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Chapter 1: Introduction
1.1 Background

As a financial asset, cryptocurrencies have higher volatility than other assets, especially in
recent years (Ghorbel & Jeribi, 2021). Cryptocurrencies are digital or virtual currencies that are
secured by cryptography and designed to be the medium of exchange as a fiat currency.
Investing in cryptocurrencies can help diversify portfolio risks. Furthermore, most cryptocurrencies
generally provide better average daily returns than traditional investments (Kuo Chuen et al,,
2017).

One of the most well-known cryptocurrencies is Bitcoin. It is the world's first
cryptocurrency and was introduced in October 2008 by Satoshi Nakamoto (Nakamoto & Bitcoin,
2008). Moreover, Bitcoin is the world’s largest market-cap cryptocurrency and the highest price
coin. Bitcoin trading is a viable option for investment due to its popularity and credibility. In order
to aid a trader's decision in buying or selling an investment instrument, forecasting an asset price
movements is a common practice (Alkhodhairi et al., 2021).

Candlestick price or OHLC price is a type of price representation that displays four prices
for a specific time interval. The candlestick price contains the opening price, the highest price, the
lowest price, and the closing price. The candlestick price prediction assists traders in making more
sophisticated decisions by buying financial assets at near-predicted low prices and selling at near-
predicted high prices (Wang et al., 2021). In addition, the candlestick pattern can reflect the
market circumstances and sentiment.

Data normalization is a pre-processing step that transforms data into a specific range and,
in some cases, also modifies data distribution. Data normalization is a crucial process in neural
networks and other machine learning algorithms to ensure the quality of data before it is given to
a model (Panigrahi & Behera, 2013). Normalization can also help reduce the training time, as it
starts the training process with each feature on the same scale, as well as reduce bias inside the
neural network from one feature to another (Nayak et al., 2013). Research shows that model
performance may vary when different normalization techniques are used on the same model
setting (Nayak et al.,, 2013; Panigrahi & Behera, 2013).

From the benefit of Bitcoin trading and owning the Bitcoin, finding the right time to trade
can help the trader get more profit. A forecast is a tool for decision making, so knowing more
information like candlestick price helps the trader make a better decision. In addition, the higher

quality of data given to a model can improve model forecasting performance.



1.2 Objectives of the study

1.

To create a model to predict the Bitcoin candlestick price for the next period using the
neural network technique.

To explore feature transformation aiming to enhance the forecasting performance of the
neural network. Specifically, various data normalization (scaling) such as z-score, min-

max, and relative change normalization, will be investigated.

To explore additional candlestick price prediction approaches that are not OHLC price

prediction, for example, candle wick (CULR) prediction, etc.

1.3 Scope of the study

1.

This study will analyze Bitcoin daily price during August 2017 — August 2022 on the
Binance trade exchange.

This study will focus on guantitative methodologies and will investigate only
endogenous variables.

The investigated neural network technique is a recurrent neural network, which includes
Long short-term memory (LSTM) and Gated recurrent unit (GRU).

The model performance improvement method in this study is the feature transformation
technique, and the investigated feature transformation technique is data normalization
(scaling), such as Z-Score, Min-Max, and relative change normalization.

The forecasting performance metrics in this study are Mean absolute percentage error

(MAPE) and Root mean square error (RMSE).

1.4 Expected outcomes of the study

1.
2.
3.

Obtain a model to predict the Bitcoin candlestick price
Understand the effectiveness of various normalization techniques

Acquire different approaches to create candlestick price prediction

1.5 Expected benefits of the study

1.
2.

Accurate candlestick price forecasting helps the investor to make a higher rate of return.
The normalization technique developed in this research can be applied to other time
series data using neural networks in the future.

The candlestick price prediction method developed in this research can help the

investor to make a better decision.



Chapter 2: Related theories and literature review
2.1 Related theories
2.1.1 Neural network
The neural network is a type of algorithm in artificial intelligence that performs data

processing in a manner inspired by the human brain. It is a subset of machine learning and the

foundation of deep learning algorithms.

2.1.2 Recurrent neural network (RNN)
Recurrent neural networks are neural networks that have been modified to handle
sequence data. It used the previous state (memory) as a feature of the current state, so its

computation considers historical information.

2.1.21 Simple RNN

A simple recurrent neural network or Simple RNN is a basic type of RNN that receives

<t> <t-1>

input data (X~ ) and the previous hidden state (@ ) before passing them to the activation
function (), which is used to update the hidden state. The hidden state can be calculated by
equation 2.1 and the output by equation 2.2. A pictorial representation of a single simple RNN

unit is shown in Figure 1.

a® =g,W,a"" +W_x" +b,) (2.1)

y<t> — gz(vvyaa<t> +by) (2'2)

<t>

Y

1
Waa by o ®— Wya
<t—1> @ a<t>
asdl & W
L &
Wor—@— i,

l

x(l)

Figure 1 A simple RNN unit representation (Afshine Amidi)

Where @ = current cell hidden state
X" = current cell input data
Wea, W, Wya are weighted of hidden layers

ba, by are bias of hidden layers



0, = activation function for hidden state

g, = activation function for output

2.1.2.2 Long short-term memory (LSTM)

Long short-term memory is a type of RNN which is capable of handling long-term
dependencies. The core principles of LSTM are gate mechanisms and cell states. The cell state is
a unit memory of the network. The gates are mathematical functions that control information
flow in the cell and the information memorizing process. There are three types of gates in LSTM:
input gate, output gate, and forget gate. A pictorial representation of a single Long Short-Term

Memory unit is shown in Figure 2.

o<t=1> / <t>

o <t-1> 1 1

. a<t>

x<t> ‘

N

Figure 2 An internal Long short-term memory (LSTM) representation (Afshine Amidi)

The gates and cell states are composed of mathematical functions and operations that
serve as the basis for data manipulation. The related functions are the hyperbolic tangent ( tanh )
and the sigmoid function (o), which are non-linear functions. Tanh regulates the network's
values, keeping them between -1 and 1, whereas sigmoid function output values range from 0 to
1.

The Hadamard product, also known as the element-wise product (¥), is an important
operator in this algorithm. It is an operation that takes two matrices of the same dimensions and

multiplies each element corresponding to the same row and columns.

The cell state or memory cell collects information from the previous cell state (C<t_l>)

<t>

and passes current cell state (C ) to the next cell. The current cell state () is calculated

by combining a candidate cell state (G") which is considered as new information and the

previous cell state (™). The candidate cell state and the current cell state can be calculated

by equations 2.3 and 2.7 respectively.

The forget gate (I'; ) determines whether the cell should retain the previous cell state (

<t-1>
)

c or discard it via looking at input from the current timestep ( X”) and the old hidden

<t-1>
)

state (@ . Since the activation function of the forget gate is the sigmoid function, the output



value of this gate is a number between 0 and 1. When the output value is close to 0, the cell

forgets the previous cell state (c™)

. When the value is 1, it indicates that the cell must store
data. The forget gate is shown in equation 2.5.

The input gate or update gate (Fu ) determines how much to update the previous cell
state with a new candidate (6<) by watching the inputs from the current timestep (X*)and
the old hidden state (2~ like the forget gate. In addition, the update gate works together
with the forget gate to create the current cell state to pass the value to the next cell. The input
gate can be calculated by equation 2.4.

The output gate (Fo ), which can be calculated by equation 2.6, regulates how much to
reveal the current cell state (C*") to the current cell hidden state (a™). Like the other gates,
the output gate value can be calculated by the current timestep (X™) and the old hidden state

(a™™). Then the current hidden state (a™) is generated by the output gate and tanh function

of the current cell state as shown in equation 2.8.

¢ =tanh(W_[a"",x*"]+b,) (2.3)
T, = oW, [a">, x>]+b,) (2.0)
I =cW, [a*",x"]+b,) (2.5)
r,=cW,[a*",x"]+b,) (2.6)
CREL X6 4T >t (2.7)
a*” =T, *tanh(c*") (2.8)

Where €% = candidate cell state, ¢ = current cell state,

¥ = current hidden state, X = the current timestep input

a
Fu = update gate, Ff = forgot gate, FO = output gate

Wc = cell state weight, Wu = update gate weight, W, = forgot gate weight,
W0 = output gate weight, bc = cell state bias, bu = update gate bias,

bf = forgot gate bias, and bO output gate bias



2.1.2.3  Gated recurrent unit (GRU)
Gated recurrent unit (GRU) uses the same core principle as the LSTM but has a different
architecture and fewer parameters. GRU has only two types of gates: update gate and relevance

gate. A pictorial representation of a single Gated recurrent unit is shown in Figure 3.

e<t—1> f | o<t>
6<t>
T
g <t—1>_ 1 1 a<t>
&
w<t>‘

A _a

Figure 3 An internal Gated Recurrent Unit (GRU) representation(Afshine Amidi)

The relevance gate (Fr ), also known as the reset gate, determines the importance of
the previous cell state (™) in candidate cell state (E") calculation. The prior timestep cell

state (C*')

and the present input data (X" )are parameters of this gate. The relevance gate
is represented by equation 2.11, while the candidate cell is represented by equation 2.9.

The update gate (I',), which can be calculated by equation 2.10, decides how much to
update a new candidate (6 with the previous cell state by watching the inputs from the
current timestep (X ) and the previous cell state (¢, Inversely, the update gate
determines the amount to discard the prior timestep cell state as demonstrated in equation 2.12.

Unlike LSTM, the current hidden cell state in GRU is equal to the present cell state, as shown in

equation 2.13.

gt = tanh(W, [T, x> X<t>] +h,) (2.9)
Fu _ O'(VVU [C<t—1>’ X<t>] + bu) (2.10)

I, =o(W.[c"™, x"]+b,) (2.11)
C<t> — ru *(~:<t> + (1_l-u)*c<t—1> (2.12)
a_<t> _ C<t> (2.13)

Where €% = candidate cell state, ¢ = current cell state,

<t

a™” = current hidden state, X = the current timestep input



Fu = update gate, I'; = forgot gate, Fr = relevant gate
Wc = cell state weight, Wu = update gate weight, Wr = relevant gate weight,

bc = cell state bias, bu = update gate bias, br = relevant gate bias

2.1.3 Forecasting performance metric
When evaluating the performance of a time series model, there is a mathematical
notation is developed for forecasting which is summarized as follows:

Y, = the actual value of a time series at period t
Y, = the forecast value for period t

A

€ =Y, —Y, = the residual or forecast error

2.1.3.1 Mean absolute error (MAE)

The mean absolute error (MAE) can be calculated by averaging the absolute error as
shown in equation 2.14. It provides an average size of the miss without direction consideration

and measures the accuracy by averaging the magnitudes of the error.

1¢ 5
MAE:_Z|YI_YI | (2.14)
4 B
2.1.3.2 Mean absolute percentage error (MAPE)

The mean absolute percentage error (MAPE) is calculated by averaging the ratio of the
absolute error in each period and the absolute of the actual value, as shown in equation 2.15.

The final value is then multiplied by 100 and expressed as a percentage.

LYY
MAPE ==t x100%, Y, #0 (2.15)
n t=1 t
2.1.3.3 Mean square error (MSE)
The mean square error (MSE) is determined by averaging the squared of error, as given in
equation 2.16. This measurement penalizes large forecasting errors.
1 s 2\2
MSE ==> (Y, -Y,) (2.16)
n

t=1



2.1.34 Root mean square error (RMSE)
The root mean square error (RMSE) is determined by square root of averaging the
squared of error, as given in equation 2.17. This measurement penalizes large forecasting errors.

This error has the same unit as the predictor and inherits the MSE's characteristic in penalizing

RMSE = /32(\4—\(})2 (2.17)
e

2.1.4 Classification metrics

large forecasting errors.

The classification metrics are used to evaluate the performance of classification
problems and are based on the confusion matrix. The confusion matrix is a table that shows the
number of true positives, true negatives, false positives, and false negatives predictions made by

the model compared to the actual labels, as shown in Table 1.

Table 1 Confusion matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

2.1.4.1 Accuracy
Accuracy is the proportion of correctly classified samples out of all samples, as shown in
equation 2.18.
TP+TN

Accuracy = .
Y P Y ENLFP TN (218

2.1.4.2 Precision

Precision is the proportion of true positives out of all predicted positives, as given in

equation 2.19.

Precision = L
P+ EP (2.19)

2.1.4.3 Recall

Recall is the proportion of true positives out of all actual positives, as given in equation

2.20.



Recall = L (2.20)

P+FN

2.1.4.4 F1-Score

F1 score is the harmonic mean of precision and recall, balances both metrics, as shown

in equation 2.21 - 2.22.

y Precision x Recall
Precision + Recall

F1=2 (2.21)

g 2P
2TP + FP + FN

(2.22)

2.1.5 Data normalization and scaling techniques

2.1.5.1 Z-Score normalization
To normalize the data, this technique uses the mean ( 2 ) and standard deviation (o) of
the original data as shown in equation 2.23. The training set's mean and standard deviation were

utilized for z-score normalization.

2.1.5.2 Min-Max normalization

As demonstrated in equation 2.24, the minimum value ( X, ) and maximum value (X
) of the original data are used to linear transform the data. The training set's minimum and
maximum are utilized to transform the training set and the other sets for the min-max
normalization.

X =2 Kin_ (2.24)
Xinax ~ Xnin

2.1.53 Relative change normalization

The relative change normalizes the window elements by using the first value of the
sequence ( Xg) as illustrated in equation 2.25. In general case, the first value of the sequence is

the first value of the training set.

X = (2.25)
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2.1.6 Skewness

Skewness is a statistical property that measures the asymmetry of the probability
distribution. This study utilizes Pearson's second coefficient of skewness to measure the skewness
which can be calculated by equation 2.26. The skewness value interpretation is shown in Table

2.

