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CHAPTER 1: INTRODUCTION

1.1. Background of the study

Cancer is the second leading cause of mortality worldwide, with approximately
9.6 million deaths, or one in six deaths, in 2018. Locally, the new incidence rates
reported in 2020, liver, lung, breast, colon, and rectal cancers are the most common
types of cancer in Thailand (1). Worldwide, breast cancer is the primary lethal disease
among women based on The Global Cancer Observatory 2020, with an estimated

incidence and mortality rate of 37.8% and 12.7%, respectively (2).

Breast cancer originates from abnormal epithelial cell growth of ducts (85%) or
lobules (15%) in the breast's glandular tissue. Breast cancer has two general types: non-
invasive (ductal carcinoma in situ and lobular carcinoma in situ) and invasive (invasive
ductal carcinoma, invasive lobular carcinoma, Paget's disease of the nipple,
inflammatory breast cancer, phyllodes tumors of the breast, locally advanced breast
cancer, and metastatic breast cancer). Treatment options include hormonal therapy,
radiotherapy, chemotherapy, and surgery. Moreover, breast cancer has three major
subtypes based on cellular protein expression: (i) hormone receptor-positive breast
cancer, (ii) human epidermal growth factor receptor 2 (HER 2) positive breast cancer,
and triple-negative breast cancer (TNBC). Estrogen receptor (ER) or progesterone
receptor (PR), expressed on the hormone receptor-positive breast cancer, are treated by
endocrine therapy. The treatment of HER2-positive breast cancer involves HER2
targeted therapy. Treatment with chemotherapeutic agents, usually coupled with
surgery and radiation therapy, are the only options for TNBC (3, 4). High toxicity, poor

specificity, and poor efficacy are the main issues with conventional chemotherapeutic
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drugs. Nowadays, the fabrication of drug delivery systems with tumor-targeting
properties has become the gateway to overcome these issues. Many studies established
that folate receptor alpha (FR a), a membrane-bound protein overexpressed on the
apical surface of epithelial cells, is a promising biomarker and a therapeutic target for

breast cancer (5).

Nanotechnology has revolutionized the platform in specific targeting delivery to
breast cancer cells (6). Ligands that can be attached to the surface of the nanoparticles
to increase the cellular uptake and improve the therapeutic efficacy include antibodies,
transferrin, aptamers, glycyrrhetinic, sugars (galactose and mannose), folic acid, and

peptides (Arg-Gly-Asp or RGD) (7).

Nano-based carriers such as lipid-based nanoparticles, polymeric nanoparticles,
inorganic nanoparticles, bio-inspired nanoparticles, and hybrid nanoparticles have
distinctive properties, such as specific targeting of cancerous cells, minimizing the
adverse effects, and multi-drug resistance (8). Recently, polymeric nanoparticles have
been the primary interest in nano-drug targeting systems. Naturally occurring polymers,
such as chitosan and alginate, are attractive because of their biological properties such
as non-immunogenicity, biocompatibility, biodegradability, sustained-release property
into the bloodstream, or cancerous tissue, and enhanced drug encapsulating efficiency

(9, 10).

Turmeric (Curcuma longa L.), which belongs to the family Zingiberaceae, has
been used as a traditional home remedy, dye, and food additive in Southeast Asia.
Curcuminoids, oleoresin, minerals, and vitamins are present in the rhizome of turmeric.

Ar-turmerone, the primary component of turmeric, has been widely used in
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pharmaceutical applications due to its unique activities in addition to antibacterial,
anticarcinogenic, antioxidant, antifungal, insect repellent, antimutagenic, and
antiplatelet properties. Turmeric oil is unstable under specific environments, volatile,
and highly lipophilic (11). Although several pieces of research explored the
pharmacological activities of turmeric oil against many diseases, these limitations
restrict the development of new therapeutic formulations of turmeric oil (12).
Encapsulating turmeric oil within a network of biopolymers can overcome the
limitations of hydrophobicity and instability. Lertsutthiwong P., et al. (13) reported
overcoming these concerns by encapsulating turmeric oil in the alginate nanoparticles.
Unfortunately, it showed low stability at room temperature and poor drug loading.
Coating the alginate nanoparticles with cationic chitosan polymer improved the

stability and loading of turmeric oil (11).

This study aimed to develop the chemical modification of the carboxyl group of
the targeting ligand folic acid with the amino group of chitosan, leading to the
encapsulation of turmeric oil in the folic acid-grafted chitosan/alginate nanocapsules
(FA-CS/Alg NCs). Folic acid was grafted on the backbone of chitosan using the
amination-acylation mechanism. UV-Vis, 'H-NMR, and FT-IR characterized the
resulting grafted polymer. The preparation of turmeric oil-loaded FA-CS/Alg NCs was
employed o/w emulsification followed by ionotropic gelation. The optimization of the
NCs formulation was performed using the response surface methodology with Box-
Behnken design as the experimental design. The hydrodynamic diameter,
encapsulation efficiency, and loading capacity be the responses with folic acid-
chitosan/alginate mass ratio, turmeric oil concentration, and poloxamer 407

concentration as the factors. In addition, the optimized formulation was investigated in
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MDA-MB-231 and MCF-7. The percentage of cell viability was the parameter for the
cell assay.
1.2. Rationale and significance

TNBC has been known as the heterogeneous phenotype of breast cancer, which
accounts for 10-20% of all invasive breast cancers and has many molecular subtypes.
TNBC has neither estrogen nor progesterone nor human epidermal growth factor
receptor 2 (HER 2) amplification, remarkably eliminating the response to receptor-
based therapies and increasing the likelihood of metastasis (3, 4). Chemotherapy is the
primary treatment that may be used either alone or combined with other types of
therapies. Conventional chemotherapies suffer multidrug resistance and poor
selectivity, which affect cancerous cells and normal cells (14). Nowadays,
nanotherapeutic platforms are fabricated to overcome the limitations of chemotherapy.
Nanotherapeutic drug delivery systems offer the advantages of providing prolonged
shelf-life, multitargeting, incorporating hydrophilic and lipophilic active compounds,
flexibility in administration via oral, parenteral, nasal, and transdermal routes, and
enhancing the biodistribution of anticancer drugs (15). However, selecting the cancer
surface molecular biomarkers is essential for targeted drug delivery. Folic acid has been
recognized as a potential ligand for targeting cancerous cells. Folic acid is inexpensive,
stable, non-immunogenic, and can couple to the backbone of a polymer. Folic acid
grafted with polymeric nanocarriers can be a delivery approach targeting the folate
receptors expressed on the surface of cancer cells (Table 1) (16). Chitosan and alginate,
natural polysaccharides, have unique biological properties such as biodegradability,

biocompatibility, low toxicity, good stability, and extended drug release property.
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In particular, chitosan can easily attach with folic acid via hydrogen bonding and van

der Waals forces (7).

The formulation involves the formation of a micelle core with the hydrophobic tail
of poloxamer oriented with the TO in the center and alginate attached to the surrounding
hydrophilic head of poloxamer. The addition of CaCl, promotes the formation of an
ionic cross-linking of Ca*? ions with the guluronic acid blocks of Alg forming an egg-
box structure (17). The cross-linking process promotes gelation which could protect TO
and maintain its biological activity (18, 19). The folic acid-grafted chitosan (FA-CS)
was added last because the folate ligand should be on the surface of the NP for
attachment to the folate receptors on the membrane of cancer cells. The FA-CS dry
powder was first dissolved in 2% acetic acid and the pH adjusted to 6.0. At this pH, the
primary amine groups of CS and the secondary amine groups of FA are both protonated
while the carboxyl groups of FA stay protonated (20). These charge states promote the
electrostatic interaction of CS with Alg (Fig. 1). Folic acid binds to the folate receptor
and enters the cancerous cells via endocytosis for intracellular drug delivery.
Covalently conjugating folic acid with chitosan does not interfere with the folate
receptor binding and internalization process (5). Folate receptor has a high affinity for
binding protein; thereupon, folic acid-grafted chitosan-based NCs can be taken at low

concentration while folate receptor can be acceptable in the target area.
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Figure 1. A scheme of the formation of the TO-FA-CS/Alg NC

Polyelectrostatic interaction

Limited studies show the possibility of encapsulating turmeric oil using chitosan

or alginate polymers or combining both polymers (Table 2). However, the use of folic

acid as a ligand that can be grafted with chitosan to coat turmeric oil-loaded alginate

NCs that intend to target the folate receptors in TNBC cells has not been investigated

to date. Moreover, only a few studies have demonstrated the capacity of folic acid-

grafted chitosan nanoparticles to increase drug loading capacity, prolong drug release,

low cytotoxicity, and cellular uptake (5, 21).



Table 1. Folic acid-grafted polymers for targeted cancer therapy
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EA Results
Natural grafted Type of NP In-vitro ; References
compound model Cytotoxic Cellular
polymer
effect uptake
In dose Better
dependent
Acrvlic Hela manner cellular
Curcumin y Hydrogel (Cervical uptake than (22)
polymer (15uM,
cancer) non-folate
25UM, hydrogel
50UM) ydrog
LDsg of More
4T1 & (MDA- internalized
. Gum . MDA- MB-468: than bare
Curcumin acacia Migrosphere MB-468 45uM, microspheres (23)
(TNBC) 4T1: & curcumin
40uM) alone
Helianthus Conper oxide m[B)gC%l ICso0f NPs  Internalization
tuberosus Starch nanp(fparticle (Breast (21.03+1.  via (24)
endocytosis
extracts cancer) 85 pg/mL) yt
Concentrati  1.8-fold
Polvdona Mesoporous HelLa on- higher
Doxorubicin ydop silica (Cervical ~ dependent uptake than (25)
mine . .
nanoparticle cancer) & time- non-folate
dependent NP




Table 2. Turmeric oil-loaded chitosan/alginate nanoparticles
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Polymer used Type of NP Method of Results References
preparation
Sodium alginate ~ Nanocapsule lonotropic Particle size (116 £ 14 nm), (13)
(80-120 kDa) gelation zeta potential (-24.3 £ 2.7mV),
method %DL (5.47 £ 0.21%)
Sodium alginate ~ Nanocapsule lonotropic Particle size (522 £ 15 to 667 (11)
(80-120 kDa) gelation +17nm), zeta potential (>20
Low MW method mV), stable at 4 °C and 25 °C
chitosan (41 kDa)
(92+2% DD)
Sodium alginate  Nanocapsule lonotropic ~ Particle size (below300 nm), (26)
and chitosan gelation %EE (71%), slow and
method sustained release atneutral pH

for 48 hours, more
antiproliferative properties than
free oil in A549 cell lines,
hemocompatible

1.3. Objectives of the study

This study aimed to:

e Synthesize and structurally elucidate folic acid-grafted chitosan.

e Optimize and characterize turmeric oil-loaded folic acid grafted chitosan/alginate

nanocapsules.

e Evaluate the cytotoxicity of the turmeric oil-loaded folic acid-grafted

chitosan/alginate nanocapsules in MDA-MB-231 and MCF-7 breast cancer cell

lines.

