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CHAPTER 1  

INTRODUCTION  

The pig (Sus scrofa) is one of the most important farm animals in 

agroeconomics, with a rapid growth in the global swine industry. The global pig 

population is anticipated to reach 1 062 million by 2030, up from 873 million in 

1997–1999 1, 2. Between 2010 and 2030, the global average antimicrobial 

consumption in the swine industry per year is estimated to be higher than in chickens 

and cattle 3. The highest correlation between consumption levels of antimicrobials, 

particularly streptomycin and tetracycline and the prevalence of antimicrobial-

resistant commensal Escherichia coli was shown in pigs, compared with in chickens 

and cattle 4. Antibiotic misuse can ignite antibiotic selective pressure and bacterial 

genome evolution, leading to the accumulation of antibiotic-resistant bacteria and 

altering the composition of the gut microbiota 5. Misuse and subtherapeutic doses of 

antibiotics could reduce commensal bacteria like Lactobacillus species while 

increasing pathogen infections, resulting in changes in metabolic activity and the 

immune system 6, 7. Compared with the labeled use of antibiotics with a proper 

withdrawal period, the resistance effect from antibiotic misuse is probably more 

serious and is a priority concern. Nonetheless, overuse, misuse or abuse of antibiotic 

can develop antibiotic resistance. In Fact, antibiotic use especially in food animals 

should be prescribed by veterinarians only with awareness of antibiotic resistance.   

Improper use of antibiotics not only harms the swine industry but also harms human 

health through antimicrobial resistance (AMR) gene transfer 8. Not only antibiotic 

resistance but also biofilm-associated drug resistance and metal resistance can cause 

major problems in human and animal chronic infectious diseases. Biofilm-forming 
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bacteria are embedded in a matrix and act as a barrier to prevent the entrance of 

antibiotics and sanitizer agents 9. In addition, the use of metals may potentially 

promote the proliferation of antibiotic resistance through co-location of the resistance 

genes, e.g., on a plasmid, or by a shared resistance mechanism, such as an efflux 

pump 10. Nowadays, antimicrobial prophylaxis at therapeutic levels has been widely 

used on commercial farms in Thailand to treat and prevent bacterial infection in the 

short term 11. However, studies on the effects of antimicrobial prophylaxis on the 

composition of the gut microbiota and resistome are still limited, particularly at the 

proteome level.  

International organizations, including the World Organization for Animal 

Health (WOAH), the Food and Agriculture Organization (FAO) have attempted to 

control and reduce antibiotic use in animals 8. Several countries and territories, 

including European Union, Taiwan, Mexico, Japan, South Korea, Russia, Brazil and 

Hong Kong have National ban on antimicrobial growth promotion and/or National 

veterinary prescription requirement to use antimicrobials in food animal policies 12. In 

Thailand, the Department of Livestock Development has launched a campaign for 

antibiotic-free livestock production. This aligns with the national food safety strategy 

to reduce antibiotic usage in livestock by 30% within 5 y (2017−2021) according to 

the Thailand National Strategic Plan on Antimicrobial Resistance 2017–2021 13. 

Under this campaign, decreased or absent AMR in animals reared in antibiotic-free 

conditions is expected. A previous metagenomic study has demonstrated that high 

abundances of tetracycline resistance genes were associated with significant bacteria 

in the ceca of fattening pigs raised without antibiotics 11. However, the genomic-based 

approach is unable to access the true functions of the gut microbiota and its protein 
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expression. As proteins are translated from mRNA, they can catalyze the synthesis of 

certain metabolites that can directly control the gut microbiota mechanisms. 