3(X —median
skewness = 3(x—median) (2.26)
S
Table 2 Pearson's second coefficient of skewness value interpretation
Skewed left Skewed right
Level of skewness

(negatively skewed) (positively skewed)
Approximately symmetric -0.5 < skewness < 0 0 < skewness < 0.5
Moderately skewed - 1.0 < skewness < -0.5 0.5 < skewness < 1.0
Highly skewed skewness < -1.0 skewness > 1.0

2.2 Related work

2.2.1 Studies relating to cryptocurrency price prediction with deep learning

Many researchers have explored various techniques and algorithms to predict the
cryptocurrency market. Some of which involve neural networks. GRU, LSTM, and MLP were used
to predict the Bitcoin's next-hour price by using 24 hours of data as input (Jiang, 2020). They were
compared by changing the neural network cell type and the number of layers. The results
revealed that the LSTM 2 layers outperform all others, and GRU 2 layers outperform all others
when tested on cross validation. Another study examined the performance of LSTM and GRU by
altering the size of the window and the number of days ahead in a day trading period. The study
concluded that the optimal settings for this experiment were a window size of 12 and days
ahead of 7 performed by LSTM, while GRU outperformed LSTM in other situations (Muniye et al.,
2020)

Some papers are talking about a comparison of traditional forecasting techniques and
neural network techniques. The classical forecasting method, linear regression, was compared to
the Long Short-Term Memory (LSTM) in (Kavitha et al., 2020), and it was discovered that the
LSTM outperformed the old technique in terms of R2, MAE, and RMSE. In (Phaladisailoed &
Numnonda, 2018), the Gated Recurrent Unit, and regression methods: Theil-Sen Regression and
Huber Regression, were compared to LSTM. The recurrent neural networks outperformed the
regressions in terms of R2, and GRU had the best MSE while MSE of the regressions were better

than the LSTM. A well-known time series forecasting model such as ARIMA was also compared to
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modern techniques such as simple recurrent neural networks (RNN) and LSTM in terms of RMSE
and classification performance, where the labels for categorization were price up, price down,
and no change. Z-score normalization technique was applied. Deep learning algorithms
outperformed ARIMA in terms of RMSE and accuracy, but not precision (McNally et al., 2018).
Five cryptocurrencies' close prices, including Bitcoin price, were predicted by OHLC prices and
volume (Hansun et al., 2022). They also compared the performance of LSTM, GRU, and
bidirectional LSTM (Bi-LSTM) using the min-max normalization. The results show that GRU
outperformed the others with an RMSE of 1,777.31.

A novel hybrid technique based on LSTM and GRU for cryptocurrency prediction was
applied to predict Litecoin and Zcash's next-day price by using the previous days' weighted price
(mean of OHLC price) and the Bitcoin price direction (Tanwar et al., 2021). This study also tested
the algorithm with various window sizes (1, 3, 7, and 30 days) and compared the novel technique
to Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). The results showed that the
novel technique outperformed the GRU and LSTM in both Litecoin and Zcash prediction.

There is also a study that examined the effect of an external factor in cryptocurrency
prediction with the recurrent neural networks, which are simple RNN, LSTM, and GRU (Vanderbilt
et al,, 2020). They compared using the previous-day price to predict the next-day price with using
the previous-day price and google trends data and tested on three cryptocurrencies: Bitcoin,
Ripple, and Litecoin. The study concluded that Google trends data is not a useful data input for
RNN models in cryptocurrency price prediction, and GRU outperforms all others. The summary of

this topic is shown in Table 3.

Table 3 Studies relating to cryptocurrency price prediction with deep learning

Authors Data Features Output Techniques Results
(Jiang, 2020) Bitcoin minute price Previous 24-hour price | Next hour price | Multi-Layer - The best
but convert to Perceptron (MLP), RMSE:19.020
hourly price (Jan Gated Recurrent by LSTM
2012 to July 2018) Unit (GRU),

Long Short-Term
Memory (LSTM)

(Muniye et al., Bitcoin daily price Previous day price in Next day price Gated Recurrent - The best RMSE:
2020) different window size in different Unit (GRU), 0.045
number of Long Short-Term - The best MAPE:
days ahead Memory (LSTM 0.030
by LSTM
(Kavitha et al., Bitcoin minute price Previous day weighted Next day Long Short-Term - LSTM: RMSE =
2020) but convert to a day | price (Mean of OHLC weighted price Memory (LSTM), 95.067, MAE = 64.389,
period price (Jun price) (Mean of OHLC | Linear Regression R’ =0.981
2012 to July 2019) price) - Linear Regression:

RMSE = 296.747, MAE
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Authors Data Features Output Techniques Results
=143.704, R = 0.908
(Phaladisailoed | Bitcoin minute price OHLC price Next day Gated Recurrent - LSTM: MSE =

& Numnonda,

2018)

but convert to a day
period price (Jan

2012 to Jan 2018)

weighted price
(Mean of OHLC

price)

Unit (GRU),

Long Short-Term
Memory (LSTM),
Theil-Sen
Regression, Huber

Regression

0.000431, R* =0.992

- GRU: MSE = 0.00002,
R’ = 0.992

- Theil-Sen
Regression: MSE =
0.000375, R* =0.99176
- Huber Regression:
MSE = 0.000373, R?
=0.99179

(McNally et al.,
2018)

Bitcoin daily close
price (August 2013
to July 2016)

- SMA 5 days close
price

- SMA 10 days close
price

- de-noised close price

Next day close

price

Recurrent Neural
Network (RNN),
Long Short-Term
Memory (LSTM),
Autoregressive
integrated moving

average (ARIMA)

- LSTM: RMSE = 6.87%
Precision = 35.50%

- RNN: RMSE = 5.45%
Precision = 39.08%

- ARIMA: RMSE =
53.74%

Precision = 100 %

(Hansun et al., Bitcoin daily price - OHLC price and Next day close - Gated Recurrent - LSTM:
2022) (Sept 2014 to Oct volume price Unit (GRU) RMSE=2518.02
2021) - Long Short-Term MAPE = 4.23%
Memory (LSTM) - Bi-LSTM:
- Bidirectional Long RMSE = 2222.73
Short-Term MAPE = 3.80%
Memory (Bi-LSTM) - GRU: RMSE =
1777.30
MAPE = 3.50%
(Tanwar et al., Daily price of - weighted Next day - Gated Recurrent Litecoin:
2021) - Litecoin cryptocurrency price cryptocurrency | Unit (GRU) - GRU: MSE = 0.02113
(Aug 2016 - May and parent coin’s price - Long Short-Term (1 day)
2021) direction (Bitcoin Memory (LSTM) - LSTM: MSE = 0.0285
- Zcash direction: up and - LSTM-GRU hybrid (1 day)
(Oct 2016 - May down) - Hybrid: MSE =
2021) 0.02038 (1 day)
- Bitcoin ** tested algorithm Zcash:
with various window - GRU: MSE = 0.00462
size: 1,3,7, and 30 (7 days)
days - LSTM: MSE =
0.00497 (3 days)
- Hybrid: MSE =

0.00461 (1 day)

(Vanderbilt et
al., 2020)

Daily price of
- Litecoin

- Ripple

- Bitcoin

(Jan 2015 -
Apr 2020)

Compare two
methods

- previous day price
- previous day price
with Google trends

data

Next day price

- Simple RNN

- Gated Recurrent
Unit (GRU)

- Long Short-Term
Memory (LSTM)

Bitcoin:

- RNN: RMSE = 569.02
- RNN with google
trend: RMSE = 569.41
- LSTM: RMSE =562.08
- LSTM with google
trend: RMSE = 553.19
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Authors Data Features Output Techniques Results

- GRU: RMSE = 403.23
- GRU with google
trend: RMSE = 411.09

2.2.2 Studies relating to cryptocurrency candlestick price prediction with deep

learning

Limited research has been on candlestick or OHLC Bitcoin price prediction. While most
studies on the candlestick price utilized it as a feature to predict the price, (Alkhodhairi et al.,
2021) employed the candlestick as both a feature and an output. The study examined the
performance of LSTM and GRU in predicting OHLC price, as well as determined the candlestick
interval (4 h, 12 h, or 24 h) that rendered the most accurate forecast. This study used decimal
scaling for feature normalization and used a novel technique called real-time data prediction,
which involves feeding new data to the whole dataset and fitting the data again to update the
model. The findings showed that the LSTM with a 4-h interval along with the real-time data

prediction technique yielded an optimal performance, as shown in Table 4.

Table 4 Studies relating to cryptocurrency candlestick price prediction with deep learning

Authors Data Features Output Techniques Results

(Alkhodhairi
et al,, 2021)

Bitcoin minute price
but convert to 4h, 12h,
24h price

(Jan 2017 to Aug 2020)

Previous interval

OHLC

Next interval

OHLC

Long Short-Term
Memory (LSTM),
Gated Recurrent

Unit (GRU)

- Real time prediction
MAPE: 0.63 % by
LSTM

- Historical prediction

MAPE: 2.60 % by
LSTM

2.2.3 Normalization technique in cryptocurrency price prediction with deep
learning
Table 5 shows an overview of previous research's normalization techniques according to
2.2.1-2.2.2. In the investigated studies, four techniques appear: Min-Max normalization, Z-score
normalization, relative change normalization, and Decimal scaling. In addition, the most popular

normalization technique in the explored studies is Min-Max scaling.

Table 5 Studies relating to cryptocurrency candlestick price prediction with deep learning

Authors Data Algorithm Technique

(Jiang, 2020) Bitcoin minute price but convert - Multi-Layer Perceptron (MLP) - Min-Max

- Gated Recurrent Unit (GRU)
- Long Short-Term Memory (LSTM)

to hourly price (Jan 2012 to July
2018)

- Relative change

(Muniye et al., 2020) Bitcoin daily price - Gated Recurrent Unit (GRU) Min-Max

(Jan 2014 to Feb 2018) - Long Short-Term Memory (LSTM)
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Authors Data Algorithm Technique
(Phaladisailoed & Bitcoin minute price - Long Short-Term Memory (LSTM) Min-Max
Numnonda, 2018) but convert to a day period price - Linear Regression

(Jun 2012 to July 2019)
(Kavitha et al., 2020) Bitcoin minute price but convert to - Gated Recurrent Unit (GRU) Min-Max
a day period price (Jan 2012 to Jan - Long Short-Term Memory (LSTM),
2018) - Theil-Sen Regression
- Huber Regression
(McNally et al., 2018) Bitcoin daily close price - Recurrent Neural Network (RNN) Z-Score
(August 2013 to July 2016) - Long Short-Term Memory (LSTM)
- Autoregressive integrated moving
average (ARIMA)
(Hansun et al., 2022) Bitcoin daily price (Sept 2014 to - Gated Recurrent Unit (GRU) Min-Max
Oct 2021) - Long Short-Term Memory (LSTM)
- Bidirectional Long Short-Term
Memory (Bi-LSTM)
(Tanwar et al., 2021) Daily price of - Gated Recurrent Unit (GRU) Z-Score
- Litecoin (Aug 2016 - May 2021) - Long Short-Term Memory (LSTM)
- Zcash (Oct 2016 - May 2021) - LSTM-GRU hybrid
- Bitcoin (Aug 2016 - May 2021)
(Vanderbilt et al., Daily price of - Simple RNN Min-Max

2020)

- Litecoin (Jan 2015 - Apr 2020)
- Ripple (Jan 2015 - Apr 2020)
- Bitcoin (Jan 2015 - Apr 2020)

- Gated Recurrent Unit (GRU)
- Long Short-Term Memory (LSTM)

(Alkhodhairi et al.,
2021)

Bitcoin minute price
but convert to

4h, 12h, 24h price
(Jan 2017 to Aug 2020)

- Long Short-Term Memory (LSTM)
- Gated Recurrent Unit (GRU)

Decimal scaling

2.2.4 Studies relating to candlestick price and candlestick price prediction

method

Some previous works explored candlestick price prediction methods. (Alkhodhairi et al.,

2021) used the previous time interval OHLC price to predict the next OHLC price with LSTM and

GRU on Bitcoin data. They used MAPE, RMSE, MAE, and R2 to measure the performance of the

model. Another study introduces a novel technique to forecast the candlestick price of Chinese

stock market index by transforming the OHLC (Wang et al., 2021), as shown in equation 2.22 —

2.24. They applied this technique to vector auto-regression (VAR), and vector error correction

(VEQ). Moreover, they guarantee that the output of this technique does not violate the

candlestick constraint. This study used MAPE, RMSE, and Accuracy ratio (average of the ratio of

length intersection and union between actual and predicted value) to measure the performance

of the model.
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(2.22)

(2.23)

(2.24)

The Convolutional Neural Network (CNN) model, which is well-suited to computer vision,

is also used to predict the time series data. (Guo et al., 2018) predicted the next day price

movement (direction) of Taiwan stock index by converting candlestick data (OHLC) to images and

using CNN-Autoencoder to generate features for a 1D-CNN model to predict price movement.

Another research recognized the candlestick pattern with Convolutional Neural Network (CNN)

(Chen & Tsai, 2020). They also compared encoding OHLC price to image with Gramian Angular

Field (GAF), which converts time series to polar coordinate, with encoding CULR price to the

image. Moreover, they compared this technique with Long Short-Term Memory (LSTM). The result

showed that using CULR with CNN to predict the candlestick pattern outperformed the other

setting. The summary of this topic is shown in Table 6.

Table 6 Studies relating to candlestick price and candlestick price prediction method

Authors Data Output Algorithm Techniques Measurement
(Alkhodhairi | Bitcoin minute price Next interval Long Short-Term use OHLC price to - MAPE
et al,, but convert to 4h, OHLC Memory (LSTM), predict OHLC price - RMSE
2021) 12h, 24h price Gated Recurrent - MAE
(Jan 2017 to Aug Unit (GRU) -R2
2020)
(Wang et Index of Chinese OHLC price - Vector auto- use transformed OHLC - MAPE
al,, 2021) stock market regression (VAR), price to predict - RMSE
- Vector error transformed OHLC price - Accuracy ratio
correction (VEC)
(Guo et al,, Taiwan stock index next day price Convolutional - map candlestick data - Accuracy
2018) Movement Neural Network (OHLQ) to image - Precision
(Up/Down) (CNN) - CNN-Autoencoder to - Recall
create feature for 1D- - F1-Score
CNN model to predict
price movement
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Authors Data Output Algorithm Techniques Measurement
(Chen & EUR/USD 1-minute candlestick - Convolutional Compare two methods Accuracy
Tsai, 2020) price pattern Neural Network - encoded OHLC price
(January 1, 2010, to (CNN) - LeNet to image with Gramian
January 1, 2018) - Long Short-Term Angular Field (GAF)
Memory (LSTM) - encoded CULR price
to image with Gramian
Angular Field (GAF)

From the above studies, there has been limited research on cryptocurrency candlestick
price prediction. It was also found that RNNs generally outperformed MLP and traditional
statistical models (such as ARIMA) in terms of forecasting error. Among the related work being
investigated, the most popular normalization technique is the min-max normalization. There has
been little research on cryptocurrency candlestick price prediction, and few studies have
explored the performance of the candlestick price prediction method with recurrent neural
networks in terms of both direction accuracy and forecasting error. Additionally, external factors
do not appear to improve model forecasting performance.

