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This thesis declares the segmentation of gastric intestinal metaplasia (GIM) 

in real-time. Recently, GIM segmentation of endoscopic images has been 
conducted to distinguish GIM from a healthy stomach. However, achieving real-
time detection is difficult. Challenging conditions include multiple color modes 
(white light endoscopy and narrow-band imaging), other abnormal lesions (erosion 
and ulcer), noisy labels, etc. Herein, our model is based on BiSeNet and can 
overcome the many issues regarding GIM. Applying auxiliary head and loss boosts 
the performance on multiple color modes. In addition, pre-processing techniques, 
including location-wise negative sampling, jigsaw augmentation, and label 
smoothing, are utilized to improve detection performance. Finally, the decision 
threshold can be independently altered for each color mode. Work undertaken at 
King Chulalongkorn Memorial Hospital examined 940 histologically proven GIM 
images and 1239 non-GIM images, obtained over 173 FPS. In terms of accuracy, our 
model outperforms all baselines. Our results reveal F1-score, sensitivity, specificity, 
accuracy, and mean intersection over union (IoU), achieving 91%, 91%, 96%, 94%, 
and 55%, respectively. In addition, the effectiveness of the proposed methods was 
validated on baseline models, achieving F1-score and IoU values of 93% and 56% 
for STDC2-Seg50 and 93% and 56% for BlazeNeo. 
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CHAPTER I 
INTRODUCTION 

 
Gastric cancer is among the most prevalent forms of cancer. According to the 

global incidence of gastric cancer in 2020, more than a million cases were recorded, 
and approximately 700,000 individuals passed away [1]. However, a delayed cancer 
diagnosis can result in delayed treatment, thereby increasing mortality risk [2]. Gastric 
cancer must be diagnosed as soon as possible. With early detection, treatment is 
more effective, and the 5-year survival rate is expanded to nearly 95% [3]. 

The detection of gastrointestinal metaplasia (GIM) is a procedure performed 
for the early detection of gastric cancer. The evolution of GIM begins with secretory 
cells that produce hydrochloric acid in oxyntic mucosa, causing a mutation in the 
intestinal mucosa [4]. GIM appears to be easily ignored due to the morphology of flat 
mucosa and few differences from normal mucosa, particularly during 
esophagogastroduodenoscopy (EGD) with white light endoscopy (WLE) [5]. Narrow-
band imaging (NBI) was developed as an image enhancement technique using 
specific forms of narrow-band light in order to highlight the microvascular structures 
on the mucosal surface [6]. The addition of NBI technology has increased the 
detection sensitivity of GIM by 37% (from 53% to 90%) [7]. Manual GIM detection 
significantly depends on clinical experience. Even with image enhancement, 
interobserver variability is still substantial [8]. 

In medical image processing, the automatic diagnosis of abnormal EGD has 
become widespread in recent years. In the past few decades, handcrafted feature-
based detection approaches [9, 10]. T. Kanesaka [9] created a computer-aided 
diagnosis (CADx) of early gastric cancer with the use of a support vector machine to 
identify early gastric cancer in M-NBI mode. The features were generated by 
partitioning grayscale images, selecting eight grey-level cooccurrence matrix (GLCM) 
features [11], and then calculating the variance coefficient for eight GLCM features. 
The sensitivity and precision of CADx were 96.7% and 98.3%, respectively. 
Subsequently, a deep learning (DL) approach emerged in the field of medicine, 
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particularly in the gastrointestinal tract (GI). Thus, DL became the primary method for 
research into the automatic diagnosis of endoscopy images. The detection of polyps 
is one of the most well-known research topics in lower GI [12]; in upper GI, the 
system of early gastric neoplasms was developed [13, 14]. 

All previous works on GIM classification [15-21] and segmentation [22-25] 
were unable to attain real-time inference speed. In practical use, such studies could 
not be implemented. Recent investigations [26, 27] have demonstrated that 
inference speed and accuracy can be achieved. Nevertheless, it is apparent that 
performance could be further enhanced by addressing additional issues found in 
real-world use cases, such as different colour modes (NBI and WLE), unrelated events 
(bubbles, tools, etc.), more abnormal EGD (ulcer and erosion), and noise labels. 

The ultimate goal is to enhance the performance of GIM semantic 
segmentation using the real-time system in a more practical approach by considering 
bias (structural bias and location bias), noise (noisy labels), and other abnormal EGD, 
resulting in more excellent practicality and generalisation of our model. The further 
contributions are as follows:(1) Based on inference speed and segmentation 
performance, a comprehensive selection of segmentation models is undertaken in 
order to select the most optimal model. (2) The model is modified by assembling an 
auxiliary head to support multiple imaging modes; additionally, an additional loss is 
added to guide the model regarding colour modes. (3) The "location-wise hard 
negative sampling" method is used to reduce a location bias in gastric morphology. 
(4) A jigsaw augmentation is used to reduce structural bias, enabling the model to 
establish a direct correlation with the GIM feature. Occasionally, the model makes a 
prediction using a stomach feature but not GIM morphology. (5) GIM's noisy label is 
reduced by label smoothing, also known as gaussian label edge softening, in an 
effort to enhance performance for ambiguous ground truth. (6) Lastly, by 
installing the auxiliary head of the imaging modes classification to our model, 
performance can be enhanced by different decision thresholds for each imaging 
mode. 
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1.1. Aims and Objectives 
1. To propose a deep learning network for real-time GIM semantic 

segmentation that can effectively handle multiple abnormalities: location 
bias, structural bias, noisy labels, etc., in order to assist endoscopists. 

2. To evaluate the performance of the proposed network and techniques for 
GIM segmentation on challenging scenarios: multiple colour modes, multiple 
lesions, and noise. 

3. To evaluate the inference speed of the proposed network, which must 
exceed 25 fps. 

 
1.2. The Scope of Work 

1. Evaluate the proposed deep learning network along with the following. 
a. Experiment on our private dataset of GIM obtained from the Center of 

Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, 
Chulalongkorn University, Thailand. 

b. GIM images in our dataset were acquired from 136 patients by expert 
endoscopists. 

c. Abnormal EGD is only included GIM, erosion and ulcer; multiple 
imaging modes are only WLE and NBI. 

2. The proposed deep learning network can differentiate between GIM region 
and healthy background that solely applies to EGD. 

3. The promised inference speed of the real-time GIM segmentation is 25 FPS. 
 

1.3. Research Funding 
This research project was funded by the National Research Council of 

Thailand (NRCT; N42A640330), Chulalongkorn University (CU-GRS-64), and 
Chulalongkorn University (CU-GRS-62-02-30-01) and supported by the Center of 
Excellence in Gastrointestinal Oncology, Chulalongkorn University annual grant. It was 
also funded by the University Technology Center (UTC) at Chulalongkorn University. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

1.4. Publication 
▪ Pornvoraphat, P., et al., Real-time gastric intestinal metaplasia diagnosis 

tailored for bias and noisy-labeled data with multiple endoscopic imaging. 
Computers in Biology and Medicine, 2023. 154: p. 106582. [28] 
o Computers in Biology and Medicine Journal, Elsevier, Q1. 
o Impact Factor = 6.698. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

CHAPTER II 
BACKGROUND 

 
In this chapter, the background knowledge related to the thesis is presented. 

Endoscopy, semantic segmentation, data augmentation, parameter optimization, and 
evaluation for semantic segmentation and classification are explained. 
 
2.1. Endoscopy 

Gastrointestinal (GI) endoscopy is a medical procedure that allows 
endoscopists to assess, diagnose, and treat GI illnesses through real-time images. GI 
endoscopy can be specified as upper GI and lower GI. Examples of upper GI are 
esophagus, stomach, duodenum, and jejunum. For lower GI, it is included rectum, 
colon, and terminal ileum. Typically, the terms that are relevant to endoscopy are as 
follows: 

▪ Colonoscopy is related to an examination of the lower GI. 
▪ Esophagogastroduodenoscopy (EGD) is associated with an investigation 

of the upper GI.  
 

 
Figure 1. Upper gastrointestinal endoscopy [29]. 
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To observe the upper digestive tract, endoscopists use a tiny camera called 
an endoscope to insert through the throat into the esophagus and stomach, see 
Figure 1. At the end of the endoscope, the light source illuminates the digestive 
tract, enabling specialists to conduct the necessary procedures. The visual signal is 
transmitted via a flexible tube and shown on display. Generally, The light source for 
EDG can be categorised into two groups: white light endoscopy (WLE) and narrow-
band imaging (NBI) [30]. 

WLE is a technique that uses normal xenon light as a light source. In contrast, 
NBI applies an NBI filter at the light source to limited wavelengths (allow 415 and 540 
mm in the centre wavelength narrow band). In biology, the different wavelengths 
have different behaviours in biological tissue, see Figure 2. When red light enters the 
tissue, it diffuses widely and deeply. Meanwhile, the blue light is the opposite. The 
colour of the gastrointestinal mucosa is mainly defined by haemoglobin; 
haemoglobin is a type of chromophore mainly found in the blood. With the 
wavelengths of NBI that correspond to the haemoglobin absorption maxima, the 
capillary networks are revealed more clearly and effectively (see Figure 3). 

 
Figure 2. Absorption and scattering in tissue [30]. 
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Figure 3. The membrane of the human tongue. (A) White light image. (B) Narrow 
band imaging [30]. 