Metaproteomic analysis is an appropriate method for revealing the entire range of 

biological processes 14. Many studies have used a metaproteomic approach to study 

the gut microbiota of fattening pigs. For example, the gut microbiota in digesta and 

mucosa samples from different porcine gastrointestinal tract sections and the change 

of the porcine gut microbiota with different factors such as diet have been studied 15, 

16. However, the metaproteomic analysis of antibiotic resistance proteins in the 

porcine gut microbiota has never been reported. The objective of this study was to use 

a metaproteomic approach to compare the relative abundance of microbiota and the 

changes in the abundances of proteins relating to the gut resistome in the cecal 

contents of fattening pigs, raised with and without antibiotic treatment over their life 

cycles. The research questions were i.) what the difference of metaproteomics of gut 

resistome in the cecal microbiota of fattening pigs raised without antibiotics from that 

of fattening pigs raised in the ordinary industrial system was, and ii.) whether the 

AMR genes in the previous metagenomics using the same cecal samples appeared at 

the protein level. The hypotheses were i.) more metaproteomics data of gut resistome 

in the cecal microbiota of fattening pigs raised in the ordinary industrial system were 

observed compared with those of fattening pigs raised without antibiotics, and ii.) the 

AMR proteins of AMR genes in the previous metagenomics data using the same cecal 

samples were observed. 
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CHAPTER 2  

MATERIALS AND METHODS 

Animals and sample collection. Thirty-eight ceca samples (n = 38) were 

obtained from a private slaughterhouse located in Chonburi, Thailand. The samples 

included eighteen pigs raised under antibiotic-free conditions (ABF group) and twenty 

pigs raised with antibiotics in accordance with the farm's program and veterinary 

guidance (CTRL group). Twenty-three weeks old of Landrace  Large White  Duroc 

Jersey crossbred gilts and barrows were used. They weighed 90−120 kg. ABF and 

CTRL farms were separated by around 245 km. The ABF farm was previously used 

to raise conventional fattening pigs. However, this farm was renovated and approved 

by Department of Livestock Development for raising ABF pigs, and it had raised only 

ABF pigs for 2 y (4 generations). The pregnant sows in both ABF and CTRL groups 

were received the same treatments during pregnancy and parturition 11. Piglets were 

raised to weaning in farrowing pens before being moved to wean-to-finish pens on 

other farms. Their feeding programs of sows and piglets have previously been shown 

11. For the illnesses in the ABF group, Nutriphenol (tannin 73.5%) (Nutri-Concept, 

Fougères, France) was used to treat diarrhea, AgroVit MBL (an acidifier) (Agromed, 

Cairo, Egypt) was used to treat the infection of Streptococcus at wk 8, Aromax 

(essential oils) (Afrimash, Oyo, Nigeria) was used for coughing and respiratory 

problems and Bio-Complex (vitamins) (TT & D Products, Pathum Thani, Thailand) 

was used for fever, instead of antibiotics 11. For the illnesses in the CTRL group, pigs 

are cured according to the infected systems, for example, tilmicosin and doxycycline 

are used for respiratory diseases, haquinol is initially used for gastrointestinal 

diseases. The whole ceca were collected from a slaughterhouse and transported to the 
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lab within 24 h on ice. At the lab, the whole ceca were kept at −20 C until further 

analysis.  

The content and the mucus were randomly collected from 5 positions of each 

cecum sample using a biopsy punch (Medical Laboratory, Dallas, TX, USA). 

Approximately 0.3 g of each position was collected and mixed with a 1.5 ml 

RNAlater solution (Thermo Fisher Scientific, Waltham, MS, USA) to stabilize RNA 

and prevent protein degradation. All collected samples were stored at −80 °C until 

analysis.  

Protein extraction and quantification. Five positions of each cecum sample 

were pooled and centrifuged at 5000g for 5 or 10 min to remove the RNAlater 

stabilization reagent. Approximately 0.5 g of each pooled sample was resuspended by 

vortexing in 100 l extraction buffer (2% SDS, 20 mM Tris-HCl pH 7.5) and mixed 

at 1 400 rpm for 10 min at 60 °C.  Then the samples were mixed with 1 ml Tris-HCl 

buffer (20 mM Tris-HCl pH7.5, 0.1 mg/ml MgCl2, 1 mM phenylmethanesulfonyl 

fluoride, 25 U/ml benzonase) (Novagen, Madison, WS, USA) to lyse the cell wall and 

cell membrane. Cell lysis was ensured by 5 rounds of 1 min ultra-sonication set at 

50% amplitude, cycle 0.5, with intermittent resting on ice for 1 min. After 10 min of 

shaking at 1 400 rpm, 37 °C, the samples were centrifuged at 10 000g for 15 min at 4 

°C. The supernatants containing extracted protein were quantified with the Quick 

Start Bradford protein assay (Bio-Rad, Hercules, CA, USA) using 2 mg/ml bovine 

serum albumin (Thermo Fisher Scientific) as the protein standard and they were 

stored separately at −80 °C prior to the digestion procedure.  

