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This thesis presents the efficient topology optimization methods constructed within the state-of-

the-art polygon scaled boundary finite element (SBFE) framework. The SBFE approach enables the discrete 
model construction of structures comprising of arbitrary curve geometry lying in 2D and/or 3D spaces. More 
explicitly, incorporated with quadtree (in 2D) and octree (3D) mesh refinements the automatic adaptive mesh 
scheme run within the polygon SBFE framework provides the cost-effective model generation allowing 
hanging nodes. These distinctive features present the developed SBFE approach well suiting as an 
underlying modeling framework for the topology design optimization of solids. The bi-directional 
evolutionary structural optimization (BESO) algorithm is integrated with the digital image-based processes, 
where a novel convolution-filtered technique refines the intensity between solid and void areas. This leads to 
the fast convergence of accurate optimal layout (distribution of materials) of the design structures. The 
applications of the combined BESO and SBFE method are illustrated though the optimal topology designs of 
structures under not only statically (time-independent) but also dynamically (time-dependent) applied load 
regimes. The latter applies a (single-step) high-order time integration technique that accurately approximates 
the dynamic responses of design structures. What is more is its nontrivial extension to the optimal topology 
design of structures under limited natural frequencies. Finally, the use of material interpolation techniques 
built on an unified BESO and SBFE framework allows the extension of the above applications to the 
challenging design problems with multi-phase material conditions. 
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CHAPTER 1 INTRODUCTION 

1. Background and motivation 

A structure is defined in structural engineering as a collection of parts or materials designed to 
support a series of motions, forces, or energy. Furthermore, structural design is the process of 
selecting materials and parts, as well as their sizes and configurations, to provide adequate 
stability, strength, and rigidity for the structure. A good design achieves the numerous 
performance goals imposed by all stakeholders while conserving resources. It is necessary in 
structural design to investigate the most reliable and admissible solution to an engineering 
challenge. This is due to both commercial considerations and a government and social push for 
energy-efficient and low-carbon architecture. Due to limited material supplies, engineers are 
forced to design lightweight, low-cost, high-performance buildings. 

 
Figure 1.1 Passion Facade of Sagrada Familia church ((Burry, Felicetti, Tang, Burry, & Xie, 

2005)): (a) Evolution of passion facade of Sagrada Familia church and (b) Real construction of 

the building. 

Prior research into structural optimization dates back more than a century to Michell's (1904) 
theoretical studies in Melbourne, where the optimality criteria of the least-weight truss layout 
were derived. Historically, structural design was achieved through a series of trials and errors that 
gradually refined the design. However, early studies were primarily limited to the size and shape 
optimization of predetermined topologies, and topology optimization is a well-established method 
for structural optimization. Topology optimization in continuum mechanics can be expressed as a 

(a) 

(b) 
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discrete problem or as a binary design setting in which the structure only consists of solids or 
voids. The binary design for structural compliance, on the other hand, is ill-posed, as there exists 
a nonconvergent sequence of admissible designs with continuously refined geometrical details 
(Su, Van, & Tangaramvong¹, 2021). Given the emergence of various topology optimization 
methods, mathematical formulations have undergone continuous development. Bi-directional 
evolutionary structural optimization (BESO), a well-known technique for topology optimization 
proposed by Querin, Steven, and Xie (1998), uses intermediate density to overcome the binary 
design. When necessary, this method allows for the restoration of deleted items. Figure 1.1 
depicts the use of the ESO/BESO methods in the construction of real buildings. 

Topology optimization has been used to design single-phase and multiphase material structures. 
The first implementation of the BESO method in multiphase material distribution problems was 
published by Xiaodong Huang and Xie (2009). When compared to designing single-phase 
materials, designing multiphase structures can lead to a more effective and less expensive 
combined functional structure (see Figure 1.2). Furthermore, topology optimization design of 
multiphase materials has attracted the attention of researchers. 

 

Figure 1.2 Combination design of three-material structures (two solid materials and a void). 

Topology optimization can be used to determine the initial arrangement of a material or the 
reinforcing distribution of a structure. However, dynamic loads influence a real structure; thus, 
the structure should be optimized with dynamic characteristics. Dynamic topology optimization 
research has focused on the frequency and time domains, with frequency-domain problems 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

aiming to reduce vibration and noise and time-domain problems aiming to reduce weight or 
maximize structure stiffness. 

 
Figure 1.3 The rocking horse picture is decomposed by image-based Quadtree algorithm. 

Tackling the structural optimization problem in the general concept of topology optimization 
implies configuring the design variables for the best performance, and the design variables of a 
structural optimization problem can be either continuous or discrete. The finite element mesh for 
the initial domain is discretized into subdomains called elements as a prerequisite for finite 
element analysis, so that each point in the domain is included within one of the elements. 
However, the primary disadvantage of this is that it takes a long time and is prone to errors when 
done manually. As a result, this dissertation encourages and employs automatic mesh generation. 
In structural continuum mechanics, several mesh generation techniques (for example, the contour-
line method, Delaunay triangulation method, and advancing-front technique (AFT)) can be used. 
Yerry and Shephard (1983) proposed a well-known mesh generation technique called the 
Quadtree/Octree decomposition algorithm, which allows domain partition to be achieved 
automatically in accordance with the complexity of the problem. These hierarchical meshes have 
recently found application in image-based implementation, as illustrated in Figure 1.3, which 
shows the application of image-based Quadtree decomposition in finite element analysis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

 
Figure 1.4 A quadtree mesh of S-elements. 

As previously stated, the Quadtree/Octree decomposition algorithm appears to be an excellent 
method to use in conjunction with the finite element method. The primary limitation of applying 
standard finite elements to the Quadtree/Octree algorithm is dealing with discontinuities in 
displacement fields, i.e., hanging nodes. To overcome this drawback, the scaled boundary finite 
element (SBFE) is an appropriate method for numerical analysis when applied to the 
Quadtree/Octree algorithm (Man, Song, Natarajan, Ooi, & Birk, 2014). Figure 1.4 demonstrates 
an SBFE mesh produced by the Quadtree algorithm. An S-element is a type of element used in 
finite element analysis (FEA) to represent a region or volume in a finite element model. One of 
the key benefits of using S-elements is that the boundary of an S-element can be divided into an 
arbitrary number of smaller line elements, which allows for greater flexibility and accuracy in the 
model. When using S-elements, a common edge between cells at different levels (i.e., cells that 
are part of different levels of mesh refinement) is represented by multiple line elements. This 
helps to ensure that displacement compatibility is automatically satisfied, which means that the 
displacement of nodes on the common edge between cells at different levels is consistent and 
does not introduce any errors or discontinuities in the model. Additionally, using S-elements 
helps to eliminate the need for hanging nodes, which are nodes that are not connected to any other 
elements and can cause problems in the FEA model. Finally, a boundary-trimmed cell (i.e., a cell 
that has one or more of its edges removed) can also be directly modeled as an S-element, which 
allows for more accurate and efficient representation of the model geometry. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

The preceding remarks serve as motivation for the work presented here. In essence, this 
dissertation characterizes topology optimization using an automatic image-based mesh generation 
method using Quadtree/Octree decomposition. To obtain optimal designs for SBFE analysis, we 
used the multiphase materials topology optimization concept and the BESO algorithm. With the 
privileges of image-based application, automated image compression techniques are combined 
with the scaled boundary finite element method (SBFEM) to produce analysis-ready adaptive 
meshes at each iterative process. Various case problems were solved for this purpose, and some 
were compared to solutions from the literature.  
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2. Aim and objectives of the research 

The goal of this dissertation is to extend a practical and trustworthy methodology for topology 
optimization of continuum structures. The limitations of existing topology optimization 
techniques in a conventional finite element method are not present in this algorithm. Adopting 
such an algorithm has the potential to combine another finite element method and the design of 
structural applications with the best possible configuration. This goal was accomplished by 
meeting the following objectives. 

(1) Investigating the topology optimization techniques, namely, bi-directional evolutionary 
structural optimization (BESO), adopted using the SBFEM. 

(2) Combining the automatic image-based mesh generation (namely, the Quadtree/Octree 
algorithm) with convolution-based filtering technique to perform topology optimization for 
structures with non-discrete elements. 

(3) Adopting the concept of multiphase materials using the BESO algorithm for designing 
nonhomogeneous materials in optimal solutions. 

(4) Performing topology optimization by considering dynamic load based on equivalent static 
load response and natural frequency response. 

3. Scope of research 

(1) The material properties of the design domain are considered as linearly elastic isotropic 
materials. 

(2) Discretization of all initial design problems is automatically generated by Quadtree/Octree 
decomposition. 

(3) Stress analyses are performed based on the SBFEM. 

(4) Performing topology optimization using stress analysis which the problems are considered 
as a 2D/3D problems model. 

(5) Topology optimization procedures are based on the BESO algorithm. 

(6) Time history equivalent static load is computed by high-order implicit time integration 
scheme based on Padé expansions. 
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4. Research Significance and Innovation 

The BESO technique, which was developed relatively recently, has proven to be highly effective 

in solving topology optimization problems in various structural engineering applications. 

Examples of these applications include minimizing structural volume subject to displacement or 

compliance constraints (X Huang & Xie, 2008; X. Huang & Y. Xie, 2010), optimizing the 

stiffness of structures made of multiple materials (Xiaodong Huang & Xie, 2009), designing 

periodic structures (Huang and Xie, 2008), optimizing the structural frequencies (X Huang, Zuo, 

& Xie, 2010), optimizing the topology of energy absorption structures (X Huang & Xie, 2007b), 

and addressing geometrical and material nonlinearity issues (X Huang & Xie, 2007a). 

Topology optimization has traditionally been constructed as a material distribution problem in a 
finite element-based framework. The optimal topology optimization solutions represented by 
finite elements typically perform in a standard finite element method. This research is significant 
because it investigates a scaled boundary finite element method (SBFEM) for topology 
optimization of continuum structures, resulting in solutions that require the least amount of post-
processing before manufacturing. The proposed method is computationally efficient and produces 
better computational accuracy, a more optimal solution, and significantly less computation time 
than traditional element-based optimization methods. It is also demonstrated, using recognized 
color-encoding regions, that the proposed method can be applied to multiple materials and 
nonuniform mesh problems. Therefore, this method helps engineers reduce the computational 
time and design cost of products. 

To obtain topology solutions with high representation, this research proposes a novel evolutionary 
structural optimization method that combines SBFEM with adaptive polygon element distribution 
and uses automatic image-based mesh generation. Furthermore, adaptive mesh refinement is used 
to achieve the best solution in topology optimization of multiphase-material structures. Finally, 
the topological designs of continuum structures for dynamic responses are considered in the 
proposed concepts. 

5. Layout of the dissertation 

This dissertation totally comprises five chapters. 
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Chapter 1 of this dissertation presents the introduction, motivation, advantages, and application 
fields of compliant mechanisms. Furthermore, this dissertation contends to the research the 
objectives and scopes of this study. Following that, the research significance and innovation of 
this study are discussed. Finally, the dissertation overview is proposed. 

Chapter 2 of this dissertation presents a review of the SBFEM, i.e., the concepts of SBFEM, 
derivation, solution procedures, and features of this method. The chapter then briefly introduces 
the idea of automatic mesh generation, specifically the Quadtree/Octree technique. Furthermore, 
previous and current research on designing compliant mechanisms using kinematic-based 
approaches as well as more recent structural performance tuning approaches such as 
homogenization, solid isotropic material with penalization (SIMP), the evolutionary structural 
optimization (ESO) method, and the BESO methods is reviewed. Finally, a framework for 
extending multiphase materials topology optimization (MMTO) is described. 

Chapter 3 of this dissertation presents examples of topology optimization problems based on 
static load responses for the standard finite element method and SBFEM. Both approaches can be 
directly compared using different techniques, and this chapter focuses on uniform mesh in the 
initial design domain. Following that, several benchmark examples of two-dimensional (2D) and 
three-dimensional (3D) problems are completely solved using the finite element method (FEM) 
and their solutions are compared to those found in the literature. The image compression 
convolution filter supports automated adaptive analysis-ready meshes. Finally, MMTO in 
conjunction with SBFEM is proposed. 

Chapter 4 of this dissertation mainly focuses the concept of topology optimization based on 
dynamic responses, and some literature research on dynamic topology optimization based on the 
frequency and time domains are briefly discussed. Subsequently, the problem statements with 
optimization procedures are explained. Finally, several benchmark examples of 2D problem 
models are presented. 

Chapter 5 of this dissertation precisely discusses the concluding remarks. Some of the further 
researches are reported in this chapter. Finally, the post-processing topological results are 
displayed. 
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CHAPTER 2 LITERATURE REVIEW 

1. Standard Finite Element Method 

1.1 Introduction 
The FEM is a numerical approach used in solid mechanics to solve engineering and mathematical 

physics problems. It is one of the most well-known and original numerical methods used in the 

field, and there are countless publications and articles on it. This section briefly explains the 

theory and concept of finite element formulation based on Timoshenko and Goodier (1971). The 

concept of FEM gives the approximate values of the unknown variables at points of the discrete 

model. Instead of analytically solving partial differential equations for the whole domain, FEM 

discretizes a problem into smaller domain so-called elements. Subsequently, the characteristic 

equations representing these elements are combined to form a global system of discrete equations 

that encompasses the entire domain. Recent development in computer science has boosted this 

method to become more efficient because of its total dependency. 

1.2 Continuum Mechanics 

1.2.1 State of stress at a point 

Since stress is the primary variable in solid mechanics, the state of stress at a particular point can 

be represented by the stress tensor, as shown in Eq. (1.1a). This stress tensor can be written in a 

vector form, the Voigt notation, Eq. (1.2a), where  and  are normal stress and shear stress, 

respectively. 

 = [

𝑥𝑥 𝑥𝑦 𝑥𝑧
𝑥𝑦 𝑦𝑦 𝑦𝑧
𝑥𝑧 𝑦𝑧 𝑧𝑧

] (1.1a) 

 = {𝑥𝑥 𝑦𝑦 𝑧𝑧  𝑥𝑦 𝑦𝑧 𝑥𝑧}T (1.2a) 
It is necessary that the stress distribution in a solid be compatible with the global equilibrium of 

the body when a combination of loads is applied to it. Furthermore, the equilibrium condition 

must be satisfied throughout the entire system, and when an infinitesimal element from this body 

is considered and its equations are solved, the outcome is the equilibrium equations of elasticity 

denoted by Eq. (1.3a). 
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𝜕𝑥𝑥

𝜕𝑥
+
𝜕𝑥𝑦

𝜕𝑦
+
𝜕𝑥𝑧

𝜕𝑧
+ 𝑉𝑥 = 0 

𝜕𝑥𝑦

𝜕𝑥
+
𝜕𝑦𝑦

𝜕𝑦
+
𝜕𝑦𝑧

𝜕𝑧
+ 𝑉𝑦 = 0 

𝜕𝑥𝑧

𝜕𝑥
+
𝜕𝑦𝑧

𝜕𝑦
+
𝜕𝑧𝑧

𝜕𝑧
+ 𝑉𝑧 = 0 

(1.3a) 

Using the gradient function () with the stress tensor and body force vector, the system of 

equilibrium equation (Eq. (1.3a)) is further reduced to 

 + V = 0 (1.4a) 

1.2.2 State of strain and displacement at a point 

In the small deformation theory, a normal strain () is the change in the length of a line segment 

between two points divided by the initial length of the line segment. Meanwhile, a shearing strain 
() is the angular change between two-line segments that were initially perpendicular. From this 

point, the relationship between strains and displacement can be stated by Eq. (1.5a). 

𝑥𝑥 =
𝜕𝑢

𝜕𝑥
,   

𝑥𝑦
=
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝑦𝑦 =
𝜕𝑣

𝜕𝑦
,   

𝑦𝑧
=
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

𝑧𝑧 =
𝜕𝑤

𝜕𝑦
,   

𝑦𝑧
=
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
 

(1.5a) 

Here, 𝑢, 𝑣, and 𝑤 are the respective displacements in the 𝑥, 𝑦, and 𝑧 directions. Therefore, the 

strain tensor is symmetric. 


𝑥𝑦
= 

𝑦𝑥
 


𝑦𝑧
= 

𝑧𝑦
 


𝑧𝑥
= 

𝑥𝑧
 

(1.6a) 

In solid continuum mechanics, the equations (1.5a) are referred to as the cartesian strain–
displacement relationships because of the manner in which strain and displacement are related. It 
is possible to write them in the matrix form as follows. 

 = 𝐁𝐮 (1.7a) 
Here, 𝐁 and 𝐮 are the strain–displacement relationships and displacement vector, respectively 
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0 0 0

0 0 0

0 0 0

x y z

y x z

z y x

   
 
  

 
   
 

  
 
   
 

   

T

B=  (1.8a) 

𝐮 = {
𝑢
𝑣
𝑤
} (1.9a) 

Since a tensor describes the state of stress at a point, the same happens with the strain in Eq. 

(1.10a) and in vector form, Eq. (1.11a). 

 = [

𝑥𝑥 
𝑥𝑦


𝑥𝑧


𝑥𝑦

𝑦𝑦 
𝑦𝑧


𝑥𝑧


𝑦𝑧

𝑧𝑧
] (1.10a) 

 = {𝑥𝑥 𝑦𝑦 𝑧𝑧   𝑥𝑦 
𝑦𝑧


𝑥𝑧}T (1.11a) 

The majority of the material used in the research was considered isotropic and homogeneous in 

the standard finite element model. The elastic properties are defined by the modulus of elasticity, 

𝐸, and Poisson’s ratio, 𝑣. Hooke’s laws describe the stress-strain relationship as follows. 

 = 𝐃 (1.12a) 
Here, 𝐃 is the material stiffness, which is an asymmetric nonsingular matrix, yielding 

 = 𝐂 (1.13a) 
where 𝐃 = 𝐂−1 is a symmetric matrix of material compliance, given by 

( )

( )

( )

1 0 0 0

1 0 0 0

1 0 0 01

0 0 0 2 1 0 0

0 0 0 0 2 1 0

0 0 0 0 0 2 1

v v

v v

v v

vE

v

v

− − 
 
− −

 
 − −

=  
+ 

 +
 

+  

C  (1.14a) 
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1.2.3 Plane stress and plane strain problems 

When analyzing 3D elastostatic problems in which a body is subjected to a force applied in a 

specific plane and its body has a thickness that is smaller than the other dimensions, we can refer 

to the problem as a plane stress problem. Figure 2.1 illustrates the plane stress problem with 

applied force in the 𝑥𝑦 plane and the thickness is totally smaller than the other dimensions. In this 

particular case, we have 

𝑧𝑧 = 𝑥𝑧 = 𝑧𝑦 = 0 (1.15a) 
resulting in new stress and strain vectors. 

 = {𝑥𝑥 𝑦𝑦 𝑥𝑦}Tand  = {𝑥𝑥 𝑦𝑦 
𝑥𝑦}T (1.16a) 

The material stiffness matrix 𝐃 becomes 

𝐃 =
𝐸

1 − 𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
(1 − 𝑣)

2

] (1.17a) 

 
Figure 2.1 Plane stress. 

In contrast, we have a plane strain problem when the thickness is no longer smaller than the other 

dimensions or the object has one of its dimensions larger than the others and the cross section 

does not vary in this direction, as shown in Figure 2.2. With the applied loads in the 𝑥 − 𝑦 plane, 

the following equations can be reduced as follows: 
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𝑤 = 0 and 𝜕
𝜕𝑧
= 0 (1.18a) 

resulting in 

 𝑥𝑥 = 𝑦𝑦 = 
𝑥𝑦
= 0 (1.19a) 

Subsequently, the material stiffness matrix 𝐃 is reduced into 

𝐃 = [
+ 2𝐺  0

 + 2𝐺 0
0 0 𝐺

] (1.20a) 

where  is the Lame coefficient and 𝐺 is the modulus of rigidity. These constants are related to 𝐸 

and 𝑣 by 

𝐺 =
𝐸

2(1 + 𝑣)
 and  =

𝑣𝐸

(1 + 𝑣)(1 − 2𝑣)
 (1.21a) 

 

Figure 2.2 Plane strain. 

1.3 Potential Energy of Elastic Material 
For solid continuum mechanics, there are several categories of elements in the conventional FEM 

that can be used to perform the analysis. Each type of element has aspects that characterize its 

behavior: degrees of freedom, number of nodes, formulation, and integration. The rectangular 

element is one of the most commonly encountered types of elements. These elements are useful 

for modeling regular geometries because they are simple to handle with many problems. A four-

term polynomial expression can be clearly defined in Appendix A as there are four nodes 

containing two degrees of freedom at each node. 