Among the investigated studies, two studies were found to be the most similar to our
work. The first study is (Alkhodhairi et al., 2021). They predicted the OHLC price of the next time
period using the previous time period's OHLC price. They utilized LSTM and GRU models, which
are similar to our work in terms of the model used. However, they did not investigate the effects
of normalization on forecasting performance or the impact of different candlestick construction
methods.

Another research similar to our work is (Jiang, 2020). The study focused on investigating
the performance of two normalization approaches: whole set min-max normalization and sliding
window relative change normalization on Bitcoin hourly price using LSTM, GRU and MLP model.
However, they did not explore other normalization techniques such as z-score normalization or
other combinations of normalization approaches (such as sliding window and whole set
normalization) and techniques (such as min-max normalization). Additionally, they only
investigated two combinations of normalization. Furthermore, the study did not investigate the
reasons why sliding window normalization outperforms whole set normalization.

Therefore, this research aims explore cryptocurrency candlestick price prediction using
RNNs and simultaneously investigate various normalization techniques and their impact on RNNs
performance. Additionally, this study aims to explore additional candlestick price prediction

approaches that are not OHLC price prediction, such as candle wick (CULR) prediction
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Chapter 3: Methodology
3.1 Problem approach

Since the objective of this research is to predict the Bitcoin candlestick price of the next
day and the Bitcoin historical trading data is time-series data, the suitable quantitative forecast
method for this problem should be the time-series method or the machine learning method that
the model can handle sequential data. Price prediction is a financial problem, so it requires high-
accuracy prediction. In addition, the Bitcoin price is a high volatility trading data, so to precisely
predict the price, complex models like neural networks, which are the machine learning method,
are suitable to use to solve this problem instead of classical time series forecasting methods
(McNally et al., 2018).

The neural network type which is suitable for time series forecasting is Recurrent Neural
Networks (RNNs) because it is modified to handle sequence data. Based on the previous work in
section 2, it is unclear whether LSTM or GRU perform better. As a result, both LSTM and GRU
were used in all experiments in this work.

Our workflow is structured into three main phases: data preparation, feature
construction, and model construction, as shown in Figure 4. The process begins with obtaining
raw data, followed by cleansing the data, and performing feature selection and exploratory data
analysis (EDA). In the feature construction phase, we split the data into three distinct sets,
normalize the data, and create sliding windows. Then, we perform EDA once again. In the model
construction phase, we train the models, tune their hyperparameters, and perform the inverse

transformation or scaling back to the original scale. Finally, we evaluate the models'

performance.
Feature Exploratory
Data Getrawdata [—| Datacleansing —» . —» dataanalysis
. selection
Preparation (EDA) —‘
)
Feature . o Data Create Exploratorydata analysis
- Validati £ (10%); — B
Construction Split data normalization slidingwindow (feature, target)
T
Model .
. Train models Hyperparameters Inverse Evaluate the
Construction (fit the parameters) tuning transformation model's performance

Figure 4 Workflow



3.1.1 Data source
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This research uses historical trading data sets from Cryptodatadownload website

(https://www.cryptodatadownload.com) of Bitcoin (BTC) and Tether coin (USDT), which is a stable

coin where 1 USDT is approximately 1 USD. The

Cryptodatadownload website retrieves data from the Binance exchange, the world's

largest cryptocurrency exchange by trading volume. The raw data from Cryptodatadownload

includes ten columns, namely Unix timestamp, date, symbol,

opening price, highest price, lowest price, closing price, volume (Crypto), volume Base,

and trade count. The meanings of each column are shown in Table 7. This study focuses on a

one-day timeframe from August 17, 2017 to August 29, 2022 or 1,840 rows.

Table 7 Raw data definitions

Column

Definition

Unix timestamp

total of seconds that used to convert to local time zone

date

timestamp

symbol

symbol for which cryptocurrency converts to base coin

opening price

the time period's opening price

highest price

the time period's highest price

lowest price

the time period's lowest price

closing price

the time period's closing price

volume (Crypto)

volume in the transacted Crypto (BTC)

volume Base

volume in the base/converted crypto (USDT)

trade count

number of trades for the given time-period

* BTC = Bitcoin, USDT = Tether coin which is a stable coin cryptocurrency and 1 USDT is approximate 1 USD

3.1.2

Data preparation

The steps of data preparation are as follows:

1. Data cleaning

Any empty rows and columns were eliminated. The date format was updated to be

consistent across the entire dataset.

2. Feature selection

This work focuses on the candlestick prices (OHLC prices) which are open price, high

price, low price, and close price.

3. Exploratory Data Analysis

This work used time series plots, decomposition plots, and histograms to analyze the

data.
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3.1.3 Feature construction
This study divided feature construction into three phases: Data splitting, normalization,
and sliding window construction.
The steps of model construction are as follows:

1. Data splitting

The data was divided into three sets: the training set contains 80% of the data for model
training, the validation set contains 10% for hyperparameter tuning, and the test set contains
10% for model evaluation.
2. Data normalization

From related work (chapter 2.1), the most popular normalization technique is min-max
normalization, so we used this technique with the minimum and maximum values of the training
set to normalize the data.
3. Sliding window construction

The sliding window is a feature construction method that uses a rolling origin to separate
data into small sets. This research used a fixed size sliding window, implying that each sliding
window contains the same number of members which have some overlapped members. The
sliding window of the OHLC price was used as the model's input in this experiment, as shown in
equation 3.1, and the model's output is described in equation 3.2 which refers to the OHLC price
of the next time step. Because of sliding window size effect on the forecasting performance
(Tomar et al., 2022), different sliding window sizes give different errors, this study tested each
treatment (algorithm and normalization technique) with various sliding window sizes which are 3,

5,7, 15, and 30 days.

Xt =(Xt’xt+l’xt+2""’xt+w—l) (3.1)
Yt = (XI+W) (3.2)

Where X, is vector of OHLC price at time step t, w is sliding window size, Xt is input sliding

window for model, Y, is output for model.

3.1.4 Model construction
3.1.4.1 Model configuration

The prediction of candlestick prices is a multivariate forecasting problem. Previous
research (Du et al., 2019) demonstrated that employing a multiple-feature model outperforms
using single-feature models, so this study used the multiple-feature model, as illustrated in Figure

5. Furthermore, the model architecture is Many-to-one, with x representing the feature's time
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step, y representing the model's output, and a representing data transfer between time steps, as

illustrated in Figure 6.

Feature Output

Figure 5 Feature diagram of the model

2

N \| S
$<1> $<2>| I<Tm>
N\ /‘ = J N J

Figure 6 Structure diagram of the model (Afshine Amidi)

3.1.4.2 Model training and optimization
After the experiment settings have been determined, the models are trained and
optimized by the following steps:
1. Train each model or algorithm on training set with MSE loss function
2. Hyperparameter tuning with Bayesian optimization by improving the validation set MSE
and optimizing the hyperparameter as shown in Table 8. Note that we fixed the
hyperparameter shown in Table 9.
3. Inverse transform the output from standardized data to the original representation (scale
back)
4. Evaluate the performance with MAPE and RMSE on the test set
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Table 8 The tuned hyperparameter and tuning range

Hyperparameter Range Step
Units 16 - 256 1
Dropout 0.2-05 0.1
Epoch 10 - 300 1

Batch size 32 -256 Power of 2
Learning Rate 10%-1 log scale
epoch decay 10 - 50 10

Table 9 The fixed hyperparameter

Hyperparameter Value Note
Activation function tanh default of each architecture unit type
Output Activation function Linear default of each architecture unit type
Optimizer Adam Based on the previous work

(Alkhodhairi et al., 2021)

Number of Layers 2 Based on the previous work

(Alkhodhairi et al., 2021) (Jiang, 2020)

Decay rate 0.5 parameter for learing rate step decay

3.1.5 Tools and programming language

Python 3.7 is the main programming language used in this study, which runs on Google
Colab. Furthermore, R 4.1 was used for exploratory data analysis (EDA). This project made use of
several tools and Python libraries. For data pre-processing and modification, NumPy and Pandas
were used. Matplotlib was used for graphical display of information and data, often known as
data visualization. For data transformation, Scikit-learn was employed. TensorFlow and Keras

were the primary libraries used for model training, prediction, and hyperparameter tuning.

3.2 Model performance improvement with normalization techniques

This part aimed to improve models using normalizing techniques. To achieve the
objective of this study, this part compared two normalization approaches: whole set
normalization and sliding window normalization. The whole set normalization means data are
normalized by a training set parameter, and the sliding window normalization means the data are
normalized by a sliding window parameter.

These two main normalization approaches led to a different process order in the feature
construction phase. For the whole set approach, normalization occurs before sliding window
construction, whereas normalization occurs after sliding window construction for the sliding

window approach. The workflow of each normalization approach are shown in Figure 7.



Feature construction
(tradiontional/
whole set normalization)
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(sliding window
normalization)

Data
Normalization

Create
slidingwindow

(use parameter of training set to normalize)

Create
sliding window

Data Normalization
(each sliding window)

(use parameter of sliding window to normalize)

Figure 7 Workflow of each normalization approach

The investigated normalization techniques for both the whole set and the sliding

window set include z-score normalization, min-max normalization, and relative change

normalization. The details of all investigated normalizing techniques are shown in numbers 1-6

and equation 3.3-3.8.

Because of sliding window size effect on the forecasting performance (Tomar et al.,

2022), different sliding window sizes give different errors, this study tested each treatment

(algorithm and normalization technique) with various sliding window sizes which are 3, 5, 7, 15,

and 30 days.

1. Z-Score normalization
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To normalize the data, this technique uses the mean ( 2z ) and standard deviation (o) of

the original data as shown in equation 3.3. The training set's mean and standard deviation

were utilized for whole-set z-score normalization.

2. Min-Max normalization

As demonstrated in equation 3.4, the minimum value (X, ) and maximum value (X, )

of the original data are used to linear transform the data. The training set's minimum and

maximum are utilized to transform the training set and the other sets for the whole set min-

max normalization.

!

3. Relative change normalization

X

X—X
—X

max

min

min

(3.9)

The relative change normalizes the data using the first value of the training set (X;) as

illustrated in equation 3.5.
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4.  Window z-score normalization

Unlike the whole set normalization, the window z-score normalization used the mean (
M,,) and standard deviation (0,,) of the sliding window with as shown in 3.6.

r_ Xi_luw

X! (3.6)
o

1
w

5. Window min-max normalization
This technique also uses the statistic of the sliding window which are the minimum value
of the window ( X,i,w ) and maximum value of the window ( X,y ) as illustrated in
equation 3.7.
X —X

X-’ — i minW (3'7)
X X

maxW — minW

6. Window relative change normalization
The relative change normalizes the window elements by the first value of the sliding
window (X;) as illustrated in equation 3.8.
v/ Xi — %o
! X

0

3.3 Candlestick price prediction method

This section aims to compare the performance of candlestick price prediction methods
in terms of both direction accuracy and forecasting error. The investigated methods include using
OHLC price to predict OHLC price and using CULR price to predict CULR price.

OHLC price or candlestick price means four prices in the specific time interval which
contains the opening price, the highest price, the lowest price, and the closing price of that time
interval, as shown in Figure 8.

Another way to display the candlestick price is CULR. CULR or candlewick price also
contains four components: closing price, upper shadow, lower shadow, and real body. The
visualization of CULR is also shown in Figure 8. The CULR method includes additional processes
compared to the OHLC method, specifically, the conversion of OHLC features to CULR features,
as shown in Figure 9. This conversion can be accomplished using equations 3.9 - 3.11, and CULR

features can be converted back to OHLC features by equations 3.12 — 3.14.
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Figure 9 Workflow of CULR method

Real Body =
high —close
high —open
open—low
close —low

Upper Shadow = {

Lower Shadow = {
open = close
high = {close+Upper Shadow
open+Upper Shadow
o — {open— Lower Shadow
close — Lower Shadow

close — open
Real Body > 0 (Bullish)
Real Body < 0 (Bearish)
Real Body >0 (Bullish)
Real Body < 0 (Bearish)

—Real Body

Real Body > 0 (Bullish)
Real Body < 0 (Bearish)
Real Body > 0 (Bullish)
Real Body < 0 (Bearish)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

We compared the methods by utilizing several normalization techniques that were

investigated in Section 3.2. Moreover, we evaluated each method using various sliding window

sizes, including 3, 5, 7, 15, and 30 days. The performance of candlestick price prediction methods
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using the OHLC price was compared. For the CULR method, we transformed the predicted CULR
price into OHLC price format.

To compare direction accuracy, we converted the predicted OHLC price (numeric) to
direction (categorical) or price movement: bullish (upward) and bearish (downward). Note that for
neutral direction or when the close price is equal to the open price, it is treated as bullish. The
equation for direction conversion is shown in equation 3.15. The performance metric for

forecasting error is RMSE, and the performance metric for direction is accuracy.

Direction =

{Bullish close > open
(3.15)

Bearish close < open
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Chapter 4: Result and discussion
4.1 Exploratory data analysis
4.1.1 Exploratory data analysis before data splitting

After selecting the features, the data was explored through a time series plot depicted in
Figure 10, summary statistics presented in Table 10, and decomposition analysis illustrated in
Figure 11.

According to Figure 10, each candlestick price or OHLC price had the same major feature
but was different in detail that was not significant for overview consideration, so in this section,
the open price is representative of the OHLC price to analyze the data character. Although the
price fluctuated from 2017 to the end of 2020, it did not vary significantly when compared to the
cryptocurrency boom period from the end of 2020 to 2021, which was a clear uptrend. The price

had been dropping from the end of 2021 to the beginning of 2022.

