
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Random walks on quasi-1d infinite structures 
 

Mr. Srawut Sasom 
 

A  Dissertation Submitted in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy in Physics 

Department of Physics 
FACULTY OF SCIENCE 

Chulalongkorn University 
Academic Year 2022 

Copyright of Chulalongkorn University 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

การเดินสุ่มบนโครงสร้างอนันต์กึ่งหนึ่งมิติ 
 

นายสราวุธ สะสม  

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต 
สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์ 

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 
ปีการศึกษา 2565 

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Thesis Title Random walks on quasi-1d infinite structures 
By Mr. Srawut Sasom  
Field of Study Physics 
Thesis Advisor Assistant Professor VARAGORN HENGPUNYA, Ph.D. 

  
 

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial 
Fulfillment of the Requirement for the Doctor of Philosophy 

  
   

 

Dean of the FACULTY OF SCIENCE 
 (Professor POLKIT SANGVANICH, Ph.D.) 

 

  
DISSERTATION COMMITTEE 

   
 

Chairman 
 (Associate Professor Sutee Boonchui, Ph.D.) 

 

   
 

Thesis Advisor 
 (Assistant Professor VARAGORN HENGPUNYA, Ph.D.) 

 

   
 

Examiner 
 (Assistant Professor PATCHA CHATRAPHORN, Ph.D.) 

 

   
 

Examiner 
 (Associate Professor SURACHATE LIMKUMNERD, Ph.D.) 

 

   
 

Examiner 
 (THIPARAT CHOTIBUT, Ph.D.) 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iii 

 
ABSTRACT (THAI)  สราวุธ สะสม : การเดินสุ่มบนโครงสร้างอนันต์กึ่งหนึ่งมิติ. ( Random walks on quasi-

1d infinite structures) อ.ที่ปรึกษาหลัก : ผศ. ดร.วรากร เฮ้งปัญญา 
  

ในวิทยานิพนธ์ฉบับนี้ ผู้วิจัยศึกษาเชิงวิเคราะห์การเดินสุ่มบนโครงสร้างอนันต์กึ่งหนึ่งมิติ
ที่พิจารณาว่าเป็นแบบจำลองของกระบวนการขนส่งในวัสดุกึ่งหนึ่งมิติ โดยขอบเขตของการศึกษา
คือ การศึกษาพฤติกรรมเชิงเส้นกำกับของสมบัติเชิงสถิติพ้ืนฐานของการเดินสุ่มบนโครงสร้าง
ดังกล่าว ซึ่งได้แก่ โมเมนต์ที่หนึ่งและโมเมนต์ที่สองของตำแหน่งตัวเดินในทิศทางตามแกนโครงสร้าง 
ความน่าจะเป็นของการกลับมายังจุดเริ่มต้น ความน่าจะเป็นของการไปยังตำแหน่งหนึ่งๆที่สนใจ 
เวลาเฉลี่ยของการไปยังตำแหน่งที่สนใจครั้งแรกแบบมีเงื่อนไข และจำนวนเฉลี่ยของตำแหน่งบน
โครงสร้างที่แตกต่างกันที่ตัวเดินสุ่มเคยไปเยือน 

ในส่วนแรกของวิทยานิพนธ์ ผู้วิจัยได้พัฒนาระเบียบวิธีการใหม่เพ่ือวิเคราะห์สมบัติ
พ้ืนฐานเหล่านี้ โดยใช้แนวคิดของฟังก์ชันก่อกำเนิดและการแปลงฟูเรียร์ลาปลาซ  และในส่วนที่
เหลือของวิทยานิพนธ์จะเป็นการประยุกต์ใช้ระเบียบวิธีนี้ กับการเดินสุ่มบนแลตทิซก่ึงหนึ่งมิติแบบ
ต่างๆ ได้แก่ แลตทิซหนึ่งมิติ แลตทิซแขนง แลตทิซบันได และแลตทิซทรงกระบอก รวมไปจนถึง
การประยุกต์ใช้ที่เป็นไปได้ของผลลัพธ์ที่ได้จากการศึกษาการเดินสุ่มบนโครงสร้างต่างๆเหล่านี้ 

 

สาขาวิชา ฟิสิกส์ ลายมือชื่อนิสิต ................................................ 
ปีการศึกษา 2565 ลายมือชื่อ อ.ที่ปรึกษาหลัก .............................. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 
ABSTRACT (ENGLISH) # # 6271039123 : MAJOR PHYSICS 
KEYWORD: a random walk, branched lattices, ladder lattices, cylindrical lattices, 

quasi-1d materials 
 Srawut Sasom : Random walks on quasi-1d infinite structures. Advisor: 

Asst. Prof. VARAGORN HENGPUNYA, Ph.D. 
  

In the present thesis a random walk on quasi-1d lattices as a model for 
transport processes on quasi-1d materials is analytically investigated. The scope of 
the present work is to shed light on the asymptotic behavior of basic statistical 
properties of the random walk on such structures including the first and the 
second moments of the walker location along the structure axis, the probability of 
return to the starting site, the probability of ever reach a given site, the conditional 
mean first-passage time to a given site and the expected number of distinct sites 
visited. 

The first part of the thesis deals with developing a method for obtaining 
these basic properties by employing the concepts of generating functions and the 
Fourier-Laplace transform. Based on this developed method, in the remaining 
parts, the random walks on different quasi-1d lattices, i.e., a perfect-1d 
lattice, branched lattices, ladder lattices and cylindrical lattices, and their feasible 
applications are discussed. 
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Introduction 
 

A random walk often constitutes basic models for non-deterministic dynamics 
in diverse fields [1-3]. In physics, a number of studies of dynamical processes has 
exploited results of random walk models on various kinds of structures. For instance, 
the problem of the initial part of the low-temperature relaxation in the one-
dimensional Ising model could be solved by employing the solution of a symmetric 
random walk on a one-dimensional lattice [4]. The transports of the excitation of a 
molecule on photosynthetic units and a particle inside spiny dendrites were 
modelled by a random walk on hexagonal lattices [5] and comb-like structures [6], 
respectively. In addition, even random walks on peculiar structures [7-10] can also 
motivate applications in diffusion in disordered media. It is thus evident that the 
problems of a random walk on structures of different topologies are still open and 
challenging. Among various structures, structures largely expanded in one direction 
than the others or the so-called quasi-one-dimensional (quasi-1d) structures, e.g., 
spiny dendrites, deoxyribonucleic acids (DNAs), polymers, carbon nanotubes and 
nanowires, have attracted very wide interests, because they play essential and 
ubiquitous roles in everyday life, and possess remarkable properties. To a certain 
extent, the study of a random walk on quasi-1d infinite structures could help in 
discussion of transport properties on such structures. Accordingly, this is the main 
motivation for this work. 

Before we dive into our analysis, here is an introduction to the concept of 
random walks followed by an overview of examples of study on basic statistical 
properties of a random walk on different structures. In addition, according to our 
interest, before closing this chapter, we will mention some research relevant to 
transport processes in quasi-1d materials. 
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1.1 Random walks 
1.1.1 History 

The words “random walk” first appeared when Karl Pearson asked his 
question to the readers of Nature in 1905 [11] : “A man starts from a point O  and 
walks L  yards in a straight line; he then turns through any angle whatever and walks 
another L  yards in a second straight line. He repeats this process n  times. I require 
the probability that after n  stretches he is at a distance between r  and r dr+  from 
his starting point O .” This problem had in fact been studied in different contexts by 
several authors, e.g., Lord Rayleigh [12] who studied the composition of n  iso-
periodic vibrations of unit amplitude and of phases distributed at random in 1899, 
Bachelier [13] who proposed a random walk model of the stock market in 1900, and 
Einstein [14] who treated the motion of elements suspended in static liquids in the 
same year Pearson formulated the problem. This shows that the concept of random 
walks is related to numerous physical processes. Consequently, many authors put 
their efforts into analysis of various aspects of the random walk problems, e.g., 
Kluyver [15] who furnished a complete solution to the Pearson’s question, and 
Smoluchowski [16] who was the first to consider the problem of the restricted 
random walk – the random walk with the presence of reflecting and absorbing 
barriers. In the most general form, the problems were formulated by Markov [17] 
who outlined a general method of solutions. 

Over the years the concept of random walks has found extensive application 
in diverse fields. For instance, it was applied to many problems in economics such as 
the ruin theory of insurance companies, growth and inequality processes and the 
dynamics of prices on financial markets [18]. The various areas of computer science 
have also exploited the random walk concept, for instance, recommender system, 
computer vision and network embedding [19]. In biology, random walks were used to 
describe the movement, the dispersal and the population redistribution of animals 
and micro-organisms [20]. In chemistry, particle diffusions with the presence of 
reactions in crowded media were studied by random walk models as well [21], and 
in physics persistent random walks of charged particles across magnetic field lines 
have been discussed recently [22]. 
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1.1.2 General statement and formulation 
The simplest definition of a random walk is a sum of random vectors: 

 
1 2 nx r r r= + + +  (1) 

where x  is the position of a walker after n  steps and the random vector 
ir  

represents the displacement at the i th step. The rigorous mathematical definition 
and the mathematical problems can be found in the book by Spitzer [23]. To 
illustrate this definition, let us go back to Pearson’s question. In this question, the 
random vector 

ir  is the 2-d random vector with fixed magnitude L  and random 
angle i  uniformly distributed over 0  to 2 , i.e., 1 2

ˆ ˆcos sini i ir L x L x = +  for 

1,2,3,...,i n= , and the probability distribution function (PDF) ( )
n

x  to find the 

walker at the n th step at points with distance x  from the starting point was 
required. 

For general random walk models, one may ask this basic question of the 
theory of random walks in a more general way: For given the characteristics of the 
transition of a random walker, what is the probability of the walker being found at a 
certain region at certain time? or what is the probability that a certain region is 
occupied by the walker at certain time? These two slightly different questions 
originate two key complimentary approaches to the statistical description of the 
random walk models. Although having different mathematical apparatus and 
terminologies, the two approaches are closely related and their exact equivalence 
can be demonstrated in some cases. 

The first approach, often called the generating function formalism (GFF), is 
based on the concept of generating functions and the Fourier-Laplace transform. This 
approach is commonly employed to treat the problems of random walks if certain 
recursive relations play a fundamental role in describing the dynamics of walkers, 
and the models may possess the spatial and the temporal homogeneities. 

To see this, let us consider a random walk on lattices due to Montroll and 
Weiss [24]. It is assumed that the model possesses the spatial homogeneity in a 
sense that the walker can take an instantaneous step of displacement x  from the 
present site to the neighboring sites with probabilities ( )p x , which are 
independent of the past position. It also possesses the temporal homogeneity, which 
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means that the walker steps are taken at random times, 1 2, ,...t t  such that the times 
between steps 1i i it t t −

 = −  are independent to each other and have a common PDF 

( )it   for 0 it   . These probabilities satisfy the normalization conditions: 

( )
0

1t dt


  =  and ( ) 1
x

p x


 =  where the sum is over all neighboring sites. 

Consequently, the probability ( ),x t  that the walker is at a site x  at time t

, given that the walker started at the origin 0x = , can be expressed in the form 
 

( ) ( ) ( ) ( )
00

,

t

n n
n

x t x t t t dt


=

 
   =   − 

 
 . (2) 

( )
n

x  is the probability of the walker being at the site x  at the n th step. It obeys 
the recursive relation, i.e., Chapman–Kolmogorov equation, 
 ( ) ( ) ( ),0 ,0 1n xn n

x

x p x x x 
−



  = + −   (3) 

where ,a b  denotes the Kronecker delta and the sum is now over all sites on the 
structure. In turn, the term ( )

n
t dt  is the probability for the occurrence of the n th 

step at time t , which satisfies the recursive relation 
 

( ) ( ) ( )
1

0

t

n n
t t t t dt  

−
  = −  (4) 

where ( ) ( )
0

t t =  and n  is a natural number. The probability ( ) ( )
t

t t dt


     is 

the so-called survival probability on a site, the probability that the waiting time on a 
site exceeds t . In short, the probability ( ),x t  can be considered as the sum of the 
probabilities that the walker makes a jump to a given site x  at different steps and 
times, provided that the walker pauses movement at time t  until time t  after its 
arrival to the site x  at time t . 

From the convolution theorems of Fourier and Laplace transforms, we can 
turn the probability ( ),x t  in equation (2) to its Fourier-Laplace representation, 
 

( )
( )

( )( )
*

* *
1

, ;
s

k s k s
s




−
 =   (5) 

where ( ) ( )*

0

, , ik x st

x

k s x t e e dt



− 
   

 
  is the Fourier-Laplace transform of 

( ),x t  and ( ) ( )*

0

sts t e dt 


−   is the Laplace transform of ( )t . In turn, the term 
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( )( )*;k s  is the Fourier transform of the generating function 

( ) ( )
0

; n

n
n

x x 


=

   , i.e., ( ) ( ); ; ik x

x

k x e    , with   substituted by ( )* s . 

From equation (3), it is not hard to show that ( ) ( )( )
1

; 1k p k 
−

 = −  where 

( ) ( ) ik x

x

p k p x e 



   with the summation over all neighboring sites, and equation 

(5) thus takes a simple form, 

( )
( )

( ) ( )( )

*

*

*

1
,

1

s
k s

s s p k





−
 =

−
. 

Therefore, the probability ( ),x t  can be calculated by performing the 

inverse Fourier-Laplace transform of ( )* ,k s . In addition, as we shall see later, the 

Fourier-Laplace transform ( )* ,k s  itself encodes other incredibly important 

properties of a random walk. 
On the other hand, when models cannot be formulated from the recursive 

relations and the spatial homogeneity no longer holds, one may tackle the problems 
by the second approach, a master equation technique (MET) (see, e.g., [1] and [3]). 
For this technique, ( ),x t  is denoted as the probability that a given site x  is 
occupied by a walker at time t , and its rate of change equals to the sum of the gain 
and the loss fluxes, 
 

( ) ( ) ( ) ( ) ( )
0

, , ; , , ; ,

t

x x

x t p x x t t x t p x x t t x t dt
t  

  
        = −  − −    

   (6) 

where the term ( ), ;p x x t t −  is the transition probability rate for going from x  to 
x  in time interval t t− . This equation is known as the generalized master equation. 
Note that, in the spatial continuum limit, the sums become the integrals. 
 Unfortunately, in general, it is almost impossible to find the explicit form of 
the probability ( ),x t  from performing the inverse Fourier-Laplace transform of 
equation (5) or solving the integro-differential equation (6). Nevertheless, it has been 
shown [10] that, for a broad class of random walks, the asymptotic behavior of the 

probability ( ),x t  to find a random walker at time t  at points with distance x  

from the starting point 0x =  obeys the scaling collapse 
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( ) 1

,

f

w

w

d

d

d

x
x t t f

t

 
−  
 

 
  

 
 (7) 

with the scaling variable 1 wd
x t , where the parameters fd  and wd  are determined 

by the symmetries of the model and the geometric characteristics of the underlying 
structure. On lattices with translational invariance in any k -dimensional Euclidean 
space ( k -d in short), it has been found that fd k= , 2wd =  and the function ( )f   
is a Gaussian scaling function. It is worth to note that the scaling collapse (7) is also 
valid when the underlying structure is a fractal. 

Aside from being central in studying the probability ( ),x t  of random walks, 
GFF and MET also enable us to derive many other subtle and useful random walk 
properties. To demonstrate this statement, in the next section, we will introduce 
several works, which exploit the ideas of MET (Subsection 1.2.1 – 1.2.3) and GFF 
(Subsection 1.2.4 – 1.2.8) to study basic properties of a random walk on different 
structures. 
 
1.2 Random walks on different structures 

1.2.1 The random walk on complex networks 
 A complex network, a graph with non-trivial topological features (see, e.g., 
Figure 1), is a structure able to reproduce certain features of real-world networks, 
e.g., computer networks, biological networks, technological networks, brain networks, 
climate networks and social networks. Transports on this kind of networks can thus 
be described by a random walk on complex networks. 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

Figure 1. An example of complex networks, a Baraba´si–Albert graph [25] 
One of the important functions used to describe the non-trivial topological 

features of complex networks is the degree distribution ( )P k  - the fraction of nodes 
in a network with degree k . According to the conventional classification, complex 
networks are denominated by the behavior of the corresponding degree distributions. 
For example, a complex network is called a scale-free network or a growing 
exponential network when the degree distribution ( )P k  follows the power law 
decay function in the continuous degree approximation, i.e., ( ) constantP k k −  
for 2 3  , or it is in the form of the exponential decay function, i.e., 

( ) 1 k mP k e m−=  where a counting number m  is a minimum degree and k m . 
The random walk exploration on both types of complex networks was 

studied by Baronchelli, Catanzaro and Pastor-Satorras [26]. It was described through 
the coverage ( )S t , defined as the expected number of distinct nodes visited by a 
walker at time t , averaged for different random walks starting from different nodes. 
The coverage can be expressed as the weighted sum of the coverage spectrum 

( )ks t  defined as the fraction of nodes of degree k  visited by the random walker at 
least once. In other words, ( ) ( ) ( )k

k

S t N P k s t=   where the complex network is 

composed of different N  nodes. The evolution of the coverage spectrum ( )ks t  is 
described by the following differential equation, 
 ( ) ( )

( ) ( )( )
|

1
k

k k

k

s t P k k
k t s t

t k
 



  
= − 

  
 . (8) 

In words, the rate of change of the coverage spectrum equals to the multiplication 
of the gain flux of the probability that nodes of degree k  host the random walker at 
time t  (the first parentheses) and the fraction of nodes of degree k  never visited by 
the walker (the second parentheses). As mentioned earlier, from the idea of MET, the 
sum of the gain flux and the loss flux is equal to the rate of change of the 
corresponding probability. Hence, the probability ( )k t , which nodes of degree k  
host the random walker at time t , reads 
 ( )

( )
( )

( )
|k

k k

k

t P k k
t k t

t k


  




= − +


  (9) 
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where ( )|P k k  is defined as the probability that a node of degree k  is connected 
to another node of degree k  . 

The authors found that, from equations (8) and (9), in certain limits, the 
coverage spectrum of wide range of complex network models obeys the scaling law 
 

( ) 1 expk

kt
s t

k N

 
= − −  

 

 (10) 

which leads to the general scaling expression of the coverage ( )S t , 
 ( )

( )1 exp
k

S t kt
P k

N k N

 
= − −  

 
  (11) 

where ( )
k

k kP k  is the average of degrees. 

From this result, it is immediately seen that, for finite complex network 
models, N  , the random walks eventually visit all nodes of networks, 

( )S t N . The scaling expressions of the coverage ( )S t  for scale-free networks 
and growing exponential networks were respectively cast into the following forms: 
 ( )

( )1 1
S t mt

E
N k N


 

= − −   
 

 (12) 

where ( )E z  is the exponential integral function for 2 3  , and 
 ( )

1
1

mt k NS t e

N mt k N

−

= −
+

. (13) 

 
1.2.2 The random walk on fractals 

Fractals have drawn the widespread interest from many authors because of 
the self-similarity of the structures and the realization that such structures or 
approximations to them can be found everywhere in natural and artificial structures 
(see, e.g., [27] and [28]). The examples include percolations, polymers, surfaces in 
turbulent flows and geometrical optics. The geometrical characteristics of fractals are 
roughly determined by an index called a fractal dimension fd , which is the same 
index appeared in equation (7), and it is defined by 
 ( )log number of relication

log(magnification)
fd = . (14) 

Note that although there are many ways of introducing this index, these different 
ways are all related to each other. To clarify this definition, let us consider an 
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example, the Sierpinski gasket in 2 -d. The first three stages in the construction of 
this self-similar structure are shown in Figure 2. It begins with one equilateral triangle. 
As you can see, subsequently, there are 3  copies of the original triangle constructed, 
and each of them needs to be magnified by the factor 2  to restore the original 
scale. The process is continued infinitely. Therefore, the fractal dimension of the 

Sierpinski gasket is log3

log 2
fd =  which is a non-integer. The Sierpinski gasket can be 

generalized to a fractal in k -d, and its fractal dimension is ( )log 1

log 2
f

k
d

+
=  (see [29] 

for more details). 
 

 
Figure 2. The several iterated processes to construct the Sierpinski gasket in 2-d [29]. 
 
 In what follows, a summary, which is mentioned in the article of Balakrishnan 
[29], is given of some of results for the random walk on fractals. A fractal is a non-
differentiable structure so the probability to find a walker at certain time at sites with 
certain distance from its starting site is expected to be non-differentiable function. 
However, a coarse-graining procedure enables us to define an “envelope” function 

( ),x t  that satisfies a differential equation, which can be derived from the 

generalized master equation, 
 

( ) ( )
10

1
, ,f w

f

d d

d

K
x t x x t

t x xx

+ −

−

   
 =  

   
 (15) 

where wd , which is the same index appeared in equation (7), is an index 
characterizing the random motion of the walker. This index is also known as the 
random walk dimension. For 2k  , for regular lattices embedded in Euclidean space 
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of k -d, this index is always equal to 2 , while, for the Sierpinski gasket in k -d, 
( )log 3

2
log 2

w

k
d

+
=  . 

For the spherically symmetric initial condition, the asymptotic form of the 
solution of equation (15) is 
 

( ) ( )( )1
, exp

f

w
w w

d

dd d
x t t x t

 
−  
   − , (16) 

which obeys the scaling form (7). From this result, one of basic random walk 
properties is immediate, i.e., the asymptotic form of the probability ( )0, t  of return 

to the starting site at time t , ( )0,

f

w

d

d
t t

 
−  
   . Furthermore, the relation (16) leads us 

to the characteristic index dependence of other physical quantities in the problems 

of random walks, e.g., the mean first-passage time ( )x  of a walker being at sites 

with distance x  from its starting site, ( ) wd
x x   as the distance x  is large, and 

the expected number ( )S t  of distinct sites visited, ( ) f wd d
S t t  for 0 2fd  . 

In addition, it was pointed out that the walker diffusion on the Sierpinski gasket in k -

d is in the subdiffusive regime, i.e., the second moment ( ) ( )
2 2

0

,x t x x t d x



   

behaves like 2 wd
t  at large times, for 1k  . 

 
1.2.3 The random walk on comb structures 
A comb model was first proposed at roughly the same time by Goldhirsch and 

Gefen [30] and by Weiss and Havlin [31], as a basic model able to reproduce certain 
features of transport on a fractal medium and a percolation cluster. They have been 
the starting point for many successive developments on the problem of random 
walks on comb-like structures [7, 32-36]. The simplest comb structure, shown in 
Figure 3, consists of a principal axis, called the backbone, and identical branches 
attached to each site on the backbone.  
 Mendez, Iomin, Campos and Horsthemke [34] studied the continuous time 
random walks on this simplest comb structure and presented a generic method, 
which is based on MET, to obtain the random walk transport properties. They 
restricted themselves to the so-called Polya walk, a walk in which steps to 
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neighboring sites on a structure only are allowed. It is assumed that the walker takes 
symmetrically steps along the backbone, but the steps along branches may be 
biased with probability p . For example, when 0.5p  , the walker may likely move 
away from the backbone along a branch.  In addition, when the walker arrives at any 
site on the structure, it waits for a random time t  with a common PDF ( )0 t . 
 

 
Figure 3. A comb structure consisting of the backbone and branches where a  is the 
distance between two neighboring sites [34]. 
 

The authors found that the motion of the walker on the comb can be 
reduced to the effective motion along a one-dimensional lattice, corresponding to 
the backbone only. For this reduced model, the probability ( ),x t  of finding the 
walker at a site x  on the backbone at time t  can be derived from the generalized 
master equation, 
 

( ) ( ) ( ) ( ) ( )
0

, , ,

t

x

x t p x x x t x t K t t dt
t





=−

        = −  − − 
  

  (17) 

where ( ) , ,

1 1

2 2
x a x ap x    −  +  represents the single-step transition probability, 

( )K t  is the memory kernel related to the PDF ( )t  of effective waiting time via its 

Laplace transform, ( )
( )

( )

*

*

*1

s s
K s

s




=

−
. The authors could derive an exact analytical 

expression for ( )t  of the random walk dynamics on the backbone in terms of the 
mesoscopic characteristics of the random walk on the comb, namely the PDF ( )0 t  
of the local waiting time, the probability p , and the length N  of branches, 
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( )

( )

( ) ( )( )
( ) ( ) ( )( )

*

0*

2
*

0

* *

0 0

1
2

1 1 , ,

s
s

p s

p s G p N s






 

=
−

−
− −

 
(18) 

where ( )( )*

0, ,G p N s  is a certain complicated function (see [34] for more details). 

From this result and the definitions of important parameters 0 1v   and 

0 0t   via the asymptotic form of the Laplace transform ( )* s , ( ) ( )*

01
v

s t s −  as 
0s +→ , the authors could determine the asymptotic form of the second moment 

2   ( )x t  of the walker location along the backbone. For the comb with finite-length 

branches, N  , 
 ( )

( )
02

0  ( ) 2
1

v
t t

t Dt
v

x
 +

 (19) 

where 
( )

2

1

0

2 1

2 2 1 4 3
N N

a p
D

t p p p
−

−


− + −
 is called the diffusion coefficient, a  is the 

distance between neighboring sites and ( )z  is the gamma function. On the other 
hand, for the comb with infinite-length branches, the random walks can display three 
different transport regimes depending on the degree p  of bias on branches, 
 ( )

( )( )

( )

( )

( )
( )

2

0

2
2

0

2

02

2

2 1
, 0.5

1 4 3

, 0.5
2 1 2

2 1
, 0.5

1

 

4

( )

3

v

v

a p t
p

v p t

a t
x p

tv

a q p
t t p

p p

t



 −  
  
 + −  


 

=  
 +  


−

 
 − +


 (20) 

where the function ( )z  is expressed in term of the generalized Mittag-Leffler 
function ( ),E z  . 
 

1.2.4 The random walk on arbitrary dimensional comb lattices 
Although the simplest comb structure is a simple caricature of various types of 

branched structures, it does not exhaust the whole variety of cases. Therefore, Illien 
and Benichou put their focus on the generalization of the simplest comb model [7]. 
The generalization is a random walk on arbitrary dimensional comb lattices. 
Illustrations of these structures can be seen in Figure 4.  In their work, it was assumed 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 13 

that a walker located at any site ( )1 2 3, , ,..., kx x x x x=  on a k -d comb takes 
symmetrically an instantaneous step to the neighboring sites with probabilities 

( )1 x  where ( )x  is the number of neighboring site of the site x . In addition, 
unlike the preceding model, this model is the discrete-time random walk, the walker 
steps are taken at certain times instead of random times. 
 

 
Figure 4. The structures of the 2 -d (left) and 3 -d (right) combs [7]. The line 
coincides with the kx  axis is called the primary backbone. 
 

It is obvious that the models do not have the spatial homogeneity, but the 
following recursive relation is still helpful, 
 ( ) ( ) ( )

00 ,0 , 0

0

| | |
n

n x xn n n n
n

x x x x x x 
 −

=

 = +  . (21) 

The idea is: The probability ( )0|
n

x x  of the walker being at a site x  at the n th 
step, given that it initiated at a site 0x , is equal to the sum of all probabilities that 
the walker is at that site for the first time after walking n n−  steps and, the rest of 
its walk n , it can go anywhere on the structure but eventually it must be at that 
site. In addition, the comb lattices are loopless structures, so two arbitrary sites x  
and 0x  are connected to each other with a unique path. This property implies that 

the generating function ( ) ( )0 0

0

| ; | n

n
n

x x x x 


=

  of the conditional first-

passage probabilities ( )0|
n

x x  is sparable, 
 ( ) ( ) ( )0 1 1 0| ; | ; | ;x x x x x x  =  (22) 
where 1x  is any site belonging to the path. Furthermore, it has been proven that the 
model possesses the reversibility, 
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( )

( )
( )

( )0 0

0

1 1
| ; | ;x x x x

x x
 

 
 =   (23) 

where ( ) ( )0 0

0

| ; | n

n
n

x x x x 


=

   . 

Altogether, Illien and Benichou could find the explicit form of the generating 
function ( )| 0;x   of the conditional probability ( )| 0

n
x  that the walker is found 

at a site x  at the n th step knowing that at the 0 th step it was at the starting site  
O , a certain common site of the lines coinciding with the axes. 
 

( )
( )

( ) ( )
1

| 0;
2

j

k
x

k j

j

x
x G f

k


  

=

 =   (24) 

where, for 2,3,4,...,j k= , ( ) ( ) ( )
2

1 1

1 1

1
j j

j i i

i i

j j
f f f  

 

− −

= =

 
= − − − − 

 
   and 

( )
( )

1 2
2

2

1

1
1j

j

j
G j

G
 



−

−

  − = + −     

 with ( )
2

1

1 1
f






− −
=  and  ( )1

2

1

1
G 


=

−
. 

Consider the second moment of the random walker along the primary 

backbone of a k -d comb after n  steps, which is defined by ( )2 2 | 0   k k nn
x

x x x . 

It can also be calculated from the second derivative of the Fourier transform 

( ) ( )| 0; | 0;ik x

x

k e x     with respect to kk  evaluating at 0k = , i.e., 

( ) ( )
0

2

2

2 |  0;

kk

kx
k

k 
=




= −


. Note that the subscript k  here is the number of a 

dimension of a comb. Not to be confused with the vector k . From this calculation, 
the result (24), and the relation 
 2

2

1

1 2 cos

jj j

j

xik x j

j

x j j j

f
e f

f f k

−
=

+ −
 , (25) 

the authors could obtain the asymptotic behavior of the second moment, for 1k  , 
 1

1

1

2

1
12

2

1

2
 

1
1

2

k

k

nk

k

nx

−

−

−

−

 
 + 
 

. (26) 

It is obvious that the transport along the primary backbone displays an anomalous 
diffusion when 2k  . An anomalous diffusion is a diffusion process with a non-linear 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

relationship between the mean squared distance from the starting site to the present 
site and time (the number of steps in this case). 
 

1.2.5 The random walk on Bravais lattices 
Since a great deal of problems in solid-state physics are directly or indirectly 

related to various aspects of random walks on periodic lattices, Montroll and Weiss 
[24] put their attention on such random walk models. The article of Montroll and 
Weiss is one of the well-known and most cited articles which are related to the 
theory of random walks. Because it is a pioneer work that the two crucial concepts 
of the theory of random walks were first introduced. They include (i) a generic 
approach often called a generating function formalism (GFF), which was introduced in 
Subsection 1.2.2, for studying the random walks on finite lattices with periodic 
boundary conditions and infinite Bravias lattices, and (ii) the extension of the 
discrete-time random walks, the sparable continuous-time random walks. For sake of 
simplicity, let us discuss only the discrete-time random walks on infinite Bravais 
lattices, in particular, cubic lattices. 

It is convenient to describe the position of sites x  on Bravais lattices in 
Cartesian coordinate, ˆ ˆ ˆx xx yy zz= + + . A Bravais lattice is an infinite set of discrete 
points described in 3 -d Euclidean space by equation 
 

1 1 2 2 3 3x n a n a n a= + +  (27) 
where ia  are primitive vectors and in  are integer numbers. For instance, if the 
primitive vectors are 
 1 2 3

ˆ ˆ ˆ, ,a x a y a z= = = , 

1 2 3
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, ,a y z x a z x y a x y z= + − = + − = + −  and 

1 2 3
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, ,a y z a z x y a x y z= + = + − = + − , 

(28) 

then the corresponding lattices are respectively called the simple cubic lattice (sc), 
the body-center cubic lattice (bcc), and the face-center cubic lattice (fcc). The 
schematics of unit cells of these lattices are shown in Figure 5. 

As a random walk is a symmetric Polya walk, the single-step transition 
probabilities ( )p x  to neighboring sites are equal to the reciprocal of the number 
of the neighboring sites, i.e., 
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( )

1 6 ;

1 8 ;

1 12 ;

sc

p x bcc

fcc




 = 



 (29) 

where x  is the relative position of neighboring sites to the present site. 
 

 
Figure 5. The schematics of unit cells of a simple cubic lattice (left), a body-center 
cubic lattice (center) and a face-center cubic lattice (right). The dark-colored balls are 
depicted the lattice sites that are not located at the corners of the unit cells. 
 