Using the principle of minimum potential energy, the total potential energy can be written as 
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𝑝 = 𝑈 +𝑊 (1.1b) 
where the internal strain energy, 𝑈, is given by 

𝑈 =
1

2
∫{}𝑇{} 𝑑𝑉

𝑉

=
1

2
∫{}𝑇[𝐷]{} 𝑑𝑉

𝑉

 (1.2b) 

The corresponding external work done on concentrated load is written as 

𝑊 = −{𝑢}𝑇{𝑃} (1.3b) 
Here, {𝑢} represents the nodal displacement vector and {𝑃} represents the external forces. 

Substituting internal term (Eq. (1.2b)) and external work (Eq. (1.3b)) into Eq. (1.1b), the total 

potential energy becomes 

𝑝 =
1

2
∫{}𝑇[𝐷]{} 𝑑𝑉 − {𝑢}𝑇{𝑃}

𝑉

 (1.4b) 

By writing Eq. (1.4b) in terms of displacement field, we obtain 

𝑝 =
1

2
∫{𝑢}𝑇[𝐵]𝑇[𝐷][𝐵]{𝑢}𝑑𝑉 − {𝑢}𝑇{𝑃}

𝑉

 (1.5b) 

where [𝐵] is strain–displacement relationship matrix. Taking the derivative of Eq. (1.5b) with 
respect to nodal displacement results in 

∂𝑝

𝜕{𝑢}
= [∫[𝐵]𝑇[𝐷][𝐵]𝑑𝑉

𝑉

] {𝑢} − {𝑃} = 0 (1.6b) 

Rewriting Eq. (1.6b) as 

[∫[𝐵]𝑇[𝐷][𝐵] 𝑑𝑉

𝑉

]

⏟            
𝐊

{𝑢} = {𝑃} (1.7b) 

For a constant thickness, 𝑡, Eq. (1.7b) can be further written as 

𝐊𝑒 = ∫[𝐵]
𝑇[𝐷][𝐵]𝑑𝑉

𝑉

= 𝑡 ∫[𝐵]𝑇[𝐷][𝐵] 𝑑

𝑒

 (1.8b) 

In the isoparametric rectangular element, the elemental stiffness matrix is expanded as 
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𝐊𝑒 = 𝑡 ∫ 𝐵
𝑇(,)[𝐷]𝐵(,) 𝑑

𝑒

= 𝑡 ∫ ∫𝐵𝑇(,)[𝐷]𝐵(,) |𝐽|𝑑𝑑

1

−1

1

−1

 (1.9b) 

where 𝐵(,) is the derivative of shape function precisely described in Appendix A. [𝐷] is the 

material constitutive matrix, see Eq (1.17a) for plane stress and Eq. (1.20a) for plane strain. 

The numerical integration by the summation of the Gauss points and weights achieved using the 

Gaussian Quadrature retains the commutativity of the integrals in the expected manner. The 

expression of the elemental stiffness matrix is evaluated using the N Gauss points for integration 

as 

𝐊𝑒 =∑∑𝑊𝑗𝑊𝑘

𝑁

𝑘=1

𝐵𝑇(,)[𝐷]𝐵(,)|𝐽|

𝑁

𝑗=1

 (1.10b) 

The global stiffness matrix (Figure 2.3) for all number of elements, 𝑁𝑒𝑙, is expressed as 

𝐊 =∑𝐊𝑒

𝑁𝑒𝑙

𝑒=1

 (1.11b) 

 

Figure 2.3 Schematic for continuum solid mechanics in global and local coordinates of a FE 
domain.  
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2. Scaled Boundary Finite Element Method. 

2.1 Introduction 
Many engineering and scientific issues are expressed mathematically in expressions of field 

variables such as forces and displacements. Mathematical models include governing differential 

equations that represent physical rules (e.g., equilibrium and compatibility in stress analysis), 

material constitutive models, and problem domain boundary conditions. Analytical solutions to 

the mathematical model are frequently used in traditional engineering analysis approaches. 

Analytical solutions are represented mathematically and may be assessed at any location of 

interest. Analytical solutions, on the other hand, are not accessible for complicated issues. To 

apply classical analytic methods to many engineering issues, significant simplifications must be 

made, which frequently results in overly cautious designs. 

To solve complicated engineering challenges, numerical modeling approaches have been created. 

The mathematical model is solved by a numerical approach in numerical modeling of a field 

issue, and a common feature of the numerical methods is the use of mesh discretization to split a 

complicated problem domain into a set of discrete parts. C. Song and Wolf (1997), proposed one 

of the most prominent numerical approaches for the dynamic analysis of unbounded domains, 

known as the SBFEM, in which the rational boundary condition is defined at infinity (Bazyar & 

Song, 2008; Chen, Birk, & Song, 2015; C. Li, Man, Song, & Gao, 2013). The SBFEM employs a 

semi-analytical technique to generate an approximation solution in a subdomain, and only the 

subdomain border is discretized; the solution in the opposite direction is derived analytically. This 

differs from typical FEM, which needs the interpolation functions across the subdomain/element 

to be chosen a priori (Chongmin Song, 2018). 

The next section will describe how the SBFEM method is derived using the concept of virtual 

work. The partial differential equations that govern the problem domain will be converted into 

ordinary differential equations with a radial coordinate serving as the independent variable. The 

finite element technique can be used to reduce a problem involving multiple dimensions (such as 

a three-dimensional model) to a problem in one spatial dimension by applying the technique 
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along the directions parallel to the boundary of the model. This results in a simplified 

representation of the problem, which can make it easier to analyze and solve. In the context of 

finite element analysis, this is often done by applying the technique along the circumferential 

direction, which refers to the direction around the circumference or perimeter of the model. By 

doing this, it is possible to represent the problem in a more straightforward and computationally 

efficient manner, while still capturing the essential features and behavior of the system being 

analyzed. In subsequent sections, the text will present several examples of how the SBFEM can 

be used for stress analysis and will discuss its various characteristics. 

2.2 Concepts of Scaled Boundary Transformation of Geometry 
C. M. Song and Wolf (2000) precisely outline the SBFEM idea, which aims to conduct geometry 

transformation. Figure 2.4a shows a two-dimensional linear elastic confined media with a 

comparable section is utilized to build the SBFEM, and the complete boundary must be visible 

when seen from a zone within the medium where the so-called scaling center, 𝑂, has been 

chosen. In the figure, the dashed lines represent the direct lines of sight from the scaling center (a 

reference point used to scale the model) to the corners of the domain (the area being analyzed). It 

is important to note that the border of the domain does not have to be convex (curved outward 

like the exterior of a circle or sphere) and the number of edges is not limited. This means that the 

domain can have any shape and can be divided into as many or as few edges as necessary. To 

achieve this flexibility, the overall domain can be subdivided into smaller subdomains (also 

known as S-domains), which can be treated as "super-elements" in their own right. This allows 

for more precise representation of the domain and can help to ensure that the model accurately 

reflects the behavior and characteristics of the system being analyzed. The displacements and 

tractions on 𝑆𝑢 and 𝑆𝑡 are applied to the medium's doubly curved border, 𝑆. Figure 2.4b, on the 

other hand, depicts an example of a domain that does not match the scaling condition. Three 

locations (A, B, and C) on the border, 𝑆, cannot be found in direct vision at the same time. This 

sort of domain must be divided into smaller ones that meet the scaling criteria for usage with the 

SBFEM. 
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Figure 2.4 Illustration of the scaling requirement: (a) A bounded domain satisfies the scaling 

requirement. (b) A bounded domain does not satisfy the scaling requirement. 

For a 3D case, a typical finite element with the surface, 𝑆𝑒, (superscript e for element) is 

illustrated in Figure 2.5, and two local curvilinear coordinates (, ,) in the circumferential 

directions of the surface are defined (green line). This concept is reminiscent of the procedure 

applied in an isoparametric surface finite element. From Figure 2.5 and Figure 2.6, points from 

the scaling center, 𝑂, to a point on the boundary called the dimensionless radial coordinate, , 

(red line), where  = 0 in 𝑂 and  = 1 on the boundary, are selected. Connecting the edge of 

the surface finite element by straight lines (dash line) to the scaling center, 𝑂, forms the side-face, 

𝐴𝑒, which regards to either  = ±1 or  = ±1. The side-face, 𝐴𝑒, and the surface, 𝑆𝑒, 

interpret a pyramid with vertex, 𝑂, and volume, 𝑉𝑒. 

 
Figure 2.5 Transformation of the geometry surface finite element forming pyramid with volume 

based on scaled boundary finite element method 
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Figure 2.6 Schematic of scaled boundary polygonal element. 

The standard 2D isoparametric with two-node element is addressed in Figure 2.7. The coordinates 

of a specific point along the line element are known as 𝑥, 𝑦. Two nodes with the coordinates 
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) are arranged as 
{𝑥} = [𝑥1 𝑥2]𝑇  (2.1a) 
{𝑦} = [𝑦1 𝑦2]𝑇  (2.2a) 
From Figure 2.7, the parent element in the natural coordinate, , has a length of 2 units ( has 

been used for the radial coordinate). The linear interpolation of the 𝑥–coordinate on the two-node 

line element is expressed as 

𝑥() = 𝑎0 + 𝑎1 (2.3a) 
Substitute natural coordinate, , with interpolation constants, 𝑎0 and 𝑎1, are determined by 

formulating Eq. (2.3a) at the two nodes, resulting in 

𝑥1 = 𝑥(−1) = 𝑎0 + 𝑎1 × (−1) (2.4a) 
𝑥1 = 𝑥(+1) = 𝑎0 + 𝑎1 × (+1) (2.5a) 
The solution of Eqs. (2.4a) and (2.5a) are expressed as 

𝑎0 =
1

2
(𝑥1 + 𝑥2) (2.6a) 

𝑎1 =
1

2
(𝑥2 − 𝑥1) (2.7a) 

From Eqs. (2.6a) and (2.7a), the Eq. (2.3a) can be written as 
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𝑥() =
1

2
(𝑥1 + 𝑥2) +

1

2
(𝑥2 − 𝑥1) =

1

2
(1 − )𝑥1 +

1

2
(1 + )𝑥2 (2.8a) 

where the shape function, 𝑁, for standard isoparametric with two-node line element is expressed 

in matrix form as 

[𝑁()] = [𝑁1() 𝑁2()] = [
1

2
(1 − )

1

2
(1 + )] (2.9a) 

The interpolation 𝑥 in Eq. (2.8a) and, similarly, the interpolation of coordinate 𝑦 are described as 

𝑥() = [𝑁]{𝑥} =
1

2
(1 − )𝑥1 +

1

2
(1 + )𝑥2 = 𝑥̅ +

1

2
𝑥 (2.10a) 

𝑦() = [𝑁]{𝑦} =
1

2
(1 − )𝑦1 +

1

2
(1 + )𝑦2 = 𝑦̅ +

1

2
𝑦 (2.11a) 

with the abbreviations 

𝑥 = 𝑥2 − 𝑥1 (2.12a) 
𝑦 = 𝑦2 − 𝑦1 (2.13a) 
and 

𝑥̅ =
1

2
(𝑥1 + 𝑥2) (2.14a) 

𝑦̅ =
1

2
(𝑦1 + 𝑦2) (2.15a) 

For further use, differentiating Eqs. (2.10a) and (2.11a) results in 

𝑥(), =
1

2
𝑥 (2.16a) 

𝑦(), =
1

2
𝑦 (2.17a) 
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Figure 2.7 Scaled boundary transformation of geometry of simplest two-node line element. 

The dimensionless radial coordinate, , points ranging from 𝑂 to a point on the boundary (with 

 = 1). The scaled boundary transformation between the Cartesian coordinates, 𝑥, 𝑦, and the 

scaled boundary coordinates, , , (as shown in Figure 2.7b) relates any point in the domain 

denoted as 𝑥̂, 𝑦̂ to the corresponding point on the line element as 

𝑥̂ = 𝑥() =  (𝑥̅ +
1

2
𝑥) (2.18a) 

𝑦̂ = 𝑦() =  (𝑦̅ +
1

2
𝑦) (2.19a) 

The equation states that the coordinate curves labeled 𝑆𝑐, which have a constant value of , are 

parallel to the line element. The coordinate curves labeled 𝑆𝑟, which have a constant value of , 

are radial lines that connect the scaling center (labeled 𝑂) to the points on the line element. The 

partial derivatives of 𝑥̂, 𝑦̂ with respect to ,   can be found using equations (2.18a) and (2.19a). 

𝑥̂, = 𝑥() = (𝑥̅ +
1

2
𝑥) (2.20a) 

𝑦̂, = 𝑦() = (𝑦̅ +
1

2
𝑦) (2.21a) 

𝑥̂, = 𝑥(), = −
1

2
𝑥 (2.22a) 

𝑦̂, = 𝑦(), =
1

2
𝑦 (2.23a) 

resulting in 

( ) ( ) ( )
1 0

ˆ 1,
0

J diag J J  


 
  = =        

 
 (2.24a) 

where the Jacobian matrix at the boundary is expressed as 

( )
( ) ( )

( ) ( )
, ,

1 1

2 2

1 1

2 2

x y

x y

x yx y
J

x y
 

  


   
 

 
+  +   

= =     
      

  

 (2.25a) 

The determinant of the Jacobian matrix on the boundary in Eq. (2.25a) is expressed as 

( ) ( )
1 1

2 2
y x

x y

x y
J x y = =  − 

 
 (2.26a) 

Using Equations from (2.12a) to (2.15a), Eq. (2.26a) simplified as 
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( ) ( )1 1

1 2 2 1

2 2

1 1

2 2

x y
J x y x y

x y
 = = −  (2.27a) 

The inverse of the Jacobian matrix (Eq. (2.25a)) is expressed as 

( )
( )

1

1 1

1 2 2

1 1

2 2

y y

x x

y

J
J

x








−

  
 − +   

  =  
 

 +   

 (2.28a) 

It offers the converting of the scaled boundary coordinates to the partial derivatives in the 

Cartesian coordinates as 

( )

( ) ( )

( ) ( )

1 ,

,

ˆ 1ˆ
1

ˆ

y yx
J

J x x
y





  

  
  

−

       −          = =        −               

 (2.29a) 

This equation is obtained by substituting an expression into the differential operator for 2D 

elasticity and separating the terms according to their partial derivatives. 

     1 2

0
ˆ

1
0

ˆ

ˆ ˆ

x

L b b
y

y x

  

 
 
   = = +    

  
  

 (2.30a) 

where 

 
( )

( )

( )

( ) ( )

,

1 ,

, ,

0
1

0

y

b x
J

x y





 






 

 
 
 = −
 
−  

 (2.31a) 

 
( )

( )

( )

( ) ( )
2

0
1

0

y

b x
J

x y






 

− 
 

=  
 − 

 (2.32a) 

For later use, the following identity between [𝑏1] and [𝑏2] exists 

( )  ( ) ( )  2 1
,

J b J b


 = −  (2.33a) 
The infinitesimal area, 𝑑𝑉𝑒 , of the domain is calculated as 

( )ˆedV J d d J d d     = =  (2.34a) 
The infinitesimal length of a line, 𝑆, with constant, , equals 
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( ) ( )
2 2 2 2

, ,

1
ˆ ˆ

2
x ydS x y d d

    = + =  +   (2.35a) 

The strain–displacement relationship is expressed concisely as 

    L u =  (2.36a) 
Substituting Eq. (2.30a) into (2.36a), the strains are expressed in the scaled boundary coordinates 

as 

   
 

 
 

1 2

1u u
b b

  

 
= +

 
 (2.37a) 

An approximate solution of displacement is sought in the form 

  ( )    ( ) , e

uu u N u  = =  (2.38a) 
where the superscript 𝑒 denotes the functions of one element and the shape functions of the 𝑝𝑡ℎ 

order element (Figure 2.8) is expressed in matrix form as 

 
1 2 1

1 2 1

0 0 0

0 0 0

p

u

p

N N N
N

N N N

+

+

 
=  

 

 (2.39a) 

Substituting the displacement field in Eq. (2.38a) into Eq. (2.37a), the strain field is expressed in 

the scale boundary coordinates as 

  ( )     ( )     ( ) 1 2 ,,

1
, e e

u ub N u b N u


     


= = +  (2.40a) 

The strain–displacement matrices are introduced 

  ( )   1 1 1 uB B b N= =    (2.41a) 
  ( )   2 2 2 ,uB B b N


= =    (2.42a) 

Now, the strain field in Eq. (2.40a) is rewritten as 

    ( )    ( ) 1 2,

1e eB u B u


  


= +  (2.43a) 

The stress field is expressed in the scale boundary coordinates as 

  ( )      ( )    ( ) 1 2,

1
, e eD B u B u


     



 
= = + 

 
 (2.44a) 

where [𝐷] is the elasticity matrix 
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Figure 2.8 Representation of the displacement field in an S-element using independent 

interpolation of nodal displacement functions. 

2.3 Derivation of the SBFE equation using the virtual work principle 
The S-element boundary finite element (SBFE) equation is developed by taking the weak form of 

the governing partial differential equations in the circumferential direction only. This results in a 

system of ordinary differential equations with the radial coordinate as the independent variable. 

Two methods can be used to derive the SBFE equation: the Galerkin weighted residual approach 

(C. Song & Wolf, 1997) or the virtual work principle (Deeks & Wolf, 2002b). This section 

focuses on the derivation using the virtual work principle without considering body forces (for the 

derivation of the SBFE equation for a linear elastostatic problem with body forces, see C. M. 

Song and Wolf (1999)). 

From Eq. (2.43a), using {𝑢( = 1)} to represent a fictitious displacement field as 

( )  ( ) ( )  ( ) ( ) 1 2,

1
, B u B u


        


= +        (2.1b) 

To represent the corresponding virtual strains, the virtual work equation where there is no body 

load states that 

( )  ( )  ( )  ( ) , , 0
T T

V

dV u t d


         − =   (2.2b) 

where the first term is internal virtual work and the second term is the external work performed 

by the boundary tractions {𝑡()}, evaluated over the entire boundary. 
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Substituting Eq. (2.34a), (2.44a) and (2.1b) the internal work (first term) is expanded as 

( )  ( ) 

( ) ( )  ( ) ( ) 

  ( ) ( )    ( ) ( ) 

( )  ( )   ( ) ( ) 

( )  ( )   ( ) ( ) 

( )  ( )

1 2,

1 2,

1

1 1, ,
0

1

1 2,
0

1

2

0

, ,

1
   

1
       

   

       +

       +

T

V

T

V

TT

TT

T

dV

B u B u

D B u D B u dV

u B D B u J d d

u B D B u J d d

u B





 







     

     


   


       

      

  

 
= +       

 

 
 +       

 

=       

      

  





 

 

    ( ) ( ) 

( )  ( )   ( ) ( ) 

1 ,

1

2 2

0

1
       +

T

TT

D B u J d d

u B D B u J d d





   

      


  

         

 
 
 
 
 

(2.3b) 

The area integral with {𝑢()}, is integrated with respect to  using Green’s Theorem 

(Integration by part), performing line integrals evaluated around the boundary as 

( )  ( ) 

( )  ( )   ( ) ( ) 

( )  ( )   ( ) ( )  ( )  

( )  ( )   ( ) ( ) 

( )  ( )   ( ) ( ) 

( )  ( )

1 1 ,
1

1

1 1 , ,
0

1 2
1

1

1 2 ,
0

1

2

0

, ,

   

       

       +

       

       +

T

V

TT

TT

TT

TT

T

dV

u B D B u J d

u B D B u u J d d

u B D B u J d

u B D B u J d d

u B






 










     

      

        

     

      

  

=

=

=       

− +      

      

−       





 



 

    ( ) ( ) 

( )  ( )   ( ) ( ) 

1 ,

1

2 2

0

1
       +

T

TT

D B u J d d

u B D B u J d d





   

      


      

         

 
 

(2.4b) 

For convenience, the following coefficient matrices are introduced 
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  ( )   ( )0 1 1

T

E B D B J d


  =         (2.5b) 

  ( )   ( )1 2 1

T

E B D B J d


  =         (2.6b) 

  ( )   ( )2 2 2

T

E B D B J d


  =         (2.7b) 

Note that the coefficient matrices [𝐸0], [𝐸1], and [𝐸2] of the S-element are obtained by 

combining them element-by-element based on how the elements are connected. These matrices 

are calculated on individual line elements at the boundary, and they are only influenced by the 

shape of the boundary as depicted by the line element. The integration process can be done 

numerically in a similar way to how the stiffness matrix of one-dimensional finite elements is 

calculated, and the same principles for selecting the integration quadrature order used in 

traditional FEM also apply. 

