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CHAPTER |
INTRODUCTION

Bile duct cancer, also known as cholangiocarcinoma (CCA), is an uncommon
cancer that is rarely found in the global population but is prevalent in Thailand [1].
Moreover, the mortality rate for CCA is relatively high, with a five-year survival rate of

5% [2].

Malignant biliary stricture diagnosis is still an essential topic in cancer
diagnosis since the differentiation between cancer and non-cancer has various
aspects [3]. It has been reported that 25% of patients with biliary stricture that

perform biopsies was not found malignancy [4].

The technologies utilized in diagnostics Whether a radiological examination or
a laboratory examination has been consistently invented and developed [5]. Digital
single-operator (DSOQ) is a diagnostic technology that allows endoscopists to see the
picture of the bile duct directly, which improves the distinction between benign and
malignant lesions [6]. DSOC defines malignant features as dilated and tortuous
vessels, irregular papillary projection, infiltrative lesion, ulceration, and polypoid
nodule or mass [7]. However, low levels of interobserver agreement (IOA) and
uneven performance have been found among experienced endoscopists categorizing

cholangioscopy images of biliary strictures [8, 9].

Deep learming with convolutional neural networks (CNN) is a powerful
method in machine learning for analyzing data patterns. Currently, CNN is used for a
variety of tasks in the real world, as well as medical terms. They develop CNN to
analyze the disease and determine whether it is abnormal or not [10]. CNN is also
used in endoscopy to find cancer patterns or to assist endoscopists in classifying

when performing endoscopy [11].



Cholangioscopy is one of the tasks in endoscopy that focuses on the bile
duct. In 2021, CNN is applied to finding malignancy in cholangioscopy image through
spyglass DSOC [12]. As a remarkable result, they achieved 95% overall accuracy.
Anyway, these works are based solely on still images and may not be applicable in
real-world scenarios. Recently studies [13] show how to deal with real-world
scenarios for assisting diagnosis by using real case videos for evaluation with a moving
average of predicted malignancy in 900 frames and achieve impressive values of
0.933 and 0.906 in terms of sensitivity and accuracy. However, an endoscopist may
perform a biopsy to prove the malignancy of the bile duct. In the case of biopsies,
the result will be more precise if the model provides the location of the malignancy

in real-time.

The purpose is to enhance the performance of a model that is used to aid
experts during cholangioscopy more practical and effective by classifying malignant
and benign cholangioscopy images on our dataset. Following are the contributions:
(1) Enhancement the classification model that provide heatmap more accurate in our
specific real dataset (2) Ablation tests for guide wire paste in augmentation
demonstrate that the model can deal with lesions more generally and precisely. (3)
propose the algorithm to apply the model for real-world scenarios with more

efficiency.

1.1 Aims and Objectives
To propose a deep learning model that provides real-time classification and

heat maps to assist endoscopists during cholangioscopy.



1.2 The Scope of Work
1. Evaluate the proposed deep learning network addition to the following
a. Experiment on our private dataset of Biliary strictures from the
Center of Excellence for Innovation and Endoscopy in
Gastrointestinal Oncology, Chulalongkorn University, Thailand.
b. Cholangioscopy images and videos from our dataset were acquired
by experienced endoscopists.
2. The proposed network can classify malignancy biliary stricture from biliary
stricture.

3. The inference speed of real-time classification is more than 25 fps.

1.3 Research Funding

This research project was funded by the National Research Council of
Thailand  (NRCT; N42A640330), Chulalongkorn  University  (CU-GRS-64), and
Chulalongkorn University (CU-GRS-62-02-30-01) and supported by the Center of
Excellence in Gastrointestinal Oncology, Chulalongkorn University annual grant. It was
also funded by the University Technology Center (UTC) at Chulalongkorn University.
Additionally, The research grant funds have been provided by the 72nd Anniversary
of His Majesty King Bhumibol Adulyadej Scholarship and the 90th Anniversary

Chulalongkorn University Fund (Ratchadapiseksomphot Endowment Fund).

1.4 Publication
® P. Phuangthongkham, P. Angsuwatcharakon, S. Kulpatcharapong, P. Vateekul
and R. Rerknimitr, "Real-Time Identification of Malignant Biliary Strictures on
Cholangioscopy Images Using Explainable Convolutional Neural Networks With
Heatmaps," in IEEE Access, vol. 11, pp. 49943-49956, 2023, doi:
10.1109/ACCESS.2023.3276642.
B |EEE Access, Q1

®  Impact Factor = 3.476



CHAPTER Il
BACKGROUND

The background knowledge for the thesis is covered in this chapter. It is
consisting of Image classification, supervise learning, Data Augmentation, Evaluation

Matrix, and Cholangioscopy.

2.1 Image classification

Image classification is the process of labeling or categorizing an entire image.
Images should only include a single class. The model receives input as images, then
extracts crucial features from the images and shows the output as a class. In deep

learning, there are many important modules for Image classification

Convolutional Neural Networks (CNNs), layering makes CNNs strong. CNNs
simultaneously process red, green, and blue image components using a three-
dimensional neural network. This requires fewer artificial neurons to analyze a

picture than feed forward neural networks.

| - CAR
] -TRuck
| -vaN

- BICYCLE

FEATURE LEARNING CLASSIFICATION

Figure 1. an overview of the deep convolutional neural network architecture [14]

Typically, a convolutional network's design has four types of layers:

convolution, pooling, activation, and fully connected.