From the spatial homogeneity, the probability ( )
n

x  that a walker is found 
at a site x  at the n th step can be described by equation (3), and its Fourier 
transform of the generating function is 
 ( )

( )
1

;
1

k
p k




 =
−

 (30) 

where ( ) ( ); ; k x

x

k x e     and ( ) ( ) k x

x

p k p x e 



  . Note that the first sum 

is over all sites on the structure, but the second sum is only over the neighboring 
sites. From equations (28) and (29), we have 
 

( )
( )

( )
1 2 3

1 2 2 3 3 1

1 2 3

3 ;

3 ;

;

c c c sc

p k c c c c c c bcc

c c c fcc

+ +


= + +



 (31) 

where ( )cosi ic k=  and ik −   . 
 As mentioned earlier, various random walk properties are encoded in the 

Fourier transform ( );k  . To decode some of them, Montroll and Weiss began with 

the consideration of the inverse Fourier transform of ( );k   for Bravais lattices in 

several dimensions, 
 

( )
( ) ( )

1
;

2 1

k x
k

k

e
x d k

p k

 

 


 

−

− −

 =
−

  , (32) 
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which is the generating function ( ) ( )
0

; n

n
n

x x 


=

   . Note that the superscript k  

here is the number of a dimension of the lattice, not the magnitude of the vector k . 
For convenience of further description, let us define the second moment 

i  

of each step and the scaling distance squared 2  by ( ) ( )
2

i i

x

x p x


    and 
2

2

1

k
i

i i

x


=

 
  

 
  for 1,...,i k=  and 1 2 3, ,x x x y x z= = = . In addition, let us distinguish 

the generating functions ( );x   for 1-d, 2 -d and 3 -d Bravais lattices by the 
subscript numbers, i.e., ( )1 ;x  , ( )2 ;x   and ( )3 ;x  , respectively. 

The asymptotic expressions of the generating functions ( )1 ;x   and 

( )2 ;x   were found in the following forms: 
 

( )
( )( )( )

( )( )

1 2

1 1 2

1

exp 2 1
;

2 1
x

 


 

− −


−
, (33) 

 ( ) ( )( )( )1 2

2 0

1 2

1
; 2 1x K  

 
 − , (34) 

where ( )0K z  is a modified Bessel function. In three dimensions and higher, ( );x   
is defined by a convergent integral and must be calculated numerically. However, for 
large 2 , the asymptotic form of ( )3 ;x   could be found, 
 

( )
( )( )( )1 2

3

1 2 3

exp 2 11
;

2
x

 


   

− −
 . (35) 

In various scenarios, these asymptotic forms of the generating functions 

( );x   as 1 −→  are sufficient to determine the large time behavior of certain 
basic random walk properties. The authors employed this fact to treat many basic 
random walk properties on Bravais lattices. The examples include the mean number 

( )
n

M x  of steps that a site x  has been visited after n  step, and the expected 
number 

n
S  of distinct sites visited in an n -step walk. 

It was shown that, as n→ , ( )
n

M x  approaches ( )
1

lim ;x



−→
 . Thus, from 

equations (29) – (35), they could conclude that the mean number of times that any 
site on 1-d or 2 -d Bravais lattices has been visited after large steps is “infinite”. 
However, for 3 -d Bravais lattices, the mean number ( )0

n
M  of steps that the starting 

site has been visited after many steps is finite, e.g., 
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( )

1

2

1

2

1

2

1.51639 1.31969 ... ;

1.39320 0.25397 ... ;

1.34466 0.46658 ...

0

;

n

n sc

M n bcc

n fcc

−

−

−


− +




= − +

 − +


. (36) 

For the expected number 
n

S , they found that its generating function ( )S   
has a simple relation to the generating function ( )0;  of the probability of return 
to the starting site, 
 ( )

( ) ( )
2

1

1 0;
S 

 
=

− 
. (37) 

Therefore, from this relation, equations (29) – (35) and the Tauberian theorem for 
discrete power series method (see, e.g., [1]), if we choose 1 0.5 = , 1 2 1  =  and 

1 2 3 1   = , we will obtain the asymptotic forms of the expected number 
n

S  as 
 ( )

( )

1

2

1

8 ;1-d

log ;2-d

lim 0; ;3-d
n

S

n

n

n n








−→





 


. (38) 

 
1.2.6 The random walk on Bethe lattices 

Hughes and Sahimi extended GFF for random walks on Bravais lattices to 
Bethe lattices [37]. Bethe lattice is a loopless structure or the so-called tree-like 
structure such that (i) each site has 2z   neighboring sites, and (ii) there are no 
closed loops. The structure of the Bethe lattice with 3z =  is partially shown in 
Figure 6. As you can imagine, Bethe lattices cannot be embedded comfortably in 
finite-dimensional Euclidean spaces, so they are often called pseudo-lattices. 
 From the topological equivalence of all sites, any site of Bethe lattices can be 
chosen as origin of coordinates. Furthermore, since Bethe lattices are loopless 
structures, the chosen origin is connected to a given site by a unique path. The 
coordinate of that site can be assigned by the number x  of edges making up the 
path from the given site to the origin. Accordingly, there are z  sites with 1x = , and 

there are in general ( )
1

1
x

z z
−

−  sites with the same coordinate 1x  . 
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Figure 6. A piece of the Bethe lattice with 3z = . 

 
 The authors restricted themselves to the symmetric Polya walk. They noticed 
that steps will either take the walker further from the origin with probability 

( )1z z− , or closer to the origin with probability 1 z . The walker can therefore be 
described as the asymmetric random walk on a restricted 1-d lattice. The conditional 
probability ( )0|

n
x x  that a walker has coordinate x  after n  steps, given that the 

walker initiated at coordinate 0x , obeys the recursive relation 
 ( ) ( ) ( )

00 ,0 , 0 1
| , |n x xn n

x

x x p x x x x 
−



  = +   (39) 

with the single-step transition probability ( ),p x x  depending on the past coordinate, 
 

( ) , 1 , 1

, 1

1 1
; 1

,

; 0

x x x x

x x

z
x

p x x z z

x

 



 + −

+

−
+ 

 = 
  =

. (40) 

In this setup, the authors could express the explicit form of the generating 
function ( )0; |x x , whose the expression is too complicated to be expressed here. 
The generating function led to many basic random walk properties on Bethe lattices. 
For instance, the probability of ever reaching the sites with coordinate x , given that 
the walker initiated at the origin, is 
 

( )
( )

( )

1 1 ; 0

1 ; 1
x

z x
R x

z x
−

 − =
= 

− 

. (41) 

It should be noted that, only 2z = , every site on the structure is eventually reached 
by the walker. The conditional mean first-passage time ( )x  to the sites with 
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coordinate x , given that the walker initiated at the origin and eventually reaches 
those sites, was also obtained, 
 

( )
( ) ( )

( )

2 1 2 ; 0

2 ; 1

z z x
x

xz z x


− − =
= 

− 

. (42) 

It should also be remarked that the conditional mean first-passage time ( )x  is 
infinite for every site on the structure when 2z = , otherwise it is finite. The final 
instance is the expected number 

n
S  of distinct sites visited after n  steps, 

 ( )

( )

( )

1

2 ; 2

2
;

1

8

2
n

z

S z
n z

z

n 


=
 −


−

. (43) 

 
1.2.7 The random walk on intersecting geometries 

One of more recent studies of a random walk on peculiar structures by GFF is 
the work of Sepehrinia, Saberi and Dashti-Naserabadi [8]. They presented the 
discrete-time random walk on the geometry composed of an infinite lattice plane 2  
which is crossed by the ln  numbers of lattice lines  that they share a single 
common site – the origin. 
 

 
Figure 7. An illustration of the mixed geometry consisting of an infinite lattice plane 

2  which is crossed by the three lattice lines  [8]. 
 

Their starting point was the consideration of a general case that two general 
lattices a  and b , on which the random walk problem is known. The lattices are 
connected to each other in a way that they have a single point in common which is 
called the origin O .  In addition, it is assumed that a walk is Polya walk and starts at 
the origin O . Depending on the geometry of the two lattices which share a single 
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common site O , the authors noticed that the first-passage probability ( )0
n
 of 

return to the origin O  can be decomposed into two terms, 
 ( ) ( ) ( )0 0 0a a b bn n n

p p= +  (44) 
where 1a bp p+ = . The first term is the first-passage probability ( )0a n

 of return to 
the origin for isolated lattice a  timed  the probability ap  that, at the first step, the 
walker would enter into the lattice a . The second term is analogous to the first 
term. The authors employed the idea analogous to the relation (21) to relate the 
first-passage probability ( )0

n
 to the probability ( )0

n
  that the walker is found at 

the origin O , 
 ( ) ( ) ( )0,

0

0 0 0
n

nn n n n
n


 −

=

 = +  . (45) 

For 0x  , the probability ( )
n

x  that the walker is found at a site x  can be 
considered as the sum of the probability of being at the origin at any earlier step 
n n   and arriving to the destination without visiting the origin on the remaining step 
n n− . In other words, 
 ( ) ( ) ( )

1

0

0
n

n n n n
n

x T x
−

 −
=

 =   (46) 

where ( )
n

T x  is the probability that the walker arrives at the destination x  without 
visiting the origin on the time n . 

From the relations (44) – (46), the authors could derive the generating 
functions ( );x   of the probabilities ( )

n
x  in terms of the generating functions in 

the individual geometries, for 0x = , 
 

( ) ( ) ( )
1

0; 0; 0;

a b

a b

p p

  
= +

  
, (47) 

and, for 0x  , 
 

( ) ( )
( )

( )

;
; 0;

;

a a

b b

p T x
x

p T x


 




 = 



. (48) 

For a translationally invariant lattice, it can be shown that, for x O , 
 

( )
( )

( )
,

,

,

;
;

0;

a b

a b

a b

x
T x







=


. (49) 

For taking a  to be an infinite lattice plane 2  and b  to be the ln  numbers 
of lattice lines , they found that the probability (0)n  of return to the starting site 
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O  after n  steps behaves differently in two different time regimes which are 
separated by a crossover time 

cn . This crossover time is approximately proportional 
to the numbers of lattice lines squared, 2

c ln n . When cn n , the line geometry 
governs the behavior of the random walk and 1 2(0)n n− . While 

cn n , the plane 
geometry governs the behavior 1(0)n n− . Moreover, they also showed the 
different asymptotic behavior of the mean-squared distance of the random walk 
location on the plane and on crossing lattice lines, which are defined by 

( )
22  

np n
x p

x xx


  and ( )
22  

nl n
x l

x xx


  respectively, 

 2  
npx n , (50) 

 ( )32   2 loglnl n n nx  . (51) 

 
1.2.8 The random walk on restricted 1-d lattices 
Before ending this subsection, let us discuss one of basic models of theory of 

random walks, a discrete-time random walk on 1-d finite lattices, i.e., the set of 
integers  0,1,...,S N= , with asymmetric imperfect absorbing barriers at the ending 
sites. A walker, initiating at 0x S , takes a step to the right or the left neighboring 
sites with probabilities p  and q , respectively. In addition, it possibly does not take 
any step with probability ( )1r p q= − +  for 0 , 1p q  . If the ending sites 0  or N  
are reached, the walker may be absorbed or reflected with respective probabilities 
1 −  and   at 0  and 1 −  and   at N , for 0 , 1   . A schematic illustration 
of this model is shown in the following figure. 
 

 
Figure 8. A schematic illustration of a trinomial random walk on a 1-d finite lattice 
with two imperfect absorbing barriers. 
 

Such models are the generalization of many particular random walk 
problems, for instance, the classical ruin problem (see, e.g., Feller (1968) [38]). We 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

discuss this basic model at this last subsection not because it is unimportant, but 
because it is important, and its results will often be referred latter. 

Let ( )0|
n

x x  be the probability that a walker is found at a site x  at the n

th step, given that it initiated at a site 
0x , for 

0,x x S . Then ( )0|
n

x x  satisfies the 
following recursive equation: For 1n  ,  2,3,..., 2x N − , 
 ( ) ( ) ( ) ( )0 0 0 01 1 1

| 1| | 1|
n n n n

x x q x x r x x p x x
− − −

 =  + +  +  − . (52) 
Subject to the following “initial and boundary” conditions: 

( )
00 ,0

| x xx x  = , ( ) ( )0 0 1
0 | 1|

n n
x q x

−
 =  , ( ) ( )0 0 1

| 1|
n n

N x p N x
−

 =  − , 

( ) ( ) ( ) ( )0 0 0 01 1 1
1| 0 | 1| 2 |

n n n n
x x r x q x

− − −
 =  +  +   and 

( ) ( ) ( ) ( )0 0 0 01 1 1
1| 2 | 1| |

n n n n
N x p N x r N x N x

− − −
 − =  − +  − +  . 

 El-Shehawey [39] found the closed form of the generating function 

( ) ( )0 0

0

; | | n

n
n

x x x x 


=

    for 0,x x S , but unfortunately, it cannot be expressed 

in a trivial form. For the sake of clarity and simplicity, let us consider only two special 
cases including binomial random walks, 0r = , on the 1-d finite lattice with two 
perfect absorbing sites, i.e., , 0  = , and on the 1-d finite lattice with one perfect 
absorbing site and one perfect reflecting site, i.e., 0 =  and 1 = . In addition, we 
direct our attention to the generating functions of the absorbing probability, i.e., 

( )0; |x x  where the site x  is only an absorbing point.  
It is noteworthy to mention that when the expression of the generating 

function ( )0; |x x  is known, we can calculate the mean step or the mean time   
that the walker spends before arriving at the site x  from the limit of the derivative 

of the generating function, i.e.,  ( )0
1

lim ; |x x


 
−→


= 


. 

Since the special cases are considered, let us introduce new notations for the 
corresponding generating functions. Let ( ) ( )0, ;

H
U p N x  denote the generating 

function of the probability that a walker on the lattice with two perfect absorbing 
sites, in which the walker initiated at a site  0 1,2,3,..., 1x N −  and it is biased to the 
right neighboring site with probability p , is absorbed at the absorbing sites N . From 
the finding results of El-Shehawey, the generating function ( ) ( )0, ;

H
U p N x  can be 

expressed in the following form: 
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 ( ) ( )
( ) ( )

( ) ( )

0 0

0

; ;
, ;

; ;

x x

H

N N

p p
U p N x

p p

   


   

+ −

+ −

−
=

−
 (53) 

where ( )
( ) 21 1 4 1

;
2

p p
p

p


 




 − −
= . Note that the limit ( ) ( )0

1
lim , ;

H
U p N x




−→
 is the 

probability that the walker is absorbed at N  on regardless of the number of steps. 
According to the above-mentioned note, from this resulting generating 

function, we can furthermore obtain the mean absorbing time from 
( ) ( ) ( ) ( )0 0

1
, lim , ;

H H
p N x U p N x


 

−→


=


. For later analysis, the mean absorbing time 

for the initial sites next to the absorbing sites are required, 
 

( ) ( )

( )
( )( )

( )
( )( )

1 1
1

1
, 1

2 1 1

N

N

H

N

N a a
a

a
p N

p a


+ −
+ −

−
=

− −
, 

(54) 

 

( ) ( )

( )( )
( )( )

( )
( )( )

1

1
1 1

1 1
1

, 1
2 1 1

N N

N

N

H

N

N a a
N a

a
p N N

p a


−

−
+ −

− + −
−

− =
− −

 
(55) 

where ( )1a p p − . Regardless of at which absorbing site the walker is absorbed, 
the mean absorbing time can be calculated from the sum 
 ( ) ( ) ( ) ( ) ( ) ( )0 0 0, , 1 ,

H H H
p x p N x p N N x   + − − . (56) 

Therefore, for the initial sites 0 1x =  and 0 1x N= − , we have  
 

( ) ( ) ( )
1 1

, 1 1
1 2 1

H

N

a
p N p N

p a
 

 −  
 = −   

− −  
, (57) 

 
( ) ( ) ( ) ( )

11 1
, 1 1

1 2 1

N
H

N

a
p N p N N N

p a
 

−  −
 − = − −  

− −  
. (58) 

The new notations introduced here will make sense to you later. 
Analogously, let ( ) ( ), ;

V
U p N   denote the generating function of the 

probability that a random walker on the lattice with one perfect absorbing site and 
one perfect reflecting site, which the walker initiated at the site 

0 1x =  and it is biased 
to the right neighboring site with probability p , is absorbed at the absorbing site 0 .  
On one hand, for finite-length lattices, N  , it can be shown that 
 ( ) ( )

( )

( )

, ,1;1
, ;

, ,0;

V u p Np
U p N

p u p N






 −
=  
 

 (59) 
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where ( ) ( ) ( )( ) ( ) ( )( )1 1, , ; ; ; ; ;N j N j N j N ju p N j p p p p         − − − − − −

+ − + − − − − . 

The corresponding mean absorbing time denoted by ( ),p N  is 
 

( )
( )2 11

, 1
1 2 N

p
p N

p a


− 
= − 

−  
. (60) 

On the other hand, if the length of lattice is infinite, then the generating 
function becomes 
 ( ) ( ) ( ), ; ;

V
U p p  − = . (61) 

Again, note that the limit ( ) ( )
1

lim , ;
V

U p



−→

  is the probability that the walker is 

absorbed, regardless of the number of steps. From equation (61), we have 
 ( ) ( )

1

1 0.5
lim , ;

1 1 0.5

V p
U p

p p


−→


 = 

− 
. (62) 

This result confirms our intuition. When the walker is unbiased or biased towards to 
the absorbing site, the event that the walker is absorbed is certain to happen. 
Otherwise, the probability of the event is less than unity.  For 0.5p = , the mean 
absorbing time is infinite, but, for 0.5p  , it is finite, 
 ( )

1
,

1 2
p

p
  =

−
. (63) 

 
From what have been presented so far, we should be convinced that the 

problems of random walks on structures of different topologies are still open and 
challenging. Among various structures, the so-called quasi-1d structures have also 
attracted very wide interests because they are ubiquitous and possess remarkable 
properties. Examples include macromolecules, e.g., polymers and deoxyribonucleic 
acids (DNAs) and artificial materials, e.g., carbon nanotubes and nanowires. If the 
length of this kind of materials is considerably large, then the end effects can be 
neglected and the length of the materials can be assumed infinite. A number of 
problems relevant to such materials are directly or indirectly related to various 
aspects of random walks on quasi-1d infinite structures, which is the subject of this 
thesis. Before embarking on a detailed mathematical theory, it may be useful to have 
in mind a picture of how the concept of the random walks on quasi-1d infinite 
structures is feasibly related to the study of quasi-1d materials. Therefore, in the 
following section, a survey of these relations will be given. 
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1.3 Quasi-1d materials 
1.3.1 Spiny dendrites 

 A dendrite is a branched protoplasmic extension of a nerve cell that 
propagates input received from other cells to the cell body of the neuron. There are 
two types of dendrites including smooth dendrites and spiny dendrites (see Figure 9). 
A spiny dendrite is a dendrite with small protrusions or the so-called spines, which 
are composed of a head and a thin neck located on the surface of dendrites. These 
spines are thought to be key elements in neuronal information processing. 
Decreasing spine density can result in cognitive disorders, such as autism, mental 
retardation and fragile X syndrome. 
 

 
Figure 9. A schematic drawing of smooth and spiny dendrites [6]. 

 
Experiments together with numerical simulations have shown that the 

transport of inert particles along the axis of smooth dendrite is normal diffusive, the 
mean square distance along the axis grows linearly with times. On the other hand, 
the diffusion over spiny dendrite is anomalous diffusive. 

Mendez and Iomin [6] suggested a random walk on comb-like structures to 
describe this anomalous transport in spiny dendrites. Geometry of the comb 
structure makes it possible to describe anomalous diffusion, where branches and the 
backbone correspond to spines and the dendritic axis respectively.  They found that 
the anomalous diffusion along the dendritic axis is controlled by the fractal geometry 
of the comb structure and the fractional kinetics inside the spines. 
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1.3.2 Polymers 
Polymers are long chains composed of many repeating subunits known as 

monomers. The properties of the monomers thus determine unique physical 
properties of the polymer, e.g., toughness, elasticity, viscoelasticity, and tendency to 
form amorphous and semicrystalline structures rather than crystals. For instance, 
schizophyllan is a triple-helical polymer whose monomers are  -1,3-glucan with 
one side chain glucose residue. The structure of schizophyllan and the chemical 
structure of the monomer are schematically shown in Figure 10. 

From the study of dielectric relaxation in aqueous solutions of schizophyllan 
[40], it was shown that, because of the unique conformation of this kind of polymers, 
it induces an ordered structure about the helix core, which consists of the side-chain 
glucose residue and nearby water molecules. 
 

  
Figure 10. A schematic of the structure of schizophyllan (left) and the chemical 
structure of the monomer (right) [40]. 
 

As we know, a relaxation measurement is reliable method to probe many 

properties of the aqueous polymer solutions. In wide range of the relaxation 

processes, they have been implicated in the stretch exponential decay profiles [41], 

 
( ) exp

H

t
t






  
 = − 
   

 (64) 

where ( )t  is denoted as the relaxation function, H  is the relaxation time of the 
process and 0 1  . Several authors have proposed mesoscopic models describing 
these stretched exponential relaxations. One of the interesting models is the defect-
diffusion model based on random walk models [42]. 
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There are numerous relaxation phenomena involving to polymeric systems. 
For sake of simplicity, let us discuss the relaxation of the average ( )R t  of the end-
to-end distance of polymers in a solution [43, 44]. In the language of the defect-
diffusion model, it is assumed that there is a large number of non-interacting defects, 
e.g., kinks, diffusing on a polymer, which is assumed to be a 1-d lattice. The average 

( )R t  returns to equilibrium from an initially perturbed state when at least one 
defect leaves the chain. This is directly related to the problem of the first-passage 
time of a random walk on a 1-d lattice. Altogether, in certain limits, it can be shown 
that the relaxation function obeys the stretch exponential function. In addition, 
Bendler and Shlasinger [42] qualitatively proposed that the relaxation time H  of this 
process is proportional to a power function of the number M  of the monomers, 
 1

H M    (65) 
where   is the same exponent in equation (64). 
 

1.3.3 Deoxyribonucleic acids 
A deoxyribonucleic acid (DNA) is a macromolecule composed of two 

polynucleotide chains that coil around each other to form a double helix. DNAs carry 
genetic instruction for many biological processes, e.g., the development, functioning, 
growth and reproduction of all known organisms and many viruses. The 
phenomenon of specific molecular recognition between a DNA-binding protein and 
its specific target DNA sequence lies at the heart of these processes. Clearly, timing is 
critical for the recognition events. A failure to rapidly find the target DNA sequence 
possibly results in cellular malfunction, because the recognition events are often part 
of a cascade of various essential events. 
 It has been shown that the protein recognizes its DNA target through a 
combination of “one-dimensional” diffusion, the protein “slides” or “hops” along 
the DNA, and “ three-dimensional”  diffusion, the protein may move away from the 
DNA and diffuse into 3D bulk. The search time is determined by the partitioning 
between these two diffusion modes. Krepel and Levy [45] numerically studied the 
effect of the crowded environment, a mixture of particles with entropic and 
energetic effects, on this partitioning. An illustration of this DNA searching of a protein 
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in the presence of crowding particles is shown in Figure 11. Their main findings are 
that adding crowders with affinity to the DNA reduces the efficiency of crowding as a 
searching facilitator that increases one-dimensional diffusion, and therefore increases 
the mean of the searching time. 
 

 
Figure 11. An illustration of recognition by a protein (red) of its DNA (green) target 
site (orange) [45]. 
 

From a resemblance of the random motion of a protein with two-mode 
diffusions in the vicinity of a DNA and a 2-state random walk on a 1-d lattice, the 
problem of the DNA searching by a protein in the presence of crowding particles may 
be transcribed into the random walk language (see Section 5.5). Therefore, one may 
employ the manipulations developed under the random walk framework to 
investigate properties of interest in the problem of the DNA searching. For instance, 
the mean of the searching time may be evaluated from the mean first-passage time. 
 

1.3.4 Carbon nanotubes 
A carbon nanotube is a hollow cylindrical lattice made of carbons with 

diameter measured in nanometers. They often refer to single-wall carbon nanotubes. 
In convention, they are classified by treating how they are formed by rolling up 
graphene sheets as shown in Figure 12. 
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Figure 12. The structures of three kinds of the single-wall carbon nanotubes [46]. 

 
Carbon nanotubes have drawn attention from many authors due to a certain 

number of remarkable properties, which lead to a new carbon nanotube-based 
technology. Recent investigations have focused on the carbon nanotube-based 
Lithium (Li) ion batteries. The development of the efficiency of the batteries, i.e., 
charge and discharge rate, capacity, and cyclability, relies on the understanding of 
the diffusion and the intercalation of Li ions in carbon nanotubes. 

An example study is the work of Song, Yang, Zhao and Fang [47]. They 
numerically studied the diffusion and the intercalation of Li ions in a carbon 
nanotube bundle. They found that lithium ions quickly penetrate into the carbon 
nanotubes and the space between the neighboring carbon nanotubes, and they tend 
to remain in those spaces. If the density of Li ions is low, they prefer to be close to 
the carbon nanotube ends. When the density of Li ions is greatly increased, the ions 
stay either inside the nanotubes or in the interstitial space between neighboring 
nanotubes. 

Just as a suggestion, according to the feasibility of ion intercalation and its 
reversion through appropriate electrical actions, e.g., the combination of electrons 
and ions, the point view of the electron hopping on a carbon nanotube from variable 
range hopping mechanism [48] together with the concept of random walks on 
hollow cylindrical lattice may be used to investigate the rate of the intercalation or 
its reversion, which dominates more or less the charge and the discharge rate of the 
batteries. 
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1.3.5 Nanowires 
According to the lack of efficient methods to fabricate carbon nanotubes with 

specific electrical characteristics, some authors have directed their attention to the 
study of nanowires, nanostructures with the diameters of the order of nanometers. In 
the current trend of device miniaturization, these quasi-1d nanostructures play a 
significant role as the building blocks for devices that could overcome the 
fundamental limits of microtechnology. Figure 13. shows (a) SEM image of Nb2PdS5 
single-crystal nanowires with different cross-sectional areas, and (b) crystallographic 
structure of Nb2PdS5 with 1d chains along b-axis. 

One of fundamental problems in electronic transport study of nanowires is to 
deduce the dependence of current on bias voltage. Interestingly, at low 
temperature, a great number of nanowires, e.g., semiconductor nanowires [49], MoSe 
nanowires [50], NbSe3 nanowires [51] and gold nanowires [52], behaves as a non-
ohmic resistor. In other words, the power-law dependence of current on bias voltage, 

1I V + , has been observed. The “anomalous” exponent   is rooted on the quasi-
1d confinement and the existence of defects or disorders. 

Although many authors have studied on transport properties of nanowires, 
they have not encountered any investigation of basic statistical properties of random 
walks on such structures, which may reveal some insights of transport in nanowires 
(see Section 6.3). 

 

   
Figure 13. (a) SEM image of Nb2PdS5 single-crystal nanowires, and (b) crystallographic 
structure of Nb2PdS5 [53]. 
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1.4 Our work 
In this thesis, we consider a separable continuous-time random walk on 

quasi-1d lattices as a model for transport processes on quasi-1d materials. A quasi-1d 
lattice consists of periodically repeated unit cells with the following properties: In the 
unit cell, (i) there exists particular sites named “major” sites, which are connected to 
their equivalent sites in neighboring unit cells by a certain kind of network; and (ii) 
there may be dangling networks attached to the major sites. 

The thesis is divided into two parts. In the first part (Chapter 2), the model is 
clarified in more details (Section 2.1) following with the development of a general 
formalism (Section 2.2). We exploit the fact, that if a walker with nearest-neighboring 
steps is at a certain site on the quasi-1d lattices, it must be at the major sites, which 
are located in the present unit cell or the neighboring unit cells, at some earlier 
steps, to formulate the recursive equation of the probability that the walker is found 
at a given site at a certain step, i.e., Chapman- Kolmogorov equation. More precisely, 
the probability to arrive at a given site at a certain step can be considered as the 
sum of the multiplication of the probabilities of being at the major sites, which are 
located in the present unit cell or the neighboring unit cells, at any earlier step and 
the multi-step transition probabilities to the destination without visiting any major 
sites on the remaining steps. In addition, we assume that, between jumps, a walker 
waits for a random time, distributed according to a general probability distribution 
function. 

Since the random motion of the walker can be described by the recursive 
equation, we will develop a formalism based on GFF together with the concept of 
irreducible Markov chains. The resulting formalism paves the way for formulating a 
method that allows us to asymptotically describe some basic statistical properties of 
the random walks. 

In general, for large times, basic dynamical random walk properties are 
characterized by certain prefactors and time exponents, which reflect the localized 
transport of a walker and the geometrical characteristics of the underlying structure. 
The main goal of this thesis is to develop a systematic method to calculate the 
values of these parameters (Section 2.3). 
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In the second part of the thesis (Chapter 3 - 6), the applications of the 
developed method to certain concrete models are demonstrated. We begin with the 
simplest model, the random walk on an unrestricted 1-d lattice served as 
comparison of the later analysis. Then we consider the random walk on branched 
lattices which the 2 -d comb structure is their special case. Afterward, more complex 
models are investigated including the random walk on ladder lattices which may be 
related in some way to the problems of the 2-state particle on a 1-d lattice, and the 
random walk on cylindrical lattices which can be thought as caricatures of natural 
and artificial structures, e.g., carbon nanotubes. 
 A journey of thoughts starts here. 
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2 

Model and general formalism 
 
2.1 Model 

We consider a separable continuous-time random walk (SCTRW) on quasi-1d 
lattices as a model for transport processes on quasi-1d materials. The random walk 
process, first introduced by Montroll and Weiss [24], is separable in a sense that the 
probabilities of the waiting time and of the jumping step are independent. We will 
assume that all walks are Polya walks, walks in which steps to neighboring sites only 
are allowed. On the other hand, a quasi-1d lattice is defined as a lattice system 
consists of periodically repeated unit cells connecting to each other in a one-
dimensional fashion. A schematic of this kind of structures is shown below. 
 

 
Figure 14. A schematic of the structure of the quasi-1d lattices. The unit cell 
contains major sites (red spheres) and connected lattice networks (blue boxes). 
 

In each unit cell, there exists different MN  sites (red spheres) which are 
connected to their equivalent sites in the next unit cell by a certain lattice network 
(a blue box). For ease of reference, let us call these sites “major” sites and the 
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others “minor” sites. Each major site may be attached with a dangling lattice 
network, which is not explicitly shown in Figure 14. The line passing through a certain 
set of equivalent major sites is called the “structure axis”. It is assumed that the 
connected lattice networks consist of MN N−  different minor sites. Thus, each unit 
cell contains N  different sites. The following figure shows some concrete examples 
of the quasi-1d lattices. 
 

  

   
Figure 15. Unit cells of the several concrete examples of the quasi-1d infinite 
structures. 
 

To indicate position of a site on such structures, the Cartesian coordinate 
system ( ), ,x y z  defined such that the x  axis coincides with the structure axis is 
used and the distance between neighboring sites is unity for simplicity. With this 
coordinate system, a fundamental translation vector is given by ˆLx  where x̂  is a unit 
vector and L  is the linear size of a unit cell along the structure axis. The origin O  is 
placed at a certain major site on the structure axis within a unit cell, labelled the     
0 th unit cell. Unit cells and sites within each unit cell are labelled respectively by 
letters m  and a . The position of the major site equivalent to the origin O  within        
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the m th unit cell is thus given by ˆmLx . The relative positions of sites within the 
unit cell to this major site are denoted by 1 2 3, , ,..., Nr r r r  where the vector 1 0r =  is for 
this major site itself, the vectors 2 3, ,...,

MNr r r  are for the remaining major sites and 
the vectors 1 2 3, , ,...,

M M MN N N Nr r r r+ + +  are for the minor sites. Accordingly, the position 
of the a  site in the m th unit cell indicated by the vector ,m ax  may be represented 

as ,
ˆ

m a ax mLx r +  where 1, 2,3,...,a N=  or the 3-tuple ( ), , ,, ,m a m a m ax y z . Figure 16 

illustrates the arrows representing certain elementary vectors of the structure in 
Figure 14. 
 

 
Figure 16. The side view of the 0 th unit cell and its neighboring unit cells of the 
structure in Figure 14. The dash line and the blue arrows represent the structure axis 
and certain vectors, respectively. 
 
2.2 General formalism 

Let ( ), 0,|m a b n
x x  be the conditional probability that a walker takes the n th 

step to a site ,m ax , given that the starting site is a major site 0,bx , and ( )
n

t dt  be 
the probability that the walker takes the n th step at time t . Altogether, the 
conditional probability that the walker takes the n th step to the site ,m ax  at time t  
can thus be written as 
 ( ) ( ), 0,|m a b nn

x x t dt . (66) 

It is assumed that ( )
n

t  obeys the recursive relation 
 

( ) ( ) ( )
1

0

t

n n
t t t t dt  

−
  = −  (67) 

and ( ) ( )
0

t t = , where ( )t  is the probability distribution function (PDF) of 
waiting time of between two steps. As the walker starts from the major site 0,bx , we 
have 
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 ( ), 0, ,0 ,0
|m a b m a bx x   = . (68) 

We can therefore find that the conditional probability ( ), 0,, |m a bx t x  of the walker 

being found at the site ,m ax  at time t  can be expressed as 
 

( ) ( ) ( ) ( ), 0, , 0,

00

, | |

t

m a b m a b nn
n

x t x x x t t t dt


=

 
   =   − 

 
  (69) 

where ( ) ( )
t

t t dt


     is the so-called survival probability on a site, the probability 

that the waiting time on a site exceeds t . In words, the conditional probability 

( ), 0,, |m a bx t x  can be considered as the sum of the probabilities of the walker 

transition to the site ,m ax  at different steps and times, provided the waiting time on 
that site exceeding t t−  after its arrival to the site ,m ax  at time t . 