 
2.2. Semantic segmentation 
 The objective of semantic segmentation is to assign each pixel in an image to 
a given category by labeling each pixel in the same shade for an identical class, see 
Figure 4. For each photo, a deep neural network (DNN) is deployed to transform the 
original image into a semantic label image with the exact dimensions as the input. 
However, the number of output channels is equal to the number of classes. The 
network relies on using downsampling and upsampling to generate a semantic 
output. Here, U-Net [31] is a suitable representation of segmentation architecture for 
semantic tasks. 
 

 
Figure 4. The semantic segmentation of GIM. (A) Original image. (B) Prediction: white 
is GIM, and black is healthy. 
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U-Net is one of the most primal architectures for semantic segmentation. As 
seen in Figure 5, the model comprises a downsampling half and an upsampling half. 
The downsampling haft (encoder) resembles the conventional design of a 
convolutional neural network (CNN), which is often used for classification 
applications. The functionality of the encoder is to extract high-level features: 
context information. Together, upsampling (decoder) and skip connection permit the 
model to construct a segmentation map from each level of features and contextual 
information. 

Downsampling architecture (encoder) is adopted from VGGNet [30]. For each 
block of convolution, ReLU, and max-pooling layers, the output resolution is 
dropped by one-half while channels are doubled. Each pyramid output of the 
encoder is utilised by concatenating it with decoder outputs for each equivalent 
level. All of this enables the encoder to summarise the image's context information, 
which is essential for semantic segmentation. 

 

 
 

Figure 5. U-net architecture [32]. 
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Due to the fact that context information is a summarization of a picture that 

is deficient in spatial detail, half-upsampling is utilized to restore such loss of detail. 
For each upsampling block, the concept is to upsample the prior context data 
received from the previous block and then concatenate it with the pyramid feature 
from the encoding at the same level to recover the detail. Two approaches exist for 
the upsampling block: 

 
2.2.1. Convolution Transpose Block 

Convolution Transpose Block is composed sequentially of convolution 
transpose 2D, concatenation, and double convolution block. The double convolution 
consists of repeated convolution layers, batch normalisation, and ReLU layers. As 
demonstrated in Figure 6, the convolution transpose 2D leverages a kernel to 
multiply the scalar value of the image pixel and clones it to the region corresponding 
to the pixel location. The product results are aggregated to get the final outcome. 

 

 
Figure 6. convolution transpose 2D with 1 stride and zero padding.  

 
2.2.2. Linear Resize Upsampling Block 

In spite of adopting convolution transpose as the core, resize upsampling can 
provide an alternate outcome. After linear upsampling is applied, concatenation and 
double convolution are performed. 
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2.3. Data Augmentation 
Data augmentation is utilized to expand the quantity of data by introducing 

slightly modified duplicates or synthetic data. The primary objective is to increase 
regularisation and reduce overfitting when training with data. Data augmentation can 
also determine as an oversampling technique in data science. This augmentation is 
specified into two groups: weak augmentation (shifting, scaling, rotation, flipping, and 
transposing) and strong augmentation (adding noise, distortion, sharpening, and 
blurring).  

In the studies, each augmentation (Figure 7) is carefully utilised and adjusted 
in its hyperparameter; thus, all augmentation must be compatible and reasonable 
with EGD. For instance, when performing colour adjustment, the tone must be in a 
range of ordinary endoscopic images for a particular light mode. The blue and green 
tones are not accepted. For this thesis, Albumentations library is adopted to perform 
data augmentation. 

 

 
Figure 7. example of data augmentation applied on a GIM image. 

 
2.4. Parameter tuning for Supervised learning 

Parameter tuning for supervised learning is a learning process of models 
(deep neural network, traditional machine learning) by learning from given pairs of 
input and label output. The learning process is various and depends on the type of 
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the model. In DNN, the training process uses a loss function to minimise an error in 
the model by gradually adjusting its weight. The weight adjustment depends on the 
selected optimiser; most computations require gradients for each layer. The gradients 
can be estimated using a backpropagation algorithm since the model is too 
complicated to compute directly. 

 
2.4.1. Loss function  

The loss function for supervised learning can be categorised into two major 
groups: classification and regression. For semantic segmentation tasks, it shares the 
same loss as classification; thus, this study gives attention. Here binary and category 
cross-entropy loss can be deployed as the main loss: 

 

L = −∑ ∑ 𝑤𝑐𝑙𝑜𝑔
exp(𝑥𝑛,𝑐)

∑ exp(𝑥𝑛,𝑖)𝑖∈𝐶
𝑦𝑛,𝑐𝑐∈𝐶𝑛∈𝑁     (1) 

 
The loss takes pairs of labels 𝑦𝑛,𝑐 and model prediction 𝑥𝑛,𝑐 for its 

computation. w is class weight, C is all classes, N can be all samples in minibatch or 
all pixels of images. Auxiliary loss can also add to the objective function for specific 
purposes: regularisation, training assisting etc. 

 
2.4.2. Optimiser 

In DL, the optimiser functionality is to update weight progressively until the 
loss function is converted; it reaches the local minimum. For this process, the 
gradients are required for updating. The final result is not deterministic depending on 
hyperparameter settings: initial weights, learning rate etc. The most well-known 
optimiser for DL is stochastic gradient descent (SGD). SGD implements randomly 
selected batches of data to update weight. The weight optimisation is described as 
follows: 

w = w− η∇𝐿(𝑤)     (2) 
 

Where w is model weight, η is learning rate, ∇ is gradient and L is loss function. 
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2.5. Evaluation Metrics 

Io𝑈𝑖𝑚𝑎𝑔𝑒 was used to evaluate the segmentation of a single image by 
computing intersection over union pixels of ground truth and prediction of GIM 
segmentation. In Equation (3), the Io𝑈𝑖𝑚𝑎𝑔𝑒 can be defined as follows: 

 

Io𝑈𝑖𝑚𝑎𝑔𝑒 =
∑ 𝑔𝑖𝑖∈𝐼 ⋅𝑝𝑖

∑ 𝑔𝑖𝑖∈𝐼 +∑ 𝑝𝑖𝑖∈𝐼 −∑ 𝑔𝑖𝑖∈𝐼 ⋅𝑝𝑖
    (3) 

 
where 𝑖 represents a specific pixel of an image. 𝑔𝑖 and 𝑝𝑖 correspond to the   

i-th pixel on a ground truth and a prediction, respectively. The value of 𝑔𝑖 and 𝑝𝑖 for 
each i-th pixel is either 1 (GIM) or 0 (non-GIM). For each GIM image, the IoUimage is 
averaged to represent the overall segmentation performance of GIM and is denoted 
as IoU. In the performance of the models in negative images, erro𝑟𝑖𝑚𝑎𝑔𝑒 is used to 
distinguish between TN and FP on an image using GIM prediction pixels over all 
image pixels. In Equation (4), erro𝑟𝑖𝑚𝑎𝑔𝑒 is defined. A mean of erro𝑟𝑖𝑚𝑎𝑔𝑒 is 
provided to demonstrate the model's confusion of negative prediction and denoted 
as “Error:” 

erro𝑟𝑖𝑚𝑎𝑔𝑒 =
∑ 𝑝𝑖𝑖∈𝐼

∑ 1𝑖∈𝐼
     (4) 

 
where 𝑖 ∈ 𝐼 represents an individual pixel of an image and 𝑝𝑖 = 1 is GIM, the 

segmentation efficacy of each image determines the 𝑝𝑖  ∈ {0,1} GIM detection. GIM 
images are considered true positive (TP) if Io𝑈𝑖𝑚𝑎𝑔𝑒 is greater than 30%; otherwise, 
the outcome is false negative (FN). True negative (TN) corresponds to non-GIM 
images with a “Error” percentage of less than 1%. False positives (FP) are referred to 
non-GIM images in which the excess zone of GIM prediction erro𝑟𝑖𝑚𝑎𝑔𝑒 is greater 
than 1% of the entire image. GIM detection evaluation metrics include accuracy, 
specificity, sensitivity, negative predictive value (NPV), positive predictive value (PPV), 
and F1-score (only for GIM). The evaluation metrics are represented as follows: 

 
accuracy =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (5) 
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recal𝑙𝐺𝐼𝑀(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =

𝑇𝑃

𝑇𝑃+𝐹𝑁
    (6) 

 
recal𝑙𝑛𝑜𝑛−𝐺𝐼𝑀(𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =

𝑇𝑁

𝑇𝑁+𝐹𝑃
   (7) 

 
precisio𝑛𝐺𝐼𝑀(𝑃𝑃𝑉) =

𝑇𝑃

𝑇𝑃+𝐹𝑃
         (8) 

 
precisio𝑛𝑛𝑜𝑛−𝐺𝐼𝑀(𝑁𝑃𝑉) =

𝑇𝑁

𝑇𝑁+𝐹𝑁
    (9) 

 

F1 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
     (10) 
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CHAPTER III 
RELATED WORKS 

 
This chapter presents the deep neural networks relevant to the thesis. In 

medical image analysis, the most popular application of deep neural networks 
related to gastric intestinal metaplasia (GIM) can be divided into two categories: 
image classification and semantic segmentation. Here the relevant neural networks 
and techniques used for GIM classification and segmentation are reviewed. 

 
3.1. Relevant neural networks 

This section presents the relevant neural networks: BiSeNet, BiSeNetV2, 
STDC1-Seg, and DDRNet-23-slim. All of these models accomplish incredible inference 
speed and performance on cityscape datasets viz. achieve real-time segmentation. 
Plus, BlazeNeo also attains excellent efficiency on its own polyps dataset. 
 