2.1.1 Convolution layer

Convolution layer it is comprised of a set of convolutional filters also known
as kernels. The filter convolved feature matrices as input to produce a features map
as output. This kernel is a weight for the model and will be change after optimizing.
After training, this filter will be the data pattern filter. The mathematical in this layer
start with each filter uses a different channel input value to multiply the weights.
The sum of all the inputs gives a different value for each filter position. This
operation shows in Figure 2.
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Figure 2. Convolutional operation on widthxheightx3 input and 3x3x3 filter [15]

2.1.2 Pooling

The pooling layers progressively shrink the image size, retaining just the most
vital details. These important features are determined by the method of pooling.
Max, min, and GAP pooling are the most common types of pooling, see figure 3 show

the example of pooling.
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Figure 3. GAP and Max pooling from the 4x4 feature with pooling 2x2 [16]

2.1.3 Activation function

Activation function is the function that use for change value to non-linear
value, since nonlinear function having the capacity to discriminate, which is a crucial
feature, the most frequently applied to the model are sigmoid function in Sigmoid
and RelLU. Sigmoid can produce the output between 0-1 when input is the real
number. The equation can be expressed equation follows:

f(x)sigm = ﬁ (1)

RelLU is the most often employed function within the CNN. It transforms the input
values to positive values and lower computing cost when compute back

propagation. The equation can be expressed equation follows:

f () reLy = max(0,x) (2)

2.1.4 Fully connected

This layer is frequently added near the end of any CNN architecture. Each
neuron in this layer is connected to every neuron in the previous layer. When we
compute this layer, we refer to the fundamental method of traditional multilayer

perceptron neural networks. The input of these layer is refined from previous layer



such as convolutional layer, pooling and activation which is flattened. The output of

the last FC layer also referred CNNs output.

2.2 Supervise learning

Supervised learning is part of machine learning and artificial intelligence.
Model is learned by input and label output pairs. The process of learning is diverse
and varies based on the type of model. For this work, we use deep learning for
image classification. The training procedure entails calculating loss from the model's
output using a loss function. Losses will be calculated to adjust the model's weight
in order to minimize the loss itself. To do so, we'll need an optimizer to compute

gradient descent and adjust weight during the model's training process.

2.2.1 Loss function
The loss function is stand for loss from the output of the model. In this work,
use loss function for categorized two class. Therefore, binary, and categorical cross

entropy is applied for the main loss:

exp(xn,
L=- ZnEN ZCEC Wclog Wgﬂ(;{”) Yn.c (3)

Where Yy, - is a pair of labels, X, . is the model output, W, is the weight of

all class,and N is a sample from minibatch

2.2.2 Optimizer
Optimizer is used for finding the minimum of the loss. If the loss is minimum,
we said that is the best weight of the model. To do that, we start with compute loss

from the output, then compute the gradient. In mathematical, the gradient has a



direction that points from the lower point to the higher point. For finding minimum,
we must change to the opposite direction by add minus to the equation. Thus, this
kind of action is gradient descent, we use gradient descent for update weight whole
model with the chain rule, the equation of update rule is explained as follows:

oL

Wiy = W — aa_wt (4)

oL .
Where ¢ denote to weight, O is learning rate, a 1S gradient of the loss.
t

2.3 Evaluation Metrics

Due to model must categories biliary strictures in to two classes. If model
output and label are Malignant, the result is true positive (TP). In other hand, if those
output is Benign, the result is true negative (TN). False positive (FP) is defined when
output is malignant, but label is benign. Likewise, False negative is defined when
output is benign, but label is malignant, the evaluation metrics of this work are
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive

value (NPV) and F1-score. The evaluation metrics are described below:

TP+TN
TP+TN+FP+FN

(5)

accuracy =

TP
TP+FN

(6)

recallyqiignant (Sensitivity) =

TN
TN+FP

(7)

recallpenign (specificity) =

TP
TP+FP

(8)

Precisionyaiignant (PPV) =

TN
TN+FN

(9)

Precisiongenign(NPV) =



2XrecallxPrecision
Fl1= (10)

recall+precision

2.4 Cholangioscopy
Cholangioscopy is an endoscopic method that does not involve cutting into
the body. It is used to look at the bile ducts visually and treat them at the same

time [17]. There is two types are represented below

Bile duct

Figure 4. overview of the instrument used for cholangioscopy [18]

Endoscopic Retrograde Cholangio Pancreatography (ERCP) is a radiographic
examination of the bile ducts (small drainage tubes), gallbladder, and/or pancreatic
duct performed in real-time. ERCP assists your gastroenterologist in diagnosing and
treating numerous biliary illnesses, such as bile duct obstruction owing to stones or
cancer, or pancreatic disorders, such as pancreatitis or bile duct cancer. However,
ERCP only provide x-ray images show in figure 5. With this limitation, it hard obtains

biopsy and to find out whether biliary stricture is cancer.



10

Figure 5. Example of X-ray image from ERCP [18]

Spyslass® cholangioscopy is the attachment for the basic ERCP. With this
tool, endoscopists can directly observe the bile ducts and acquire a more accurate
biopsy, the picture is shown in figure 6. With higher resolution and RGB images. In this

work, we use this image as a dataset for proposed model.

Figure 6. Example of SpyGlass® Cholangioscopy image that has RGB image and

higher resolution
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CHAPTER IlI
RELATED WORKS

This chapter describes the relevant deep neural networks for the thesis,
medical image classification, cut image data augmentation, Real time medical image
classification and recently work that relate to the Indeterminate biliary stricture

image classification.

3.1 Model network

Over the past few years, deep neural networks are consistently developed.
Model is more accuracy and efficiency, also practical for using in real-world problem
solving. This section aims to provide information on the network used for this thesis.

The detail is represented following.

3.1.1 Resnet (2016)

In 2016, Model named ResNet [19] is proposed. This model affects the
underlying structure of several models by proposed the residual learning framework
show in figure.7. Typically, neural networks layers will feed forward layer to layer, but
residual block not only feed forward but also directly feed the input skip to next
layer. Due to skip connection, the vanishing gradient from gradient descent is no
longer much affected since back propagation is calculated through the input of the

layer.
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Figure 7. building a Residual block [19]

When compare with the more complexity neural networks such as VGG [20],
the result from the ImageNet dataset [21] confirmed the model with residual block is
better. Testing on ILSVRC 2015 classification competition, ResNet [19] has 3.57% top-5
error, while VGG [20] has 7.32% top-5 error.