Using {𝑢𝑏} to represent displacement field at the boundary {𝑢( = 1)} with Eqs. (2.5b), (2.6b) 

and (2.7b), Eq. (2.4b) is expressed succinctly as 

( )  ( ) 

          ( )    ( ) 

      ( )    ( ) 

1

0 1 0, ,
0

0 1 1 2,

, ,

   

1
       

T

V

TTT

b b

T

dV

u E u E u u E u

E E E u E u d

 



     

    

  



= + − 



 + + − −   



  (2.8b) 

By substituting virtual displacement field with the shape functions, [𝑁()], to interpolate 

between the nodes in the circumferential direction, Eq. (2.38a) becomes 

( )  ( ) ( ) ,u N u     =     (2.9b) 
By substituting Eq. (2.9b), the external work (second term) in Eq. (2.2b) becomes 

( )  ( )    ( )  ( ) 

 

T TT

F

u t d u N t d
 

       =   
(2.10b) 
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The integral term on the right-hand side of Eq. (2.10b) can be identified as the equivalent nodal 

forces due to the boundary tractions, {𝐹}. By substituting Eq. (2.8b) and (2.10b) back into Eq. 

(2.2b), the complete virtual work equation becomes 

              ( )    ( ) 

      ( )    ( )   

1

0 1 0, ,
0

0 1 1 2,

1
       0

TTT T

b b

T

u E u E u u F u E u

E E E u E u d

 



     

  



+ − − 



 + + − − =  


 (2.11b) 

Equation. (2.11b) needs to be satisfied for all {𝑢()} (one is closely satisfied in the radial 

direction and the second is satisfied in the circumferential direction) the following conditions. 

        0 1,

T

b bF E u E u


= +  (2.12b) 
Equation (2.12b) is the nodal force functions at the boundary {𝐹( = 1)} then 

( )    ( )    ( ) 0 1,

T
q E u E u


   = +  (2.13b) 

where {𝑞()} is the nodal force function in the domain {𝐹(0 ≤  < 1)} and 

  ( )        ( )    ( )   2

0 0 1 1 2, ,
0

T
E u E E E u E u

 
     + + − − =

 
 (2.14b) 

An equation system involving second-order differential equations with the dimensionless radial 

coordinate, ,, as the independent variable is described in Equation (2.14b). This system was 

derived from the strong form of the governing partial differential equations of linear elasticity in 

the radial direction, while the circumferential direction was weakened in the FEM. 

2.4 Solving the SBFE equation by Eigenvalue Decomposition 
To convert the second-order differential equations in Eq. (2.14b) to first-order equations, we can 

use a straightforward solution strategy that is suitable for numerical computation. When the S-

element is at the boundary of the plane, the number of degrees of freedom is equal to the number 

of equations in Eq. (2.14b), which is represented by the letter 𝑛. By reducing the order of the 

differential equations from two to one, the number of equations is doubled to 2𝑛. This can be 

useful for implementing the equations in a numerical computation. 

To do this, equation (2.13b) is rewritten in displacement functions with respect to the radial 

coordinate, , as 
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( )    ( )      ( ) 
1 1

0 0 1,

T
u E q E E u


   

− −
= −  (2.1c) 

Substituting into Eq. (2.14b) to eliminate {𝑢()}, then rearrange the results in 
( )     ( )       ( )    ( ) 

1 1

1 0 1 0 1 2,
0

T
q E E q E E E u E u


    

− −
− + − =  (2.2c) 

Introducing the variable {𝑋()} that comprises the 𝑛 nodal displacement functions and the 𝑛 

force functions 

( ) 
( ) 
( ) 

u
X

q






  
=  

  

 (2.3c) 

Now, equation (2.1c) and (2.2c) are reformulated as a system of 2𝑛 equations 

( )  ( ) 
, pX Z X


   =    (2.4c) 
with Hamiltonian coefficient matrix 

     

         

1 1

0 1 0

1 1

2 1 0 1 1 0

T

p T

E E E
Z

E E E E E E

− −

− −

 −
   = 

 − 

 (2.5c) 

A well-known approach for solving Eq. (2.4c) is to postulate that its solution is of the form of a 

power function 

( )   X   =  (2.6c) 
Substituting this trial solution into Eq. (2.4c) yields 

   pZ     =    (2.7c) 
Simplify as 

   pZ     =   (2.8c) 
where exponents, 𝑖, are the eigenvalue and corresponding eigenvector {}, Eq. (2.8c) can be 

written as 
 ( ) 

2
0p n

Z I   − = 
 (2.9c) 

where [𝐼]2𝑛 is an identity matrix of order 2𝑛. The eigenvalue decomposition is expressed in 

matrix form as 

    ( )pZ diag    =    (2.10c) 
with the eigenvector matrix [] containing 2𝑛 eigenvectors 
         1 2 2i n    =     (2.11c) 
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The general solution to the homogeneous set of Euler-Cauchy differential equation represented by 

Eq. (2.4c) can be expressed as a linear combination of the trial solutions by 2𝑛 eigenvalues and 

eigenvectors as 

( )   

       21 2

2

1

1 1 2 2 2 2            

i

i n

n

i i

i

i i n n

X c

c c c c



  

  

       

=

=

= + + + + +


 

(2.12c) 
where 𝑐𝑖 are the integration constants dependent on the boundary conditions, exponents 𝑖 are the 

eigenvalue, and corresponding eigenvector {
𝑖
} can be interpreted as independent modes of 

deformation that closely satisfy internal equilibrium in the  direction. 

Using Eqs. (2.3c) and (2.12c), an eigenvector {
𝑖
} can be partitioned into two subvectors {

𝑖

(𝑢)} 

and {
𝑖

(𝑞)} of the same size 𝑛 

 

( ) 
( ) 

u

i

i
q

i






 
 

=  
 
 

 (2.13c) 

The solution for nodal displacement and force functions (bounded S-element) is written as 

( )  ( ) 
( )  ( )  ( )  ( ) 

( )  ( ) 
( )  ( )  ( )  ( ) 

1 2

1 2

1

1 1 2 2

1

1 1 2 2

           

           

i

i n

i

i n

n
u

i i

i

u u u u

i i n n

n
q

i i

i

q q q q

i i n n

u c

c c c c

q c

c c c c



  



  

  

       

  

       

=

=

=

= + + + + +

=

= + + + + +




 (2.14c) 

The remaining integral constants, 𝑐𝑖, are determined from the boundary condition at  = 1. 

Equation (2.14c) is written in matrix form as 

( )  ( )  bu

bu c


  = 
 

 (2.15c) 
( )  ( )  bq

bq c


  = 
 

 (2.16c) 
where 〈𝑏〉 is the eigenvalue formed in diagonal matrix, vector {𝑐} is assembled the integration 

constants, and the eigenvector matrix [𝑏] is constructed by combining the corresponding 

eigenvectors as columns. 
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( )

( )

( )  ( )  ( )  ( ) 
( )  ( )  ( )  ( ) 

1 2

1 2

u u u uu

i nb

q q q q q

b i n

   

   

   
     =

          

 (2.17c) 

Eliminating the integration constants from Eq. (2.15c) and (2.16c) yields 

( )  ( ) ( ) ( ) 
1

q u

b bq u 
−

   =  
     (2.18c) 

Formulating Eq. (2.18c) at the boundary ( = 1), the nodal force–displacement relationship of 

the S-element is expressed as 

    bF K u=  (2.19c) 
where the stiffness matrix of S-element of a bounded domain is equal to 

  ( ) ( )
1

q u

b bK
−

   =  
     (2.20c) 

Eq. (2.15c) is stated at  = 1 to derive the integration parameters in the solution of the nodal 

displacement functions of the S-element. 
  ( )  ( )  1

u

b bu u c  = = = 
 

 (2.21c) 
This leads to the integration constants {𝑐} as 

  ( )  
1

u

b bc u
−

 = 
   (2.22c) 

The equations for the nodal displacement functions of the S-element, which describe the 

displacement along the lines connecting the scaling center and a node on the boundary, can be 

expressed in matrix form using either Eq. (2.14c) or Eq. (2.15c). These functions are used to 

calculate the displacements at each node on the boundary. 

2.5 Solving the SBFE equation by Schur’s decomposition 
One way to solve a system of ordinary equations involving the S-element is to use eigenvalue 

decomposition. This involves using a dimensionless radial coordinate to create a power series 

representing the displacement field within the S-element and using eigenvectors to obtain the 

static stiffness matrix. However, if there are repeated eigenvalues with parallel eigenvectors, the 

eigenvalue decomposition process may not be possible and the solution may be lost, leading to a 

malfunction of the numerical method. 
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According to Deeks and Wolf (2002a), some elasticity theory problems include solutions that 

include power and logarithmic functions, which the eigenvalue decomposition method is unable 

to replicate. Under specific combinations of boundary conditions, material composition, and 

wedge opening angle, a logarithmic function may be seen. For the statics SBFE problem, Song 

suggested a Schur decomposition solution method in 2004. 

In this section, the system of homogeneous first-order ordinary differential equations from 

Section 2.4 is solved using a method based on Schur decomposition (Laub, 1978) and the theory 

of matrices (Gantmacher, 1960). The first-order ordinary differential equations (Eq. (2.4c)) are 

conveniently simplified as follows. 

( )  ( ) 
, pX Z X


   =    (2.1d) 
where the variable {𝑋()} comprises the 𝑛 nodal displacement {𝑢()} and 𝑛 force {𝑞()} 

functions 

( ) 
( ) 
( ) 

u
X

q






  
=  

  

 (2.2d) 

The number of degrees of freedom in the vector of the unknown function {𝑋()} are 2𝑛. The 

constant matrix [𝑍𝑝] (Eq. (2.5c)) is equal to 

     

         

1 1

0 1 0

1 1

2 1 0 1 1 0

T

p T

E E E
Z

E E E E E E

− −

− −

 −
   = 

 − 

 (2.3d) 

To decouple the system of 2𝑛 homogeneous ordinary differential equations in Eq. (2.1d), the 

Schur decomposition of the 2𝑛 × 2𝑛 coefficient matrix [𝑍𝑝] in Eq. (2.3d) is performed. 

     
T

pS V Z V =    (2.4d) 
where [𝑆] denotes a real Schur form matrix. The real Schur form matrix [𝑆] is a quasi-upper 

triangular matrix. Its diagonal comprises 1 × 1 and 2 × 2 blocks. The real transformation matrix 
[𝑉] is an orthogonal matrix satisfying 

     
T

V V I=  (2.5d) 
where [𝐼] is an identity matrix. 
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The behavior of the solution is assessed based on the sign of the eigenvalues to analytically 

impose boundary conditions in the SBFE equation solution. The Hamiltonian matrix [𝑍𝑝] has 

pairs of (, −) eigenvalues. Two sets of eigenvalues in two dimensions that correspond to the 

two translational rigid body movements are equal to zero. The remaining eigenvalues may be split 

into two equal-sized groups, one of which includes eigenvalues with positive real parts and the 

other of which includes eigenvalues with negative real parts. 

In order to satisfy the requirement of finiteness of displacement at the scaling center  = 0, 

equation (2.1d) is transformed into a form. The expression for the variable function {𝑋()} is 

( )    ( ) X V W =  (2.6d) 
where the orthogonal transformation matrix [𝑉] in Eq. (2.4d) is the basis and {𝑊()} is the 

generalized-coordinate function. Substituting Eq. (2.6d) into Eq. (2.1d) yields 

  ( )    ( ) 
, pV W Z V W


   =    (2.7d) 
Premultiplying Eq. (2.7d) with [𝑉]𝑇 and using Eqs. (2.4d) and (2.5d) results in a system of 

differential equations of the generalized coordinates {𝑊()} 

( )    ( ) 
,

W S W


  =  (2.8d) 
The real Schur form matrix [𝑆] of size 2𝑛 × 2𝑛 is divided into four submatrices of size (𝑛 × 𝑛) 

to decouple the system of equations in order to meet the scaling center boundary condition. 

 
 

 0

b

u

S
S

S

 
=  

 
 (2.9d) 

where a nonzero real matrix is represented by the symbol “∗”. The solutions for the bounded 

domain (subscript 𝑏 for bounded) defined by 0 ≤  ≤ 1 and the unbounded domain (subscript 𝑢 

for unbounded) defined by  ≥ 1 are connected to [𝑆𝑏] and [𝑆𝑢] in Eq. (2.9d), as will be shown 

later. In Equation (2.5d), the orthogonal transformation matrix [𝑉] is divided into four 

submatrices of size 𝑛 × 𝑛. 

 

( ) ( )

( ) ( )

u u

b u

q q

b u

V V
V

V V

    
    =

    
     

 (2.10d) 
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Superscript u denotes the set of basis vectors for displacement, and the first-row block of [𝑉] in 

Eq. (2.10d) is treated as the solution of displacements, with the second-row block representing the 

nodal force functions (superscript 𝑞 denoting the set of basis vectors of forces). 

The generalized-coordinate functions {𝑊()} are also divided into two subsystems of the same 

size, 𝑛, as the system of 2𝑛 equations in Eq. (2.8d). 

( ) 
( ) 
( ) 

b

u

W
W

W






  
=  

  

 (2.11d) 

Using Eqs. (2.2d) and (2.10d), Eq. (2.6d) is rewritten as two sets of equations that provide the 

solutions for the nodal displacement and force functions. 

( )  ( ) ( )  ( ) ( ) ( )u u

b b u uu V W V W     = +
     (2.12d) 

( )  ( ) ( )  ( ) ( ) ( )q q

b b u uq V W V W     = +
     (2.13d) 

The solution of Eq. (2.1d) with a general coefficient matrix [𝑍𝑝] becomes the solution of Eq. 

(2.8d) with a real Schur matrix [𝑆]. Using Eqs. (2.9d) and (2.11d), Eq. (2.8d) is demonstrated as 

( ) 
( ) 

 
 

( ) 
( ) 

d

0d

b bb

uu u

W WS

SW W

 


  

       
=    

       

 (2.14d) 

At the scaling center ( = 0), enforcing the condition of finiteness of solution will lead to 

( )  0uW  =  (2.15d) 
The proof of Eq. (2.15d) is precisely described in Chongmin Song (2018). 

Substituting Eq. (2.15d) into Eq. (2.14d), the first set of Eq. (2.14d) is written as 

( )    ( ) 
,b b bW S W


  =  (2.16d) 
The general solution of Eq. (2.16d) is expressed as 

( )     bS

b bW c =  (2.17d) 
where {𝑐𝑏} is the integration constant. 

Substituting Eqs. (2.15d) and (2.17d) into Eqs. (2.12d) and (2.13d) yields the solutions for the 

nodal displacement and force functions 
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( )  ( )    bSu

b bu V c  =
 

 (2.18d) 

( )  ( )    bSq

b bq V c  =
 

 (2.19d) 
At the boundary ( = 1), the static stiffness matrix of the S-element is equal to 

 
1

( ) ( )q u

b bK V V
−

   =      (2.20d) 
which is in the same form as Eq. (2.20c) obtained using the eigenvalue decomposition method. 

The solution of the displacement functions Eq. (2.18d) is formulated at  = 1, leading to 

  ( )  ( )  1
u

b bu u V c  = = =
 

 (2.21d) 
where [𝑆𝑏] = 1[𝑆𝑏] = [𝐼] has been applied. The integration constants {𝑐} are obtained as 

  ( )  
1

u

b bc V u
−

 =
   (2.22d) 

The nodal displacement and force functions are solved by substituting Eq. (2.22d) into Eq. 

(2.18d). 

2.6 Features and Example Applications of SBFEM 
The scaled boundary finite element method (SBFEM) is a recently developed technique for 

analyzing stress in various engineering applications. It has been used to study linear elastic 

fracture mechanics in unbounded domains with arbitrary geometry (Bazyar & Song, 2008), 

multimaterial wedges (C. M. Song, Tin-Loi, & Gao, 2010), automatic crack propagation using 

polygon elements (Ooi, Song, Tin-Loi, & Yang, 2012), crack and notch problems in piezoelectric 

materials (C. Li et al., 2013), elastic wave propagation in layered media (Chen et al., 2015), and 

nonmatching mesh problems in domain decomposition and contact mechanics (Xing, Zhang, 

Song, & Tin-Loi, 2019). In addition, the SBFEM can be combined with an automatic mesh 

generation approach based on the Quadtree/Octree algorithm to conduct stress analysis 

(Hirshikesh et al., 2019). The SBFEM and the Quadtree algorithm are mathematical models that 

work well together, with the S-elements allowing for arbitrary division of line elements based on 

element size and the Quadtree/Octree algorithm providing a detailed approach for mesh 

generation in 2D and 3D problems. The edges of smaller cells in the SBFEM are represented by 
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multiple line elements, which show the edges of the S-domain at different refinement levels and 

also model shared edges between S-domains at different refinement levels. 
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3. Automatic Mesh Generation 

3.1 Introduction 
Numerous scientific and engineering fields now use numerical approaches, ranging from 

straightforward static, fluid, dynamic, heat transfer, instability and damage mechanics studies to 

more complex applications including adaptive refinement analysis, massive deformation 

nonlinear analysis, and fluid dynamic issues with shock lines (Frey & George, 2007). The FEM is 

one of the well-known methods. The entire system must be broken down into numerous distinct 

subsystems or components whose behavior is easily understood before an analysis is conducted. 

Additionally, the amount of nodes in the mesh where they were put and the geometry of the 

pieces created both affect how accurate a FEM solution is. Large-scale difficult engineering 

simulations and scientific calculations via FEM are now more accessible to ordinary design 

operations and research students because to recent increases in computer performance. Similar to 

this, mesh generation and its uses have establishing effective. 

Sluiter (1982) originally devised the mesh generation method for automatically triangulating 

generic two-dimensional finite element domains. Nonuniform computational grids gained 

popularity over time for two reasons. First, they permitted the placement of points on the curved 

domain borders that had irregular shapes (Phai, 1982). Second, they facilitated the distribution of 

points with varied nodal spacing throughout the domain. In several literatures, a number of mesh 

generating strategies have been continually developed. Examples of successful methods for mesh 

generation using FEM include the Contour-line approach (S. Lo, 1991), Coring method (S. Lo & 

Lee, 1992), AFT (Zhu, Zienkiewicz, Hinton, & Wu, 1991), Delaunay triangulation (George & 

Hermeline, 1992), and Refinement by subdivision technique (Rivara, 1997). 

One of the prominent algorithms developed for 2D-FE mesh creation by Yerry and Shephard 

(1983) is called a Quadtree decomposition algorithm. One year later, this algorithm was extended 

into 3D mesh generation by Yerry and Shephard (1984) and was called an Octree decomposition. 

Thereafter, several variants of the techniques have been developed by (Greaves & Borthwick, 

1999; Jung & Lee, 1993; Weiler, Schindler, & Schneiders, 1996; Wille, 1992)). In 2002, 
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(Hjaltason & Samet)improved the speed of the Quadtree mesh construction using spatial indexes. 

An advantage of Quadtree/Octree mesh generation is that all the topological details can be 

memorized as a tree. Using this algorithm, assorted information such as level, neighbors, 

ancestors, and children of an element is easily obtained. In addition, this algorithm guarantees the 

construction of well-shaped elements with a reasonably tiny amount of computational time and 

memory storage. 

In the next section, the Quadtree and Octree mesh generation with the main concepts underlying 

spatial decomposition approaches are briefly explained. The image-based mesh generation with 

hierarchical-tree algorithm is also presented. These processes drastically reduce the amount of 

DOFs, accelerating the solution of the problem by alleviating computational effort and memory 

requirements. Finally, some works of hierarchical-tree algorithm for the generation of SBFE 

meshes directly from geometric models are presented. 

3.2 Concept of Quadtree algorithm 
The square enclosing box of the problem domain is used to represent the root cell of the Quadtree 

technique. This root cell (bounding box) must be big enough to hold all the nodal points. Starting 

from the root cell and continuing until the stopping requirements are satisfied, an initial cell is 

divided recursively by bisecting the edges into Quadtree cells (elements) in accordance with the 

given element size. As seen in Figure 2.9, newly generated cells are referred to as their parent 

cells during subdivision. 