1.4. Hypothesis

This study hypothesized that folic acid-grafted chitosan/alginate nanocapsulesas

the carrier would enhance the cytotoxicity of turmeric oil against folate-receptor

positive MDA-MB-231 and MCF-7 breast cancer cell lines.
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CHAPTER 2: LITERATURE REVIEW

2.1. Breast cancer subtypes and treatment strategies

The classification of breast cancer is based on the two types of epithelial cellsin
the mammary gland: luminal and basal, by immunohistochemically and
complementary DNA (cDNA) microarrays. The five subtypes of breast cancer include
(i) luminal A (HR +/ HER 2 -), (ii) luminal B (HR +/ HER 2 +), (iii) HER 2 positives,
(iv) basal-like (HR/ HER 2 negative, epidermal growth factor receptor-positive and/or
cytokeratin 5/6 positive), and (v) normal-like breast cancer (Fig. 2) (4). Basal-like
carcinoma is defined as the subtype with neither HR nor HER 2 amplifications.
However, expressing the gene on the neoplastic cells found on the basal/ myoepithelial
cell of the breast was found to be possible (3). On clinical assay, triple-negative
phenotypes enrich basal-like cancer even though 25% of TNBC cases are not basal-like

on gene expression array (4).

Best
prognosis

Luminal A (~40%)
/ HR+ (ER+ and/or PR+), HER2-

Normal-like (~2-8%)
HR+ (ER+ and/or PR+), HER2-

Luminal B (~20%)
HR+ (ER+ and/or PR+),
HER2+/-

HER2-enriched (~10-15%)
HR- (ER-, PR-), HER2+

Receptors
HR: Hormone
ER: Estrogen
PR: Progesterone Triple Negative (~15-20%)
HER2 HR- (ER-, PR-), HER2-

Worst
prognosis

Figure 2. Five main molecular subtypes of breast cancer

TNBC accounts for 10-20% of invasive breast cancer, which lacks the
overexpression of estrogen/progesterone and HER 2 receptors. However, it expresses

the gene proliferation and a unique gene cluster (basal cluster) that comprises epidermal
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growth factor receptor (EGFR) and cytokeratins (3). Therefore, patients with TNBC
can receive neither targeted therapy against ER/PR/HER2 receptors nor hormonal
therapies. Current TNBC treatment modalities involve conventional therapy
(neoadjuvant, adjuvant, surgery, radiotherapy), advanced therapy (miRNA, siRNA,
aptamers, nanomedicines: quantum dots, fluorescent nano-diamonds, silver NPs, gold
NPs, superparamagnetic iron oxide NPs, polymeric NPs) and immunotherapy. Drug
delivery via uniquely expressed surface biomarkers on TNBC has been identified to
augment the cytotoxicity of the therapeutic payload. Target receptors such as Notch,
CD 44, Frizzled (FZD), transferrin, integrin, folate and epidermal growth factor
receptor (EGFR) and their signaling pathways can be exploited to induce cell death
either by inhibiting cellular proliferation or via cellular apoptosis. Combining
chemotherapeutic drugs are the standard and most effective strategy to combat TNBC.
FDA has already approved some molecules (Table 3), and some are under investigation
in clinical trials (Table 4) (clinicaltrials.gov).

Among these, the folate ligand has been revolutionized due to its participation in
the natural progression of cancer cells and its high affinity towards FR. Moreover, there
is a higher expression of FRs (especially the a-isoform) in breast cancer cells compared
to normal cells. Therefore, these receptors can be utilized to develop FR-mediated
targeted therapy for breast cancer. Investigations in clinical trials have also shown the

interest in using this target in chemotherapy (Table 5) (clinicaltrials.gov).

Chemo-active substances may be natural, semi-synthetic, or synthetic. Limited

solubility, toxicity toward normal cells, and multi-drug resistance are among the issues
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with conventional small-molecule chemotherapeutic agents. These issues lead to low

biodistribution and require a high drug concentration to reach the desired site (14, 15).

Over the few decades, NCs platforms have been invented to overcome the
challenges with conventional chemotherapeutic agents (15). Nanocarriers of
chemotherapeutic drugs are advantageous due to their capacity to load both hydrophilic
and hydrophobic drugs, improve pharmacokinetic and pharmacodynamic profiles,
exhibit sustained release, increase circulation time and drug concentration, and enhance
internalization by the enhanced permeation and retention effect (EPR) or via
endocytosis mechanism (27). Among the remarkable properties of nanotherapeutics
include their small size and surface, which allow functionalization. Additionally,
nanocarriers with an average range of 10-100 nm effectively transport the drug and
accomplish the EPR effect (6). In literature revealed that when the polymer was
functionalized with folic acid used as a targeting ligand, not only increased the
encapsulation efficiency (EE) and loading capacity (LC) of hydrophobic compounds
loaded in the NPs but also definitely enhanced the cellular uptake folate receptor-
mediated pathway through folic acid targeting. Bolla PK., et al. (134) showed that
lutein content was significantly higher when FA conjugated with polymeric
nanoparticle. Moreover, cellular uptake was 1.6 and 2-fold enhanced than unconjugated
NPs and unencapsulated compound. Furthermore, doxorubicin, hydrophobic drug, was
loaded with a high loading capacity into FA conjugated CS (FA-CS) NPs by a
combination ionic bonding and hydrophobic effect with Pluronic F127. EE was
increased from 35.2% to 58.1% occurring in the FA-conjugated NPs and more cel

uptake by folate-receptor mediated endocytosis (124).
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2.2. Folic acid as a ligand in targeted delivery of bioactive compounds
2.2.1. Folic acid

Folate has three structural components: a pteridine (2-amino-4-
hydroxypteridine) moiety that can be oxidized or reduced, a para-aminobenzoic acid
(PABA), and a variable polyglutamic chain (Fig. 3). Folate in nature can either be

reduced or oxidized (32).

0] COOH

N COOH

=

N L—
—%5

L

H-N N ]
H
Pteridine PABA Poly-glutamate
Figure 3. Chemical structure of folate

The commonly reduced moiety of natural folate is dihydrofolate (DHF) and
tetrahydrofolate (THF) that can be one-carbon substituted in the position of N5 of
pteridine ring and N10 of PABA to form 5,10-methyl THF, 5-methyl THF, 5-formyl
THF, and 5,10-formyl THF (Table 6). The unsubstituted reduced forms are chemically
unstable due to the rapid cleavage of the methylene linker between the pteridine ring
and PABA, leading to the inactivation of its biological activities (33). The synthetic
folate compound is more stable than naturally occurring folate in food sources that are
susceptible to losing their biochemical activities by heat, oxidation, and light during the

harvesting, storage, processing, and preparation (34).



Table 6. VVarious chemical substitutions of folate
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Folate derivative N5 N10
tetrahydrofolate (THF) -H -H
5-methyl THF -CH3 -H
5,10-methylene THF -CH2- -CH2-
5-10-methenyl THF -CH=N- -CH=N-
5-formyl THF -CHO -H
10-formyl THF -H -CHO
10-formimino THF -H -HCNH

Folic acid exhibits unique properties as low immunogenicity, stable storage

condition, and a targeted ligand by conjugation with macromolecules that internalize

into the FR + cells not only cancers but also inflammatory diseases (35).

2.2.2. Folate receptors

Folate receptors belong to the family of high-affinity glycosyl phosphatidyl

inositol (GPI) proteins that folate receptor a, B3, v, and & (16). Folate receptor-a is

overexpressed on the epithelial layer of solid tumors such as TNBC.However, folate

receptor-p overexpress in non-epithelial tumors, e.g., acute myeloid leukemia. Folate

receptor vy is restricted to malignancies of hematopoietic origin involving lymphoid

cells. However, folate receptor § has an absence of affinity to bind with folic acid or

folate derivatives (5).

Recent studies on molecular simulation and docking explained how the folate

binds to folate-receptor alpha (FRa) (Fig. 4) (36). FRa is composed of 4 long a-helices

(al, 02, a3, a6), 2 short a-helices (a4 and a5) and 4 short B strands (p1-4). According

to the simulation study, the folate binds onto the folate receptor that is perpendicular to
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the plane of a-helices: al, a2, a3. Strong hydrogen bonds and hydrophobic interaction
occurred in the pterin ring N and O (N1, N2, N3, N5, and O4) and the carboxyl,
hydroxyl, and guanidinium groups of the binding pockets of the FRa. Furthermore, the
interaction between the aspartate carboxyl oxygens of FRa and the pterin N1 and N2
nitrogen of folate is associated with its high binding affinity. The simulation study also
showed that the glutamate functionalities extend outwards of the binding site, making
the carboxylate groups exposed and available for conjugation without affecting its

binding affinity to FRa (36).

mRNA expression level (RMA, log2)
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Figure 4. Summary of FR-a gene expression levels in various types of cancers

2.2.3. Targeted delivery via the folate receptor

Folate receptors are often exploited as targets in cancer therapy for several
reasons: (1) they are highly expressed on cancer cells such as ovarian, colon, cervical,
breast, lung, kidney, placenta, choroid plexus, and myelogenous leukemias (37); (2)
they have a negligible expression in most normal and healthy tissues and organ (38);
(3) they have a nanomolar affinity with folate-conjugated drug/ nanoparticles (39); and
(4) they induce cellular internalization via receptor-mediated endocytosis and releases

the payload into the cell. The delivery of drugs, especially chemotherapeutics via folate-
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modified nanoparticles, can be of great advantage compared to the drug itself. This
would allow (1) high drug binding and internalization via multivalent folate-conjugate
on nanoparticles surface, (2) encapsulation of the drug in a nanocarrier can prevent
direct modification of drug, especially when the drug has no modifiable functionalities,
(3) delivery of combination drug is possible when encapsulated in a nanocarrier, (4) it
can increase the retention in the tumor via EPR effect and facilitate folate receptor-
mediated endocytosis, and (5) drug can be protected from biological factors and delay
the release until the nanoparticles have been internalized by the cells, hence preventing

immediate efflux via multi-drug resistance pumps (16, 40-42).