Note on notations, unless otherwise stated, we will hereafter use the 
following definitions of Fourier transform in mL  and Laplace transform in t , 
 ( ) ( ) ( ), ,,

F
ikmL

m a a m a

m

f x f k r f x e


=−

→   , (70) 

 
( ) ( ) ( )*

0

L
stf t f s f t e dt



−→   , (71) 

and a generating function, 
 ( ) ( ) ( )

0

;
G

n

n n
n

f f f 


=

 →    , (72) 

where L k L −   , 0s  , 1 1−    and assume that they exist. Furthermore, 
to distinguish the probabilities for major sites from the probabilities for general sites, 
we define 
 ( ) ( ), 0,|ab m a bn n

P m x x  (73) 

and 
 ( ) ( ), 0,, , |ab m a bP m t x t x , (74) 

for , 1,2,3,..., Ma b N= . 
The derivation of basic random walk properties is facilitated by introducing 

the Fourier-Laplace transform ( )*

0,, , |a bk r s x  of the conditional probability 

( ), 0,, |m a bx t x . From equation (69), it can be easily shown that (see Appendix 1) 

 
( )

( )
( )( )

*

* *

0, 0,

1
, , | , ; |a b a b

s
k r s x k r s x

s




 −
 =  

 

 (75) 
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where ( )( )*

0,, ; |a bk r s x  is identical to the generating function ( )0,, ; |a bk r x  

with   substituted by ( )* s , and we have used the relations ( ) ( )( )* *
n

n
s s =  

and ( )
( )*

*
1 s

s
s

−
 = . 

In turn, from the concepts introduced in this thesis, i.e., the major sites and 
the associating multi-step transition probabilities ( ), ,,m a m m c n

p x x −
, the generating 

function ( )0,, ; |a bk r x , which plays a crucial role in our study, can be expressed in 

terms of these transition probabilities as follows. 
Let us begin with the Chapman-Kolmogorov equation for the conditional 

probability of taking the n th step to a given site ,m ax , 
 ( ) ( ) ( )

1

, 0, ,0 ,0 , , ,

0 1 1

| ,
MNn

m a b n m a b m a m m c cb n nn n
n c m

x x p x x P m m


   − −
= = =−

 = + −   (76) 

where ( ), ,,m a m m c n
p x x −

 is defined as the n -step transition probability from the major 

site 
,m m cx −
 to the site 

,m ax , given that the walker does not visit any major site during 

the transition. The key idea of this equation is that the walker, which is found at the 

site 
,m ax  at the n th step, may be found at the major sites 

,m m cx −
, for 1,2,3,..., Mc N=  

and 1,0,1m = − , at any earlier n n−  steps with the conditional probability 

( )cb n n
P m m

−
− . Then, for the remaining n  steps, it eventually walks to the given site 

,m ax  with the n -step transition probabilities ( ), ,,m a m m c n
p x x − 

. 

With the spatial homogeneity, 

 ( ) ( ), , 0, ,, ,m a m m c a m cn n
p x x p x x − −= , (77) 

equation (76) can be rewritten as 

 ( ) ( ) ( )
1

, 0, ,0 ,0 , 0, ,

0 1 1

| ,
MNn

m a b n m a b a m c cb n nn n
n c m

x x p x x P m m


   − −
= = =−

 = + −  . (78) 

The corresponding generating function of this equation is 
 ( ) ( ) ( )

1

, 0, ,0 ,

1 1

ˆ; | , ; ;
MN

m a b m a b a c cb

c m

x x p r mLx r P m m


      
= =−

 = + − + −   (79) 

where we have used the discrete convolution theorem. Then this equation is Fourier 
transformed. After rearranging (see Appendix 2), we obtain the resulting expression in 
the form 
 ( ) ( ) ( )0, ,

1

, ; | , , ; ;
MN

a b a b a c cb

c

k r x p k r r P k   
=

 = +  (80) 
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where ( ) ( )
1

1

ˆ, , ; , ;ik mL

a c a c

m

p k r r e p r mLx r



  
=−

 − + . In turn, for , 1,2,3,..., Ma b N= , the 

function ( );abP k   satisfies the following relation: 
 ( ) ( ) ( ),

1

; ; ;
MN

ab a b ac cb

c

P k p k P k   
=

= +  (81) 

where ( ) ( )
1

1 0

; ik mL n

ac ac n
m n

p k e p m



  


=− =

 
  

 
   and ( ) ( )ˆ,ac a cn n

p m p r mLx r  − +  which 

is the n -step transition probability from a major site 
,m cx −

 to the given major site 

0,ax , given that the walker does not visit any major site during the transition. This 
equation can be rewritten in a matrix form, 
 ( ) ( ) ( )P ; I p ; P ;k k k  = +  (82) 
where I  is the M MN N  identity matrix, 

( )

( ) ( )

( ) ( )

11 1

1

; ;

P ;

; ;

M

M M M

N

N N N

P k P k

k

P k P k

 



 

 
 

  
 
  

 and ( )

( ) ( )

( ) ( )

11 1

1

; ;

p ;

; ;

M

M M M

N

N N N

p k p k

k

p k p k

 



 

 
 

  
 
 

. 

We have to note that, in this work, for any matrix A , we use  A
ab

 or abA , 
1A− , adjA , detA  and TA  as the notations for the entry in row a  and column b , 

the inverse matrix, the adjugate matrix, the determinate and the transpose of A  
respectively. 

Therefore, the solution of equation (82) can formally be written as 
 ( ) ( )

1

P ; I-p ;k k 
−

=     (83) 

or ( )
( )

( )

adj I-p ;
P ;

det I-p ;

k
k

k






  
=

  

. Furthermore, it can be shown that ( )det I-p ;k     and the 

eigenfunctions ( );nE k  , for 1,2,3,..., Mn N= , of the matrix ( )p ;k   are related to 
each other by the relation (see Appendix 3) 
 ( ) ( )( )

1

det I-p ; 1 ;
MN

n

n

k E k 
=

  = −   . (84) 

Thus, the solution of equation (82) can also be calculated from 
 

( )
( )

( )( )
1

adj I-p ;
P ;

1 ;
MN

n

n

k
k

E k





=

  
=

−
. (85) 

For consistency, if in each unity cell there exists only one major site, 1MN = , we will 
assign ( ) ( ) ( )1 11p ; ; ;k E k p k  = =  and ( )adj I-p ; 1k   =  . 
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Consequently, from the previous description, we can express an exact 

analytical expression for the Fourier-Laplace transform ( )*

0,, , |a bk r s x  in terms of 

the mesoscopic characteristics of random walks on the quasi-1d lattices, namely the 
transition probabilities ( )ˆ,a c n

p r mLx r− +  and the PDF of waiting time ( )t , i.e., 
 

( )
( )

( )( )
*

* *

0, 0,

1
, , | , ; |a b a b

s
k r s x k r s x

s




 −
 =  

 

 (86) 

where 
 

( ) ( )
( )

( )( )
0, ,

1

1

adj I-p ;
, ; | , , ;

1 ;

M

M

N

cb
a b a b a c N

c

n

n

k
k r x p k r r

E k


  

=

=

  
 = +

−




. (87) 

In addition to the Fourier-Laplace transform ( )*

0,, , |a bk r s x , the Laplace 

transforms of the conditional probability ( ), 0,, |m a bx t x  and of the conditional first-

passage probability (CFPP) ( ), 0,, |m a bx t x  to a given site ,m ax  at time t  are also 

used to derive a number of basic statistical properties of the random walk. The CFPP 

( ), 0,, |m a bx t x  is given by 

 ( ) ( ) ( ), 0, , 0,

0

, | |m a b m a b nn
n

x t x x x t


=

=  (88) 

where ( ), 0,|m a b n
x x  is the CFPP to the site ,m ax  at the n th step. On the other 

hand, the Laplace transform ( )*

, 0,, |m a bx s x  can be calculated by performing 

inverse Fourier transformation of ( )*

0,, , |a bk r s x , 

 
( )

( )
( )( )

*

* *

, 0, 0,

1
, | , ; |

2

L

ikmL

m a b a b

L

s L
x s x e k r s x dk

s










−

−

 −
 =   

 
 . (89) 

From equation (88), it can be shown without any difficulties that the Laplace 

transform ( )*

, 0,, |m a bx s x  is identical to the generating function 

( )( )*

, 0,; |m a bx s x  with   substituted by ( )* s , i.e., 

 ( ) ( )( )* *

, 0, , 0,, | ; |m a b m a bx s x x s x=  (90) 

where the relation ( ) ( )( )* *
n

n
s s =  was used. In addition, it can be demonstrated 

that the generating function ( ), 0,; |m a bx x  has a simple relation to the generating 

function ( ), 0,; |m a bx x . First consider another expression of ( ), 0,|m a b n
x x , 

 ( ) ( ) ( ), 0, ,0 , ,0 , , , 0,

0

| | |
n

m a b m a b n m a m a m a bn n n n
n

x x x x x x  
 −

=

 = +  . (91) 
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The idea is: the conditional probability of a walker being found at a site 
,m ax  after n  

steps equals to the sum of all probabilities that the walker is found at that site for 
the first time at any earlier n n−  steps and, the rest of its walk, it can go anywhere 
on the structure but eventually it must be found at that site. Then find the 
corresponding generating function. After rearrangement, we obtain 
 

( )
( )

( )
, 0, ,0 ,

, 0,

0, 0,

; |
; |

; |

m a b m a b

m a b

a a

x x
x x

x x

  




 −
=


 (92) 

where the relation ( ) ( )0, 0, , ,; | ; |a a m a m ax x x x  =  was exploited. 
In general, the Laplace transform ( )*

, 0,, |m a bx s x  for an arbitrary site 
,m ax  in 

equation (89) is somewhat complicated for further analysis. On the other hand, if the 
considered site is a major site 

,m ax , for 1,2,3,..., Ma N= , the Laplace transform is 
easier for further analysis and it can be calculated from 
 

( )
( )

( )( )
*

* *
1

, ;ab ab

s
P m s P m s

s




 −
=   
 

, (93) 

 
( )

( )

( )( )
1

adj I-p ;
;

2
1 ;

M

L

ikmL ab
ab N

L
n

n

kL
P m e dk

E k











−

−

=

  
=

−



. (94) 

As we have learned from equations (90) and (92), if this integral can be calculated, 

then the Laplace transform ( ) ( )* *

, 0,, , |ab m a bF m s x s x  of the associating CFPP 

( ) ( ), 0,, , |ab m a bF m t x t x , for 1,2,3,..., Ma N= , is immediate, 
 

( )
( )( )

( )( )

*

,0 ,*

*

;
,

0;

ab m a b

ab

aa

P m s
F m s

P s

  



−
= . (95) 

To sum up, we have derived the expressions of the Fourier-Laplace transform 

( )*

0,, , |a bk r s x  and the Laplace transforms ( )* ,abP m s  and ( )* ,abF m s  in terms of the 

mesoscopic characteristics of the random walk on the quasi-1d lattices, namely the 
multi-step transition probabilities ( )0, ,,a m b n

p x x  and the PDF of waiting time ( )t . 

In the next section, we will show that equations (86) and (87) together with 
the fundamental generating functions, i.e., ( );abp m   for , 1,2,3,..., Ma b N=  and 

1,0,1m = − , can be used to find the asymptotic behavior of the first two moments 
of the walker location along the structure axis. Analogously, equations (93) - (95) and 
the fundamental generating functions allow us to obtain various other random walk 
properties for a given major site. 
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2.3 Asymptotic behavior of basic random walk properties 
We introduce here basic statistical properties of the SCTRW on quasi-1d 

infinite structures and present a systematic approach to calculate them by exploiting 
the general formalism developed in the previous section. Since the approach is 
based on the concept of generating functions, which makes working with the 
asymptotic behavior of random walk properties very convenient, we will call it the 
generating function formalism (GFF) from now on. 

The random walk properties considered in this thesis include the first and the 
second moments of a walker location along the structure axis at certain times, the 
probability of return to the starting site at certain times, the probability of ever 
reaching a given major site, the conditional mean first-passage times to a given major 
site and the expected number of distinct major sites visited at certain times. As you 
have seen in the introduction, these statistical random walk properties are 
commonly considered because they play a central role in the basic description of 
the random motion of a walker on lattice structures. 

In general, there are few random walks for which the exact closed-form 
evaluation of these basic statistical properties can be found. Even when it is possible 
to calculate them exactly, their formulae may be somewhat complicated. Thus, 
useful information is extractable from them only by introducing some forms of 
approximations. Therefore, we will hereafter focus on the long-time behavior of the 
basic statistical properties. To analyze this behavior, the asymptotic behavior of the 
Laplace transform ( )* s  of the PDF ( )t  of waiting time as 0s +→  is of 
concerned. 

Before proceeding to discuss the basic random walk properties, we pause to 
discuss the PDF ( )t  of waiting time in more detail. If steps of a walker are taken at 
certain times 0 0 0,2 ,3 ,...t t t  instead of random times, the PDF of waiting time is in the 
form of the delta function, 
 ( ) ( )0t t t = − , (96) 
and its Laplace transform is 
 ( ) 0* st

s e −
= . (97) 
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The corresponding random walks are known as the discrete-time random walks with 
the waiting time 0 0t  . The canonical case of the continuous time random walk is 
the exponential waiting-time density, 
 ( ) ( )expt t  = −  (98) 
whose Laplace transform is 
 ( )* s

s





=

+
. (99) 

It is not hard to show that the mean waiting time is equal to 1 − . 
 Working with a more general PDF of waiting time allows us to derive a 
number of informative results which are concealed in an analysis restricted to the 
exponential distribution function. In what follows, we paraphrase some arguments 
from the work of Bendler and Shlesinger [42] with the corresponding adaptation to 
the analysis of a more general PDF of waiting time. 

Consider the walker waiting time at a site on the underlying structure from a 
potential point of view, where the intrinsic properties of the site can be related to a 
potential U  in some way. We assume that the PDF of waiting time arises from a 
superposition of exponential PDF, 
 

( ) ( ) ( )
0

0

expt t d



     = −  (100) 

where ( ) ( )( ) ( )f U dU d    = . The rate constant   satisfies the classical 

formula for thermally activated crossing of an energy barrier of height 0U  , 
 ( )0 exp U kT = −  (101) 
where T  is the absolute temperature, k  is Boltzmann’s constant and 0  is the 
highest value of the rate constant associated with the minimum energy barrier height 

0U = . The further assumption is that the potential U  is random and distributed by 
the exponential law 
 

( )
1

exp
U

f U
U U

 
= −  

 

 (102) 

where U  is the mean of the energy barrier height. Therefore, from equation (100) 
– (102), we can find 
 

( )
0

v

v 
 

 

 
=  

 
 (103) 
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where 00     and v kT U . In the limits that 0 1v   and 0  is large, the 
asymptotic forms of the PDF ( )t  and its Laplace transform ( )* s  become 
 

( )
( ) 1

0

1
v

v

v v
t t



− −
 + , (104) 

 ( ) ( )*

01
v

s t s −  (105) 

where 
( )0

0 sin

v

v

v
t

v



 
= . This kind of PDFs is known as the heavy-tailed PDF. One 

crucial fact about this PDF is that all of its moments are infinite. 
In this work, for analysis completeness, we will take into account general 

PDFs of waiting time whose Laplace transforms are in the asymptotic form 
 ( ) ( )*

01
v

s t s −  (106) 

where s  is small and 0 1v  . The equality is for the finite mean PDFs. In this case, 

0t  is equal to the mean waiting time, i.e., ( )0

0

t t t dt


=  . The inequality is for the 

infinite mean PDFs and 
( )0

0 sin

v

v

v
t

v



 
= . In numerical simulations, for the former and 

the latter cases, we use the exponential and the heavy-tailed PDFs, which obey 
equations (98) and (104), respectively. 

Incidentally, for a function ( )( )*f s  with the argument   substituted by 

the Laplace transform ( )* s , the investigation of the limit of this function as 
0s +→  is equivalent to the investigation of the limit of the function ( )f   as 
1 −→  because ( )* 1s −→  as 0s +→ . In addition, to avoid a lot of unnecessary 

writing, we will use the shorthand notations for (i) the limit of the function as 1 −→ , 
say ( )

1
lim f



−→

, by omitting its argument, i.e., f , or replacing its argument by 1− , i.e., 

( )1f − , and (ii) the derivative ( )f 






 by ( )( )f   . 

As we shall see later, the asymptotic behavior of the basic statistical 
properties is also governed by the behavior of the eigenfunctions and the 
eigenvectors of the matrix ( )p ;k   near the point ( ) ( ), 0,1k  = . From the definition, 
the matrix ( )p 0;1−  can be interpreted as the transition probability matrix of the 

embedded Markov chain which is resulted from the projection of the random walk 
on the set of non-equivalent major sites of the corresponding model. Thus, the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

embedded Markov chain is a stochastic process that takes on MN  number of 
possible states (major sites), and whenever the process is in state b , there is a 

transition probability ( )0;1abp −  that it will next be in state a , for , 1,2,3,..., Ma b N= . 

In this work, we mainly consider the random walk models with the matrix 

( )p ;k   whose limit ( )p 0;1−  is the transition matrix of an irreducible and aperiodic 

Markov chain [54]. To clarify this statement, let us consider the relation 

( ) ( ) ( ) ( )1p ; π ; ; π ;k k E k k   =  which gives 
 

( )
( ) ( )

( )

, 1

1

1

; ;

;

;

M

M

N

ab b

a b

N

b

b

p k k

E k

k

  



 

=

=

=




 (107) 

where ( )1 ;E k   and ( ) ( ) ( )
T

1π ; ; ;
MNk k k         are the eigenfunction 

and the eigenvector of the matrix ( )p ;k  . The irreducibility and the aperiodicity 

imply that the limits ( )1 0;1E −  and ( )
1

0;1
MN

a

a

 −

=

  equal to unity. The physical 

meaning of the entry ( )0;1a a  −  is the limiting probability that a walker is at a 

major site a  at large steps. Hence, from equation (107), we shall claim that, at the 
point that 0k = , the eigenfunction ( )1 0;E   is nothing but the generating function 
of the probability that, after commencing from a certain major site, the walker is 
found at near major sites or the commencing site itself after certain steps for first 
time. 

For the rest of this thesis, the random walk model with ( )1 0;1 1E − =  will be 

called the diffusive random walk (DRW). This means that the random walker 
repeatedly visits major sites, and it is able to diffuse along the structure axis. In other 
words, it will not get lost and stuck in a connected network. In contrast, if it can get 

lost and stuck in a connected network, i.e., ( )10 0;1 1E −  , the model will be 

called the non-diffusive random walk (NDRW). 
Since, after sufficiently long time, NDRW gets lost in some connected network 

and the averages of the dynamical properties along the structure axis are frozen at 
certain constants, we restrict ourselves in this work to DRWs whose dynamical 
properties evolve in time. 
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Additionally, if ( )p 0;1−  is the transition matrix of an irreducible and aperiodic 

Markov chain, then we can show that the entries of the limit eigenvector ( )π π 0;1−  

are identical to the following equation (see Appendix 4) 
 ( )( )

( )( )
2

adj I-p 0;1

1 0;1
M

ab
a N

n

n

E



−

−

=

 
 

=

−
 (108) 

for , 1,2,3, , Ma b N= . 
 

2.3.1 The first and the second moments 
To characterize a transport of a random walk on certain kind of structures, we 

need a quantity statistically indicating the walker location on the structure, e.g., the 
moments of the walker location on the structure after certain times. In our models, 
the first and the second moments of the random walker location along the structure 
axis are of our interest. 

The first moment ( )x t  and the second moment ( )2x t  of the random 

walker location along the structure axis at time t , given that the random walker 
initiated at a starting site 0,bx , are defined by 
 ( ) ( ), , 0,

1

, |
N

m a m a b

m a

x t x x t x


=− =

   (109) 

and 
 ( ) ( )2 2

, , 0,

1

, |
N

m a m a b

m a

x t x x t x


=− =

  . (110) 

To determine the asymptotic behavior of these two moments at large time t , 
let us consider their Laplace transforms ( )

*
x s  and ( )

*
2x s . The Laplace 

transforms of these moments can be calculated from (see Appendix 5) 
 ( ) ( )

* ˆ *

0,

1 0

1
, , |a

N
ikx r

a b

a k

x s e k r s x
i k = =


= 


  (111) 

and 
 

( ) ( )
2

* ˆ2 *

0,2 2
1 0

1
, , |a

N
ikx r

a b

a k

x s e k r s x
i k = =


= 


 . (112) 

For the first moment, substitution of equation (86) into equation (111) yields 
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( )

( )
( )( ) ( )( )

( )( ) ( )( )

*
* ˆ * *

0
1 1

* *

0
1 1

1
ˆ , , ; 0;

0, , ; ;

M

a

M

NN
ikx r

b a c cb
k

a c

NN

a c cb
k

a c

s
x s x r e p k r r s P s

s i k

p r r s P k s
i k


 

 

=
= =

=
= =

 −  
= +    


+ 

 





 (113) 

where the generating function ( )( )*;cbP k s  is determined by equation (85). For 

DRWs, the term ( )( )( )
1

*

11 ;E k s
−

−  in the generating function ( )( )*;cbP k s  is 

divergent as ( ) ( ), 0,0k s →  so the third term in equation (113) is the dominant term 
and only important if no change happens, 
 

( )
( )

( )( ) ( )( )
*

* * *

0
1 1

1
0, , ; ;

MNN

a c cb
k

a c

s
x s p r r s P k s

s i k


 

=
= =

 − 
    

  (114) 

where the asymptotic form of the derivative can be found in the following 
expression: 
 

( )( )
( )( )

( )( )( )

( )( )

( )( )( )

*
*

1

* 0

2
*

*0
1

2

;adj I-p 0;
;

1 0;1 0;
M

ab k
ab N

k

n

n

E k ss i k
P k s

i k E sE s






=

=

=


 

  

 −−

. (115) 

If we plug equation (115) into equation (114), we will get the complicated 

equation. To make it less complicated, let us consider the sum ( )*

0,

1

0, , |
N

a b

a

r s x
=

 . 

From the definition, it is expressed as 
 ( ) ( )*

0, , 0,

1 10

0, , | , |
N N

st

a b m a b

a m a

r s x x t x e dt

 
−

= =− =

 
 =  

 
   . (116) 

From the fact that the random walker cannot be eliminated from the system or the 
walker must be found somewhere on the structure at any given time, we have 

( ), 0,

1

, | 1
N

m a b

m a

x t x


=− =

 =   for any time t . Hence, ( )*

0,

1

1
0, , |

N

a b

a

r s x
s=

 =  for 0s  . 

This result, equations (86) and (87) lead to the relation (see Appendix 6) 
 ( )( )

( )
( )( )

( )( )

( )( )( )

**

1 *

*
1 1 *

2

adj I-p 0;1 0;
0, , ;

1
1 0;

M

M

NN
cb

a c N
a c

n

n

sE s
p r r s

s
E s





= =

=

 −  

−
−




. (117) 

After substituting equation (115) into equation (114) and using relation (117), we find 
 ( )

( )( )( )
( )( )

* *

1*
01

1
;

1 0; k

x s E k s
i ks E s


 =



−
. (118) 
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We will restrict ourselves to the DRWs with the asymptotic form of the 

eigenfunction ( )1 0;E   as 1 −→  obeying the equation 
 ( ) ( )

2

1 11 0; 1 Hd
E c 

−
− −  (119) 

where 1c  is a certain constant and 1 2Hd  . We defer further discussion of the 
meaning of the parameter Hd  until the next subsection. 

We can show that if the expected number G  of steps that the random 
walker takes inside connected networks before returning to any major site again is 
finite, then the asymptotic form of the term ( )11 0;E −  satisfies the above equation, 
 ( ) ( )11 0; 1E G − −  (120) 
where 1c G=  and 1Hd =  (see appendix 7). The expected number G  can be 

calculated from the limit as 1 −→  of the derivative of the eigenfunction ( )1 0;E   
with respect to  , 
 ( )( )1 0;1G E − 

=  (121) 

which is also equal to ( )
1 1

1 0;1
M MN N

ab b

b a

p −

= =

 
+ 

 
  . The corresponding random walk is 

denominated the diffusive random walk with finite G  (DRWFG). On the other hand, if 
the dangling networks attached to major sites are fractals with dimension in the 
interval ( )0, 2  and the walker takes symmetrically steps on such networks, then the 
expected number G  is infinite and the parameter 1Hd  . The corresponding 
random walk is called the DRW with infinite G  (DRWFIG). 

For DRWs, from equations (106) and (119), the asymptotic form of the Laplace 
transform ( )

*
x s  in equation (118) therefore becomes 

 ( )
( )( )
( )

*

1 2

1 2

H

H

v d

v d
x s

s

 
+ −

+ −  (122) 

where 
( )( ) ( ) ( )12

01 0

1
;1

1 2 Hv d
kH

E k
i kv d c t




−

−
=

 
  

+ −  
 is called the effective velocity. 

The gamma function ( )( )1 2 Hv d + −  is introduced in order to simplify some of the 
further expressions. From equation (107), it can be shown that the effective velocity 
can also be calculated from 
 

( )( ) ( ) ( )2
, 1 01 0

1
;1

1 2

M

H

N

ab bv d
a b kH

p k
i kv d c t

 −

−
= =

 
=  

 + −  
 . (123) 
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Note that when the term “unbiased random walk” (“biased random walk”) is used 
here, it will be understood that we refer specifically that 0 =  ( 0  ) unless we say 
otherwise. 

After obtaining the asymptotic form of the Laplace transform in equation 
(122), we can find the asymptotic form of the first moment ( )x t  by applying 
Tauberian theorem to it, 
 ( ) ( )2 Hv d

x t t
− . (124) 

Tauberian theorem states that, for a function ( )f t  and its Laplace transform 

( ) ( )*

0

stf s f t e dt



−  , 

( )* 1
f s s L

s

−  
 
 

 as 0s +→ , and ( )
( )

( )
1t

f t L t


 

−

 as t →  

are equivalent, provided that 0  , ( )   is gamma function, ( )f t  is always 
positive and monotonic, and the function ( )L x  is slowly varying in the sense that 
( )

( )
1

L x

L x


→  as x→  for each fixed, positive  . 

The analysis of the asymptotic behavior of the second moment ( )2x t  is 

analogous to one of the first moment ( )x t . First determine the Laplace transform 

( )
*

2x s  by substituting equation (86) into equation (112), 

 
( )

( )
( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

*
* 22

2
ˆ * *

2 2 0
1 1

ˆ * *

2
1 1 0 0

2
* *

2 2 0
1 1

1
ˆ

, , ; 0;

2
, , ; ;

0, , ; ;

M

a

M

a

M

b

NN
ikx r

a c cb
k

a c

NN
ikx r

a c cb

a c k k

NN

a c cb
k

a c

s
x s x r

s

e p k r r s P s
i k

e p k r r s P k s
i k k

p r r s P k s
i k



 

 

 

=
= =

= = = =

=
= =

 −
=   

 


+



 
+

 


+ 

 







. (125) 

For DRWs, the last term of this equation is the leading term as 0s +→ , 
 

( )
( )

( )( ) ( )( )
* 2

*
2 * *

2 2 0
1 1

1
0, , ; ;

MNN

a c cb
k

a c

s
x s p r r s P k s

s i k


 

=
= =

 − 
    

 . (126) 

From equation (85), the dominant contribution to the second derivative in equation 
(126) reads 
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( )( )
( )( )

( )( )( )

( )( )

( )( )( )

( )( )

( )( )( )

2

*
* 12

0*

32 2
*

*0 1

2

2
*

12 2

0

2
*

1

2 ;
adj I-p 0;

;
1 0;1 0;

;

1 0;

M

kab
cb N

k
n

n

k

E k s
s i k

P k s
i k E sE s

E k s
i k

E s











=

=

=

=

  
        


  −−






 
+ 

−




. (127) 

If equations (117) and (127) are used, it is easily shown that equation (126) becomes 
 

( )
( )( )

( )( )( )

( )( )

( )( )( )

2 2
**

11 2 2
* 02 0

2 **
11

;2 ;
1

1 0;1 0;

k k

E k sE k s
i ki k

x s
s E sE s





= =

   
  

   
+ 

− −
 
 

. (128) 

After plugging equations (106) and (119) into equation (128), we find that the 
asymptotic form of the Laplace transform ( )

*
2x s  is 

 
( )

( )( )( )
( )

( )( )
( )

2

*
2

2 2 1 1 2

2 1 2 2 1 2

H H

H H

v d v d

v d v d D
x s

s s

  
− + + −

+ − + −
+  (129) 

where 
( )( ) ( ) ( )

2

12 22

1 0 0

1 1
;1

2 1 2 Hv d

H k

D E k
i kv d c t

−

−

=

 
   + −  

 is called the diffusion 

coefficient. From equation (107), we can find that, in the case of unbiased random 
walks, the diffusion coefficient can also be calculated from 
 

( )( ) ( ) ( )
2

2 22
, 11 0 0

1
;1

2 1 2

M

H

N

ab bv d
a bH k

D p k
i kv d c t

−

−
= =

 
=    + −  

 . (130) 

Finally, after applying Tauberian theorem to equation (129), the asymptotic 
form of the second moment ( )2x t  is obtained, 

 
( )

( )( )
( )( )

( ) ( )
2

2 22
2 1 2

2
1 2 2

H
H v d

H

v d
x t x t Dt

v d





−
+ −

+
+ −

. (131) 

 
In summary, from the preceding analysis, we have found that, for DRWs, if the 

explicit forms of the eigenfunction ( )1 ;E k   and the eigenvector ( )π ;k   of the 
transition probability matrix ( )p ;k   are known, then the asymptotic forms of the 
Laplace transforms ( )

*
x s  and ( )

*
2x s  as 0s +→  can be calculated. Furthermore, 

if these asymptotic forms satisfy the conditions of Tauberian theorem, then we will 
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easily find the asymptotic forms of the first moment ( )x t  and the second moment 

( )2x t  of the random walker location along the structure axis at large time t . 

For the DRWFGs, G   and 1Hd = , we found that the asymptotic behavior of 
these moment is identical to those for the random walk on a perfect 1-d lattice 
except for the coefficients – the effective velocity   and the diffusion coefficient D

. For the unbiased DRWFGs, the second moment ( )2x t  is proportional to time t  if 

the PDF of waiting time has a finite mean, i.e., 1v = . Otherwise, the second moment 
is proportional to vt  for 0 1v   instead. In words, the only diffusion of the 
unbiased DRWFGs with the PDF of waiting time possessing the finite mean is a normal 
diffusion. If this condition, i.e., 1v = , is relaxed, it leads to the field of anomalous 
diffusions. Realistic models of anomalous diffusion have been formulated for 
nonlinear transport in disordered materials (see, e.g., [10]). 

Just before we move on, it is important to remark that the asymptotic behavior 
of the other basic properties can also be obtained by applying the Tauberian 
theorem to their corresponding Laplace transforms, so we often implicitly use this 
fact. 
 

2.3.2 The probability of return to the starting site 
The basic problem of the theory of random walks is to calculate the 

probability of a walker being found at a certain time and a certain site, e.g., the 
starting site. For the models with the spatial homogeneity, aside from the other basic 
statistical properties of a random walk for a given site, the probability ( )0bb n

P  that 
the walker is found at the starting site at the n th is related to many interesting 
problems such as the lattice vibration problem on the same lattice structure [55] , 
the relaxation process described by the defect-diffusion model [56] and recurrence 
theorem [57]. For the continuous-time random walks, the conditional probability 

( )0bb n
P  can be generalized to the probability ( )0,bbP t  of return to the starting site 

0,bx  at time t . 
Since the probability ( )0,bbP t  is the special case of the probability ( ),abP m t  

that the walker is found at any major site ,m ax  at time t , let us begin our 
consideration with equations (93) and (94) for 0m =  and a b= , i.e., 
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( )

( )
( )( )

*

* *
1

0, 0;bb bb

s
P s P s

s




 −
=   
 

 (132) 

and ( )
( )

( )( )
1

adj I-p ;
0;

2
1 ;

M

L

bb
bb N

L
n

n

kL
P dk

E k









−

=

  
=

−



 which can also be calculated from  

 
( )

( )( )

( )( )( )
1

adj I-p ;1
0;

2
1 ;

M

bb
bb N

n

n

k z dz
P

i z
E k z







=

 
 

=

−



 (133) 

where iLkz e  and the contour  is the unit circle. 
The singularities ( ) ( )i

z −  of the integrand are located at the points in a 

complex z  plane where ( ) ( )( )( )1 ; 0
i

nE k z  −− =  for 1,2,3,..., Mn N= . For a great 

number of problems, it can be shown that these singularities are poles. Hence, let us 
restrict ourselves to this kind of the problems. 