Time series plot of open price Time series plot of high price
70000 70000
60000 60000
50000 50000
5 5
@ 40000 @ 40000
2 2
o o
30000
iﬂ—] E 30000
20000 20000
10000 10000
o 0
2018 2019 2020 2021 2022 2018 2019 2020 2021 2022
Days Days
Time series plot of low price Time series plot of close price
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Figure 10 Time series plot of OHLC prices.

The following step is to find a basic statistical summary of each price. Table 10 displays
the following fundamental statistics: minimum, first quartile, median, mean, third quartile, and
maximum.

This study also used decomposition to determine the data's component. The open price
was chosen to represent the OHLC prices since they have similar properties. The price in this
dataset has three components, as illustrated in Figure 11. They are trend or trend-cyclical,

seasonal, and irregular, and they are joined by multiplicative decomposition.



Table 10 Basic statistical summary table of each price

Statistics Open price High price Low price Close price
count 1,840 1,840 1,840 1,840
mean 19,484.23 20,057.92 18,836.06 19,494.10
std 17,284.92 17,778.82 16,722.02 17,281.56
min 3,189.02 3,276.50 2,817.00 3,189.02
max 67,606.96 69,198.70 66,300.00 67,606.96

Decomposition of multiplicative time series

observed
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random
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Figure 11 The decomposition plot of open price

4.1.2 Exploratory data analysis after data splitting

2022
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After splitting the data into three sets, the data was explored by the time series plot and

histogram, as shown in Figure 12-13 respectively. According to part 4.1.1, the open price is

representative of the OHLC price to analyze the data character. In addition, this part also shows a

basic statistical summary of the open price after splitting the data in Table 11.

Table 11 Basic statistical summary table of open price after data splitting

Skewness
Set Size (rows) | Percentage (%) Std Min Max Skewness
interpretation
Training set 1472 80 14,315.33 14,123.20 3,189.02 63,645.05 1.147 Highly skewed
Moderately
Validation set 184 10 49,474.80 8,314.67 35,043.73 | 67,606.96 0.652
skewed
Approximately
Test set 184 10 30,844.89 8,992.62 18,970.79 47,418.5 0.418
symmetric
Whole data set 1840 100 19,484.23 | 17,284.92 3,189.02 67,606.96 1.623 Highly skewed
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Time series plot of open price
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Fieure 12 Time series plot of open prices with data splitting
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Figure 13 Distribution of open price with data splitting

4.2 Model performance

This section shows the forecasting performance of the LSTM and GRU, which were

averaged across various sliding window sizes of 3, 5, 7, 15, and 30 days. Table 12 shows the

model performance in terms of MAPE, which ranges between 4.29% - 7.92%. Overall, LSTM has
an average MAPE over the OHLC prices of 6.99%, while GRU’s MAPE is 4.96%. Table 13 shows the
performance in terms of RMSE, ranging from 1,603.14 — 2,729.23. Overall, RMSE of LSTM is
2,458.21, and RMSE of GRU is 1,857.86. Therefore, the forecasting errors of the GRU are generally

lower than the errors of the LSTM in our case.
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Table 12 Average and standard deviation of MAPE (%) on test set for LSTM and GRU.

Open High Low Close Overall
Algorithm
Average SD Average SD Average SD Average SD Average SD
LST™ 6.03 2.07 7.29 2.53 6.72 LST™M 6.03 2.07 7.29 2.53
GRU 4.29 1.01 5.30 0.93 473 GRU 4.29 1.01 5.30 0.93

Table 13 Average and standard deviation of RMSE on test set for LSTM and GRU.

Open High Low Close Overall

Algorithm
Average SD Average SD Average SD Average SD Average SD

LST™M 2162.40 | 636.56 | 2514.33 | 736.78 | 2426.87 | 630.73 | 2729.23 | 783.55 | 2458.21 | 675.31

GRU 1603.14 | 294.81 1925.27 | 269.93 | 1838.87 | 276.33 | 2064.17 | 251.53 | 1857.86 | 304.30

4.3 Model performance improvement with various normalization techniques

To evaluate the effect of normalization methods on forecasting performance, LSTM and
GRU models were trained and tested on the normalized data with various sliding window sizes.
The average and standard deviation of MAPE and RMSE for the OHLC prices over various sliding
window sizes of LSTM are shown in Table 14-15 and GRU in Table 16-17, respectively.
Furthermore, the overall average RMSE of each normalization technique and model algorithm is
also illustrated in Figure 14, and each price average RMSE is presented in Figure 15.

From Table 14-17, note that all sliding window normalization techniques (the last three
rows) yield significantly lower errors than the whole set normalization techniques (the first three
rows) for both LSTM and GRU. Moreover, the window relative change normalization yields the
lowest average errors in terms of MAPE and RMSE for both LSTM and GRU techniques in most
cases. Nonetheless, since the errors of all three sliding window normalization techniques are
relatively close, it is not obvious if any sliding window normalization technique definitely
dominates the others. However, it can be concluded that the sliding window normalization
techniques, in general, significantly outperform the whole set normalization techniques in terms

of forecasting performance.
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Table 14 L STM average and standard deviation of MAPE (%) on the test set

Normalization open high low close overall
Technique Average SD Average SD Average SD Average SD Average | SD
Whole set z-score 6.13 1.69 7.51 2.52 5.46 1.44 7.54 2.00 6.66 2.02
Whole set min-max 6.03 2.07 7.29 2.53 6.72 2.20 7.92 2.80 6.99 2.33
Whole set
11.43 3.38 12.36 3.89 10.97 2.79 11.98 3.42 11.69 3.16
relative change
Window z-score 1.98 1.17 2.13 0.20 2.50 0.36 2.96 0.20 2.40 0.69
Window min-max 2.04 1.16 2.10 0.13 2.31 0.22 2.67 0.10 2.28 0.60
Window
1.47 0.50 2.31 0.33 2.44 0.33 3.00 0.31 2.31 0.66
relative change
Table 15 LSTM average and standard deviation of RMSE on the test set
Normalization Open High Low Close Overall
technique Average SD Average SD Average SD Average SD Average SD
Whole set
2054.90 | 347.37 | 248550 | 599.22 | 1958.31 | 298.74 | 2552.45 | 417.41 | 2262.79 | 476.83
Z-score
Whole set
) 2162.40 | 636.56 | 2514.33 | 736.78 | 2426.87 | 630.73 | 2729.23 | 783.55 | 2458.21 | 675.31
min-max
Whole set
3702.02 | 957.95 | 4079.99 | 1135.40 | 3556.16 | 784.95 | 3975.25 | 975.30 | 3828.35 | 916.84
relative change
Window z-
953.24 | 711.31 | 825.90 104.79 989.94 7321 | 117231 | 71.33 985.35 | 356.64
score
Window
) 989.43 | 720.34 | 818.38 78.31 948.23 56.78 | 1094.38 | 43.59 962.60 | 349.14
min-max
Window
578.06 | 168.41 | 862.01 89.78 965.24 85.99 | 1190.87 | 76.72 899.04 | 247.99
relative change

Table 16 GRU average and standard deviation of MAPE (%) on the test set

Normalization open high low close overall
Technique Average SD Average SD Average SD Average SD Average | SD
Whole set Z-Score 5.62 1.84 6.42 1.30 491 0.41 6.40 0.52 5.84 1.25
Whole set Min-Max 4.29 1.01 5.30 0.93 4.73 0.97 5.53 0.94 4.96 1.02
Whole set
11.36 6.30 11.89 6.42 10.64 5.18 11.93 5.24 11.46 5.36
relative change
Window Z-Score 1.84 1.28 214 0.34 2.42 0.21 2.96 0.47 2.34 0.78
Window Min-Max 1.93 1.16 2.06 0.14 2.35 0.18 2.74 0.19 2.27 0.64
Window
1.46 0.45 2.25 0.28 2.37 0.29 2.94 0.24 2.25 0.62
Relative change
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Table 17 GRU average and standard deviation of RMSE the test set

Normalization Open High Low Close Overall
technique Average Average SD Average SD Average SD Average SD
Whole set
227730 | 652.74 | 2627.58 | 488.66 | 2091.83 | 190.67 | 2625.52 | 250.85 | 2405.56 465.62
z-score
Whole set
) 1603.14 | 294.81 | 1925.27 | 269.93 | 1838.87 | 276.33 | 2064.17 | 251.53 | 1857.86 304.30
min-max
Whole set
3906.07 | 2073.65 | 4225.82 | 2119.07 | 3682.77 | 1590.14 | 4075.87 | 1684.74 | 3972.63 | 1738.81
relative change
Window z-
912.87 784.69 | 845.45 172.52 | 992.33 78.44 1212.84 | 232.24 | 990.87 410.71
score
Window
) 980.86 782.37 | 815.17 89.31 942.34 40.62 1098.85 61.98 959.31 377.48
min-max
Window
560.21 153.14 | 834.16 62.85 930.75 72.73 1156.94 | 45.58 870.52 235.69
relative change
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Figure 14 Box plot showing average RMSE of OHLC with various normalization techniques in GRU and LSTM
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4.4 Impact of normalization on data characteristics

This section explores why sliding window normalization technigues seem to outperform
whole set normalization techniques by observing data characteristics, particularly the model
input distribution and the sliding window for model input.

4.4.1 Impact of normalization on data distribution

This section explores why the sliding window normalization techniques seem to
outperform the whole set normalization ones by observing the skewness of data distributions,
especially the model input distribution.

Figure 16a-16¢ show a sample of open-price input distributions of the training, validation,
and test sets with a sliding window size of 7 days before normalization. The input distributions
investigated in this section are derived from the sliding window of the model input, which is
combined into a single column. Note that the input distribution of each set differs. The training

set is highly skewed. The validation and test sets are both moderately skewed.
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5000 200
4000

3000

Frequency
Frequency

2000

1000

10000 20000 30000 40000 50000 60000 0 35000 40000 45000 50000 55000 60000 65000

Price (BTC/USDT) Price (BTC/USDT)

(a) (b)

Input distribution before normalization
(open-price test set)

Frequency

0 20000 25000 30000 35000 40000 45000

Price (BTC/USDT)
(c)

Figure 16 Sample input distribution before normalization of (a) training set (b) validation set (c) test set

Tables 18-20 illustrate the skewness of data distribution after various normalization
techniques on the training set, the validation set and the test set, respectively. The skewness
values shown in the table are root mean square (RMS) values of five skewness values when the
window sizes are 3, 5, 7, 15, 30 days to provide an overall view of skewness across various
window sizes. Additionally, sample box plots of open price skewness (magnitude) for the training
set, validation set, and test set of input distribution with various normalization techniques are

shown in Figures 17-19.



Table 18 Average of training set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 1.136 1.134 1.120 1.139
Whole set z-score 1.136 1.134 1.120 1.139
Whole set min-max 1.136 1.134 1.120 1.139
Whole set relative change 1.136 1.134 1.120 1.139
Window z-score 0.053 0.099 0.057 0.054
Window min-max 0.047 0.110 0.055 0.051
Window relative change 0.333 0.375 0.291 0.334

Table 19 Average of validation set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 0.676 0.645 0.594 0.678
Whole set z-score 0.676 0.645 0.594 0.678
Whole set min-max 0.676 0.645 0.594 0.678
Whole set relative change 0.676 0.645 0.594 0.678
Window z-score 0.084 0.136 0.050 0.084
Window min-max 0.120 0.164 0.110 0.116
Window relative change 0.141 0.151 0.117 0.145

Table 20 Average of test set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 0.421 0.378 0.422 0.425
Whole set z-score 0.421 0.378 0.422 0.425
Whole set min-max 0.421 0.378 0.422 0.425
Whole set relative change 0.421 0.378 0.422 0.425
Window z-score 0.132 0.152 0.040 0.130
Window min-max 0.137 0.144 0.081 0.144
Window relative change 0.455 0.456 0.457 0.472
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Figure 17 Skewness of training set open price input distribution with various normalization techniques
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Figure 18 Skewness of validation set open price input distribution with various normalization techniques
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Figure 19 Skewness of test set open price input distribution with various normalization techniques

Table 18 displays the training set skewness before and after each normalization
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technique. Note that the data before normalization are highly skewed. Moreover, the whole set

normalization techniques do not affect the distribution in terms of skewness at all. On the

contrary, the skewness of the data distribution are all lower after the sliding window

normalization techniques. In fact, after all three window normalization techniques, the data
distributions are close to symmetric because their skewness values are between -0.5 and 0.5.
Samples of transformed data distributions after various normalization techniques are shown in

Figure 20a-20f. Note that all three sliding window normalization techniques help decrease

skewness of highly skewed data.

Table 19 and 20 show similar impact on data distributions after normalization on the

validation set and the test set. Again, the whole set normalization techniques do not change the

distribution skewness, while the sliding window techniques help reduce the skewness for all

distributions to almost symmetric. However, we note that the window relative change
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normalization technique seems to have less impact in reducing the skewness, especially on the
test set, when compared to the window z-score and the window min-max techniques.

The results in this section illustrate that the sliding window normalization techniques
generally lead to more symmetric (less skewness) in the input data distribution than the whole
set normalization. Potentially due to this impact, more symmetric input distributions then lead to

better forecasting performances in both LSTM and GRU models.
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Figure 20 Sample input distribution after normalization by (a) whole set z-score (b) whole set min-max (c) whole

set relative change (d) window z-score (e) window min-max (f) window relative change

4.4.2 Impact of normalization on sliding window

In order to provide a clearer understanding of why sliding window normalization
techniques seem to outperform whole set normalization, we also examined the statistical
properties of sliding windows by plotting the mean and standard deviation of the sliding windows
over time. Figure 21 displays samples of the sliding window mean for the open price using
various normalization techniques with a window size of 7 days. Figure 22 shows samples of the
sliding window standard deviation for the open price using the same techniques and window
size. Note that sliding window mean and sliding window standard deviation for whole set
normalization are equivalent to moving average and moving standard deviation, respectively.