In-solution digestion. Five micrograms of protein samples were subjected to 

in-solution digestion. Samples were completely dissolved in 10 mM ammonium 
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bicarbonate (AMBIC), disulfide bonds were reduced using 5 mM dithiothreitol (DTT) 

in 10 mM AMBIC at 60 C for 1 h and sulfhydryl groups were alkylated, using 15 

mM iodoacetamide (IAA) in 10 mM AMBIC at room temperature for 45 min in the 

dark. For digestion, samples were mixed with 50 ng/µL of sequencing grade trypsin 

(1:20 ratio) (Promega, Madison, WI, USA) and incubated at 37 C overnight. Prior to 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, the digested 

samples were dried and protonated with 0.1% formic acid before injection into LC-

MS/MS. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

Purified peptides were prepared for injection into an Ultimate 3000 Nano/Capillary 

LC System (Thermo Fisher Scientific) coupled to a Hybrid quadrupole Q-Tof impact 

II (Bruker Daltonics). Briefly, 1 l of peptide digests was enriched on a µ-Precolumn 

300 µm i.d. X 5 mm C18 Pepmap 100, 5 µm, 100 A (Thermo Fisher Scientific), 

separated on a 75 μm I.D. x 15 cm column and packed with an Acclaim PepMap 

RSLC C18, 2 μm, 100Å, nanoViper (Thermo Fisher Scientific) column. The C18 

column was enclosed in a thermostatted column oven set to 60 °C. Solvents A and B 

containing 0.1% formic acid in water and 0.1 % formic acid in 80% acetonitrile, 

respectively were supplied on the analytical column. A gradient of 5–55% for solvent 

B was used to elute the peptides at a constant flow rate of 0.30 μL/min for 30 min. 

Electrospray ionization was carried out at 1.6 kV using the CaptiveSpray.  Nitrogen 

was used as a drying gas (flow rate about 50 L/h). Collision-induced-dissociation 

(CID) product ion mass spectra were obtained using nitrogen gas as the collision gas.  

Mass spectra (MS) and MS/MS spectra were obtained in positive-ion mode at 2 Hz 

over the range (m/z) 150–2200. The collision energy was adjusted to 10 eV as a 
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function of the m/z value.  The LC-MS/MS analysis of each sample was done in 

triplicate. 

Bioinformatics and data analysis. Protein annotation was performed from 14 

genera of bacteria found in the previous metagenomic study of ABF pigs 11, including 

E. coli, Bacteroides, Lactobacillus, Bifidobacterium, Ruminococcus, Prevotella, 

Clostridium, Plesiomonas, Synergistetes, Fusobacterium, Faecalibacterium, 

Erysipelotricha, Lachnobacterium and Deferribacterium. For protein identification 

and quantification, raw files from the mass spectrometric measurements were 

analyzed using MaxQuant v 2.0.3.0 (Max Planck Institute of Biochemistry, Munich, 

Germany) together with the UniProtKB databases (released in March 2021) consisting 

of sequences of Sus scrofa 189 471 entries and bacterial proteins 14 264 464 entries. 