As admitted above, there may exist a certain number I  of poles in the 
region bounded by the contour , and the residue theorem yields 
 ( ) ( ) ( )

1

0;
I

i

bb bb

i

P P 
−

=

=  (134) 

where the term ( ) ( )i

bbP 
−
 corresponds to the pole ( ) ( )i

z −  for 1,2,3,...,i I= . The 
meaning of the minus sign subscript will be clarified later. 

For DRWs, for ease of reference, let us preserve the notation ( ) ( )1
z −  for the 

pole corresponding to ( ) ( )( )( )1

11 ; 0E k z  −− = , which is in the region bounded by the 

contour  and nearest to the point that 1z = . If the generating function ( )0;bbP   is 

divergent as 1 −→ , the singular part of ( )0;bbP   comes solely from the first term 
( ) ( )1

bbP 
−
 in equation (134). This is because, at 1 = , ( ) ( )1

z −  is the only pole on the 

unit circle, corresponding to the limit ( )1 0;1 1E − =  with ( )1
1z− =  and 0k = . This fact will 

enormously simplify the study of the asymptotic behavior of the basic statistical 
properties for unbiased DRWs. 

The physical meaning of the limit of the generating function ( )0;bbP   as 

1 −→ , i.e., ( ) ( )
0

0;1 0bb bb n
n

P P


−

=

= , is the sum of the probability of return to the 

starting site over all possible step. The divergence of this sum implies that the event 
that the random walker returns to the starting site is certain to happen (see, e.g., 
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subsection 2.3.3.). The divergent problem of this sum for a variety of random walk 
models has been extensively studied by many authors. It was first shown by Polya 
[57] that, for the symmetric Polya walk, the walk whose single-step transition 
probabilities to neighboring sites are equal, the sum is divergent if the dimension of 
the underlying lattice structure equals 1 or 2 , while for higher dimensions the sum 
is convergent. This is the so-called Polya's theorem. 

Since we are interested in quasi-1d infinite structures, in the sense of fractal 
dimensions, dimensions of quasi-1d infinite structures can be any real number 
between 1 to 2 . There are several ways to define fractal dimensions. One of them is 
the so-called spectral dimension. The spectral dimension Hd  is defined through the 
asymptotic form of the generating function ( )0;bbP   of the probability of return to 
the starting site at certain steps (see Eq. 3.111 in [58]), i.e., 
 ( ) ( )

( )1 2
0; constant 1 Hd

bbP  
− −

 −  (135) 

whose limit ( )0;1bbP −  is divergent when 0 2Hd  . Note that although there are 

many ways of defining fractal dimensions, these different ways are all related to each 
other. For quasi-1d infinite models, we notice that this parameter Hd  is identical to 
the one introduced in the preceding subsection for many scenarios, so let us use the 
same notation for both parameters. 

For our models, if the singularity ( ) ( )1
z −  is a simple pole and the term 

( )( )11 ;E k z −  can be factorized as 
 ( )( )

( ) ( ) ( )( )1

1

;
1 ;

H z
E k z z z

z


 −− = −  (136) 

where ( );H z   is a certain function, and assume that the asymptotic form of the 
function ( ) ( ) ( )( )1

;H H z  −  can be expressed as 

 ( ) ( )
1 2

2

1
1 Hd

H
c

 
−

−  (137) 

where 2c  is a certain constant, then the first term of the generating function ( )0;bbP   
in equation (134) becomes 
 

( ) ( )

( ) ( )( )( )
( ) ( )( )( )( ) ( )

1

1

1

2

adj I-p ;
1

1 ;
M

bb
bb N

n

n

k z

P
H

E k z

 



 

−

−

−

=

 
  

=

−

, (138) 

and its asymptotic form is the same as that shown in equation (135), i.e., 
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 ( ) ( )
( )1 2

20; 1 Hd

bb bP c  
− −

−  (139) 

where we have used relation (108). 
Furthermore, from equations (106), (132) and (139), the asymptotic forms of 

the Laplace transform ( )* 0,bbP s  and the probability ( )0,bbP t  are 

( ) ( )
2* 2

00, Hd vb
bb

c
P s t s

s

  and 

 
( )

2

2

0

0,

1
2

Hd v

b
bb

H

c t
P t

d v t





−

 
 

   − 
 

. (140) 

It is worth pointing out that the exponent carries the important information of the 
underlying structure and the PDF of waiting time, i.e., the characteristic exponents Hd  
and v  respectively. In addition, the analysis of ( )* 0,abP s  and ( )0;abP   is analogous 
to that of ( )* 0,bbP s  and ( )0;bbP  . The only difference is a b . 

For quasi-1d infinite structure models, in the cases that the limit ( )0;1bbP −  of 

the generating functions ( )0;bbP   are divergent, the restriction to the symmetric 
Polya walk may be dropped and replaced by unbiased DRWs. If DRW is unbiased 
along the structure axis, i.e., 0 = , it is likely to repeatedly visit the starting site. This 

leads to the divergence of the sum ( ) ( )
0

0;1 0bb bb n
n

P P


−

=

= . In contrast, for biased 

DRWs, the sequence of the probabilities of return to the starting site decays rapidly 
and the sum is convergent. This can be verified in examples, but a general proof is 
lacking. 

For biased DRWs, from equation (132), the asymptotic forms of the Laplace 
transform ( )* 0,bbP s  and the probability ( )0,bbP t  can be cast into the following forms: 
For 0 1v  , ( ) ( )* 1

00, 0;1 v v

bb bbP s P t s− −  and 

 
( )

( )
( ) 0

0;1
0,

1

v

bb

bb

P t
P t

v t

−−
 
 

−  
. (141) 

 
To sum up, the asymptotic behavior of the probability ( )0,bbP t  of return to 

the starting site at time t  is determined by the asymptotic forms of the Laplace 
transform ( )* s  of the PDF of waiting time and the generating function ( )0;bbP   of 
the probability of return to the starting site at certain steps. The generating function 
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( )0;bbP   can be calculated from equation (133) in which the only information of the 
matrix ( )p ;k   and certain relevant functions is required. We found that the 
probability ( )0,bbP t  behaves asymptotically in different regimes depending on the 

divergence of the generating function ( )0;bbP   as 1 −→  which is governed by the 
localized transport of a walker and the geometrical characteristics of the underlying 
structure. 
 

2.3.3 The probability of ever reaching a given major site 
A random walk property closely related to the probability of return to the 

starting site is the probability of ever reaching a given major site. It can be obtained 
by realizing that if a walker has ever reached to that major site, it must visit the site 
for the first time at some times. Therefore, the probability ( )abR m  of the walker 
ever reaching a given major site ,m ax  is equal to the integral of the CFPP ( ),abF m t  to 
that given site over all times, 
 

( ) ( )
0

,ab abR m F m t dt



=   (142) 

which can also be calculated from the limit of the Laplace transform ( )* ,abF m s , 
 ( ) ( )*

0
lim ,ab ab
s

R m F m s
+→

= . (143) 

To calculate this basic statistical property, let us employ equation (95). If the 
considered major site is the starting site, we have 
 ( )

( )( )
*

*

1
0, 1

0;
bb

bb

F s
P s

= − . (144) 

As we discussed in the previous subsection, if the random walk is an unbiased DRW, 
the limit ( )0;1bbP −  is infinite, otherwise it is finite. From this statement and equations 

(143) and (144), they imply that the walker eventually reaches the starting site, i.e., 

( )0 1bbR = , if the walker is an unbiased DRW, otherwise, the event is not certain to 
happen, i.e., ( )0 1bbR  . 
 This result coincides with the recurrence theorem (see Subsection 3.2.5 in 
[58]). In our terminology, the theorem states that if the major sites ,m ax  and 0,bx  are 
accessible from each other, that is, ( ) 0abR m   and ( ) 0baR m−  , then either 

( ) ( ) ( ) ( )0 0 1bb aa ba abR R R m R m= = − = =  
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or 

( )0 1bbR  , ( )0 1aaR   and ( ) ( ) 1ba abR m R m−  . 
 If the considered major site is not the starting site but still in the starting unit 
cell, from equation (95), we have 
 

( )
( )( )
( )( )

*

*

*

0;
0,

0;

ab

ab

aa

P s
F s

P s




=  (145) 

where a b . From what we have learned, we can express this Laplace transform in 
the following form: 
 

( )

( ) ( )( )

( ) ( )( )

*

* 1

*

1

0,

I
i

ab

i
ab I

i

aa

i

P s

F s

P s





−
=

−
=

=



. (146) 

It can be shown that ( )0 1abR =  for a b  if the walk is an unbiased DRW and the 
term ( )( )1 ;E k z   satisfies equation (136). This is because the numerator in equation 
(146) is asymptotically equal to the denominator as 0s +→ . However, if the walk is a 
biased DRW, in general, it is somewhat complicated to evaluate this probability 
because every term in the sums needs to be taken into account. 
 We have so far analyzed the probabilities for the sites contained in the 
starting unit cell, 0m = , and we have known that the behavior of the poles ( ) ( )i

z −
 

play an important role in determining the behavior of the probabilities. However, in 
general, the behavior of the poles may be different for 0m  and 0m  . Therefore, 
to distinguish them, let ( ) ( )i

z −
 and ( ) ( )i

z +
 denote the i th singularity for 0m  and 

0m   respectively. 
 Accordingly, for the major sites in the 0m   unit cell, from equations (95) 
and (134), the expression of ( )* ,abF m s  is analogous to equation (146) except for the 
additional terms and the additional subscripts, 
 

( )

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )

* *

* 1

*

1

,

I m
i i

ab

i
ab I

i

aa

i

z s P s

F m s

P s

 



 
=

−
=

=



 (147) 

where the term ( ) ( )( )*i

abP s

 corresponds to the pole ( ) ( )( )*i

z s
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For a board class of unbiased DRWs, models may have a reflective symmetry 
which leads to the identity ( ) ( )( ) ( ) ( )( )1 1* *z s z s + −=  and, of course, 

( ) ( )( ) ( ) ( )( )1 1* *

ab abP s P s 
+ −
= . With the divergence of the limit ( ) ( )1

1abP −

−
, the 

asymptotic form of the Laplace transform ( )* ,abF m s  is 
 ( ) ( ) ( )( )( )1* *,

m

abF m s z s−
. (148) 

Furthermore, from the definition, the pole ( ) ( )( )1 *z s−
 approaches unity as 0s +→  

so ( ) 1abR m =  for , 1,2,3,..., Ma b N=  and 0m  . If the walk is a biased DRW, it is 
obvious that the evaluation of the probability ( )abR m  is more complicated than 
that of the cases 0m = . 
 
 To summarize, for a board class of unbiased DRWs, it was found that every 
major sites on the structures are eventually reached by a random walker, i.e., 

( ) 1abR m =  for , 1,2,3,..., Ma b N=  and any integer m , while, for biased DRWs, the 
evaluation of the probability ( )abR m  is nontrivial because we need to know the 
exact values of the limit ( )i

z  and the limit ( ) ( )1
i

abP −


. 

 
2.3.4 The conditional mean first-passage time at a given major site 

While the probability ( )abR m  that a major site 
,m ax  is visited is one of the 

most important basic statistical properties of a random walk, it gives us only a rough 
picture of the temporal properties of the random walker. We can glean more 
information from the statistics of time on which the major site 

,m ax  first visited, that 
is, the first-passage time. 

To avoid difficulties, we shall examine here the conditional mean first-passage 
time ( )ab m  defined by 
 

( )
( )

( )
0

1
,ab ab

ab

m tF m t dt
R m




  . (149) 

In words, the conditional mean first-passage time ( )ab m  is the mean time that the 
random walker takes to visit a major site 

,m ax  for the first time, given that the walker 
initiated from the major site 

0,bx  and the major site 
,m ax  is eventually reached. From 
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this definition, it is straightforward that the conditional mean first-passage time 
( )ab m  can be calculated from 

 ( )
( )

( )( )*

0

1
lim ;ab ab
s

ab

m F m s
R m s

 
+→


= −


 (150) 

which gives 
 

( ) ( ) ( ) ( )*

0
lim

D

ab ab
s

d
m m s

ds
  

+→

 
= − 

 
 (151) 

where  
 ( ) ( )

( )
( )

1

1
lim ;

D

ab ab

ab

m F m
R m 

 
−→





 (152) 

is the conditional mean number of steps that the walker takes before visiting a given 
major site for the first time. Hence, the conditional mean first-passage time ( )ab m  is 
the multiplication of the conditional mean number ( ) ( )D

ab m  of steps and the mean 
time of the PDF of waiting time. This implies that the conditional mean first-passage 
time ( )ab m  to a given major site is infinite if either one of these quantities is infinite. 
 If the walk is an unbiased DRW, the eigenfunction ( )1 ;E k   satisfies equation 

(136), and the limits of the derivatives of the poles ( ) ( )1
z   as 1 −→  are infinite, i.e., 

for 1 2Hd   
 ( ) ( )( ) ( )

21

3 1 Hd
z c 

−




− , (153) 

then it can be shown that, for any major site ,m ax , the conditional mean number 
( ) ( )D

ab m  of steps is infinite which leads to the infinite conditional mean first-passage 
time ( )ab m . 

To see this, let us recall the results in the previous subsection, for any major 
site ,m ax , ( ) 1abR m = . Hence the calculation of the term ( ) ( )D

ab m  is reduced to 
 ( ) ( ) ( )

1
lim ;

D

ab abm F m


 
−→


=


. (154) 

Therefore, what we need to do is to show that this limit is infinite. 
For the starting major site, from equation (144), if the Laplace transform 

( )* s  is replaced by parameter  , we will obtain the simple relation between the 
generating functions ( )0;bbF   and ( )0;bbP  , 
 ( )

( )
1

0; 1
0;

bb

bb

F
P




= − . (155) 
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From this result and equation (139), we have 
 ( ) ( )

1 2

2

1
0; 1 1 Hd

bb

b

F
c

 


−
− − , (156) 

and 
 ( ) ( )

2

2

1 2
0; 1 HdH

bb

b

d
F

c
 

 

−−
−


 (157) 

is immediate. Therefore, ( )
1

lim 0;bbF



−→




 is infinite. 

Similarly, for the other major sites in the starting unit cell, from equation 
(145), after employing the analogy of equation (138) and rearranging, we obtain 
 

( )

( )( )( )
( )( )( )( )

( )( ) ( ) ( )

( )( )( )
( )( )( )( )

( )( ) ( ) ( )

1

1

1 1

2

1

1

1 1

2
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I
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I
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aaN
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n

n

k z

H z P

E k z

F
k z

H z P

E k z


 






 



−

− −


−

=

−

− −


−

=

 
  

+

−

=
 
  

+

−







. (158) 

To unclutter the notation, we have omitted the argument of the singularity ( ) ( )i
z −

. 
After differentiating this equation with respect to the parameter  , the asymptotic 
form of the result is obtained, 
 

( ) ( ) ( ) ( ) ( ) ( )
2

1 1 2

1 2
0; 1 1 1 H

I I
di i H

ab aa ab

i i a

d
F P P

c
 

 

−− −

− −
 

 −  
− −  

   
   (159) 

and this is clear that its limit as 1 −→  is infinite. For the remaining major sites, from 
equation (148), we have 
 ( ) ( ) ( )( )1

;
m

abF m z 
. (160) 

Then we differentiate this equation with respect to   and use the condition in 
equation (153). What we obtain is 
 ( ) ( )

2

3; 1 Hd

abF m c m 


−
−


 (161) 

where ( )1
1z =  was used. It is obvious that ( )

1
lim ;abF m



−→


= 


. 

 It is worth pointing out that, in many scenarios, e.g., unbiased DRWs, we 
notice that the conditional mean first-passage time ( )ab m  to a given major site ,m ax  
is infinite but the event that the walker eventually reaches that major site is certain 
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to happen, i.e., ( ) 1abR m = . This statement is not informative. However, we can 
consider the more informative temporal property, the conditional mean first-passage 
time ( ),ab m t  to a given major site ,m ax  by finite time t , given that the site is 
eventually visited by the time. It is defined by 
 

( )
( )

( )
0

1
, ,

,

t

ab ab

ab

m t t F m t dt
R m t

      (162) 

where ( ) ( )
0

, ,

t

ab abR m t F m t dt    is the probability that ,m ax  is visited by time t . 

To determine the asymptotic value of the conditional mean first-passage time 
( ),ab m t , let us examine the Laplace transform of an auxiliary function 
( ) ( ) ( ), , ,ab ab abQ m t m t R m t , 

 
( ) ( ) ( )*

0

, , , st

ab ab abQ m s m t R m t e dt


−=  . (163) 

We can rewrite this auxiliary Laplace transform in a more convenient form, 
 

( )
( ) ( )

( )*

*

*
;1

,
ab

ab

s

d s F m
Q m s

s ds
 

 


=


= −


. (164) 

It is obvious that this auxiliary function is of our interest because, for large time t , 

( ) ( )lim , 1ab ab
t

R m t R m
→

= = , and ( ),abQ m t  is asymptotically equal to ( ),ab m t . 

From equation (106), it can be easily shown that the asymptotic form of the 
Laplace transform ( )* ,abQ m s  is determined by the asymptotic form of the first 
derivative of the generating function ( );abF m  , 
 

( )
( )

( )*

* 2

0

;
,

abv v

ab

s

F m
Q m s vt s

 





−

=




, (165) 

which we have already considered. 
If the walk is an unbiased DRW, the eigenfunction ( )( )1 ;E k z   satisfies 

equation (136), and the derivatives of the poles ( ) ( )1
z   as 1 −→  are in the form 

shown in equation (153), then from equations (106), (157), (159), (161) and (165) we 
obtain the asymptotic behavior of the conditional mean first-passage time ( ),ab m t , 
 

( )
( )

( )( )

( )1 1 2

0

02

1 2
0,

2 1 2

Hv d

H

bb

H b

vt d t
t

tv d c


 

− −

−  
 

− −  
, (166) 

for the starting major site, 
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 ( ) ( ) ( ) ( ) ( ) ( )
1 1

0, 1 1 0,
I I

i i

ab aa ab aa

i i

t P P t − −

− −
 

 
− 

 
  , (167) 

for the other major sites in the starting unit cell, 
 

( )
( )( )

( )1 1 2

3 0

0

,
2 1 2

Hv d

ab

H

c vt m t
m t

tv d




− −

 
 

− −  
 (168) 

for the remaining major sites. 
 

 Summarizing, we found that the conditional mean first-passage time ( )ab m  

to a given major site ,m ax  is equal to the multiplication of the conditional mean 

number ( ) ( )D

ab m  of steps that a walker walks before visiting the given site for the 
first time and the mean time of the PDF of waiting time. In certain scenarios, the 
event that the walker ever reaches a given major site is certain to happen, i.e., 

( ) 1abR m = , but we must wait for long time generally, i.e., ( )ab m =  . The 

conditional mean first-passage time ( )ab m  is thus no longer useful. However, we 
can consider the more useful temporal property, the conditional mean first-passage 

time ( ),ab m t  to a given major site ,m ax  by finite time t , given that the site is 

eventually visited by the time. To determine the asymptotic behavior of ( ),ab m t  

when time is large, the eigenfunction ( )1 ;E k   and the derivatives of the poles 
( ) ( )1

z   need to be satisfied several conditions. 
 

2.3.5. The expected number of distinct major sites visited 
In some contexts, we are also interested in the portion of the underlying 

structure explored by a walker. One of basic random walk properties which is related 
to this subject is the number of distinct sites visited at a certain time. In our model, 
the asymptotic behavior of the expected number ( )S t  of distinct major sites 
visited at time t  can be determine by the concepts previously introduced. 

To facilitate the analysis of ( )S t ,  let us introduce a new variable, ( )t dt , 
the expected number of new major sites visited at time t . By convention, the 
starting event is counted as a visit to the staring major site, so that we have 
 ( ) ( ) ( )

, 0 ,

,
m a b

ab

x x

t t F m t 


= +  , (169) 
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and the corresponding Laplace transform is 
 ( ) ( )( ) ( )( )

* * *

1

1 0; ;
MN

bb ab

m a

s F s F m s  


=− =

= − +  . (170) 

Clearly, the expected number ( )S t  of distinct major sites visited at time t  
is identical to the integral of the expected number ( )t   of new major sites visited 
from the initial time 0t =  to the final time t t = , 
 

( ) ( )
0

t

S t t dt  =   (171) 

where its Laplace transform equals to 
 

( )
( )

*

* s
S s

s


= . (172) 

From the relation between the generating functions ( )( )*;abF m s  and ( )( )*;abP m s  

in equation (95), we find that 
 

( )
( )( )
( )( )

*

*

*
1

;1

0;

MN
ab

m a aa

P m s
S s

s P s







=− =

=   . (173) 

Since the sum ( );ab

m

P m 


=−

  equals to the Fourier transform ( )0;abP   which is 

determined in equation (85), we can express the Laplace transform ( )
*

S s  as 
 

( )
( )( )( )

( )( )

( )( )( ) ( )( )

*

*

**
1 *1

2

adj I - p 0;1 1 1

0;1- 0;
1- 0;

M

M

N

ab

N
a aa

n

n

s
S s

s P sE s
E s






=

=

 
 

= 


. (174) 

If the random walk is a DRW, the asymptotic form of ( )
*

S s  becomes 
 ( )

( )
( ) ( )( )

*

2 *
1

1 0

1

0;

M

H

N

a

v d
a aa

S s
P sc s t s




−

=

 . (175) 

Recall that, for unbiased DRWs with ( )( )*

1 0;E s  obeying equation (136), 

( )( )*0;aaP s  is determined by equation (139), and we can verify immediately that 

 ( ) ( )
( )* 2

2
0

1 2

1 H

v
dMN

S s t s
s c c

− − , (176) 

 
( )

( )

( )2
2

1 2 0

1

1 2
2

H

v
d

M

H

N t
S t

v c c t
d

−

 
 

   + − 
 

. (177) 

For biased DRWs, in equation (175), there is no divergent term in the sum so 
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( )
( )

( )( )

( )2
1

01

0;1

1 2

M

H

N

a

v d
a aa

H

P t
S t

tv d c





−−
=  

 
+ −  


. 

(178) 

From this result, to completely determine the asymptotic behavior of the expected 

number ( )S t , we need to take into account all values of the limits ( )0;1aaP −  for 

1,2,3,..., Ma N= . 
 
 In summary, after determining the important quantities, e.g., 1c , 

2c , a  and 

( )0;1aaP − , the asymptotic form of the expected number of distinct major sites visited 

at time t  can be calculated from 
 

( )
( )

( )

( )
( )( )

( )

2
2

1 2 0

2
1

01

1
; 0

1 2
2

0;1
; 0

1 2

H

M

H

v
d

M

H

N

a

v d
a aa

H

N t

v c c t
d

S t

P t

tv d c










−

−−
=


  =     + −  

  




 
  
 + −  


. (179) 

 
2.4 Summary 
 Our main result of this chapter is the prescription which can be used to 
obtain the asymptotic behavior of the basic statistical properties of the random walk 
on a quasi-1d infinite structure. The following table summarizes the main steps in the 
prescription. 

I. Determine the Fourier transform ( )p ;k   of the generating function of the 
transition probability matrix. It is defined by 
 

( )

( ) ( )

( ) ( )

11 1

1

; ;

p ;

; ;

M

M M M

N

N N N

p k p k

k

p k p k

 



 

 
 

  
 
 

 (180) 

where ( ) ( )
1

1 0

; ik mL n

ab ab n
m n

p k e p m



  


=− =

 
  

 
  . The term ( )ab n

p m  is the n -step 

transition probability from a major site 0,bx  to a given major site ,m ax , given that the 
walker does not visit any major site during the transition. 
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II. Find the eigenfunction ( )1 ;E k   and the limit ( )
1

π lim π 0;



−→

  of the 

corresponding eigenvector ( )π ;k   of the matrix ( )p ;k  . 
III. Extract the parameters 1c  and 

Hd  from the asymptotic form 
 ( ) ( )

2

1 11 0; 1 Hd
E c 

−
− − . (181) 

IV. Calculate the effective velocity   and the diffusion coefficient D  from 
 

( )( ) ( ) ( )2
, 1 01 0

1
;1

1 2

M

H

N

ab bv d
a b kH

p k
i kv d c t

 −

−
= =

 
=  

 + −  
  (182) 

where ( )z  is the gamma function and 
 

( )( ) ( ) ( )
2

2 22
, 11 0 0

1
;1

2 1 2

M

H

N

ab bv d
a bH k

D p k
i kv d c t

−

−
= =

 
=    + −  

 . (183) 

The asymptotic form of the first and the second moment are 
 ( ) ( )2 Hv d

x t t
− , (184) 

 
( )

( )( )
( )( )

( ) ( )
2

2 22
2 1 2

2
1 2 2

H
H v d

H

v d
x t x t Dt

v d





−
+ −

+
+ −

. (185) 

V. Determine the generating function ( )P ;m   whose entries can be 
calculated from 
 ( ) ( )( )

11
; I-p ;

2

m

ab
ab

dz
P m k z z

i z
 



−
− =    (186) 

where , 1,2,3,..., Ma b N= , m  is an integer and the contour  is the unit circle. The 
resulting expression of ( );abP m   may be in the form 
 ( ) ( ) ( )( ) ( ) ( )

1

;
I m

i i

ab ab

i

P m z P   
=

= . (187) 

For 0m , the term ( ) ( )i
z −  is the pole of ( )( )

1

I-p ;
ab

k z 
−

 
   which is in the region 

bounded by the contour , and ( ) ( )i

abP 
−
 is the certain function associated with this 

pole. For 0m  , the term ( ) ( )i
z +  is the pole of the term ( )( )

1

I-p ;
ab

k z 
−

 
   for the 

modified coordinate, the coordinate corresponding to the unit vector x̂  flipped. 
VI. For DRWs biased along the structure axis, i.e., 0  , the explicit form of 

the generating function ( );abP m   is desired, and the asymptotic behavior of the 
random walk properties can be determined as the following; 

the probability ( )0,bbP t  of return to the starting site 0,bx  at large times, 
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( )

( )
( ) 0

0;1
0,

1

v

bb

bb

P t
P t

v t

−−
 
 

−  
 for 0 1v  , (188) 

the probability ( )abR m  of ever reach a given major site ,m ax , 
 

( )
( )

( )
,0 ,

1

;
lim

0;

ab m a b

ab

aa

P m
R m

P

  

−→

−
= , (189) 

the conditional mean first-passage time ( )ab m  to a given major site ,m ax , 
 

( )
( )

( )

( )
,0 ,

0
1

;1
lim

0;

ab m a b

ab

ab aa

P m
m t

R m P

  


 −→

 −  
=  

   
 for 1v =  (190) 

and the expected number ( )S t  of distinct major sites visited at large times, 
 

( )
( )

( )( )

( )2
1

01

0;1

1 2

M

H

N

a

v d
a aa

H

P t
S t

tv d c





−−
=  

 
+ −  


. 

(191) 

VII. However, for DRWs unbiased along the structure axis, i.e., 0 = , the 

asymptotic forms of the singular part of the generating function ( )0;bbP   is 
sufficient to determine the asymptotic behavior of the random walk properties. In 

particular, we need to extract the parameters 2c  and 3c  from the asymptotic forms of 
( ) ( )1

bbP 
−
 and ( ) ( )( )1

z −

  respectively, 

 ( ) ( ) ( )
( )1 21

2 1 Hd

bb bP c  
− −

− , (192) 

 ( ) ( )( ) ( )
21

3 1 Hd
z c 

−

−


− . (193) 

Then the random walk properties are 
the probability of return to the starting site at large times, 
 

( )
2

2

0

0,

1
2

Hd v

b
bb

H

c t
P t

d v t





−

 
 

   − 
 

, for 0 1v  , (194) 

the probability of ever reach any major site is unity, ( ) 1abR m = , 

the conditional mean first-passage time to any major site is infinite, ( )ab m =  , 
the conditional mean first-passage time to a given major site by large times, 
for the starting major site, 
 

( )
( )

( )( )

( )1 1 2

0

02

1 2
0,

2 1 2

Hv d

H

bb

H b

vt d t
t

tv d c


 

− −

−  
 

− −  
, (195) 
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for the other major sites in the starting unit cell, 
 ( ) ( ) ( ) ( )

1 1

0, 0,
i i

ab aa ab aa

i i

t P P t 
 

 
− 

 
  , (196) 

and, for the remaining major sites, 
 

( )
( )( )

( )1 1 2

3 0

0

,
2 1 2

Hv d

ab

H

c vt m t
m t

tv d




− −

 
 

− −  
, (197) 

and the expected number of distinct major sites visited at large times, 
 

( )
( )

( )2
2

1 2 0

1

1 2

H

v
d

M

H

N t
S t

vd c c t

−

 
 

+  
. (198) 

 
The above equations, which will allow us to deduce many basic statistical 

properties of a random walk from equations (180) and (186) for the matrix ( )p ;k   

and the generating function ( );abP m   respectively, are general but quite formal. In 
fact, the reader may feel that these relations are rather useless since, in general, the 

multi-step transition probabilities ( )ab n
p m  and the integral (186) must be expected 

to be very difficult to calculate for a random walk with a complex structure.  While 
such an attitude is perhaps justified in complicated cases, there are many models for 
which considerable progress of one kind or another can be made.  The rest of this 
thesis will be devoted to such examples. 
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3 

Random walks on an unrestricted 1-d lattice 
 
 This chapter is devoted to considering the simplest case of a random walk on 
quasi-1d infinite structures, a random walk on a perfect 1-d lattice or an unrestricted 
1-d lattice, which is discussed in most books on statistics or statistical physics (see, 
e.g., [59, 60]). The purpose we will consider this model in a bit more detail is 
twofold: to demonstrate the use of the generating function formalism developed in 
the previous chapter, and to verify our results with the well-known results to check if 
the formalism works as expected. 
 
3.1 Model 

For an unrestricted 1-d lattice, there are many choices of the site partition. 
For sake of simplicity, let us choose the simplest choice, each unit cell of the 
unrestricted 1-d lattice containing only one major site, i.e., 1MN N= = . Hence there 
are not minor sites. It is assumed that a walker takes instantaneous step from one 
major site to the left and the right neighboring major sites or itself with single-step 
transition probabilities  ,  , and  , respectively (see Figure 17). 

 

 
Figure 17. A schematic representation of the possible steps of a walker with the 
corresponding single-step transition probabilities. 
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Accordingly, the transition probability ( )11 n
p m  that the walker takes steps from a 

major site to the nearest major sites can be written as 
 ( ) ( )11 , 1 ,0 ,1 ,1m m m nn

p m       −= + +  (199) 

with 1  + + = . In addition, between successive steps, the walker waits for a 
random time distributed according to a probability distribution function with finite 
mean, i.e., 1v =  and 

0t   . 
 
3.2 Results and discussion 

As we have learned, GFF for obtaining the asymptotic behavior of the basic 

random walk properties is based on the information of the matrix ( )p ;k   and the 
relevant functions. For the unrestricted 1-d lattice model, from equation (199), it is 
straightforward that 
 ( ) ( )p ; iLk iLkk e e    −= + + . (200) 

One of the important relevant functions is the eigenfunction ( )1 ;E k   which plays a 
crucial role in governing the asymptotic behavior of the basic properties. Since, in this 
case, the matrix ( )p ;k   is a 1 1  matrix, there is only one eigenvector ( )π ; 1k  =  
with the corresponding eigenfunction 
 ( ) ( )1 ; p ;E k k = . (201) 

This coincides with our intuition that the event that the walker is at a major site at 
large steps is certain to happen, i.e., 1 1 = , and the random walk is a DRW, i.e., 

( )1 0;1 1E − = . 