3.1.1. BiSeNet, 2018 
Figure 8 illustrates the Bilateral Segmentation Network (BiSeNet) architecture 

[33], which consists of a spatial path, context path, and feature fusion module. 
Simultaneous extraction of both spatial and context information makes model 
inference fast. The spatial path was designed to extract spatial information and retain 
input resolution, enabling a highly detailed segmentation output. In contrast, the 
context path can extract high-level features and aggregate content data in an image. 
The spatial path is a shallow module with three convolution layers, batch 
normalisation, and ReLU. The context path adopts a lightweight model as its 
backbone, of which there are two variants: Xception [34] and ResNet-18 [35]. The 
backbone can provide two resolution outputs: 16x and 32x downsampling features 
that are aggregated into the context output using a U-shaped design. Last but not 
least, the feature fusion module (FFM) can incorporate spatial and content features 
into the model's prediction. 
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Figure 8. Bilateral Segmentation Network; BiSeNet (a) Network Architecture (b) 

Attention Refinement Module (ARM). (c) Feature Fusion Module (FFM). 
 

3.1.2. BiSeNetV2, 2020 
BiSeNetV2 [36] employs the same bilateral segmentation architecture as 

BiSeNet (Figure 9), which is composed of a spatial path, context path, and feature 
fusion module. The difference is those three elements were upgraded. The spatial 
path uses VGGNet without skip connection instances of the three blocks of 
convolution, bath normalization and ReLU layers that were proposed in BiSeNet. The 
context path was redesigned to be a lighter-weight structure. Rather than using the 
light-weight backbone: Xception and MobileNet [37].  

 

 
Figure 9. BiSeNetV2. The network has three main components: the two-pathway 

backbone, the aggregation layer, and the booster component [36]. 
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Stem Block was adopted for each block of an encoder, see Figure 10a. Its 
functionality is to capture two different receptive fields at once and then 
concatenate both branches as the final output. This structure has efficient 
computation cost and practical feature representation. At the end of the new 
encoder, the new context embedding (CE) was proposed to embed the global 
contextual information; Figure 10b. Finally, the feature fusion of the previous one is 
replaced by a novel aggregation layer, see Figure 10c. 

 

 
Figure 10. (a) Stem Block, (b) context embedding (c) aggregation layer [36]. 

 
3.1.3. STDC2-Seg, 2021 

STDC2-Seg [38] uses the same bilateral segmentation architecture as the two 
previous versions. Still, the backbone of the encoder was upgraded from the first 
version, and the spatial path is no longer, see Figure 11a. The brand-new backbone, 
STDC, was invented to replace the ResNet-18 of the first version. The accuracy of 
STDC1 and STDC2 outperform ResNet-18 on ImageNet by 4% and 6%, respectively. 
The spatial path is skipped and connected to FFM; thus, the new connection 
transfers detailed information directly. In order to accomplish this, detailed guidance 
is applied to guide the low-level layers of detailed information. Detailed guidance 
needs to have a detailed loss (Figure 11b) and detailed ground truth for optimizing 
using binary cross-entropy loss and dice loss Detailed ground truth can be 
constructed by applying Laplacian convolution for each stride (1,2,4), fusion with 1x1 
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convolution, and then adopting a threshold of 0.1 to convert the predicted to binary, 
see Figure 11c. 

 

 
Figure 11. (a) STDC Segmentation network, The procedure in the dashed red box is 
STDC network. The procedure in the dashed blue box is Detail Aggregation Module. 

[38]. 
 

3.1.4. DDRNet-23-slim, 2021 
Deep Dual-resolution Network (DDRNet) [39] has three components: high-

resolution, low-resolution branches and deep aggregation pyramid pooling module 
(DAPPM), see Figure 12. The low-resolution branches adopted a modified ResNet as 
the backbone, replacing a 7×7 convolutional layer with two 3×3 convolutional layers. 
The high-resolution branch was added after the second basic residual block (RB) of 
the backbone. In the high-resolution branch, the image resolution is constant at 1/8 
of the original size since all convolution layers have a stride of 1. During each RB, 
there has bilateral fusion (see Figure 13a) to cross-exchange information between 
them. The high resolution contains spatial features; meanwhile, the low resolution 
contains context features. At the end of low-resolution branches, DAPPM (Figure 13b) 
is utilized for performing multiple-receptive fields; thus, rich context information is 
gathered. The performance of DDRNet-23-slim on ImageNet exceeds BiSeNet (ResNet-
18) by 2%. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19 

 

 
Figure  12. DDRNets, “RB” denotes sequential residual basic blocks, “RBB” denotes 

the single residual bottleneck block, “DAPPM” denotes the Deep Aggregation 
Pyramid Pooling Module [39]. 

 

 
Figure  13. (a) the detail of bilateral fusion, (b) the detail of DAPPM [39]. 

 
3.1.5. BlazeNeo, 2022 

One of BlazeNeo's contributions is a new DNN for polyps segmentation with a 
light-weight encoder-decoder and feature aggregation, see Figure 14. For the light-
weight encoder, BlazeNeo [40] adopted HarDNet-68 as a backbone. The performance 
on ImageNet outperforms ResNet-18 and VGG-16 by 6.6% and 2.8%. Testing on 
GTX1080 at 1024x1024, the GPU time of HarDNet-68 (32.6 ms) is impaired to ResNet-
18 by 19 ms but enhanced from VGG-16 by 46 ms. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 20 

 
Figure  14. Feature Aggregation: (a) Long skip connection (LSC), (b) Iterative Deep 

Aggregation (IDA), (c) Dense Iterative Aggregation (DIA), (d) Dense Hierarchical 
Aggregation (DHA). (e) Multi-headed BlazeNeo; (f) Receptive Field Block (RFB) [40]. 

 
After the encoder block of 310-d, 640-d, and 1024-d, the receptive field block (RFB) 
is employed. RFB uses multi-branch convolution to improve efficiency inspired by 
the human visual cortex see detail in figure 14 (f). Each output of RFB is accumulated 
by feature aggregation: LSC, IDA, DIA, and DHA. DHA showed the best performance 
among other approaches. 
 
3.2. Deep neural networks for GIM classification and segmentation 

In this decade, the development of DL for medical image analysis has been 
most notable, resulting in a significant performance increase. Prior DL for GIM analysis 
primarily focused on image classification, with only a handful of systems capable of 
semantic segmentation. T. Yan [20] proposed a GIM diagnostic system based on NBI 
and M-NBI images in 2020. The system could classify GIM and non-GIM images with a 
sensitivity of 91.9%, a specificity of 86.00%, and an accuracy of 86.00%. A year later, 
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H. Li [16] used a multi-feature fusion method combining the features of RGB, Hue 
Saturation Value (HSV), and Local Binary Pattern (LBP) images to improve 
classification performance in NBI mode. N. Lin [17] was interested in conditioning a 
GIM classification model on white light endoscopic (WLE), which is typically more 
difficult than NBI mode, in the same year. Tao Yu introduced multi-label recognition 
of gastric lesions on WLE [15] in 2022. The DL model could categorise endoscopic 
images of the gastrointestinal tract into normal gastric mucosa, atrophic gastritis, GIM, 
and gastric malignancy. Another study [18] developed a classification model for GIM 
subtypes as healthy, mild, moderate, and severe. P. K. Wong [19] proposed a 
comprehensive learning system that aggregated five output classifiers into the 
system's final output to improve classifier performance. 

As for classification tasks, GIM diagnosis is substantially more developed. GIM 
segmentation, in contrast, is somewhat outdated. Few investigations have been 
conducted regarding segmentation tasks. GIM segmentation on NBI images was first 
introduced in 2017 [22] using hue energy to represent global colour features and 
texture energy for describing local microvascular texture features to enhance 
segmentation performance.  Two years later, C. Wang [23] proposed using the W-
Deeplab model to segment GIM. W. Du [24] established the segmentation network 
ResUnet in 2021, replacing the VGG block of U-Net with ResBlock. The model was 
designed to segment early gastric cancer and achieved 92.22% IoU, while U-net 
achieved 91.45% IoU. K. Qiu [25] utilised an enhanced U-Net-based network for 
segmenting gastric precancerous lesions in ME-NBI mode, including inflammation, 
GIM, low-grade neoplasia, and early cancer the following year. The model achieved a 
96% F1 score. 

Even though the prior study has demonstrated exceptional segmentation 
performance, real-time systems have not yet been completely developed. 
Segmentation of GIM in real-time first appeared in [26, 27]. Consequently, the paper 
[26] introduced the Fast-SCNN network, which was explicitly designed for GIM using 
an edge-guided path to enhance performance. The accuracy of real-time semantic 
segmentation was improved by integrating four techniques [27]. 
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The engineer's interest techniques from the prior review of GIM are listed, 
which is explained in more detail. (1) A multi-feature fusion method proposed for 
classifying GIM in NBI mode by H. Li [16], 2021. (2) The jigsaw augmentation for 
multiple-label classification of cancer-related lesions adopted by Tao Yu [15], 2022. 
(3) Edge-guided path for fast semantic segmentation of GIM proposed by V. 
Siripoppohn [26], 2021. 