According to Figures 21-22, it was found that sliding window statistical properties of
normalized data using sliding window normalization in each sliding window have a stable
characteristic, as observed by the value of sliding window mean and sliding window standard
deviation that do not significantly change over time. Additionally, the explored statistical

properties in each data set have similar values. However, in the case of whole set normalization,
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sliding window properties vary considerably over time, and the sliding window properties of each

data set are significantly different, particularly for sliding window mean.
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Figure 21 Sliding window mean after normalization by (a) whole set z-score (b) whole set min-max (c) whole set

relative change (d) window z-score (e) window min-max (f) window relative change
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Figure 22 Sliding window standard deviation after normalization by (a) whole set z-score (b) whole set min-max

(c) whole set relative change (d) window z-score (e) window min-max (f) window relative change

To further elaborate the findings presented in Figures 21 and 22, we investigated the

characteristics of three sliding windows from each dataset using all the normalization techniques

under consideration. In addition, we used open price as representative of OHLC. Figure 23

presents a time series plot of the open price, along with selected sliding windows for

observation. We selected an example of nine sliding windows including different characteristics

(moving upward, moving downward, and moving sideways), with the specified time range for each

window provided in Table 21.

Figures 24-27 showcase time series plots of the open price sliding window for the model

input using various normalization techniques at each observation window with a sliding window

size of 7 days. These include without normalization, z-score normalization, min-max

normalization, and relative change normalization. Additionally, Figures 25-27 display both the

whole set normalization approach and the sliding window normalization approach.

Figures 28a-28d present box plots of open price sliding window with various

normalization at each observation window. These also include without normalization, z-score

normalization, min-max normalization, and relative change normalization. For Figures 28b-28d,

each normalization technique is shown with both the whole set normalization approach and the

sliding window normalization approach.
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According to Figures 25 — 27 and Figures 28b — 28d, we observed that the sliding window
of the whole set normalization technique showed a significant difference in the range of each
observation sliding window, particularly across the dataset. Conversely, the range of each
observation point under the sliding window normalization technique was found to be relatively
similar.

The findings of this section indicate that the sliding window normalization techniques
have more stable sliding window statistical characteristics. This is evidenced by the sliding
window mean, standard deviation, and range of each sliding window used as input for the model.
These stable characteristics lead to a similar sequence for prediction, which ultimately results in
better forecasting performance in both LSTM and GRU models when using sliding window
normalization.
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Figure 23 Time series plot of open price with selected sliding windows for observation

Table 21 Time range of the observation windows

Number Set Start date End date

1 2018-01-20 2018-01-26

Training set 2019-02-20 2019-02-26

2021-01-01 2021-01-07

2021-09-10 2021-09-16

Validation set 2021-10-30 2021-11-05

2021-12-20 2021-12-26

2022-03-19 2022-03-25

Test set 2022-06-10 2022-06-16

Ol | N[O | PR~V N

2022-07-10 2022-07-16
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Figure 24 Time series plot of open price sliding window without normalization at each observation window

Z-Score Normalization
Observation Window 1 Observation Window 2 A Observation Window 3

e

Training Set

&
>

N
4
o

Normalized Price

Days Days Days
Observation Window 4 . Observation Window 5 A Observation Window 6
" [N S S
o D S .
Vo2 24 P i falninh
[=4
o
Y 04 o --- whole set
° - .
= —— sliding window
> -2 -2 -2
)
g
o 2
Days Days
A Observation Window 7 . Observation Window 8 A Observation Window 9

Test Set

Figure 25 Time series plot of open price sliding window with z-score normalization techniques at each

observation window



Normalized Price

Training Set

Validation Set

Observation Window 1

Min-Max Normalization
Observation Window 2

Observation Window 3

1.00 4

0.75 4

0.50 4

e
—————

Days
Observation Window 4

Observation Window 5

1.00
0.75 T oo ==t == ===

0.50 4

0.251

1.00 4

L L

Observation Window 7

Days
Observation Window 8

Observation Window 9

40

whole set
—— sliding window

Figure 26 Time series plot of open price sliding window with min-max normalization techniques at each

Normalized Price

Test Set

Training Set

observation window

Relative Change Normalization

Observation Window 1

Observation Window 2

Observation Window 3

-
1)

DO e Gulet I SYRRND P

10

———

S
e -

Days
Observation Window 4

S° ¥ o
S A
O o

Days

Days

[T p————— il

Observation Window 5

Observation Window 8

Y
o

Days
Observation Window 9

[ T S

10

[l S S S e |

whole set
—— sliding window

Figure 27 Time series plot of open price sliding window with relative change normalization techniques at each

observation window



80000

70000

60000

50000

40000

Price

30000

20000

10000

in [~

Nomnalized Price
=4
o

0

-0.5

Range of Each Observation Window without Normalization

Training Set Validation Set Test Set
==
== |
==
L
———
.-
1 2 3 4 5 6 7 8 9
Observation Window
(a)
Range of Each Observation Window with Min-Max
‘Normalization Techniques
Training Set Validation Set Test Set
- -
- B whole set
™ J M sliding window
4.

4 5 6 7 8 9

Observation Window

(c)

Nonnalized Price

Nonnalized Price

<

T

41

Range of Each Observation Window with Z-Score
Normalization Techniques

Training Set Validation Set Test Set

W whole set
I sliding window

1 2 3 4 5 6 7

Observation Window
(b)

Range of Each Observation Window with Relative Change
‘Normalization Techniques

Training Set Validation Set Test Set

i W whole st
W sliding window

1 2 3 4 5 6 7 8 9

Observation Window

(d)

Figure 28 Box plot of open price sliding window with various normalization at each observation window a)

without normalization b) z-score normalization ¢) min-max normalization d) relative change normalization

In summary, our analysis reveals the following findings. Firstly, the sliding window

normalization techniques tend to result in a more symmetric input data distribution, as

compared to the whole set normalization technique. This increased symmetry potentially

explains the improved forecasting performance observed in both the LSTM and GRU models.

Secondly, the sliding window normalization approach ensures that the models observe a similar

sequence for prediction, which contributes to superior predictive performance when compared

to models using the whole set normalization approach.



42

4.5 Exploring candlestick price prediction method
This section compares model performance with different candlestick construction methods:

OHLC method and CULR method. Note that the results of OHLC are shown in section 4.1 - 4.3.

4.5.1
4.5.1.1

Exploring the model with CULR feature

Exploratory data analysis for CULR

After converting OHLC features to CULR features, the data was explored through a time
series plot, as illustrated in Figure 29a-29d, and a basic statistical summary for each feature was
generated and presented in Table 22. Our analysis revealed that the characteristics of each
feature were not similar, which differs from the OHLC feature. In addition, we present the

decomposition plot of close price, upper shadow, lower shadow, and real body in Figures 30 to

33, respectively.
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Figure 29 Time series plot of CULR (a) close price (b) upper shadow (c) lower shadow (d) real body

Table 22 Summary statistics of each feature

Statistical property Close Upper shadow | Lower shadow Real body

count 1840 1840 1840 1840
mean 19,494.10 289.56 373.9 9.87
std 17,281.56 478.46 628.56 1,016.82
min 3,189.02 0 0 -7,116.94
max 67,606.96 10,950.51 8,246.77 7,602.08
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Figure 33 The decomposition plot of upper shadow

Figures 34 to 37 display the time series plot and histogram of the close price, upper
shadow, lower shadow, and real body, respectively, after dividing the data into three sets:
training set, validation set, and test set. Each figure comprises subfigures that illustrate the time
series plot and histogram of each set. Furthermore, Tables 23 to 26 provide a basic statistical

summary of each CULR feature after dividing the data.

Table 23 Summary statistics for close price after data splitting

Skewness
Set Size (rows) | Percentage (%) Mean Std Min Max Skewness
interpretation
Training set 1472 80 14,344.11 14,146.35 3,189.02 63,649.71 1.15 Highly skewed
Moderately
Validation set 184 10 49,432.64 8,347.62 35,043.73 | 67,606.96 0.64
skewed
Approximately
Test set 184 10 30,755.42 8,992.05 18,970.79 | 47,418.50 0.42
symmetric
Whole data set 1840 100 19,494.10 | 17,281.56 3,189.02 67,606.96 1.62 Highly skewed
Table 24 Summary statistics for upper shadow after data splitting
Skewness
Set Size (rows) Percentage (%) Mean Std Min Max Skewness
interpretation
Moderately
Training set 1472 80 232.26 469.61 0.00 10,950.51 0.92
skewed
Moderately
Validation set 184 10 628.36 516.10 1.28 2,649.08 0.95
skewed
Moderately
Test set 184 10 409.12 324.46 3.10 1,798.30 0.87
skewed
Highly
Whole data set 1840 100 289.56 478.46 0.00 10,950.51 1.07
skewed




Table 25 Summary statistics for lower shadow after data splitting
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Skewness
Set Size (rows) Percentage (%) Mean Std Min Max Skewness
interpretation
Highly
Training set 1472 80 315.03 593.33 0.00 8,001.14 1.00
skewed
Moderately
Validation set 184 10 820.84 875.76 0.02 8,246.77 0.90
skewed
Moderately
Test set 184 10 397.96 379.84 4.82 2,389.70 0.80
skewed
Highly
Whole data set 1840 100 373.90 628.56 0.00 8,246.77 1.06
skewed
Table 26 Summary statistics for real body after data splitting
Skewness
Set Size (rows) | Percentage (%) Mean Std Min Max Skewness
interpretation
Approximately
Training set 1472 80 28.79 876.25 -7,116.94 | 7,602.08 0.06
symmetric
Approximately
Validation set 184 10 -42.16 1,698.90 | -5,819.59 | 4,325.21 -0.09
symmetric
Approximately
Test set 184 10 -89.47 1,147.38 | -4,093.20 | 5,482.90 -0.09
symmetric
Approximately
Whole data set 1840 100 9.87 1,016.82 | -7,116.94 | 7,602.08 0.00
symmetric
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Figure 35 Visualization of upper shadow with data splitting (a) time series plot (b) histogram of training set (c)

histogram of validation set (d) histogram of test set
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Time series plot of real body Histogram of training set real body
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Figure 37 Visualization of real body with data splitting (a) time series plot (b) histogram of training set (c)
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4.5.1.2 Model performance with CULR feature

This section shows the forecasting performance of the LSTM and GRU using CULR feature
with various normalization techniques, which were averaged across various sliding window sizes
of 3, 5,7, 15, and 30 days. Note that All the illustrations presented in this section depict the
performance of the model after the conversion to OHLC prices. The average and standard
deviation of RMSE and MAPE on the test set of LSTM are shown in Tables 27-28 and GRU in
Tables 29-30, respectively. Furthermore, Figure 38 illustrates the average RMSE for each price
with various normalization techniques and model algorithms, whereas Figure 39 presents the
overall average RMSE.

Table 27 shows the performance of LSTM in terms of MAPE, with an average value
ranging from 1.58% to 9.42%. The best model performance was achieved using the window z-
score technique, with an overall MAPE of 2.40%. Additionally, Table 28 presents the LSTM’s
performance in terms of RMSE, ranging from 658.55 to 3066.23. The best forecasting error was
also achieved using the same technique, with an overall RMSE of 974.90.

Table 29 displays the performance of GRU in terms of MAPE, with an average value
ranging from 1.54% to 5.20%. The window z-score technique yielded the best model

performance, with an overall MAPE of 2.29%. Furthermore, Table 30 presents LSTM’s
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performance in terms of RMSE, with values ranging from 626.45 to 2005.53. The best forecasting
error was also achieved using the window z-score technique, with an overall RMSE of 925.08.
From Table 27-30, it is obvious that the sliding window normalization techniques yield
significantly lower errors than the whole set normalization techniques for both LSTM and GRU. As
a result, the sliding window normalization with CULR features also outperforms the whole set
normalization same as the model with OHLC features. Furthermore, it appears that LSTM
underperforms compared to GRU for the whole set normalization approach. While the sliding
window normalization techniques are relatively close, it is not obvious if any technique definitely
dominates the others. However, the window z-score technique seems to yield the best

forecasting error.

Table 27 LSTM average and standard deviation of MAPE on the test set

Normalization Open High Low Close Overall
Technique Average SD Average SD Average SD Average SD Average SD
Whole set z-score 5.44 2.39 5.67 2.26 6.30 222 6.47 2.08 597 2.10
Whole set min-max 8.45 3.74 8.12 3.65 9.42 4.16 9.29 4.21 8.82 3.66
Window z-score 1.58 0.51 224 0.52 2.69 0.56 3.09 0.49 2.40 0.75
Window min-max 1.96 0.49 2.30 0.34 2.81 0.70 2.98 0.38 251 0.62

Table 28 LSTM average and standard deviation of RMSE on the test set

Normalization Open High Low Close Overall
Technique Average SD Average SD Average SD Average SD Average SD
Whole set z-

1997.86 | 806.52 | 2070.19 | 820.56 | 2282.69 | 671.95 | 2344.47 | 675.03 | 2173.80 | 701.03
score

Whole set min-
2805.03 | 968.27 | 2751.58 | 967.89 | 3066.23 | 1068.58 | 3053.82 | 1114.17 | 2919.16 | 957.92
max

Window z-
658.55 195.98 908.03 168.06 | 1098.59 192.85 1234.42 162.82 974.90 | 276.96
score

Window min-

740.48 | 137.87 | 870.37 62.84 | 1109.18 | 157.27 | 1199.61 79.10 97991 | 216.11

max
Table 29 GRU average and standard deviation of MAPE on the test set
Normalization Open High Low Close Overall

Technique Average SD Average SD Average SD Average SD Average SD
Whole set z-score 3.84 1.21 4.12 1.25 4.39 0.84 4.62 0.73 4.24 0.99
Whole set min-max 4.74 0.81 4.74 0.82 5.20 0.64 5.15 0.51 4.96 0.68
Window z-score 1.54 0.36 2.07 0.29 2.60 0.32 294 0.20 2.29 0.61
Window min-max 2.06 0.53 2.30 0.35 2.75 0.41 293 0.22 251 0.51
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Table 30 GRU average and standard deviation of RMSE on the test set

Normalization Open High Low Close Overall
Technique Average SD Average SD Average SD Average SD Average SD
Whole set z-score | 1473.69 | 444.55 | 1599.29 | 51850 | 1679.75 | 315.83 | 1783.09 | 318.19 | 1633.96 | 392.43
Whole set min-
x 1847.68 | 371.71 | 1859.99 | 422.03 | 2005.53 | 269.14 | 2000.61 | 274.23 | 1928.45 | 321.79
Window z-score 626.45 | 153.33 | 816.40 | 108.29 | 1075.00 | 99.68 | 1182.47 | 55.17 925.08 | 245.10
Window min-max | 799.14 | 204.39 | 888.89 | 130.34 | 1112.06 | 92.10 | 1177.63 | 39.88 994.43 | 199.83
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Figure 38 Box plot showing RMSE of each price with various normalization techniques on CULR Method
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4.5.2 Forecasting error comparison

This section presents a comparison of model performance in terms of forecasting error
(RMSE), which is averaged across various sliding window sizes of 3, 5, 7, 15, and 30 days, using
different features. Figure 40 displays the RMSE for each price of the OHLC method compared to
the RMSE of the CULR method with various normalization techniques and algorithms (GRU and
LSTM). Figure 41 presents the average RMSE of OHLC prices for both OHLC and CULR methods
using the same comparison approach.