Using the Mascot standard setting (v. 2.4), the parameters were set to trypsin as the 

digesting enzyme, oxidation of methionine and acetylation of the protein N-terminus 

as the variable modification (+15.99 Da), carbamidomethylation of cysteine as a fixed 

modification, a maximum of two miss cleavages and a mass tolerance of 0.6 Da for 

the main search and peptide charge of 2+, 3+ and 4+. All other software parameters, 

such as only peptides with a minimum of 7 amino acids, as well as at least one unique 

peptide, were required for protein identification. To increase the confidence in protein 

identity, only proteins with at least two peptides, and at least one unique peptide, were 

considered as being identified and used for further data analysis.  The protein false 

discovery rate (FDR) was set at 1% and estimated using the reversed search 

sequences. The maximal number of modifications per peptide was set to 5. As a 

search FASTA file, the proteins present in the Sus scrofa proteome were downloaded 
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from UniProt. Potential contaminants present in the contaminants.fasta file that comes 

with MaxQuant were automatically added to the search space by the software.  

The MaxQuant ProteinGroups.txt file was loaded into Perseus version 1.6.6.0 

17 and potential contaminants that did not correspond to any UPS1 protein were 

removed from the data set. Max intensities were log2 transformed and pairwise 

comparisons between conditions were done using t-tests.  Missing values were also 

input into Perseus using a constant value (zero). For functional annotation of the 

bacterial and host proteins, specific amino acid sequences of the ABF group and 

CTRL group were identified by Gene Ontology (GO) using the UniProt database 

(http://www.uniprot.org/). T-test or Mann-Whitney U Test in R program was used for 

statistical analysis. Volcano plots of the univariate analysis were performed using R 

program. The criteria were log2 fold change > 1.5 and P-value < 0.05. 

 

Data availability. The raw metaproteomic data are available in 

ProteomeXchange: JPST001878 and PXD037218. The preview code is 

https://repository.jpostdb.org/preview/6571441566342c1b938f19 (Access key: 4842). 
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CHAPTER 3  

RESULTS 

The taxonomic distributions of cecal microbiota and relative abundance analysis.  

The compositions of the cecal microbiota of ABF and control pigs showed that 

the highest rank of protein abundance in both groups belonged to E. coli, followed by 

Ruminococcus, Lactobacillus, Bacteroides, Bifidobacterium, Prevotella and 

Plesiomonas. However, E. coli, Lactobacillus and Bacteroides were enriched in the 

controls, whereas increased protein expression of Ruminococcus and Clostridium 

appeared in the ABF group. The taxonomic distributions of the cecal metaproteome of 

both groups are shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

Fig. 1. Relative abundance of cecal microbiota of fattening pigs raised under 

antibiotic-free conditions (ABF) and the ordinary industrial system (CTRL) 

based on conserved single-copy proteins. A Taxonomic classification at the genus 

level. B Relative abundance of genera, with statistically significant differrences 

indicated. *P <0.05; **P <0.01, ***P <0.001 
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The protein expression found in E. coli. From a total of 5 449 proteins found in E. 

coli, the expression of 654 proteins was significantly different between the ABF and 

CTRL groups (Fig. 2A). Among these, 15 proteins were shown to be involved in 

antimicrobial resistance and biofilm formation. Marked expression of aminoglycoside 

3′-O-phosphotransferase [APH(3′)] and extended-spectrum β-lactamase CTX-M-14 

were notably observed in both groups, whereas extracellular solute-binding protein, 

which has a function in transmembrane transportation, bifunctional polymyxin 

resistance protein ArnA and multidrug resistance protein MdtL were observed in the 

CTRL group (Table 1 and Supplementary Table 1).  We also detected remarkable 

expression of several proteins involved in bacterial metabolisms with functions 

possibly related to antibiotic resistance, biofilm or capsule formation in the CTRL 

group such as aldose 1-epimerase, metallo-β-lactamase domain protein, allantoinase 

and phosphomannomutase CpsG. In the ABF group, expression of peptidoglycan lytic 

exotransglycosylase was prominently exhibited (Table 1 and Supplementary Table 1).  

The protein expression found in Lactobacillus and Bacteroides. 

Lactobacillus and Bacteroides were the second and third ranked microbiota in the 

CTRL group, respectively. Among 2 804 proteins found in Lactobacillus, 376 

proteins were differentially expressed between the ABF and CTRL groups (Fig. 2B). 