Receptor-mediate endocytosis happens when a specific ligand binds to its
receptor located on the cell surface or the luminal membrane of the blood, brain barrier
(BBB) (35). Folate receptor is one of the most common sites for endocytosis, especially
cancer-targeting (43). FR-mediated endocytosis takes place in a series of distinct steps
(44): (1) first is the interaction and the binding of the folate-conjugate to the FR on the
cell surface, (2) then invagination and internalization of the folate-conjugate forming
endocytic vesicle occur, and lastly (3) the acidification of the endosomalcompartment
of pH 5.0 that triggered the gradual release of the folate-conjugate and its payload. The
membrane-bound FR are recycled back to the cell surface and allow more folate-
conjugates inside the cell. In vivo studies revealed that the recycling rate of membrane-
bound FR varies from 4 to 12 hours per once cycle (39). It was also found that an
insignificant quantity of folate-conjugate enters the lysosome for digestion, thus
allowing the delivery of hydrolytically sensitive materials like genes and ribozymes

into the cells (45).
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2.2.4. Folic acid-grafted chitosan (FA-CS)

Folic acid has low solubility in cold water. Its solubility is improved by
increasing the water temperature and changing the solvent pH conditions (acidic or
basic). However, they can damage the stability of folic acid (46). Therefore, dimethyl
sulfoxide (DMSQO) was usually chosen as a solvent for dissolving the folic acid and as
the medium for conjugation reactions (47). The carboxy group of folic acid covalently
grafted onto the amino group of the chitosan and chitosan derivatives; trimethylated
chitosan (TMC) (48), carboxymethylated chitosan (CMC) (49), hydroxypropylated
chitosan (HPC) (5, 50), n-octyl-N-phthalyl-3,6-O-(2-hydroxypropyl) chitosan
(OPHPC) (51), stearic acid grafted chitosan (52), N-succinyl N"-octyl chitosan (SOCS)
(5), octadecyl- quaternized lysine modified chitosan (OQLCS) (42) and, deoxycholic

acid-O-carboxymethylated chitosan (DOMC) (53, 54).

The carbodiimide crosslinking reaction is a common reaction for the conjugation
of the carboxyl group and primary amino group of polymers via stable amide bond
obtaining semi-synthetic polymer (5). FA has been conjugated to the chitosan by "one-
plot manner" and "two-step conjugation™. The carboxy functional group of folic acid
was activated by coupling reagents either 1-ethyl-3-(3- dimethylaminopropyl)
carbodiimide (EDC, EDAC, or EDCI) or N, N'- dicyclohexylcarbodiimide (DCC)
whether with N-hydroxysuccinimide (NHS) or not. Firstly, the y-carboxyl group of folic
acid reacted with DCC or EDC forming the intermediate O-acylisourea, which is readily
hydrolyzed and form N-acyl urea. The addition of NHS can enhance the efficiency of
the reaction. The intermediate O- acylisourea reacted with NHS and created the stable

NHS ester. After that, the obtained ester reacted with the primary amine of chitosan in
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aqueous buffers under the reaction condition of pH lower than 6 and formed the stable
amide bond. The conjugation of FA on the chitosan-based nanoparticles to incorporate
anticancer drug is exemplified by several studies using carbodiimide reaction and

targeting folate-receptor overexpressed breast cancer cell (Table 7).
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2.3. Polymeric nanoparticles

Nanoparticles have 5 major classifications based on the type of fabrication
methods, including lipid-based nanoparticles (liposome, lipoplex, solid lipid
nanoparticles), polymeric nanoparticles (micelle, polymersome, nanocapsule,
nanosphere, dendrimer, nanogel, nano complex), inorganic nanoparticles (gold
nanoparticles, magnetic nanoparticles, silica nanoparticles, quantum dots, carbon
nanomaterial), bio-inspired nanoparticles (exosome, protein nanoparticles, DNA
nanostructure) and hybrid nanoparticles (cell membrane-coated nanoparticles, lipid-

polymer nanoparticles, organic-inorganic nanocomposite) (64).

Polymeric nanoparticles may constitute the most effective nano vehicles for
prolonging anticancer drug delivery in circulation. Nowadays, polymeric nanoparticles
have been tested in several preclinical and clinical trials stages. These polymeric
nanoparticles can easily be fabricated using biodegradable or non-biodegradable
polymers (65). Polymers can be grouped as natural polymers (starch, cellulose, peptide,
glycan, protein, alginate, chitosan), synthetic polymers (polylactic acid (PLA),
polyethylene glycol (PEG), polycaprolactone (PCL), polyvinyl alcohol (PVA), poly
(lactic-co-glycolic acid) (PLGA)) as well as microbial fermentation polymers (poly
hydroxybutyrate) (66). Among these natural polymers, cationic chitosan and anionic
alginate are remarkable materials in constructing nanoparticles-based vehicles. They
have excellent biological properties such as non-toxicity, non-immunogenic,
biocompatible, biodegradable, mucoadhesion, adsorption enhancer, hydrophilic, and

protective properties (67-70).
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2.3.1. Alginate

Alginate (Alg) is a water-soluble linear anionic polysaccharide primarily
isolated from several brown algae worldwide, such as Ascophyllum nodosum,
Laminaria hyperborean, and Macrocystis pyrifera (71). Alg is extracted from algae by
mixing with the mineral acid to remove the counterions, such as calcium, magnesium,
and sodium, naturally integrated with Alg in seawater. Alginic acid is neutralized by
alkalis such as sodium carbonate or sodium hydroxide to produce Sodium Alg (72,
73). Although Alg can be extracted from the bacteria, such as Pseudomonas and
Azotobacter species, these sources are still unavailable for commercial applications
(74). Most Alg is commercially above 30,000 metric tons synthesized from farmed

brown seaweeds annually (75).

The chemical structure of Alg is composed of B-D-mannuronic acid (M) and a-
L-glucuronic acid (G) residues which are covalently linked by 1,4- glycosidic linkage
in different sequences or blocks (76). The block patterns can be composed of
consecutive G blocks (G residue) which exhibit rigid and folded structural
conformation, consecutive M blocks (M residue) providing flexible and linear
conformation, or an alternating G and M block (GM block) (Fig. 5) (76, 77).
Compositions and block sequences may vary depending on the isolation of different
algae sources (78). Alg has several remarkable polymer properties in vivo: good
biocompatibility, biodegradability, mucoadhesiveness, pH sensitivity, low toxicity,
prolonged circulation time, and gelling properties (79, 80)and can be modified
chemically to alter these properties. Alg has been explored as an ideal biomaterial,

especially in delivering chemotherapeutic agents (79). The ionic crosslinking of the
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carboxylate components of the guluronate moieties on the backbone of Alg with
different divalent cations (e.g., Ba*, Mg?", Ca®*") leads to the formation of
nanoparticles (81). However, the nanocarriers made from Alg are not stable at room
temperature (13). They can easily cause leakage of the active moieties loaded in the
core of the nanoparticles (82). Lertsutthiwong P., et al. (11) reported that these
limitations could be overcome by coating the Alg nanoparticles with cationic CS

biopolymer.

B - D—Mannuronic Acid (M) a - L= Guluronic Acid (G)
COOH COOH
O, 0,
H/H H/H
O,
OH OH, OH OH,
H
H H H H
1
L M L N"I C ) ¢ )
| ! l
M Block MG Block G Block

Figure 5. Chemical structure of alginic acid

2.3.2. Chitosan

Chitosan (CS) is a linear cationic natural polysaccharide, consisting
of B-(1—4) glycosidic linked D-glucosamine and N-acetyl-D-glucosamine
(9, 12), is commercially obtained from deacetylation or degradation of
chitin which is commonly derived from cell walls of fungi, exoskeletons of
insects, and crustacean shells (Fig. 6) (83). Both molecular weight and
degree of deacetylation of CS are essential parameters for its physical
properties such as degradation, crystallinity, hydrophobicity, and cellular

response (84). The human internal enzyme, particularly lysozyme, can
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degrade the CS into monosaccharides and oligosaccharides absorbed in the
body (85). As mentioned above, Chitosan has unique biological and
physicochemical properties: biodegradability, biocompatibility, non-
toxicity, mucoadhesiveness, gelling property, membrane permeability, and
controlled drug release, which can be fabricated into different forms like
beads, films, micro-and nanoparticles. Thus, CS has been utilizedin
numerous pharmaceutical and medicinal fields, including wound healing,
cosmetic production, tissue engineering, drug, vaccine, and gene delivery
system (86-88). The free amino (-NH,) and hydroxyl (-OH) groups in the

CS backbone can be modified to enhance stability and solubility (89).

N-acetyl-D-glucosamine (m) D-glucosamine (n)

CH,OH CH,OH

.....

Figure 6. Chemical structure of chitosan

The encapsulation of the hydrophobic molecules in the core of the nanoparticles
can be done by the interaction of amino groups of polycation CS with the carboxylate
groups of polyanion Alg forming a polyelectrolyte complex (PEC) to obtain hydrogel
by ionotropic pre-gelation method (12, 90, 91). CS-Alg nanoparticles protect the loaded
drug from degradation, sustain the release of the drug, and deliver the drug to the target
cell (91). Many researchers have emphasized the fabrication of CS-Alg nanoparticles

encapsulating the anticancer compounds and targeting various cancers (90, 92).
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2.4. Anticancer potential of turmeric oil

A nutraceutical is a naturally nutrient-rich or medicinally active food or a specific
food component that provides medicinal or health benefits, involving the prevention
and treatment of several diseases. Among the natural products, turmeric (Curcuma
longa L.), a rhizomatous herbaceous perennial plant that belongs to theginger family
(Zingiberaceae), has been used as a food additive, nutraceutical, and medicinal
products. It is distributed through tropical and subtropical of the world, being widely

cultivated in southeast Asiatic countries, mainly in China and India (93).