Based on Figures 40 and 41, it was found that there is no significant difference in the
forecasting error between the OHLC method and the CULR method for the sliding window
normalization approach. However, for whole set normalization, the forecasting error varies
depending on the normalization technique used. The CULR method performs better for the z-
score and relative change techniques, while the OHLC method performs better for the min-max
technique. Additionally, the sliding window normalization approach outperforms the whole set
normalization approach for both the OHLC method and the CULR method. Among the
investigated techniques, the window relative change technique using the OHLC method
performed the best in terms of RMSE for both the LSTM and GRU algorithms, based on the
average across sliding window sizes. However, the window relative change normalization was not
the best when considered for a single sliding window size in our case. The best RMSE when

considered for a single sliding window size is shown in section 4.5.4.
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Figure 40 Box plot showing each price RMSE with various normalization techniques for candlestick prediction

method performance comparison



51

Average RMSE of OHLC for Candlestick Prediction Method
with Various Normalization Techniques (Test Set)
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Figure 41 Box plot showing average RMSE of OHLC with various normalization techniques for candlestick price

prediction method performance comparison.

4.5.3 Accuracy comparison

This section compares the model performance of two candlestick prediction methods in
terms of directional prediction. After predicting the OHLC price or converting the CULR prediction
to OHLC, the price (number) is converted to price movement (category) or candlestick price
direction: bullish (upward) and bearish (downward).

Table 31 displays the average and standard deviation of accuracy on the test set using
different candlestick prediction methods and algorithms (LSTM and GRU) average of various
sliding window sizes of 3, 5, 7, 15, and 30 days, as well as different normalization techniques. The
average accuracy range is 0.45 to 0.55, with the OHLC method achieving the highest average
accuracy of 0.55 using the GRU model and sliding window min-max normalization technique.
Additionally, Figure 42 illustrates the test set accuracy of each candlestick prediction method
with various normalization techniques and algorithms.

Based on Table 31 and Figure 42, it was observed that there is no significantly
outperforming method in terms of accuracy. However, the OHLC method shows slightly better
performance than the CULR method, except for the whole set min-max normalization technique.
Additionally, the sliding window normalization approach appears to be slightly better than the
whole set approach. Among the investigated techniques, the window min-max technique using
the OHLC Method performed the best in terms of direction accuracy for both LSTM and GRU

algorithms.
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Table 31 Average and standard deviation of accuracy on the test set

OHLC Method CULR Method

Normalization Technique GRU LST™M GRU LSTM

Average | SD | Average | SD | Average | SD | Average | SD

whole set min-max 0.47 0.04 0.47 0.04 0.48 0.06 0.45 0.01

whole set z-score 0.48 0.04 0.46 0.01 0.45 0.01 0.45 0.01

whole set relative change 0.51 0.05 0.48 0.04 - - - -

Window min-max 0.55 0.04 0.54 0.06 0.49 0.04 0.47 0.03

Window z-score 0.51 0.05 0.50 0.04 0.50 0.05 0.47 0.02

Window relative change 0.50 0.02 0.47 0.03 - - - -

Direction Accuracy of Candlestick Prediction Method
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Fieure 42 Box plot of test set accuracy with various candlestick prediction method

4.5.4 The best model performance

This section explores the best model performance by analyzing the average RMSE of
OHLC prices and direction accuracy of the test set across different sliding window sizes and
normalization techniques. Unlike the previous sections, which explored the average across sliding
windows to choose the best technique, this section evaluates the performance across various
sliding window sizes to identify the best-performing model.

When examining the forecasting error, it was found that the best test average RMSE was
767.71 with an average MAPE of 1.95%. The best test set average RMSE was achieved by the GRU
algorithm using the OHLC method with window z-score normalization, and a sliding window size
of 15 days. These results are presented in Table 32, which displays the RMSE and MAPE of each
predicted OHLC value, as well as the average of the best test set RMSE. Additionally, Table 33
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presents the classification metrics of the best test set RMSE, with an accuracy of 50% observed in

this model.

Table 32 RMSE and MAPE of best test set RMSE

Error Open High Low Close | Average

RMSE 419.56 | 680.96 | 919.07 | 1051.25 | 767.71

MAPE (%) 1.06 1.86 2.24 2.65 1.95

Table 33 Classification metrics of best test set RMSE

Precision Recall F1-Score Support
bearish 0.56 0.35 0.43 91
bullish 0.47 0.68 0.56 78
accuracy 0.50
macro avg 0.52 0.52 0.50 169
weighted avg 0.52 0.50 0.49 169

The best test set accuracy was found to be 60%, achieved by the GRU algorithm using
the OHLC method with window min-max normalization and a sliding window of 7 days.
Additional classification metrics can be found in Table 35, while Table 34 displays the forecasting

errors.

Table 34 RMSE and MAPE of best test set Accuracy

Error Open | High Low Close | Average

RMSE 486.30 | 775.19 | 915.62 | 1073.91 812.76

MAPE (%) | 1.16 2.04 2.19 2.60 2.00

Table 35 Classification metrics of best test set Accuracy

Precision Recall F1-Score Support
bearish 0.63 0.61 0.62 96
bullish 0.56 0.58 0.57 81
accuracy 0.60
macro avg 0.60 0.60 0.60 177
weighted avg 0.60 0.60 0.60 177
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4.6 Exploring effect of sliding window size

This section explores the effect of sliding window size on forecasting performance,
specifically RMSE. We investigated both candlestick prediction methods: OHLC Method and CULR
Method, using LSTM and GRU algorithms, as well as various normalization techniques.

Figure 43 displays the effect of sliding window size on RMSE with various normalization
techniques for the OHLC method, while Figure 45 displays the same for the CULR method.
According to Figures 43 — 45, there are two types of characteristic graphs observed in the
investigated techniques: the uptrend graph and the graph with a turning point. It was found that
most of the performance curves had the characteristic of a graph with a turning point. However,
there was also an unexplainable characteristic graph observed for the performance curve of the
whole set relative change with GRU. A summary of these characteristics is presented in Table 36.

According to Table 36, the normalization techniques with a graph displaying a turning
point were whole set z-score, window z-score, and window min-max. On the other hand, the

techniques with an uptrend graph were whole set min-max (almost) and window relative change.
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Figure 43 Visualization of the effect of sliding window size on RMSE with various normalization techniques for

the OHLC method (a) whole set z-score (b) whole set min-max (c) whole set relative change (d) window z-score
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Table 36 Summary of the sliding window effect on the forecasting performance characteristic

OHLC method CULR method
o . GRU LSTM GRU LSTM
Normalization technique
Turning Turning Turning Turning
Uptrend Uptrend Uptrend Uptrend
point point point point
Whole set z-score v V4 v v
Whole set min-max v V4 v v
Whole set relative change cannot explain v - -
Window z-score N4 v N4 N4
Window min-max v N4 v v
Window relative change v N4 - -

Note v means the technique has that characteristic

4.7 Performance comparison of proposed method with previous research

models
This section compares the forecasting performance of our best model with the previous
research models. We compared the forecasting performance by the test set normalized root
mean square (NRMSE) because most of the research represents the forecasting error by RMSE or
MSE, which are different scales since they used different time series ranges. The NRMSE can be

calculated by equation 4.1 or by equation 4.2.

NRMSE =

NRMSE = RYNE, (4.2)

We selected the research about cryptocurrency price prediction from chapter 2.2
literature review which predicted the daily price, and our best average RMSE of OHLC. The
summary of the comparison is presented in Table 37. Note that for the paper that does not
specify split ratio, we assume they used 80:20 for data splitting.

According to Table 37, although our model does not have the best NRMSE performance
when compared with all investigated research, it has better performance when compared to

models used by other researchers with data ranges similar to our study (no. 5-8).
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Table 37 A comparison of our purposed model with the previous research model

Normalization Test set NRMSE
Authors Data Best model Split ratio RMSE
technique mean (%)
(Muniye et al., Bitcoin daily price min-max
6295.51
2020) (Jan 2014 to Feb -LST™ (normalized 80/20 0.045 * (032) 13.94
0.32
2018) before split)
(Kavitha et al., Bitcoin daily price Does not say
2020) (Jun 2012 to July - LSTM min-max (assume 95.067 7355.14 1.29
2019) 80/20)
(Phaladisailoed Bitcoin daily price
3675.07
& Numnonda, (Jan 2012 to Jan - GRU min-max 70/30 0.0044 * (3.07 0.15
3.07
2018) 2018)
(McNally et al., | Bitcoin daily close
2018) price (August 2013 to | - RNN z-score 80/20 5.45% 2637.3 5.45
July 2016)
(Hansun et al., Bitcoin daily close
2022) price (Sept 2014 to - GRU min-max 80/20 1777.31 30421.02 5.84
Oct 2021)
(Tanwar et al., Daily price of Zcash
2021) - Litecoin (Aug 2016 Zcash 105.23 Zcash
- May 2021) - LSTM-GRU 0.07* (-0.55) 12.44
z-score 80/20
- Zcash (Oct 2016 - hybrid Litecoin | Litecoin Litecoin
May 2021) 0.14* 125.17 21.02
(0.68)
(Vanderbilt et Bitcoin daily price - Gated
al,, 2020) (Jan 2015 - Apr 2020) | Recurrent min-max 80/20 403.23 8269.59 4.87
Unit (GRU)
(Alkhodhairi et Bitcoin daily OHLC - Gated
al,, 2021) price (Jan 2017 to Recurrent
decimal 8674.95
Aug 2020) Unit (GRU) 80/20 0.0037* 4.27
scaling (0.09)
(for historical
prediction)
proposed Bitcoin daily price - Gated
window z-
model (Aug 2017 to Aug Recurrent 80/10/10 767.71 30,844.89 | 2.49
score
2022) Unit (GRU)

Note * is RMSE of normalized data, and () is the mean of normalized data
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4.8 Exploring model performance with before the cryptocurrency boom (before

Aug 18, 2020)

To validate the superior performance of the sliding normalization approach over the
whole set normalization, we investigated the model’s performance in other scenarios by
exploring fewer volatile data. This section focused exclusively on forecasting errors and tested
the normalization approaches using OHLC price and Bitcoin price data from the Cryptocurrency
boom period (before Aug 18, 2020). Note that the experiments in this section also split the data

into three sets with the same proportions as when exploring the full range of data.

4.8.1 Exploratory data analysis for data before Aug 18, 2020

This section shows the exploratory data analysis for data before August 18, 2020. Figure
45 shows the time series plot of each price. Table 38 shows basic summary statistics for each
price. According to Figure 45 and Table 38 all components of the candlestick price, namely the
OHLC prices, obviously moved in the same direction during these periods. The finding is also the
same as when exploring the full range of data.

After splitting the data into three sets, the data was explored by the time series plot and
histogram using open price as representative of OHLC, as shown in Figure 46. In addition, Table

39 shows a basic statistical summary after splitting the data.
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Figure 45 Time series plot of OHLC prices before Aug 18, 2020
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Table 38 Summary statistics of each price

Statistics Open price High price | Low price | Close price
count 1,098 1,098 1,098 1,098
mean 7,768.81 8,003.09 7,495.66 7,775.89

std 2,728.89 2,854.13 2,542.98 2,730.23
min 3,189.02 3,276.50 2,817.00 3,189.02
max 19,102.66 19,798.68 18,510.00 | 19,102.66

Table 39 Summary statistics for open price before Aug 18, 2020 after data splitting
Skewness
Set Size (rows) | Percentage (%) Mean Std Max Skewness
interpretation
Approximately
Training set 878 80 7,488.70 2,894.52 3,189.02 19,102.66 0.25
symmetric
Approximately
Validation set 110 10 8,026.34 1,429.85 4,762.28 10,356.27 -0.35
symmetric
Test set 110 10 9,747.11 918.35 8,560.73 11,921.32 1.06 Highly skewed
Approximately
Whole data set 1098 100 7,768.81 2,728.89 3,189.02 19,102.66 0.11
symmetric
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Figure 46 Visualization of open price before Aug 18, 2020 with data splitting (a) time series plot (b) histogram of
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4.8.2 Model performance with various normalization techniques

To validate the superior performance of the sliding normalization approach over the
whole set normalization, LSTM and GRU models were also trained and tested on the normalized
data with various sliding window sizes of 3, 5, 7, 15, 30 days same as when exploring full range of
data. The average and standard deviation of MAPE and RMSE for the OHLC prices over various
sliding window sizes of LSTM are shown in Table 40-41 and GRU in Table 42-43, respectively.
Furthermore, the overall average RMSE of each normalization technique and model algorithm is
also illustrated in Figure 47, and each price average RMSE is presented in Figure 48.

From Table 40-43, the finding also same as part 4.3 that all sliding window normalization
techniques (the last three rows) yield significantly lower errors than the whole set normalization
techniques (the first three rows) for both LSTM and GRU. Moreover, the window relative change
normalization yields the lowest average errors in terms of MAPE and RMSE for both LSTM and
GRU techniques in most cases. Nonetheless, since the errors of all three sliding window
normalization techniques are relatively close, it is not obvious if any sliding window normalization
technique definitely dominates the others. However, it can be concluded that the sliding window
normalization techniques, in general, significantly outperform the whole set normalization

techniques in terms of forecasting performance.

Table 40 LSTM average and standard deviation of MAPE (%) on the test set using data before
Aug 18, 2020.