 
Figure 2.9 The block partitioning and tree structure of a simple Quadtree, where leaf blocks are 

labeled with numbers and non-leaf blocks with letters. 
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Figure 2.10 Creating a circular domain based on quadtree method involves three steps: (a) the 

problem domain; (b) a quadtree mesh covering the problem domain; and (c) a quadtree mesh that 

has been cleared of extraneous cells. (Man et al., 2014) 

An example of meshing for circular domain based on quadtree approach is shown in Figure 2.10 

The root cell is a square bounding box that encloses the circle completely. To more accurately 

represent the circle at each level, the cells that intersect with the domain are divided into four 

groups by cutting the sides in half. The recursive subdivision procedure (shown in Figure 2.11a) 

is used to discretize a square domain into Quadtree cells (elements) with the desired element size 

while adhering to the one-level limitation. The difference in division levels between any two 

neighboring cells during mesh formation must be kept to a single value to ensure accuracy in the 

analysis. 

 

(a) (b) (c) 

(a) (b) 
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Figure 2.11 Quadrilateral element: (a) Level of subdivision between neighboring cells; (b) Family 

of transition. 

To employ the one-level Quadtree decomposition, first identify the types of quadrilaterals and 

their node-labeling scheme, as shown in Figure 2.11(b). In general, only six unique types of 

quadrilaterals in a transition square mesh fulfill the one-level refinement limitation (D. S. Lo, 

2014), which states that once constructed, an eight-node element may be split into four four-node 

elements. A four-node quadrilateral can have four neighbors along its edges, according to the 

neighboring relationship of the transition FE mesh (1–2, 2–3, 3–4, and 4–1, respectively). 

In accordance with the explanation of one-level limitation, Quadtree cells can be enforced by 

simply comparing the refinement level (RL) values of nearby cells. Each element in the first stage 

of a single Quadtree cell, a FE mesh of quadrilateral components, is assigned an RL value of zero. 

It is both essential and sufficient to examine the nearby RL values as the partition continues and 

when a cell is marked for refining. If the RL values of the surrounding cells are equal to or greater 

than the RL value of this cell, it can be split into smaller cells, and the RL value of the four 

subdivided cells is increased by one. The cell cannot be split until the cells around its are 

partitioned. A recursive algorithm can readily implement this basic yet effective RL-checking 

process. 

The process of partitioning a rectangular area with a one-level mesh restriction is shown in Figure 

2.12. At the beginning of the mesh, each element has a refinement level (RL) value of zero, as 

seen in Figure 2.12 (a). If element (1) needs to be divided to meet the element size requirement, 

the RL values of elements (2) and (3) nearby are checked to satisfy that the one-level mesh 

limitation is met As shown in Figure 2.12(b), when element (1) is divided, it creates four new 

elements with RL = 1. The RL values of element (5)'s neighbors (elements (1), (2), and (6)) are 

then checked to see if they need to be divided in the next phase. Since element (2) has a lower RL 

value than element (1), it is split first, as shown in Figure 2.12(c). The one-level restriction is 

satisfied for element (2) and it is refined by checking the RL values of element (2)'s neighbors. 

The process is repeated for the other elements, as shown in Figure 2.12(d). Both the analytical 
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function for element size distribution and the practical adaptive refinement analysis uses the 

recursive refinement technique to divide and refine the elements. 

 

Figure 2.12 Refinement of the mesh with a level restriction: (a) Initial mesh, (b) first subdivision, 

(c) second subdivision, and (d) third subdivision are all examples of subdivisions. 

3.3 Concept of Octree algorithm 
Meagher (1982) pioneered Octree encoding in 3D mesh creation. The creation process begins 

with a cube, which is the initial cell of the Octree grid, also known as the grid's root. By bisecting 

the sides, the cubic root (elements) is segmented into eight (23) cells until the specific halting 

conditions are met. Figure 2.13 depicts a three-level Octree. The cell information is efficiently 

stored in a tree-type data structure, with the root cell at the top of the storage structure's hierarchy 

of levels. 
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Figure 2.13 An example of Octree with three levels subdivision. 

Figure 2.14 shows an illustration of an Octree mesh for a cylinder as a starting point for mesh 

production. The bounding box is partitioned into eight cells in the first phase (Figure 2.14(a)). To 

more accurately reflect the border, the cells are constantly split (Figure 2.14(b)). The 2:1 

balancing restriction (Sundar, Sampath, & Biros, 2008) is imposed on the Octree grid once all 

subdivisions have been finished. Figure 2.14(C) shows how a balanced Octree turned out. The 

Octree mesh shown in Figure 2.14(d) is then created when the exterior cells (cells outside the 

issue domains) are eliminated. 

 
Figure 2.14 Creation of an Octree mesh for a cylinder (Y. Liu, Saputra, Wang, Tin-Loi, & Song, 

2017): (A) The problem domain and the basic bounding box division. Cells are adjusted in (b) 

order to suit the border. Octree mesh that is balanced (2:1 rule). (d) Octree mesh with exterior 

cells removed. 
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When one or more hanging nodes occur on one face of an Octree cell, this face is dissected into a 

mix of triangular and quadrilateral parts. There are also six unique configurations of hanging 

nodes on a face of an Octree cell, and the surface discretization configurations are shown in 

Figure 2.15. Notably, in Types 1, 2, and 5, a node is added to the middle of the face. Because the 

discretization of the edges remains unchanged, no changes are necessary on the other faces of the 

cell as a result of this change. In comparison to the preceding rectangular elements, only isosceles 

triangular and rectangular elements appear on the faces of an Octree cell with the inclusion of the 

extra center node. When the usual 2D Gauss-Lobatto quadrature is used, these elements provide 

precise integration results (Saputra, Talebi, Tran, Birk, & Song, 2017). 

 

Figure 2.15 On one face of an Octree cell in a balanced Octree decomposition, there are six 

different forms of surface discretizations for potential hanging node configurations. 

A mesh produced using the previously described surface discretization method is shown in Figure 

2.16. In the center of the image are the octree cells with hanging nodes. The left side of the image 

displays faces S1 and S2, each of which is connected to two cells. Using triangular and 

quadrilateral components, the faces are discretized in the right-hand part of the diagram, where 

face S1 is given a new node. The two cells that are closely related to that face are the only ones 

that are affected by the face discretization with hanging nodes. To control the hanging nodes, the 

graphic's right side additionally demonstrates the discretization of faces S3 and S4. 
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Figure 2.16 The surface discretization process of surfaces from S1 to S4 for a balanced Octree 

mesh with hanging nodes ((Saputra et al., 2017)). 

3.4 Automatic Image-based mesh 
Digital imaging techniques including X-ray computed tomography (X-ray CT) scans, 

electromagnetic resonance imaging, and ultrasound enable the noninvasive capturing of high-

resolution images of an object's internal structure. Color intensity, for example, reveals 

characteristics about an object's shape and material distribution in digital photographs. As a 

consequence, this data may be converted into a useful mesh for use in a variety of computations. 

This technique, colloquially known as image-based analysis, has been studied in a variety of 

domains, including material characterization for finite element analysis (FEA) (Giraldi, Nouy, 

Legrain, & Cartraud, 2013; Terada, Miura, & Kikuchi, 1997); Legrain, Cartraud, Perreard, and 

Moës (2011) have discussed the extended finite element method (X-FEM) with level set 

computational approach for image-based analysis. The picture is presumed to have been split and 

saved in digital format. 
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Figure 2.17 Multidimensional Arrays: Each element is defined by three subscripts; the row index, 

column index, and third dimension represent pages of elements. 

After a 2D picture is inputted, each pixel is considered to represent a square domain of size ℎ ×

ℎ, where ℎ is the image sampling interval. An original image color matrix (𝐈ori ) stores all of the 

pixel’s colors. In all arrays of matrix 𝐈ori, the color of each pixel is represented in the third 

dimension (page) by each array (Figure 2.17). The matrix's pages represented RGB triplets 

ranging from 0 to 255. (See Figure 2.18) This matrix, 𝐈ori, is padded with a backdrop color to 

create a square boundary matrix, 𝐈bound. The size of 𝐈bound is an integer power of two, i.e., 

2𝑛 × 2𝑛, where 𝑛 is a nonnegative integer. Any color can be used as the backdrop as long as it 

differs enough from every other hue in the original image. 

 

Figure 2.18 RGB color triplet cube for an image. 
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Figure 2.19a depicts a generic picture that will be discretized with a Quadtree mesh to 

demonstrate the Quadtree decomposition method. In this case, the standard for homogeneity is the 

tone of each cell. The picture in Figure 2.19a is split into four cells as a result of a preliminary 

application of the Quadtree decomposition (Figure 2.19b). The two bottom cells have now met 

the homogeneity requirement and will not undergo further partitioning. The two cells at the top 

are divided until the homogeneity condition is satisfied in all cells since they do not really fulfill it 

(Figure 2.19c). 

 

Figure 2.19 Balanced Quadtree mesh generation. 

When a balanced Quadtree mesh is employed, the range of possible cell types is constrained to 

only those shown in Figure 2.20. This may be used to solve shifting boundary problems or large-

scale computing problems efficiently. Only the cell type is required in a balanced Quadtree mesh, 

and this data may be precomputed, kept in CPU memory, and retrieved when necessary, during 

real calculations. 

 

Figure 2.20 Specific quadtree cells based on a balanced Quadtree decomposition. 
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3.5 Quadtree/Octree Algorithm for SBFE Analysis 
Automatic mesh generation was originally applied in SBFEM ((Ooi, Shi, Song, Tin-Loi, & Yang, 

2013)) using the Delaunay triangulation algorithm with a polygon element. After a year, a 

modified SBFEM including the Quadtree mesh generation technique was proposed for stress 

analysis ((Man et al., 2014)). This approach of mesh creation using SBFEM overcomes two 

significant issues associated with conventional FEM. First, the use of hanging nodes is permitted 

in the absence of element subdivision. Because the edges of a quadtree cell can be subdivided into 

multiple line elements, it is possible to achieve displacement compatibility with the smaller cells 

adjacent to the larger cells. Each Quadtree cell is represented as a polygon element as illustrated 

in Figure 2.21. Second, curved boundaries are fitted accurately without excessive Quadtree mesh 

refinement using a high-order element. Recently, SBFEM with Quadtree algorithm has been 

extended to perform stress analysis in 3D complex geometry using the Octree algorithm ((Talebi, 

Saputra, & Song, 2016)). The study demonstrated that the Octree algorithm can successfully 

perform automatic mesh generation using SBFEM in a 3D domain. Additionally, Y. Liu et al. 

(2017) utilized polyhedral mesh creation using standard tessellation language (STL) models for 

SBFEM. This technique uses an STL model, which is straightforward but reliable for meshing a 

model with complicated surface geometry, to systematically trim a polyhedral mesh. With 

encouraging outcomes, a Quadtree mesh generation method has recently been applied in SBFEM 

for the simulation of mesoscale fractures in concrete (Guo et al., 2019). Digital pictures are 

automatically discretized using a balanced Quadtree decomposition and an image smoothing 

method in order to prepare them for analysis (Figure 2.22). 
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Figure 2.21 Scaled boundary representation of Quadtree cells. ((Man et al., 2014)) 

 

Figure 2.22 Example of image decomposition by Quadtree algorithm with sample SBFEM 

polygon element. 

Each cubic cell is treated as a scaled boundary polyhedral element composed of surface 

components on the boundary to mitigate the aforementioned Octree decomposition. The issue 

area covered by the volume displayed in Figure 2.23 serves as an illustration of the salient aspects 

of an SBFEM. This volume covered the Octree cell's center, or the scaling center 𝑂. In terms of 
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local boundary coordinates (,  ), the surface elements along the border are specified. 

Therefore, a 2D interpolation shape function [𝑁(,  )] with natural coordinates −1 ≤  ≤ 1 

and −1 ≤  ≤ 1 may be used to represent each surface element. The reader can turn to these 

sources for further in-depth derivations and explanations: Saputra et al. (2017); Talebi et al. 

(2016)). 

 

Figure 2.23 The surface formulation of the polyhedral elements using the isoparametric triangular 

and quadrilateral finite elements, with scaled boundary finite element local coordinates in an 

Octree cell. 
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4. Topology Optimization 

4.1 Introduction 
The goal of structural optimization is to meet certain limitations, such as using a certain quantity 

of material, but yet achieving the greatest mechanical performance for a structure. Because they 

may be utilized to characterize structural behavior during service, mechanical characteristics 

serve as the foundation for the formulation of structural optimization issues. The need for 

lightweight, affordable, high-performance structures has grown due to a lack of material 

resources, environmental effect, and technological rivalry. As a result, structural optimization 

design has gained importance and appeal among academics. Size, form, and topological 

optimizations are the three subcategories of structural optimization. The oldest and most 

straightforward method for improving structural performance is size optimization. The idea is to 

experiment with different size parameters, such as plate thicknesses and the cross-sectional sizes 

of trusses and frames, to discover the best design. In order to create the best designs, shape 

optimization is typically done on continuum structures by changing preset limits. For discrete 

structures like trusses and frames, topology optimization is utilized to find the best spatial 

arrangement and connection of the bars. The optimum placements and cavity geometries within 

the design domains are found via topology optimization of continuum structures (Figure 2.24) (X. 

Huang & M. Xie, 2010). 

 

Figure 2.24 An example of conventional structural topology optimization (Xia, 2016). 

The least-weight truss layout's optimality criteria were developed by Michell (1904), who also 

conducted the earliest topology optimization (TO) research. 70 years later, Rozvany and his team 
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expanded Mitchell's theory to account for the precise analytical optimum solutions of grid-type 

structures (W Prager & Rozvany, 1977; G. Rozvany, 1972a, 1972b). Numerous structural TO 

techniques have been created and improved over the years, primarily for the purpose of 

identifying the lightest, stiffest, and strongest structures. Examples include the homogenization 

method (Martin Philip Bendsøe & Kikuchi, 1988), SIMP (G. Rozvany & Zhou, 1991; Zhou & 

Rozvany, 1991), and ESO (Yi M Xie & Steven, 1993; Yi Min Xie & Steven, 1997). BESO is a 

well-known method that Huang and Xie have proposed (X Huang & Xie, 2007b; Xiaodong 

Huang & Xie, 2009). By using this technique, lost items can be recovered in close proximity to 

severely stressed locations. The sensitivity filter and stabilization techniques are included into the 

convergent and mesh independent BESO method utilizing some historical data. 

In the next section, several concepts of TO algorithm are briefly explained. Notably, the TO 

algorithm can be readily used to achieve an optimal shape. However, the advantages and 

shortcomings of each algorithm differ. Finally, some literature reviews of BESO algorithm and 

procedures for obtaining an optimal solution are presented. 

4.2 Topology Optimization Algorithms 

4.2.1 Homogenization 

Cheng and Olhoff (1981) originally suggested the mathematical formulation for the best plate 

design in the homogenization method, which was based on the thin plate principle. They came to 

the conclusion that neither the class of smooth functions nor the class of smooth functions with a 

finite number of discontinuities typically has a global optimum solution. Years later, a 

microstructure was used to address a number of research on optimum design issues. The idea of 

relaxing was developed by Kohn and Strang (1986a) for the variational issue of formulating for 

optimum design. By taking into account the useful qualities for porous finite elements in a 

domain, (Suzuki & Kikuchi, 1991) use the homogenization technique (HM) to TO. The HM was 

initially created by Anathasuresh et al. as a structural optimization method for the creation of 

compliant mechanisms (Ananthasuresh, 1994). Assuming that these porous patches had a 

rectangular shape (Figure 2.25), HM was able to conduct TO since the holes’ length (𝑥), 
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breadth (𝑥), and orientation (𝑥) could all be mathematically described. One benefit of this 

approach is the creation of a porous optimum design with densities  ranging from zero to one, or 

0 ≤  ≤ 1. 

 

Figure 2.25 Rectangular hole in elements with various parameters i.e., (𝑥), width, (𝑥), and 

orientation, (𝑥). 

The whole concept of HM ((Allaire, 1997)) obtained the optimum sizes and orientation of holes 

in each element with both  and the Stiffness tensor (𝐸𝑖𝑗𝑘𝑙) of the domain related to (𝑥), (𝑥), 

and (𝑥). 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,       , ,ijkl ijklx u x x x E E u x x x     = =  (4.1) 
Yuge, Iwai, and Kikuchi (1999) state that the following four stages should be followed in order to 

apply modeling holes in HM procedures: (1) Assuming initial parameter values for (𝑥), (𝑥), 

and (𝑥); (2) determining the rotated homogenized effective elasticity tensor; (3) using FEA to 

obtain displacement field; and (4) updating the values of the three design variables and their 

Lagrange multipliers and repeating this process until the optimality criteria is met (William 

Prager, 1968). The fact that the holes are rectangular assures that the whole spectrum of elemental 

porosities, from completely empty to fully solid, is acceptable. HM with quadrilateral meshes 

with rectangular-shaped holes, however, may be challenging to apply in a triangle mesh in 2D 
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FEA issues. Additionally, HM implementation necessitates a great deal of effort because each 

element requires a lot of variables. 

Although the HM originally took use of TO compliant mechanisms and has significant 

implications for improving compliant mechanisms using continuum-based models, the HM will 

not be used in this dissertation to achieve the best possible design of compliant mechanisms. The 

goal of the research should be to find and create an optimization strategy that can result in final 

designs of compliant mechanisms that are stable and clear. The paper by Xia and Breitkopf 

(2017) explains additional efforts to apply HM. 

4.2.2 Solid Isotropic Microstructure with Penalization 

In order to address issues with compliant mechanism design, the SIMP technique has been 

investigated. The SIMP technique, which provided an artificial density (intermediate density) for 

forecasting the topology of a mechanical element, was initially studied by Martin P Bendsøe 

(1989). This density-based strategy for the ideal design of a compliant mechanism was recently 

proposed by Sigmund (1997). The SIMP method employs the material density to characterize 

each element, as opposed to the HM, which uses the sizes and orientation of the micro voids (Y. 

Li, 2014). As seen in Figure 2.26, the SIMP technique uses intermediate densities for each 

element. In structural optimization, the material density is punished to deter the development of 

intermediate densities. 

 

Figure 2.26 Comparison of SIMP and HM algorithms. 
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To get elemental densities to a precise specification of an optimal value, fictitious densities 
(0 ≤  ≤ 1) are subjected to a gradual penalization. By this, the Stiffness tensor (𝐸𝑖𝑗𝑘𝑙) can be 

represented as a function of the density, (𝑥), and it has the form (Martin P Bendsøe & Sigmund, 

1999): 

( ) ( )
P

ijkl ijklE x x E=  (4.2) 
where 𝑝 is the penalty factor, which is usually assumed to be greater than 1. The elastic tensor of 

the substance connected to domain is 𝐸̅𝑖𝑗𝑘𝑙 . It was covered by Rietz (2001) that this penalty 

element can vary. The SIMP approach for standard problems was first given by Sigmund (2001) 

in MATLAB and involved 99 lines of code. Andreassen, Clausen, Schevenels, Lazarov, and 

Sigmund (2011) offered an improved version that required just 88 lines of code. Additionally, K. 

Liu and Tovar (2014) expanded the SIMP approach into a productive 3D MATLAB code. Figure 

2.27 shows the process flow for these steps. At first, elemental densities were used to run the 

algorithm. The elemental elastic modulus, 𝐸𝑒, is calculated from Eq (3.2) using these densities. 

To prevent singularities in the design domain, a lower restriction on the modulus 𝐸𝑚𝑖𝑛 must be 

introduced. Consequently, Eq. 3.2 becomes 

( ) ( )min min

P

e e e ijklE E E E = + −  (4.3) 
The objective function for a task requiring the Compliance, 𝐶 minimization can be written as 

( )
1

N
T

e e e e e

e

C E u K u
=

=   (4.4) 

where 𝑁 represents the overall number of elements in the domain, 𝑢𝑒 represents the elemental 

nodal displacement matrix produced from a FEA, and 𝐾𝑒 represents the element stiffness. The 

elemental sensitivity number (𝑒) is calculated using sensitivity analysis by differentiating 

equation 3.4 with regard to 
𝑒

. To avoid areas of deleted and undeleted elements grouped in a 

grid-like arrangement, filtered elemental densities are further calculated using these sensitivity 

numbers (checkerboard pattern). New elements densities are calculated using filtered elemental 

sensitivities after filtering, and the entire process is repeated until the convergence condition is 

met. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 54 

 
Figure 2.27 Flowchart of the SIMP algorithm (Aremu, 2013). 