Turmeric has been widely used as a dye for cloth, cosmetics, and food additives.
Turmeric has been well reported for its therapeutic activities to treat several diseases
in India and the Chinese system of medicine. Traditional uses of Turmeric include for
soothing action in cough and asthma, as a blood purifier, to warm and improve proper
metabolism correcting both excesses and deficiencies, to improve digestion, to improve
intestinal flora, to relieve gas, to cleanse and strengthen the liver and gallbladder, to
normalize menstruation, to eliminate worms, for relief of arthritis and swelling, for
localusage on bruises, cuts, burns, insect bites and itches, as antibacterial and anti-

fungus (94, 95).

The extract from turmeric powder is about 1-6% curcuminoids, 2-7% dietary fiber,
3-7% dietary minerals, 3-7% essential oils, 5-7% fat, 6-8% proteins, 6-13% water,60-
70% carbohydrates. Phytochemically, at least 235 compounds have been isolated or
detected from rhizomes, roots, leaves, and flowers of Curcuma longa L., involving 22
diarylheptanoids (commonly known as curcuminoids) and diaryl pentanoids, 8

phenylpropene, vanillic acid, vanillin, 68 monoterpenes, 109 sesquiterpenes, 5
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diterpenes, 3 triterpenes, 4 sterols, 2 alkaloids, and 14 other compounds (96, 97).

Essential oils and curcuminoids are principle bioactive components possessing
diverse bioactivities in vitro and in vivo biological assays. Curcuminoids
(diarylheptanoids) are mainly accumulated in rhizomes. The essential oils obtained by
steam distillation from the rhizomes and roots primarily include sesquiterpenes such as
ar-turmerone, a-turmerone, curlone, a-sesquiphellandrene, zingiberene. The flowers
and leaves usually contain monoterpenes such as p-cymene, p-cymen-8-ol, terpinolene
(terpinoline), B-phellandrene, myrcene, and cineole. The phytochemical composition
of turmeric oils varies in contents with varieties, geographical locations, cultivation

conditions, and extraction methods (97).

He XG., et al. (98) identified the major constituents of turmeric oil as ar-
turmerone, a-turmerone, and B-turmerone by using GC-MS (Fig. 7). Ar-turmerone
has been used in pharmaceutical applications because of its biological activities. The
chemical structure of ar-turmerone is 2-methyl-6-(4-methylphenyl)-2-hepten-4-one),
which possess antidepressant (99), antiepileptic (100), antidermatophytic (101),
antidiabetic (102), antiplatelet (103), antifungal (104), antibacterial (105), insect
repellent (106), antioxidant, antimutagenic (107), anticarcinogenic (108) and
immunostimulant (109) activity. However, turmeric oil is a volatile liquid, unstable,
and poorly water-soluble, leading to limited progress in its pharmaceutical
applications. There are many potential advantages when encapsulating the anticancer
drugs in nanoparticles and conjugating with targeted ligands on the surface of
nanoparticles, which lead to the targeted delivery and sustained release at the desired

sites (26).
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Figure 7. Main components of turmeric oil

2.5. Conceptual framework

The Box-Behnken design (BBD) of RSM was favorably chosen to establish the
design space for developing the optimized formulation. The conditions for the optimum
nanoformulation of Turmeric oil were developed by assessing the impact and
interaction of the different factors (i.e., FA-CS/Alg mass ratio, turmeric oil
concentration, and poloxamer 407 concentration) to the attributes of the
nanoformulation (particle size, encapsulation efficiency, and loading capacity).
The response surface methodology established the empirical polynomial equations

(Yprea = Xy + bX; + ¢X3 + ....), which would statistically predict the particle size and

loading capacity based on the interplay of the factors (FA-CS/Alg mass ratio, Turmeric
oil concentration, and poloxamer 407 concentration). Several parameters have
characterized the optimized formulation to ensure applicability as a targeted delivery

system.
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CHAPTER 3: MATERIALS AND METHODS

3.1. Chemicals and Instruments

3.1.1. Chemicals

TO was purchased from TCFF Industry Co., Ltd., Thailand. Ar-turmerone was
provided by the Department of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, Ramkhamhaeng University (Bangkok, Thailand). CS
(MW =63 kDa, 91.74% DD) was supplied by Marine Bio-Resources Co., Ltd., (Samut
Sakorn, Thailand). Sodium Alg (MW = 120,000 — 190,000 g/mol) and poloxamer 407
were purchased from Sigma-Chemicals (St. Louis, MO). The ratio of mannuronic acid
to guluronic acid (M/G ratio) of sodium alginate is 1.56. Folic acid and N, N’-
dicyclohexyl carbodiimide (DCC) were purchased from TCI Co., Ltd. (Tokyo, Japan).
N-hydroxysuccinimide was supplied from AK Scientific (California, USA). DMSO,
acetone, and diethyl ether were purchased from Burdick & Jackson Inc (Michigan,
USA). Acetonitrile was purchased from RCI Labscan (Bangkok, Thailand). TEA was
purchased from Merck KGaA (Darmstadt, Germany). Absolute ethanol, glacial acetic
acid, calcium chloride, and other chemicals were purchased from Carlo Erba reagents

(Val de Reuil, France).

3.1.2. Instruments

The following instruments, with their respective models and brands, were
provided by the Pharmaceutical Research Instrument Center of the Faculty of
Pharmaceutical Sciences: Ultra-High Performance Liquid Chromatography (UHPLC)
(Agilent 1290 Infinity 11), Intersil® ODS- 3 (4.6 x150 mm, 5u) column, UV-Vis

spectrophotometer (Agilent Carry 60), Zetasizer (Malvern Nano ZS, Malvern
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Instruments Ltd, UK), ultracentrifuge (Hitachi CP 100NX), incubator shaker
(MaxQ6000 shaker), magnetic stirrer with hotplate (Thermolyne, USA), Vortex mixer
(Scientific Industries, USA), dialysis regenerated cellulose membrane (MW cut-off 8-
14 kDa) (Sigma-Aldrich, USA), analytical balance (Sartorius BA 210S, Germany),
lyophilizer (Martin Christ, Germany), microplate reader (Infinite 200 PRO, Tecan
Switzerland), confocal fluorescence microscope (Zeiss Apotome). Fourier-transform
infrared analysis (PerkinElmer, Spectrum One®, CT, USA) was performed at The
Scientific and Technological Research Equipment Center, Chulalongkorn University.
H-NMR analysis (400 MHz, Bruker Avance DPX-300, CA, USA) was performed at

the Faculty of Pharmaceutical Sciences, Chulalongkorn University.
3.2. Methodology
3.2.1. Synthesis of FA-CS

3.2.1.1. Synthesis of FA NHS-ester

The synthesis of FA ester was based on the procedure described byAlupei L,
et al. (114) with slight modification. FA (100 mg) was dissolved in 3 mL of DMSO.
After that, 63 L of triethylamine as a catalyst was added to the folic acid solution.
Subsequently, DCC and NHS were separately dissolved in DMSO and added a 1:2:2
molar ratio to the carboxyl groups of folic acid. The reaction was performed under a
nitrogen atmosphere and stirred overnight in the dark due to the photosensitivityof folic

acid.

The initial step for the reaction produced a white precipitate by-product of
dicyclohexylurea (DCU). Even though DCU is insoluble in many organic solvents, it

can easily be removed by filtration using the 0.2 um syringe filter. Eventually, the
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obtained transparent yellow solution was added drop by drop into the cold diethyl ether
containing 30 % acetone to initiate the precipitation of the yellow folic acid NHS-ester
(FA NHS-ester) product. The precipitate was collected, washed with acetone, and dried
under a vacuum desiccator. The final product was stored in the refrigerator for further
use.
3.2.1.2. Conjugation of the FA NHS-ester with CS

FA-NHS ester solution in DMSO in a 1:3 molar ratio of FA-NHS: CS was
slowly added into the CS solution dissolved in acetate buffer (pH was adjusted to 4.5
- 4.7 with 1M NaOH) under continuous stirring in the dark at ambient room
temperature. Following 24 h of stirring, the conjugation reaction was stopped by
adjusting the pH to 9.0 with 1.0 M NaOH. The solution was purified using a dialysis
membrane tube with 8-14 kDa molecular cut-off against PBS (pH 7.4) for 3 days and
against deionized waterfor the next 3 days to remove the unreacted reagents thoroughly.
The purified product was lyophilized for 24 h. UV-Vis, 'H-NMR, and FT-IR have

characterized the dried yellow product (110).

3.2.2. Characterization of the FA-CS

The folic acid in FA-CS was quantitatively analyzed using a UV-Vis
spectrophotometer. Firstly, the calibration curve of standard folic acid in 0.1 M NaOH
was prepared with a 2—-18 ug/mL concentration range (Appendix 1). Then, 1 mg of FA-
CS was dissolved in 10 mL of 2% acetic acid and measured spectrophotometrically at
363 nm (47). The degree of substitution (DS) of FA to CS was computed using the

following equations:

_ Mole of Folic acid
" Mole of Chitosan

(1)
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Mg

DS =
(m — C)/MChitosan unit

2)
where ¢ = amount of FA calculated from the calibration curve

m = amount of CS used in this experiment
Mea = molecular weight of FA
Mchitosan unit = Molecular weight of CS unit

The chemical composition of CS, FA, and FA-CS was characterized with *H-
NMR and FT-IR. The characteristics of FA-CS were analyzed using ATR mode by
FT-IR spectrometry in spectral transmittance mode at 4000-400 cm™ with a speed of
4 mm/s and a resolution of 2 cm™. The *H-NMR spectrum of FA-CS was run using
the deuterated DMSO as a solvent (47).