Normalization Open High Low Close Overall
technique Average SD Average SD Average SD Average SD Average SD
Whole set z-score 252 0.52 2.33 0.12 4.01 0.66 3.15 0.24 3.00 0.79
Whole set min-max 2.86 0.28 2.48 0.28 4.19 1.34 3.13 0.82 3.17 0.99
Whole set
2.53 0.72 295 0.47 4.19 0.73 3.37 0.65 3.26 0.87
relative change
Window z-score 1.25 0.88 1.71 0.37 1.87 0.27 2.19 0.50 1.75 0.62
Window min-max 1.43 1.02 1.61 0.21 1.98 0.12 218 0.25 1.80 0.58
Window
0.97 0.17 1.59 0.12 1.68 0.17 1.90 0.11 1.54 0.38

relative change

Table 41 LSTM average and standard deviation of RMSE on the test set using data before Aug
18, 2020.

Normalization Open High Low Close Overall

technique Average SD Average SD Average SD Average SD Average SD

Whole set z-
367.25 53.30 363.89 25.88 514.71 58.51 467.39 33.49 428.31 78.33
score

Whole set min-
371.08 34.94 376.86 29.04 484.19 140.37 430.34 86.98 415.62 91.58
max
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Normalization Open High Low Close Overall
technique Average SD Average SD Average SD Average SD Average SD
Whole set

354.65 76.20 435.06 53.89 492.15 96.66 458.29 87.46 435.04 | 90.07
relative change

Window z-score 201.92 | 142.06 | 269.88 51.56 267.27 53.24 320.59 63.19 264.91 90.07

Window min-
215.22 152.55 254.53 22.15 267.53 25.32 311.56 33.28 262.21 81.34

max

Window
135.86 29.36 256.83 20.38 235.28 32.73 279.80 17.53 226.94 61.08

relative change

Table 42 GRU average and standard deviation of MAPE (%) on the test set using data before
Aug 18, 2020.

Normalization Open High Low Close Overall
technique Average SD Average SD Average SD Average SD Average SD
Whole set z-score 2.15 0.56 2.36 0.53 3.53; 0.87 295 0.47 2.75 0.80
Whole set min-max 2.63 0.45 292 0.44 4.51 091 337 0.62 3.36 0.94
Whole set
1.96 0.29 232 0.27 3.66 0.51 3.34 0.98 2.82 0.90
relative change
Window z-score 1.38 1.13 1.66 0.19 1.81 0.28 213 0.47 1.74 0.65
Window min-max 1.53 1.05 1.53 0.16 1.79 0.22 217 0.49 1.76 0.61
Window
1.03 0.23 1.61 0.17 1.76 0.39 1.95 0.10 1.59 0.42

relative change

Table 43 GRU average and standard deviation of RMSE the test set before data before Aug 18,
2020.

Normalization Open High Low Close Overall

technique Average SD Average SD Average SD Average SD Average SD

Whole set z-

353.58 101.48 389.12 76.88 473.16 120.91 455.42 83.11 417.82 102.10
score

Whole set min-

356.18 49.78 412.22 55.65 519.03 89.48 458.09 65.72 436.38 86.81
max

Whole set

277.36 31.50 334.54 7.83 433,97 45.59 44291 97.36 372.20 87.84
relative change

Window z-score 219.02 175.92 252.88 16.75 252.47 43.03 307.83 56.48 258.05 93.29

Window min-

226.53 147.66 237.63 10.55 254.15 35.31 313.95 64.43 258.06 83.35
max

Window

139.74 35.18 254.67 20.32 241.02 44.05 283.55 17.86 229.74 62.56
relative change
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Figure 47 Box plot showing RMSE of each price with various normalization techniques in GRU and LSTM models

using data before Aug 18, 2020
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Figure 48 Box plot showing average RMSE of OHLC with various normalization techniques in GRU and LSTM
models using data before Aug 18, 2020

4.8.3 Impact of normalization on data characteristics

This section explores why sliding window normalization techniques seem to outperform
whole set normalization techniques by observing data characteristics, particularly the model
input distribution and the sliding window for model input.
4.8.3.1 Impact of normalization on data distribution
This section explores why the sliding window normalization techniques seem to
outperform the whole set normalization ones by observing the skewness of data distributions,
especially the model input distribution.

Figures 49a-49¢ show a sample of open-price input distributions of the training,

validation, and test sets with a sliding window size of 7 days before normalization. The input
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distributions investigated in this section are derived from the sliding window of the model input,

which is combined into a single column. Note that the input distribution of each set differs. The

distribution of before cryptocurrency boom period is dissimilar to that of the full range data.

Specifically, the training set exhibits approximately skewed distribution with a skewness of 0.267,

while the validation set and test sets show moderately skewed distributions with skewness

values of -0.825 and 0.98, respectively.

Input distribution before normalization Input distribution before normalization Input distribution before normalization
(open-price training set) (open-price validation set) (open-price test set)

200

Frequency
Frequency

50

4000 6000 8000 10000 12000 14000 16000 18000 0 5000 6000
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(a) (b) (c)
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7000 8000
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Figure 49 Sample input distribution before normalization of (a) training set (b) validation set (c) test set

Tables 44-46 illustrate the skewness of data distribution after various normalization

techniques on the training set, the validation set and the test set, respectively. The skewness

0 8500 9000 9500 10000 10500 11000 11500 12000

values shown in the table are root mean square (RMS) values of five skewness values when the

window sizes are 3, 5, 7, 15, 30 days to provide an overall view of skewness across various

window sizes. Additionally, sample box plots of open price skewness (magnitude) for the training

set, validation set, and test set of input distribution with various normalization techniques are

shown in Figures 50-52.

Table 44 Average of training set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 0.269 0.319 0.206 0.269
Whole set z-score 0.269 0.319 0.206 0.269
Whole set min-max 0.269 0.319 0.206 0.269
Whole set relative change 0.269 0.319 0.206 0.269
Window z-score 0.058 0.154 0.068 0.061
Window min-max 0.048 0.199 0.067 0.052
Window relative change 0.247 0.244 0.227 0.250

Table 45 Average of validation set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 0.784 0.805 0.916 0.790
Whole set z-score 0.784 0.805 0.916 0.790
Whole set min-max 0.784 0.805 0.916 0.790
Whole set relative change 0.784 0.805 0.916 0.790
Window z-score 0.140 0.202 0.231 0.146




Normalization Technique Open High Low Close

Window min-max 0.259 0.225 0.257 0.273

Window relative change 0.193 0.201 0.157 0.194

Table 46 Average of test set input distribution skewness

Normalization Technique Open High Low Close
Without normalization 0.972 1.053 0.850 1.003
Whole set z-score 0.972 1.053 0.850 1.003
Whole set min-max 0.972 1.053 0.850 1.003
Whole set relative change 0.972 1.053 0.850 1.003
Window z-score 0.228 0.270 0.263 0.218
Window min-max 0.280 0.263 0.300 0.280
Window relative change 0.656 0.642 0.607 0.660
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Figure 50 Skewness of training set open price input distribution with various normalization techniques
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Fieure 51 Skewness of validation set open price input distribution with various normalization techniques
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Skewness of test set input distribution with various
normalization techniques (open price using data before Aug 18, 2020)
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Figure 52 Skewness of test set open price input distribution with various normalization techniques

Table 44 displays the training set skewness before and after each normalization
technique. Note that the data before normalization are approximately skewed. Moreover, the
whole set normalization techniques do not affect the distribution in terms of skewness at all. On
the contrary, the skewness of the data distribution are all lower after the sliding window
normalization techniques. In fact, after all three window normalization techniques, the data
distributions are close to symmetric because their skewness values are between -0.5 and 0.5.
Note that all three sliding window normalization techniques help decrease skewness of highly
skewed data. Although the window relative change did not reduce skewness in all cases, the
skewness after applying sliding window normalization remained approximately symmetric.
Samples of transformed data distributions after various normalization techniques are shown in
Figures 53a-53f.

Tables 45 and 46 show similar impact on data distributions after normalization on the
validation set and the test set. Again, the whole set normalization techniques do not change the
distribution skewness, while the sliding window techniques help reduce the skewness for all
distributions to almost symmetric. However, we note that the window relative change
normalization technique seems to have less impact in reducing the skewness, especially on the
test set, when compared to the window z-score and the window min-max techniques.

The results in this section illustrate that the sliding window normalization techniques
generally lead to more symmetric (less skewness) in the input data distribution than the whole
set normalization. Potentially due to this impact, more symmetric input distributions then lead to

better forecasting performances in both LSTM and GRU models.
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Input distribution after whole set
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Figure 53 Sample input distribution after normalization by (a) whole set z-score (b) whole set min-max (c) whole

set relative change (d) window z-score (e) window min-max (f) window relative change

4.8.3.2 Impact of normalization on sliding window

In order to provide a clearer understanding of why sliding window normalization
techniques seem to outperform whole set normalization, we also examined the statistical
properties of sliding windows by plotting the mean and standard deviation of the sliding windows
over time. Figure 54 displays samples of the sliding window mean for the open price using
various normalization techniques with a window size of 7 days. Figure 55 shows samples of the
sliding window standard deviation for the open price using the same techniques and window
size. Note that sliding window mean and sliding window standard deviation for whole set
normalization are equivalent to moving average and moving standard deviation, respectively.

According to Figures 54-55, it was found that sliding window statistical properties of
normalized data using sliding window normalization in each sliding window have a stable
characteristic, as observed by the value of sliding window mean and sliding window standard
deviation that do not significantly change over time. Additionally, the explored statistical
properties in each data set have similar values. However, in the case of whole set normalization,
sliding window properties vary considerably over time, and the sliding window properties of each

data set are significantly different, particularly for sliding window mean.
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Figure 54 Sliding window mean after normalization by (a) whole set z-score (b) whole set min-max (c) whole set

relative change (d) window z-score (e) window min-max (f) window relative change
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Figure 55 Sliding window standard deviation after normalization by (a) whole set z-score (b) whole set min-max

(c) whole set relative change (d) window z-score (e) window min-max (f) window relative change

To further elaborate the findings presented in Figures 54 and 55, we investigated the

characteristics of three sliding windows from each data set using all the normalization techniques

under consideration. In addition, we used open price as representative of OHLC. Figure 56

presents a time series plot of the open price, along with selected sliding windows for
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observation. We selected an example of nine sliding windows including different characteristics
(moving upward, moving downward, and moving sideways), with the specified time range for each
window provided in Table 47.

Figures 57-60 showcase time series plots of the open price sliding window for the model
input using various normalization techniques at each observation window with a sliding window
size of 7 days. These include without normalization, z-score normalization, min-max
normalization, and relative change normalization. Additionally, Figures 58-60 display each
normalization technique with both the whole set normalization approach and the sliding window
normalization approach.

Figures 61a-61d present box plots of open price sliding window with various
normalization at each observation window. These also include without normalization, z-score
normalization, min-max normalization, and relative change normalization. For Figures 61b-61d,
each normalization technique is shown with both the whole set normalization approach and the
sliding window normalization approach.

According to Figures 58 — 60 and Figures 61b — 61d, we observed that the sliding window
of the whole set normalization technique showed a significant difference in the range of each
observation sliding window, particularly across the dataset. Conversely, the range of each
observation point under the sliding window normalization technique was found to be relatively
similar.

The findings of this section indicate that the sliding window normalization techniques
have more stable sliding window statistical characteristics. This is evidenced by the sliding
window mean, standard deviation, and range of each sliding window used as input for the model.
These stable characteristics lead to a similar sequence for prediction, which ultimately results in
better forecasting performance in both LSTM and GRU models when using sliding window

normalization.
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Figure 56 Time series plot of open price with selected sliding windows for observation



Table 47 Time range of the observation windows for data before Aug 18, 2020

Number Set Start date End date
1 2018-01-20 2018-01-26
2 Training set 2019-02-18 2019-02-24
3 2019-06-08 2019-06-14
4 2020-02-01 2020-02-07
5 Validation set 2020-03-05 2020-03-11
6 2020-04-14 2020-04-20
7 2020-05-19 2020-05-25
8 Test set 2020-06-21 2020-06-27
9 2020-07-17 2020-07-23
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Figure 57 Time series plot of open price sliding window without normalization at each observation window
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Figure 58 Time series plot of open price sliding window with z-score normalization techniques at each
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observation window
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Relative Change Normalization
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Figure 60 Time series plot of open price sliding window with relative change normalization techniques at each

observation window
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In summary, our analysis reveals the following findings. Firstly, the sliding window
normalization techniques tend to result in a more symmetric input data distribution, as
compared to the whole set normalization technique. This increased symmetry potentially
explains the improved forecasting performance observed in both the LSTM and GRU models.
Secondly, the sliding window normalization approach ensures that the models observe a similar
sequence for prediction, which contributes to superior predictive performance when compared

to models using the whole set normalization approach.

4.8.3.3 Summary of before the cryptocurrency boom

To summarize the exploration of model performance before the cryptocurrency boom
(before Aug 18, 2020), it was found that although the characteristics of this range differ from
those of the full range data, the finding that sliding window normalization outperforms whole set
normalization on both LSTM and GRU models still holds true, as demonstrated by the RMSE and
MAPE. Moreover, the finding that sliding window normalization reduces the skewness of the
distribution and enables the model to observe a similar sliding window sequence for prediction

also holds true, as previously observed in the full range data
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Chapter 5: Conclusion

The objective of this study is to create a model for predicting the Bitcoin candlestick
price of the next day using the recurrent neural network technique, specifically the LSTM and
GRU models. Additionally, the study aims to explore feature transformation techniques to
enhance the forecasting performance of the neural network, including various data normalization
(scaling) methods. Finally, the study aims to investigate additional candlestick price prediction
approaches that are not OHLC price prediction, such as candle wick (CULR) prediction.

The best forecasting error was achieved using the GRU algorithm with the OHLC method
and window z-score normalization, utilizing a sliding window of 15 days. This resulted in an
average RMSE of OHLC of 767.71 or MAPE of 1.95%. Similarly, the best direction accuracy was
achieved using the GRU algorithm with the OHLC method and window min-max normalization,
utilizing a sliding window of 7 days, resulting in a direction accuracy of 60%.