Continuous improvement has been made to the SIMP algorithm. The SIMP model and associated 

density-based approaches have been promoted and expanded to cope with the synthesis of large 

displacement compliant mechanisms (Y. Du, Chen, & Luo, 2008), capturing these techniques in 

geometrically nonlinear structures (Yoon & Kim, 2005). In 2010, Le, Norato, Bruns, Ha, and 

Tortorelli (2010) introduced stress-based TO issues with the SIMP method. Their research 

inspired the definition of stress to combat the stress singularity phenomena and the measurement 

of global and regional stress in conjunction with an adaptive normalization strategy to regulate 

local stress levels. 

According to Montes, Ivvan, Pe, and Rionda (2016), this is a strong TO algorithm that has been 

developed extensively in a variety of applications. However, because the SIMP approach is used 

to inhibit the emergence of intermediate densities in a solution, ambiguous resultant topologies 

typically show up in earlier work. 

4.2.3 Evolutionary Structural Optimization 

Yi M Xie and Steven (1993) devised a technique known as ESO. It is based on the idea of 

gradually eliminating inefficient materials from the structure's finite element model so that the 

structure's topology gradually grows toward an ideal state. The approach was initially used to 

look for answers to completely stressed design issues. The ESO method was then constantly 

improved and used to a variety of TO designs, including stiffness limitations (Chu, Xie, Hira, & 

Steven, 1996) and frequency difficulties (Yi Min Xie & Steven, 1997) Since its first appearance, 

the treatment has become extremely popular and has been the focus of in-depth research because 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 55 

to how straightforward it is. The stress criterion and sensitivity number were the two key element-

removing criteria used in this method under the ESO technique. 

Stress Criterion: Based on the amount of stress in the components, this idea was utilized to 

establish the rejection criterion. The degree of Von Mises stress in the structure's components, 

according to Hinton and Sienz (1995), was used as the criterion for determining which pieces 

should be removed. Small von Mises stresses were regarded as ineffective materials and 

eliminated. The Von Mises stress is expressed as follows in aircraft stress issues: 

2 2 2

11 22 11 22 123VM

e     = + − +  (4.5) 
where a FEA is used to determine the stress level in the elements. The elemental Von Mises stress 

in each element is compared to the maximum Von Mises stress of the structure 𝑚𝑎𝑥𝑉𝑀  in each 

iteration of the ESO method. Elements that comply with the following requirement are entirely 

eliminated from the structure's finite element model at the conclusion of each FEA. 

max

VM
ke

VM
RR




=  (4.6) 

The rejection ratio at iteration 𝑘 is represented here by 𝑅𝑅𝑘. The "stationary state" occurs when 

no more elements can be removed from the structure, and the iteration process is then complete. 

All structural parts have a stress level greater than 𝑚𝑎𝑥𝑉𝑀 × 𝑅𝑅𝑖 at steady state. The evolutionary 

rate (𝐸𝑅), which is referred to as an initial parameter in the ESO, is raised by the rejection ratio 

if it is essential at this point. 

1k kRR RR ER+ = +  (4.7) 
The same procedure is then repeated until the new steady state is attained after this increment. 

When the structure reaches the target stress level (for example, when there are no longer any 

components with a stress level less than 20% of the maximum stress), the operation is finished. 

The only situations in which a fully strained structure may be achieved are a few rare ones, thus 

this idea might not be the greatest one overall. 

Sensitivity Number: Sensitivity rankings may be used as one of the additional design domain 

element elimination criteria. The sensitivity number serves as a gauge for assessing how each 

factor affects the variance of the goal function or constraint for a given evolutionary process. To 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 56 

push structures toward optimums, low sensitivity element numbers are eliminated from the FEA. 

Chu et al. (1996) modified the elements removal criterion in the original ESO for the compliance 

optimization by employing the elemental sensitivity number 𝑒 as 
0T

e e e eu K u =  (4.8) 
where 𝐾𝑒0 is the volume of each elemental stiffness matrix and 𝑢𝑒 is the displacement vector of 

the 𝑒𝑡ℎ element resulting from the FEA of the structure. The optimization process adopted in the 

compliance-based procedure is basically the same as that used in the stress-based ESO procedure. 

The only necessary modifications are that 𝑚𝑎𝑥 and 𝑒 were replaced with 𝑚𝑎𝑥𝑉𝑀  and 𝑒𝑉𝑀, 

respectively. 

Overall, one of the suitable options for TO is the ESO algorithm. When the criteria are rigorously 

applied, this notion can yield the best result (G. I. Rozvany & Querin, 2002). To address 3D 

issues, the ESO method was improved. However, researchers pointed up a number of 

shortcomings. First, in certain circumstances, appropriate solutions cannot be achieved since the 

deleted parts could not be restored into the design domains. The rationale for this is that the 

material that was permanently eliminated in earlier iterations could now be required for the 

current iteration's best design (X. Huang & Y.-M. Xie, 2010). Second, in comparison to the ideal 

design from the previous iteration, the topology may alter significantly (Zhou & Rozvany, 2001). 

The conventional ESO approach failed to address significant numerical TO issues including 

checkerboard pattern and mesh dependence (X. Huang & M. Xie, 2010). 

Currently, researchers have proposed a new advancement for ESO. The technique included an 

evolutionary strategy additive algorithm (X Huang & Xie, 2007b). In order to address the 

drawbacks of the ESO approach, an enhanced version of the technique known as BESO was 

developed (Querin et al., 1998; Querin, Steven, & Xie, 2000; Querin, Young, Steven, & Xie, 

2000). The BESO approach and its modified version were used in this research to construct 

compliant systems. The next part will provide a detailed description and analysis of the BESO 

algorithm idea. 
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4.3 Bi–directional Evolutionary Structural optimization 
The BESO concentrates on concurrently adding and removing elements from the FE model of the 

structure and has a search capacity that is superior to that of the original ESO. The ESO technique 

entirely eliminates the inefficient components from the design domain, therefore the implications 

of these components on the objective function in subsequent stages of optimization are unknown. 

The primary idea of BESO is to come up with a plan to replace the deleted elements, if necessary. 

Studies on the ESO have led to major developments, one of which being the BESO method 

(Radman, 2013). 

4.3.1 Early BESO method 

The early BESO approach, which is an enhanced variant of the ESO methodology, both 

eliminates inefficient components from structures and recovers the elements that have been 

removed. By using a stress-based optimality criteria, this BESO technique progresses from a 

minimal ground structure to a fully strained structure. The early version of the BESO approach is 

more reliable and effective in structural optimization when compared to the ESO method (Yang, 

Xie, Liu, Parks, & Clarkson, 2002). 

Additionally, BESO was modified by Yang et al. (2002) to include perimeter control and a 

smoothing technique, respectively. Figure 2.28 shows the Messerschmitt-Bolkow-Blohm (MBB) 

beam in its ideal form. The end material volume, or objective volume, may be less than the initial 

design domain's volume. Additionally, this approach can enhance numerical stability and produce 

solutions independent of the mesh. X Huang and Xie (2007a) presented new work on the BESO 

approach in 2007. By expanding the linear BESO approach, a TO process for the stiffness design 

of structures with nonlinear material undergoing significant geometric deformations was 

provided. This improvement may have a big impact on local buckling issues. Furthermore, X 

Huang and Xie (2008) introduced the BESO algorithm of geometrically and materially nonlinear 

structures under displacement loading. 
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Figure 2.28 Design area and its optimal solution by the BESO algorithm (Yang et al., 2002). 

However, the aforementioned version of BESO (especially the early BESO method) was not 

suitable for obtaining optimal solutions (G. I. Rozvany & Querin, 2002; Zhou & Rozvany, 2001). 

This dissertation emphasizes the following defects. 

1. Checkerboard pattern: The sensitivity values may become discontinuous across element 

borders when a continuum structure is discretized using a low-order finite elements mesh. 

The generated topologies exhibit a checkerboard pattern of the continuum structure (Xuan, 

2012). Figure 2.29 depicts a typical continuous structure from the ESO approach in the form 

of a checkerboard pattern. Structure design with checkerboard pattern is impractical. The 

element-scaled details are difficult to interpret and fabricating such a design is also 

impractical. 

 

Figure 2.29 A typical checkerboard pattern. 

2. Mesh-dependency Problems: These are the issues encountered while trying to use different 

FE meshes to achieve diverse solutions. The numerical process of structural optimization 

will result in a topology with more members of smaller sizes in the final design when a finer 

mesh is generated. Instead of producing a more intricate or qualitatively different structure, 

mesh refinement should ideally produce a better finite element modeling of the original 
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optimum structure and a better description of boundaries (Sigmund & Bondsgc, 2003). 

Figure 2.30 shows challenges with mesh independence. 

 

Figure 2.30 A simply supported beam with mesh-dependency problems; (a). Problem set; 

(b). design result with coarse mesh; (c). design result with fine mesh. 

3. Computational Efficiency: The original BESO technique is considered a less efficient 

algorithm. Element addition and removal are carried out independently during the 

evolutionary process. As a result, multiple revisions are required to generate the final 

designs. Additionally, the algorithm is unable to ensure TO's correctness. The approach is 

unable to correctly estimate the change in the objective function because it is imprecise in 

estimating the sensitivity number of empty elements. 

4. Convergence: The empirical premise is the basic underpinning of the element 

removal/addition technique. It is necessary to have a solid mathematical justification that 

guides the evolutionary process in the direction of the best design. Without mathematical 

explanation, chaotic convergence results in the historical outcome of the optimization 

process. 
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4.3.2 Improvement in Computational Efficiency 

An enhanced BESO approach process has been offered as a novel BESO development (X Huang 

& Xie, 2007b). Discrete design variables are still utilized in this approach to overcome 

optimization issues. The optimization approach will use the approximate variation of the 

objective function to estimate the sensitivity numbers of the components after deleting individual 

ones. However, the method of optimization has been given a few innovative approaches. Every 

time the design domain is iterated, for instance, the elements might be concurrently removed and 

added. By applying the material interpolation approach, the erased elements (void elements) can 

be regarded as soft elements (Xiaodong Huang & Xie, 2009). Ferrari and Sigmund (2020) provide 

the condensed and effective MATLAB implementations of conformance TO for 99 lines in 2D 

and 125 in 3D continuum mechanics. 

4.3.3 Sensitivity Filter Scheme 

Additionally, by averaging the initial sensitivity values of nearby components, the filter scheme 

idea is used to increase each element's sensitivity number. The definition of a filter is a zone 

where all components have an impact on the center elements' sensitivity number (Figure 2.31). 

 

Figure 2.31 Illustration of Filter Scheme Concept. 

The process of filter scheme formation comprises two steps. In the first step, sensitivity numbers 

are defined in the nodes and called nodal sensitivity numbers. These nodes are the interconnection 

points of elements (Xuan, 2012). By averaging the sensitivity numbers of all elements connected 

to a node, nodal sensitivity numbers are obtained. The typical expression is 

1
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where 𝑀 is the total number of elements connected at 𝑗𝑡ℎ node and 𝑤𝑒 is the weight factor of the 

𝑒𝑡ℎ element which can be defined as 

1

1
1

1

ej

e M

ej

e

r
w

M
r

=

 
 
 = −

−  
 
 


 (4.10) 

where 𝑟𝑒𝑗 is the central distance between the 𝑒𝑡ℎ element and 𝑗𝑡ℎ node and 
1

1
M

e

e

w
=

= . 

However, this concept has no physical meaning; it was produced for the purpose of calculating 

sensitivity in each element. 

The second step is to produce elemental sensitivity numbers by averaging nodal sensitivity 

numbers within a filter. Theoretically the filter can be any shape as long as it covers an adequate 

neighborhood to ensure the smoothness of resulted values. Circular filters are illustrated below for 

easy understanding. 

 

Figure 2.32 Diagram of sensitivity filter method; green dots and the red line represent the 

included nodes/elements; blue dots represent the nodes/elements that are not included. 

As depicted in Figure 2.32, this scheme has a radius of filter, 𝑟𝑚𝑖𝑛, which does not change with 

mesh refinement. All nodes inside the filter domain will be identified as influential to the central 

element. Therefore, the elemental sensitivity number can be calculated using 
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 (4.11) 

where 𝐾 is the total number of nodes inside the filter domain and 𝑤(𝑟𝑒𝑗) is the weight factor 

obtained by 𝑤(𝑟𝑒𝑗) = 𝑟𝑚𝑖𝑛 − 𝑟𝑒𝑗. 

The sensitivity number of a void element is initially assigned as zero. According to FEA, 

displacement vectors for all DOFs are obtained. Initial sensitivity numbers can subsequently be 

calculated using Eq. (4.8). Based on initial sensitivity numbers, an improved value for both solid 

and void elements of the domain will be obtained with the filter scheme. The resulting sensitivity 

numbers are used in element selection for the topology design in the current iteration. By 

averaging, this filter scheme avoids a sudden change in sensitivity numbers around neighboring 

elements, and thus, the checkerboard pattern can be overcome. The filter size does not change 

with mesh refinement, so the problem of mesh-dependency no longer exists. 

4.3.4 Element Selection Process 

The ground domain elements are added and removed using the BESO algorithm to improve the 

structure. It applies two discrete values: 𝑥𝑚𝑖𝑛 for void elements and 1 for solid elements. The 

discrete element 𝑥𝑚𝑖𝑛= 0 is used in the original BESO, also known as hard-kill BESO. The total 

elimination of a solid element from the design domain, however, can lead to theoretical issues 

with TO and numerical instability. It is also possible to "eliminating" an element by decreasing its 

elastic modulus or one of its defining characteristics, such thickness, to a very low number. This 

technique is known as soft-kill BESO. The solid and void elements' sensitivity numbers are 

written as 

0

1 0

min min

1
when 1

2

1
when

2

T

e e e e

e
p T

e e e e

x

x x x


−


=

= 
  = 

  

u K u                  

u K u    

 (4.12) 

The sensitivity numbers of solid elements are independent of the penalty exponent 𝑝, while those 

of the soft elements depend on the 𝑝 value. 
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After improvements in elemental sensitivity numbers are determined from Eq. (4.11), the element 

selection process may commence. The initial volume in the design domain of a structure is 

assumed to be 1 or 100 %, i.e., all elements are solid. This total volume will be reduced step by 

step in iterations until the prescribed objective volume constraint 𝑉∗ is reached. An evolutionary 

rate ratio, 𝐸𝑅, is introduced to produce a volume constraint in iterations. For the iteration 𝑘, 

volume constraint 𝑉𝑘 is obtained from 

( ) *

1 1k kV V ER V−=  −   (4.13) 
The elemental sensitivity number with the largest values will appear as (1) until the solid 

elements amount to the volume 𝑉𝑘. The remaining elements with a volume of (1 − 𝑉𝑘) and low 

sensitivity numbers will be selected as absent (0). Consequently, current elements form a 

structure topology as a design of iteration 𝑘. 

4.3.5 Stabilization Scheme of the Evolutionary Process 

As previously mentioned, one topology design is obtained in each iteration. This design is 

analyzed in the next iteration and further improved upon to generate a new design. By repeating 

this process, the evolutionary procedure continues until the optimal solution is obtained. 

The goal function and associated topology, however, might not converge. Large oscillations in the 

objective function's development history are frequently seen in practice, slowing or preventing the 

convergence of the final design. The optimization procedure's reliance on discrete design 

variables of presence (1) and absence is the cause of this chaotic behavior (0). Averaging the 

sensitivity number with its historical data is a practical technique to address this issue, according 

to X Huang and Xie (2007b). The averaging method is described as 

1

2

k k

i i
i

 


−+
=  (4.14) 

where superscript 𝑘 is the current iteration number and  represents the sensitivity number. Let 

𝑖
𝑘 = 𝑖  in the current iteration for topology design and in the next iteration as historical 

information. The comparison experiment of the effectiveness in the stabilization process is 

depicted below. 
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Figure 2.33 History of evolution for structural compliance: (a) with no stabilization strategy; (b) 

with a stabilization strategy (X Huang & Xie, 2007b). 

As illustrated in Figure 2.33, fluctuations in the objective function of compliance occur during 

optimization without the stabilization scheme. When the averaging technique is applied, most of 

the oscillation is absent, and the process becomes very steady; the optimization result converges 

sooner than without averaging technique. The final topologies of the two processes are very 

similar, meaning this technique only influences the result of the evolutionary process to a small 

extent. 

Consequently, it is a good practice to average the current improved sensitivity numbers with 

historical ones and to use the averaged values for element selection. 

4.3.6 Convergence Criterion 

The cycle of performing FEA and element removal/addition continues until an objective volume, 

𝑉∗, is reached. Subsequently, the evolutionary process continues with the constant volume 𝑉∗. 

To confirm that an optimization has successfully obtained its final design, a convergence criterion 

must be satisfied as a stopping criterion of the evolutionary process. 
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 (4.15) 

This criterion implies that a design is considered to be convergent when the sum of objective 

functions from iteration (𝑘 − 2𝑁 + 1) to iteration (𝑘 − 𝑁) is adequately close to the sum of 
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that from iteration (𝑘 − 𝑁 + 1) to iteration (𝑘). The tolerance  can be determined as required 

by users. 

Once the above criterion is satisfied, the entire optimization process is terminated and the final 

design is taken as the optimum design ((Tikenoğulları, 2015)). 

4.3.7 Current BESO method 

The BESO algorithm is a method that has been continually refined and improved since it was first 

introduced. In its current form, the BESO method incorporates a number of new techniques into 

its optimization procedure. One example of this is the use of material interpolation schemes with 

penalization, which allows the BESO method to be applied to multiple materials at once (as 

described in (Xiaodong Huang & Xie, 2009)). This mathematical interpolation technique is 

demonstrated in Figure 2.34, which shows an example of an optimal solution using the BESO 

method with multiple materials. 

 

Figure 2.34 TO in multimaterials: (a) design domain and support conditions for a beam; and (b) 

BESO optimal design for a three-phase structure. ((Xiaodong Huang & Xie, 2009)) 
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Moreover, an extended BESO method for stiffness optimization with a material volume or local 

displacement constraint has been introduced by X. Huang and Y. Xie (2010). The results of this 

work show the possibility of solving any TO problems with multiple constraints using the BESO 

technique. In the same year, X Huang et al. (2010) also performed TO using the BESO technique 

for the frequency optimization problems. Recently, a method of BESO was formulated for 

compliance minimization (stiffness optimization) and incorporated into X-FEM ((Abdi, 2015)). 

The optimal solution by X-FEM combined with BESO is illustrated in Figure 2.35. The result 

confirms a significant improvement in the boundary representation of the solutions. 

 

Figure 2.35 TO of continuum structures using X-FEM: (a) design domain and support conditions 

for a cantilever plate; (b) BESO optimal design of the 2D cantilever plate. (Abdi, 2015) 

Furthermore, Xia, Zhang, Xia, and Shi (2018) have presented an evolutionary TO technique for 

stress minimization design utilizing the BESO method. Using the traditional p-norm global stress 

metric, the maximum stress is roughly estimated. In particular, the adjoint sensitivity of the global 
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stress measure is used to build a sensitivity number formulation that is computationally efficient. 

Figure 2.36 shows the stress minimization design for the TO method's optimal solution based on 

the BESO algorithm. Since the technique inherits the BESO method's advantage of being discrete, 

it automatically avoids the "singularity" issue in stress-based topology designs. 

 

Figure 2.36 Illustration of the L-bracket benchmark problem: (a) load and boundary conditions; 

(b) linear stiffness design without stress constraint; and (c) optimum design with stress constraint. 

(Xia et al., 2018) 

Finally, Han, Xu, and Liu (2021) suggested an expanded BESO approach for stress reduction TO 

of material nonlinear structures. Filtering topological variables and sensitivity values stabilized 

the optimization process for highly nonlinear stress behavior. Figure 2.37 shows the outcomes of 

the L-bracket utilizing the BESO technique for stress reduction and the elastic-plastic incremental 

stress-strain relationship. The suggested method's efficacy and applicability are well demonstrated 

by the optimal solutions to a number of 2D benchmark design challenges. 
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(b) (c) 
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Figure 2.37 The L-bracket benchmark under various topological designs and von Mises stress 

distributions, including (a) a linear stiffness design, (b) a material nonlinear stiffness design, (c) a 

linear stress design, and (d) a material nonlinear stress design ((Xu et al., 2021)) 

4.4 BESO algorithm Procedure 
The overall processes of evolutionary optimization for a single material can be outlined as 

follows. 