In the CTRL group, site-specific DNA-methyltransferase, involved in DNA 

methylation, was shown. This is an important mechanism for bacterial survival. We 

also found Asn synthase, which is involved in the Asn biosynthetic process and the 

Gln metabolic process, whereas CRISPR-associated endonuclease Cas9, a protein 

related to the defense response to viruses, was notably observed in the ABF group 

(Table 2 and Supplementary Table 2). In addition, we noticed significantly increased 
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expression of proteins involved in riboflavin and isoprenoid biosynthetic processes, 

tetrahydrofolate interconversion and carboxylic acid metabolic processes in the ABF 

group compared to the CTRL group (Supplementary Table 2). Among 2 299 proteins 

detectable in Bacteroides, 382 proteins were differentially expressed between the 

ABF and control groups. APH domain-containing protein and proteins related to 

tetracycline resistance, TetQ, TetR family bacterial regulatory protein and TetR/AcrR 

family transcriptional regulator, were prominently expressed in both groups with 

higher expression in the CTRL group, whereas marked expression of the capsular 

exopolysaccharide family protein of Bacteroides fragilis, which plays a role in 

capsule formation, was markedly shown in the ABF group. Furthermore, some 

overexpressed proteins involved in carbohydrate metabolism and bacterial survival 

were expressed in the CTRL group, such as β-N-acetylhexosaminidase and 

glycosidase, whereas GTP diphosphokinase, highly expressed in the ABF group, was 

involved in antimicrobial resistance. In addition, significantly increased expression of 

cobalt-zinc-cadmium resistance protein in the ABF group was exhibited (Table 3 and 

Supplementary Table 2).  

 The protein expression found in Ruminococcus. The relative abundance of 

Ruminococcus was significantly increased in the ABF group compared with the 

CTRL group. Among 3 446 proteins found in Ruminococcus, 487 proteins were 

differentially expressed between the ABF and CTRL groups (Fig. 2C). Among these, 

TetR family transcriptional regulator was markedly expressed in the CTRL group, 

whereas CRISPR-associated endonucleases Cas1, functioned to defend against 

viruses, was markedly observed in the ABF group. Several proteins had functions 

related to metabolism and antimicrobial resistance or bacterial virulence mostly in the 
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CTRL group, such as lipid II isoglutaminyl synthase (glutamine-hydrolyzing) subunit 

GatD, which plays an important role in antibiotic resistance and bacterial survival and 

glycerophosphoryl diester phosphodiesterase (GD-PDE), which plays an important 

role in bacterial cell adhesion. High expression of proteins involved in cell wall formation, 

including Ser/Thr protein phosphatase family protein, glutamine amidotransferase and 

dTDP-glucose 4,6-dehydratase, was strikingly shown in the ABF group (Table 4 and 

Supplementary Table 3).  

 The protein expression found in Bifidobacterium, Prevotella and 

Plesiomonas. The relative abundance of Bifidobacterium was not significantly 

different between the ABF and the CTRL groups. Among 2 578 proteins, 334 proteins 

were differentially expressed between the ABF and CTRL groups (Fig. 2D). Among 

these, multidrug export protein MepA was clearly observed in the CTRL group. In 

addition, the proteins’ response to antibiotics, including the major facilitator 

superfamily (MFS) transporter, which is a putative Tet38 tetracycline-resistance 

protein, and the transport permease protein, were evidently observed in both groups.  

The expression of protein-PII uridylyltransferase, involved in the protein nitrogen 

compound metabolic process and antimicrobial resistance, and class I glutamine 

amidotransferase, involved in the glutamine metabolic process and cell wall 

formation, was eminently observed in the CTRL group. Those involved in the fatty 

acid metabolic process (3-hydroxybutyryl-CoA dehydrogenase), the carbohydrate 

metabolic process (Glycoside hydrolase family 127 protein), and the organic 

substance metabolic process (NADH-dependent oxidoreductase) were eminently 

observed in the ABF group (Table 5 and Supplementary Table 4). Among 1 466 

proteins found in Prevotella, 161 proteins were differentially expressed between the 
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ABF and CTRL groups. Among these, GH16 domain-containing protein, involved in 