3.1.2 Xception (2017)

Xception [22] is represented as advance version of Inception [23], by
modified depthwise separable convolution module. It achieves high performance
from ImageNet dataset [21] by 0.790 in terms of accuracy when VGG-16 [20] and

ResNet-152 [19] achieve 0.715 and 0.770 respectively.

Firstly, depthwise separable convolution module is consist of depthwise
convolution and Pointwise convolution respectively. Depthwise convolution
the channel-wise n x n spatial convolution. For example, if it has 10 channels, the
module will have 10 n x n spatial convolution. Pointwise convolution is 1x1

convolution to make the dimension we need.

To modify depthwise separable convolution module for Xception model

such that it is not significantly different from the original module, Swap the point
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wise in front of the depthwise and pull intermediate activation out from the module

Figure 8 represents the modified depthwise separable convolution.
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Figure 8. the modified depthwise separable convolution with n=3 [24]

The overall architecture in Xception model [22] are describe in Figure 9. The

architecture is divided in 3-part, Entry flow, Middle flow and Exit flow. The modified

depthwise separable convolution is illustrate as SeparableConv.
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In the past, for improve model efficiency, model must scale up something

such as layers, resolution of image and width(channel) such as ResNet [19] that can

scale up model from ResNet18 to ResNet200. Likewise, accuracy of the model

increases from scaling up layers. However, this phenomenon needs manual

adjustment and considerable time, leading frequently in little or no performance

enhancement. EfficientNet [25] is a result from Compound model scaling method

show in figure 10, that scale CNN model with width, depth, and image resolution.
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Figure 10. (a) baseline network, (b)-(d) are width scaling, depth scaling and

resolution scaling respectively, (e) Compound scaling [25]

The compound scaling approach is based on the concept of balancing width,
depth, and resolution through constant ratio scaling. In addition, the compound
scaling improved the model efficiency and accuracy of earlier CNN models such as
MobileNet [26] and ResNet [19] by around 1.4% and 0.7% ImageNet accuracy,
respectively, compared to other random scaling techniques. The architecture of the
EfficientNet employs a mobile inverted bottleneck and scaled up to create a
EfficientNetBO - B7, EfficientNetB7 is the biggest model from family and achieve

impressive results is 84.4% top-1 accuracy and 97.3% top-5 accuracy on ImageNet.

3.1.4 PYLON (2022)

Pyramid localization Network (PYLON) [27], this model aims to improve
resolution of Heatmaps by CAM method, in fact, PYLON does not require expert
annotation of label position and may instead be trained with solely image-level
labels. This functionality is particularly crucial for domains where expert annotation is
frequently unavailable or expensive. For the output, PYLON has two outputs, the first
one is classification output model, the second one is heatmaps that process through

upsampling module (UP) and pyramid attention (PA), These two modules allow
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PYLON compute Heatmap with CAM method in high resolution. The model

architecture is described in figure 11.
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Figure 11. PYLON'’s architecture [27]

Encoder is a ResNet backbone used for encoding to embedded vectors and
then feeding to PA, this module consists of ConvRelLU layer with several filter size,
ConvRelU is convolutional, ReLU activation and Batch normalization. PA is focus on
find the crucial features and send to the UP module. Up module is used for increase
image size when image size is 64 x 64 then feed to the conv 1x1 for shrink channel

to class label.

3.2 Medical image classification
Deep learning image classification has been used in a variety of tasks over the
last decade. Medical tasks are some of the most successful in the deep learning era

[10]. In gastrointestinal disease, diagnosis by Gl endoscopy also contributes
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consistently [11]. In 2018 Chen PJ et al [28], proposed using a deep neural network
to classify two types of polyps with a size less than 5 mm. They had 1476 images for
neoplastic polyps and 681 images for hyperplastic polyps, which they benchmarked
with an endoscopist. They achieve high performance that is 96.3, 78.1, 89.6, and 91.5
in terms of sensitivity, specificity, PPV, and NPV respectively, which is more than

endoscopist’s NPV ranging from 73.9% to 94% from six person.

In that year, Jun-Yan He et al. [29] propose work related to hookworm
detection through wireless capsule endoscopy (WCE) image, they use two networks
of CNN to classify whether patient is infected by hookworm. The first one is built for
edge extraction to refine the second CNN feature. The second one is based model
for hookworm classification. They have 4,828 hookworm images and 436,796 images
for non-hookworm which is pretty imbalanced, however, their method does not miss
any infected patients. Their method reaches 0.895 in terms of ROC-AUC while
compare with GooglLeNet [23] and AlexNet [30] have 0.883 and 0.769 in terms of

ROC-AUC respectively.

In 2020, Poundel et al. [31], presented a method for classifying colorectal
disease on their own dataset with five classes. By modify original ResNet with adding
dilated rated for convolution and add DropBlock to the model, their data was
collected 364 images for adenocarcinoma, 775 images for adenoma, 563 images for
Crohb’s disease, 773 images for ulcerative colitis and 770 images for normal. Their
model achieves an impressive Fl-score of 0.93, while other methods achieves F1-

score ranging from 0.87 to 0.91

3.3 Explainable deep learning

CNN is a combination of layer, we don’t know what is going within a plenty of
mathematical value inside that layers and what that layers stand for, it is truly black
box. In 2016, B. Zhou et al. proposed a method for understanding the “black box” of

image classification called “Class activation maps” (CAM) [32]. This method modifies
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CNN architectures for image classification by using global average pooling (GAP), the
procedure is map back the predicted class to previous convolution layer and sum all

weight in layer to produce a class activation map. Describe in figure 12.
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Figure 12. The procedure of generating class activation map (CAM)

The resolution of cam depends on size of image in that layer which always
low resolution. However, some tasks need more resolution, such as medical tasks for

aid expert in classification tasks.