3.2.3. Preparation of TO-FA-CS/Alg NCs

TO-FA-CS/Alg NCs were prepared by emulsifying turmeric oil (oil-in-water
emulsion) in sodium Alg aqueous solution followed by ionotropic solution gelation
with folic acid-grafted CS using the method described by Lertsutthiwong P., et al.
(11) with slight modifications. Briefly, various concentrations (1-2% wi/v) of ethanolic
turmeric oil solution were added drop by drop into the aqueous Alg solution (20 mL,
0.6 mg/mL) containing varying concentrations (0.5-3% w/v) of poloxamer 407 under
continuous stirring (1000 rpm). The o/w emulsion was sonicated for 15 minutes,
followed by the addition of calcium chloride solution (4 mL, 0.67 mg/mL). After that,
FA-CS solution was added dropwise into the mixture at various concentrations,
followed by additional 30 mins stirring (1000 rpm). The turmeric oil-loaded FA-CS/Alg

NC suspension was equilibrated overnight in the dark before characterization.
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3.2.4. Optimization of the NC formulation using BBD

The BBD of RSM was employed to optimize the TO-FA-CS/Alg NCs. In this
study, three factors, FA-CS/Alg mass ratio (X;), concentration of TO (X,), and
concentration of poloxamer 407 (X3), were investigated in various combinations. These
factors and their three levels and the critical attributes of the NCs, namely minimum
particle size (Y1) and maximum values for encapsulation efficiency (EE, Y,) and
loading capacity (LC, Y3), are summarized in Table 8. The main, interaction, and
quadratic effects were expressed in the polynomial equations. Based on the design, 15

experimental runs were required and randomized to exclude any bias.

Table 8. Factors and responses in the BBD

_ Level

Variable Low Medium High
Factors
X1 = FA:CS/Alg mass ratio 0.03:1 0.05:1 0.07:1
Xz = Turmeric oil concentration [%w/v] 1 15 2
X3 = Poloxamer 407 concentration [% w/v] 0.5 1.75 3.0
Responses Constraints
Y1 = Particle size [nm] Minimum
Y, = Encapsulation efficiency [%] Maximum
Y3 = Loading capacity [%] Maximum

3.2.5. Characterization of the TO-FA-CS/Alg NCs

After being equilibrated one night, the nanosuspension was lyophilized and kept

in a dry place. However, nanosuspension was used to analyze the zeta sizer,
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encapsulation efficiency and biological assay. The optimized TO-FA-CS/Alg NCs were
characterized in terms of the hydrodynamic diameter, polydispersity index, size
distribution, zeta potential, and morphology. The dynamic light scattering technique
measured the hydrodynamic size and PDI with an angle detection of 90° and the
controlled temperature at 25 °C using a Zetasizer. The laser doppler electrophoresis
technique determined the zeta potential. Transmission electron microscopy evaluated
the size distribution and morphology of the TO-FA-CS/Alg NCs. The encapsulation
efficiency and loading capacity of TO-loaded NCs wereevaluated using ultrahigh-
performance liquid chromatography (UHPLC) with an indirect method according to
the study of Lertsutthiwong P, et al. (11) with minor modifications. The TO-loaded
NCs were detached from the aqueous suspension by ultracentrifugation at 45,000 rpm
at 4 °C for 1 hour and lyophilized at -85 °C for 24 hours. The mass of dried NCs was
recorded, while the amount of TO in the supernatant was quantified using UHPLC.
Briefly, the sample was diluted with ethanol and filtered by a 0.45 pum syringe filter
before injection into the column at 33 °C. The mobile phase used was a mixture of
water and acetonitrile (25:75) with isocratic elution. The injection volume was 20 pL
with a 0.5 mL/min flow rate. A diode array detector was used to detect the sample at a
wavelength of 254 nm. The chromatographic analysis datarunning time was 30 min
per sample with standard ar-turmerone eluted at a retention time of 12.8 min. The
quantity of turmeric oil in the NCs was computed as the difference between the total
amount of turmeric oil initially added into the formulation (Turmeric oilformulation)
and the amount of turmeric oil present in the supernatant (Turmeric oilsupernatant).
The percentage of encapsulation efficiency (% EE) and loading capacity (% LC) were

evaluated using Eq. 3 and 4, respectively:
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EE = (Toformulation— TOsupernatant)

x 100 3)

TOformulation

_ (Toformulation— TOsupernatant)
B Dry mass of NCs

LC x 100 4)

In-vitro release study of TO from FA-CS/Alg NCs and TO-CS/Alg NCs was
performed using a dialysis membrane diffusion method based on the procedure reported
by Rajkumar V., et al. (111) with slight modifications. The dialysis bag was first
soaked in the medium for 24 h before the start of the experiment (112). Phosphate-
buffered saline (PBS) solution (1 mg/mL potassium dihydrogen phosphate, 2 mg/mL
dipotassium hydrogen phosphate, 8.5 mg/mL sodium chloride in deionized water,
pH 7.4) and acetate-buffered solution (50 mg/mL sodium acetate in 1% acetic acid,
adjust the pH with 4.2 g/L sodium hydroxide to pH 5.5) were prepared to mimic the
blood and tumor microenvironment, respectively. To maintain sink conditions, 40%
(v/v) ethanol was added to the medium. TO-FA-CS/Alg and TO-CS/Alg suspensions
(20 mL) were added into the dialysis bag and sealed with clips on both ends. The
dialysis bag was immersed in the releasing medium (500 mL) and maintained at 37 °C
under continuous gentle agitation. Sampling times were set within 0 to 24 h, wherein 5
mL of medium were withdrawn at specific time points. The withdrawn samples were
replaced with an equal volume of fresh medium to maintain sink condition (113). The
concentration of TO in the medium was quantified using UHPLC and calculated against
the calibration curve. The cumulative percentage of released TO was calculated using
Eqg. (5):

Turmeric oil release

. o —
Cumulative release [%] Turmeric ol formulation 100 (5)

The data were fitted into various release kinetic models, i.e., zero-order, first-
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order, Korsmeyer-Peppas and Hixson-Crowell, using the DDsolver software, Microsoft
Excel plugin program (Version 2010, Microsoft Corporation, Redmond, WA). The
best-fit model was chosen based on the highest R? adjusted and MSC values and the

lowest AIC (114).

3.2.6. Cell culture

Human breast cancer cells (MCF-7 and MDA-MB-231) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum and 100 units/mL penicillin/streptomycin in a humidified atmosphere of 5%

CO, at 37 °C.

3.2.7. Determination of cell surface folate receptor expression

To determine the expression of folate receptor on the cell surface, each cell line
was seeded at a density of 10 x10* cells per 500 pL into each well of 24-well culture
plates. Cells were incubated 24 h in a humidified atmosphere of 5% CO; at 37°C. Cells
were washed with PBS and detached from the plate by adding 2.9 mM EDTA in PBS
and incubated at room temperature for 8 min. EDTA solution was removed by
centrifugation of cell suspension at 1,800 rpm for 5 min at 4°C. Cells were washed twice
with PBS and blocked with 0.5% BSA in PBS. Cells were stained with R-
phycoerythrin-conjugated anti-human Folate Receptors by incubating at 4°C in the dark
for 30 min. Mouse 1gG control antibody was used as an isotype control. Cells were
washed twice with PBS. Stained cells were acquired on a BD Accuri C6 (BD
Biosciences, USA) flow cytometer, and data were analyzed using FlowJo™ v10.8

Software (BD Life Sciences).



51

3.2.8. Cytotoxicity assay

To determine the cytotoxicity against MCF-7 and MDA-MB-231 cell lines, the
cells were seeded and incubated for 24 h at a density of 3 x10* cells per 100 pL into
each well of 96-well culture plates. After that, the cells were treated with 5 serial
concentrations of pure TO, TO-CS/Alg NC, and TO-FA-CS/Alg NC in a serum-free
media and incubatedat 37 °C for 24 h. The controls included NCs without TO. After
24-h treatment, the culture media was removed. Then, 100 pL of an MTT reagent (0.5
mg/mL in serum-free media) was added to each well and further incubated at 37°C.
After 4 h, the MTT media was removed, and the insoluble formazan crystals were
dissolved by adding dimethyl sulfoxide (DMSO). After completely dissolved, the
absorbance was measured at 570 nm using a microplate reader (Anthros, Durham, NC).

The percentage of cell viability was calculated using Eq. (6):
Cell viability [%] = S x 100 (6)
OD control

3.2.9. Statistical analysis

Three independent replicates were utilized in all experiments and the collected
data were expressed as mean * standard deviation. The polynomial equations were
generated using multiple linear regression followed by model-fitting with one-way
ANOVA using the Design-Expert® software 13.0.5.0 (Stat-Ease, Inc., Minneapolis,
MN, USA). The cell viability results were analyzed using two-way ANOVA with
Tukey HSD as the post hoc test. The ICx, values for the unencapsulated TO and TO-
FA-CS/Alg NCs were determined through a non-linear regression curve fit analysis.
All statistical parameters of the cellular assays were generated using GraphPad® Prism

software 9.3.0 (San Diego, CA, USA). P-values <0.05 were considered statistically

significant.
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CHAPTER 4: RESULTS AND DISCUSSION

4.1. Synthesis and characterization of FA-CS

The conjugation of FA and CS involved the DCC/NHS reaction (Fig. 9). Even
though FA has two carboxyl groups (o and v), y-COOH of FA is more prone to this
reaction due to its stronger electrophilic and less steric properties (120). The carboxylic
group was activated with DCC and NHS to form the folic acid NHS ester and its by-
product DCU. The final product, FA-CS conjugate, was obtained by forming an amide
bond between the activated carbon of FA-NHS ester and the primary amino group of
CS. The yield of the FA-CS was 12%.