 As shown in Subsection 2.3.1, the parameters 1c  and Hd , which are defined 
by the asymptotic form of ( )11 0;E − , govern how the first and the second 
moments of the walker location along the structure axis asymptotically evolve with 
time. From equations (200) and (201), we have 
 ( )11 0; 1E  − = −  (202) 

which gives 
 1 1c =  and 1Hd = . (203) 
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Putting these parameters into equations (182) and (183) yields the effective 
velocity and the diffusion coefficient. We find that the effective velocity is equal to 
the “speed” of the walker, 0L t , timed the degree of bias,  − , i.e., 
 ( )

0

L

t
  = − . (204) 

It is obvious that the identity  =  implies vanishing of the effective velocity which 
is the characteristic of an unbiased random walk. For the diffusion coefficient, we find 
that it equals to the single-step transition probability   timed the scaling variable 

1 2

0L t  squared, 
 2

0

L
D

t
= . (205) 

As these essential variables are determined, the first and the second moments are 
immediate, 
 ( )x t t  (206) 

and 
 ( ) ( )

22 2x t x t Dt+ . (207) 

From the resulting first moment, when the walker is biased in either direction, 
regardless of the motion fluctuation, its averaged motion is like the ballistic motion 
with a constant velocity  , the distance is proportional to time. For the second 
moment, if the random walk is unbiased, the second moment is proportional to 
time. This implies that the transport process is the so-called normal diffusion. 
 To determine the asymptotic behavior of the other basic properties, the 

matrix generating function ( )P ;m   is required. For this simplest random walk model, 

this matrix is a 1 1  matrix, i.e., ( ) ( )11P ; ;m P m = , and the explicit form of the 

generating function ( )11 ;P m   of the probability ( )11 n
P m  that the walker is found at a 

major site ,1mx  at certain step n  is not hard to be calculated. Let us consider 
equation (186) for this model, 
 

( )
1

2

11

1 1 1
;

2

mP m z z z dz
i

 


    

−

−
  

= −  − − −  
  

  (208) 

where iLkz e  and we have used 
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( )( )

1
1 1

I-p ; 1k z z
z

    

−
−   

  = − + +   
  

. (209) 

The resulting generating function is (see Appendix 8) 
 

( ) ( ) ( )

( ) ( )( )
( ) ( )( )

1

1

11 11
1

; 0
;

; 0

m

m

z m
P m P

z m


 



+



−





= 

 


 (210) 

where 
( ) ( ) ( ) ( )

( ) ( )

1 1

11 11
2 2

1 1

1 4

P P
H

 
  

+ −
= = =

− −

, 

( ) ( ) ( ) ( )( )21 21
1 1 4

2
z    


− = − − − − , 

( ) ( ) ( ) ( )( )21 21
1 1 4

2
z    


+ = − − − − . 

For the unbiased DRWs,  = , we have developed the formulae, which are 

required only two parameters 2c  and 3c  determined by the asymptotic forms of the 

functions ( ) ( )1

11P 

 and ( ) ( )1

z  , respectively, to determine the asymptotic behavior 
of the certain basic properties. From the preceding results together with equations 
(192) and (193), we have 
 

2 3

1

2
c c


= = . (211) 

Putting the resulting parameter 2c  into equation (194) gives us the asymptotic 
form of the probability of return to the starting site for the unbiased random walks, 
 

( )
1 2

11

0

1
0,

2

t
P t

t

−

 
 
 

. (212) 

This is the well-known result and coincides with the scaling collapse in equation (7). 

To obtain the probability ( )11R m  of ever reach a given major site ,1mx  for 
general cases, i.e., biased and unbiased random walks, we need to know the values 

of the limit ( )11 ;1P m −  for any integer m . According to equation (210), it is 

 

( )
( )

11

1

; 02
;1

; 0

m

m

m

m
P m

m

   


  

−

−

−

 
+ − −    

= 
− 

. (213) 

This resulting limit together with equation (189), we obtain 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 71 

 
( )11

1 ;
0

1 ;
R

   

 

 − − 
= 

=
, (214) 

 
( )

( )
11

1 ;
0

;
mR m
 

   


 = 



, (215) 

 
( ) ( )

11

;
0

1 ;

m

R m
   

 

 
 = 



. (216) 

As we can see, when the random walk is unbiased,  = , every site on the structure 

is eventually reached by the walker, i.e., ( )11 1R m =  for any integer m . In contrast, 
for the biased random walks,   , if the considered major site is located in the 
same direction of bias, e.g., 0m   and   , the event of reaching that site is 
certain to happen. If the considered major site is located in the opposite direction of 
bias, e.g., 0m  and   , the probability of reaching that site decreases 
exponentially as the distance from the starting site increases. 

Unlike the preceding basic property, to express the explicit form of the 
conditional mean first-passage time to a given major site, the values of the limit 

( )( )11 ;1P m −   for any integer m  are essential. From equations (190) and (210), it is 

not difficult to show that 
 

( )

2

11

; 0
1

; 0

mL
m

m m

   

  


 + − −
=

=  − −




 (217) 

where we have used 
( )
( )

( )11 11

11

;1

0;1

P m m R m

P  

−

−

 
  =
  −
 

 and 
( )11

1

0;1P

 
 

 −

  +
 − = + −
  −
 

. 

Note that, in the limit that the random walk is unbiased, i.e., 0 = , the conditional 

mean first-passage time to any major site is infinite. Vice versa, ( )11 m  is finite and 
equal to the absolute value of the distance, Lm , divided by the effective velocity, 
 , if 0m  . However, in the case of 0 = , if the arrival of the walker to a certain 
major site by a certain time is of interest, the conditional mean first-passage time to 
a given major site by a certain time is more informative than the above and can be 

obtain by substituting the parameter ( )2 3 1 2c c = =  into equations (195) and 

(197). After substituting, we will obtain 
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( )

1

2
00

11

0 0

2 ; 0
,

; 0

Dt L mt t
m t

t m L Dt m




 =  
  

  

 (218) 

where the relation 2

0Dt L =  has been used. Although, it is intuitive that the 
conditional mean time ( )11 ,m t  to the starting site (other sites) increases (decreases) 
as the diffusivity increases, interestingly, it is not proportional to the diffusivity but 
the square root of it. 

Finally, we have had all important quantities including ( )0;aaP  , 
MN , a , 1c , 

2c , v  and 
Hd  for calculating the asymptotic behavior of the expected number of 

distinct major sites visited at large times. After plugging them into equations (191) 
and (198), we obtain 
 

( )

1

2
0

0

4
; 0

; 0

Dt t

L tS t

t
L








  = 
 






. (219) 

Interestingly, at large times, for the biased random walks, the ratio of ( )S t L  and 

( )2x t  is unity, while, for the unbiased random walks, this ration is not unity but 

8  . This is true independent of the details of the localized transition, i.e., the 
values of  ,   and  . 
 
 In summary, we have shown that the well-known basic properties of the 
random walks on an unrestricted 1-d lattice (see, e.g., [1, 38, 58, 61]) could be found 
by GFF. For examples, for the unbiased random walks, (i) the second moment of the 
random walk location along the structure axis at large times is proportional to time, 
(ii) the probability of return to the starting site at large times is a power function of 
time with exponent 1 2− , and (iii) every site on the structure is eventually reached. 
To demonstrate the wide range of abilities of GFF, in the next chapter, it will be 
applied GFF to more complicated models, random walks on branched structures. 
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4 

Random walks on branched lattices 
 
As our second specific application of the GFF, we consider random walks on 

branched lattices. A schematic of this kind of structures is shown in Figure 18. At the 
outset, we treat the basic statistical properties of general cases in which the details 
of connected lattice networks and localized transport of a walker are not specified. 
This treatment will be applied to the study of the basic properties of the so-called 
comb model and its generalization. 
 

 
Figure 18. A schematic of the structure of the branched lattice. In each unit cell, 
there exist two lattice networks represented in blue and green boxes respectively, 
which are connected to each other by a major site represented in a red sphere. 
 
4.1 Model 

Here, a branched lattice is defined as a lattice system consists of periodically 
repeated unit cells connecting to each other in a one-dimensional fashion. A 
schematic of this kind of structures is shown in Figure 18. In each unit cell, there 
exists one major site (a red sphere) which is connected to its equivalent site in the 
next unit cell by a lattice network A  (a blue box). The line passing through all major 
sites is called the structure axis or the backbone. There may be a dangling lattice 
network B  (a green box) attached to each major site. It is assumed that the 
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networks A  and B  consist of AN  and BN  different minor sites, respectively. Thus, 
each unit cell contains 

A B 1N N N= + +  different sites. Figure 19 shows certain 
possibilities of branched lattices. 
 

 
Figure 19. Unit cells of four different branched lattices. 

 
Here, we will use the same coordinate system established in Chapter 2. Hence, the 

position of the major site in the m th unit cell indicated by the vector ,1 1
ˆ

mx mLx r= +  

with 1 0r = , and the position of the a th minor site in the m th unit cell indicated by 

the vector ,
ˆ

m a ax mLx r= +  where 2,3,...,a N= . Figure 20 illustrates the arrows 
representing certain vectors of lattice (b) in Figure 19. 
 

 
Figure 20. The arrows representing certain vectors of lattice (b) in Figure 19. 

 
4.2 General cases 
 Let us develop general formulation which relates the basic random walk 
properties to a single function, 
 

( ) ( )
1

11

1 0

p ; n iLk m

n
m n

k p m e 




 =− =

 
  

 
   (220) 
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where ( )11 n
p m  is the n -step transition probability of steps from a major site 0,1x  

to a major site ,1mx . From the restrictions of the walker stepping and the geometrical 
characteristics of the underlying structures (see Figure 18), we can write 

( ) ( ) ( ) ( )11 1 1 1
0 0 0 0

n n n n
p F F F     

− − −
= + + , ( ) ( )11 1

1 1
n n

p F 
−

=  and  

( ) ( )11 1
1 1

n n
p F 

−
− = −  where , ,    are the single-step transition probabilities that 

the walker at a major site enters the right, the left and the up connected lattice 

networks respectively, given that 1  + + = . In turn, ( )1
n

F  , ( )1
n

F −  and 

( )0
n

F  are respectively the conditional n -step transition probabilities that, after 

entering the connected lattice networks, the walker reaches the right, the left 
nearest major sites and the commencing major site itself for the first time without 
visiting other major sites. Substituting these expressions into equation (220) yields 
 ( ) ( ) ( ) ( )* *p ; iLk iLkk e e      −=  + +  (221) 

where ( ) ( ) ( ) ( )0; 0; 0;F F F           + + , ( ) ( )* 1;F      and 

( ) ( )* 1;F     − . We now assume that when the walker enters the lattice 

networks linked two nearest major sites, it will spend finite time and will not get lost 

in the networks so that ( ) ( )* *  
+   , ( ) ( )1;1 0;1 1F F − −+ =  and 

( ) ( )1;1 0;1 1F F − −− + = . However, it may spend infinite time and may get lost in 

the dangling network, i.e., ( )    and ( )0;1 1F −  . 

Since this is the one-major-site problem, the primary results are analogous to 
that of the random walk on an unrestricted 1-d lattice, i.e., ( ) ( ); p ;E k k =  or 
 ( ) ( ) ( ) ( )* *; iLk iLkE k e e      −=  + +  (222) 

 and ( )π ; 1k  = . If each connected lattice network has a finite size, then the random 
walk is a DRWFG, 
 ( ) ( )1 0; 1E G − − , (223) 

which give 
 1c G=  and 1Hd = , (224) 

where G  can be calculated from the given generating function ( ) , ( )*   and 

( )*  , i.e.,  ( ) ( ) ( )* *G   =  + + . 
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From the resulting parameters together with equations (182) and (183), we 
have 
 ( )

( )

* *

01 v

L

v Gt

 


−
=
 +

 (225) 

and 
 

( )

* 2

01 v

L
D

v Gt


=
 +

. (226) 

It may be noticed that an unrestricted 1-d lattice model is a special case of a 
branched lattice model. For the random walk on an unrestricted 1-d lattice, the 
average number of steps taken in connected lattice networks is zero, 1G = , because 
there is not a minor site. The multi-step transition probabilities *  and *  are 
reduced to the single-step transition probabilities   and  , and the PDF of waiting 
time is assumed to have the first moment, 1v = . 

According to the preceding results, the first two moments are immediate, 
 ( ) vx t t  (227) 

and 
 

( )
( )

( )
( )

2
22

2 1
2

1 2

v
v

x t x t Dt
v





+
+

+
. (228) 

As you can see, the random walk can display normal diffusion and subdiffusion, 
which is dependent on the characteristic exponent of the PDF of waiting time. 

On the other hand, for infinite-size dangling networks, these results are not 
always appliable. To see this, let us concentrate on the dangling networks as fractals 

with the spectral dimension 0 2Hd  , i.e., the generating function ( )0;P    of the 

corresponding probability of return to the starting site, which is the commencing 
major site, obeys the equation ( ) ( )

( )1 2

00; 1 Hd
P c  

− −
− . To proceed with the 

analysis, we rewrite equation (222) as 
 ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 0; 0; 0; 0;

1; 1;

E F F F

F F

            

     

− = + + − + +

− − −
. (229) 

Then, from the proposed assumption, we find 
 ( ) ( )( )1 0; 1 0;E F   − − . (230) 
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From the analogy of relation (92), ( ) ( )
1

0; 1 0;F P   
−

 = −  
, we finally obtain 

 
( ) ( )

2 1
2

0

1 0; 1
Hd

E
c


 

 
− + 
 − −  (231) 

which gives 
 

1
2

H
H

d
d


= +  and 1

0

c
c


= . (232) 

This result implies that the random walk is a DRWIG. The event of visiting a major site 
after commencing from some major site is certain to happen, but the mean number 
of steps to visit is infinite. 

As usual, after the parameters Hd  and 1c  are determined, we can calculate 
the effective velocity and the diffusion coefficient from equations (182) and (183), 
 ( )* *

0

1
2

01 1
2

Hd
v

H

c L

d
v t

 




 
− 

 

−
=

  
 + −  

  

 
(233) 

and  
 * 2

0

1
2

01 1
2

Hd
v

H

c L
D

d
v t





 
− 

 

=
  

 + −  
  

. 
(234) 

From these results, the first and the second moments are automatically determined, 
 

( )
1

2

Hd
v

x t t

 
− 

   (235) 

and 
 

( ) ( )

2

1
22 2

2 1 1
2

2

1 2 1
2

H

H
d

v

H

d
v

x t x t Dt
d

v





 
− 

 

  
+ −  

  
+

  
+ −  

  

. (236) 

As you may notice, the time exponents of the moments are always less than unity 
even if the PDF of waiting time has the mean, 1v = . The corresponding transport 
process is thus in a subdiffusive regime. The qualitative interpretation of this result is 
that the attachment of major sites with the fractal dangling networks effectively 
decreases the capability of the random walk to transport along the structure axis. 
 To find the behavior of the other basic properties, our starting point will be 
the calculation of equation (186) for branched lattice models, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 78 

 
( )

( ) ( )

( )

( )

( )

( )

1
*

2

11 * * * *

1 1 1
;

2

mP m z z z dz
i

   


        

−

−
  

= −  − − −    
  

  (237) 

where iLkz e  and we have used 
 

( )( ) ( ) ( ) ( )
1

1
* *1

I-p ; 1k z z
z

      

−
−   

  = − + +   
  

. (238) 

The resulting generating function is (see Appendix 8) 
 

( ) ( ) ( )

( ) ( )( )
( ) ( )( )

1

1

11 11
1

; 0
;

; 0

m

m

z m
P m P

z m


 



+



−





= 

 


 (239) 

where 
( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 1

11 11
2 * *

1

1 4

P P 

    
+ −
= =

− −

, 

( ) ( )
( )

( )( ) ( )( ) ( ) ( )
21 * *

*

1
1 1 4

2
z       

 
−

 
= − − − − 

 
, 

( ) ( )
( )

( )( ) ( )( ) ( ) ( )
21 * *

*

1
1 1 4

2
z       

 
+

 
= − − − − 

 
. 

The result is analogous to that in equation (210).  The only difference is the 
replacement of , ,    by ( ) ( ) ( )* *, ,      respectively. 

For the unbiased DRWs, the asymptotic forms of the generating functions 

( ) ( )1

11P 
−
 and ( ) ( )( )1

z −

  can be written as 

 ( ) ( )
( )( )

1

11
*

1

2 1 0;
P

E


 
−

−
, (240) 

 ( ) ( )( ) ( )( ) ( ) ( )1 1

111 0;z E P  − −

 − − . (241) 

Substituting the terms ( )1 0;E −  of equations (223) and (231), which correspond to 
different kinds of the random walks, into equations (240) and (241), different 

asymptotic behaviors of the resulting generating functions ( ) ( )1

11P 
−
 and ( ) ( )( )1

z −

 , 

and different values of the parameters 2c  and 3c  are obtained as follows: 
 For the unbiased DRWFGs, 
 ( ) ( ) ( )

1
1

2
11

*

1
1

2
P

G
 



−

−
− , (242) 
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 ( ) ( )( ) ( )
1

1
2

*

1
1

2

G
z  



−

−


− , (243) 

 
2

*

1

2
c

G
= , (244) 

 
3 *

1

2

G
c


= . (245) 

 For the unbiased DRWIGs, 
 ( ) ( ) ( )

1
1 11 0 2 2

11 *

1
1

2

Hdc
P  

 

  
− − +  

  
−

− , (246) 

 ( ) ( )( ) ( )
1

11
2 2

*

0

1
1 1 1

2 2

Hd
Hd

z
c


 



 
− + 

 
−

   
− + −  

  
, (247) 

 0
2 *

1

2

c
c

 
= , (248) 

 
3 *

0

1
1 1

2 2

Hd
c

c





  
= − +  

  
. (249) 

As the spectral dimension Hd  of the underlying structure is determined by 
the relation ( ) ( )

( )1 2

11 00; 1 Hd
P c 

− −
− , from equations (242) and (246), it is clear that 

the attachment of major sites with finite-size dangling networks does not have an 
impact on an effective dimensionality to the whole structure but the attachment of 
major sites with fractal dangling networks does. 

It is now a simple matter to calculate the asymptotic values of the 
probabilities of return to the starting site at large times for the unbiased DRWs. From 
equation (194) together with equations (224), (232), (244) and (248), the probabilities 
are therefore, for the unbiased DRWFGs and the unbiased DRWIGs respectively, 
 

( )
2

11
* 0

1
0,

2 1
2

v

t
P t

v t
G 

−

 
 

   − 
 

, (250) 

 
( )

1
2 2

0
11 *

0

1
0,

2 1 1
2 2

Hdv

H

c t
P t

tdv  


 
− + 

  
 

    − +  
  

. (251) 

On the other hand, if the random walk is the biased DRW and the PDF of 
waiting time shows a power-law tail, 0 0v  , then the limit ( )11 0;1P −

−
 is finite, i.e., 

( )
1

* *

11 0;1P  
−

−

−
= − , and 
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( )

( )
11 * *

0

1
0,

1

v

t
P t

tv 

−

 
 

−  −  
. (252) 

According to the inequality of time exponents for these types of random 
walks, the asymptotic behaviors of the probabilities are in different regimes as 
illustrated in Figure 21. The unbiased DRWFG is more likely than the unbiased DRWIG 
to return to the starting site, corresponding to the blue straight line and the green 
region respectively. It is most unlikely that the biased DRW returns to the starting 
site, corresponding to the orange straight line. 
 

 
Figure 21. Different regimes of the probability of return to the starting site after long 
times as characterized by the time exponents. 
 
 Even though the diffusions of the unbiased DRWFG and the unbiased DRWIG 
are in different diffusion regimes, both eventually discover every major site of the 
underlying structure. The truth is revealed by the probabilities ( )11R m  of ever reach 
any major site ,1mx . From the similarity of equations (239) and (210), the probabilities 

( )11R m  are analogous to that in equations (214) – (216) except the single-step 
transition probabilities   and   are replaced by the multi-step transition 

probabilities *  and *  as follows: 
 ( ) * *

11 0 1R  = − − , (253) 

 
( )

( )

* *

11 * * * *

1 ;
0

;
mR m
 

   

 
 = 



, (254) 
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( ) ( )* * * *

11
* *

;
0

1 ;

m

R m
   

 

 
 = 



. (255) 

As you can see, regardless of types of dangling networks, if the random walk is the 

unbiased DRW, * * = , then ( )11 1R m =  for every major site. On the other hand, for 
the biased DRW, * *  , if the considered major site is located in the same direction 

of bias, e.g., 0m   and * *  , the event of reaching that site is certain to happen. 
If the considered major site is located in the opposite direction of bias, e.g., 0m  

and * *  , the probability of reaching that site decreases exponentially as the 
distance from the starting site increases. 
 In spite of certainty of the unbiased DRW reaching every major site, it has 
been proven that the conditional mean first-passage time to those sites is infinite, 
i.e., ( )11 m =  . This is the reason why the conditional mean first-passage time 

( )11 ,m t  to a given major site ,1mx  by certain time t  has been introduced. It is similar 
to the other properties. For the DRWFGs and the DRWIGs, ( )11 ,m t  behave 
differently as follows: From equations (195) and (197), 

for the unbiased DRWFGs, 
 

( )
( )

1 2 *

0
11

*
0

; 0
,

2 2 2 ; 0

v
mvt G t

m t
v t m m




 

−  =  
 

−   

. (256) 

For the unbiased DRWIG, 
 

( )
( )( )
( )( )( )

( )( )1 1 1 2 2 *

0

11
*

0 0

1 1 2 2 2 ; 0
,

2 1 1 2 2 ; 0

Hv d

H

H

vt d mt
m t

c tv d m m




 

− − + − + =  
 

− − +   

. (257) 

It is worth pointing out that the discussion of the conditional mean first-
passage times ( )11 m  and ( )11 ,m t  can also be applied to the biased DRWFGs when 
the considered major site ,1mx  is located in the same direction of bias. In this case, 
the conditional mean first-passage times ( )11 m  and ( )11 ,m t  behave differently 
from that of the unbiased DRWFGs. This can be seen from the finiteness of the mean 
number of steps to reach the consider major site, 
 ( ) ( )11 * *

0
D mG

m
 

 =
−

, (258) 
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which is the essential part of equations (152) and (165) due to ( )( ) ( ) ( )11 11;1
D

F m m− 
= . 

As we have learned, the conditional mean first-passage time ( )11 m  is the 
multiplication of the conditional mean number of steps ( ) ( )11

D
m  and the mean time 

of the PDF of waiting time. Therefore, for 1v = , it can be shown that 
 

( )11 0* *
0

mG
m t

 
 =

−
. (259) 

For 0 1v  , this quantity is divergent, but the conditional mean first-passage time 
( )11 0,m t   to a given major site ,1mx  by large time t  is finite. From equations (165) 

and (258), we have 
 

( )
( )

1

0
11 * *

0

0,
2

v

vtmG t
m t

v t


  

−

 
  

− −  
. (260) 

 Finally, from the important parameters we have found and equations (191) 
and (198), it can be shown that the asymptotic forms of the expected number ( )S t  
of distinct major sites visited after large times are identical to the square roots 

( )2x t  except for a rescaling of coefficients, for DRWFGs and DRWIGs respectively, 

 

( ) ( )

* 2

0

2
; 0

1 2

; 0

v

v

t

v G tS t

t
L










  =  +  






, (261) 
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H
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


 
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 
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 

 
− 

 


 

=      + −   
   


 −  
  

     + −  
  

, (262) 

  
In the previous analysis, we discussed two different kinds of branched lattice 

models, i.e., the DRWFG and the DRWIG. The goal in this section is to determine the 
asymptotic behavior of the basic properties of these models. We found that the 
DRWFG and the DRWIG are in different diffusion regimes. Now it is time to see a 
demonstration of an application of what we have found. In the following section, we 
will talk about a comb model and its generalization. 
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4.3 Sparse comb 
As mentioned in the introduction of this thesis, a comb model was proposed 

as a basic model able to reproduce certain features of transport on fractal medium 
and percolation clusters. There have been many developments on the problem of 
random walks on comb-like structures. Previous studies of the comb model have 
mostly considered the cases that a branch is attached to each site on the backbone 
(see, e.g., Subsection 1.3.3). Although this model is a simple caricature of various 
types of natural branched structures, it does not exhaust the whole variety of cases. 
Therefore, we employ the branched lattice models to study the random walk on 
modified comb structures, in which attached branches are periodically removed (see  

Figure 22). Here, this kind of structures is called a sparse comb and the sparsity 
dependence of the random walk properties is of our interest. 
 

 
Figure 22. A sparse comb structure with major sites in red spheres, minor sites in 
blue and green spheres and the orange arrows showing possible single-step 
transitions of a walker. A dashed line rectangle is illustrated a unit cell. 
 

4.3.1 Model 
A sparse comb consists of the backbone connected with branches at major 

sites. On the backbone, between two nearest major sites, there are 1xN −  minor 
sites while, on branches, there are yN  minor sites. The unit vector x̂  and ŷ  are set 
to point along the backbone and the perpendicular direction, respectively. The 
vectors ˆ

xN x  and ˆ
yN y  define a 2-d rectangle, which is called a unit cell. The unit cell 

thus contains x yN N N= +  different sites. The origin O  is placed at a certain major 
site within a unit cell, labelled the 0 th unit cell. Unit cells and sites within each unit 
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cell are labelled by letters m  and a , respectively. The position of the major site 
within the m th unit cell is thus given by ˆ

xmN x . The relative positions of sites within 
a unit cell to its major site are denoted by 1 2 3, , ,..., Nr r r r  where the vector 1 0r =  is 
for the major site itself and the remaining vectors are for minor sites. Accordingly, the 
position of the a th site in the m th unit cell indicated by the vector ,m ax  may be 
represented as ,

ˆ
m a x ax mN x r= +  where 1, 2,3,...,a N=  or the 2-tuple ( ), ,,m a m ax y . 

Here, the natural number xN  is regarded as the sparsity of the comb. 
The walker walks with nearest neighboring steps with single-step transition 

probabilities as shown in  
Figure 22. At major sites, the walker may step to the right, the left or the up 

neighboring sites with probabilities  ,   and   respectively. For walks in branches 

there is bias towards or away from the backbone depending on whether ( )V
p  is less 

or more than 1 2 . Similarly, walks on the networks connected two nearest major 

sites are biased to the left or the right side depending on whether ( )H
p  is less or 

more than 1 2 . 
 

4.3.2 Results and discussion 
From the discussion in Subsection 1.2.8, the n -step transition probabilities 

( )1
n

p  and ( )1
n

p −  from a certain major site to the nearest right-hand and left-hand 
major sites, given that the walker does not visit any major site during the transition, 

are equal to ( ) ( )( )
1

, 1
H H

x
n

U p N
−

 and ( ) ( )( )
1

, 1
H H

x
n

U q N
−

 respectively. 

Analogously, the n -step transition probability ( )0
n

p  from a certain major site to 
itself, given that the walker does not visit any major site during the transition, is equal 

to ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
11 1

, 1 , 1 ,
H H H H V V

x x x x y
nn n

U q N N U p N N U p N  
−− −

− + − + . Hence, 

we can determine the explicit forms of the transition generating functions as the 
following equations: 
 ( ) ( ) ( )( )* , ; 1

H H

xU p N   =  (263) 

 ( ) ( ) ( )( )* , ; 1
H H

xU q N   =  (264) 
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 ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

, ; 1 , ; 1

, ;

H H H H

x x x x

V V

y

U q N N U p N N

U p N

    

 

 = − + −

+
 (265) 

where ( ) ( )0, ;
H

U p N x  and ( ) ( ), ;
V

U p N   are determined by equations (53) and 

(59) respectively. 
If (i) the length of branches is finite, i.e., yN   , or (ii) the length of branches 

is infinite and the walker is biased towards to the backbone, i.e., yN =   and 
( )

1 2
V

p  , then the model is a DRWFG, i.e., 1Hd =  and 1c G=   , and the term 
G  can be cast into the following form: 
 ( )( ) ( )( ) ( )( )1 , , ,

H H V

x x yG p N p N p N    = + + +  (266) 

where ( ),p N , ( ),p N  and ( ),p N  are determined by equations (57), (58) and 
(60). To determine the parameters 2c  and 3c , we can substitute G  and *  into 
equations (224), (244) and (245). 

It is worth stressing that when yN =  , ( )( )lim ,
y

V

y
N

p N
→

 is evaluated and in 

this case ( )( ) ( )( ), 1 1 2
V V

p p  = − . On the other hand, in the limits of yN    and 
( )

0.5
H

p = , ( )( ) ( )( )1 1 ,
V

x yG N p N  = + + − + , ( )0.5, 1x xN N = −  and 

( )0.5, 1x xN N = − . Furthermore, if the walker is also unbiased in branches, 

( )

( )( )
0.5

lim ,
V

V

y
p

p N
→

 is evaluated using l’Hospital’s rule, and in this case 

( )0.5, 2 1y yN N = − , then ( )( ) ( )1 1 2 1x yG N N  = + + − + − . With that said, 

when the walker walks symmetrically on a sparse comb with finite-size connected 

networks, i.e., 2 1 4  = = = , ( ) ( )
0.5

H V
p p= =  and 1 ,x yN N   , the 

expected number of steps that the walker walks inside connected networks before 

returning to a major site is equal to ( )0.5 2x yN N+ . 

From the previous discussion, it can be shown that if the length of branches 

is infinite and the walker is unbiased on branches, i.e., yN =   and ( )
0.5

V
p = , then 

the model is a DRWIG. Since the dangling networks are 1-d lattices, the generating 
function of the corresponding probability of return to the starting site at certain step 
can be calculated from equation (210) with appropriate parameter associations, 
 ( ) ( )

1 2
21

0; 1P   


−

= −  (267) 
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which gives 
 

0

1

2
c =  and 1Hd = . (268) 

The straightforward procedure here is to substitute 
0c  and 

Hd   into equation (232), 
(248) and (249) in order to determine the important parameters. The results are 
 3 2Hd = , 1 2c = , (269) 

 
2 *

1 1

2 2
c

 
=  and 3 *

1 2

4
c




= . (270) 

Note that the effective dimension of the whole structure is not equal to unity but 
3 2 . This leads to the anomalous transport of the DRWIGs. 

When the length of branches is infinite and the walker is biased away from 

the backbone, i.e., yN =   and ( )
0.5

V
p  , the model is a NDRW. The probability 

that the walker leaves a major site and then it is lost in the connected branch does 
not vanish, i.e., 
 ( ) ( ) ( )( )11 0;1 1

V V
E q p−− = − . (271) 

As mentioned earlier, since after sufficiently long time NDRWs get lost in some 
branch and the averages of the dynamics properties along the backbone are frozen 
at certain constants, we will concentrate on DRWs. 

We now have all the information at hand to determine the basic random 
walk properties. 
 
1. The first and the second moments of the walker location along the backbone 

For the DRWFGs, the first and the second moments of the random walk along 
the backbone obey by equations (227) and (228) with xL N= . The effective velocity 
  and the diffusion coefficient D  can be calculated from equations (225) and (226), 
 ( )

( )

* *

01

x

v

N

v Gt

 


−
=
 +

 (272) 

and 
 

( )

* 2

01

x

v

N
D

v Gt


=
 +

. (273) 
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We find that if the transition probability ( )H
p  is equal to the first magic 

number defined by 
 ( ) ( )

( )( )
1

1 1

1 1 xNH
p  

−
−

 + , (274) 

then the effective velocity vanishes (see Appendix 9). In the case that  = , ( )
1

H
p  is 

equal to 0.5 , and it does not depend on the sparsity 
xN . Hence, to simplify the 

discussion, for this subsection, when the term “unbiased random walk” is used here, 

it will be understood that we refer specifically that  =  and ( )
0.5

H
p = . This also 

implies that * *

xN  = = . 

It can be shown that if the transition probability ( )H
p  is identical to the 

second magic number defined by 
 ( )

2

1
1

2 1

H
p



 



 −
 +  + 

, (275) 

the effective velocity does not vanish, and it does not depend on the sparsity (see 

Appendix 10), i.e., ( ) ( ) ( )( )01 1 vv t   = − +  + . Furthermore, for   , if 
( ) ( )

2

H H
p p , the motion along the backbone is enhanced by increasing the sparsity 
while if ( ) ( )

20.5
H H

p p  , the motion is diminished. Figure 23 (left) demonstrates 
these results. It is similar for   . If ( ) ( )

2

H H
p p , the motion along the backbone is 

enhanced by increasing the sparsity while if ( ) ( )
20.5

H H
p p  , the motion is 

diminished. 
 

  
Figure 23. The sparsity dependence of the effective velocity (left) and the diffusion 
coefficient (right). Solid curves correspond to exact analytical results. Results from 
numerical simulations are depicted with circles. 
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Asymptotically, when the sparsity is increased, the effective velocity and the 
diffusion coefficient of the random walks biased and unbiased along the backbone 

saturate at 
( ) ( )

( ) 01

H H

v

p q

v t

−

 +
 and 

( ) 0

1

2 1 vv t +
 respectively. For 1v = , these are the values 

corresponding to a perfect 1-d lattice model with associating appropriate parameters 
(see equations (204) and (205)). These are illustrated in Figure 23 where we have 

used 0.4 = , 0.1 = , ( )
0.25

V
p = , 5yN = , 1v =  and 

0 1t =  (left), and 0.4 = = , 
( )

0.5
V

p = , 1v =  and 
0 1t =  (right). 