In 2022, Preechakul et al. [27] proposed the Pyramid Localization Network
(PYLON), which generates more resolution through an upsampling module and a
pyramid attention module. PYLON does not need to map output and sum weight
like traditional CAM. They proposed the PA module for finding localization of the
image, and then used the upsampling module to generate more resolution of the
CAM and give output in term of classification result and heat-map, they perform
PYLON in NIH’s Chest X-rayld [33], that Dataset is ¢ood for evaluating accuracy
because it has more than 100,00 images, which 1,000 of them were annotated with
bounding boxes of disease location. For model evaluation, they compare their
model with CAM [32], Grad-CAM [34], Grad-CAM++ [35], XGrad-CAM [36], Li et al.’s

method [33], and FPN [37]. Their method achieves 0.65 in terms of weight average
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point localization accuracy, which is more than other methods that range from 0.06

to 0.61 in a 512x512 input image.

3.4 Real time medical image classification

Some tasks in a real-world situation, especially in medical terms, required
real-time assistance, for more precise and accurate diagnosis. Endoscopy is one of
them. In 2018, Michael et al. [38] developed a model based on the Inception [23]
model for classifying diminutive adenomas from hyperplastic polyps and provided an
algorithm for use in real-time situations by video evaluation, this algorithm adds
credibility value that was calculated frame by frame in form of exponential
smoothing. For training model, they comprised video to frame by 223 videos,
validating 40 videos, and testing 125 videos. The model accuracy was 949%, sensitivity
was 98%, and NPV was 97% in 106 polyps video testing, which is high confidence in
prediction calculated by credibility. However, this model had poor value in term of

frame per second (FPS) which is 20 FPS,

In 2022, Yi Lu et al. [39] proposed a model for classifying the histopathology
of colorectal polyps, using ResNeSt [40] as a model for image classification. In the
dataset, they divided it into 5 classes: hyperplastic or inflammatory polyps,
adenomatous polyps, intramucosal cancer, seep submucosal invasive cancer, and
normal mucosa. Split the dataset with 5-fold cross validation, which is 7,032 images
for polyps and 3,541 images for normal mucous, and leave 116 consecutive polyp
videos for test performance of model. They refine image features by adding an edge
channel to the input, which is computed by edge extraction, the overall accuracy of
the model is 93%. For video testing, their model achieves 84.62%, 86.27%, and
85.34% in terms of sensitivity, specificity, and accuracy, respectively. However, this
work does not provide any algorithms for more practical real-case scenarios in video

testing, which may add more accuracy and be more practical.
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3.5 Indeterminate biliary stricture image classification

Indeterminate biliary stricture is one of the new challenging tasks for the
deep learning approach. Saraiva MM et al. developed CNN-based on DSOC images for
detecting malignancy in biliary strictures in 2021 [12], obtaining 9,695 malignant
images and 2,160 benign images from 85 patients. For the deep learning approach,
they employed Xception [22] for diagnostics and evaluated model by splitting the
dataset for 5-fold cross-validation. Their model reaches high performance, with an
overall accuracy of 94.9%, a sensitivity of 94.7%, a specificity of 92.1%, and an AUC
of 0.988. However, this study focuses only on still images, which may not aid the

endoscopist in a real-time situation.

In 2022, Marya et al. [13] propose a deep learning model and algorithm for
diagnosis in real-world scenarios. They benchmarked their model with two traditional
techniques, brush cytology and forceps biopsy sampling, they employed ResNet50V2
[41] as a model for classification, and collected cholangioscopy images from 2012 to
2021, which totaled 2,388,439 still images with 154 patients. In the dataset, expert
endoscopists are used to categorize and annotate images. This data is classified into
five categories: high-quality malignant, high-quality benign, high-quality suspicious,
and low-quality uninformative. They pick 14,381 images from the database for
training and 5,348 images for testing, that image is from 132 patients and leave 22
patients for video testing. The result is impressive, which the model had high quality
malignant AUROCs of 0.941. They use the moving average in video testing to predict
whether a video is malignant or not based on the moving average result of high
quality malignant. The overall accuracy of video testing is 0.906 in a 900 frame-
average, which is much higher than brush cytology and forceps biopsy
sampling, which are 0.625 and 0.609, respectively. However, this model provides a
woefully inadequate real-time classification result, and endoscopists must sometimes
perform a biopsy while performing cholangioscopy. This work is not an option for an

AIDS endoscopist to perform a biopsy. For this limitation, our contribution is focused
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on not only classification assistance but also providing real-time heatmaps of

malignant in order to perform biopsies more precisely.
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CHAPTER IV
CONCEPT AND RESEARCH METHODOLOGY

This chapter will illustrate about experiment setup and how this model work
for real-world scenarios, this chapter are represented by 6 part which contain Data
preparation, Data augmentation, Enhancement model, video inference for real case

problem, model evaluation, and model deployment.

4.1 Data preparation

This private cholangioscopy image dataset was collected from 2014 to 2021
from the Center of Excellence for Innovation and Endoscopy in Gastrointestinal
Oncology, Chulalongkorn University, Thailand. This data contains 104 patients, from
patient get 885 still image data which is labeled by the diagnosis result and second
screening by two expert endoscopist. In addition, video data also collected from the
same source as image which contains 5 patients only for testing model by video. This

work is split data by patient based in 3-fold without same patient is testing set.

4.1.1 Still image dataset

As mentioned above, dataset is divided in to 3-fold by patient based for
prevent leakage data since still image from patient is not equal, it is ranging from 1 to
28 image, the label image was categorized in two class, 447 images for malignant and
438 images for benign, the class label image are shown in figure 13. For training
model, we divided still image data by 70: 15: 15 per fold by patient based which
contains 72 patients for training, 16 patients for validating, and 16 patients for testing.
Prior to training, we also increased the number of sample training images by
randomly duplicating images from patients who had fewer than five images to five

images.
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(a) (b)

Figure 13. (a) the example of malignant label images (b) the example of benign
label images
4.1.2 Video dataset
Some patients in still image data also have video data, we left rest of video
data for sorely testing. For testing video, we use test video from patient who divided
to be testing in still image for preventing leakage data. Additionally, we have 5
patients with only have video data, we assign those 5 patients to testing video for get

result in all 3-fold evaluations. Finally, we illustrate this data preparation in Figure 14
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Figure 14. Dataset preparation for training model in still image and evaluating model

per fold
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4.2 Data augmentation

For make model more generalize, the most frequently used is data
augmentation. The work of augmentation is generating more image with other
perspective with computer vision method for training model, there are many
methods for augmentation. In this work we applied typical method that always
applies in deep learning is rotation, horizontal flip, affine transformation, and auto

contrast which is shown in figure 15.