 
3.2.1. A multi-feature fusion method, 2021 

Typically, endoscopists consider multiple features for diagnoses such as 
colour, texture and shape. Thus, the attention feature module (AFM) is proposed to 
combine the feature of RGB image, hue saturation value (HSV) image representing 
colour and local texture feature (LBP) image representing texture [41]. After 
combining, the rest of the network is classic fully connected layers, batch 
normalisation and ReLU, see Figure 15. The performance after utilising all features of 
RGB, HSV, and LBP outperforms original RGB images by 6.3% on the F1 score. Again, 
this implementation is based on NBI mode (Figure 16), and multiple lesions outside 
GIM are not included, which texture alone is straightforward. 

 

  
Figure  15. multi-feature fusion model. AFM: attention feature module, FC: fully 

connected layer; BN: batch normalization [16]. 
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Figure  16. NBI images: (a) Non-GIM (b) GIM. The data is used by H. Li [16]. 

 
3.2.2. Jigsaw augmentation for classification, 2022 

Jigsaw augmentation, used for fine-grained image recognition, divides an 
image into many patches and then randomly reassembles them into a new image. 
This technique is useful for correlating local features and makes the model more 
generalisation; it allows the model to establish a direct correlation by corrupted 
spatial structure. Hence the finer-grained feature is more emphasised, and the model 
is more robust. Jigsaw augmentation can be categorised into two groups: full jigsaw 
(all patches are uniformly shuffled) and partial jigsaw [15]. Ordinary classification 
(pairs of category labels and images) cannot implement the partial jigsaw directly 
without localise of ground truth (GT). This ground truth limits the shuffleable area; 
the area inside the ground truth is unable to shuffle. According to Tao Yu [15], an 
effect of using the partial jigsaw is improve in F1-score of GIM by 0.9%. 

 
Figure  17. data augmentation methods: Full Jigsaw and Partial Jigsaw. Partial 

jigsaw keeps the contents of the GT annotation [15]. 
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3.2.3. Edge-guided path, 2021 
The concept of an edge-guided path is to enhance spatial information by 

enlarging a spatial path of Fast-SCNN with two convolution blocks and Sobel's filter, 
which provides a guided image [26]. 

 

 
 

Figure  18. the result of Sobel's edge filter (a) raw image (b) image with Sobel's filter, 
the cropped images representing: (c) GIM (d) both GIM (the green arrow) and non-

GIM (the red arrow) (e) non-GIM [26]. 
 

Firstly, for the edge-guided path, RGB images are applied with Sobel's edge 
filter to transfer normal images to the edge images. Secondly, apply the first 
convolution block and then add the RGB information from the normal path. Finally, 
apply the second convolution block and then add the same RGB information; hence, 
the final guided feature is ready for the regular spatial path of Fast-SCNN (see Figure 
18 and 19). A result of deploying an edge-guided path is improved F1-score and IoU 
by 2.68% and 0.02%. 

 

 
Figure  19. Fast-SCNN modification with edge-guided; (a) core Fast-SCNN model (b) 

edge-guided block [26]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

3.3. Conclusion 
All of the relevant neural networks were utilized either as baseline models or 

backbone models. Since the inference speed and segmentation performance of 
BiSeNet (the first version), STDC2-Seg50, and BlazeNeo have been notified as 
effective, they were chosen as backbone models for further modification and 
employment with other proposed techniques. BiSeNetV2, DDRNet-23-slim, STDC2-
Seg50, BlazeNeo, and HRNetV2+OCR [42] were employed as baseline models to 
benchmark the proposed models and techniques. Furthermore, the jigsaw 
augmentation for semantic segmentation, one of our proposed strategies, was 
inspired by Tao Yu [15], the jigsaw augmentation for image classification. 
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CHAPTER IV 
CONCEPT AND RESEARCH METHODOLOGY 

 
In this chapter, end to end process is explained to be able to perform in real-

time with high performance. The research process is as follows: (1) data preparation, 
(2) image preprocessing, (3) model improvement, (4) model evaluation, and (5) 
model deployment. 

 
4.1. Data preparation 

In this study, endoscopic data were collected from the Center of Excellence 
for Innovation and Endoscopy in Gastrointestinal Oncology, Chulalongkorn University, 
Thailand. The dataset included 940 endoscopic images that were annotated as GIM 
(shown in Figure 20), as well as 1,239 images of non-GIM. Our initial trial showed that 
there were more instances of the negative class than the positive class, indicating the 
need to address this imbalance before proceeding. Therefore, we utilized Location-
wise hard negative sampling (LW-HNS) to acquire the experimental dataset reported 
in this study. Additionally, the non-GIM images were divided into three groups: 579 
normal EGD images, 515 abnormal EGD images (which were excluded from the GIM 
category), and 145 noise images (as shown in Figure 21 and Table 1). The LW-HNS 
method was used to incorporate the abnormal EGD and noise images into the 
dataset. Expert endoscopists annotated the GIM images using the LabelME tool to 
identify the GIM legions for our dataset. The annotations were saved in PNG (Portable 
Network Graphics) format. 

 

 
Figure  20. The sample of (a) GIM image and (b) ground truth. 
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Figure  21. The experimental dataset is comprised of both GIM (positive) and non-

GIM (negative) images, with the non-GIM images further classified into three 
subclasses: normal EGD, abnormal EGD (non-GIM), and noise [28]. 

 
Table  1. The experimental dataset consists of GIM (positive) and non-GIM 
(negative) images, with the non-GIM images categorized into three subclasses: 
normal EGD, abnormal EGD (non-GIM), and noise [28]. 

class sub-class images 

GIM - 940 
non-GIM Normal EGD 579 

Abnormal EGD 515 
Noise 145 

total - 2,179 
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In addition, our dataset is divided into two lighting modes: WLI and NBI, which 
have varying impacts on the learning process. NBI images contain more distinct 
features compared to WLE images, resulting in an imbalanced prediction by the 
model. The number of endoscopic images categorized by the lighting modes is 
presented in Table 2. 

 
Table  2. The number of endoscopic images as classified by the lighting modes: NBI 
and WLE [28]. 

 GIM non-GIM 

NBI 565 246 
WLE 375 993 

total 940 1,239 
 

Table 3 displays the statistics of the data for five different regions of the 
gastric anatomy: (1) Cardia and fundus in inversion, (2) Corpus in forward view 
including lesser curve, (3) Corpus in retroflexion including greater curve, (4) Angulus in 
partial retroflexion, and (5) Gastric antrum. 

 
Table  3. The number of endoscopic images as classified by gastric anatomical 
positions [28]. 

Gastric Anatomical positions GIM non-GIM 

Angulus in partial retroflexion 195 128 

Cardia and fundus in inversion 4 168 
Corpus in forward view including lesser curve 456 494 

Corpus in retroflexion including greater curve 87 107 
Gastric antrum 198 342 

total 940 1,239 
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The GIM images were divided into three sets: a training set consisting of 661 
images, a validation set with 93 images, and a testing set containing 186 images. As 
for the negative samples selected using LW-HNS, 734 images were included in the 
training set, 111 images in the validation set, and 394 images in the testing set. 

 

 
Figure  22. The process of Location-wise hard negative sampling (LW-HNS) comprises 
three primary steps. Firstly, an initial model is trained using the initial dataset. 
Secondly, it calculates the loss for negative cases that are not utilized (abnormal 
EGD and noise images). Lastly, the negative samples are chosen based on their 
losses in descending order for each category of gastric anatomical positions [28]. 

 
4.1.1. Location-wise hard negative sampling 

The problem of location-wise imbalance arises because certain gastric 
anatomical positions have a biased distribution of GIM and non-GIM images, which 
cause predicting bias in the model by the gastric location. To address this issue, a 
method called location-wise hard negative sampling (LW-HNS) was developed. In 
most cases, the data provided have a higher number of non-GIM images than GIM 
images, resulting in an unbalanced proportion of positive and negative samples for 
each location. This means that negative examples (i.e., non-GIM images) need to be 
undersampled to achieve a balanced proportion of positive and negative classes. 
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In unsupervised contrastive learning [43], hard negative sampling (HNS) can 
help guide the learning process by focusing on negative samples that are in close 
proximity to the anchor, allowing the model to correct errors more quickly. HNS 
works by selecting the most difficult negative samples based on their predictions to 
improve the model's accuracy. In the case of semantic segmentation, after training 
the initial model with the dataset obtained from [27], the model is used to calculate 
the loss of the remaining negative images, which include noise and abnormal EGD 
(such as erosion and ulcer). The remaining negative samples are then sorted based 
on their loss, and only the top loss negative samples are selected to train the 
model. 

However, simple HNS is inadequate in addressing the issue of location-wise 
imbalance. Therefore, LW-HNS was developed to balance the data by taking into 
account the gastric positions. It is necessary to consider the different gastric 
anatomical positions, as shown in Figure 22. Gastrointestinal endoscopy images can 
be divided into five categories based on their anatomical location [44]: (1) cardia and 
fundus in inversion, (2) corpus in forward view including lesser curvature, (3) corpus in 
retroflexion view including greater curvature, (4) angulus in partial inversion, and (5) 
gastric antrum. It is important to achieve a balance between positive and negative 
data for each category, which is added to HNS and referred to as LW-HNS. 

 

 
Figure  23. The full jigsaw and the partial jigsaw augmentation as applied to GIM 

images [28]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

4.2. Image preprocessing 
In the image preprocessing step, the data obtained from section 4.1 is 

prepared in a suitable format for training the model. Additionally, data augmentation 
and label smoothing techniques are applied to improve the performance of the 
model. 