As we said, when ( )
0.5

V
p =  and yN =  , the random walk is a DRWIG. From 

equations (233) - (236) with the result (269), we find that, for large time t , 
 

( )
( )
( )

2* *

02 1 2

v

xN t
x t

tv

 



−  
 

 +  
 (276) 

and 
 ( )

( )
( )

( )

22
22

0

2 1 2 2

1 1 2

v

x
v N t

x x t
v v t





 +  
+  

 +  +  
. (277) 

It should be remarked that the exponent is halved comparing with the one of the 
DRWFGs. This is because, for the DRWIGs, the existence of connected branches 
“strongly” affects the dynamics of random walks along the backbone. Although the 
transport process is “slower” than usual, the one of the DRWFGs, the walker is still 
able to diffuse along the backbone. The second moment along the backbone 
corresponds to subdiffusion when the walker is unbiased along the backbone. 
Interestingly, in the limit of the biased random walk, the prefactor of the second 
moment is the function of square of the sparsity for large sparsity while, in the limit 
of the unbiased random walk, the prefactor is proportional to the sparsity instead. 

For the NDRWs, ( )
0.5

V
p   and yN =  , from equations (111), (112) and (271), 

we find that the first and the second moments can be estimated from the following 
equations: 
 

( )
( )

( ) ( ) ( )( )

* *

x

V V V

N
x t

p q p

 



−

−
 (278) 

and 
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( )

( )
( ) ( ) ( )( )

( )
( ) ( ) ( )( )

2

2 * * * *

2 2
x x

V V V V V V

N N
x t

p q p p q p

   

 

 
+ − +

 
− − 

 

. (279) 

As you can see, there is no time t  appearing on the righthand side of the equations. 
This can be interpreted that at large times the walker is lost in some branches and 
stochastic localization occurs [62]. 

In Figure 24, we compare the analytical results of the first and the second 
moments with numerical simulations for the random walks on sparse combs with 
infinite length branches, yN =  . As you can see, they display the three different 

transport behaviors depending on the degrees of bias on branches ( )V
p . 

When the sparsity is unity or 1xN = , the corresponding model is a simple 
comb model. If the random walk is unbiased along the backbone, i.e., 1 4 = =  
and 1 2 = , we find that our analytical results are in agreement with the results 
found in [34], which are derived by the different formalism, i.e., the generalized 
master equation combined with the method of Kahng and Redner [63]. 
 

 
Figure 24. The first and the second moments of random walks unbiased (left) with 

1 4 = =  and ( )
0.5

H
p = , and biased (right) with 0.3 = , 0.1 = , ( )

0.75
H

p =  on 
the backbone with 5xN =  and yN =   for three different values of 

( )
0.25,0.5,0.75

V
p = . The exponent v  of the PDF of waiting time is equal to 0.7 . 
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2. The probability of return to the starting site 

For the case that the value of ( )( )
1

11 0;1P
−

−  is not zero, e.g., biased DRWs and 

NDRWs, the probability ( )11 0,P t  of return to the starting site after large time t  can 

be described by equation (141). The value of ( )( )
1

11 0;1P
−

−  can be calculated from 

equation (239), respectively, 
 ( )( )

1
* *

11 0;1P  
−

− = − , (280) 

 
( )( )

( )

( )

2

1
* * * *

11 0;1 1 4
V

V

q
P

p
    

−
−

  
= + + − −    

  

. (281) 

For unbiased DRWFGs, the asymptotic behavior of ( )11 0,P t  obeys equation 
(250). In the limit of large sparsity, its prefactor approaches the one for a perfect 1-d 

lattice, i.e., 
( )

2

0

2 2 1 2

vt

v −
, when 1v = . On the other hand, for unbiased DRWIGs, 

from the result (268) together with equation (251), it leads to 
 

( )
( )

3 4

11

0

1
0,

1 3 4 4 2

xN t
P t

v t

−

 
 

 −  
. (282) 

For large sparsity, this result is in contrast with the result of the DRWFGs because the 
prefactor in equation (282) does not saturate at any constant, but it is proportional 
to the square root of the sparsity. 
 

 
Figure 25. The graphs of the asymptotic behaviors of the probability of return to the 
starting site at large time t . Lines correspond to results given by equations (250), 
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(251) and (141) for ( )
0.45

V
p =  (red), ( )

0.5
V

p =  (green) and ( )
0.55

V
p =  (blue) 

respectively. Symbols correspond to results from numerical simulations. 
The verification of the analytical results is confirmed by the numerical results 

shown in Figure 25. The numerical results were obtained by using 0.1 = = , 
( )

0.5
H

p = , 5xN = , yN =   and 0.7v = . According to the infinity of length of 
branches, the probability of return to the starting site also displays the three different 

behaviors depending on the value of ( )V
p . 

 
3. The probability of ever reaching a given major site 

For DRWs, as we have known, the probability of ever reaching the starting site 
obeys equation (253). For other major sites, the probabilities of ever reaching those 
sites obey equations (254) and (255). In sparse comb models, we find that if the 

transition probability ( )H
p  is equal to the third magic number defined by 

 ( )
3

1

1

H
p

 


+
, (283) 

then the sparsity has no impact on the probability of ever reaching the starting site. 
This is because the term * * −  is independent of the sparsity (see Appendix 11), 
i.e., * *   − = − . It is analogous to the effective velocity  . For   , if 

( ) ( )
3

H H
p p , the walk moving away from the starting site along the backbone is 
enhanced by increasing the sparsity while if ( ) ( )

30.5
H H

p p  , the walk is diminished. 
It is similar for   . We need just switch the inequality signs. Figure 26 
demonstrates these results. 
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Figure 26. The sparsity dependence of * * −  with using 0.3 = , 0.3 = , 
( )

0.25
V

p =  and 5yN = . The numerical results (circles) fit by using equations (263) 
and (264). 
In addition, the below equation shows the asymptotic values of * * −  as 

xN →  
for ( ) ( )

3

H H
p p , 

 ( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )

* *

0.5

0.5

0.5

H H H H

H

x

H H H H

p q p p

N p

p q q p



   



 − 



− − =


− 


. (284) 

 
4. The conditional mean first-passage time to a given major site 

For given the PDF of waiting time with finite mean time, 1v = , the 

conditional mean first-passage time ( )11 m  to a given major site ,1mx  is determined 

by the conditional mean number ( ) ( ) ( )( ) ( )11 11 11;1
D

m F m R m   of steps that the 
walker takes before visiting that site for the first time. For the sparse comb models, 
since the explicit forms of the transition generating functions are shown in equations 

(263) through (265), ( ) ( )11

D
m  can be calculated by using equations (92), (239), (253) – 

(255). In general, the resulting expression is nontrivial. However, for biased DRWFGs, 

to calculate ( )11 m  which ,1mx  is located in the same direction of bias, we only 

need to calculate G  and * * − , and plug them into equation (259). 

As we have learned, in the case of the unbiased DRWFGs, the conditional 
mean first-passage time to a certain major site is infinite but the event that the 
walker eventually reaches that major site is certain. Thus, for unbiased DRWFGs, we 

can calculate the conditional mean first passage time ( )11 ,m t  to a given major site 
by large time t  from equation (256). 

For unbiased DRWIGs, the asymptotic forms of ( )11 ,m t  can be expressed by 
using equation (257) together with (268), 
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( )
( )

1 4

0
11

0

0

,
2 4 2 2

0
2

v

x

x

m
Nvt t

m t
v t m N

m








−


=

  
 

 −   




. (285) 

It is remarkable that the coefficients of ( )11 0, t  and ( )11 0,m t   depend inversely 
on the square root of the sparsity. 
 
5. The expected number of distinct major sites visited 

For DRWFGs, the expected number ( )S t  of distinct major sites visited after 
long time t  can be calculated by equation (261) with xL N= . The effective velocity 
 , the limit *  and the mean steps G  can be calculated by using equations (263) 
through (265). For large sparsity, 1v =  and associating appropriate parameters, the 
prefactors of the result are identical to those for a perfect 1-d lattice except for the 
division by the sparsity xN , 
 

( )
( )

( ) ( )

( )

2

0

0

2
; 0

1 2

; 0
1

v

x

vH H

x

t

N v t
S t

p q t

N v t





  
 = 

 +  


  −
 

 +  

. (286) 

For the DRWIGs, we can express the asymptotic form of ( )S t  by using 
equations (262) and (268), 
 

( )
( )

( )

4

* *

0

2* *

* *

0

1 2 2
; 0

1 4

; 0
2 1 2

v

x

v

t

v N t
S t

t

tv


 



 
 



  
 − = 
 +  


−  

−  
 +  

. (287) 

On one hand, for * * 0 − =  and large sparsity, its coefficient is inversely 

proportional to the square root of the sparsity. On the other hand, for * * 0 − =  

and large sparsity, its coefficient may be independent of or inversely proportional to 
the sparsity (see equation (284)). 

For NDRWs, if equations (271) and (281) are plugged into equation (174), after 

rearranging terms, we will find that ( )S t  can be estimated as 
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( )

( ) ( ) ( )( )( )
( ) ( )

2
* * * *1 4

V V

V V

p q V p
S t

p q

    



+ + − −

−
 (288) 

which is independent of time t . This is consistent with the asymptotic behavior of 
the first and the second moments, the walker does not diffuse along the backbone 
and discover any new major sites at long times. 
 
 
6. Discussion 

We were able to show the closed-form expression of the generating function 

( )11 ;P m   of the probability ( )11 n
P m  that the walker is found at a given major site 

,1mx  at the n th step. For the random walker walking symmetrically on non-sparse 
combs with infinite-length branches, i.e., 1xN =  and yN =  , our result is identical 
to the 2-d comb result of P. Illien and O. B´enichou (see Eq. (31) in [7]). 

For the random walk on sparse combs, we found that if the transition 

probability ( )H
p  is equal to ( ) ( )

( )( )
1

1 1

1 1 xNH
p  

−
−

 + , the random walk is unbiased 

along the backbone, i.e., 0 = . In the limit of  = , ( )
1

H
p  is equal to 0.5  

independent of the sparsity xN . Therefore, to simplify the discussion, in this 

subsection, the term “unbiased random walk” is meant that  =  and ( )
0.5

H
p = . 

For the unbiased DRWFGs, we found that the considered properties depend 
on the sparsity xN  monotonically. For the biased DRWFGs, the monotonicity is 

determined by the effective velocity 
( )
( )

* *

01

x

v

N

v Gt

 


−
=
 +

 (and the degrees of bias 

* * − ). We found that if the   ( * * − ) does not depend on the sparsity, i.e., 

( ) ( ) ( )( )01 1 vv t   = − +  +  ( * *   − = − ), then the term ( )H
p  is identical 

to ( )
2

1
1

2 1

H
p



 



 −
 +  + 

 ( ( )
3

1

1

H
p

 


+
). Furthermore, for   , if  ( ) ( )

2

H H
p p       

( ( )
3

H
p ), the value of   ( * * − ) is monotonically increased as the sparsity is 

increased while if ( ) ( )
20.5

H H
p p   ( ( )

3

H
p ), the value is monotonically decrease as 

the sparsity is increased. It is similar for   . We need just switch the inequality 
signs. Figure 27 demonstrates the example surfaces of ( )

1

H
p , ( )

2

H
p  and ( )

3

H
p  in green, 
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red and blue respectively, by using 5xN =  and 5 = . For the DRWFGs with 1v = , 
in the limit of large sparsity, the random walk properties are independent of the 
sparsity and identical to those for a 1-d lattice. 
 

 
Figure 27. The surfaces of three magic numbers ( )

1

H
p , ( )

2

H
p  and ( )

3

H
p . 

 
For the DRWIGs, the existence of branches “strongly” affects the dynamics of 

random walks along the backbone. Although the transport process is “slower” than 
usual, the one of the DRWFGs, the walker is still able to diffuse along the backbone. 
This can be deduced from the changes of the exponents of the basic statistical 
properties comparing with those for the DRWFGs. For instance, for the second 
moment of the unbiased random walk, the exponent is halved, i.e., 

( )
( )

2

2

0

2

1 2

v

xN t
x t

v t





 
 

 +  
 which corresponds to the well-known result of 

subdiffusive transport. In the case of the DRWIGs, the considered properties still 
monotonically depend on the sparsity, but the results are not identical to those for a 
perfect 1-d lattice as the sparsity is large. For the unbiased random walk on a non-
sparse comb, i.e., 1xN = , our analytical results of the second moment are in 
agreement with the results found in [34], which are derived by the different 
formalism, i.e., the generalized master equation combined with the method of Kahng 
and Redner [63]. 
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For the NDRWs, the length of branches is infinite, and the walker is biased 
outward from the backbone. After long times the walker is lost in some branches 
and the averages of the dynamics properties along the backbone are frozen. 
 
4.4 Conclusion and discussion 

In this chapter, we employed the GFF to obtain the asymptotic behavior of 
basic statistical properties of the separable continuous-time random walks on 
branched lattices, consisting of periodically repeated unit cells with the following 
properties: in the unit cell, (i) there exists one major site, which is connected to its 
equivalent sites in neighboring unit cells by a certain kind of network; and (ii) there 
may be a dangling network attached to the major site. The crux of the formalism for 
this model is to focus attention on the generating functions ( )*  , ( )*   and 

( )  of the multi-step transition probabilities that the walker leaves a major site 
and enters connected networks before arriving at the right, the left nearest major 
sites and the commencing major site, respectively, without visiting other major sites.  

The main results are as the follows. For the branched lattices with finite-size 
networks connected to major sites and the PDF of waiting time possessing the mean, 
we find that the asymptotic forms of the basic random walk properties are identical 
to those for a perfect 1-d lattice except for a rescaling of coefficients. On the other 
hand, for the branched lattices with fractal dangling networks attached to major 
sites, if the spectral dimension Hd   of the attached fractals is in the interval ( )0, 2 , 

then the spectral dimension of the whole structure will be 1
2

H
H

d
d


= + . 

Furthermore, the capability of the random walk to transport along the structure axis 
decreases as the spectral dimension of the attached fractals increases. 

If the unit cell of a branched structure contains a major site, which is 
connected to its equivalent sites by a 1-d lattice with finite length xN , and a 
dangling 1-d lattice is attached to the major site. Here, the structure is named the 
sparse comb and the length xN  is regarded as the sparsity of the structure. The 
steps along the branches and the structure axis may be biased. It was shown that if 
the length of branches is infinite, then the transport process displays the three 
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different behaviors depending on the bias probability ( )V
p  on branches. Moreover, it 

was also demonstrated that a simple relation appears between an exponent 
0 1v   characterizing the asymptotic behavior of the Laplace transform of the PDF 

of waiting time, ( ) ( )*

01
v

s t s − , and the basic statistical properties. 
We also found that the effective velocity   and the degree of bias * * −  

along the backbone depend on the sparsity 
xN  monotonically. In the situations that 

these quantities vanish, the corresponding model is called the random walk 
“unbiased” along the backbone. It was found that when the random walk is 

unbiased, it does not have to walk symmetrically, i.e.,    and ( )
0.5

H
p   where 

( )H
p  is defined as the transition probability to the neighboring right site in a finite 1-d 
lattice connected two nearest major sites,   and   are defined respectively as the 
transition probabilities from a major site to the right and the left neighboring sites. 

This fact led us to the interesting findings. For given   , there exists a 
magic number ( )

1 0.5
H

p   such that if ( ) ( )
1

H H
p p=  then the random walk is unbiased. 

On the other hand, for the biased diffusive random walk with the finite mean 

number of steps returning to major sites, it could be shown that if ( )H
p  is equal to 

one of the two magic numbers, called ( )
2

H
p  and ( )

3

H
p , which are also the functions of 

the transition probabilities, then certain random walk properties are independent of 
the sparsity xN . The diagram in Fig. 10 demonstrates the surfaces corresponding to 
the magic numbers. 

The concrete models have been so far analyzed based on the assumption 
that, in each unit cell, there is only one major site. Therefore, the rest of this work is 
devoted to generalizing the analysis to other solvable multi major-site models, i.e., 
ladder models and cylindrical models respectively. 
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5 

Random walks on ladder lattices 
 

This chapter is about a random walk description of the non-deterministic 
transport of a particle on ladder-like structures. A ladder structure we propose here 
is a quasi-1d infinite structure, consisting of two parallel rails (1-d infinite lattices) 
periodically connected to each other with rungs (1-d finite lattices). The walker steps 
along these different components of the ladder may be biased differently. We 
employ the GFF to analyze the basic statistical properties of this random walk 
model. As compared with the DRWFGs on branched lattices, we find that although 
the additional structure does not affect the exponents, it does have a great impact 
on the prefactors. 
 
5.1 Model 
 Unlike the previously considered structures, a “ladder” is a quasi-1d infinite 
structure whose each unit cell contains two different major sites as shown in Figure 
28. In this chapter, for convenience, let us distinguish these two major sites by the 
plus-minus sign instead of the numbers. In each unit cell, the +  major site is 
connected to the −  major site with a yN -length 1-d lattice, called a “rung”, and the 
  major site is connected to its nearest   major sites in the next unit cell with a 

xN -length 1-d lattice. There are thus 2x yN N N= + +  different sites in each unit 
cell. The lines passing through all   major sites are called the “   rail”. For sake of 
simplicity, the distance between neighboring sites is set to be unity. 

We employ here the same coordinate system of the previous chapters. The 
origin O  is placed at a certain major site on the +  rail within a unit cell, labelled the 
0 th unit cell. Unit cells and sites within each unit cell are labelled by letters m  and 
a , respectively. The position of the +  major site within the m th unit cell is thus 
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given by ( ) ˆ1xm N x+ . The relative positions of sites within a unit cell to the +  major 
site are denoted by 1 2 3, , , , ,...,

x yN Nr r r r r r+ − +  where the vectors 0r+ =  and 

( ) ˆ1yr N y− = +  are respectively for the major site itself and the other major site, and 

the remaining vectors are for minor sites. Accordingly, the position of the a th site in 
the m th unit cell indicated by the vector ,m ax  may be represented as 

( ),
ˆ1m a x ax m N x r= + +  where ,1,2,3,..., x ya N N=  +  or ( ), ,,m a m ax y . 

A walker located at the +  major site may jump to the right, left, or up 

neighboring sites with probabilities + ,  +  and 1  + + += − −  respectively. 
Similarly, the walker located at the −  major site may jump to the right, left, or down 

neighboring sites with probabilities − ,  −  and 1  − − −= − −  respectively. 
However, when the walker is at a minor site on rungs, it can jump to the up or down 

neighboring sites with probabilities 
( )V

p  and 
( ) ( )

1
V V

q p= −  respectively. If the walker 
is at the minor site on the   rail, it may jump to the right and left neighboring sites 

with probabilities 
( )H

p  and 
( ) ( )

1
H H

q p = −  respectively. In addition, between 
successive steps, the walker waits for a random time t  distributed according to a 

general probability distribution function ( )t  whose the Laplace transform is 

asymptotically ( ) ( )*

01
v

s t s −  where 0 0t   and 0 1v  . 
 

 
Figure 28. A ladder structure with major sites (red spheres), minor sites (blue 
spheres) and the orange arrows showing possible transitions. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 100 

5.2 General cases 
 Before turning to our specific cases of ladder models, we set down in the 
present section certain relationship of general validity for systems of this type. Let us 
first consider the matrix ( )p ;k  . Since the connected network between two nearest 
major sites is a finite 1-d lattice, it is not difficult to adopt the results of Subsection 
1.2.8 to the generating functions ( );abp m   of the n -step transition probabilities 

( )ab n
p m  from a major site 0,bx  to a major site ,m ax . For convenience of further 
analysis, let us define certain functions as the follows: For ,a b =   and 1,0,1m = − , 

( )
( ) ( )( )

( )

21 1 4 1
;

2

ab ab

ab

ab

m m
m

m

    
  

 

 − −
  

where ( )

( )

( )

( )

( )

, 1,

1 , 1,

, 0, ,

1 , 0, ,

H

a

H

a

ab V

V

p m a b

p m a b
m

p m a b

p m a b




 





 = =

− = − =

 
= = − = +


− = = + = −

, 

( )

, 1,

, 1,

, 0,

a

ab a

b

m a b

m m a b

m a b

 

   

 

= =


 = − =
 = = −

 and 
1 ,

1 ,

x

ab

y

N a b
N

N a b

+ =
 

+ = −
. 

From these definitions, if the destination major site and the commencing major site 

are different, i.e., ( ) ( ) ( ) ( ) , , 1, , , 1, , , 0, ,m a b  −      , we have 
 

( ) ( )
( ) ( )

( ) ( )

; ;
;

; ;ab ab

ab ab

ab ab N N

ab ab

m m
p m m

m m

     
   

     
+ −

+ −

 −
=  

 − 

. (289) 

Vice versa, if the destination major site and the commencing major site are the same, 

i.e., ( ) ( ) , , 0, ,m a b    , we have 
 

( ) ( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

1 1

1 1

1 1

1; 1;
0; 1

1; 1;

1; 1;
1

1; 1;

0; 0;
0

0; 0;

x x

x x

x x

x x

y y

y y

N N

bb bb

bb bb N N

bb bb

N N

bb bb

bb N N

bb bb

N N

bb bb

bb N N

bb bb

p
   

 
   

   


   

   


   

+ −

+ +

+ −

+ −

+ +

+ −

− −+ −
− + +

− −+ −

 − − −
= + 

 − − − 

 −
− + 

 − 

 −
 
 − 

. (290) 

Afterwards, the matrix ( )p ;k   can be expressed as 
 

( )
( ) ( )

( ) ( )

; ;
p ;

; ;

p k p k
k

p k p k

 


 

++ +−

−+ −−

 
=  
 

 (291) 
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where 

( ) ( ) ( ) ( ) ( ) ( )1 1* *; x xi N k i N k
p k e e      

− + +

++ + + + + + , 

( ) ( ) ( ) ( ) ( ) ( )1 1* *; x xi N k i N k
p k e e      

− + +

−− − − − + + , 

( ) ( )*;p k   +− −  and ( ) ( )*;p k   −+ + . 
To unclutter the notation, we have used ( )*  , ( )*  , ( )*   and ( )   as short-
hand notations for ( )1;p  , ( )1;p  − , ( )0;p   and ( )0;p   respectively. 

From fundamentals of linear algebra, the eigenfunctions ( );E k   and the 
eigenvector ( )π ;k   of the matrix ( )p ;k   can be found from 
 

( ) ( ) ( )( ) ( )
21

; Tr p ; Tr p ; 4det p ;
2

E k k k k   

 
=  −           

 
 (292) 

where ( )Tr p ;k     is the sum of elements on the diagonal of the matrix ( )p ;k  , 

 
( )

( ) ( )

( )

( ) ( )

;1
π ;

; ;; ;

p k
k

E k p kp k p k




  

+−

+ +++− −+

 
=  

−+  
. (293) 

It is worth stressing that, after taking limit, we obtain ( )0;1 1E −

+ =  and 

 *

* * *

1 

   

+ −

− + − +

  
=   

+   
. (294) 

This equation implies that, regardless of minor sites, the probability    of finding the 
walker at the   major site at large times equals to the multi-step transition 

probability *  from the  major site to the   major site divided by * * + −+ . 
From the finiteness of the size of the connected networks, it can be shown 

that the random walker is a DRWFG, 
 ( ) ( )1 0; 1E G −− − , (295) 

which gives 
 1c G=  and 1Hd = , (296) 
where 
 ( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

, 1 , 1 , 1

, 1 , 1 , 1 1

H H V

x x y

H H V

x x y

G p N p N p N

p N p N p N

  

  

      

      

+ + + + + +

− − − − − −

= + + + + + +

+ + + + + +

. (297) 

As you can see, the spectral dimension of ladders is unity. Therefore, for the random 
walk on ladders, if the PDF of waiting time possessing the mean, the normal 
transport should be expected. 
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 Let us now calculate the effective velocity   and the diffusion coefficient D  

by substituting the entries ( );1abp k −  into equations (182) and (183). We find that 

 ( )

( )

* *

0

1

1

x

v

N

v Gt

 


+ −
=

 +
 (298) 

and 
 ( )

( )

2 *

0

1

1

x

v

N
D

v Gt

+
=

 +
 (299) 

where, for any variable    associating with the   rail,     − − + + +  is denoted 
as the weighted average of that variable. 

To a certain extent, the finding results of random walks on ladders may be 
used to investigate transport properties of models with media possessing two 
diffusivities. Therefore, the contribution of these diffusivities to the effective 
diffusivity should be of interest. Figure 29 illustrates the contribution of the single-
step transition probabilities on the +  rail and the −  rail to the quantities relevant to 

the diffusive properties of the random walk, i.e., * * − , G ,   and D . 

 

  
 

  
Figure 29. The surfaces of four quantities * * − , G ,   and D  for the case that 

1v = , 0 1t =  and 5x yN N= = . With the single-step transition probabilities on the +  
rail fixed, i.e., 0.5+ = , ( )

0.6
H

p+ = , the probabilities on the −  rail, i.e., % − + , 
( ) ( )

%
H H

p p− + , and ( )V
p , are varied where %  and ( )V

p  are in the intervals 

( )0.25,1.25  and ( )0,1  respectively. 
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 As you can see, when the value of ( )V
p  is intermediate, the single-step 

transition probabilities on both rails have an impact on these four quantities. On the 

other hand, if the value of ( )V
p  is close to 0  or 1, the localized transition on the 

corresponding rail dominates the four quantities. 
 After determining the important parameters, i.e., 

Hd ,   and D , we have the 
following relations, which permit us to calculate the first and the second moments 
of the walker location along the rails at large times; 
 ( ) vx t t  (300) 
and 
 

( )
( )

( )
( )

2
22

2 1
2

1 2

v
v

x t x t Dt
v





+
+

+
. (301) 

To verify our analytical results, the numerical simulations of the unbiased 
random walks on the ladder are performed by varying values of the diffusion 
coefficient and the characteristic exponent of the PDF of waiting time, i.e., 

0.7,0.75,0.8v = . The numerical results are shown in Figure 30. They are plotted by 

varying t  with abscissa log( )t  and ordinate ( )( )2log 2x t D . As expected, the 

analytical results have good agreements with the numerical results, the plots of the 
same value of v  fall on the same curve. 
 

 
Figure 30. The scaling numerical results of the second moments of the unbiased 
random walks, which are represented with symbols. Solid curves correspond to exact 
analytical results. 
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In view of the GFF, to obtain the other basic properties, the explicit form of 
the generating function ( );abP m   is desired. However, the problem of finding 

( );abP m   by equation (186) with the matrix ( )p ;k   determined by equation (291) is 
relevant to solving a quartic equation which is very complicated. More precisely, we 
need to find the roots z  of the equation ( )( )det I-p ; 0k z   =   or 

 ( )( )( ) ( )( )( ) ( )( ) ( )( )1 ; 1 ; ; ; 0p k z p k z p k z p k z   ++ −− −+ +−− − − =  (302) 

where ( )1xi N k
z e

+
 .  

Accordingly, we may make progress to the extent that we can overcome this 
complication. What follows, we will consider two special cases which the quartic 
equation problem is reduced to the quadratic equation. As we will show next, in 
both cases, the resulting generating functions ( );abP m   can be expressed in the form 
 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 2

;
m m

ab ab abP m z P z P      
= + . (303) 

 
5.3 Horizontally symmetrical random walks 

First, we consider the horizontally symmetrical random walks, in the sense that 
the single-transition probabilities are satisfied the following conditions: 
   + − = ,   + − = , ( ) ( ) ( )H H H

p p p+ − =  and ( ) 1

2

V
p = . (304) 

This implies that ( ) ( ) ( )* * *     + − = , ( ) ( ) ( )* * *     + − = , ( ) ( ) ( )* * *     + − = , 

( ) ( ) ( )     + − =  which yield 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1* *; ; x xi N k i N k
p k p k e e       

− + +

++ −−= = + + , 

( ) ( ) ( )*; ;p k p k   −+ +−= = . 
In words, the transitions on both rails are identical. From this identity, for 
convenience, let us hereafter omit the plus-minus sign for the single-step transition 
probabilities and the corresponding generating functions. 

As a result of the restriction in equation (304), equation (302) becomes 
 ( ) ( ) ( )( )( ) ( )( )

2 2
1 * * *1 0z z       −− + + − =  (305) 

and the inverse ( )( )
1

I-p ;k z 
−

 
   can be written as 

 

( )( )

( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )( ) ( )( )

1

2 2
1 * * *

; ;

; ;
I-p ;

1

p k z p k z

p k z p k z
k z

z z

 

 


       

++ −+

− −+ ++

−

 −
 
−    = 

− + + −
. (306) 
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By substituting this inverse into equation (186) and using the residue theorem (see 
Appendix 12), we arrive at the result 
 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 2

;
m m

ab ab abP m z P z P     = +  (307) 

where 
 ( ) ( )

( ) ( )

( )
1

*2
z

   


 

− −

−

−
= , (308) 

 ( ) ( )
( ) ( )

( )
2

*2
z

   


 

+ +

−

−
=  (309) 

with ( ) ( )
( )

( )
( ) ( )

*

1 1

*
z z

 
 

 
+ −= , ( ) ( )

( )

( )
( ) ( )

*

2 2

*
z z

 
 

 
+ −= , ( ) ( ) ( )1    

  −   and 

( ) ( ) ( ) ( )2 4       


 

  − , and 

 ( ) ( )
( )

1 1

2
P 

 
++

−

= , (310) 

 ( ) ( )
( )

2 1

2
P 

 
++

+

=  (311) 

with ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
P P P P   ++ +− −− −+= = =  and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

P P P P   −+ +− −− ++= = − = − . For 
the convenience of calculation, let us show the limit values of certain generating 

functions as the follows; 2     

+ = + + ,    

− = + ,    

− = −  and 

( ) ( )( )
2

2           

+ = − + + + . 

We now have all the information at hand to determine the remaining basic 
properties of the random walk. However, before moving on, let us emphasize here 
that, for the rest of this section, we will concentrate solely on the biased random 
walk because the unbiased random walk is the special case of the other case which 
we will discuss in the next section. 

As the first basic property of the random walk for a given major site, we 
consider the probability ( )0,bbP t  of return to the starting site 0,bx . Its asymptotic 
form can be determined by substituting the limit ( )0;1bbP −  of equation (307) into 

equation (188), for 0 1v  , 
 

( )
( ) ( )( ) 0

1
0,

1 1 0

v

bb

bb

t
P t

tv R

−

 
 

− −  
 (312) 

where ( ) ( )0 1 1 0;1bb bbR P −= −  or 
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 ( )0 1 2bbR − +

− +

 
= −

 +
. (313) 

Recall that ( )0bbR  is the probability of ever return to the starting major site. For the 

biased random walk which implies 0  −  , it can be shown that ( )0bbR  cannot 

equal to unity. Moreover, as the degree of bias   −  increases, the event of ever 

return to the starting major site is less likely to happen, in which the value of the 

prefactor of ( )0,bbP t  also decreases. 
 Unlike an unrestricted 1-d lattice and branched lattices, ladders possess two 
primary axes, i.e., the +  and the −  rails. Therefore, although the considered major 
site is located in the same direction of bias, e.g., 0m   and 0  −  , intuitively the 
event of reaching that major site is not certain. This statement can be proved by 

considering the probability of ever reach ( )abR m  for 0m  . According to equations 
(189) and (307), we have 
 ( ) ( )( ) ( )( )1 2

m m

abR zm z+ −

−



+



− +


 

=
 +  +

 (314) 

where the use of color has been employed to reduce confusion for the reader. The 
red plus (minus) sign is selected when a b=  ( a b ), and the blue plus (minus) sign 
is selected when 0m   ( 0m ). This worth pointing out that, from equations (308) 

and (309), for 0  −  , if 0m  , then ( )1
1z+ =  and ( )2

1z+  , while, if 0m , then 
( ) ( )1 2

, 1z z− −  . Clearly, the analogous statement can also be made about 0  −  . 
Consequently, for the case that the considered major site is located in the same 
direction of bias, equation (314) becomes 
 ( ) ( )( )2

m

abR m z
+


+ −

+ − −


 

=
 +  +

 (315) 

which is always less than unity. Asymptotically, for 0m , this equation reduces to 
 ( )abR m +

+ −



 +

. (316) 

In addition, for the case that the considered major site is located in the opposite 
direction of bias, it can be shown that 
 ( ) 0abR m  . (317) 
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 The following figures illustrate the changes of the probabilities ( )R m++  under 

different conditions. The left figure shows the ( )H
p  and 

xN  dependence of the 
probability ( )0R++  of eventually return to the starting site.  Interestingly, at the short 

length 
xN , the value of ( )H

p  contributed to the peak of ( )0R++  is not equal to 0.5

. However, when the length 
xN  is increased, the value of ( )H

p  approaches 0.5 . 
The right figure illustrates the accuracy of the analytical results and the 

approximations. The blue and the red solid curves correspond to the analytical 
results for ( )R m++  and ( )R m−+  respectively, and the green solid curve corresponds 
to the approximations. Results from numerical simulations are depicted with circles. 
 

   
Figure 31. Illustrations of the changes of the probabilities ( )abR m  under different 
conditions. For both figures, the condition that 0.4 = , 0.2 = , 5yN = , 1v =  and 

0 1t =  was used. For the left figure, the values of xN  and ( )H
p  are varied in the 

intervals  1,5  and ( )0,1  respectively. For the right figure, these values are fixed, i.e., 

5xN =  and ( )
0.7

H
p = . 