(d)

Figure 15. typical augmentation (a) normal image, (b) rotation , (c) horizontal flip, (d)

translation, (e) auto contrast

4.2.1 Cut image augmentation

There is also work for hard augmentation with cut image and generate more
generalization model. In 2019, Yun, Sangdoo, et al. [44], proposed cut mix
augmentation. This augmentation is employed by cut image from some label image
to another label image and weight that two class together. For our work, we can not
employ this cut mix practically because some area of biliary stricture image cannot
represent their class and sometime endoscopist must perform guide wire or other

tools during cholangioscopy. In that case, we proposed specific augmentation
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technique for biliary stricture image classification task, first we cut image from
labeled image with applied guide wire and prepare for augmentation, second, we
randomly paste in those cut image to the training image in vertical and make sure
that guide wire not bigger than half of heigh or width of image the augmentation

illustrate in figure 16.

Figure 16. (a) normal image (b) cut guide wire and paste in for augmentation

4.2.3 Jigsaw augmentation

Jigsaw augmentation [42] was invented to destroy image structure due to the
fact that sometimes image structure is the reason that a model has a location bias.
The jigsaw technique splits an image into identically sized rectangular pieces before
shuffling and assembling them to its original sizes, see figure 17. The procedure

enables the model to establish a direct connection during training.
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(d)

Figure 17. Jigsaw augmentation example. (a) original image (b) 2 x 2 jigsaw ratio (c) 4

x 4 jigsaw ratio (d) 5 x 8 jigsaw ratio (e) 10 x 16 jigsaw ratio.

4.3 Model improvement

PYLON is very good for this task since model provide not only classification
but also heatmaps that necessary for help endoscopist perform biopsy more
precisely. However, this model lack of image classification efficiency, thus, we
propose our model that based on PYLON that will raise more efficiency but still

provide heatmaps correctly, the model architecture illustrates in figure 18.
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Figure 18. Architecture of our model compared to the original PYLON: (A) Our
model’s architecture was enhanced from PYLON in 3 parts: (1) update the backbone
from ResNet50 to be EfficientNetB3, (2) add the prediction head in the encoder, and
(3) maintain the decoder to generate heatmaps and modify the prediction head here

as auxiliary head. (B) The original PYLON’s architecture.

According to figure 18, the essential module is contained three parts. Firstly,
encoder module is use for encoding image to embedded vector, we use
EfficientNetB3 as backbone. While compute encoder, model also send feature from
encoder 2, encoder 3 and encoder 4 to decoder module and change channel by 2
stacks of 1ConvBNReLu (this module contains 1x1 conv, Batch normalization, and
RelLU activation respectively). After encoding, model will separate to two paths.
Prediction Head and Decoder, prediction head is stand for classification task which
contain squeeze and executed block [42] that allow model made more capacity with
channel attention, after refining features with SE block, model will send that feature
to traditional classification head consist of Avg pooling, Dense, Sigmoid, and
prediction with 0.5 threshold. Decoder block is use for generating malignant
heatmaps of images. The two most important modules are pyramidal attention (PA)
and UP module. PA is used for refining features more precisely and find crucial

features, PA is built by 1ConvBNRelLu, 7ConvBNRelLu, 5ConvBNRelLu, and 3
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ConvBNReLu following the figure 18. Inside the PA, the features are reduced channel
from 384 to 1 channel by max pooling and reduce resolution by convolution which
show in figure 18 by 0.5%, and also interpolate resolution to combine with another
features are shown in figure 18 by 2x, after PA module, model will send feature to
UP module, in UP module, feature resolution will be up scaling by interpolate
features from previous block and combine with encoder feature that up channel by
1convBNReLu. Lastly, the second output of model has 64x64 resolution, which can
be mapping to heatmap. To train this model, we use two binary losses for optimizing
model the first one is on prediction head for image classification and the second one

is auxiliary head for generate output heatmaps, we combine losses following:

Loss = LOSSprediction + LOSSAuxiliary (11)

where Lossyyeqiction denote to BCE from prediction head and Lossgyxitiary 15

BCE from auxiliary head.

4.4 Video inference for biliary stricture

In real-world scenarios, we proposed algorithms for using model predicted
patients, whether malignant or not, this algorithm is represented in figure 19. When
endoscopist diagnosis biliary stricture while using spyglass DSOC cholangioscopy, they
must see several perspectives for diagnosis the patient. Same as this algorithm, we
use model for predict frame of video and average predicted frame, in 100 frames if
malignant more than half, we will predict that patient is malignant. But if malignant is
not exceed 50 frames, we predict that patient is benign. In real case, the endoscopist
may stop to focus the lesion on bile duct, since this condition, predicted frame will
increase unnecessary and it causes wrong prediction. For solving this problem, we
add variance calculate to the algorithm, before feeding frame to model, we calculate

the variance of that frame to make sure the image is changed, if new frame is more
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or less than 5% variance from last predicted frame, we will feed that frame to the

model and redo the process of prediction.

Fetch next frame
Predicted Malignant

i YES

If malignant is more
than half

Predicted Benign

Fetch next frame

Current
frame

Window of 100 frame

Calculate
variance

NO Variance is change more YES el Model
than 5% from memory Prediction

Variance
Memory
Update memory

Figure 19. The operation of the video classification algorithm.