 
4.2.1. Jigsaw augmentation 

Regular data augmentation and a specific type of augmentation called jigsaw 
augmentation were applied to the images during preprocessing to prepare them for 
model training. Jigsaw augmentation was chosen because it can disrupt the spatial 
structure of the gastric images and help the model establish a strong connection 
with GIM. The jigsaw technique was originally developed for puzzle problems, but 
was later found to be useful for DL [45]. The full jigsaw method divides an image into 
identically sized rectangular pieces, shuffles each piece, and then reassembles them 
into the original image, as shown in Figure 23. This process enables the model to 
establish a direct association during training. 

Subsequently, a modification of the jigsaw method called "partial jigsaw" was 
developed to disrupt the spatial structure of gastric images, promote generalization, 
and disentangle background features from lesion features [15]. Unlike the traditional 
jigsaw, the partial jigsaw preserves the GIM grids and shuffles only the non-GIM 
rectangles. This technique is specifically designed for semantic segmentation tasks 
and has a hyperparameter to determine the GIM grids with a percentage of GIM 
greater than a predetermined constant. Any other element is considered a non-GIM 
mesh. 

 
4.2.2. Label smoothing 

To improve the training process, the label smoothing technique called 
gaussian edge softening is used as shown in Figure 24. This method helps to reduce 
the impact of uncertain edges in the ground truth annotations and allows the model 
to focus on learning the content within the annotation. By softening the edge, the 
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objective function of the training is relaxed around the edge while emphasizing the 
inner part of the GIM ground truth. 

The gaussian kernel is used to soften the edge, and there are various ways to 
construct it. One approach involves creating a row and column using finite-state 
machines (FSMs) and then deriving a convolution kernel from both directions (row 
and column) [46]. Essentially, the gaussian kernel is produced by taking the outer 
product of the row and column of gaussian vectors. The values of the gaussian 
vector can be calculated using the gaussian function, with the center of the gaussian 
shifted to the middle of the vector. 

 

 
Figure  24. To implement the gaussian edge softening process, first a gaussian 

vector is created using the gaussian equation. Next, this gaussian vector is used to 
form the gaussian kernel by taking its outer product with another identical gaussian 

vector. Finally, this gaussian kernel is applied to the label images to soften their 
edges and reduce any noisy labels present [28]. 

 
Equation 11 shows the gaussian function, where both the kernel size k of the 

and the sigma σ corresponding to x. Figure 24 illustrates the process of gaussian edge 
softening, also known as label smoothing. This process involves applying the gaussian 
function to both the row and column vectors, followed by defining the kernel as the 
outer product of these gaussian vectors. Lastly, the obtained kernel is applied to the 
ground truth image or label: 

 

g(𝑥, 𝑘) =
1

√2πσ2
⋅ 𝑒−

(𝑥−0.5𝑘)2

2σ2
    (11) 
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4.2.3. Label smoothing with edge cut 
In Figure 25, label smoothing with edge cut is an updated version of the prior 

version. After softening ground truth with the gaussian kernel, the boundary of the 
non-zero label is exceeded see Figure 26 (a), causing over-labeling on the negative 
region. Thus, the previous edge softening label is multiplied by the original ground 
truth to preserve negative space see Figures 25, the fourth step, and Figures 26 (b).  
 

 
Figure  25. The first, second, and third steps of label smoothing with edge cut 
remain the same as the previous version. For the fourth, the label with edges 

softening is multiplied by the original ground truth to limit the non-zero label to 
being only inside the positive area. 

 

 

Figure  26. The cross-section reveals the consequence of involving different label 
smoothing and the ground truth: (a) ground truth shows zero and positive regions 

with an edge at 250, (b) regular label smoothing displays over-labeling on the 
negative side, (c) label smoothing with edge cut preserves the negative site. 
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4.3. Model improvement 

This study attempts to establish a more accurate and practical real-time GIM 
segmentation for model development. As the best model, the high-speed backbone 
was selected. In addition, auxiliary head and loss were included to categorise the 
different colour modes, namely NBI and WLE. In the last step of post-processing, 
decision thresholds were adjusted independently for NBI and WLE modes, as 
determined by the auxiliary head. 

 
4.3.1. Selective model for GIM image segmentation 

Models for GIM semantic segmentation must be able to distinguish the GIM 
area from healthy mucosa in endoscopic images. In addition, a real-world situation 
requires an extremely fast inference speed. Thus, in order to accomplish our 
objective, the optimal model is essential. BiSeNet (with ResNet-18 backbone model), 
BiSeNetV2, STDC2-seg50, BlazeNeo, DDRNet-23-slim, and HRNetV2 + OCR were 
candidates for our mission. Although HRNetV2 + OCR is not a real-time image 
segmentation model, it was used to demonstrate the highest segmentation 
performance no matter the inference speed. 

The selected model must satisfy specific criteria, including average 
segmentation performance within an image, detection performance for all images in 
a given dataset, and inference latency. the mean of the intersection over the union 
region (IoU) between the model prediction and ground truth for GIM images is used 
to evaluate segmentation performance. Another indicator is "Errors," which can imply 
unfavourable GIM predictions on non-GIM images. Those IoU and "Error" are 
employed to determine the GIM detection efficiency. Consequently, the model with 
the highest F1 score, sensitivity, and negative predictive value (NPV) is selected for 
the subsequent stage. 

 
4.3.2. Auxiliary head and loss 

In order to eradicate imaging mode bias, auxiliary head and loss are added to 
the tailored model. There are two imaging divisions applicable to EGD: white light 
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endoscopy (WLE) and narrow band imaging (NBI). White light endoscopy (WLE) is an 
endoscopic image with regular white light. However, WLE has trouble locating GIM 
due to the unclear texture of GIM. Endoscopists utilise the enhanced image known as 
NBI for better clarity of GIM textures, thereby increasing the GIM detection rate. This 
phenomenon occurs when attempting to train a model with a dataset containing a 
variety of colour modes; consequently, the model is biased by the colour modes. 
EGD has a tendency to classify NBI images as GIM and WLE images as non-GIM, 
resulting in diminished prediction power. 

 

 
Figure  27. The enhanced model incorporated an auxiliary head for classifying 
imaging modes and auxiliary training. In (1), there is the auxiliary head. In (2), 

decision thresholds can be altered independently for NBI and WLE modes [28]. 
 
Figure 27 displays the modifications of the BiSeNet with auxiliary head and 

loss. The auxiliary path is integrated into the model in order to predict the imaging 
classes of NBI and WLE. Knowing the difference between NBI and WLE, our model 
with the auxiliary head is guided to learn the different behaviours for each imaging 
mode. Furthermore, the auxiliary loss is obtained from the colour-mode classification 
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head. Equation 12 explains how to add an auxiliary loss during the training phase to 
enable the model to simultaneously segment GIM and differentiate between regular 
and enhanced images: 𝑙𝑜𝑠𝑠𝑚𝑎𝑖𝑛 refers to the cross-entropy loss of GIM 
segmentation, and 𝑙𝑜𝑠𝑠𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 is computed based on the cross-entropy of NBI and 
WLE classification; 𝑤 represents the weight of the auxiliary loss. In this experiment, 𝑤 
is equal to 0.1. The auxiliary head is extended from the ResNet-18 backbone model, 
providing an additional path to the original BiSeNet to enhance the performance of 
the model: 

 
los𝑠𝑡𝑜𝑡𝑎𝑙 = los𝑠𝑚𝑎𝑖𝑛 +w ⋅ 𝑙os𝑠𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦   (12) 

 

4.3.3. Separated threshold adjustment 
 For every pixel image, the segmentation output of our model provides the 
GIM confidence as a probability mapping. If confidence exceeds the decision 
threshold for each pixel, GIM can be assigned; otherwise, the pixel is non-GIM. 
Generally, a universal threshold was applied to all images, irrespective of imaging 
mode (NBI or WLE). Thus, the implementation of different thresholds can further 
enhance the predictive potential. The auxiliary head can provide an alternate 
classification of NBI and WLE, according to our modified model. This capability allows 
for applying separate thresholds in each imaging mode.  
 

4.3.4. Assembling multiple models for NBI and WLE modes 
Besides, utilizing an auxiliary head on the single segmentation model to 

predict imaging modes (NBI and WLE) may corrupt the performances of GIM 
segmentation, given endoscopic light modes. Since the separated threshold 
adjustment is vital and model confusion must be avoided, an alternative approach is 
using another lightweight model, MobileNetV3 [47], instead of the auxiliary head to 
classify imaging modes. Thus, with the proposed strategy, the segmentation model 
may deliver better results. Moreover, a fine-tuned model for each color mode is 
possible. However, the concern drawbacks are error propagation and overall 
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inference time. The models supporting NBI and WLE modes are proposed in 3 
approaches (see Figure 28). 

Figure 28 illustrates the 3 proposed models that support NBI and WLE modes. 
Firstly, the single segmentation model with an auxiliary head, which has already been 
mentioned in section 4.3.2, was designed mainly for BiSeNet model. Secondly, the 
single segmentation model with the lightweight classification model was presented 
specifically for STDC2-Seg50 and Blazeneo models. The intuitive idea is that the 
backbone models (STDC2-Seg50 and Blazeneo) are fine-tuned only for GIM 
segmentation, leaving NBI and WLE classification tasks for the lightweight model: 
MobileNetV3. Thirdly, despite fine-tuning the model on both NBI and WLE datasets, 
the separated fine-tuned model with a lightweight classifier was proposed hopefully 
to leverage both segmentation and classification for GIM. 
 