the carbohydrate metabolic processes was expressed in the CTRL group, whereas 

alpha-1,2-mannosidase was eminently observed in the ABF group.  (Supplementary 

Table 4). Among 481 proteins found in Plesiomonas, 107 proteins were differentially 

expressed between the ABF and CTRL groups. Among these, two proteins related to 

metabolism, including proteins associated with the nucleotide metabolic process 

(Nucleoside-triphosphate pyrophosphatase (NTPase)) and carbohydrate metabolic 

process (Peptidase M66) were eminently observed in the CTRL group, whereas tRNA 

(Met) cytidine acetyltransferase TmcA, related to tRNA acetylation, was eminently 

observed in the ABF group (Supplementary Table 4). 

The protein expression found in the ceca of the hosts. Among 1 276 

proteins found in the ceca of ABF and CTRL pigs, 4 proteins were expressed at high 

levels (3 ELs), including albumin, Ig lamda chain C region, trypsin and DNA 

topoisomerase 2-alpha (Fig. 2E). Ig lambda chain C region, involved in the B cell 

receptor signaling pathway, was eminently observed in the CTRL group, whereas 

DNA topoisomerase 2-alpha, involved in apoptotic chromosome condensation, was 

eminently observed in the ABF group (Table 6 and Supplementary Table 5).   
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Fig. 2 Volcano plots of univariate statistical analysis shows significantly different 

expression levels of E. coli (A; Aldose 1-epimerase [1]), Lactobacillus (B; 

Asparagine synthase [1]), Ruminococcus (C; Transcriptional regulator TetR 

family [1], Glycerophosphoryl diester phosphodiesterase [2], Glutamine 

amidotransferase [3], Glycoside hydrolase [4], CRISPR-associated endonuclease 

Cas1 [5]), Bifidobacterium (D; 3-hydroxybutyryl-CoA dehydrogenase [1], 

Glycoside hydrolase [2], NADH-dependent oxidoreductase [3]), The host (Sus 

scrofa) (E; Ig lambda chain C region [1], DNA topoisomerase 2-alpha [2]) from 

ceca of fattening pigs raised under antibiotic-free conditions (ABF) and the 

ordinary industrial system (CTRL). 
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Fig. 2 (Continued) 
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Fig. 2 (Continued) 
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CHAPTER 4  

DISCUSSION 

In this study, metaproteomic profiles and antimicrobial resistance proteins in 

ABF and CTRL groups were analyzed. E. coli is a commensal bacterium in the gut of 

humans and animals and acts as a reservoir of genotypic and phenotypic AMR 18. The 

abundance of E. coli appeared to be higher in the CTRL group and a high abundance 

of APH(3′) was observed in both groups, consistent with our previous metagenomic 

study (11) (Fig. 1; Table 1).  Additionally, multidrug resistance protein MdtL was 

significantly observed in the CTRL group. Multidrug resistance protein is involved in 

the extrusion of drugs from bacterial cells, leading to increased multidrug resistance 

19. A prominent tendency of chloramphenicol acetyltransferase CatB2 expression was 

noticed in the CTRL group, despite chloramphenicol, a phenolic antibiotic, never 

having been used in both pig groups. This is due to the ban on the use of 

chloramphenicol in food-producing animals 20. Therefore, we suggest that this protein 

probably originated from the herdsman or other animals through horizontal gene 

transfer. Moreover, proteins related to capsule, cell wall or biofilm formation were 

identified, which could potentially serve as targets for antibiotics or AMPs. These 

proteins include aldose 1-epimerase, allantoinase and phosphomannomutase CpsG. 

Aldose 1-epimerase has been reported to be involved in the biofilm formation of 

Enterococcus durans 21. Allantoinase has been shown to be involved in ferric iron 

uptake and/or capsule formation of gram negative Klebsiella pneumoniae 22. 

Phosphomannomutase CpsG has been found to play an important role in the increase 

file:///C:/Users/pookm/Dropbox/4.%20Students%20+%20Postdoc/Jan%20-%20Metaproteomics%20(ABF%20pigs)/Manuscript%20-%20Jan/Enterococcus%20durans%20with%20potential%20probiotic%20effect%20-%20ScienceDirect
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of capsular polysaccharide in E. coli following exposure to kanamycin and 

streptomycin 23. 