4.5 Model deployment

Model are optimized to open neural network exchange (ONNX) format for
evaluation and deployment in the Center of Excellence in Gastrointestinal Oncology.
Model in ONNX format is faster than typical PyTorch model formats, and it more

practical using in real world scenarios.
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4.6 Model evaluations

For model evaluation, we convert the model to ONNX format and inference
on the TensorRT backend, whose computation is RTX3090. The computational
complexity of all models was calculated in terms of multiply-adds operators (MAdds)

and model parameters.

4.6.1 Still image evaluation

we use classification metric that mention in 2.3, evaluation only still image in
test set in 3-fold and average them to final result, we also evaluate speed of the
model in frame per second by start from receive uint8 image to predict class of that

image.

4.6.2 Video evaluation

Same as above, we use classification metric that mention in 2.3, but instead
of evaluating still image, we use video from the patient that mention in 4.1.2,
evaluating per patient in classification metric, and evaluate speed test by frame per

second from uint8 through our algorithm and end with prediction result.
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CHAPTER V
EXPERIMENTS AND RESULTS

In this chapter, preliminary experiments about biliary stricture image

classification and video classification from chapter 4 are explained

5.1 Comparing model result

For the best performance in prediction, we conduct experiments by training
an image classification model with several different models. According to their work
[21], EfficientNet is pretty fast and has high accuracy when compared with others. In
addition, biliary stricture image classification studies [41, 42] have used Xception [18]
and ResNet50v2 [43] in their work, lastly, we modified PYLON [23] to make our own
model. For all that reason, we compare the performance of the models, which are
EfficientNetB2, EfficientNetB3, Xception, ResNet50v2, PYLON, and our model. We
separate the type of model by output, the first one provides only classification
results, and the last one provides both classification results and heatmaps that will
be used for the video classification experiment. All models were trained under the
same condition, which is augmented by basic augmentation and cut image
augmentation that are mentioned in 4.2.1. However, the input resolution was chosen
based on their work. We use ImageNet as pre-train of all models and optimize model
by AdamW as optimizer with 0.0007 for learning rate and 64 batch size for training,
we train 150 epoch and choose model from best validation on F1-score in validation
set, we pick model from that best validation and testing in test set. The result is
shown in Table 1. our model achieves the highest in terms of sensitivity, NPV, F1-
score, and accuracy, which are 0.8577, 0.8443, 0.8395, and 0.8415, respectively, For

trading of FPS, our model can provide heatmaps in real time while FPS is 84.1.
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Table 1. The performance comparison between our model and other model on our testing

set, Boldface refers to the winner

Model Sensitivity | Specificity PPV NPV F1 Accuracy FPS
ResNet50v2 [41] 0.7517 0.8660 0.8577 0.7661 0.8067 0.8084 188.6
Xception [22] 0.7807 0.8141 0.8223 0.7758 0.7954 0.7966 156.7
EfficientNetB2 [25] 0.7904 0.8560 0.8575 0.7908 | 0.8222 0.8233 181.8
EfficientNetB3 [25] 0.7879 0.8573 0.8624 | 0.7888 | 0.8220 0.8236 172.4
PYLON [27] (heatmaps) 0.7908 0.7658 0.7924 | 0.7949 | 0.7800 0.7842 86.4
Our model (heatmaps) 0.8577 0.8188 0.8418 | 0.8443 | 0.8395 0.8415 84.1

5.2 Ablation study for modifying pylon

As we mentioned in 4.3, we modified PYLON to our model by change original
encoder backbone, adding prediction head, and add auxiliary loss for training CAM,
before we found the best architecture, we also test other backbone, which is
EfficientNetB2, EfficienNetB3, ResNet50 after change backbone we also test with
effect of prediction head by original pylon and add prediction head to model the

result are illustrate in Table 2.
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Table 2. The effect of modify PYLON from original on our test dataset, effnet refers to EfficientNet,

boldface refers to the winner.

Method Sensitivity | Specificity | PPV NPV F1 Accuracy | FPS
PYLON (resnet50) (original PYLON) 0.8165 0.7594 0.7913 0.7888 0.7878 0.7900 86.4
PYLON (resnet50) + modify head 0.8333 0.7885 0.8188 0.8140 0.8117 0.8142 86.2
PYLON (EffnetB2) + modify head 0.7605 0.8433 0.8424 0.7626 0.8001 0.8012 84.5
PYLON (EffnetB3) + modify head 0.8582 0.7930 0.8281 0.8459 0.8276 0.8313 84.2
PYLON (EffnetB3) + modify head + SE 0.8577 0.8188 0.8418 0.8443 0.8395 0.8415 84.1
(our model)
PYLON (EffnetB4) + modify head + SE 0.7525 0.8812 0.8864 0.7655 0.8149 0.8173 67.5
PYLON (EffnetB5) + modify head + SE 0.7668 0.8688 0.8728 0.7730 0.8157 0.8173 59.1
PYLON (EffnetB6) + modify head + SE 0.7395 0.8637 0.8567 0.7599 0.8021 0.8021 515
PYLON (EffnetB7) + modify head + SE 0.7264 0.8648 0.8635 0.7553 0.7949 0.7972 39.2
5.3 Comparing Effect of guide wire augmentation
From experiments, we know that our model is pretty good at predicting when
compared with others under the same conditions. In this section, we show that our
guide wire augmentation is one of the reasons that our model reaches 0.8395 in
terms of Fl-score, the effect of the augmentation result is shown in Table 3.
Table 3. Effect of guide wire cut in augmentation on our model, boldface refers to winner
Method Sensitivity | Specificity PPV NPV F1 Accurac
y
Our model with guide wire 0.7858 0.8328 0.8415 0.7875 0.8086 0.8106
augmentation
Our model without guide wire 0.8577 0.8188 0.8418 0.8443 0.8395 0.8415
augmentation
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Moreover, we also present effect of augmentation in terms of explanation by
CAM result to show our where our model is considering from figure 20. Without
augmentation, model is looking tools as benign class which is not lesion from biliary
stricture. With augmentation, the model changes attention to the lesion, which is

correctly predicted as malignant.