 
Figure  28. The models that supported NBI and WLE modes are proposed in 3 

approaches: (1) The single model with the auxiliary head, (2) The single model with 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

the lightweight classification model, and (3) the separated fine-tuned models for NBI 
and WLE modes with the lightweight classification model. 

4.4. Model evaluation 
The semantic segmentation and classification matrix, as mentioned in 2.4, is 

utilized for this research. Furthermore, the elemental measurement of speed is also 
used to measure the inference speed in frames per second. The inference speed is 
calculated by transforming the original uint8 image to the final uint8 segmentation 
map (prediction map). Additionally, the proposed techniques, i.e., location-wise hard 
negative sampling, jigsaw augmentation, label smoothing, auxiliary head, and loss, are 
applied to the baseline model and some potential networks (BlazeNeo, STDC2-Seg) 
to confirm the boosting of the model performance. Finally, the error analysis of the 
best model is included. 

 
4.5. Model deployment 

The finalized model will be deployed in open neural network exchange 
(ONNX) format for practical use in the Center of Excellence in Gastrointestinal 
Oncology. 
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CHAPTER V 
EXPERIMENTS AND RESULTS 

 
The experiments and results about Real-time semantic segmentation of GIM 

are conducted due to the details explained in section 4; The brief navigation is 
summarized in Table 4.  
 
Table  4. The brief navigation of the experiments and their winning models or 
techniques as the sequence. 

Title The winner The backbone 

5.1. Ablation study for single fine-tuned models using NBI and WLE data. 

Selecting model for GIM image segmentation. BiSeNet 

BiSeNet 

Applying location-wise hard negative sampling. Applied 

Applying jigsaw augmentation. Applied 

Applying label smoothing. Applied 

Applying auxiliary head and loss. Applied 

5.2. Experiment on separated fine-tuned models for NBI and WLE modes. 

Fine-tuned classifier for NBI and WLE class. MobileNetV3 - 

Selecting separated and single models for 
BiSeNet with MobileNetV3 as a classifier. 

single models BiSeNet 

Selecting separated and single models for 
STDC2-Seg50 with MobileNetV3 as a classifier. 

single models STDC2-Seg50 

5.3. Quantitative and qualitative comparisons using the entire dataset. 

Comparison of all proposed strategies for BiSeNet. BiSeNet 

Comparison of all proposed strategies for STDC2-Seg50. STDC2-Seg50 

Comparison of all proposed strategies for BlazeNeo. BlazeNeo 

5.4. Quantitative comparison on abnormal EGD. 

5.5. Error analysis of the winner model. 

5.6. Model deployment. 
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In Table 4, an ablation study is constructed to find the best combination 
techniques, followed by an experiment to determine the best between separated or 
single fine-tuned models. Thirdly, comparisons on the entire dataset are constructed 
for all backbones to compare the progressive performance of our techniques. Then, 
a comparison on abnormal EGD is included to examine the model's capability on 
abnormality. Finally, error analysis and model deployment are displayed. 

 
Table  5. Performance comparison of different model architectures on the testing 
set. The LW-HNS technique was applied. Boldface refers to the winner [28]. 
Model Acc Sen Spec F1 PPV NPV IoU Error FPS 

BiSeNet (ResNet-18) 93.37 84.15 98.06 89.53 95.65 92.41 48.91 0.2184 177 

BiSeNetV2  84.71 73.22 90.56 76.35 79.76 86.93 41.55 1.3765 181 

DDRNet-23-slim 89.50 80.33 94.17 83.76 87.50 90.40 40.76 0.4482 98 

BlazeNeo 94.82 90.32 96.67 91.06 91.80 96.04 54.65 0.2789 93 

HRNetV2 + OCR 91.18 82.80 95.53 86.52 90.59 91.44 48.29 0.4142 40 

STDC2-Seg50 94.19 86.56 97.34 89.69 93.06 94.61 54.35 0.2722 154 

 
5.1. Ablation study for single fine-tuned models on overall data 

5.1.1. Selective model for GIM image segmentation 
To determine the optimal architecture for our model, six candidates were 

chosen based on performance and inference speed. Table 5 displays the score for 
each architecture within a testing set. For real-world deployment, the inference 
speed must exceed 100. According to this criterion, BiSeNet was chosen as our 
primary architecture, given that it obtained 89.53% on F1-score and 177 FPS in real-
time. Consequently, only BiSeNet was utilised in subsequent experimental sections. 
Even though BiSeNetV2 achieved the highest speed, other metrics underperformed, 
especially the F1 score decreased by more than 11%. Even at a higher resolution of 
1024x1280, DDRNet-23-slim was inadequate; its inference speed was only 98 FPS. 
BlazeNeo, on the other hand, outperformed the rest of the models in most 
categories, except for FPS at 83. 
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5.1.2. location-wise hard negative sampling 
This investigation displayed the impact of using standard HNS and location-

wise HNS (LW-HNS). Since HNS was a technique used to enhance the quality of the 
training data, it did not slow down the inference speeds of the model. In Table 6, a 
comparison of HNS strategies for three scenarios is presented. The winning technique 
was LW-HNS, which had the highest F1 (89.53%). As a result, LW-HNS is observed to 
improve IoU and F1 scores from HNS by over 4% and 5%, respectively. 

 
Table  6. Performance comparison of different hard negative sampling strategies on 
the testing set. Boldface refers to the winner [28]. 

Method Acc Sen Spec F1 PPV NPV IoU Error 
No HNS 87.10 87.57 87.57 81.79 76.73 93.39 52.94 2.8365 

HNS    92.08 81.42 97.50 87.39 94.30 91.17 44.48 0.1867 

LW-HNS 93.37 84.15 98.06 89.53 95.65 92.41 48.91 0.2184 
 

5.1.3. Jigsaw augmentation 
In Figure 29, the model can distinguish reasonably well between GIM and 

non-GIM areas, but some structural bias still remains. Bias occurs when the model 
tries to predict GIM solely based on the gastric morphological features (structures) 
and ignores the texture features. To address this issue, both full and partial jigsaw 
augmentations are implemented and compared.. 

 

 
Figure  29. The instances show non-GIM images that are incorrectly identified as 

false positives due to structural bias. GIM is likely to appear in some particular areas 
(structures), such as the hole of gastric autumn, so the prediction is biased by the 

hole or other gastric structures, regardless of the GIM texture [28]. 
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This study examined the effects of employing different jigsaw augmentations, 
including both full and partial jigsaw augmentations. The augmentations were only 
implemented during training, so they had no effect on inference speed. In Table 7, a 
comparison of various jigsaw augmentation strategies is presented. The full jigsaw 
obtained the utmost sensitivity (85.7%) and IoU (49.59%). As a result, the full jigsaw 
was selected as one of our data pre-processing techniques according to the objective 
of increasing sensitivity and IoU while maintaining specificity and NPV at or above 
90%. 

 
Table  7. Performance comparison of different jigsaw augmentation strategies on 
the testing set. Boldface refers to the winner [28]. 
Method Acc Sen Spec F1 PPV NPV IoU Error 

without jigsaw 93.37  84.15  98.06  89.53  95.65  92.41  48.91  0.2184 

full jigsaw 93.20  85.80  96.93  89.41  93.25  93.28  49.59  0.3961 
partial jigsaw 92.82  84.70  96.94  88.83  93.37  92.57  48.53  0.3314 

 
5.1.4. Label smoothing 

In Table 8, label smoothing, also known as gaussian edge softening, can 
enhance image segmentation and detection efficacy by reducing label noise. The F1 
scores of both methods (with and without label smoothing) are greater than 89%. 
Plus, this method can increase sensitivity and IoU by nearly 1.2% and 4%, 
respectively. 

 
Table  8. An effect of our label smoothing (gaussian edge smoothing) on the testing 
set. Boldface refers to the winner [28]. 

Method Acc Sen Spec F1 PPV NPV IoU Error 
without noisy label 93.20  85.80  96.93  89.41  93.25  93.28  49.59  0.3961 

with gaussian 
edge softening 

92.90  87.01  95.81  89.02  91.12  93.72  53.53  0.3108 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

5.1.4. Auxiliary head and loss 
Multiple image modes, namely white light endoscopy (WLE) and narrow-band 

images (NBI), are supported by auxiliary head and loss. Table 9 demonstrates that 
using the auxiliary head and loss together with different threshold adjustments 
produces outstanding outcomes. The model supports GIM segmentation and imaging 
mode classification, including NBI and WLE. The auxiliary head can also be used for 
altering the GIM-confidential threshold for different lighting modes with little effect 
on error propagation. Generally, a universal threshold was applied to all images, 
regardless of the imaging mode (NBI or WLE). Figure 30 demonstrates that the model 
tends to set up different confidence intervals for NBI and WLE. The NBI confidence is 
larger than the WLE confidence. Thus, a different threshold adjustment boosts the 
performance of the model. In the overall section, all matrices achieved a minimum 
of 90%. The sensitivity is raised to 91.40%, and the F1 score is enhanced to 91.15%. 
In the WLE section, sensitivity is increased by roughly 10%, and the F1 score is 
improved by around 83%. NBI efficiency is boosted in the NBI section by about 17% 
specificity, affecting the F1 score by 3%. 