In addition to E. coli, Bacteroides appears to be an important reservoir for 

antimicrobial resistance proteins in these farms. The highest abundance of the AMR 

protein APH(3′) was observed in the CTRL group with a lesser abundance in the ABF 

group (Table 3). These findings are consistent with the previous metagenomic study, 

which observed a genetic abundance of the aph(3′)-III gene of 2−4%, relevant to E. 

coli and Bacteroides reservoirs 11. The high abundance of aph(3′)-III gene and 

APH(3′) is possibly associated with the use of kanamycin in sows 1−3 d after 

parturition. There was also a high number of proteins related to tetracycline 

resistance, specifically TetQ, observed in both pig groups, with a higher amount in the 

CTRL group. In the previous metagenomic study, the tet(Q) gene was predominantly 

present in both pig groups at 26−35%, with a higher amount in the ABF group 11. 

Furthermore, TetR-related proteins were markedly observed in both groups. TetR was 

previously expressed in Bacteroides fragilis and was related to the RND-family efflux 

pump system 24.  

Focusing on proteins involved in the bacterial invasion to the host cell, 

Bacteroides highly expressed β-N-acetylhexosaminidase and glycosidase in the CTRL 

group (Table 3). -N-acetylhexosaminidase is involved in bacterial cell attachment to 

host cells and degradation of glycans of the host cell membrane 25. Additionally, 

capsular exopolysaccharide family protein was markedly expressed in the ABF group. 

The capsular exopolysaccharide family protein has previously been reported to play a 

prominent role in ABF pigs against desiccation, phagocytosis, cell recognition, phage 

attack, antibiotics or toxic compounds and osmotic stress 26.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/desiccation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/osmotic-stress
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Regarding the heavy-metal resistance protein, a cobalt-zinc-cadmium 

resistance protein was significantly observed only in the ABF group (Supplementary 

Table 2). This protein is involved in the efflux of cations (cobalt, zinc and cadmium) 

and has been found in several species of bacteria. Proteins in the cation- or drug-

efflux systems assist bacteria in surviving unfavorable conditions and expel various 

substances from the cell, including cations and antibiotics 27. The increased 

abundance of cobalt-zinc-cadmium resistance protein found in ABF pigs may come 

from the use of excess Cu and Zn feed additives (10 to 250 mg/kg of body weight and 

125 to 3 000 mg/kg, respectively) for 7−10 d at weeks 13−15 of age 11.  

By contrast, in Lactobacillus, proteins exhibited beneficial effects on gut 

health with no marked expression of antimicrobial, biofilm and metal resistance 

proteins. The CRISPR-associated endonuclease Cas9, which serves as the protective 

mechanism for bacteria against viruses, was highly expressed in the ABF group 

(Table 2). Cas9 has been reported in Streptococcus pyogenes to have functions related 

to viral protection 28. Further investigation is needed to explore the reasons for the low 

yield of Cas9 in the CTRL group. Furthermore, in the ABF group, several proteins 

with beneficial effects on host health appeared, including riboflavin and isoprenoid 

biosynthetic processes, tetrahydrofolate interconversion, and the carboxylic acid 

metabolic processes  29-33 (Table 2 and Supplementary Table 2). We propose that ABF 

pigs receive probiotics containing Lactobacillus spp. at the age of 1−3 d to improve 

growth performance, intestinal morphology, antioxidant status, the immune system 

and gut health. For example, Lactobacillus spp. in ABF pigs produced beneficial 

proteins such as CRISPR-associated endonuclease Cas9 related to defense viruses and 

produced by Lactobacillus spp., and Geranylgeranyl pyrophosphate synthase related 

https://www.sciencedirect.com/topics/medicine-and-dentistry/streptococcus-pyogenes
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to isoprenoid biosynthetic process and produced by Ligilactobacillus agilis. In the 