The degree of grafting of FA into amino groups in final hydrophobic modified CS
was determined by UV-Vis spectrophotometer at 363 nm. Previous studies suggested
the use of FA powder diluted in alkaline media to a series of gradient FA standard
solutions to calculate the amount of FA in FA-CS (47, 115). The FA-CS samples were
dissolved in acidic pH considering the solubility of CS in an acidic environment (47,
115). This can be explained by the incorporation of targeting ligand with CS, hence the
change in the physicochemical properties of the polymer. It can be noted that the
attempt of dissolving FA-CS in an acidic medium can cause the hydrolysis of FA.
However, several studies have shown no hydrolysis that had occurred in the pH used

that may interfere with the analysis (47, 115).
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Figure 9. Scheme for the synthesis of (A) FA NHS-ester using DCC and NHS in
DMSO, 24 h, room temperature; (B) FA-CS using the FA-NHS ester and chitosan
solution, 24 h, room temperature

The conjugation between CS and FA to yield FA-CS was confirmed by FT-IR
(Fig. 10). The spectra in FA exhibited the bond vibration of C=0 and the C=C
(aromatic) stretching at 1688 cm™ and 1603 cm™, respectively. The band at 1482 cm™
represented the stretching C=C and at 838 cm™ is a characteristic band of the
para-substituted benzene ring (47, 116). Moreover, CS spectrum ascribed the O-H
and N-H stretching Vibration of -OH and -NH, functional group at 3356 cm™ while
at 1639 cm™ and 1587 cmrepresented to C=0 stretching and N-H bending mode
amide (N-acetylated CS) and 1° amine, C-O stretching at 1078 cm™ and peak at
659 cm™ for the reflecting the pyranoside ring stretching vibration (47, 117). After
FA was conjugated with CS, priority bands related to the functional groups of FA
and CS suggested the successful conjugation between folic acid and chitosan.
Comparing the CS spectrum, the bands at 1587 cm™ and 1639 cm™ shift to 1601
cm* and 1650 cm- ¢, which was assigned to aromatic C=C from the conjugated FA and

-C=0 of the amide bond and N-H bending of the 2° amine in each in FA-CS spectra.
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The 1650 cm™ peak had a higher transmission than the 1601 cm™ peak in the FA-CS.
These results correspond to a less amide formation, which was consistent with the
percentage grafting of FA-CS (12%). The FT-IR results indicate that folic acid's —
COOH group was successfully conjugated with the —NH, group of chitosan.

Furthermore, a band at 3292 cm™ became broader due to an enhanced hydrogen

bonding between FA and CS (116, 117).

Transmittance (%)

1061
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Wavenumber (cm” l)
Figure 10. FT-IR spectra of FA, CS, and FA-CS

The conjugation of FA and CS was structurally confirmed using *H-NMR (Fig.

11 and Table 9). The signals at 2.50 and 3.30 ppm belong to the DMSO-d6 and water,
respectively. Based on the FA spectrum, the characteristic peak at 12.5 and 11.6 ppm

was attributed to the —COOH proton in the carboxylic group of FA.

However, in the spectrum of FA-CS spectrum, the signal between 3.2-3.9 ppm
belongs to the carbon protons of the glucosamine ring of the chitosan. Some of the
signals were overlaid by the influence of the solvents and the interactions between the

two reactants. Moreover, the FA was successfully conjugated with CS by inspecting
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the signal of the FA spectrum at 11.5 ppm shifted to 10.5 ppm in the FA-CS spectrum.

The peak at 7.25 ppm (-NH of amide bond) was newly formed.

Table 9. Assignment of *H-NMR spectral data of FA-CS conjugate in d6-DMSO

Position Chemical shift (ppm)
-COOH 10.5
-NH- (c) 8.6
-NH: (e) 6.6
Glucosamine ring of the chitosan 3.2-3.9
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Figure 11.*H-NMR spectra of FA-CS, CS, and FA in d6-DMSO

4.2. Assay of ar-turmerone content
The main constituents of turmeric oil are bisabolene sesquiterpenes consisting of
aromatic turmerone, curlone, a-turmerone, B-turmerone and bisacumol. Mehrotra N.,
et al. (118) revealed that ar-turmerone (AT) and o/ B-turmerone (TU) were analyzed

in LC-UV at 240 nm wavelength. The results showed that AT and TU eluted at 9 and
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11.5 min, respectively. The calibration curve of ar-turmerone was performed by
analyzing the standard ar-turmerone serial diluted in absolute ethanol concentration in
the range of (1-25 pg/mL) at the wavelength of 254 nm with linear equation
(y=86.082x+10.617, R?=0.9999) (See Appendix 2). Furthermore, commercial
turmeric oil was quantified by using this equation. Commercial turmeric oil contains
12.32 % of ar-turmerone. TheEE of the nanoformulation was also computed based

on that equation.

4.3. Model development for particle size, EE, and LC

The 3 factors (FA-CS/Alg mass ratio, TO concentration, and poloxamer
concentration) were chosen because they primarily affect particle size, EE, and LC
based on the literature and preliminary experiments.

Various ratios of the FA-CS and Alg were investigated during the preliminary
experiments to determine the maximum working formulation ratio. It was found that
the mass ratio 0.07:1 resulted in a dispersion that appeared translucent and no
precipitation after 24 h of standing, indicating its stability. Increasing the amount of
FA-CS resulted in a gel that was visible in the suspension. Previously, it was
demonstrated that increasing the quantities of CS or Alg increased the particle size
and the polydispersity index of the NPs and decreased the stability due to the increased
viscosity of the dispersion and the presence of an excess amount of polymer by
forming clusters of particles (119). Loquercio A., et al. (119) has shown that
increasing the polymer ratio could render a more permeable and porous coating,
resulting in a reduced entrapment of the hydrophobic compound and subsequent
lowering of EE. Decorating the polymeric NP’s surface with folate and encapsulating

a hydrophobic compound has also shown a higher EE than the plain polymeric NP
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(120). Based on the preliminary experiments, increasing the FA-CS/Alg mass ratio
resulted in an increase in the yield of the freeze-dried NCs and a consequent decrease
in the LC.

It was shown in the literature that increasing the concentration of
cinnamaldehyde, a hydrophobic compound, into a polymeric material such as Alg
could gradually increase the particle size but an excessive amount of which resulted
in a saturation of the wall material, thus causing a decline in the EE and LC. Finding
the optimum condition for the TO concentration was therefore important. Based on
the preliminary experiments, TO concentration greater than 2 % resulted in a turbid
dispersion.

The concentration of poloxamer was also considered in the design of the
experiment. The preliminary investigations have shown that the maximum working
concentration of poloxamer was 3%. Based on similar studies, an increase in the
surfactant concentration led to an increase in the entrapment of the hydrophobic
compound, thus increasing the core volume and the particle size. However, a further
increase in its concentration resulted in viscous dispersion and partitioning effects
causing a decrease in EE and LC (114).

Particle size was a critical response in determining the applicability of the
optimized NCs for IV administration. Nanoformulations with sizes below 200 nm
would have an efficient passive tumor targeting through the enhanced permeation and
retention effect and serve as the first of a series of steps in the cellular uptake of the
NPs (121). EE and LC would determine the level of TO in the nanoformulation. The
BBD would determine the optimum TO concentration to ensure a successful

biological activity.
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The advantage of using BBD-RSM is its ability to perform multifactorial analysis

on each response with fewer experimental conditions (122). The experimental ranges

of the factors were determined through

literature

review and preliminary

experiments. The observed responses for the optimization of the TO-FA-CS/Alg NCs

are shown in Table 10. Based on the observed responses, the size of the TO-FA-

CS/Alg NCs ranged from 175 to 365 nm, EE between 16.9 to 38.3 %, and an LC

ranging from 0.81 to 5.53 %.

Table 10. BBD to optimize the TO-FA-CS/Alg NC formulation.

Factors Responses
Run X, X, X; Y, Y, Y,

1 0.03 1.0 1.75 17521 33.1+£1.2 0.88+0.01
2 0.05 1.5 1.75 248 + 16 28.8+1.4 1.4+0.32

3 0.05 1.0 3.00 250 + 14 28.0+0.7 0.69+0.12
4 0.05 2.0 3.00 310+18 169+1.4 1.11+0.51
5 0.05 1.5 1.75 244 + 19 28.2+1.38 1.53+0.39
6 0.05 2.0 0.50 365 + 19 38.3%7.0 5.53+0.20
7 0.07 1.0 1.75 188+ 8 28.6+1.0 1.04 +£0.05
8 0.03 2.0 e 2KP hhe 29.2+3.0 2.96 +0.36
9 0.05 1.0 0.50 230+11 33.2+22 2.18+0.08
10 0.03 1.5 3.00 297 +9 23.3+0.8 0.81+0.14
11 0.03 1.5 0.50 310+12 37.1+4.2 4.17 +0.50
12 0.07 2.0 1.75 279 £ 16 25.6+1.7 2.06 +0.31
13 0.05 1.5 1.75 258 +19 280x1.4 147 +£0.11
14 0.07 1.5 0.50 345+38 33.3+£34 3.36 £0.37
15 0.07 1.5 3.00 2789 23.0+1.1 0.95+0.18

Xi: FA-CS/Alg mass ratio; X,: TO (% w/v); Xs: poloxamer 407 (% wi/v); Y 4: particle size
(nm); Y,: EE (%); Y;: LC (%).
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The polynomial equations were generated using multiple linear regression to
determine the relationship among the factors and the responses. Various statistical
parameters were utilized to determine the equations that fit the data well, such as
the overall model's significance, lack-of-fit, the significance of each regression
coefficient; adjusted R? and adequate precision based on the ANOVA. Based on
the p-value ofeach regression coefficient, the model reduction was performed by
retaining only the significant terms, thus refining and increasing the precision of the
models. The results of the regression analyses are presented in Table 11. The overall
models show that the coefficients were statistically significant jointly (p < 0.0001),
indicating that the factors in each model improved its fit. The lack-of-fit test for each
model suggests an insignificant lack-of-fit of the regression model (p > 0.05), showing
that a linear relationship exists between the factor and response. There was also a
reasonable agreement between the adjusted R? and predicted R?, having a difference
of less than 2. The adequate precision of the models, measuring the signal-to-noise
ratio, were all greater than 4, indicating that the design space can be navigated with

precision.