 

 
Figure  30. The distribution of GIM confidence per image (taking an average for all 

pixels) on the validation set: (a) all images contain imaging modes and (b) 
separated imaging modes. Since NBI is more confident than WLE, it is preferable to 

use separate thresholds in this case [28]. 
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5.2. Separated fine-tuned models for NBI and WLE modes with a classifier 
Intuitively, fine-tuned models for NBI and WLE modes with the classification 

model provide more dynamics to the overall performance by trading off inference 
speed. In Table 11, the performance of BiSeNet model demonstrates that utilizing 
separated models with NBI&WLE classification model (MobileNetV3s) impairs F1-
score, IoU by 0.74%, 0.48% relative to the single model with an auxiliary head. 
Additionally, the inference speed dramatically declined from 173 FPS to 135 FPS. 
Thus the performance of the fine-tuned models cannot compare to the solo model 
with the auxiliary head, even though the performance of the classification model on 
categories imaging modes is exceptionally high, which achieved an F1-score of 
99.88% in 1.73 ms (see Table 10). In NBI modes, the fine-tuned model is superior, 
achieving 97.02% of the F1-score; meanwhile, the performance in WLE modes is 
dropped from 83.21% to 78.46% of the F1-score, compared to the solo model with 
an auxiliary head. In Table 12, the experimental result demonstrates that applying 
the same techniques to the STDC2-Seg50 effect in a similar trend. The separately 
fine-tuned models are overwhelmed by the single model with the classifier in both 
NBI and WLE modes.  
 
Table  10. Performance of NBI&WLE classification model using MobileNetV3s and 
speed in milliseconds (ms). 

Model Acc Sen Spec F1 PPV NPV ms 

MobileNetV3s 99.83 100.00 99.76 99.88 99.41 100.00 1.73 

 
In Figure 31, the WLE fine-turned model tends to shrink the segmentation 

region in GIM areas; unfortunately, it reduces the similarity between the ground 
truths and the predictions causing lower performance relative to the universal model 
with the auxiliary head. Another reason is that the solo model utilizes the entire 
training dataset, causing more diversity and guidance. The GIM in NBI has more 
explicit texture than GIM in WLE; using only WLE cause the model to be confused 
about establishing a direct correlation between the prediction with GIM features: 
texture and color. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 46 

 

Figure  31. The output of the WLE fine-tuned model is overshot compared to the 
ground truth, yielding a lower IoU score relative to the universal model with an 

auxiliary head. 
 

Table  11. Performance comparison between a single BiSeNet model with an 
auxiliary head (separate thresholds), and separated fine-tuned BiSeNet models for 
NBI and WLE modes plus the classification model (MobileNetV3s). There are three 
parts in the Table 10: (1) overall images, (2) WLE images, and (3) NBI images. 
Boldface refers to the winner. 
Method Acc Sen Spec F1 PPV NPV IoU Error FPS 

overall modes 

single model 94.31  91.40 95.69 91.15 90.91 95.93 54.66 0.5256 173 
separated models 93.97 88.71 96.45 90.41 92.18 94.76 54.18 0.3322 135 

WLE mode 

single model 94.42  86.36 95.95 83.21 80.28 97.36 49.60 0.5691 173 
separated models 93.20 77.27 96.24 78.46 79.69 95.69 46.75 0.3348 135 

NBI mode 

single model 94.05  94.17 93.75 95.76 97.41 86.54 57.45 0.2117 173 
separated models 95.83 95.00 97.92 97.02 99.13 88.68 58.82 0.5554 135 
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Table  12. Performance comparison between a single STDC2-Seg50 model with 
NBI&WLE classifier (MobileNetV3s and separate thresholds) and separated fine-tuned 
STDC2-Seg50 models for NBI&WLE modes plus the classifier (MobileNetV3s). There 
are three parts in the Table 10: (1) overall images, (2) WLE images, and (3) NBI 
images. Boldface refers to the winner. 
Method Acc Sen Spec F1 PPV NPV IoU Error FPS 

overall modes 

single model 94.98 90.86 96.67 91.35 91.85 96.25 57.34 0.2512 121 
separated models 94.03 91.40 95.12 89.95 88.54 96.40 53.42 0.3512 121 

WLE mode 

single model 94.17 81.82 96.53 81.82 81.82 96.53 52.43 0.1860 121 
separated models 93.69 83.33 95.66 80.88 78.57 96.78 46.21 0.2348 121 

NBI mode 

single model 96.44 95.83 97.14 96.64 97.46 95.33 60.05 0.4664 121 
separated models 94.67 95.83 93.33 95.04 94.26 95.15 57.38 0.7346 121 
 

5.3. Comparison on the entire dataset 
5.3.1. Quantitative comparison 

Every experiment has been recapped. A quantitative comparison of our 
model is presented in Table 13. Our model with all strategies 
combined outperformed BlazeNeo for default training on the GIM dataset in terms of 
speed and sensitivity, NPV, and IoU. It achieved 91.40% sensitivity, 95.93% NPV, 
54.66% IoU, and 173 FPS. In Tables 13 and 16, BiSeNet represents the original model 
with an enhancement (pre-processing and post-processing) proposed in our previous 
work [28]. Moreover, since implementing LW-HNS, our model has become more 
robust regarding abnormal EGD (Table 16), demonstrating a substantial improvement 
over the original BiSeNet from 69.92% to more than 90%. 

In Table 14, the quantitative comparison of STDC2-Seg50 revealed progressive 
performance via the proposed strategies, including the classifier of MobileNetV3s. 
Location-wise hard negative sampling combined with the full jigsaw augmentation 
achieved the best F1-score for STDC2-Seg50 model at 93.48% with a speed of 154 
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FPS. However, when utilizing label smoothing with edge cut, IoU was improved by 
1.67% from 55.68% to 57.35%, whilst F1-score was impaired from 93.48% to 91.35%. 
After applying the NBI&WLE classifier, the performance was not significantly changed 
from the previous one, but the inference speed declined from 154 FPS to 121 FPS. 

BlazeNeo, combined with all proposed techniques, shared a similar story as 
STDC2-Seg50. In Table 15, BlazeNeo, with all proposed strategies and the NBI&WLE 
classifier, achieved the best IoU at 58.30% triumph over all our models regardless of 
inference speed. Regarding the inference speed, BlazeNeo+LW-HNS+FJ+LS reached 
the best F1-score of 93.44% with a speed of 93 FPS. 

In summary, all the proposed strategies have the tendency to increase the 
performance of GIM semantic segmentation in Real-Time relative to the default 
models of BiSeNet, STDC2-Seg50, and BlazeNeo. The best outcome varied based on 
the nature of the default models: two-path-way architecture and single-path-way 
architecture. Nonetheless, our approach leveraged the maximum capabilities of the 
baseline models with a slight impact on the inference speeds. 

 
5.3.2. Qualitative comparison 

Figure 32 illustrates how each proposed technique, including LW-HNS, the full 
jigsaw augmentation (FJ), label smoothing (LS), and auxiliary head (AuxHead), 
contributes to output prediction. There are 12 samples displayed here: the 1st - 4th 
rows contain NBI GIM images, the 5th - 8th rows contain WLE GIM images, the 9th - 
10th rows contain NBI non-GIM images, and the 11th - 12th rows contain WLE non-
GIM images. As for the column, 1st and 2nd columns are the original and ground 
truth images. The remaining columns are our prediction outcomes; therefore, the last 
column is the victor applying all proposed techniques. Interestingly, the initial 
BiSeNet performs inadequately on non-GIM images (9th to 12th rows: column (c)). 

Figure 33 illustrates the best result of each model via the proposed 
techniques and its baseline: BiSeNet, STDC2-Seg50, and BlazeNeo. Note that all 
baseline models were applied LW-HNS, and the 12 instances are the same as in 
Figure 32. As for the column, the 1st and 2nd are the same, whilst the remaining 
columns contain prediction outcomes. The last column reveals that BlazeNeo 
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integrated with all strategies outperformed other models regardless of an error in 
abnormal EGD, 9th row. Curiously, our method improved the performance of all 
baseline models for all predictions. 

 
5.4. Quantitative comparison on Abnormal EGD 

A comparison of performance on 133 abnormal EGD cases showed that the 
prediction efficiency (accuracy) of BiSeNet and STDC2-Seg50 improved from 69.92% 
to 92.48% and 44.36% to 96.24%, respectively, see Table 16. Furthermore, the 
winner of BlazeNeo achieved the best accuracy at 97.74% regardless of inference 
speed. 