(a) (b) (c)

Figure 20. effect of augmentation on CAM, (a) normal images

(b) without augmentation (c) with augmentation
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5.4 Comparing effect of jigsaw augmentation

The jigsaw augmentation will destroy the image structure that causes location
bias in the model. Unfortunately, our data has only an image level label, so the
model will be confused with the destroyed image. In Table 4, the results show that

without applying jigsaw augmentation, the model has a better classification result.

Table 4. Effect of Jigsaw augmentation on our model, boldface refers to winner.

Method Sensitivity | Specificity PPV NPV F1 Accuracy
Our model with jigsaw 2x2 0.8236 0.8216 0.8387 0.8058 0.8217 0.8228
Our model with jigsaw 4x4 0.8380 0.8113 0.8349 0.8251 0.8262 0.8288
Our model 0.8577 0.8188 0.8418 0.8443 0.8395 0.8415

5.5 Video classification result

5.5.1 heatmap result
This model provide real-time heatmaps for assisting endoscopist classify
malignant from biliary stricture and perform biopsy, heatmaps of malignant is shown

in figure 21.
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(a) (b

(c

Figure 21. The result heatmap from model (a) normal image (b) second output from
model which is 64x64 resolution image (c) Mapping 64x64 resolution image to

heatmaps for visualization
5.5.2 video classification result
For evaluation of video classification algorithms, the testing data from Section
4.1.2 was used, and we compared our algorithms with a typical moving average. We
show the result in Table 5. Our algorithms achieve high performance of 0.9024,
0.9394, 0.9333, 0.9154, 0.9193, and 0.9197 in terms of sensitivity, specificity, PPV, NPV,

F1-score, and accuracy, respectively.

5.6 Comparison of experts results

Table 5. Comparative of video classification on testing data, boldface refers to winner

Model Sensitivity Specificity PPV NPV F1 Accuracy FPS
Moving average 0.8956 0.7765 0.7748 0.8998 0.8263 0.8297 83.0
Our algorithm 0.9024 0.9394 0.9333 0.9154 0.9193 0.9197 84.0
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In this section, we represent the model's efficiency by comparing it with two
expert endoscopists. Still image datasets and video datasets were prepared for the
two experts. We carried out the experiment in the same manner as determined by
the model. In Table 6, the prediction results from the two experts are illustrated.
Surprisingly, with the still images dataset, our model is seen to provide more
robustness than humans, achieving 0.8577, 0.8443, 0.8395, and 0.8415 in terms of
sensitivity, NPV, F1, and accuracy, respectively. In addition to the video dataset, our
model demonstrated an impressive performance more than the experts, achieving
0.9024, 0.9394, 0.9333, 0.9154, 0.9193, and 0.9197 in terms of sensitivity, specificity,

PPV, NPV, F1, and accuracy, respectively.

Table 6. Comparison between our model and two expert endoscopists on the

testing of still images and videos. Boldface refers to the winner.

Dataset Classifier Sen. Spec. PPV NPV F1 Acc.
Expert 1 0.7900 0.8422 0.8646 0.7834 0.8143 0.8149
Still images Expert 2 0.6932 0.8473 0.8375 0.7139 0.7663 0.7677
Our model 0.8577 0.8188 0.8418 0.8443 0.8395 0.8415
Expert 1 0.7542 0.5000 0.5365 0.7250 0.6080 0.6106
Videos Expert 2 0.7913 0.9280 0.8843 0.8515 0.8604 0.8664
Our model 0.9024 0.9394 0.9333 0.9154 0.9193 0.9197

As observed in Table 6, results reveal that humans are confused by benign
since the sensitivity of the model exceeds the sensitivity of the two experts on both
still images and videos. Therefore, the model plays an important role in assisting

endoscopists while performing cholangioscopy.
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5.7 Heatmap output from our model

This section, we present the heatmap output from the model. To confirm the
heatmap output which is good enough to use in the real-world scenarios, the only
way to confirm is biopsy which is the gold standard for this task. However, we cannot
perform biopsy to assure the result due to clinical limitations. Thus, we will confirm
the result in compromise way, we show the output of the heatmap then get the
comment from the expert in 3 ways: strongly agree, agree, and disagree in figure 22,

and figure 23.

Comment from endoscopist
Image | strongly agree Agree Disagree The heatmap should also be this area

v

Figure 22. Comment about heatmap from the endoscopist.



Comment from endoscopist

Image Strongly agree

Agree

Disagree
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The heatmap should also be this area

v

Figure 23. Comment about heatmap from the endoscopist (cont).
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5.8 Error analysis
In this section, we investigate the best model by looking at the image and

video with human knowledge. An error from the model was presented.

5.8.1 Image analysis

We first investigate the testing image from bootstrap 1, and the results will be
discussed in terms of true positive, true negative, false positive, and false negative.
The first one is a true positive. From figure 24, the heat-map result, also known as

the suspicious area, shows the lesion of the biliary stricture.

Figure 24. Grad-Cam from True positive.
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In the second one, we focus on the true negative image. Figure 25: Due to
the fact that the classifier is a binary classifier, the heat map of the image will show
only suspicious areas. A true negative image will not find anything if it does not have
a suspicious area. Sometimes the heatmap will show, but the confidence is not

enough to recognize it as malignant.

dicted :Benign

Figure 25. Grad-Cam from True negative.
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In the third one, we investigate the false positive. Figure 26 shows the
suspicious areas in the benign class that result in false positives. Some lesions are
not the cause of malignancy. However, the image can confuse the model with the

lesion, which seems malignant, and predict that lesion with high confidence.

Figure 26. Grad-Cam from False positive.
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The last one is a false negative. Figure 27 shows the heat-map with the Grad-
Cam method. The model accurately looked at the malignant areas but was not
confident enough to predict the image as malignant. Due to this reason, the images

are considered benign, which causes false negatives.