Table 11. Summary of the regression analyses of the responses
p-value, p-value,

Response Suggested overall lack-of- Adj R? Pred R? Ad_eg
model ) precision
model fit
P‘Zritz'g'e Quadratic <0.0001 0.5347  0.9787 09220 34.6723
EE 2FI <0.0001 0.2620 0.9820 0.9635 44.0165
LC Quadratic  <0.0001  0.1039 0.9859 0.9641  38.5856

The well-fitted particle size and LC was EE, and LC models were quadratic, 2-

factor interaction, and linear models, respectively (Equations 7-9). The 3D surface
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plots for Y, to Y3 show the interactive effects of two factors while the other factor can

be navigated within the design space (Fig. 12).

Y1=249.79 + 3.60X1 + 48.68X2— 14.38X3 — 13.65X1X3— 18.62X2X3— 19.32X2? + 57.99X3? (7)

Y2=28.96 — 1.56X; — 1.62X, — 6.32X5 + 0.9025X;X5 — 4.05X,X5 ®)

Y3=1.62-0.1762X; + 0.8587X, — 1.46X; — 0.2650X X, + 0.2375X;X; — 0.7325X,X; + 0.7300X32  (9)
The positive regression coefficients in the RSM models indicate a direct
relationship between a factor and a response. In contrast, negative values indicate an

inverse relationship between a factor and the observed response.

Equation (7) shows that as X; and X, increased, the size of the TO-FA-CS/Alg
NCs also increased, with X, having the most significant effect, as shown in Fig 12 (b)
and (c). These observed effects were due to an increase in the viscosity of the dispersion
and the additional surface coating layers of the grafted chitosan as its concentration
was increased in the dispersion (123). Another study showed that the grafting of folate
with chitosan resulted in slightly larger nanocapsules than the chitosan-coated
nanoparticles alone (124). Further increasing the concentration of X, would remarkably
increase the size of the nanoparticles. The size of the TO-FA-CS/Alg NCs increases
by a factor of 48.7 nm with every 1% increase in X,. This effect could be due to the
amphiphilic nature of poloxamer 407 and the consequent increase in the size of the
micelle core of the NCs with additional quantities of TO being added into the
formulation. Fig 12 (a) and (b) show that an increase of X3 from a low to intermediate
concentration decreased the size of the nanoparticles. A lower concentration of the
surfactant was not sufficientto encapsulate the hydrophobic TO. Increasing X3 could

have caused the formation of a stronger barrier of the micelle core by achieving the
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minimum size near the minimum level of X3 but within the experimental range.
Further, an increase of X3 resulted in a remarkable increase in the size, probably
due to the increased viscosity and near saturation of the aqueous phase with the
micelle cores, consequently resulting in aggregation (125). The excess amount of
poloxamer 407 in the dispersion could have interacted with the outer grafted chitosan

layer resulting in a bigger nanocapsule size.

The EE of TO-FA-CS/Alg NCs was most significantly affected by X; and almost
similar X; and X, as shown in Equation (5) and Fig 12 (d-f). The reduced capacity of
the NCs to encapsulate TO was mainly due to the effect of X; (poloxamer
concentration). In the formulation of the NCs, TO was added into a mixture of
poloxamer 407 and alginate matrix. The miscibility of TO with the aqueous phases
increased with the addition of poloxamer 407. Further increasing Xs resulted in a
saturation of the aqueous dispersion with micelles until the critical micelle
concentration was achieved (126). At this point, increasing X3 would have a negligible
impact on the encapsulation of TO. In another study, further increasing the
concentration of Pluronic F-127 resulted in an insignificant increase in EE (124).
Due to the dispersion viscosity, these effects can be attributed to the hindered
encapsulation of TO within the hydrophobic micelle core. The main effects of X, and
X, were then considered second only to the impact of X5, where the grafted chitosan
served to decrease the permeability and consequently the leakage of TO from the core

of the NCs by electrostatically interacting with the alginate matrix (11) .

The LC of TO-FA-CS/Alg NCs was directly affected by X, indicating that LC

increased with X, (Fig 12 h and i). The negative regression coefficients of X; and X3
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show their inverse effects on LC, with the most significant impact on LC demonstrated
by X5 (Fig 12 g and h). The increasing levels of X; and X; resulted in a lower LC
because of the additional mass of the nanoparticles conferred upon by the grafted
polymer and surfactant, respectively. The latter figures also show the curvilinear effects
of X3, with the maximum LC being achieved within minimum levels of X3 based on
the design space. The LC was observed to increase with an increase in X, due to the

higher capacity of the surfactant-polymer system to accommodate additional amounts

of TO but only until a certain point, as shown in Fig 12 (g).
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Figure 12. Response surface plots showing the effects of FA-CS/Alg mass ratio (X1),
turmeric oil concentration (Xz), and poloxamer 407 concentration (X3) on (a-c)
particle size (Y1), (d-f) EE (Y2), and (g-i) LC (Y3).

4.4. Validation of the response surface model
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To validate the generated RSM models, the TO-FA-CS/Alg NCs were formulated
based on the optimum conditions of the FA-CS/Alg mass ratio (0.03), TO
concentration (1.0 %), and poloxamer 407 concentration (0.65 %) at desirability (D)
of 0.961, which was closer to 1.0. Of particular interest is the optimum concentration
for poloxamer, which was found to be 0.65%. This concentration was at the lower end
of the 0.5 to 3.0 % working range in the optimization experiments. Using this
concentration, the particle size was between 175 and 365 nm, which would be
acceptable for IV administration. The EE and LC were between 16.9-38.3% and 0.81-
5.53%, respectively. Considering the biological applications of the optimized
nanocapsules, an increase in the concentration of Poloxamer would increase its toxicity
in normal cells both in vitro and in vivo (19). Therefore, a minimum poloxamer
concentration (0.65 %) provided acceptable outcomes for this study. TO-CS/Alg NCs
were fabricated under the same conditions CS/Alg mass ratio (0.03), TO concentration
(1.0 %), and poloxamer 407 concentration (0.65 %) by ionotropic gelation method to

determine the biological assay.

The values of the observed responses were compared with the predicted responses
for particle size, EE, and LC. A good agreement between the observed and predicted
responses was found with all % error values below 10%, indicating the high predictive

ability of the developed RSM models (Table 12).
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Table 12. Validation of the prediction capability of the RSM models

Optimized condition Response Predicted  Observed %Error
response response

X1: 0.03 FA-CS/Alg mass ratio Y1 (nm) 207 189+4 8.6

X2:1.0% TO Y2 (%) 34.9 35.9+135 2.7

X3: 0.65% Poloxamer 407 Y3 (%) 2.08 1.82 +0.39 0.12

The observed size of the optimized TO-FA-CS/Alg NCs was about 189 nm. The
combined effects of the particle size and folate grafting of the outer chitosan chain
facilitate a more accessible diffusion of the NCs into the tumor cells and significantly
increase cellular internalization. This approximate size could also mean that the
formulation can be administered intravascularly without concerns of embolization
(127). The observed results for EE and LC were expected as TO is a hydrophobic
compound, and this study utilized hydrophilic polymers. Some studies using a
polyelectrolyte complex of chitosan and alginate showed similar results for the
encapsulation of hydrophobic compounds (128, 129). The results showed an average
size of 189+4 nm and PDI of 0.192+0.1, which is close to O, indicating the highly
homogenous distribution among the particles (Fig. 13A) (130). Zeta potential was also
determined to predict the stability of NCs in the aqueous system based on its surface
charge. The NCs render a negative zeta potential value of about -12.61+ 2.3 (Fig. 13B).
The zeta potential was significantly decreased after the modification of CS with FA.
This might be a partial substitution of -NH> of CS with FA (47). The morphology of TO-
FA-CS/Alg NCs was visualized by TEM after diluting the nanosuspension 50x in
ultrapure water. The NCs were spherical and had smooth surfaces with a particle size of

approximately 200 nm (Fig.13C-D). It was evident in the image that a thin layer of FA-
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CS was coated onto TO-Alg NCs as indicated by the arrow shown in Fig. 13D.

The physical stability of the TO-CS/Alg NCs was previously demonstrated at 4 °C
and 25 °C for 120 days in suspension form (11). However, for the current study, the
physical and chemical stabilities of the TO-FA-CS/Alg NCs at 4 °C and 25 °C for 3
months are currently being investigated. The NCs are evaluated in terms of particle

size, zeta potential, and encapsulation efficiency.
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Figure 13. Physical characteristics of TO-CS/Alg NCs: (A) Size distribution by
intensity, (B) Zeta potential distribution, (C and D) TEM images at 50,000 and
100,000x magnification, respectively.
4.5. In vitro release Kinetics study

A sustained-release profile, minimal release in the blood circulation, and maximal
release in the tumor tissues are the necessary attributes of this nanoformulation. The

release of TO from the TO-FA-CS/Alg NCs and TO-CS/Alg NCs in both pH 7.4 and

pH 5.5 were studied. As shown in Fig. 14, the unencapsulated TO was spontaneously
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released at the first 2 h, and almost 60% of the initially added TO were released after
7 h in both media. Meanwhile, the release of TO from both NCs was slower than the
unencapsulated TO in both media. After 12 h, the release of TO from both NCs was
estimated to be at 50% and exhibited a sustained release. Furthermore, TO release in
low pH media was higher than in neutral or alkaline media. This phenomenon can be
explained by the increased solubilization of CS in acidic media, causing the leakage of
the encapsulated TO through the porous CS/Alg NCs into the releasing media (123).
However, the TO from TO-FA-CS/Alg NCs was a bit more released than from TO-
CS/Alg NCs after 3 hours in alkaline media. This was due to the different chemical
structures on the backbone of chitosan and the solubility in the different media in terms
of the effect of diffusion rate via the inner structure of the system. In contrast, TO from
the NCs was slowly released in alkaline media because of CS shrinkage, which
prevented the release of encapsulated TO from CS/Alg NCs (123). These results
demonstrate that FA-CS/Alg NCs can serve as a sustained and controlled release

carrier for oral and intravenous administration of TO (131).