 
5.5. Error Analysis of the winner model with the best techniques 

Among the three enhanced models (BiSeNet, STDC2-Seg50, and BlazeNeo), 
STDC2-Seg50 with location-wise hard negative and full jigsaw augmentation is 
preferable due to its performance and the inference speed exceeding 100 FPS at 154 
FPS. Additionally, the speed was impaired from BiSeNet by 23 FPS from 177 FPS to 
154 FPS; meanwhile, BlazeNeo's speed dramatically dropped to 80 FPS. Thus STDC2-
Seg50 was chosen. The error analysis of the STDC2-Seg50 is as follows: 

 
5.5.1. Error Analysis of False Negative segmentation 
According to the classification performance of STDC2-Seg50 with LW-HNS and 

full jigsaw augmentation, 14 of 186 GIM images were incorrectly classified as negative 
images. Six of them were NBI images, and the other was WLE images. Herein, the 
recall of GIM in NBI and WLE mode was 95.00% and 87.88%, meaning that WLE was 
more errors than NBI mode. In NBI, most errors were incisura (recall 89.26% GIM); see 
Figure 34. These occurred since we tried to reduce the massive false positive (FP) 
error by adding more negative data; the FP is critical. For WLE, the incisura images are 
the majority of false negative images for the same reason. Moreover, the error 
emerged on the GIM image that does not have the precise pattern of GIM (too 
complicated and easy to overlook); see Figure 35. 
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Figure  32. On the test dataset, a qualitative comparison of the proposed 

method for BiSeNet (ResNet-18) is illustrated [28]: (a) original image; (b) ground truth; 
(c) BiSeNet; (d) BiSeNet+LW-HNS; (e) BiSeNet+LW-HNS+FJ; and (g) BiSeNet+LW-
HNS+FJ+LS+AuxHead. There are 12 instances (rows) of NBI GIM (1st–4th), WLE GIM 
(5th–8th), NBI non–GIM with abnormal (9th–10th), and WLE non–GIM with abnormal 
(11th–12th). (c) cite the preceding work [28]. 
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Figure  33. Qualitative comparison of the winner method for each model 

and the original baseline model on the test dataset: (a) original image, (b) ground 
truth, (c)  BiSeNet+LW-HNS, (d) BiSeNet+LW-HNS+FJ+LS+AuxHead, (e) STDC2-
Seg50+LW-HNS, (f) STDC2-Seg50+LW-HNS+FJ, (g) BlazeNeo+LW-HNS, (h) 
BlazeNeo+LW-HNS+FJ+LS +MobileNetV3s. There are 12 examples (rows) composed 
of NBI GIM (1st-4th), WLE GIM (5th-8th), NBI non-GIM with abnormal (9th-10th), and 
WLE non-GIM with abnormal (11th-12th). 
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Table  16. Performance comparison of 133 abnormal EGD cases. Boldface refers to 
the winner from Table 13, 14, and 15. 

Model TN FP Acc 

BiSeNet [28]  93  40 69.92 
BiSeNet+LW-HNS 124 9 93.23 

BiSeNet+LW-HNS+FJ 126 7 94.74 

BiSeNet+LW-HNS+FJ+LS 126 7 94.74 
BiSeNet+LW-HNS+FJ+LS+AuxHead 123 10 92.48 

STDC2-Seg 59 74 44.36 

STDC2-Seg+LW-HNS 128 5 96.24 
STDC2-Seg+LW-HNS+FJ 128 5 96.24 

STDC2-Seg+LW-HNS+FJ+LS 129 4 96.99 

STDC2-Seg+LW-HNS+FJ+LS+AuxHead 124 9 93.23 

BlazeNeo+LW-HNS 127 6 95.49 
BlazeNeo+LW-HNS+FJ 127 6 95.49 

BlazeNeo+LW-HNS+FJ+LS 130 3 97.74 

BlazeNeo+LW-HNS+FJ+LS+MobileNetV3s 130 3 97.74 

BiSeNetV2 113 20 84.96 
DDRNet-23-slim* 120 13 90.23 

HRNetV2+OCR 125 8 93.98 

LW-HNS has been applied to BiSeNetV2, DDRNet-23-slim, and 
HRNetV2+OCR. 
* It was implemented on 1024x1280 image resolution. 
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Figure  34. The false negative images of GIM in NBI mode: 3 images of 

incisura, 2 images of corpus, and 1 image of cardia and fundus. 

 

Figure  35. The false negative images of GIM in WLE mode: 3 images of 
incisura, 3 images of corpus, and 2 images of antrum. Some images can be 
overlooked easily. 
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5.5.2. Error Analysis of False Positive segmentation. 
The False Positive for the STDC2-Seg50 was 10 of 374 non-GIM images, 3 of 

them were NBI images, and the rest were WLE. In NBI, there were 2 images of 
abnormal EGD (erosion and ulcer) and one of normal EGD; see Figure 36. For WLE, 
there were 3 images of abnormal EGD, 3 images of normal EGD, and one of noise; 
see Figure 37. Here, the number of abnormal EGD indicated that there are some 
textures of GIM that the model still confuses. Interestingly, the false positive error of 
normal EGD occurred near the edge of the image; it appeared when the endoscope 
was near the gastric surface, revealing some patterns of the healthy surface. Perhaps, 
the model has some camera region bias (top right, top left, etc.). 

 

 
Figure  36. The false positive images of GIM in NBI mode: 2 images of 

abnormal EGD and one of normal EGD. 

 

Figure  37. The false positive images of GIM in WLE mode: 3 images of 
abnormal EGD, 3 images of normal EGD, and one noise. 
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5.6. model deployment  
This section presents the performance of the best GIM model of BiSeNet 

series when deployed since the model can operate without lacking. Here is the first 
video available on YouTube and the published paper, https://youtu.be/GiG5MCxJh20. 
The first 8 seconds demonstrated the performance of GIM segmentation in Real-Time 
on WLE mode, and at the 24 seconds to the end of the clip presented the 
performance on narrow-band imaging (NBI). The second video, online link – 
https://youtu.be/B_mtmvZAIbE, demonstrated the AI model on normal EGD and GIM. 
In the first 30 seconds, the effectiveness of the AI on normal EGD with white light 
endoscopy is displayed. Between 0:30 to 0:52, the clips showed the AI performing on 
normal EGD with NBI. Finally, the duration of 0:52 to 1:80 and 1:80 to the end 
revealed the performance of GIM segmentation on WLE and NBI modes, respectively. 
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CHAPTER VI 
CONCLUSION 

 
In this thesis, a real-time semantic segmentation network for GIM was 

designed to conquer all practical obstacles. By adding an auxiliary head and loss, the 
BiSeNet model was improved. Several techniques were introduced to enhance the 
model's performance, such as location-wise hard negative sampling, jigsaw 
augmentation, label smoothing, and threshold adjustment. Our model outperformed 
all baseline methods (BiSeNet, BiSeNetV2, DDRNet, BlazeNeo, and HRNetV2 + OCR) 
with F1 and IoU scores of 91.15 and 54.66%, respectively. The inference 
speed attained 173 FPS. Comparing the performance of 133 abnormal EGD cases 
revealed an increase in prediction efficiency (accuracy) from 69.92% to 92.40%. In 
addition, the proposed methodologies have been demonstrated to be effective and 
more practical on both baseline models: STDC2-Seg50 and BlazeNeo. The 
performance of STDC2-Seg50 was improved and reached 93.48% F1-score, 55.68% 
IoU, and 154 FPS for inference speed. Moreover, the accuracy for 133 aberrant 
EGD was increased to 96.24%. Regardless of speed, BlazeNeo with our strategies and 
modifications achieved the highest F1-score and IoU of 93.4% and 58.30%, 
respectively. 

In the future, transformer-based models can be investigated, but they must 
meet a real-time inference criterion regarding the inference speed greater than 100 
frames per second (FPS). The existing demand for tracking GIM treatment has not yet 
been completed, and we are eager to investigate how our model can be utilized to 
assist professionals. To accomplish this, an approximation of the GIM size is required 
for each observation, with the intention that the size will decrease as a result of 
therapy. With the benefit of our model, segmentation can also be used to predict 
the GIM surface area. Such a possibility permits specialists to keep records of their 
treatment and provide patients with a more effective cure, thereby reducing the GC 
mortality rate.  
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CHAPTER VII 
APPENDICES 

 
7.1. A single model with a classifier 

For a single model with a classifier (MobileNetV3s), the result is different 
depending on the model base architecture. BiSeNet performs better on a single 
model with an auxiliary head see Table 18; meanwhile, the best multi-color 
technique For STDC2-Seg50 model is the single model with a classifier. The model 
achieved 57.34% IoU and 91.35% F1-score, outperforming the single model with an 
auxiliary head by 4.81% and 1.29%, respectively. STDC2-Seg50 is a descendant of 
BiSeNet, which upgraded its backbone from ResNet-18 to STDC2 and replaced the 
spatial path with a skip connection. The ability to classify imaging modes (NBI and 
WLE) and segmentation GIM is excessive for a single path of STDC2-Seg50 compared 
to the dual path of ResNet-18 (see Figures 11 and 8, respectively). Thus, the single 
model with a classifier is reasonable for STDC2-Seg50. The effect of the multi-color 
techniques is also applied to BlazeNeo model as STDC2-Seg50; the single model with 
a classifier is the winner. 

 
7.1. An experiment of label smoothing with an edge cut and without. 

Table 17 presents an effect of different label smoothing: with and without 
edge cut. The experiment was set on STDC2-Seg50 model combined with location-
wise hard negative sampling and full jigsaw. Using label smoothing with an edge cut 
can leverage IoU score by approximately 4%; thus, label smoothing with an edge cut 
is preferable for STDC2-Seg50 model. 

 
Table  17. The effect of different label smoothing on the testing set was evaluated 
using STDC2-Seg50 model as the backbone. Boldface refers to the winner. 

Method Acc Sen Spec F1 PPV NPV IoU Error 

without an edge cut 94.98 88.17 97.78 91.11 94.25 95.25 53.67 0.1667 
with an edge cut 94.48 90.86 96.19 91.35 91.85 95.71 57.35 0.2866 
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