The main findings are as follows: First, the sliding window normalization generally
outperforms the whole set normalization for both LSTM and GRU models in terms of RMSE and
MAPE. Second, sliding window normalization techniques generally lead to a more symmetric (less
skewed) input data distribution compared to the whole set normalization. This effect potentially
leads to better forecasting performance in both LSTM and GRU models. Third, the sliding window
normalization approach enables the models to observe a similar sequence for prediction,
resulting in better performance compared to models using the whole set normalization. Fourth,
there is no significantly outperforming method in terms of both accuracy and forecasting, but the
OHLC method seems to be slightly better than the CULR method. Finally, among the investigated
normalization techniques, two types of RMSE-sliding window size relationship were observed:
uptrend and turning point. Most of the performance curves displayed a turning point
characteristic.

Further research could explore alternative normalization techniques and evaluate their
performance on different time series datasets. Additionally, more complex RNN models such as
Bidirectional RNN, Attention model, and transformer networks, could be explored. Future studies
could also explore optimizing the fixed hyperparameters in our study and expanding the search

space for the tuned hyperparameters to enhance the model's performance.
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various normalization techniques using OHLC method

Window size Normalization Open High Low Close Average
(Days) technique GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM
3 2246.56 2239.41 2947.26 2512.25 1999.76 2170.31 2618.14 2710.02 2452.93 2408.00
5 1963.74 1900.64 2436.48 2170.40 1851.90 1711.09 2350.29 2278.33 2150.60 2015.12
7 whole set z-score 1860.32 1688.73 2618.67 1924.06 2234.30 1632.04 2725.92 2135.69 2359.80 1845.13
15 1902.49 1880.54 1931.65 2335.96 2329.98 1940.19 2989.77 2444.21 2288.47 2150.22
30 3413.37 2565.15 3203.82 3484.83 2043.20 2337.95 2443.45 3193.98 2775.96 2895.48
3 1179.72 1308.99 1530.60 1562.39 1457.84 1539.12 1849.10 1637.39 1504.31 1511.97
5 1459.77 1861.84 1780.85 1993.65 1660.28 2258.68 1772.47 2368.24 1668.34 2120.60
whole set min-
7 1955.76 2366.50 2152.32 2583.48 2082.61 2263.06 2332.08 2678.28 2130.69 2472.83
15 e 1693.59 2244.00 1995.92 3169.05 1899.19 3082.26 2080.10 3488.15 1917.20 2995.87
30 1726.83 3030.66 2166.68 3263.10 2094.42 2991.25 2287.08 3474.10 2068.76 3189.77
3 5458.66 5237.47 5693.69 5962.00 4999.07 4920.64 5280.13 5649.32 5357.89 5442.36
5 1456.12 3939.93 1707.45 4291.95 1613.62 3316.76 1773.93 3755.31 1637.78 3825.99
7 whole set 2283.45 3308.22 2288.98 3610.33 245371 3136.63 2830.20 3863.21 2464.09 3479.60
relative change
15 6386.56 2738.58 6510.56 3145.68 5232.98 2957.86 5639.28 3161.38 5942.34 3000.87
30 3945.56 328591 4928.44 3389.99 4114.48 3448.92 4855.83 3447.01 4461.08 3392.96
3 2296.56 2208.98 1122.19 961.37 1101.93 1028.09 1623.00 1235.82 1535.92 1358.56
5 754.36 776.21 894.38 886.94 993.89 951.07 1153.04 1235.85 948.92 962.52
7 window z-score 469.19 486.94 768.43 753.49 916.32 941.27 1116.49 1127.87 817.61 827.39
15 419.56 574.11 680.96 697.16 919.07 928.39 1051.25 1072.29 767.71 817.99
30 624.69 719.94 761.27 830.54 1030.43 1100.91 1120.43 1189.74 884.20 960.28
3 2335.60 2235.99 909.52 880.37 943.39 941.75 1187.97 1159.31 1344.12 1304.36
5 941.27 876.23 908.46 921.71 902.09 909.67 1125.06 1118.99 969.22 956.65
7 window min-max 486.30 462.28 775.19 740.15 915.62 935.52 1073.91 1072.27 812.76 802.56
15 447.53 532.67 IS5 767.97 942.94 908.05 1085.53 1063.45 796.84 818.03
30 693.61 840.00 77133 781.69 1007.65 1046.16 1021.80 1057.85 873.60 931.43
3 394.81 375.79 762.73 771.16 874.59 894.35 1105.44 1119.27 784.39 790.14
5 500.35 436.26 827.84 810.20 917.22 923.21 1156.72 1142.98 850.53 828.16
window relative
7 461.04 644.57 784.21 877.37 850.07 910.63 1117.83 1204.00 803.29 909.14
15 chanse 708.42 647.99 900.50 845.15 1007.78 995.26 1200.88 1172.29 954.39 915.17
30 736.45 785.70 895.50 1006.18 1004.12 1102.73 1203.83 1315.78 959.97 1052.60

LSTM and GRU test set MAPE (%) with various normalization techniques using OHLC method

Window size Normalization Open High Low Close Average

(Days) technique GRU LSTM GRU LSTM GRU LSTM GRU LST™M GRU LSTM

3 5.42 7.27 6.99 7.95 4.55 6.61 6.21 8.43 579 757

5 517 5.63 6.59 6.39 4.66 4.41 6.23 6.56 5.66 5.75

7 whole set z-score 4.25 4.37 6.13 511 5.06 4.05 6.39 551 5.46 4.76

15 4.45 4.95 4.42 6.46 5.56 4.86 7.27 6.59 543 572

30 8.79 8.45 7.96 11.64 474 7.35 5.89 10.59 6.85 9.51

3 299 3.32 4.05 4.04 3.52 3.73 4.84 4.13 3.85 3.81

5 3.82 5.01 4.79 5.46 4.07 5.99 4.54 6.45 431 5.73
whole set min-

7 573 6.93 6.27 7.55 578 6.15 6.73 7.76 6.13 7.10

max

15 431 6.02 5.27 9.65 4.65 9.25 5.28 10.95 4.88 8.97

30 4.59 8.86 6.14 9.77 5.61 8.48 6.27 10.29 5.65 9.35

3 15.94 16.20 15.36 18.22 13.52 15.40 14.37 17.59 14.80 16.85

5 343 13.30 4.18 14.34 3.76 11.05 4.32 11.94 392 12.66

whole set

7 6.27 10.18 5.77 10.64 6.52 9.61 8.69 11.66 6.81 10.52
relative change

15 18.15 743 18.20 8.75 15.61 7.86 16.41 8.48 17.09 8.13

30 13.03 10.03 15.92 9.86 13.81 10.92 15.87 10.25 14.66 10.27

3 4.10 4.03 272 236 272 2.50 3.78 297 3.33 297
window z-score

5 1.47 1.39 211 2.14 2.46 2.25 278 2.88 221 217
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Window size Normalization Open High Low Close Average
(Days) technique GRU LSTM GRU LSTM GRU LSTM GRU LST™M GRU LSTM
7 1.08 1.23 1.92 1.96 219 232 2.69 2.88 1.97 2.10
15 1.06 1.42 1.86 1.91 2.24 232 2.65 277 1.95 211
30 1.50 1.85 2.10 2.30 248 3.12 291 3.30 2.25 2.64
3 3.94 3.98 222 2.09 232 2.34 3.06 277 2.89 2.80
5 1.73 1.46 213 225 218 211 2.64 2.59 217 2.10
7 window min-max 1.16 113 2.04 191 219 223 2.60 2.58 2.00 1.96
15 1.12 1.40 1.84 2.08 244 2.20 2.64 2.65 2.01 2.08
30 171 222 2.06 219 261 2.68 2.78 2.78 2.29 247
3 0.99 091 1.91 1.91 213 2.20 2.67 2.69 1.93 1.93
5 1.18 1.06 217 214 212 2.16 2.78 273 2.06 2.02
window relative
7 1.24 1.59 2.08 237 223 233 2.89 3.11 211 2.35
change
15 1.86 1.67 256 233 2.60 2.56 3.20 3.04 2.56 2.40
30 201 2.14 252 2.80 275 295 3.18 3.44 2.62 2.83

LSTM and GRU test set RMSE with various normalization techniques using CULR Method

Window size Normalization Open High Low Close Average
(Days) technique GRU LSTM GRU LSTM GRU LSTM GRU LST™M GRU LSTM
3 2266.59 2936.19 2504.41 3103.89 2174.29 2844.36 2332.31 2984.35 2319.40 2967.20
5 1310.80 1638.82 1551.95 1717.41 1415.29 1909.20 1602.90 2010.41 1470.24 1818.96
7 whole set z-score 1220.91 1165.40 1373.76 1258.04 1392.71 1565.95 1530.74 1645.85 1379.53 1408.81
15 1296.12 1465.83 1322.80 1490.79 1693.07 1956.34 1711.10 1934.07 1505.77 1711.76
30 1274.05 2783.04 1243.52 2780.83 1723.39 3137.61 1738.40 3147.66 1494.84 2962.28
3 2471.25 1675.70 2588.57 1766.91 2439.54 1830.11 2462.39 1910.88 2490.44 1795.90
5 1592.41 1964.51 1748.65 1861.26 1779.16 2090.86 1865.33 1923.52 1746.39 1960.04
whole set min-
7 1544.89 3231.69 1513.62 3050.55 1781.95 3511.55 1743.97 3448.07 1646.11 3310.46
15 e 1864.14 3131.91 1803.84 2967.89 2016.87 3543.09 1987.60 3513.23 1918.11 3289.03
30 1765.70 4021.33 1645.26 4111.29 2010.15 4355.56 1943.75 4473.38 1841.21 4240.39
3 723.12 778.96 956.14 1133.58 1106.33 1262.26 1241.22 1424.13 1006.70 1149.73
5 828.41 642.15 897.55 791.74 1052.28 1004.90 1184.26 1131.28 990.63 892.52
7 window z-score 521.25 468.52 728.47 797.31 1019.38 908.70 1114.59 1099.80 845.92 818.58
15 445.68 479.03 795.87 773.99 968.05 971.52 1140.94 1116.79 837.64 835.33
30 613.79 924.11 703.96 1043.51 1228.98 1345.56 1231.34 1400.10 944.52 1178.32
3 1150.18 881.50 1120.81 951775 1185.34 1137.22 1235.21 1228.57 1172.89 1049.76
5 670.55 630.35 843.26 836.17 1015.64 975.47 1150.15 1146.23 919.90 897.06
7 window min-max 760.76 680.93 833.01 822.40 1085.98 1043.48 1155.56 1172.81 958.83 929.91
15 640.33 613.26 838.88 817.35 1043.50 1019.83 1143.84 1126.97 916.63 894.35
30 77391 896.34 808.50 924.16 1229.86 1369.89 1203.37 1323.49 1003.91 1128.47

LSTM and GRU test set MAPE (%) with various normalization techniques using CULR Method

Window Open High Low Close Average
X Normalization
size .
(Days) technique GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM

3 5.99 8.04 6.33 8.19 5.72 7.92 5.89 7.90 598 8.01
5 3.26 4.07 3.74 4.44 3.63 4.86 4.12 5.26 3.69 4.66
7 whole set z-score 3.20 3.14 3.56 3.51 3.72 4.13 4.19 4.53 3.67 3.83
15 3.55 3.92 3.63 4.16 4.52 5.27 4.41 5.28 4.03 4.66
30 3.22 8.02 3.35 8.06 4.35 9.33 4.50 9.39 3.86 8.70
3 595 4.36 6.07 4.63 6.05 493 5.80 5.17 597 477
5 4.10 4.97 4.39 4.61 4.61 5.39 4.84 4.92 4.48 4.97
7 whole set min-max 3.90 10.70 3.87 9.75 4.57 11.82 4.50 11.27 4.21 10.88
15 4.88 9.12 a7 8.40 5.17 10.45 515 10.33 4.99 9.57
30 4.88 13.10 4.58 13.23 559 14.51 547 14.75 513 13.90
3 1.81 1.68 241 2.55 2.82 2.88 3.10 3.28 2.54 2.60
5 window z-score 1.92 1.52 2.31 1.97 2.48 238 292 277 241 2.16
7 1.14 1.18 1.70 1.79 2.27 225 2.62 272 1.93 1.99
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Window Open High Low Close Average
Normalization
size
technique GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM
(Days)
15 1.17 1.12 1.98 1.88 2.38 233 293 2.81 211 2.04
30 1.63 2.39 1.97 3.00 3.04 3.59 3.12 3.87 244 3.21
3 2.87 2.18 2.88 2.45 293 281 3.09 2.90 294 2.58
5 1.57 1.50 2.07 2.06 231 2.24 273 272 217 213
7 window min-max 1.82 1.66 2.04 2.02 251 2.39 274 2.75 2.28 2.21
15 173 174 2.16 2.15 2.65 262 2.88 2.89 235 235
30 232 272 2.37 2.83 3.36 4.00 3.24 3.65 2.82 3.30

LSTM and GRU test set direction accuracy

with various normalization techniques

Window size (Days)

Normalization technique

OHLC method

CULR method

GRU LSTM GRU LSTM
3 0.49 0.45 0.45 0.46
5 0.42 0.49 0.44 0.44
7 whole set z-score 0.49 0.46 0.46 0.45
15 0.48 0.46 0.47 0.46
30 0.53 0.45 0.44 0.44
3 0.45 0.55 0.51 0.45
5 0.54 0.46 0.54 0.45
7 whole set min-max 0.45 0.45 0.42 0.46
15 0.46 0.46 0.54 0.46
30 0.44 0.44 0.41 0.44
3 0.55 0.45 - -
5 0.47 0.54 - -
7 whole set relative change 0.56 0.51 - -
15 0.54 0.47 - -
30 0.44 0.44 - -
3 0.47 0.45 0.49 0.46
5 0.52 0.49 0.58 0.46
7 window z-score 0.58 0.56 0.47 0.46
15 0.50 0.51 0.50 0.49
30 0.46 0.50 0.47 0.49
3 0.51 0.44 0.51 0.49
5 0.51 0.55 0.54 0.51
7 window min-max 0.60 0.59 0.48 0.47
15 0.56 0.53 0.44 0.44
30 0.57 0.58 0.49 0.44
3 0.49 0.47 - B
5 0.51 0.51 - -
7 window relative change 0.53 0.48 - -
15 0.52 0.46 - -
30 0.47 0.44 - -
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