It can also be hypothesized that the FA-CS/Alg could be a potential carrier of TO
for oral administration in future studies. For instance, FA-grafted CS has successfully
loaded insulin for its oral administration and treatment of diabetes mellitus (132). In
this study, the release profiles have shown that the FA-grafted CS released insulin in a
sustained manner in simulated gastric fluid (SGF, pH 1.2), simulated intestinal fluid
(SIF, pH 6.8) and PBS (pH 7.4). The uptake studies in Caco-2 cell lines showed that
the FA-grafted CS demonstrated a higher internalization of insulin than the plain CS-

coated NP.
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The DDSolver was used to evaluate the release profile of TO from the
nanoparticles and determine the model that best describes this release profile. In two
media, the in vitro release data of TO from the TO-CTS/Alg NCs and TO-FA-CS/Alg
NCs formulations were fitted to Korsmeyer-Peppas. This model showed the highest
coefficient of determination (R?), lowest AIC, and maximal MSC values. Additionally,
the Korsmeyer-Peppas model showed that the release exponent (n) of TO from the
TO-FA-CS/Alg NCs in the two media was in the range of 0.345-0.387 (Table 13)
and that from the TO-CS/Alg NCs in the two media was in the rangeof 0.356-0.455
(Table 14). These data indicate that the drug release followed the Fickian diffusion-
controlled release pattern (n < 0.5), which could be inferred as the controlling factor for
the diffusion of TO through the pore of FA-CS/Alg NCs based on the TO concentration
gradient, that can be used for a controlled and sustained drug release dosage form.
Accordingly, these results can be used to further design and develop TO-FA-CS/Alg

NCs for the required administration route (133).
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Figure 14. Percent cumulative release of TO from the unencapsulated TO, TO-FA-
CS/Alg NCs, and TO-CS/Alg NCs in (A) pH 7.4 and (B) pH 5.5.
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Model Media Parameter R? adjusted AlIC MSC
pH 5.5 ko =2.976 -0.7961 90.1318  -0.9216
Zero order
(F = ko.t) pH 7.4 ko =3.633 -0.3075 93.3060  -0.4488
pH 5.5 k, =0.053 0.0774 82.8555  -0.2601
First order
(F = kp.t") pH 7.4 k; =0.075 0.5321 81.9675  0.5820
pH 5.5 ky=12.116 0.6697 71.6241  0.7609
Higuchi
(F=kn . t09) pH 7.4 ky = 14.603 0.7513 75.0397 1.2118
pH 5.5 kxp = 17.166,  0.7879 67.3280 1.1515
aKorsmeyer- = 0345
Peppas pH 7.4 keo = 18.819,  0.7863 742195  1.2863
(F=ku.t" /A
n =0.387
pH 5.5 kye =0.015 -0.1687 85.4417  -0.4952
Hixson-Crowell
(F=100-[1-(1—
KHC - t)%]) pH 7.4 Kyc = 0.021 0.34170 85.7354  0.239%4

aBest-fit release kinetics model for TO-FA-CS/Alg NCs. F is the fraction (%) of drug
released in time, t; K, is the zero-order release constant; k; is the first-order release constant;

Kkp is the release constant incorporating structural and geometric characteristics of the drug-
dosage form; n is the diffusional exponent indicating the drug-release mechanism; Ky is the

Hixon-Crowell release constant.
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Table 14. Release kinetics of TO from TO-CS/Alg NCs

Model Media Parameter R? adjusted AlC MSC

pH5.5 ko, =3.705 -0.5653 92.8533 -0.6268

Zero order

(F = ko.t) pH 7.4 ko =2.813 0.1404 85.73.10 -0.3866
pH5.5 k, =0.078 0.4225 81.9190 0.3672

First order

(F = kip.t") pH 7.4 k,=0.0654  0.6207 76.7129  0.4332
pH5.5 kqp =20.650, 0.8352 68.9600  1.5453

aKorsmeyer- n = 0356

Plfp_pis " pH 7.4 Kep = 11.442, 0.8390 68.2227  1.2050

(F=kn.1) n = 0.455
pH5.5 K,c =0.018 0.1962 85.5535  0.0368

Hixson-Crowell

(F=100-[1-(1—

KHC - t)3]) pH 7.4 kuc =0.013  0.4935 79.9011  0.1433

aBest-fit release kinetics model for TO-FA-CS/Alg NCs. F is the fraction (%) of drug
released in time, t; Kk, is the zero-order release constant; k; is the first-order release constant;
kkp is the release constant incorporating structural and geometric characteristics of the drug-
dosage form; n is the diffusional exponent indicating the drug-release mechanism; ky,c is the
Hixon-Crowell release constant.
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4.6. Folate receptor expression level

MBA-MD-231 and MCF-7 are breast cancer cell lines. MBA-MB-231 cell is a
kind of TNBC cell that lacks either the expression of estrogen/progesterone or HER 2
receptors. MCF-7 is derived from the epithelium layer of breast cancer cells. Both cell
lines express folate receptors on their surfaces. The folate receptor expression levels of

MDA-MB-231 was 1.6-fold than that of MCF-7 (Fig. 15).
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Figure 15. Folate expression levels in MDA-MB-231 and MCF-7 cell lines
4.7. Cytotoxicity assay

The toxicities of the unencapsulated TO (positive control), CS/Alg NC and FA-
CS/Alg NC (negative controls), TO-CS/Alg NC, and TO-FA-CS/Alg NC (turmeric oil-
loaded nanocapsules) were evaluated with TO concentrations ranging from 20 to 100
pg/mL for 24 h using the MTT assay against MDA-MB-231 and MCF-7 breast cancer

cells (Fig. 16).

Using Tukey HSD to compare the treatments, there was a significant difference in
the viability of MDA-MB-231 between the control and both TO-CS/Alg NC and TO-
FA-CS/Alg NC starting at 80 pug/mL. However, the significant difference in the
viability of MCF-7 between the control and both TO-CS/Alg NC and TO-FA-CS/Alg

NC occurred at 80 pg/mL and 40 pg/mL, respectively. The viabilities of MDA-MB-



72

231 and MCF-7 with the treatments for each concentration were also compared. TO-
CS/Alg NCs and TO-FA-CS/Alg NCs were more potent than the unencapsulated TO
from 80 to 100 pg/mL against both breast cancer cell lines. TO-FA-CS/Alg NC was
more toxic than TO-CS/Alg NC toward MDA-MB-231 at 80 pg/mL. However, TO-
FA-CS/Alg NC was more toxic than TO-CS/Alg NC toward MCF-7 from 40 to 80
pg/mL. CS/Alg NC and FA-CS/Alg NC (negative control) had a dose-dependent
cytotoxic effect. This effect would be due to the poloxamer concentration (135). Free
TO in nanosuspension can kill the cells. Even though, in this study, TO-FA-CS/Alg NC
decreased the viability of breast cancer cells due to the internalization via the folate

receptors expressing on the cell surface.

The 1Cs values of the unencapsulated TO, TO-CS/Alg NCs, and TO-FA- CS/Alg
NCs against MDA-MB-231 and MCF-7 are presented in Table 15. The results show
that the 1Csq values of TO-CS/Alg NCs and TO-FA-CS/Alg against both cell lines
differed significantly from the unencapsulated TO. Further, the 1Cs, values of TO-FA-

CS/Alg NC on both cell lines were significantly different from TO-CS/Alg NC.
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Figure 16. The viability of (A) MDA-MB-213 and (B) MCF-7 treated with TO
(positive control), CS/Alg NC and FA-CS/Alg NC (negative controls), and TO-CS/Alg
NC and TO-FA- CS/Alg NC (turmeric oil-loaded nanocapsules) containing different
TO concentrations.

The (*) represents pairwise comparisons that show statistically significant
differences among the treatments within each concentration of TO (p < 0.05).
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Table 15. Mean ICso values of the unencapsulated TO, TO-CS/Alg NCs, and TO-FA-
CS/Alg NCs against MDA-MB-231 and MCF-7 cell lines

1Cs0 (g/mL)
Treatment
MDA-MB-231 MCF-7
Unencapsulated TO 122.8+2.8 139.7+4.0
TO-CS/Alg NC 95.1 +6.0* 85.2+1.1*
TO-FA-CS/Alg NC 85.3 + 2.8*" 71.1+1.1*

*p<0.0001 (compared to unencapsulated TO), *p=0.0125 (compared to TO-CS/Alg
NC), #p=0.0009 (compared to TO-CS/Alg NC)

Overall, TO-FA-CS/Alg NC exhibited a significantly higher toxicity level than
TO-CS/Alg NC and unencapsulated TO against both breast cancer cells, signifying that
FA-CS/Alg NC can enhance the toxicity effects of TO against both invasive MDA-
MB-231 and MCF-7 breast cancer cells. The higher cytotoxicity of TO-FA-CS/Alg
NCs can be attributed to the interaction of the folic acid-grafted chitosan with the folate
receptors that are overexpressed on the membrane of MDA-MB-231 and MCF-7 (56,

92).
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CHAPTER 5: CONCLUSION

The conjugation of FA with CS involved an amide reaction using NHS/DCC.
y-carboxyl group of folic acid was activated by DCC/NHS to form the FA NHS-ester
and by-product DCU which can easily remove by filtration. The activated FA NHS-
ester was grafted with a primary amino group of CS to form the amide bond. *H-NMR
and FT-IR confirmed the synthesized FA-CS with a degree of substitution of 12% by
UV-Vis. TO-FA-CS/Alg NCs were prepared via ionotropic gelation by the electrostatic
interaction between the -COOH groups of alginates and -NH2 of chitosan. The
fabrication of TO-FA-CS/Alg NCs was successfully optimized using the BBD
rendering good particle size (189 nm) with modest aggregation and high EE (35.9%)
and LC (1.82%). Cell viability assay revealed that the TO-FA-CS/Alg NC was more
toxic than TO-CS/Alg NC and unencapsulated TO against folate-receptor positive
MDA-MB-231 and MCF-7 breast cancer cell lines. In prospect, the TO-FA-CS/Alg

NCs can be further evaluated in a preclinical study for breast cancer therapy.



Appendix 1. Calibration curve of FA by measuring the absorbance at 363 nm
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Appendix 2. (A) Calibration curve of ar-turmerone, UHPLC condition of
(B) ar- turmerone and (C) turmeric oil
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Appendix 6. *H-NMR spectrum of FA
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Appendix 7. *H-NMR spectrum of CS
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Appendix 8. *H-NMR spectrum of FA-CS
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