Figure 27. Grad-Cam from false negative.

5.7.2 Videos analysis

We also investigated the testing videos. The results will be discussed in terms
of true positive, true negative, false positive, and false negative. In this section, we
will show two graphs: the image predicted from the video frame by frame and the

working of our algorithm on the videos.
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We start at investigate true positive video. In figure 28 the result are show the
prediction frame by frame and our algorithm. The video from the real-case come
with the noisy images, when the image show the noisy the model will predict to be
benign because there are no suspicious area. From the algorithm, we set threshold
with 0.5 from malignant score. We can observed in the last part of the video the
model focuses on the malignant area and score rise up more than 0.5 then we

predict this video as malignant.

The second we show the true negative case in figure 29. The model mostly
predict the frame as benign cause there is no suspicious areas and some of the
frame come with the noisy image. The prediction of video is benign cause the
malignant score does not exceed 0.5.

The third we present the false positive video prediction. From figure 30, the
prediction start with malignant that cause the moving average high in the first place.
Then the model is confused by the lesion in the bile duct with continuous predict as
malignant until the malignant score exceed 0.5.

The last one we present the false negative video prediction. In figure 31, the
very first part of the video come with the noisy until the model found the
malignancy areas. However due to the length of the video, the malignant score from
frame prediction almost touch 0.5 threshold in the last part of the video lead to the

result with benign prediction.
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5.8 Model deployments
In this section, we present the program that is used in real-world scenarios
with our model deployments. The crucial features in this program consist of

predictions, heatmaps, contours, and pictures in pictures.

We first present an overview of the program in figure 32. The program's Ul
contains several features. Firstly, malignant point thresholds can adjust the prediction
threshold of moving averages. Secondly, heatmap areas on the main picture can be
toggled on or OFF. Thirdly, draw style, which can toggle the draw output style from
heatmap to contour, Fourthly, the malignant score is calculated from the moving
average through 100 frames. Lastly, the prediction shown in the output of the model
is that if malignant scores exceed the threshold, the prediction will be malignant.
The calculation of the malignant score and prediction can be reset if you push the
reset button. The one more important thing is the pictures that show on the left side
of the screen, which always draw the heatmap to show the user's result without
interrupting the user's experiment. In addition, All Ul can be toggled to OFF, which

means the experiment is not using Al assistance.

LY

Blle duct

Malignant point threshold : 0.50
Heat map : False

Draw style : Heatmaps
Malignant score : 0.00

Current prediction : Benign

Figure 32. Overview of Ul design for deployment.
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5.8.1 Heatmap overlay

We present the heatmap overlay that will overlay on the suspicious area of

the image. In figure 33, the heatmap is overlayed on the left side of the screen to

show the user that an area is suspiciously malignant.

[

Blle duct

Malignant point threshold : 0.50
Heat map : True

Draw style : Heatmaps
Malignant score : 0.61

Current prediction : Malignant

™

Figure 33. A heatmap overlay is shown on the left of the screen.

Additionally, the heatmap overlay can be shown on the main screen of the

experiment, The result is shown in figure 34.

L

Blle duct

Malignant point threshold : 0.50
Heat map : True

Draw style : Heatmaps
Malignant score : 0.60

Current prediction : Malignant

Figure 34. Heatmap overlay on main screen of the experiment.
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5.8.2 Contour overlay

As the same as heatmap the contour are used as overlay to the image, we

employ the heatmap which is the output of the model to contour by thresholding.

Figure 35 shows the contour overlay on the left side of the screen same as heatmap.

(4

Blle duct

Malignant point threshold : 0.50
Heat map : True

Draw style : Contour

Malignant score : 0.60

Current prediction : Malignant

Figure 35. A contour overlay is shown on the left side of the screen.

A contour overlay can also shown on the main screen as same as heatmap

overlay. The result of contour is demonstrated on figure 36.

14

Blle duct

Malignant point threshold : 0.50
Heat map : True

Draw style : Contour

Malignant score : 0.60

Current prediction : Malignant

Figure 36. Contour overlay on main screen of the experiment.
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CHAPTER VI
CONCLUSION

In the course of this thesis, a novel kind of deep learning model was
developed. This model is able to categorize biliary strictures and give heatmaps to
aid in the performance of biopsies in real time. The information for the dataset came
from actual patients who were treated at King Chulalongkorn Memorial Hospital.
Because of the outcomes of our experiment, we were able to conclude that our
model improved its classification performance by adding a prediction head and an
auxiliary loss to the original PYLON. Despite these additions, the model was still able
to identify potentially malicious areas. The generalizability of the model was
increased because of the addition of guide wires, which significantly enhanced
classification performance. In addition, we provided an approach for applying the
model in a real-world situation that included a particular job for cholangioscopy, a
moving average of the expected frame, and a variance difference for eliminating

needless frames.

Endoscopists who do biopsies will greatly benefit from this work. Two
constraints must be discussed in this section. First, the model must be able to
operate on the TensorRT engine and convert to the ONNX format. This method can
greatly increase the speed of model inference, especially for convolutional networks
like EfficientNet. Some trendy models, such as Transformer, cannot completely profit
from this procedure since their ONNX-formatted model only sees a slight boost in
inference speed. This makes several modern models inappropriate for use in our
real-time inference situation. Second, there is no publicly accessible data set on the
indeterminate biliary strictures task; this may lead to a result with less of another

aspect.
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It can be improved further in three areas in the future: First, we could apply a
strategy to overcome the limited training data. The diffusion models can create
synthesis data, which increases the quantity of training data in our private dataset,
lowering the potential for overfitting and making the model more generic. Second,
after the data is larger and more sufficient, the p-value from the statistical
significance test may be correctly provided in the future. Third, we plan to place our
model on medical-grade hardware to enable endoscopists to perform
cholangioscopy and biopsies. In the clinical trial, we will confirm our model's

performance in real-world scenarios.
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