Type 2 and nodes in C15(1,2) of Kéfg.
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Next, let C32(b, a) denote the cycle of K,Si‘,l with 2n hyperedges defined by

Caa(bya) ={ ey ={b(i —1),bi,b(i + 1) ; ai},

eoiy1 = {bi,b(i + 1) ; ai,a(i+1)}:i € {0,1,...,n—1}}.

Lemma 5.3.6. Let a,b > 0, 2b # n and ged(a,n) = ged(b — a,n) = 1. Then,
C32(b,a) is a Hamiltonian cycle of KT(LA,‘% with 2n hyperedges; one from each pattern
in 2 (b, b,n—Qb)U@(b, a). Moreover, if € = {Csa(b,a)+i:i€{0,1,...,n—1}},

then E(€) = 2(b,b,n — 2b) U (b, a).

Now, we will construct the special initial cycle as follows. Let Cia(a,a)(d)

denote the cycle of KT(LA})L with 2n hyperedges defined by

Cia(a,a)(d) = { es; ={ai;ai+d,a(i+1)+d a(i+2)+d},
ez = {ai,a(i+ 1) ; a(i + 1) + d,a(i +2) + d}
:3€{0,1,...,n—1}}.

Lemma 5.3.7. Let a > 0, d > 0 and ged(a,n) = 1. Then, Ci2(a, a) is a Hamilto-
nian cycle ofK,(f,)l with all 2n hyperedges from two patterns P({0 ; d,d + a,d + 2a})
and P({0,a ; d + a,d + 2a}). Moreover, if € = {C1a(a,a)(d) : d € {0,1,...,n —
1}}, then E(€) = P(a,a,n — 2a) U P(a,a).

Proof. The nodes of Ci3(a,b) are the following. For i € {0,1,...,n — 1},

Soi = {ai; a(i+1)+d,a(i+2)+d} and Syy1 = {a(i +1); a(i+1)+d,a(i+2)+d}.

For all i # j, since ged(a, n) = 1, we have ai # aj and {a(i+1)+d, a(i+2)+d} #
{a(j+1)+d, a(j+2)+d} which imply that Sy; # Sa;, Saiv1 # Saj+1 and Sg; # Soj11.
We also have Sy; # Saii1 since ai # m.

Next, we will shows that all hyperedges in Ci3(a, a)(d) are distinct hyperedges
in two patterns. Fori # j, since ged(a,n) = 1, we have ai # aj and {ai, a(i + 1)} #

{aj,a(j 4+ 1)} which yield ey # es; and es;11 # ez;41. Hence, all hyperedges and
all nodes are distinct. Therefore, Cis(a,a)(d) is a Hamiltonian cycle of K by
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Remark . Observe that
Pley) = P({0; d,d+ a,d+ 2a}) and P(egy1) = P({0,@; d+ a,d + 2a})

for all : € {0,1,...,n —1}.

Hence, €, €3, . . ., €9,_5 are all n hyperedges in the pattern P({0 ; d,d + a,d + 2a})
d

and ey, es, ..., e, 1 are all n hyperedges in the pattern P({0,a ; d + a,d + 2a}).
Consequently, let ¢ be the collection of cycles € = {C1a(a,a)(d) : d € {0,1,.. .,
n — 1}}. Therefore, E(%) = P(a,a,n — 2a) U P (a, a). O

Example 21. In K éfg, Figure @ illustrates 10 hyperedges of Types 1 and 2 in
C12(1,1)(3) with two patterns P({0 ; 3,4,0}) and P({0,1 ; 4,0}) and nodes.

ey | e1 | ex|es|eq|es|eg|er|es| e
Vlﬁ?T?i??%Z% So | Su| S| S| 8|S S| 5|58

1| 2| |3] |31| |o||w|of1|T|2]2 3|3]1]1 ®
3 4 0 1 2 44001 |1|2|2|3]|3
%4400112233%0011223300
oOjo0oj1 (122133010

Figure 5.4: Hyperedges of Type 1 and Type 2 in (1, 1)(3) of Kéjg and its nodes.

We summarize Lemmas — in Table El] The table shows the conditions

of the parameters to construct each initial cycle along with collections of hyperedges

that have the same patterns as hyperedges used to construct each initial cycle.

5.4 Main Theorem

We will construct a Hamiltonian decomposition of Kg}% when n is prime and
n=0,1,5 (mod 8) using the initial cycles in the previous sections. The construc-
tion in the case n = 5 is different from the others; thus, we first decompose K E()45)

into Hamiltonian cycles separately.

Theorem 5.4.1. There exists a Hamiltonian decomposition of Kéjl)
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Collection of hyperedges
Lemma | Cycles (C) Conditions
containing hyperedges in C
Cy(a,b,c) | a,b,c€L,a# band ged(e,n) =1 P(a,¢)U 2(b,c)
0<a<b<n,2a+#n, P(a,b—a,n—b)U
Cui(a,b) 7 ( )
2a # 2b, ged(b,n) = 1, and P —a,a,n—b)
P (a,b—a,n—b)U
Cs3(a,b) | a,b—aand n — b are all distinct
Z'(b—a,a,n—0b)
Ciala, b) a,b>0,b#A" P(b,b,n — 2b) U P(a,b)
Cs(a,b) | and ged(a,n) = ged(b—a,n) =1 | ' (b,b,n — 2b) U P(a,b)
P({0; d,d+ a,d+ 2a})U
Cha(a, a)(d) a>0,d>0,gcda,n) =1 ({7 )
PU{0,a; d+a,d+ 2a})

Table 5.1: Initial cycles.