Step 1: To create an initial design, the whole design domain is discretized using a finite element 

(FE) mesh with sufficient elements. Initial property values 𝑥𝑖  (𝑥𝑚𝑖𝑛 or 1) are then assigned to the 

elements to construct the initial design. This process involves dividing the design domain into 

smaller elements in order to accurately represent the structure's geometry and material properties 

in the analysis. The initial property values assigned to the elements serve as a starting point for 

Problem statement with load and boundary conditions. 
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the optimization process, and will be adjusted during the optimization to improve the performance 

of the structure. 

Step 2: Define BESO parameters such as objective volume, 𝑉∗, evolutionary rate ratio 𝐸𝑅, radius 

of filter 𝑟𝑚𝑖𝑛, and penalty exponent, 𝑝. 

Step 3: Define the design domain, where the domain can be designable or limited. 

Step 4: Perform FEA for the real and virtual structures (which undergo the dummy load) and 

subsequently calculate the elemental sensitivity numbers 𝑖. 

Step 5: To determine the target volume for the next iteration of the design, the current volume of 

the design 𝑉𝑘 need to be calculated. If this current volume exceeds the target or objective volume 

𝑉∗, then using equation (Eq. 4.13) to calculate the target volume for the next design iteration. By 

using this equation, the target volume for the next design iteration is determined in order to more 

closely approach the desired objective volume. 

Step 6: The elemental sensitivity number are filtered by Eq. (4.11) for the whole design domain. 

Step 7: Reduce and add to the finite element model. For solid elements, the elemental density is 

changed from 1 to 𝑥𝑚𝑖𝑛 if the following criterion is satisfied: 

𝑒 ≤ 𝑡ℎ 

Conversely, the elemental density for a void element is changed from 𝑥𝑚𝑖𝑛 to 1 if the following 

criterion is satisfied. 

𝑒 > 𝑡ℎ, 

where 𝑡ℎ is the threshold of the sensitivity number, which was determined by the target material 

volume, 𝑉(𝑘+1), and the relative ranking of the sensitivity numbers. 
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5. Multimaterial Topology Optimization 

5.1 Introduction 
The material is predetermined in single-material topology optimization (SMTO), and the structure 

is optimized with regard to it. Engineers have more design freedom to develop a range of high-

performance inventive structures thanks to the SMTO design of the continuum structure, which 

optimizes size and shape. As a result, it is regarded as the most complicated area in structural 

optimization. The utilization of individual materials has advanced significantly thanks to this 

revolution, but the structural system as a whole is made up of a range of elements with unique 

features. Therefore, it is essential for the design and fabrication of the overall performance of the 

structure to optimize the topology of multiphase materials. 

In contrast to SMTO, MMTO is a subject of ongoing study. A combined functional structure with 

improved performance and cheaper cost may be created via the design of multiphase materials. 

The MMTO is designed to concurrently seek the best structural shape and different material 

distributions. The inherent mathematical structure of the design space is mostly responsible for 

MMTO's difficulties. When dealing with a single material, the design variable is just the 

occupancy of that material. The corresponding design space is typically sufficiently regular and is 

simple to resolve, for example by applying the optimality criteria (Deng, Vulimiri, & To, 2021). 

Since the introduction of MMTO, there has been constant progress employing different methods. 

One common SIMP material model in MMTO, for instance, takes into account three-phase 

materials, including two solids and one void (Bendsoe & Sigmund, 2003). Recently, Xiaodong 

Huang and Xie (2009) introduced the multimaterial BESO method. Ghabraie (2015) developed a 

more effective soft-kill BESO algorithm that can manage issues with both single- and multiple-

material distribution. D. Li and Kim (2018); Sanders, Aguiló, and Paulino (2018) as well as D. Li 

and Kim (2018) provide detailed descriptions of the MMTO continuum based on several 

objective functions. For the local modal problem in the dynamic frequency problem, an improved 

multiphase material BESO is also put out (Gan & Wang, 2021). 
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5.2 MMTO formulation 
The design area for the continuum structure will be divided into a few material parts for the TO 

design, and each of them will be given 𝑀 topological design variables that each represent a 

variety of materials. Figure 2.38 depicts a MMTO design schematic. The topology design 

variables in the TO framework of the soft-kill BESO algorithm only accept the value of 𝑥𝑚𝑖𝑛 or 

1, without the intermediate density value. For numerous materials, the topological design 

variables 𝑥 of the entire design domain may be written as 

𝑥𝑒
𝑚 = [

𝑥1
1 ⋯ 𝑥𝑛

1

⋮ ⋱ ⋮
𝑥1
𝑀 ⋯ 𝑥𝑛

𝑀
], (5.1) 

where 𝑛 is the overall number of elements in the design domain, 𝑀 is the overall number of 

materials phases, and 𝑥𝑒𝑚 is the design variable for elements with the 𝑚𝑡ℎ material. 

 

Figure 2.38 Schematic of the MMTO design. 

In density techniques, "porous" material qualities are determined by design variables (so-called 

densities) using an interpolation function. A power function is utilized as the relationship in the 

well-known SIMP approach. 

𝐸(1,2)(𝜑1) = (𝜑1)𝑝𝐸1 + (1 − (𝜑1)𝑝)𝐸2, (5.2) 

where 𝐸(𝑚) is the Elastic modulus of the 𝑚𝑡ℎ material and 𝜑(𝑚) is an artificial density of 𝑚𝑡ℎ 

material when 𝜑(𝑚) ∈ (0, 1]. For three-phase materials, Eq. (4.17) can be extended as 
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𝐸(1,2,3)(𝜑1, 𝜑2)
= (𝜑1, 𝜑2)𝑝𝐸1 + (𝜑1)𝑝(1 − (𝜑2)𝑝)𝐸2 + (1 − (𝜑1)𝑝)𝐸3 (5.3) 

The 𝑀 materials required by the SIMP method (𝑀 − 1) design variables (void is treated as a 

special material). From this point forward, the relative density and equivalent elastic modulus of 

multiphase materials may be represented as 

𝐸(1,…,𝑀)(𝜑) = ∑ 𝑤𝑚

𝑀

𝑚=1

𝐸(𝑀−𝑚+1) (5.4) 

where 

𝑤𝑚 = [1 − (𝜑
𝑚 − 𝜑𝑚𝛿𝑚𝑀)

𝑝]∏(𝜑𝑗)
𝑝

𝑚−1

𝑗=1

 (5.5) 

𝛿𝑚𝑀 = {
1,𝑚 = 𝑀 
0,𝑚 ≠ 𝑀 

 (5.6) 

Figure 2.39(a) shows the interpolation of Young's modulus for three-phase SIMP material 

methods (two solids and one void). An important method for updating material characteristics is 

the multimaterial interpolation theory. But the BESO algorithm divides the design variable into 

two categories: black and white (without the intermediate density). Figure 2.39(b) shows the 

BESO material interpolation system, which is portrayed as linear. The objective, constraints, and 

sensitivities of MMTO issues may be calculated via material interpolation such that optimization 

algorithms can solve MMTO problems. 

 

Figure 2.39 Plots and contours for elastic modulus of an element of the traditional MMTO: (a) 

material interpolation of elastic modulus for SIMP and (b) material interpolation for BESO. 
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5.2.1 Problem statement 

The static features of the structure with MMTO will be taken into account in this challenge. The 

MMTO problem takes into account the maturity level challenge of increasing a structure's 

stiffness or compliance while keeping the amount of total mass under control. The compliance 

minimization issue for SMTO is represented as 

min𝐶(𝑥) =∑𝐮𝒆
𝑻𝐊𝒆𝐮𝒆

𝒆

=
1

2
𝐅𝑻𝐮 

𝑠. 𝑡. ∶  
∑ 𝑥𝑒

1𝑉𝑒𝒆

∑ 𝑉𝑒𝒆
≤ 𝑉1

∗ 

𝐊𝐮 = 𝐅, for static problem 

𝑥𝑒
1 = 𝑥𝑚𝑖𝑛 𝑜𝑟 1, 𝑒 = 1,… , 𝑛 

(5.7) 

For MMTO, the compliance minimization problem in Eq. (4.22) is extended as 

min𝐶(𝑥) =∑𝐮𝒆
𝑻𝐊𝒆𝐮𝒆

𝒆

=
1

2
𝐅𝑻𝐮 

𝑠. 𝑡. ∶  
∑ [𝑉𝑒∏ (𝑥𝑒

𝑚)𝑗
𝑚=1 ]𝑒

∑ 𝑉𝑒𝑒
≤ 𝑉𝑗

∗ 𝑗 = 1, … ,𝑀 

𝐊𝐮 = 𝐅, for static problem 

𝑥𝑒
𝑚 = 𝑥𝑚𝑖𝑛 𝑜𝑟 1, 𝑒 = 1,… , 𝑛;  𝑚 = 1, , … ,𝑀 

(5.8) 

where 𝐶 is the compliance, 𝐅 is the external force vector, 𝑉𝑒 is the volume of 𝑒𝑡ℎ element, 𝑉𝑗∗ is 

a volume fraction limit, totally 𝑀 constraints for 𝑀 materials, and 𝐊 is the global stiffness 

matrix. 

5.2.2 Sensitivity analysis 

To obtain elemental sensitivity in multimaterial interpolation, taking derivatives on both sides of 

the equilibrium equation with respect to the design variable 𝑥𝑒𝑚 gives 

𝜕𝐊(𝑥𝑒
𝑚)

𝜕𝑥𝑒
𝑚 𝐮(𝑥𝑒

𝑚) + 𝐊(𝑥𝑒
𝑚)
𝜕𝐮(𝑥𝑒

𝑚)

𝜕𝑥𝑒
𝑚 = 0 (5.9) 

with basic transformation, we have 
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𝜕𝐮(𝑥𝑒
𝑚)

𝜕𝑥𝑒
𝑚 = −𝐊−𝟏(𝑥𝑒

𝑚)
𝜕𝐊(𝑥𝑒

𝑚)

𝜕𝑥𝑒
𝑚 𝐮(𝑥𝑒

𝑚) (5.10) 

From the compliance definition and equilibrium equation, the compliance of structure can be 

written as 

𝐶(𝑥) =∑𝐮𝑻(𝑥𝑒
𝑚)𝐊(𝑥𝑒

𝑚)𝐮(𝑥𝑒
𝑚)

𝒆

=
1

2
𝐅𝑻𝐮 (5.11) 

Any sensitivity in the multimaterial interpolation theory can be derived by differentiating Eq. 

(5.11) with respect to design variable 𝑥𝑒𝑚 

𝜕𝐶(𝑥)

𝜕𝑥𝑒
𝑚 =

1

2
𝐅𝑻

𝜕𝐮

𝜕𝑥𝑒
𝑚 (5.12) 

Sensitivities of the objective with respect to design variable 𝑥𝑒𝑚 can be expressed via the chain 

rule in an identical manner as single material case. 

𝜕𝐶(𝑥)

𝜕𝑥𝑒
𝑚 =

𝜕𝐶(𝑥)

𝜕𝜑𝑒
𝑚

𝜕𝜑𝑒
𝑚

𝜕𝑥𝑒
𝑚  (5.13) 

The objective function can only compute the derivatives with regard to their internal parameters 

thanks to this division of the derivatives. These derivatives are suitable for volume restricted 

compliance minimization. 

𝜕𝐶(𝑥)

𝜕𝜑𝑒
𝑚 = −

1

2
𝐮𝑻

𝜕𝐊

𝜕𝜑𝑒
𝑚 𝐮 (5.14) 

For term 𝜕𝐊
𝜕𝑥𝑒

𝑚 in material stiffness interpolation function, using the chain rule again, we separate 

the sensitivities of the design parameter as 

𝜕𝐊

𝜕𝜑𝑒
𝑚 =

𝜕𝐸

𝜕𝜑𝑒
𝑚

𝐊𝒆
𝐸𝑒

 (5.15) 

where 𝐊𝒆 is the elemental stiffness matrix, 𝜕𝜑𝑒
𝑚

𝜕𝑥𝑒
𝑚  is the separate sensitivity number of each design 

variable. For BESO approach, this separate sensitivity function computes as 

𝜕𝜑𝑒
𝑚

𝜕𝑥𝑒
𝑚 = (𝑥𝑒

𝑚)𝑝−1 (5.16) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 75 

The term 𝜕𝐸
𝜕𝜑𝑒

𝑚, which is required by sensitivity analysis computation, can be obtained from the 

material interpolation equations. We differentiate the multimaterial interpolation equations (5.4) 

and (5.5). 

𝜕𝐸(1,…,𝑀)

𝜕𝜑𝑒
𝑚 =

𝜕(∑ 𝑤𝑚
𝑀
𝑚=1 𝐸(𝑀−𝑚+1))

𝜕𝜑𝑒
𝑚 = ∑

𝜕𝑤𝑚
𝜕𝜑𝑒

𝑚

𝑀

𝑚=1

𝐸(𝑀−𝑚+1) (5.17) 

where 

𝑤𝑚 = [1 − (𝜑
𝑚 − 𝜑𝑚𝛿𝑚𝑀)

𝑝]∏(𝜑𝑗)
𝑝

𝑚−1

𝑗=1

 (5.18) 

𝛿𝑚𝑀 = {
1,𝑚 = 𝑀 
0,𝑚 ≠ 𝑀 

 (5.19) 

Using equilibrium equation and Eq. (5.10), the elemental sensitivity in multimaterial interpolation 

is further written as 

𝜕𝐶(𝑥)

𝜕𝑥𝑒
𝑚 = −

1

2
𝐮𝑻

𝜕𝐊

𝜕𝑥𝑒
𝑚 𝐮 = −

1

2
(𝑥𝑒
𝑚)𝑝−1𝐮𝒆

𝑻 𝑲𝑒

𝐸𝑒

𝜕𝐸

𝜕𝜑𝑒
𝑚 𝐮𝒆 = −𝛼𝑒

𝑚 , (5.20) 

where the component-wise of 𝑒𝑚 is the elemental sensitivity number for multimaterial element 

𝛼𝑒
𝑚 =

1

2
(𝑥𝑒
𝑚)𝑝−1𝐮𝒆

𝑻
𝑲𝑒
𝐸𝑒

𝜕𝐸

𝜕𝜑𝑒
𝑚 𝐮𝒆 (5.21) 

5.2.3 Filter Scheme 

The elemental sensitivity number in the structural domain is averaged using the filter strategy in 

order to prevent frequent numerical instabilities including checkerboard pattern and mesh-

dependency in TO. The filtered sensitivity number of multiphase materials can be extended from 

single material Eq. (4.11) as 

𝛼̂𝑒
𝑚 =

∑ 𝑤(𝑟𝑒𝑗)𝛼𝑒
𝑚𝑛

𝑗=1

∑ 𝑤(𝑟𝑒𝑗)
𝑛
𝑗=1

 (5.22) 

𝑤(𝑟𝑒𝑗) = max(𝑟𝑚𝑖𝑛 − 𝑟𝑒𝑗, 0), (5.23) 
where 𝑟𝑚𝑖𝑛 is the filter radius, 𝑛 is the total number of nodes inside filter domain, ̂𝑒𝑚 is the 

filtered sensitivity value of the 𝑒𝑡ℎ element in the 𝑚𝑡ℎ material, and 𝑟𝑒𝑗 denotes the distance 

between the center of elements 𝑒 and 𝑗. 
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5.2.4 Variable updating 

The sensitivity calculation method stated above offers a way to determine how the goal function 

changes over time. Elements with high sensitivity members are preferred kept in the design 

domain according to BESO's topological variable updating rule, whereas those with low 

sensitivity numbers are removed or allocated to weak-level structures. Notably, a multimaterial 

TO requires 𝑀− 1 sets of sensitivity information rather than a single piece of sensitivity 

information for solid void design in order to update the design variables. As a result, the 

relationship between the number of material kinds and the quantity of sensitivity information is 

linear. For instance, in the three-phase materials design, the single material 1 is present in the 

design space at the first step of optimization. The stated volume-removal rate, 𝑅𝑅, (also known 

as the evolutionary rate ratio, 𝐸𝑅), for material 1 and the defined volume-addition rate, 𝐴𝑅, for 

material 2, serve as the starting points for the optimization-process evolution. The following 

iteration's goal volume in the three-phase materials may be described as 

𝑉1
∗(𝑘+1) = max(𝑉1

∗(𝑘)(1 − 𝐸𝑅), 𝑉1
∗) 

𝑉2
∗(𝑘+1) = min(𝑉2

∗(𝑘)(1 + 𝐴𝑅), 𝑉2
∗) 

𝑉3
∗(𝑘+1) = 1 − 𝑉1

∗(𝑘+1) − 𝑉2
∗(𝑘+1), 

(5.24) 

where 𝑉𝑚∗(𝑘) is a representation of the material's current volume fraction of phase m at the 𝑘𝑡ℎ 

iteration. The volume of base material 2 is sustainably raised until the required volume of material 

2 is satisfied, as shown from Eq. (4.34), as can be seen. The volume of base material 3 (the void 

element) then starts to rise as the volume of material 2 remains static and the volume of material 1 

keeps shrinking. As was already established, the material interchanging only happens between 

two adjacent stages, and it ends when the volume restrictions of all the foundation materials are 

met. 

5.3 MMTO–BESO Procedure 
The entire MMTO–BESO-SBFEM procedure is simulated as in the SMTO algorithm described 

above. However, MMTO requires 𝑀 − 1 groups of sensitivity information to update the design 
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variables rather than a single sensitivity information for solid void design. From this point, the 

design variable for the MMTO must have an 𝑀 set to perform a material interpolation scheme. 

The flowchart of the MMTO scheme is shown in Figure 2.40 to help with understanding the 

reporting in the MMTO section. Notably, the MMTO-BESO (3-phase materials) method adds 

materials 2 and 3 without the intermediate element density and removes material 1 while 

progressively bringing the volume fraction closer to its volume constraint value. The optimization 

iteration procedure comes to a conclusion and the desired TO result is obtained when the volume 

of all materials is satisfied, and the minimal compliance of the objective function starts to 

converge. 
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Figure 2.40 Flowchart of an MMTO–BESO with SBFEM analysis linked to corresponding 

equations.  
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CHAPTER 3 TOPOLOGY OPTIMIZATION FOR STATIC LOAD 

1. Introduction 

The soft-kill BESO (boundary element single objective) algorithm has become a popular method 

for solving topology optimization (TO) problems. The main goal of linear static response TO is to 

maximize stiffness, and there are two approaches to achieve this. One approach is to alter the 

material properties of a given structure configuration to optimize its stiffness, while the other 

approach involves fixing the material properties and choosing an arrangement that maximizes 

stiffness. TO typically focuses on the latter approach, which involves minimizing the compliance 

(the objective function) to maximize stiffness, subject to a specified volume constraint. Many 

researchers find it challenging to solve more complex TO problems, as illustrated in Figure 3.1. 

The standard finite element method (FEM) is often used to perform numerical analysis of optimal 

solutions for static responses obtained using the BESO technique, and an optimization 

methodology has been discussed in detail in previous sections. 

The strong form boundary element method (SBFEM) was developed as an extension of the 

classical finite element method (FEM) in order to address some of the limitations and 

shortcomings of the FEM, such as its inability to handle complex geometries, nonmatching 

meshes, and hanging nodes in discretized domains. As briefly mentioned in Chapter 2, the 

SBFEM uses an image-based Quadtree/Octree approach to mesh initial continuum mechanic 

models, which effectively handles complex geometries. The use of S-elements in the SBFEM also 

allows for greater topological flexibility, eliminating the issue of hanging nodes. It is not 

necessary to further partition the Quadtree/Octree cells into finite elements with limited 

topological shapes, as the SBFEM can effectively handle a wide range of geometries. Overall, the 

combination of the SBFEM and the Quadtree/Octree approach allows for improved performance 

in structural analysis. 
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Figure 3.1 Illustration of typical structural topology optimization. 