 
For the cases that the PDF of waiting time possessing the mean, i.e., 1v = , to 

make the description of the event of reach a given major more complete, the 

conditional mean first-passage time ( )ab m  to that site should be taken into 

account. The explicit form of ( )ab m  can be obtained by substituting equation (307) 
into equation (190) followed with lengthy rearrangement, 
 ( ) ( )( )

( )

2

2 2

0

1 00

2 0

bb
R

t R

 ++ − +

++ − +

−     
= + 

  
 (318) 

and 
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 ( ) ( )

( )
( )( )

( )

( )
( )

0

0 1 0 0
0

1 0

ab aa aa

ab ab

ab aa

m R R
P m

t R m R




 − = −
−

 (319) 

where 
 

( )( )
( )( ) ( )

( )( ) ( )

1 *

*

1 *

*

2

2

m

m

ab

z C
P m

C

z C
m

C

m
−− −

− − − −

−− −

− − −





−

  
  −   = − +    −   

  

  
  −  

− +    −   
 





 (320) 

with ( )
( )

( )

*

*

*

; 0
;

; 0

m
C m

m

 


 

 
 


. 

The complex form of ( )0ab m   in equation (319) is reduced to a more 
compact form when the considered major site is in the same direction of bias and far 

from the starting site, i.e., 0m , 
 

( )
( )*

0*ab

C
m m t

C
 − −

− −

 
  − 

 −
  − 
 

. (321) 

As you can see, although the conditional mean time is proportional to the 
“distance” from the starting major site to the considered major site, it is not in the 
form of the distance divided by the absolute value of the effective velocity, like the 
previous models. 

Let us end this section by considering the expected number ( )S t  of distinct 
major sites visited. Aside from the previous basic properties for a given major site, the 
expected number ( )S t  is also governed by the probability ( )0R++  of ever return to 
the starting site. This can be seen from the asymptotic form of ( )S t  which can be 
obtained from equation (191) with 2MN = , 1 2 = , 1c G= , 1Hd = , and 

( ) ( )1 0;1 1 0P R−

++ ++= − , 

 
( )

( )

( ) 0

1 0

1

v
R t

S t
G v t

++−  
 

+  
. (322) 

Figure 32 shows that the analytical results have a good agreement with the 
numerical results. The numerical simulations are performed for different conditions 
and the characteristic exponent of the PDF of waiting time, i.e., 0.7,0.75,0.8v = . The 
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numerical results, which are represented by symbols, are plotted by varying t  with 

abscissa log( )t  and ordinate ( )

0

log
S t

S

 
 
 

 where ( )

( )
0

0

1 0

1 v

R
S

G v t

++−


 +
. Clearly, the 

plots of the same value of v  fall on the same curve. 
 

 
Figure 32. The scaling numerical results of the expected number ( )S t , which are 
represented with symbols. Solid curves correspond to exact analytical results. 
 
5.4 Vertically symmetrical random walks 

In this section we discuss the second special case of the ladder models, the 
vertically symmetrical random walk, in the sense that the single-transition 
probabilities are satisfied the following conditions: 
   =  and ( ) 1

2

H
p = . (323) 

This implies that ( ) ( )* *    =  which yields 

( ) ( ) ( )( ) ( ) ( )1 1 *; x xi N k i N k
p k e e    

− + +

  = + + , 

( ) ( )*;p k    = . 
In words, the events that the walker takes a jump to the left and the right 
neighboring site always have the identical transition probabilities. This also tells us 
that the effective velocity always vanishes, which means that the random walk is an 
unbiased random walk along the structure axis. 

As a result of the restriction in equation (323), equation (302) becomes 
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 ( )( ) ( )( )( ) ( )* 1 *1 0a a a

a a

z z     −

= =

− + + − =   (324) 

and the inverse ( )( )
1

I-p ;k z 
−

 
   can be written as 

 

( )( )

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )( ) ( )

1

* 1 *

; ;

; ;
I-p ;

1 a a a

a a

p k z p k z

p k z p k z
k z

z z

 

 


     

−− +−

− −+ ++

−

= =

 −
 
−    = 

− + + − 
. (325) 

Note that, to shorten some equations in the following paragraph, we will omit 
the arguments of functions appeared in the right side of the equations. In addition, in 

accordance with the symmetry of the model which yields ( ) ( ) ( ) ( )1,2 1,2
z z + −=  and 

( ) ( ) ( ) ( )1,2 1,2

ab abP P 
+ −
= , we will omit the plus-minus-sign subscripts of these terms. 

By substituting this inverse into equation (186) and using the residue theorem 
(see Appendix 12 and 13), we arrive at the result 
 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 2

;
m m

ab ab abP m z P z P    = + . (326) 

where 
 ( ) ( ) ( ) ( )1,2 2

1,2 1,2 1z B B  = − − , (327) 

for ( )
( ) ( )* *

1,2 * *

1 1

4

K
B

   


 

− + + −

+ −

− + − 
 , the minus sign is for ( )1B   and the plus sign 

is for ( )2B  , and 

( ) ( ) ( )( ) ( )( )( )
2

* * * * * *2 1 2 1 16 1 1K           − + + − + − + − − + − + − − − − − . 

The remaining terms in equation (326) are 
 ( ) ( )

( ) *

1 1 1

2

1

2

1

B D
P

K B


 −

++

−
= −

−
, ( ) ( )

( ) *

1 1 2

2

1

2

1

B D
P

K B


 +

−−

−
= −

−
, (328) 

for ( )
( )

( )( )1 *

1
1D   

 
−

−

 −  and ( )
( )

( )( )2 *

1
1D   

 
+

+

 − , and 

( ) ( )
*

1

2

1 1
P

K B


 −

+− =
−

, ( ) ( )
*

1

2

1 1
P

K B


 +

−+ =
−

, ( ) ( )
( ) *

2 2 1

2

2

2

1

B D
P

K B


 −

++

−
=

−
, 

( ) ( )
( ) *

2 2 2

2

2

2

1

B D
P

K B


 +

−−

−
=

−
, ( ) ( )

*
2

2

2 1
P

K B


 −

+− = −
−

 and ( ) ( )
*

2

2

2 1
P

K B


 +

−+ = −
−

. 

 The asymptotic forms of the terms ( ) ( )1

bbP   and ( ) ( )( )1
z 

  can be obtained 

from formulas (327) and (328), ( ) ( )
( )

1 2

1

*

1

2

b

bbP
G

 




−
−  and ( ) ( )( ) ( )

1 21

*

1
1

2

G
z  



−
−  
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which lead to 
 

2
*

1

2
c

G
=  (329) 

and 
 

3 *

1

2

G
c


= . (330) 

We can calculate the asymptotic behavior of all the basic properties of the random 
walk from these relations together with results (296). 

The probability of return to the starting site at large time t  is 
 

( )
2

* 0

0,

2 1
2

v

b
bb

t
P t

v t
G



 

−

 
 

   − 
 

 (331) 

for 0 1v  . The resemble between this result and the result (250) for the unbiased 
DRWFGs on branched lattices should be noted. However, we find that because of 
the existence of two major sites in each unit cell which leads to the occurrence of 
the term 1b  . This means that the unbiased random walk on the ladder L  is less 
likely than the unbiased DRWFG on the branched lattice B  to return to the starting 
site if the both models have the same values of the means of steps taking inside 
connected networks, i.e., L BG G=  , and the multi-step transition probabilities, i.e., 

* *

L B = . 

 As we have learned for the unbiased random walks on quasi-1d infinite 

structures, consideration for the probability ( )abR m  of ever reaching a given major 

site and the conditional mean first-passage time ( )ab m  leads us to the paradox that 

the walker is certain to be at every site on the structure, i.e., ( ) 1abR m = , but we 

must wait for long time generally, i.e., ( )ab m =  . This is one of the reasons why 

the more informative quantity, the conditional mean first-passage time ( ),ab m t  to a 
given major site by a certain time t , is introduced. The important parameters, e.g., 2c  
and 3c , have already been determined so, from equations (195) through (197), what 
we obtain are as follows; For the starting major site, 
 

( )
( )

1 2

*0

0

0,
2 2

v

vt t
t G

v t
 

 

−





 
 

−  
, (332) 
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for the other major sites in the starting unit cell, 
 ( ) ( ) ( )( ) ( )2 2

0, 0,t P P t    −  (333) 

and, for the remaining major sites, 
 

( )
( )

1 2

0

*
0

,
2 2 2

v

ab

vt m G t
m t

v t


 

−

 
 

−  
. (334) 

It was noticed that on one hand, for 0m  , the conditional mean first-passage time 

( ),ab L
m t  of the unbiased random walk on the ladder L  is equal to the conditional 

mean first-passage time ( ),ab B
m t  of the unbiased DRWFG on the branched lattice B  

in equation (256) if both models have the same values of the means of steps taking 
inside connected networks and the multi-step transition probabilities. On the other 

hand, for 0m = , the ( )0,bb L
t  is not equal to ( )0,bb B

t  but it is 1 b  times larger 

than ( )0,bb B
t . 

 To verify the formulas (332) through (334), the numerical simulations of this 
random walk property were performed, and the results are shown in Figure 33. The 

conditions used in the simulations are as follows; 0.3+ = , 0.2− = , ( )
0.45

V
p = , 

2x yN N= = , 1v =  and 0 1t = . Clearly, the numerical results are in agreement with 
the analytical results. 
 

 
Figure 33. The dependence of the distance m  of the considered site on the 
conditional mean first-passage time ( ),m t++  for given time 510t = . The circles and 
the crosses represent the analytical and the numerical results respectively. 
 

The resemble between the unbiased random walk on the ladder and the 
unbiased DRWFG on the branched lattice B  can also be found in the asymptotic 
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form of the expected number ( )S t  of distinct major sites visited at large times. As 
the important parameters are found, the expected number can be calculated from 
 

( )
( )

*
2

0

4

1 2

v

t
S t

v G t





 
 

+  
. (335) 

As compared with the result ( )
B

S t  in equation (261) of the unbiased DRWFG on 
the branched lattice, the result in equation (335) is double of ( )

B
S t . It is because, 

in each unit cell of the ladder, there are two major sites to be discovered. 
This completes our analysis of the basic properties of the vertically 

symmetrical random walk on ladders. From this model, we can see that many basic 
properties are related to the diffusion coefficient D  which can be considered as the 
weighted average of the diffusion coefficients D  of the random walk on the +  and 

the −  rails, D D D + + − −= +  where ( )

( )

2

*

0

1

1

x

v

N
D

v Gt
 

+

 +

. Therefore, to a certain 

extent, the formalism for the random walk on ladders may be used to investigate 
transport properties of models for media possessing two diffusivities. As an example, 
in the following section, we will discuss the relation between this random walk 
model and the recognition between a DNA-binding protein and its specific target DNA 
sequence. 
 
5.5 Protein diffusion along DNA 
 As introduced in Subsection 1.4.3, Krepel and Levy [45] have numerically 
demonstrated that the protein recognizes its DNA target through a combination of 
two types of diffusions, i.e., “one-dimensional” diffusion, the protein “slides” or 
“hops” along the DNA, and “three-dimensional” diffusion, the protein may move 
away from the DNA and diffuse into 3D bulk. The dependence of the volume fraction 
occupied by the crowding particle on the search time is of their interest. 

We find that if we consider a protein as a walker, the protein motions on DNA 
and in 3D bulk as the walker motions in the +  and the −  rails, then we can show 
that, in certain limit, the search time is inversely proportional to the square root of 
the volume fraction. 
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To see this, in the first place, let us set , 0x yN N =  and 1v =  because the walker 
possibly leaves or return to DNA strand at any step and the transport is normal 
diffusion. Then we associate the probabilities of leaving from and returning to DNA 
strand with the transition probabilities +

 and −
 respectively. To note that the 

relation between the transition probability −
 and the volume fraction   occupied 

by the crowding particles is the important relation. Although we do not know the 
exact form of the relation, to a certain extent, it is reasonable to assume that they 
are a linear function of each other when the volume fraction is small. From the 
preceding argument, let assume that 

(i) the volume fraction   is small, 
(ii) the probability +

 is independent of the volume fraction  , 
(iii) the probability −

 is very small comparing to the probability +
 

(iv) the relation between −
 and   is linear, i.e., 

0 f  − = +  where 
0  is 

the probability of returning to DNA strand without any crowding particle 
and f  is a certain constant. 

Combining these assumptions with equation (299) leads us to the expression of 
diffusion coefficient in the linear function of  , 
 ( )0D b  = +  (336) 

where 
0

(1 )1

2
b f

t




+

+

−
=  and 

0 0

1 1

2b f
 = + . Since the search time is the mean time 

required for the searching protein to approach the target site by predefined time, 
which is equivalent to the conditional mean first-passage time to a given major site 
by certain time, we can determine the dependence of the volume fraction occupied 
by the crowding particle on the search time from equation (336) together with 
equations (299) and (334), 
 

( )
( )

0

,
, ,

c m t
m t 

 +
 (337) 

where ( ),c m t  is a certain function of the distance m  of the target site from the 
starting site and the observed time t . If the variables m  and t  are fixed, then the 

values of 0  and ( ),c m t  can be found from experimental results by the following 
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equations ( )

( )

1
2

0

, ,0
1

, ,

m t

m t


 

 

−

  
  = −     

 and ( ) ( )
( )

( )

1
2

, ,0
, 0 1

, ,

m t
c m t

m t


 

 

−

  
  = −     

 where 

   is another volume fraction which is not equal to zero. 
 Figure 34 shows that equation (337) is in agreement with numerical results of 

Krepel and Levy at low volume fractions, where 0  and ( ),c m t  were determined by 
the search times from the numerical simulation at 0 =  and 0.05 = . However, at 
high volume fractions, the analytical results give less time. 
 

 
Figure 34. The graphs of the numerical results (blue crosses) and our analytical 
results (red dots) 
 
5.6 Conclusion 

We have considered some basic properties of the random walk on ladder 
lattices, consisting of two parallel rails (1-d infinite lattices) periodically connected to 
each other with rungs (1-d finite lattices). We could express the explicit forms of the 
generating function ( );abP m   only in the cases of the horizontally and the vertically 
symmetrical random walks because the full analysis is involved with the factorization 
of the fourth degree complex polynomial function. 

 We found that most of the basic properties of these kind of random walks 
are identical to the DRWFGs on branched lattices except for a renormalization of 
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coefficients and for the probability of ever reaching a given major site for the biased 
random walk. 

For the unbiased random walk on the ladder lattices, the diffusion coefficient 
can be considered as the weighted average of the diffusion coefficients D

 of the 
random walk on the +  and the −  rails, i.e., 
 D D D + + − −= +  (338) 

where ( )

( )

2

*

0

1

1

x

v

N
D

v Gt
 

+

 +

. The asymptotic behavior of various other properties of 

the random walk are governed by this diffusion coefficient. For instance, the 
probability of returning to the starting site, 
 

( )
( )

( )

2

0
0

1
0,

2 1 1
2

v

b x

bb
v

N t
P t

v t
G v t D



 

−
+  

 
   − + 
 

 (339) 

and the expected number of distinct major sites visited at large times, 
 

( )
( )

( ) ( )

2
0

0

4 1

1 1 2

v
v

x

v t D t
S t

N v t





+  
 

+ +  
. (340) 

From these results, roughly speaking, if the diffusion coefficient of the walker 
increases, it is more likely to find new major sites but less likely to return to the 
starting site. 

To a certain extent, the formalism for the random walk on ladder lattices 
may be used to investigate transport properties of models for media possessing two 
diffusivities. As an example, we applied our results to the problem of recognition 
between a DNA-binding protein and its specific target DNA sequence. 
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6 

Random walks on cylindrical lattices 
 

In this chapter we make a direct extension to multi-major-site models of the 
method used in the previous chapter for the two-major-site model. For sake of 
simplicity, we concentrate on multi-major-site structures, called cylindrical lattices 
and shown in Figure 35, whose major sites in each unit cell are equivalent. It is worth 
stressing that this model may be extended to more general models if desired. The 
first two moments of biased and unbiased random walks on the cylindrical lattices 
can be calculated without any difficulty. Nevertheless, for the other basic properties, 
we limit ourselves to the unbiased random walks due to the difficulty of 
mathematical problems for the case of the biased random walks. 
 

 
Figure 35. A schematic of a cylindrical lattice. Major sites and minor sites are 
represented by red and blue spheres respectively. 
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6.1 Model 
A cylindrical lattice is a quasi-1d infinite structure whose each unit cell 

contains 3MN   different major sites on a circular ring with a 1yN + -length 1-d 
lattice between two nearest major sites. Each major site is connected to its 
equivalent site in the next unit cell by a 1xN + -length 1-d lattice. There are thus 

( )1M x yN N N N= + +  different sites in each unit cell. A schematic of a cylindrical 

lattice is shown in Figure 35. Without loss of generality, the distance between 
neighboring sites is set to be unity. 

Here, we will also use the same coordinate system established in Chapter 2. 
The origin O  is placed at a certain major site within a unit cell, labelled the 0 th unit 
cell. Unit cells and sites within each unit cell are labelled by letters m  and a , 
respectively. The position of the major site, which is an equivalent site to the origin, 

within the m th unit cell is thus given by ( ) ˆ1xm N x+ . The relative positions of sites 

within the unit cell to this major site are denoted by 1 2 3, , ,..., Nr r r r  where the vectors 

1 2 3, , ,...,
MNr r r r  are for major sites and the remaining vectors are for minor sites. The 

vector 1 0r =  is for the major site itself. For the relative positions of major sites, a 

major site ir  is the nearest major site to major sites 1ir+  and 1ir−  for 1,2,3,..., Mi N=  

with 0 MNr r=  and 1 1MNr r+ = . Accordingly, the position of the a th site in the m th 

unit cell indicated by the vector ,m ax  may be represented as ( ),
ˆ1m a x ax m N x r= + +  

where 1, 2,3,...,a N=  or ( ), , ,, ,m a m a m ax y z . 

A walker located at a major site may jump to the right, left, up or down 
neighboring sites with probabilities  ,  ,   and   respectively. These transition 
probabilities satisfy the normalization condition, 2 1  + + = . When the walker is at 
a minor site on a 1yN + -length 1-d lattice, it can jump to the up or down 
neighboring sites with probability 0.5 . On the other hand, if the walker is at a minor 
site on a 1xN + -length 1-d lattice, it may jump to the right and left neighboring sites 

with probabilities 
( )H

p  and 
( ) ( )

1
H H

q p= −  respectively. 
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6.2 Results and discussion 
For this model, every major site is equivalent to each other in the sense that 

when a walker is at any major site, it obeys the same set of transition probabilities. 
Accordingly, the generating functions ( );ijp k   of the multi-step transition 
probabilities satisfy the following relations: ( ) ( )1 1; ;ij i jp k p k − −=  for 
, 1,2,3, , Mi j N=  where ( ) ( )0 ; ;

Mj N jp k p k = , ( ) ( )0 ; ;
Mi iNp k p k =  and 

( ) ( )00 ; ;
M MN Np k p k = . From the restriction that only nearest major sites are 

directly connected to each other by finite 1-d lattices, we have ( )1 ; 0ip k  =  for 
3,4,5,..., 1Mi N= − . Altogether, the matrix ( )p ;k   can be written as 

 

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

11 21 21

21 11

11 21

21 21 11

; ; 0 ;

; ; 0 0

p ;

0 0 ; ;

; 0 ; ;

p k p k p k

p k p k

k

p k p k

p k p k p k

  

 



 

  

 
 
 
 =
 
 
 
 

 (341) 

where ( ) ( ) ( ) ( ) ( ) ( )1 1* *

11 ; x xi N k i N k
p k e e      

− + +
 + +  and ( ) ( )*

21 ;p k    . The 
equivalence of major sites leads us to ( ) ( )1 ; ;

MNk k   = =  with 

( ) ( ) ( )( )1 11 21

1
; ; 2 ;

M

k p k p k
N

   = + , which gives the limits 

 1
i

MN
 =  (342) 

for 1,2,3,..., Mi N= , and the eigenfunction 
 

( ) ( )1

1

; ;
MN

ij

i

E k p k 
=

=  (343) 

for any 1,2,3, , Mj N= . Furthermore, from the definition of ( );ijp k  , the sum 

( )
1

;
MN

ij

i

p k 
=

  can be written in the form 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1* * *

1

; 2
M

x x

N
ik N ik N

ij

i

p k e e       
− + +

=

= + + +  (344) 

where, for ( )
( ) 21 1 4 1

;
2

p p
p

p


 




 − −
= , 

( )
( )( ) ( )( )
( )( ) ( )( )

*

1 1

; ;

; ;x x

H H

H HN N

p p

p p

   
  

   

+ −

+ +

+ −

 −
 =
 −
 
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( )
( )( ) ( )( )
( )( ) ( )( )

*

1 1

; ;

; ;x x

H H

H HN N

q q

q q

   
  

   

+ −

+ +

+ −

 −
 =
 −
 

, 

( )
( ) ( )

( ) ( )
*

1 1

0.5; 0.5;

0.5; 0.5;y yN N

   
  

   

+ −

+ +

+ −

 −
=  

 − 

, 

( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( )

( ) ( )

1 1

1 1

1 1

; ;

; ;

; ;

; ;

0.5; 0.5;
2

0.5; 0.5;

x x

x x

x x

x x

y y

y y

H HN N

H HN N

H HN N

H HN N

N N

N N

q q

q q

p p

p p

   
 

   

   


   

   
 

   

+ −

+ +

+ −

+ −

+ +

+ −

+ −

+ +

+ −

 −
  = +
 −
 

 −
  +
 −
 

 −
 
 − 

. 

Since the subsequent results are very similar to those in the previous 
chapters, we condense the discussion here. From the finiteness of the size of the 
connected networks, it can be shown that a random walk on a cylindrical lattice is a 
DRWFG, 
 ( ) ( )11 0; 1E G − − , (345) 
which gives 
 1c G=  and 1Hd = , (346) 
where 
 ( )( ) ( )( ) ( ), 1 , 1 2 0.5, 1 1

H H

x x yG p N p N N    = + + + + + + . (347) 

Let us now calculate the effective velocity   and the diffusion coefficient D  

by substituting the entries ( );1abp k −  into equations (182) and (183). We find that the 

effective velocity and the diffusion coefficient are in the same form as those for 
DRWFGs on branched lattices (see equations (225) and (226)), 
 ( )( )

( )

* *

0

1

1

x

v

N

v Gt

 


+ −
=

 +
 (348) 

and 
 ( )

( )

2 *

0

1

1

x

v

N
D

v Gt

+
=
 +

. (349) 
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As we have encountered in the previous models, to completely determine 
the basic random walk properties for a given major site, the explicit forms of the 
generating functions ( );abP m   are desired. They can be found from 

( )
( )( )

( )( )

adj I p ;1
;

2 det I p ;

mab
ab

k z dz
P m z

i zk z




 

−
 − 

=
 − 

 . 

For any number MN  of major sites in each unit cell, we can express the close form 
of the determinate of the matrix ( )I p ;k −  (see Appendix 14), 
 

( ) ( )( )
1

det I p ; 1 ;
MN

i

i

k E k 
=

− = −     (350) 

where ( ) ( )
( )

( )11 21

2 1
; ; 2cos ;i

M

i
E k p k p k

N


  

− 
= +  

 
, but the close form of the 

adjugate matrix is still a mystery. 
Fortunately, for unbiased random walks, to determine the asymptotic forms 

of the basic properties for a given major site, only the information of the singular part 
( ) ( )( ) ( ) ( )1 1

m

abz P   of the generating function ( ) ( ) ( )( ) ( ) ( )
1

;
MN m

i i

ab ab

i

P m z P  
=

= , i.e., the 

asymptotic forms of the terms ( ) ( )1

bbP   and ( ) ( )( )1
z 

 , is required. From equation 

(350), we can show that (see Appendix 15) 
( ) ( ) ( )

1
1

2

*
1

2

b
bbP

G


 



−
−  

and 

( ) ( )( ) ( )
1

1
2

*

1
1

2

G
z  



−
−  

which lead to 
 

2
*

1

2
c

G
= , (351) 

 
3 *

1

2

G
c


= . (352) 

Again, we can substitute equations (346) – (349), (351) and (352) into 
equations (184) through (198) and find the basic random walk properties. As 
compared with the unrestricted 1-d lattice model, we find that the additional 
structure does not affect the exponents but does have a great impact on the 
coefficients. Figure 36 shows the numerical results (symbols) of the certain basic 
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properties compared with the analytical results (solid lines) under the same 

conditions, i.e., 0.3 = = , ( )
0.5

H
p = , 3xN = , 2yN = , 0 1v t= =  and 3,4,5MN =  

with ( )
1

*

0 2 1 2MP GN v 
−

  −
 

, 
( )

*

0

0
2 2 2

vt m G

v







−
 and 

( )

*

0

2

1 2

MN G
S

v




 +
. 

 

 

  
Figure 36. The numerical results of the second moment (a), the probability of return 
to the starting site (b), the conditional mean first-passage time to a given major site 
by time t  (c) and the expected number of distinct major sites visited at large times 
(d) compared with the analytical results. 
 

Before ending this chapter, let us digress to make a comment on the 
mathematically interesting result related to equation (350). From equation (108), we 
have 
 ( )( )

( )( )
11

2

adj I-p 0;11

1 0;1
MN

M
i

i

N
E

−

−

=

 
 

=

−
 (353) 

where 1 1 MN =  was used. Since we can show that (see Appendix 14) 
 ( )( ) ( )

1
*

11

adj I-p 0;1
MN

MN 
−

−  =
 

, (354) 
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( )( ) ( )

( )1
*

2 2

2 1
1 0;1 2 1 2cos

M M
M

N N
N

n

n i

i
E

N




−
−

= =

 − 
− = −   

  
  , (355) 

after substituting equations (354) and (355) into equation (353) and rearranging, we 
obtain the finite product of cosine functions 
 1 2

1
1

2
1 cos

2

M

M

N

M

N
i M

Ni

N

−

−
=

  
− =   

  
 . (356) 

 
6.3 Nonlinear transport in quasi-1d materials 

Let us close the chapter by the discussion of nonlinear transport in quasi-1d 
materials in the random walk point of view. As discussed in Subsection 1.4.5, the 
power-law dependence of the current on bias voltage, 
 1I V + , (357) 
has been observed in a great number of quasi-1d materials, e.g., single-wall carbon 
nanotubes [64], at low temperatures. In certain limit, this phenomenon may be able 
to be transcribed into a random walk on quasi-1d infinite structures via the following 
assumptions: 

(i) The structural features of a quasi-1d material can be reproduced by a 
quasi-1d infinite structure whose the effective dimension is unity, 1Hd = . 

(ii) The motion of an individual electron in the quasi-1d material at low 
temperatures can be described by the separable continuous-time random 
walk, given that a walker started at a certain unit cell associating with one 
of bias probes. 

(iii) The effect of impurity or disorder in the quasi-1d material is attributed to 
the behavior of the PDF ( )t  of waiting time. 

(iv) The bias voltage is proportional to the difference of the multi-step 
transition probabilities along the direction of the structure axis, i.e., 

 * *V   − . (358) 
(v) The measured current is the space average of the conduction current in 

the material, which is proportional to the first moment of the walker 
location along the structure axis evaluated at the time equal to the 
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conditional mean first-passage time ( )*,m t  to the unit cell associating 

with the other probe before the observing time *t , 
 ( )

( )*,m t

d x t
I

dt


  (359) 

where the distance m  associates with the distance between two probes. 
To note that here we do not focus on the structural dependence of the relation 
(357) so, for clarity and simplicity, let us use the cylindrical structure. 

Before we move on, from the assumption (v), the conditional mean first-
passage time ( ),m t  to any major sites in the m th unit cell by time t  need to be 
determined. First let us consider the generating function ( );P m   of the probability 
that the walker is at any major sites in the m th unit cell at the n th step. From 
equation (79), if only major sites are taken into account, we have 
 ( ) ( ) ( )

1

,0 ,

1 1

; ; ;
MN

ab m a b ac cb

c m

P m p m P m m


      
= =−

= + −  . (360) 

Then we sum this equation over all possible starting and arriving major sites, 
 ( ) ( ) ( )

1

,0

1

; ; ;m

m

P m p m P m m


     
=−

= + −  (361) 

where ( ) ( )
1 1

1
; ;

M MN N

ab

a bM

P m P m
N

 
= =

  , ( ) ( )
1

; ;
MN

ac

a

p m p m   
=

 . We have assumed that 

the probabilities of starting at any major sites in the 0 th unit cell are the same. Note 
that, from equation (344), 
 ( ) ( ) ( ) ( )( ) ( )* * *

, 1 ,0 ,1; 2m m mp m               −= + + + . (362) 
It should be noticed that this is analogous to the one-major-site problem 

(see, e.g., equation (221)) so we can employ the results found in Chapter 4 to 
determine the basic properties of the random walks on cylindrical lattices for given 
unit cell, on regardless of major sites. From equation (260), we therefore have 
 

( )
( )

1

0

* *

0

0,
2

v

vtmG t
m t

v t


  

−

 
  

− −  
 (363) 

for appropriate associating parameters. Consequently, this result and the previous 
assumptions yield 
 

( ) ( )

( )

( )

21 1
*

2
* *

0 01 2

v v
vLv vmG t

I
Gt v v t

 

− − −
−   

 −     +  −   

. (364) 
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When all variables except * * −  are fixed, this result is in agreement with the 
experimental result given in equation (357) where 
 1 v = − . (365) 
This implies that if the exponent   does not vanish, then the electron transport is 
anomalous. Otherwise, it is normal, and the corresponding quasi-1d material behaves 
as an ohmic resistor, I V . 
 In our model point of view, at an intermediate temperature, the conditional 
mean time that an electron starting from one probe travels to the other decays as 
temperature increases. It may be approximated by 
 

( )*,

c

kT
m t a b

U


−

 
 +  

 

 (366) 

where , ,a b c  are fitting parameters, when other variables, e.g., the bias voltage and 
the distance between probes, are fixed. To see this, equation (363) and the analysis 
of Bendler and Shlesinger for parameter v , i.e., v kT U  (see Section 2.3), need 
to be taken into account. Figure 37 shows the plots of ( )*,m t  in equation (363) as 

kT U  is solely varied, and of its approximation from equation (366) with 
*

0 1000t = = , 0.4a = , 0.38b = , 7c = . 
 