Proof. First, observe that in K é45) , there are exactly two distinct difference patterns
of hyperedges of Type 1 (and Type 3) which are (1,1,2) and (2,2, 1). Also, there
are exactly four pair-patterns of hyperedge of Type 2 which are (1, 1), (2,2), (1,2)

and (2,1). Then, we construct collections of cycles,
%1 = {032(1, 2) +1:1€ {O, 1574 3,4}},%2 = {032(2, 1) +1:1€ {0, 1,2, 3,4}},

% = {C1a(1,1)(d) : d € {0,1,2,3,4}} and € = {C12(2,2)(d) : d € {0,1,2,3,4}}

By Lemma p.3.6, (1) = 2/(1,1,2)U2(1,2) and B(%) = 2'(2,2,1)UP2(2,1).

By Lemma b.3.7, E(%) = 2(1,1,2) U 2(1,1) and E(%)) = 2(2,2,1)U P(2,2).
Let € = 1 U % U 63 U 64. Therefore, ¥ is a Hamiltonian decomposition of

K, 0

Next, for feasible prime n > 5, we will construct a Hamiltonian decomposition

of Ky(f% as follows.

Theorem 5.4.2. Let n be a prime such that n = 1 (mod 4) and n > 5. There

exists a Hamiltonian decomposition of K,(fr)p

Proof. When n =5 the statement holds by Theorem . Now, let n > 13.
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In K,(f%, let Z; (or Z3) be the subhypergraph consisting of all non-isosceles
hyperedges of Type 1 (or Z3), Z; (or Z3) the subhypergraph consisting of all isosceles
hyperedges of Type 1 (or Type 3). Then, ﬂ(KT(L%,)q) = 7,UZ, and 7§(K,(14T)L) = T5UTs;.

Note first that

K =T\WLUT(KD)UT; UL,

,n

Claim 1 : 7; UZ; has a Hamiltonian decomposition.

By Remark , we have that

ET)= U Pwyn-s-padETG)= |J P@yn-z-y)
L<zy<ost 1<zy<nyt
rAYy#En—T—Y rAYy#EN—T—Y

Now, let z,y € {1,2,..., %51} where z,y and n — x — y are all distinct. Let
G (z,y) ={Cu(z,x+y)+7:5€4{0,1,...,n—1}}.

Note that 0 < x < z +y < n. Since n is a prime number, we have that 2x # n
and 2z # 2(x + y) in the modulus n, and ged(z + y,n) = 1. Thus, x and = + y
satisfy the requirements in Lemma ; so, B(€\(z,y)) = P(z,y,n —x —y) U
P(y,x,n —x —1y). Thus, Z; has a Hamiltonian decomposition.

Similarly, let €5 (x,y) = {Css(z,z +y)+j:j € {0,1,...,n —1}}. By Lemma
, E(Gy(x,y)) = P(x,y,n — 1 —y) U P(y,x,n — x — y). Therefore, 3 has a

Hamiltonian decomposition.

Claim 2 : 7 UZ3 U 7§(KT(L47)1) has a Hamiltonian decomposition.

By Remark , we have that

E(Z,) = U P(a,a,n — 2a) and E(I3) = U P'(a,a,n — 2a).

n—1 n—1
1<a<™5= 1<a< 5=

First, we will construct a Hamiltonian decomposition of Z; U Z3 U Z, where 7} is
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the subhypergraph consists of hyperedges of Type 2 in

U P(a—1,a)U U P(a—2,a)
aclL a€lL
such that @ — 1 and a — 2 are consider in the modulus 2=t.

2
Leta€{1,2,...,"7_1} and
¢3(a) = {C2(a—1,a)+j:5€{0,1,...,n—1}},

where 012<0, ].) = Clg(nT_l, 1)

Since n is prime and 0 < a < 23, we have that 2a # n and ged(a,n) = 1.

These facts satisfy conditions in Lemma . Then, E(%5(a)) = P(a —1,a) U
P(a,a,n — 2a).