In this chapter, several benchmarks from the literature are selected to be solved using standard 

FEM with uniform meshes. Moreover, the optimal results from FEM are directly compared to the 

solutions from SBFEM intending to highlight the characteristics of the optimization and to 

validate the approaches that have been provided. The several examples is the short cantilever and 

symmetric half beam in 2D problems from the study by X Huang and Xie (2007b). Finally the 3D 

Messerschmitt–Bolkow–Blohm (MBB) beam optimization problem is solved and compared to the 

solution found in the study by X. Huang and M. Xie (2010). Subsequently, the convolution-

filtered technique is applied to the benchmark problems, resulting in a flexible mesh with 

significantly fewer DOFs than conventional grid solutions. Finally, the MMTO is employed to 

achieve the optimal design with different materials. 
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2. SMTO Research Procedure. 
2.1 The Quadtree/Octree Grid 
Quadtree meshing is a process where a space is divided into four equal-sized quadrants, called 

"children," which can be further divided if a higher resolution is needed in a specific area. These 

quadrants are organized in a hierarchical tree structure, with the coarser "parent" at the top and the 

more refined regions towards the bottom according to predetermined rules. In MATLAB, the 

"qtdecomp" function can be used to divide image files into quadtrees based on the uniformity of 

color in each region, meaning that each quadrant can only contain one color. The creation of 

Octree meshes uses this idea in the same way. Additionally, MATLAB comes with a built-in 

feature called "otdecomp" that breaks down image files into an octree mesh. An image matrix 

model's bounding box is first identified as a square or cubic shape, and the user then specifies a 

maximum and minimum cell size. The border box is split into uniformly sized cells that do not 

exceed the permitted maximum cell size. Figure 3.2 shows examples of quadtree image-based 

implementation for concrete specimens subjected to uniaxial tensile strain at the top and bottom 

of the picture. In the illustration of Figure 3.3, the gray substance stands in for mortar, while the 

black substance represents aggregates. For both materials, Figure 3.3a for the aggregates and 

Figure 3.3b for the mortar, the results of the tensile primary stress are likewise displayed. 

   
Figure 3.2 Mesh generation of concrete specimen by quadtree and an example of 2D concrete 

picture. 
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Figure 3.3 The tensile principal stress in (a) both materials, (b) aggregates, and (c) mortar for 2D 

concrete. 

2.2 Steps in Scaled Boundary Finite Element Analysis 
The flowcharts in Figure 3.4 and Figure 3.5 have been included to help readers clearly understand 

the procedures, computational complexity, and effort needed for an SBFEM analysis because the 

whole process of TO is carried out using SBFEM. SBFEM investigations are best suited for 

domains with a low surface-to-volume ratio since constraining discretization along the border 

primarily compromises the resolution of an eigenproblem. 

 
Figure 3.4 SBFEM analysis flow chart with associated equations from Chapter 2.2. 
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Figure 3.5 Steps comprising SBFEM analysis (Egger, 2019). 

Each of the three coefficient matrices must be assessed and built separately for each of the three 

element-wise coefficient matrices using a standard numerical integration methodology, which is 

similar to the method used in traditional FE-based techniques. Contrary to the X-FEM, no extra 

enrichment words are required to be added. Consequently, it is not necessary to include the 

integration of singleton words. Many worries about the condition number of the stiffness matrix 

may be avoided with this technique since all the SBFEM components can be handled similarly. 

There is no need for any extra presumptions, such as those relating to the type of singularity to 

include in the enrichment of the crack tips. 

2.3 Steps in the BESO-SBFEM algorithm 
The entire BESO-SBFEM procedure for obtaining optimal solutions corresponding to the 

objective function comprises the following steps. 

1. Precompute: For the 2D case, 16 possible Quadtree element realizations are precomputed 
with modulus of elasticity equal to one, and the steps differ slightly between 2D and 3D 
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since in 3D, the precomputation procedure employed for 2D results in 4096 unique 
Octree element realizations, whose construction requires building a substantial library 
and accompanying algorithmic logic. Instead, the unique element realizations for each 
3D mesh are determined, and these are computed once and subsequently cloned for the 
remaining mesh. 

2. Initialization: In this step, the dimensions of the design domain, an automatic image-
based Quadtree/Octree mesh generation from previous sections, and the initial material 
distribution within the design domain are defined. By exploiting hierarchical image 
decomposition techniques, regions with homogeneous material properties are identified 
and represented by a single element. Boundary and loading conditions are prescribed and 
parameters of the optimization algorithm such as performance evolution rate ratio, 𝐸𝑅, 
radius of filter, 𝑟𝑚𝑖𝑛, penalty exponent, 𝑝, and the final volume fraction, 𝑉∗, are defined. 

3. Scaled Boundary Finite Element Analysis: After the design domain is automatically 
discretized by Quadtree/Octree decomposition, the SBFE analysis of the initial design 

domain is utilized. Numerical solutions such as the strain {} and stress {} field on the 

boundaries are obtained from Eqs. (2.43a) and (2.44a), respectively 

4. Calculate the structural responses over the design domain (Sensitivity number 𝑖 in each 

S-element). 
5. To determine the target volume for the next iteration of the design process, the current 

volume, 𝑉𝑘, is compared to the objective volume, 𝑉∗. If the current volume is larger than 
the objective volume, the target volume for the next design can be calculated using 

Equation (4.13). This equation allows the optimization algorithm to adjust the target 
volume based on the current volume, ensuring that the final design meets the desired 
volume constraint. 

6. Filter sensitivity numbers for each S-element in the entire design domain using Eq. (4.11) 
to avoid the checkerboard pattern and mesh-independent issues. 

7. To achieve the convergent without large oscillations, the current sensitivity numbers of 
the current step are averaged with the previous step using Eq. (4.15) 
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8. The threshold sensitivity, 𝑡ℎ is chosen so that the number of elements with sensitivities 
lower than 𝑡ℎ is equal to the number of void elements. This is done by ranking all 
elemental sensitivity numbers. 

9. To reset the design variables of all elements, the sensitivity of each element is compared 
to a threshold value, 𝑡ℎ If the sensitivity is less than the threshold, the minimum 
density, 𝑥𝑚𝑖𝑛, is assigned to the element; otherwise, a density of 1 is assigned to the 
element. This process allows the optimization algorithm to identify elements that do not 
significantly contribute to the performance of the structure and assign them a minimum 
density, reducing the weight of the structure. 

10. Repeat 2–9 until the prescribed volume is achieved and the convergent criterion from Eq. 
(4.15) is satisfied. 

The process of generating the mesh for the structure is simple and automatic, requiring only a 

minimal number of mesh control parameters from the user. Figure 3.6 shows the flow chart of the 

overall process, where 𝑆𝑚𝑎𝑥 is the maximum cell size allowed in the Quadtree/Octree algorithm, 

𝑆𝑚𝑖𝑛 is the minimum cell size allowed to appear in the Quadtree/Octree algorithm, and 𝑆𝑡𝑜𝑙 is a 

value between 0 and 1. This value is multiplied by 256 and rounded to the nearest integer to 

determine the allowable range of color intensity that will be used as a stopping criterion during 

the Octree decomposition. In other words, the range of each Octree cell is calculated by 

subtracting the maximum and minimum color values in the cell, and if this range is less than or 

equal to the permitted range, the decomposition process is terminated. The use of the 

Quadtree/Octree algorithm allows the mesh to be adapted to the geometry of the structure and 

ensures that the cells are of an appropriate size for the analysis being performed. 
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Figure 3.6 Flow chart of the overall process 
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2.4 Benchmark problems for 2D uniform mesh SMTO with static load structures 

2.4.1 SMTO of a short cantilever beam 

Problem statement 

According to X Huang and Xie (2007b), the design domain for a short cantilever beam is 2L in 

length, L in height, and 1 mm in thickness (as shown in Figure 3.7). A downward force, 𝑃, is 

applied at the center of the free end, and the modulus of elasticity is set to 1, with a Poisson’s 

ratio of 0.3. The available material (volume fraction, 𝑉∗) occupies 40 % of the design domain, 

and the BESO (boundary element single objective) parameters include an evolutionary rate ratio 

of 10 %, a maximum aspect ratio of 5 %, a filter radius of 8 mm, and a convergence criterion of 

0.01 %. 

 

Figure 3.7 Dimensions of the design domain, boundary, and loading conditions for a short 

cantilever. 

SMTO Results using the FEM 
As demonstrated in this dissertation, the soft-kill BESO technique was effectively implemented 

using standard FEM and an optimal solution for the short cantilever benchmark problem was 

established. The domain is discretized into different mesh sizes: 128 × 64, 256 × 128, and 512 × 

256 orthogonal finite element mesh composed of four-node quadrilateral elements. The evolution 

of the mean compliance for all mesh sizes are plotted in Figure 3.8. Table 3.1 depicts the optimal 

topology results for a variety of mesh sizes and the evolution of the mean compliance. 
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Figure 3.8 Evolution histories of mean compliance for 2D-MBB beam using FEM + BESO. 

 

Mesh size Iterations Compliance Optimal result 

128  64 38 38.3007 

 

256  128 154 37.6805 

 

512  256 204 37.6298 

 
Table 3.1 Topology results of short cantilever beam performed using FEM + SMTO-BESO. 
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SMTO Results using the SBFEM 
As aforementioned on the results from single material TO using FEM, this work is motivated by 

the adoption of SBFEM for solving TO problems, and with several beneficial features, the 

SBFEM has proven itself as a remarkably versatile tool in automatic image-based stress analysis. 

Compared to conventional FEM, the initial design domain is also uniformly discretized into the 

same grid. The evolution of the mean compliance and the optimal topology results for a variety of 

mesh sizes are displayed in Figure 3.9 and Table 3.1. 

With image-based implementation, remeshing at each iteration is required, and the historical 

compliance averaging scheme in Eq. (4.14) is not utilized in the processes. 

 

Figure 3.9 Evolution histories of mean compliance for 2D-MBB beam by using SBFEM + BESO. 
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Mesh size Iterations Compliance Optimal result 

128  64 39 38.0819 

 

256  128 99 37.6288 

 

512  256 190 37.6232 

 
Table 3.2 Topology results of short cantilever beam performed using SBFEM + SMTO-BESO. 
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2.4.2 SMTO of a Symmetric Beam 

Problem statement 
In this working example, 𝑃 loads the beam at its upper center, as seen in Figure 3.10. With a 1-

mm thickness, the symmetric right half of the 5𝐿 × 𝐿 domain is discretized using four-node plane 
stress elements with three different mesh sizes: 320 × 64, 640 × 128, and 1280 × 256. Assume 

that the final construction can only be built using 50% of the design domain volume and that the 

material is elastic. When the material has a Young's modulus of E = 1 and a Poisson's ratio of v = 

0.3, it initially fills the whole design domain. In this example, the BESO parameters utilized are: 

𝐸𝑅 = 5%, 𝐴𝑅𝑚𝑎𝑥  = 5%, 𝑟𝑚𝑖𝑛 = 8 pixels, and  = 0.01%. 

 

Figure 3.10 The dimensions of the design domain, as well as the boundary and loading conditions 

of a beam. 

SMTO Results using the FEM 
Here, the symmetric beam benchmark issue is solved to the best of its ability utilizing the soft-kill 

BESO approach and conventional FEM. Figure 3.11 Table 3.3 shows the histories of the mean 

compliance and the best solution for different mesh sizes. The mean compliance occasionally 

jumps due to a large change in topology brought on by the removal of one or more particular 

regions in one iteration. 
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Figure 3.11 Evolution histories of mean compliance for symmetric beam using FEM + BESO. 

Mesh size Iterations Compliance Optimal result 

320  64 32 30.7552 
 

640  128 91 30.6837 
 

1280  256 73 31.1033 
 

Table 3.3 Topology results of symmetric beam performed by FEM + SMTO-BESO. 

The aforementioned examples show that the BESO approach may determine the best topology 

from a complete design, and more particularly, the BESO technique's nature is employed to 

search for an acceptable guess design for usage in later rounds before achieving the desired 

volume. The model's whole volume must be reduced over numerous phases to reach the 

appropriate volume. After that, the volume stays constant but the mean compliance steadily 

declines until convergence is reached. 

SMTO Results using the SBFEM 
In the same manner as the previous example, the TO of symmetric beam problem can be 

performed using the SBFEM instead of the conventional method. At this point, the evolution of 
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mean compliance and the optimal topology results for this example are shown in Figure 3.12 and 

Table 3.1. 

 

Figure 3.12 Evolution histories of mean compliance for symmetric beam using SBFEM + BESO. 

Mesh size Iterations Compliance Optimal result 

320  64 68 30.4983 
 

640  128 83 30.8927 
 

1280  256 89 31.3030 
 

Table 3.4 Topology results of symmetric beam performed using SBFEM + SMTO-BESO. 

The SBFEM-BESO approach is presented and used to optimize the topology of 2D continuum 

structures from all of the 2D instances. The SBFEM is discovered to be a promising numerical 

strategy and a substitute for the FEM in resolving structural optimization issues, according to the 

findings. Such S-elements are matched and can speed up calculation due to the benefit of 

distinctive patterns of node configurations that have been computed in advance. 
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2.5 Benchmark problems for 3D uniform mesh SMTO with static load structures. 

2.5.1 SMTO of a 3D-MBB Cantilever Beam 

Here, an extended cantilever beam example from a 3D scenario is shown to illustrate the 

computational effectiveness of the current BESO approach. A 3D cantilever's design domain is 

seen in Figure 3.13 with a specified load, 𝐹 = 1 kN, operating at the free end's center. Brick 

pieces with a size of 64  32  16 have been used to represent the building. Poisson's ratio v = 0.3 

and the elastic Young's modulus 𝐸 = 1 GPa are presumptive values. 7.5% of the design domain's 

whole volume is represented by the volume fraction, and BESO begins with the complete design. 

𝐸𝑅 = 3%, 𝐴𝑅𝑚𝑎𝑥  = 50%, 𝑟𝑚𝑖𝑛 = 3 voxels, and  = 0.1% are additional BESO parameters. It is 

seen that a very high AR max is used, thereby removing the cap on the maximum number of 

components that may be added during each iteration. 

The optimal design shown in Figure 3.14(b) is concluded by the SIMP algorithm after 200 

iterations. The structural compliance of the final topology is 21.0536 N-mm (Figure 3.14[a]). This 

final layout and overall compliance are achieved by compact 169 lines MATLAB code ((K. Liu 

& Tovar, 2014)). 

 

Figure 3.13 Schematic design domain for a 3D MBB cantilever problem. 
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Figure 3.14 Solving 3D-MBB cantilever beam using the SIMP when 𝑝 = 3.0 ((K. Liu & Tovar, 

2014)): (a) Evolution histories of the mean compliance (C = 21.0536 at iteration 200) and (b) 

optimal solution for 3D MBB cantilever beam. 

Herein, the soft-kill BESO technique is successfully performed in the 3D domain using the 

SBFEM and an optimal solution to the single-phase material of 3D cantilever beam benchmark 

problem is obtained. The histories of the mean compliance and optimal solution with various 

mesh sizes are depicted in Table 3.5 

 
 

Evolution histories of mean compliance when 

using FEM + BESO (C = 18.2157) 
An optimal solution with 64  32  16 

(iteration 51) 
Table 3.5 Our solution of 3D MBB cantilever beam using SMTO - BESO + SBFEM. 

(a) (b) 
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The solution shows that SBFEM are appropriate numerical techniques for performing TO. 

However, with the large amount of DOFs in design domain, the analysis for each optimization 

iteration is performed with high computational effort, and when varying the discretized elements 

into a smaller size, higher memory is required, resulting in lack of CPU memory. 
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3. Adaptive mesh refinement 

In applications such as image processing, a convolution-based filtering technique can be applied 

to mesh generation ((Egger, Saputra, Triantafyllou, & Chatzi, 2019)). Conversely to conventional 

approaches, remeshing at each iteration is required, a filter utilizing MATLAB’s built-in ‘conv2’ 

function is implemented with a radius of density 𝑟𝑑𝑒𝑛 pixels. This filtering process is a technique 

for modifying or enhancing an image. This process is known as the density filter technique. Their 

defining characteristic comprises the inclusion of void material during analysis by severely 

reducing such an element’s stiffness. Input of convolution function is easily constructed by small 

scripts or obtained from (Andreassen et al., 2011). The example of 2D image convolution filtered 

is depicted in Figure 3.15. 

 

Figure 3.15 Example of 2D image convolution filtered: the parameter 𝑟𝑑𝑒𝑛 = 4 pixels. 

With the benefit of convolution filter, the grid of design variables is fed as a gray-scale image to 

the decomposition algorithm, which outputs an analysis-ready hierarchical mesh. The process of 

“conv2” with Quadtree mesh generation is summarized in flowchart as shown in Figure 3.16. 

Unlike the conventional grid approaches, utilizing image compression techniques facilitates the 

creation of automated AMs. The suggested drop-in replacement for the forward solver 

significantly decreases the amount of DOFs present during analysis. This concept is constructed 

and applied to the TO of linear 2D and 3D problems, and the solutions obtained are compared to 

those produced using conventional element-based approaches in order to demonstrate its 

effectiveness. 
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Figure 3.16 Flowchart for BESO+SBFEM with convolution filtered. 
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3.1 Benchmark problems for 2D AM-SMTO with static load structures 

3.1.1 AM-SMTO of a short cantilever beam 

In this example, a short cantilever problem from section 2.4.1 is recalled to perform TO using a 

convolution-filtered technique. The prescribed volume fraction, 𝑉∗, is chosen as 0.4 and a filter 

with MATLAB’s built-in “conv2” function is applied with a radius of 8 pixels. Three cases of 

elements arising during Quadtree decomposition are limited in size to ≤ 64, 32, and 16 pixels, 

and it should be noted that the subdomains are varied in size and the calculated sensitivities must 

be normalized per unit volume. 

Case Max. size (Pixels) Iterations Compliance Optimal result 

1 64 36 36.9363  

 

2 32 27 36.9442  

 

3 16 98 37.5389  

 
Table 3.6 Topology results of AM for short cantilever beam performed using SBFEM + SMTO-

BESO. 
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The optimal topology results for AM are shown in Table 3.6, and the evolution of the mean 

compliance for all cases are plotted in Figure 3.17. Clearly, the results of AM from a convolution-

filtered technique are less computationally efforted than are uniform meshes (UM) in previous 

sections. Moreover, coarse discretization results in a stiffer structure and therefore lower 

compliance. 

 

Figure 3.17 Evolution histories of mean compliance for AM of short cantilever beam using 

SBFEM + BESO. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 101 

3.1.2 AM-SMTO of a symmetric beam 

The same concepts are applied to the symmetric beam problem in Section 2.4.2. Applying the 

convolution-filtered technique with 𝑟𝑑𝑒𝑛 = 8 pixels and 𝑟𝑚𝑖𝑛 = 8 pixels, three cases of 

elements arising during quadtree decomposition are limited in size to ≤ 64, 32 and 16 pixels. For 

the first iteration, the discretization of the conventional grid is adopted and the optimal topology 

results for all cases of AMs are shown in Table 3.7. The evolution of the mean compliance and 

total number of degrees of freedom for all cases are plotted in Figure 3.18. 

Case 
Max. size 
(Pixels) 

Iterations Mean C. Optimal result 

1 64 40 29.2738 
 

2 32 60 29.3537 
 

3 16 63 29.3461 
 

Table 3.7 Topology results of AM for Symmetric beam performed by SBFEM + SMTO-BESO. 

As expected, the results of AM from convolution-filtered technique are introduced to a slightly 

more flexible structure and therefore smaller compliance. However, the image-based 

implementation in the previous two examples are not complex in geometry, and the next example 

considers more complexity of structure. 
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Figure 3.18 Evolution histories of mean compliance for AM of symmetric beam using SBFEM + 

BESO. 
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3.1.3 AM-SMTO of a Rectangular beam with two holes 

A modified symmetric beam setup (Figure 3.19) is considered with width and height discretized 

by 1024 and 256 pixels, respectively, and for this analysis, only a color-encoded input image is 

provided. During the automated decomposition step, the proposed scheme automatically 

distinguishes key regions and their associated processes, and the colors, blue, red, green, white, 

gray, and black, correspond to boundary conditions, vertical static loads, non-designable, void, 

eliminated, and designable domain pixels, respectively. A volume fraction of 0.4 is specified. The 

BESO parameters include evolutionary rate ration (𝐸𝑅) = 5%, 𝑟𝑚𝑖𝑛= 5 pixels, and the 

convergence criterion () = 0.01%. 

For AM refinement, the conv2-type filter is employed with radius equal to 5 pixels. The SMTO of 

rectangular beam with two holes under static load were successfully performed in both the 

uniform and AM and the results of both cases are illustrated in Table 3.8 and directly compared in 

Figure 3.20. The total time for the TO processes of uniform mesh (UM) took around 18,522.83 s 

while the AM took only 1,298.27 s. In this contrived example in which both cases share a 

common implementation, differing only in the process of solving the forward problem, a glimpse 

of the computational potential of the proposed scheme is possible: For this specific numerical 

example, an analysis concludes almost 10x faster when employing the convolution-filtered 

technique. 