 
Figure 37. The plots of the conditional mean first-passage time ( )*,m t  (blue) and 

of its approximation (orange).  
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7 

Summary 
 

This PhD thesis addressed the study of random walks on quasi-1d infinite 
structures, investigating basic statistical properties of the random walks through the 
generating function formalism. Our work can be briefly summarized as follows. 
 In Chapter 2, we developed a formalism by mainly employing the concepts 
of the Chapman–Kolmogorov equation, the generating functions, the Fourier-Laplace 
transform and the irreducible Markov chains. From the developed formalism, we 
could establish the systematic method called the generating function formalism 
(GFF) for obtaining the asymptotic behavior of basic statistical properties of the 
random walks including the first and the second moments of the walker location 
along the structure axis at large times, the probability of return to the starting site at 
large times, the probability of ever reach a given major site, the conditional mean 
first-passage time to a given major site and the expected number of distinct major 
sites visited at large times. The adoption of GFF to certain quasi-1d infinite structure 
models is solely required the mesoscopic characteristics of the corresponding 
random walk, i.e., the probability of waiting time and the multi-step transition 
probabilities between two “major” sites.  As the first adoption of GFF in this thesis, in 
Chapter 3, we applied it to the well-known problem, a random walk on a 1-d 
perfect lattice. The obtained results showed a perfect agreement with the well-
known results. 
 In Chapter 4, as the first non-trivial application of GFF, we considered 
random walks on branched lattices. We found that the spectral dimension Hd  of a 

perfect 1-d lattice is changed from unity to 1
1

2
H Hd d= +  when fractals with the 

spectral dimension 0 2Hd   are periodically attached to sites on the lattice. This 
led us to various transport behavior of a walker along the structure axis depending 
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on the localized transition on the attached fractals. We pointed out that when 1-d 
lattices, 1Hd = , are attached to sites, the corresponding random walk model is 
either the so-called comb model or its generalization, a sparse comb model, 
depending on the periodicity or the sparsity of the attachment. The sparsity 
dependence of the random walk properties was studied, and several interesting 
results were found. 
 In Chapter 5, we studied random walks on ladder lattices. Unlike a 1-d 
perfect lattice and a branched lattice, a ladder lattice primarily consists of two 
parallel 1-d lattices, which are periodically connected to each other with finite 1-d 
lattices. We showed how the localized transports of the walker on these primary 
axes contribute to its basic random walk properties. We found that most of the basic 
properties are identical to those for a perfect 1-d lattice except for a rescaling of 
coefficients and for the probability of ever reach a given major site. We showed that 
even the considered major site is located in the same direction of bias, the 
probability of ever reach that site is always less than unity. In addition, from the 
resemble of the ladder lattice model and a two-state random walk on a 1-d lattice, 
which may be used to investigate transport properties of models for media 
possessing two diffusivities, we thus discussed the transcription of the problem of the 
DNA search by a protein into the language of the ladder lattice model. 
 In Chapter 6, we studied random walks on cylindrical lattices, the structures 
that consist of many parallel 1-d lattices periodically connected to each other with 
finite 1-d lattices. For general cases, we could determine the first and the second 
moments of a walker location along the structure axis at large times by employing 
GFF without any difficulty. However, according to the mathematical difficulty, the 
other random walk properties were considered only in the cases that the walker is 
“unbiased” along the structure axis, i.e., the first moment vanishes. From the 
obtained results together with the assumption that the cylindrical lattice model can 
reproduce certain features of transport processes in quasi-1d materials, e.g., 
nanowires and single-wall carbon nanotubes, we could relate the non-ohmic current-
voltage characteristics in quasi-1d materials to the anomalous transport of the 
random walker on the quasi-1d lattices.  
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Appendix 1 
From equation (69), the Laplace transform 
 ( ) ( )*

, 0, , 0,

0

, | , | st

m a b m a bx s x x t x e dt



−    367 

can be expressed as 
 ( ) ( ) ( ) ( )*

, 0, , 0,

00 0

, | |

t

st

m a b m a b nn
n

x s x e x x t t t dt dt
 

−

=

 
   =   − 

 
  . 368 

It is assumed that the resulting integral is identical to term-by-term integration, 
 

( ) ( ) ( ) ( )*

, 0, , 0,

0 0 0

, | |

t

st

m a b m a b nn
n

x s x x x e t t t dt dt


−

=

  
   =   −   

  
   . 369 

After using the convolution theorem of the Laplace transform, we have 
 

( ) ( ) ( ) ( )*

, 0, , 0,

0 0 0

, | | st st

m a b m a b nn
n

x s x x x e t dt e t dt
 

− −

=

  
 =    

  
   . 370 

Use the definitions of the Laplace transform and of ( )t , we obtain 
 

( ) ( ) ( ) ( )* *

, 0, , 0,

0 0 0

, | | 1

t

st

m a b m a b nn
n

x s x x x s e t dt dt 


−

=

  
  =  −   

  
   . 371 

Find the Laplace transform of term in the parentheses, 
 

( ) ( ) ( )
( )*

* *

, 0, , 0,

0

1
, | |m a b m a b nn

n

s
x s x x x s

s s






=

 
 =  − 

 
 . 372 

Now, let us consider the Laplace transform ( )*

n
s . From its definition, we have 

 
( ) ( ) ( )*

1

0 0

t

st

n n
s e t t t dt dt  



−

−

 
  = − 

 
  . 373 

After applying the convolution theorem to this, we obtain 
 ( ) ( ) ( )* * *

1n n
s s s  

−
= , 374 

and, as ( )*

0
1s = , it is straightforward that 

 ( ) ( )( )* *
n

n
s s = . 375 

Therefore, equation (372) can be expressed as 
 

( )
( )

( ) ( )( )
*

* *

, 0, , 0,

0

1
, | |

n

m a b m a b n
n

s
x s x x x s

s






=

 −
 =  

 
  376 

or 
 

( )
( )

( )( )
*

* *

, 0, , 0,

1
, | ; |m a b m a b

s
x s x x s x

s




 −
 =  

 
. 377 
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Appendix 2 
If we put equation (79) into 
 ( ) ( )0, , 0,, ; | ; |ikmL

a b m a b

m

k r x e x x 


=−

 =  , 378 

we have 

( ) ( ) ( )
1

0, ,0 ,

1 1

ˆ, ; | , ; ;
MN

ikmL

a b m a b a c cb

m c m

k r x e p r mLx r P m m


      


=− = =−

 
 = + − + − 

 
   . 379 

It is immediate that 
 ( ) ( ) ( )

1

0, ,

1 1

ˆ, ; | , ; ;
MN

ikmL

a b a b a c cb

m c m

k r x e p r mLx r P m m


     


=− = =−

 = + − + −  . 380 

After multiplying and dividing certain terms to this equation and interchanging the 
order of summation, it becomes 
 ( )

( ) ( ) ( )

0,

1

,

1 1

, ; |

ˆ, ; ;
M

a b

N
ik m m Lik mL

a b a c cb

c m m

k r x

e p r mLx r e P m m






    


−

= =− =−

 =

+ − + −  
. 381 

From the definitions of the Fourier transform and 

( ) ( )
1

1

ˆ, , ; , ;ik mL

a c a c

m

p k r r e p r mLx r



  
=−

 − + , we have, for 1, 2,3,...,a N= , 

 ( ) ( ) ( )0, ,

1

, ; | , , ; ;
MN

a b a b a c cb

c

k r x p k r r P k   
=

 = + . 382 

For 1,2,3,..., Ma N= , this becomes 
 ( ) ( ) ( ),

1

; ; ;
MN

ab a b ac cb

c

P k p k P k   
=

= +  383 

with ( ) ( )
1

1

; ;ik mL

ac ac

m

p k e p m



  
=−

   and ( ) ( )ˆ; , ;ac a cp m p r mLx r    − + . 

 
Appendix 3 

For a given N N  matrix A , using the definition of an eigenvalue, we can show 
that 
 

( ) ( )
1

det I A
N

n

n

E E E
=

− = −  384 

where nE  is an eigenvalue of the matrix A  and E  is any number. Therefore, if we 
choose 1E = , we have 
 

( ) ( )
1

det I A 1
N

n

n

E
=

− = − . 385 
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Appendix 4 
If A  is an N N  matrix that satisfies the following conditions: 

1. 
1

0
N

ij

i

A
=

=  for 1, 2,3,...,j N=  

2. There exists a eigenvector  
T

1 2π ...   such that Aπ 0=  where 0n   

for 1, 2,3,...,n N=  and 
1

1
N

n

n


=

= , 

then 
 22 2 1 2

1

212 1 1 1

2 1

N N

N

n

nN N N N N

N NN NN

A A A

E
A A A

A A A



−

=− − − −

−

=   386 

where nE  are the remaining eigenvalues for 2,3,4,...,n N= , i.e., AV Vn n nE=  where 
Vn  are the remaining eigenvectors. 

To prove this statement, let us consider ( )A A I  + for 0   which gives 
 

( )( )

11 12 1 1 1

21 22 2 1 2

11 12 1 1 1

1 2 1

det A

N N

N N

N N N N N N

N N NN NN

A A A A

A A A A

A A A A

A A A A











−

−

− − − − −

−

+

+

=

+

+

. 387  

From ( )A π π =  or ( ) ( )1

2 1 1

N
j i

i ij

j

A A
 

  
 =

+ = , equation (387) becomes 

 

( )( )

12 1 1 1

2
22 2 1 2

1

1
12 1 1 1

1

2 1

1

1

det A

N N

N N

N
N N N N N

N
N NN NN

A A A

A A A

A A A

A A A






 










−

−

−
− − − −

−

+

=

+

+

. 388 

Then, from ( )
1

N

ij

i

A  
=

=  and 
1

1
N

n

n


=

= , equation (388) becomes 
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( )( )
2 22 2 1 2

1

1 12 1 1 1

2 1

1

det A

N N

N N N N N N

N N NN NN

A A A

A A A

A A A

  

 





 

 

−

− − − − −

−

+

=

+

+

. 389 

Afterwards, we exploit the fact that ( )( ) ( )
2

det A
N

n

n

E  
=

= + , so 

 

( )
2 22 2 1 2

1

2

1 12 1 1 1

2 1

1

N N N

n

n

N N N N N N

N N NN NN

A A A

E

A A A

A A A

  

 

 

 

 

−

=

− − − − −

−

+

= +

+

+

 . 390 

Finally, after taking limit 0 →  of this equation, we obtain 
 22 2 1 2

1

212 1 1 1

2 1

N N

N

n

nN N N N N

N NN NN

A A A

E
A A A

A A A



−

=− − − −

−

=  . 391 

 
From this finding result, for a given irreducible and aperiodic Markov chain A , 

it can be shown that the vector 
T

* * *

1π N     , whose entries are defined as 

 ( )

( )

*

2

adj I A

1

ij

i N

n

n

E



=

−  


−
 392  

for , 1, 2,3,...,i j N= , is the eigenvector of A  such that * *Aπ π=  and *

1

1
N

n

n


=

= . 

Note that 1nE   are the remaining eigenvalues of A , for 2,3,4,...,n N= . 
 
The proof of the first condition, i.e., * *Aπ π=  

Plug *

i  in equation (392) into the equation * *

1

Aπ
N

ij ji
j

A 
=

  =   ,  

 ( )

( )

*

1

2

adj I A
Aπ

1

N
jk

ij Ni
j

n

n

A

E=

=

−  
  = 

−



 393 

for any 1, 2,3,...,k N= . Afterwards, use the definition of an adjugate matrix, 
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( )
( ) ( )*

1

2

1
Aπ 1 det I A

1

N
k j

ijN kji
j

n

n

A

E

+

=

=

  = − − 
−




 394  

where ( )det I A
kj

−  is defined as the determinant of the ( ) ( )1 1N N−  −  matrix that 

results from deleting row k  and column j  of I A− . Now, let us add and subtract 

the term ( ) ( )1 det I A
k j

ij kj


+
− −  in the sum, 

 

( )
( )( ) ( )*

1

2

1
Aπ 1 det I A

1

N
k j

ij ij ijN kji
j

n

n

A

E

 
+

=

=

−
  = − − − − 

−



, 395 

and rearrange terms, 
 

( )
( ) ( )   ( ) ( )*

1

2

1
Aπ 1 det I A I A 1 det I A

1

N
k i k j

N ki kjiji
j

n

n

E

+ +

=

=

 
  = − − − − − −  

 −



. 396 

Finally, we employ the fact that the last term vanishes and obtain 
 ( )

( )

* *

2

adj I A
Aπ

1

ik
iNi

n

n

E



=

−  
  = = 

−
. 397 

 

The proof of the second condition, i.e., *

1

1
N

n

n


=

=  

For any 1, 2,3,...,j N= , 
( )

( )

*

1 1

2

adj I A

1

N N
ij

n N
n i

n

n

E


= =

=

−  
=

−
 


 or 

 

( )
( ) ( )*

1 1

2

1
1 det I A

1

N N
j i

n N ji
n i

n

n

E


+

= =

=

= − −

−
 


. 398 

Let us show ( ) ( ) ( ) ( )
1

1
1 1

1 det I A 1 det I A
N N

j i i

ji i
i i

+ +

= =

− − = − −   for any 1, 2,3,...,j N= . 

Let us begin with 2j = , 
 

( ) ( )

11 12 1 1 1

2

2
1

11 12 1 1 1

1 2 1

1

1 1 1 1

1 det I A

1

1

N N

N
i

i
i

N N N N N N

N N NN NN

A A A A

A A A A

A A A A

−

+

=

− − − − −

−

− − − −

− − =

− − − −

− − − −

 . 399 
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( ) ( )
11 12 1 1 1

2

2
1

11 12 1 1 1

1 2 1

1 1 1 1

1

1 det I A

1

1

N NN
i

i
i

N N N N N N

N N NN NN

A A A A

A A A A

A A A A

−
+

=

− − − − −

−

− − − −

− − = −

− − − −

− − − −

 . 400 

From 
1

A 1
N

ij

i=

=  for any 1, 2,3,...,j N= , 

 

( ) ( )

( )21 22 2 1 2
2

2
1

11 12 1 1 1

1 2 1

1 1 1 1

1

1 det I A

1

1

N NN
i

i
i

N N N N N N

N N NN NN

A A A A

A A A A

A A A A

−
+

=

− − − − −

−

− −

− − = −

− − − −

− − − −

  401 

 or             ( ) ( ) ( ) ( )
2 1

2 1
1 1

1 det I A 1 det I A
N N

i i

i i
i i

+ +

= =

− − = − −  . 402 

Analogously, it can be shown that this is true for the remaining 3,4,5,...,j N= . Now 
let us consider 
 

( ) ( )
21 22 2 1 2

1

1
1

11 12 1 1 1

1 2 1

1 1 1 1

1

1 det I A

1

1

N NN
i

i
i

N N N N N N

N N NN NN

A A A A

A A A A

A A A A

−
+

=

− − − − −

−

− − − −

− − =

− − − −

− − − −

 . 403 

From the existence of π  such that Aπ π=  and 
1

1
N

n

n


=

=  so 

 

( ) ( )

22 2 1 2

1

1
1 12 1 1 11

2 1

1

1
1 det I A

1

1

N N

N
i

i
i N N N N N

N NN NN

A A A

A A A

A A A



−

+

= − − − −

−

− − −

− − =
− − −

− − −

 . 404 

Since the matrix I A−  satisfies the conditions in the preceding discussion, from 
equation (391), equation (404) becomes 
 ( ) ( ) ( )

1

1
1 2

1 det I A 1
NN

i

ni
i n

E
+

= =

− − = −  . 405 

From equations (398), (402) and (405), we can conclude that 
 *

1

1
N

n

n


=

= . 406 
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Appendix 5 
From equation (111), we have 

 
( ) ( )

* ˆ *

0,

1 0

1
, , |a

N
ikx r

a b

a k

x s e k r s x
i k = =


= 


 . 407 

After using the definition of the Fourier transform, we obtain 
 

( ) ( ) ( )
* ˆ ˆ *

0,

1 0

1
ˆ , |a

N
ikx mLx r

a b

a m k

x s e mLx r s x
i k


+

= =− =


=  +


  . 408 

Finally, after calculating the derivative, we obtain 
 ( ) ( )

* *

, , 0,

1

, |
N

m a m a b

a m

x s x x s x


= =−

=  . 409 

It is analogous for the Laplace transform ( )
*

2x s  of the second moment. 

 
Appendix 6 

Consider the sum ( )*

0,

1

0, , |
N

a b

a

r s x
=

  of the Fourier-Laplace transform of 

( ), 0,, |m a bx t x  at the point 0k = , which can be calculated from 

 ( ) ( )*

0, , 0,

1 10

0, , | , |
N N

st

a b m a b

a m a

r s x x t x e dt

 
−

= =− =

 
 =  

 
   . 410 

From the fact that a walker must be somewhere on the underlying structure at any 

time, i.e., ( ), 0,

1

, | 1
N

m a b

m a

x t x


=− =

 =  , the right side of this equation is equal to 1 s . On 

the other hand, the left side can be calculated from equations (86) and (87), 
 

( )
( )( )

( )( )

( )( )( )

**

*

,

1 1 *

1

adj I-p 0;1
0, , ;

1 0;

M

M

NN
cb

a b a c N
a c

n

n

ss
p r r s

s
E s


 

= =

=

 
  −   

+ 
 −
  

 


. 411 

After combining everything together and using equations (81) and (85), we have 
 ( )( )

( )
( )( )

( )( )

( )( )( )

**

1 *

*
1 1 *

2

adj I-p 0;1 0;
1 0, , ;

1
1 0;

M

M

M

N N
cb

a c N
c a N

n

n

sE s
p r r s

s
E s





= = +

=

 −     
= + 

−    −

 


. 412 

For the diffusive random walks, i.e., ( )
1

0, , ;1 1
MN

a c

a

p r r −

=

= , as 0s +→  we have 

 ( )( )
( )

( )( )
( )( )

( )( )( )

**

1 *

*
1 1 *

2

adj I-p 0;1 0;
0, , ;

1
1 0;

M

M

N N
cb

a c N
c a

n

n

sE s
p r r s

s
E s





= =

=

 −  

−
−




. 413 
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Appendix 7 
 

 
A schematic of a network lattice with seven different absorbing sites.  

 
Let us consider a network lattice with N  different absorbing sites. A 

schematic of such structure is shown in the above figure where red spheres are 
represented the absorbing sites labelled by 1, 2,3,...,a N= . The probability of being 
absorbed at step n th, given that the walker initially commenced from the absorbing 
site a , is denoted by ,a nu . For the complimentary event, the walker is not absorbed 

at the n th, the probability is denoted by , ,

0

1
n

a n a i

i

f u
=

 − . In addition, if the walker is 

not absorbed at the n th, then the walker must be found at any site, which is not an 
absorbing site, at the n th step. In other words, if ,ba np  is defined as the probability 
that the walker is found at a certain site b , which is not an absorbing site, at the n

th step for 0n  , given that the walker initially commenced from the absorbing site 
a , then 

, ,a n ba n

b

f p=  where the summation is over all possible site which is not an 

absorbing site. 
From the preceding description, it is not hard to show that, for 1 1−   , 

the generating function ( ) ,

0

n

a a n

n

u u 


=

  has a simple relation to the generating 

function ( ) ,

0

n

a a n

n

f f 


=

 , i.e., 

 ( ) ( ) ( )1 1a au f  − = −  414 
which gives 
 ( ) ( ) ( )

1
1 1 lima au f


  

−→
− −  415 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 137 

if the limit ( )
1

lim af



−→

 exists. 

If the walker is eventually absorbed, i.e., ( ) ,
1

0

lim 1a n a

n

u u



−



→
=

= =  and the mean 

absorbing time a  is finite, i.e., ( )
,

1
0

lim
a

a n a

n

du
nu

d




−



→
=

 =  , then, after finding the 

limit 1 −→  of the derivative of equation (414) with respect to  , we obtain 
 ( )

1
lim a af


 
−→

= . 416 

Additionally, as 
,0 1af =  and ( )

0
| 0a

r

p r r = , the mean absorbing time can also be 

calculated from ,

0

1a ba n

n b

p


=

= +  or 

 ( )
1

1 lima ba

b

p


 
−→

= +  . 417 

 This result can be generalized to the case that the initially commencing sites 
are not regraded. In this case, the probability nu  of being absorbed at step n th is 

defined as ,

1

N

n a n a

a

u u 
=

  where a  is the probability that the walker initially 

commenced from the absorbing site a . From the linearity, the previous analysis can 
also be applied to the probability nu , and the result is 
 ( ) ( )1 1u G − −  418 
where the mean number of steps G  before absorption can be calculate from 
 ( )

1
lim

du
G

d



−→
=  419 

or 
 

( )
1

1

1 lim
N

ba a

a b

G p


 
−→

=

 
= + 

 
   420 

 Therefore, when the eigenfunction ( )1 0;E   satisfies the conditions of the 
generating function ( )u  , the resulting equation (418) – (420) can also be employed. 
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Appendix 8 
 
Let us consider the contour integral 
 ( )

( )

( )
( )
( )

( )
( )

* *

2

* * *

1 1
;

2 1

mz
f m dz

i
z z


      

     

−

= − 
  

− − −    
  

 . 
421 

As ( ) ( )1    − , ( ) ( ) ( ) ( )2 * *4        −  and ( )
( )

( ) ( )( )*

1

2
A     

 
  

, this equation becomes 
 ( )

( ) ( )( ) ( )( )*

1 1
;

2

mz
f m dz

i z A z A


    

−

+ −

= − 
− − . 422 

All scenarios we consider satisfy the conditions that, for 1 1−   , ( )0 1A −   and 
( )1 A +  which implies that the singularity ( )A −  is in a region bounded by the unit 

circle , while the singularity ( )A +  is outside this region. From the residue theorem, 
the result for 0m  is straight forward because there is only one simple pole in the 
region, 
 

( )
( )

( ) ( )( )
( )*

1
;

2

m

f m
   


   

 −
=  

 
 

. 423 

The result of the integral for 0m   is identical to the result of the integral for 0m  
with interchanging the function ( )*   and the function ( )*  . Altogether, we have 
 

( )
( )

( ) ( )( )
( )( )

( )( )

*

*

; 01 1
;

2 ; 0

m
m

m

m
f m

m

 
    

   

−

−

  
= −   

   


. 424 

The integral 
 

( )
1

2

11

1 1 1
;

2

mP m z z z dz
i

 


    

−

−
  

= −  − − −  
  

  425 

is the special case of the preceding integral for ( )*  = , ( )*  =  and 
( )*  = . 
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Appendix 9 
 

The derivation for ( )

1
1 (1 )

1 1

N

H
p





−
−  

 +     

 

From 
( )
( )

* *

01 v

N

v Gt

 


−
=
 +

, let us consider * * − . 

( ) ( )

( )( ) ( )( )

( ) ( )

( )( ) ( )( )
* *

N N N N

p p q q

p p q q

   
   

   

+ − + −

+ − + −

   − −
   − = −
   + +   

. 

( ) ( )

( )( ) ( )( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( )
( ) ( )

* *

1

N N

N N

N N

q q

q q

q qp p

q qp p

 
  

 

  

   

+ −

+ −

+ −+ −

+ −+ −

 −
 − =
 + 

   +−    − 
  −+    

. 

( ) ( )

( )( ) ( )( )

1

* * 1

N

N N

q q p

qq q

  
  

 

−

+ −

+ −

  −  
  − = −   +    

 ; ( ) ( )
p

q p
q

  = . 

( ) ( )

( )( ) ( )( )

1

* * 1
1

1 1

N

N N

q q

pq q

  
  

 

−

+ −

+ −

  −  
  − = −    −+    

 ; 1p q+ = . 

( ) ( )

( )( ) ( )( )

( )
( )

1
1 1

* * 1
1 1

N
N

N N

q q

pq q

   
  

 

−
−

+ −

+ −

    −     − = −
    −+    

. 

( ) ( )

( )( ) ( )( )

( )
( )( )

1
1 1

* *
1 1

1
1 1

N
N

N N

q q

pq q

  
  

 

−
−

+ −

+ −

    + −−    − = −    −+       

. 

Therefore, if ( )
( )1 1

1 1
N

p  
−

= +  or 
( ) ( )

( )( )
1

1 1

1 1
NH

p p  
−

−
=  + , 

then * * 0 − =  and 0 = . 
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Appendix 10 
 

The derivation for ( )
2

1
1

2 1

H
p



 



 −
 +  + 

 

From 
( ) 01 v

N
c

v t
 =

 +
 where ( )

( )

* *

1
c

  

 

  

−


+ + +
, 

( )

( ) ( )

1

1

1

1

1 1
1 1 1

1 1

N

N

N

N N

a
a

a
c

a a
N N N

q p a q p a


 

 


−

−

− 
−  

− =
   −  − 

+ + − + − −     
− − − −     

. 

( )

( ) ( )

1

1

1
(2 1)

1

1 1
(2 1) 1 1 1

1 1

N

N

N

N N

a
p a

a
c

a a
p N N N

a a


 

  

−

−

− 
− −  

− =
    −  − 

− + − − − − −       − −      

; 1p q+ = . 

( )

( ) ( )

1

1

1
(2 1)

1

1 1
(2 1) 1 1

1 1

N

N

N

N N

a
p a

a
c

a a
p N N

a a


 

    

−

−

− 
− −  

− =
   −  − 

− + − − + + −     
− −     

. 

( )

( ) ( )

1

1

1
(2 1)

1

1 1
(2 1) 1

1 1

N

N

N

N N

a
p a

a
c

a a
p N a N

a a


 

    

−

−

− 
− −  

− =
  −  −   

− + − − + +     
− −     

. 

( )

( ) ( ) ( )

1

1

1
(2 1)

1

1
(2 1) 1

1

N

N

N

N

a
p a

a
c

a
p a N

a


 

    

−

−

− 
− −  

− =
− 

− + − − + −  
− 

. 

Therefore, if ( ) ( )(2 1) 1p   − + = −  or 

( )
2

1
1

2 1

H
p p



 



 −
=  +  + 

, 

then 
( )

( ) ( )
2

0 0

(2 1) 1

1 1 1

H

v v

p

v t v t

 




 − −
= =    + +  + 

. 
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Appendix 11 
 

The derivation for ( )
1

3 1
H

p




−

 
= + 
 

 

( )* * 1 1

1

N

N

a
a

a
    − − 

− = −  
− 

. 

* * 1 1
1

1

N

N

a
a

a


  



− −  
− = −  

−  
. 

( )* *

1

1

N

N

a
a

a
a




   

 
− 

 − = −
−

. 

* *

1
1

1

1

N

N

a
p

p p

a p





   

 
 
 −
  −
  

  −  − = −  
−   

 ;a q p . 

( )

( )
* *

1 1
1

1 1 1 1

1 1 1

N

N

a
p p

a

 

   
 

+ − 
−    − − − = −    − + −  

. 

Therefore, if 1 1p  = +  or 

( )
1

3 1
H

p p




−

 
=  + 

 
, 

then * *   − = − . 
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Appendix 12 
Let 1 1−   , 0m , ( ) ( ), 1A A +− −−  , ( ) ( )1 ,A A ++ +−  and the 

function ( )H z  be a non-singularity function. From the residue theorem, it can be 
shown that 
 

( )
( )

( )( ) ( )( ) ( )( ) ( )( )
1

;
2

mH z z
f m dz

i z A z A z A z A


    

−

++ +− −+ −−

=
− − − − , 426 

where the contour  is the unit circle, is equal to 
 

( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

;

m

m

H A A
f m

A A A A A A

H A A

A A A A A A

 


     

 

     

+− +−

+− ++ +− −+ +− −−

−− −−

−− ++ −− −+ −− +−

= +
− − −

− − −

. 427 

 
Appendix 13 

The aim of this appendix is to factorize the function 
 ( )( ) ( )( )( ) ( )* 1 *1 a a a

a a

z z     −

= =

− + + −  . 428 

First, let us substitute the term 1z z−+  by 2Z , 
 ( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )* * * *1 2 1 2Z Z           + + − − + −− + − + − . 429 

Then assume that ( )* 0    and rewritten this expression as 
 

( ) ( )
( )

( )

( )

( )

( ) ( )

( ) ( )

* *

* *

* * * *

1 1
4

2 2 4
Z Z

       
   

       

+ − + −

− +

+ − − +

   − −
− − −      

   
. 430 

After rewriting this in the form of a quadratic function of Z , it can be factorized, 
 ( ) ( ) ( )( ) ( )( )* *

1 24 Z B Z B     − + − − , 431 

where  ( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

* *

1,2 * *

1 1

4

K
B

        


   

− + + −

+ −

− + − 
 , 432 

( ) ( ) ( )( ) ( )( )( )
2

* * * * * *2 1 2 1 16 1 1K           − + + − + − + − − + − + − − − − − . 433 

Afterwards, replace Z  by ( )1 2z z−+ , we have 

 ( ) ( ) ( )( ) ( )( )* * 1 1

1 22 2z z B z z B     − −

− + + − + − . 434 
As terms in parentheses are quadratic functions of z , they are easy to be factorized, 
 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

* *

1 2 1 2

2
z z z z z A z A

z

   
   − +

− − − −  435 

where ( ) ( ) ( ) ( )2 1
a

a az B B  = − −  and ( ) ( ) ( ) ( )2 1
a

a aA B B  = + −  for 1, 2a = . 
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Appendix 14 

 
 For 3N  , it can be shown that the determinate of the N N  matrix 
 0

0 0

p

0 0

0

N

a b b

b a

a b

b b a

 
 
 
 
 
 
  

 436 

is equal to 
    ( )  ( ) ( )( )1

1 2det p det T 2 det T 1
N N

N N Na b b b −

− −= − + −  437 

where 1TN−  is the ( ) ( )1 1N N−  −  matrix that results from deleting the first row and 
the first column of pN . 

To see this, let us consider the determinates of the matrices 3p  and 4p . For 
the matrix 
 

3p

a b b

b a b

b b a

 
 


 
  

, 438 

we have 
 

 3det p
a b b b b b

a b b
b a b a a b

= − + . 439 

As you may notice, the second and the third terms are identical, 
 

 3det p 2
a b b b

a b
b a b a

= − , 440 

and this determinate can be rewritten as 
    ( )  ( )( )2

3 2 1det p det T 2 det Ta b b b= − − . 441 

we have defined  1T a  and 2T
a b

b a

 
  
 

 for notation consistency. Then, for the 

matrix  
 

4

0

0
p

0

0

a b b

b a b

b a b

b b a

 
 
 
 
 
 

, 442 

we have 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 144 

 
 4

0 0 0

det p 0

0 0

a b b b b b

a b a b b b a b b a b

b a b a b a b

= − − . 443 

Again, the second and the third terms are identical, 
 

 4

0 0

det p 2

0 0

a b b b

a b a b b b a b

b a b a

= − , 444 

and this determinate can be rewritten as 
    ( )  ( )( )3

4 3 2det p det T 2 det Ta b b b= − +  445 

where 3

0

0

a b

T b a b

b a

 
 


 
  

. Accordingly, the determination of the determinate of the 

matrix 
 0

0 0

p

0 0

0

N

a b b

b a

a b

b b a

 
 
 
 
 
 
  

 446 

is analogous to that of the matrix 4p , and we have 
    ( )  ( ) ( )( )1

1 2det p det T 2 det T 1
N N

N N Na b b b −

− −= − + − . 447 

Moreover, we notice that  det TN  satisfies the recurrence relation 
      2

1 2det T det T det TN N Na b− −= − , 448 
for 1, 2,3,...N =  where  1det T 0− =  and  0det T 1= , and we can solve this linear 
difference equation with the generating function technique. For 0N  , we find 
 

 det T
2

N

N N

a
U b

b

 
=  

 
 449 

where ( )NU x  is the Chebyshev polynomial of the second kind for 1 1x−   . 
Therefore, equation (447) becomes 
 

  ( )1 2det p 2 1
2 2 2

NN

N N N

a a a
b U U

b b b
− −

    
= − − −    

    
. 450 

We can factorize the term on the right-hand side of this equation by finding the roots 
of the following equation 
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 ( ) ( )1 2 1 0N NxU x U x− −− − =  451 

where 
2

a
x

b

−

. By employing one of the representations of the Chebyshev 

polynomials of the second kind, 
 

( )( )
( )( )
( )

sin 1
cos

sin
N

N
U






+
= , 452 

we find that the roots are 
 2

cosi

i
x

N

 
=  

 
 453 

for 0,1,2,..., 1i N= − . Consequently, equation (450) becomes  
 

  ( )
( )

1

2 1
det p 2 cos

2

N
N

N

i

ia
b

b N



=

 − 
= −   −   

  454 

or 
 

 
( )

( )
1

2 1
det p 2cos

N

N

i

i
a b

N



=

 − 
= − −   

  
  455 

for 1 1
2

a

b
−  

−
. 

 
Appendix 15 

To determine the first term of the generating function 
 ( ) ( ) ( )( ) ( ) ( )

1

;
MN m

i i

ab ab

i

P m z P  
=

=  456 

for the matrix ( )( )p ;k z   satisfying equations (341) and (344), let us begin with 
rewriting the determinate ( )( )det I p ;k z  − 

 in appropriate form. Using equation 

(455), we have 
 ( )( )

( )( ) ( ) ( )( )( ) ( )( )* 1 *

2

det I p ;

1 2 1 ;
MN

i

i

k z

z z E z



     −

=

 − 

= − + + + −
 457 

where ( ) ( )( )
( )

( )( )11 21

2 1
; ; 2cos ;i

M

i
E z p k z p k z

N


  

− 
= +  

 
. The first term on the 

right-hand side of equation (457) can be easily factorized, 
 

( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( )

*

1 1

2

det I p ; 1 ;
MN

i

i

k z z z z A E z
z

 
   

=

 − = − − −    458 

where 
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 ( ) ( )
( )

( ) ( )( ) ( ) ( )( ) ( )( )
2 21 * * *

*

1
1 2 1 2 2

2
z           

 

 
= − − − − − − 

 
 459 

and ( ) ( )
( )

( ) ( )( ) ( ) ( )( ) ( )( )
2 21 * * *

*

1
1 2 1 2 2

2
A         

 

 
= − − + − − − 

 
. 

To determine the term ( ) ( )1

abP  , we now consider the integral 
 

( )
( )

( )( )

( ) ( )( ) ( ) ( )( ) ( )( )
*

1 1

2

adj I p ;1
;

2
1 ;

M

mab
ab N

i

i

k z
P m z dz

i
z z z A E z




  
  

−

=

 − 
=

− − −




. 460 

From the residue theorem, we obtain 
 

( )
( ) ( ) ( ) ( ) ( )( )

( )( )( )
( )( )( )

( ) ( )( )

( ) ( )( ) ( ) ( )

1

1

1 1*
1

2

2

adj I p ;
1

;

1 ;
M

M

m
ab

ab N

i

i

N m
i i

ab

i

k z

P m z
z A

E z

z P


 

    

 

=

=

 −
  

=
−

−

+





 461 

and 
 

( ) ( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( )( )

1 1

1 2

2 2
* *

adj I p ; 1 ;

1 2 2

MN

i
ab i

ab

k z E z

P

   



     

=

 − −
  

=

− − −


. 462 
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