Similarly, let €(a) = {Csz2(a—2,a)+7 : j € {0,1,...,n—1}}, where C55(0,2) =
Caa(252,2) and Cap(—1,1) = Cya(52 —1,1). By Lemma p.3.6, E(%i(a)) = P(a—
2,a) U P (a,a,n — 2a). Hence, we can decompose Z; U Z3 U 7} into Hamiltonian

cycles. It remains to construct a Hamiltonian decomposition of 7§(K,(L47)1) I,

By Remark , the hyperedge set of 7§(K,(147)l) can be written as

E(LED) =) 2@ ={J| U (P+2quP+2i+1,a)

a,belL a€l OSiSnT_s

where a + 2¢ and a + 27 + 1 are consider in the modulus ”T_l Note that

E(T) = J(ZP(a—-1a)UP(a-2a)

a€ll

and Z(a—1,a) and 2 (a —2,a) equal to P(a+ 2i,a) and P(a+ 2i +1,a) when

n—>»s
4

Finally, the left over of hyperedges of Type 2 in B(K,(f,)l) N Z} will be form the

1= , respectively. Note that ”T"r’ is an integer since n = 1 (mod 4).
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Hamiltonian cycles by Lemma . Leta e L,ie€{0,1,..., ”T_‘r’},i #* ”7_5, and
Gs(a) = {Cor(a+2i,a+2i+1,a)+j:j€{0,1,...,n—1}}

where a+2i and a+2i+1 are consider in the modulus ”T_l Since a+21,a+2i+1 € L
and ged(a,n) = 1, by Lemma 5.3.9, all cycles in E(%5(a)) = P(a+2i,a)U P (a+
2i+ 1,a). Hence, our claim is proved.

Therefore, Kr(ff)l has a Hamiltonian decomposition. [



CHAPTER VI
CONCLUSIONS AND OPEN PROBLEMS

6.1 Conclusions

In this dissertation, we establish KK-Hamiltonian decompositions and WJ-
Hamiltonian decompositions of uniform hypergraphs.

The results of KK-Hamiltonian decompositions are in Chapters III and IV.
Theorem @ and Theorem in Chapter III, and Theorem in Chapter IV

can be combined to the following Theorems.

Theorem 6.1.1. Letn > 2 and t be a positive integer such thatt = 4,8 (mod 12).
If Kt(g) has a KK-Hamiltonian decomposition, then Kt((gg) has a KK-Hamiltonian

decomposition.

Theorem 6.1.2. Let t = 4,8 (mod 12). If Kt(g) has a KK-Hamiltonian decompo-

sitton, then KQ(?) has a KK-Hamiltonian decomposition.

Therefore, our construction method in Theorem yields infinitely many
results for Kéf) from the current results of KK-Hamiltonian decompositions of
Kt(g). The studies of the existence problem of KK-Hamiltonian decompositions of
Kt(s) were completed for feasible t when 3 <t < 46,t #43,t=2" and m > 2 in
[2, 13, 18, [L0] which are collected in Chapter II.

Corollary 6.1.3. Kt(g) has a Hamiltonian decomposition when t = 2™,5-2™,7-2™

and 11 - 2™ and m > 2.

Proof. Let m > 2. By Theorems l224l and l‘Z.Q.d, Kt(g) has a Hamiltonian de-

composition when t = 4,20,28 and 44. Therefore our recursive construction in
Theorem confirms that Kt(g) also has a Hamiltonian decomposition when

t=2m 5.2m 7.2m and 11 - 2™ 0
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Thus, the construction in Theorem - together with Corollary yield

infinitely many results for K t(( )) as follows.

Corollary 6.1.4. Let n > 2. Kt((gg) has a Hamiltonian decomposition when t =
2m 5-2m7-2™ and 11 - 2™ and m > 2.

Furthermore, Bailey and Stevens [2] observed that the results for K also yield
the results for K" due to complementary (see details in [2]). Similarly, since
the complement of each hyperedge of K (3) is not a subset of any partite sets of
K ((372), a collection of complement of hyperedges of K ( is the hyperedge set of

(tn—3)

K t(g:) % Hence the results for K also yield the results for K, (n) S follows.

Corollary 6.1.5. Kt(t_3) has a Hamiltonian decomposition whent = 2™, 5-2™ 7.2™
and 11 - 2™ and m > 2.

tn3

Corollary 6.1.6. Let n > 2. K has a Hamiltonian decomposition when

t=2m5.2"7-2" and 11 - 2™ andm22.

Finally, in Chapter V, we provide the result for 4-uniform hypergraphs us-
ing properties of their hyperedges. We construct a WJ-Hamiltonian decomposi-
tion of complete bipartite 4-uniform hypergraph K,(ZS% where n is a prime number
which each cycle in the construction is neither Berge-Hamiltonian cycle nor KK-

Hamiltonian cycle in the following theorem.

Theorem 6.1.7. Let n be a prime such that n = 1 (mod 4) and n > 5. There

exists a WJ-Hamiltonian decomposition of Kf;}%.

6.2 Open problems

Several open problems concerning our work are the following.

1. The existence of a KK-Hamiltonian decomposition of K t(( )) when t =

2 (mod 4) and n > 2. Since Theorems @ @ and @ can construct
(3)

a KK-Hamiltonian decomposition of 75(K,

)); 1t remains to show that

Ti(K t((n)) has a Hamiltonian decomposition to complete the problem.
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. The existence of a KK-Hamiltonian decomposition of K t((?’i) when ¢t > 5

and n =0 (mod 3).

. The existence of a WJ-Hamiltonian decomposition of a complete 4-uniform

bipartite hypergraph K,(fT)L for all n > 3.
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