CTRL group, several proteins involved in bacterial survival were markedly expressed, 

such as site-specific DNA methyltransferase and Asn synthase (Table 2). The DNA 

methyltransferase functions by transferring methyl groups to specific bacterial DNA 

sites in order to prevent DNA degradation by their own restriction endonucleases, 

whereas the DNA of an invader is destroyed. This mechanism is part of the 

restriction-modification system known as the bacteriophage exclusion (BREX) 

system, found in Lactobacillus 34. Asn synthase plays a role in amidating Asp in 

Lactococcus, which can reduce bacterial sensitivity to endogenous autolysins and 

cationic antimicrobials such as nisin and lysozyme 35.  

The other bacteria genus that exhibited the presence of CRISPR-associated 

endonuclease Cas1, a protein associated with the defense response against virus, was 

Ruminococcus, observed in the ABF group. Additionally, the expression of Cas1 has 

been reported in other species, such as E. coli and Sulfolobus solfataricus, where it is 

involved in the defense response to viruses 36. Typically, the Ruminococcus genera 

play an important role in the degradation and conversion of complex polysaccharides 

into various nutrients for their hosts 37. However, the expression of TetM, derived 

from transposon Tn916, was notably observed in Ruminococcus in both pig groups. 

Since the pigs in the present study had never received tetracycline, we suggest that 

these proteins possibly originated from antibiotics, particularly chlortetracycline, 

administered to sows of both groups approximately 6−7 d before parturition. 

Glycerophosphoryl diester phosphodiesterase (GD-PDE), identified in the CTRL 

group, also serves an important role in bacterial cell adhesion to the host cell and the 

degradation of the host cell membrane 
38

 (Table 4). 
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Bifidobacterium, which ranked fourth in bacterial abundance, plays a crucial 

role in host protection against pathogens through competitive exclusion, immune 

system modulation and nutrient provision. However, several transporter proteins that 

may be associated with multidrug resistance were identified. For instance, the 

presence of major facilitator superfamily (MFS) transporter and transport permease 

protein were shown in both groups, and the multidrug export protein MepA was 

observed in the CTRL group. MepA is an important component of a MATE family 

multidrug efflux pump. The expression of mepA is repressed by MepR in 

Staphylococcus aureus 39. The role of MepA in Bifidobacterium requires further 

investigation. Additionally, class I glutamine amidotransferase was significantly 

detected in the CTRL group. This enzyme plays a crucial role in peptidoglycan 

formation for antibiotic resistance, particularly in gram-positive bacteria 40.   

Regarding the proteins found in the pig ceca, significant presence of the Ig 

lambda chain C region was notified in the CTRL group. This protein is involved in 

various pathways, including B cell receptor signaling, complement activation 

(classical pathway), defense response to bacteria, innate immune response, 

phagocytosis and positive regulation of B cell activation. Overproduction of this 

protein has also been associated with disease relapse and stimulated immune 

responses in chronic inflammation 41. However, the specific mechanism behind this is 

not yet understood. Furthermore, a large amount of DNA topoisomerase 2-alpha, a 

DNA replication enzyme, was present in the ABF group. Further investigation is 

needed to determine its effect on the health of ABF pigs. The limitation of the 

metaproteomic study is that protein databases might be incomplete or may lack 

certain proteins 42. Thus, the combination of multiple database searches is required. 
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Moreover, the present study had limitations in terms of selecting bacterial species for 

investigation in metaproteomics, requiring previous metagenomics data to determine 

the microbiota proportion in cecal samples. Furthermore, we lack a second approach 

to confirm the observed protein expression. Additionally, many of the detected 

proteins were unrelated to the resistome. 

 

CONCLUSION 

This study demonstrated that the ABF group exhibited marked presence of 

CRISPR-associated endonucleases, while dominant bacterial species in the CTRL 

group exhibited higher levels of TetR, AMGR, and multidrug resistance proteins. 

These findings suggest that pigs raised without the use of antibiotics may harbor a 

higher proportion of beneficial microorganisms in their gut compared to pigs raised 

with antibiotic usage.  
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