 

Figure 3.19 Boundary conditions of rectangular beam with two holes via automated image-based 

analysis. 
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Case 
Max. size 
(Pixels) 

Iterations Mean C. Optimal result 

Uniform 1 124 5.884 × 107  

 

Adaptive 32 112 5.847 × 107 
 

 

Table 3.8 Topology results of AM for rectangular beam with two holes performed using SBFEM 

+ SMTO-BESO. 
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Figure 3.20 Evolution histories of mean compliance for rectangular beam with two holes using 

SBFEM + BESO. 

3.1.4  AM-SMTO of a Circular domain with single hole 

In this example, we consider the donut-shaped domain with torsion loaded boundary conditions 

shown in Figure 3.21(a). To be specific, the colors, black, magenta, white and gray, corresponded 

to designable domain, displacement boundary condition, void and eliminated elements. With 

single material design, the volume fraction is set to occupy no more than 40% of initial volume 

fraction. The BESO parameters include evolutionary rate ration (𝐸𝑅) = 10%, 𝑟𝑚𝑖𝑛= 5 pixels, 

and the convergence criterion () = 0.01%. 

The UM resulting in Figure 3.21(b) has six lines of symmetry and recognizes a flower (perfect 

symmetry is not achieved due to the rectangle-shaped mesh). For uniformly mesh scenario, their 

final mean compliances are 198.327 N-mm. The terminated result is obtained in 51 iterations and 

consumed the computational time for 5154.85 seconds. Once again, Figure 3.22 show the 

convergent histories of the mean compliance, developed design shape and volume constraint. 

 

Figure 3.21 (a) Load and displacement boundary conditions for circular with single hole problem 
and (b) UM single-material designs. 

(a) (b) 
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Figure 3.22 Evolution histories of the mean compliance with a volume fraction constraint for 
uniform SMTO circular domain using SBFEM + BESO. 

For AM refinement, the density filter is applied with radius equal to 5 pixels (same as sensitivity 

filtered). Three cases of elements appearing during Quadtree decomposition are limited in size to 

≤ 32, 16, and 8 pixels, and calculated sensitivities are normalized per unit volume. The SMTO of 

circular domain under static load were successfully performed in AM and the results of all cases 

are illustrated in Table 3.9 and directly compared in Figure 3.23. The total time for the TO 

processes of AM took only 1,121.93, 1,251.87 and 1,055.42 s. For this specific numerical 

example, the final results for AM are obtained by perform iterative analysis more than uniform 

mesh in some cases. The reason is BESO has several tuning parameters that may need extra 

iterations to converge in objective values in some cases. However, an analysis concludes almost 

5x faster when employing the convolution-filtered technique. 
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Case 
Max. size 
(Pixels) 

Iterations 
(time) 

Mean C. Optimal result 

1 8 48 197.667 

 

2 16 58 197.431 

 

3 32 59 197.443 

 
Table 3.9 Topology results of AM for Circular domain performed by SBFEM + SMTO-BESO. 

 
Figure 3.23 Evolution histories for AM of Circular domain using SBFEM + BESO. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 108 

3.2 Benchmark problems for 3D AM-SMTO with static load structures 

3.2.1 AM-SMTO of a 3D-MBB cantilever beam 

The same convolution-filtered processes are extended for 3D problems, and from section 2.5.1, 

the 3D-MBB cantilever beams performed SMTO by static load. The width, depth, and height are 

discretized by 64, 32, and 16 voxels, respectively, and a volume fraction of 0.15 is sought. The 

filter radius is given as 8 pixels in both 𝑟𝑚𝑖𝑛 and 𝑟𝑑𝑒𝑛, all Octree elements are ≤ 4 voxels in size, 

and the convergence criterion () = 0.01%. 

The initial design domain and final topology are depicted in Figure 3.24 along with a sample of 

the Octree mesh, and the evolution of compliance and amount of degrees of freedom (DOFs) are 

plotted in Figure 3.25. It is revealed that the amount of DOFs and number of nonzero entries in 

the stiffness matrix is significantly reduced and computational effort is lessened by only 

computing the element stiffness matrices for the unique elements and cloning the remainder. 

However, the predominant computational cost still resides in solving the forward problem. 

 

Figure 3.24 The convolution-filtered technique was used to optimize the topology of a 3D MBB 

cantilever beam. The input image is shown on the left, and the resulting topology is shown on the 

right. 
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Figure 3.25 Evolution of DOFs and compliance across iterations obtained from AM. 
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3.2.2 AM-SMTO of a 3D Cantilever beam with uniform loaded 

The structural mean compliance of a 3D cantilever beam under certain load and displacement 

boundary conditions is minimized in this numerical example. The analytic domain is represented 

by a prism with dimensions 1  2  1 in Figure 3.26, with the biggest dimension orientated on 

the x-axis. On the design domain's left face, displacements are required, and along its bottom-

right border, a distributed vertical load is placed. Half of the domain is discretized by 

192  96  48 using 2 unit cubic hexahedral components while maintaining the symmetry to the 

x-y plane. Poisson’s ratio v = 0.3 and the elastic Young’s modulus 𝐸 = 1 GPa are presumptive 

values. Remaining 15% of the design domain’s overall volume is represented by the volume 

fraction. Other BESO parameters include: 𝐸𝑅 = 5%, 𝐴𝑅𝑚𝑎𝑥  = 50%, 𝑟𝑚𝑖𝑛 = 6 voxels, and  = 

0.01%. 

The optimal design shown in Figure 3.27 is concluded by uniform mesh after 103 iterations and 

consumed the computational time for 93,060.76 seconds. The mean compliance of the final 

topology is 4,818.98 N-mm. The first principal stress plots of the optimal design are plotted in 

Figure 3.27(b) and (d), where red and blue colors represent the tensile and compressive regions, 

respectively. 

 

Figure 3.26 Cantilever beam domain with a distributed vertical load is applied on the bottom-right 
edge while the displacements are prescribed on the left surface of the domain. 
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Figure 3.27 Solution of 3D cantilever beam using uniform mesh SMTO - BESO + SBFEM: (a) 

Optimal shape plotted in 3D view, (b) First principal stress plotted in 3D view, (c) Optimal shape 
with mesh grid plotted in x–y plane and (d) First principal stress plotted in x–y plane. 

For AM refinement in 3D problem, the MATLAB built-in function convn-type filter is employed 

with 𝑟𝑑𝑒𝑛 equal to 6 voxels. The elements appearing during Octree decomposition are limited in 

size to ≤ 16 voxels. The SMTO of 3D Cantilever beam under static load were successfully 

performed in AM and the results are illustrated in Figure 3.28. The topologies can be compared 

and found that as the complexity of bars decreases. This solution is made of a small number of 

thin bars, making it easier to manufacture and less likely to buckle. For this specific numerical 

example, the final results for AM are obtained after 145 iterations. The structural compliance of 

the final topology is 4,774.98 N-mm. The total time for the TO processes took only 42,915.93 s. 

The historical objective values and number degrees of freedom of both cases are directly 

compared and plotted in Figure 3.29. 

To show the powerful in computational time saving in AM, the comparison in time consumed per 

iterations for both cases are plotted in Figure 3.30. An analysis concludes almost 2x faster when 

employing the convolution-filtered technique. 

(a) (b) 

(c) (d) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 112 

 

Figure 3.28 Solution of 3D cantilever beam using adaptive mesh SMTO - BESO + SBFEM: (a) 
Optimal shape plotted in 3D view, (b) First principal stress plotted in 3D view, (c) Optimal shape 

with mesh grid plotted in x–y plane and (d) First principal stress plotted in x–y plane. 

 

Figure 3.29 Evolution histories of mean compliance and number degrees of freedom for 3D 
Cantilever beam using SBFEM + BESO. 

(a) (b) 

(c) (d) 
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Figure 3.30 Comparison in time consumed per iterations for UM and AM. 
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3.2.3 AM-SMTO of a 3D L-shaped structure 

In this example, a hook-like structure is optimized. A load is applied at a specific point (𝑧 =

0, 𝑥 = 𝐿 and 𝑦 = 𝐿

6
), and the displacement at the top surface near the left edge is prescribed. The 

design domain is symmetrical with respect to the x–y plane and has 108  108  18 brick 

elements in its structural mesh. This simplified version of the hook is shown in Figure 3.31. 

This example involves comparing the uniform and adaptive mesh approaches on a more complex 

design domain to demonstrate how well the proposed method can handle non-rectangular shapes. 

The volume fraction of the design domain is 15 %. The BESO (boundary element single 

objective) parameters include an evolutionary ratio of 5 %, a maximum aspect ratio of 50 %, a 

minimum filter radius of 2 voxels, and a tolerance of 0.01 %. This problem is similar to the 

previous example, but with a more complex design domain. 

 
Figure 3.31 An L-shaped domain is subjected to a vertical load on the bottom-right surface, while 

the displacements are prescribed on the top-left surface. 

The obtained results for the L-shaped structure by UM are illustrated in Figure 3.32 is concluded 

after 73 iterations and consumed the computational time for 73,478.36 seconds. The mean 

compliance of the final topology is 2.453 N-mm. The first principal stress plots of the optimal 

design are plotted in Figure 3.32(b) and (d), where red and blue colors represent the tensile and 

compressive regions, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 115 

Again, the MATLAB built-in function convn-type filter is applied with 𝑟𝑑𝑒𝑛 equal to 2 voxels to 

achieve adaptive mesh design. The elements arising during Octree decomposition are limited in 

size to ≤ 16 voxels. The SMTO of 3D L-shaped under static load were successfully performed in 

AM and the results are depicted in Figure 3.33. The design of the structure is similar in both 

cases, but there are some differences in the lower part of the structure, particularly in the 

topological complexity of the layout. The complexity is lower in the adaptive mesh (AM) case, 

which consists of a small number of bars that are easier to manufacture and less prone to 

buckling. In this numerical example, the AM case required 116 iterations and took 24,783.64 s to 

complete the topology optimization process. The objective values and number of degrees of 

freedom for both cases are compared and plotted in Figure 3.34. 

 
Figure 3.32 Solution of 3D L-shaped domain using uniform mesh SMTO - BESO + SBFEM: (a) 
Optimal shape plotted in 3D view, (b) First principal stress plotted in 3D view, (c) Optimal shape 

with mesh grid plotted in x–y plane and (d) First principal stress plotted in x–y plane. 

(a) (b) 

(c) (d) 
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Figure 3.33 Solution of 3D L-shaped domain using adaptive mesh SMTO - BESO + SBFEM: (a) 
Optimal shape plotted in 3D view, (b) First principal stress plotted in 3D view, (c) Optimal shape 

with mesh grid plotted in x–y plane and (d) First principal stress plotted in x–y plane. 

 
Figure 3.34 Evolution histories of mean compliance and number degrees of freedom for 3D L-

shaped using SBFEM + BESO. 

(a) (b) 

(c) (d) 
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3.2.4 AM-SMTO of a 3D Strut and tie structure 

This example shows how well the proposed method can handle the strut and tie modeling (STM) 

of a console structure. The geometry, boundary conditions, and design domain are shown in 

Figure 3.35. A single vertical load is applied at the end of the corbel, and the displacements at the 

top and bottom surfaces are prescribed. The volume fraction is 15 %, the filter radius is set to 2 

voxels, and the evolutionary ratio is 2 % during the optimization process. The initial uniform 

mesh (UM) design domain consists of 131,072 eight-node hexahedral elements. 

 
Figure 3.35 Strut and tie structure with a single vertical load is applied on the right end while the 

displacements are prescribed on the top and bottom surface of the design domain. 
Again, this problem will provide a comparison in complex design domain between the UM and 

AM approaches, thus showing the performance of non-rectangular shaped structures. The 

obtained results for the STM by UM are illustrated in Figure 3.36(a) is concluded after 129 

iterations and consumed the computational time for 174,192.10 s. The final topology for the mean 

compliance in the adaptive mesh (AM) approach using the convn-type filter with a radius of 2 

voxels and limiting element size to 8 voxels or fewer during Octree decomposition is 

2.988248606 N-mm. This was achieved after 93 iterations and took 32,947.60 s to complete. The 

results of the static load strut and tie modeling (STM) in 3D using AM are shown in Figure 

3.36(b). In comparison, the mean compliance of the final topology using the uniform mesh (UM) 
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approach is 2.995680477 N-mm. The continuous formulation consistently leads to smaller 

compliance values for quadtree AM structures. The objective values and number of degrees of 

freedom for both cases are compared and plotted in Figure 3.37. 

 
Figure 3.36 Topological results of: (a) UM and (b) AM for 3D STM 

 
Figure 3.37 Comparison of mean compliance and number degrees of freedom between UM and 

AM for 3D STM using SBFEM + BESO.  

(a) (b) 
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4. MMTO Application and expected results 

The application of single-phase material (SMTO) BESO can be further extended for MMTO, and 

with the merit of image-based application, color-encoding input images are automatically 

recognized as significant regions during the automated decomposition phase. This concept allows 

the user to separate the materials in the dissimilar colorized design domain, and in this section, 

our contribution to perform MMTO with SBFEM is presented. In order to validate the 

methodologies presented, the same structural optimization problems from previous section are 

selected to be solved. 

4.1 2D MMTO cantilever beam with static load structures 
Problem statement 
In this case, the design domain is 512 by 256 pixels in width and height, respectively, and a 

downward force of 1 N is applied at the midpoint of the free end. The elastic modulus of the 

candidate materials, which are regularly spaced in the range [0.2, 1] and have a Poisson's ratio of 

0.3, is shown in Figure 3.38. These materials cover 40% of the design domain. The BESO 

(boundary element single objective) parameters include an evolutionary rate ratio (𝐸𝑅) = 2 %, a 

𝑟𝑚𝑖𝑛 = 8 pixels, and a  = 0.001%. Table 3.10 lists the candidate materials and specified volume 

constraints for all cases. This information was previously introduced in section 3.1. 

 

Figure 3.38 Problem statement of MMTO for MBB cantilever beam. Initial design (left) and 

Young’s modulus of 5 materials (right). 
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Mat. 𝐸(𝑚) 
2-material  3-material  4-material  5-material 
𝑔1 𝑔2  𝑔1 𝑔2 𝑔3  𝑔1 𝑔2 𝑔3 𝑔4  𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 

  1 1 ✓   
✓    ✓     ✓     

  2 0.8         ✓     ✓    

  3 0.5  ✓   ✓          ✓   

  4 0.4          ✓      ✓  

  5 0.2      ✓     ✓      ✓ 

Volume fraction 1

5
 

1

5
  2

15
 

2

15
 

2

15
  1

10
 
1

10
 
1

10
 
1

10
  4

5
 
4

5
 
4

5
 
4

5
 
4

5
 

Table 3.10 The candidate materials and specified volume constraints for short cantilever problem. 

MMTO Results using the SBFEM with uniform mesh 
The cantilever beam is created with a volume limitation for each of the potential materials 2, 3, 4, 

and 5, in order to show that the proposed formulation is successful in distributing materials in 

accordance with fundamental mechanics. 

 
Figure 3.39 Uniform mesh multimaterials cantilever beam designs with individual global volume 

constraints for each of (a) 2; (b) 3; (c) 4; and (d) 5 candidate materials. 
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In each case, the stiffest material is distributed to the areas of the beam where stresses are 

anticipated to be the highest, and the least stiff material is spread toward the neutral axis, where 

stresses are predicted to be the lowest. This convergence of results is shown in Figure 3.39, 

demonstrating that from a mechanical perspective, the provided formulation yields results 

consistent with intuition. Figure 3.39 shows the ultimate objective value for each design, and 

Figure 3.40 shows the entire convergence plot for each. An analysis of the situations shown in 

Figure 3.39 in comparison shows that the various multimaterial designs result in various 

geometrical and topological arrangements. 

 

Figure 3.40 Objective value vs iteration for uniform mesh multimaterials short cantilever beams 

with unique global volume limitations for each of the candidate materials 

MMTO Results using the SBFEM with AM 
To obtain optimal solutions in AM refinement, the convolution-filtered techniques are directly 

applied with 𝑟𝑑𝑒𝑛  and 𝑟𝑚𝑖𝑛 = 8 pixels, respectively, and the elements arising during Quadtree 

decomposition are limited in size to ≤ 16 pixels. 
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The MMTO for AM are successfully performed using the SBFEM and the optimal results in 

Figure 3.41 show that the least stiff materials are located toward the middle, while the stiffest are 

toward the top, bottom and the applied load region. 

 

Figure 3.41 AM multimaterials short cantilever beam designs with individual global volume 

constraints for each of (a) 2; (b) 3; (c) 4; and (d) 5 candidate materials. 

The full convergence plot for each of the candidate materials is provided in Figure 3.42. 

Obviously, the results of AM from a convolution-filtered technique are also less computationally 

C = 60.3823 

C = 58.1491 C = 59.9913 

C = 46.9365 

(a) (b) 

(c) (d) 
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efforted than are uniform meshes in MMTO. Moreover, coarse discretization results in a stiffer 

structure and therefore lower compliance. 

 

Figure 3.42 Objective value vs. iteration for non-uniform mesh multimaterials short cantilever 

beams with individual global volume constraints for each of the candidate materials 
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4.2 2D MMTO symmetric beam with static load structures 
Problem statement 
The design domain discretized 1,024 by 256 pixels in width and height with all specified 

candidate materials are displayed in Figure 3.43. A 1-N downward force is prescribed at the 

midpoint of the top edge and the remaining material covers 50% of the initial structure. The 

BESO parameters include evolutionary rate ratio (𝐸𝑅) = 2%, 𝑟𝑚𝑖𝑛 = 16 pixels, and  = 0.001%, 

and Table 3.11 shows the candidate materials and specified volume constraints for all cases. 

 

Figure 3.43 Problem statement of symmetric beam: (a) Boundary condition and (b) elastic 

modulus of 5 materials. 

Mat. 𝐸(𝑚) 
2-material  3-material  4-material  5-material 
𝑔1 𝑔2  𝑔1 𝑔2 𝑔3  𝑔1 𝑔2 𝑔3 𝑔4  𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 

  1 1 ✓   
✓    ✓     ✓     

  2 0.8         ✓     ✓    

  3 0.5  ✓   ✓          ✓   

  4 0.4          ✓      ✓  

  5 0.2      ✓     ✓      ✓ 

Volume fraction 1

4
 

1

4
  1

6
 

1

6
 

1

6
  1

8
 

1

8
 

1

8
 

1

8
  1

10
 
1

10
 
1

10
 
1

10
 
1

10
 

Table 3.11 The candidate materials and volume constraints for symmetric beam problem. 
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MMTO Results using the SBFEM with uniform mesh 

The symmetric beam is designed with volume constraints for four of the candidate materials. The 

design domain, which is 1024 × 256, is divided into 262,144 quadrilateral elements with unit 

edge length to demonstrate that the proposed formulation effectively distributes materials 

according to fundamental mechanics. This symmetric beam is designed with volume constraints 

for each of the second, third, fourth, and fifth candidate materials. 

To optimize the structural performance of the beam, the stiffest material is used in areas where 

high stresses are expected, while the least stiff material is used in areas where low stresses are 

anticipated. This allows for a more efficient distribution of materials and helps to minimize the 

overall weight of the structure. The areas of the beam where the highest stresses are expected are 

typically located farther from the neutral axis, while the areas with the lowest stresses are closer 

to the neutral axis. This convergence of results is shown in Figure 3.44, demonstrating that from a 

mechanical perspective, the provided formulation yields result consistent with intuition. Figure 

3.44 shows the ultimate objective value for each design, and Figure 3.45 shows the entire 

convergence plot for each. An analysis of the situations shown in Figure 3.44 in comparison 

shows that the various multimaterial designs result in various geometrical and topological 

arrangements. 

 
Figure 3.44 Designs for uniform mesh multimaterial symmetric beams that have distinct global 

volume restrictions for each of the possible materials (a), (b), (c), and (d) are 2, 3, 4, and 5 

materials, respectively. 

C = 25.0413 C = 32.0656 

C = 30.6506 C = 31.4790 

(a) (b) 

(c) (d) 
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Figure 3.45 Objective value vs. iteration for uniform mesh multimaterials symmetric beams with 

individual global volume constraints for each of the candidate materials 

MMTO Results using the SBFEM with AM 
To obtain optimal solutions in AM refinement, the convolution-filtered techniques are directly 

applied with 𝑟𝑑𝑒𝑛  and 𝑟𝑚𝑖𝑛 = 16 pixels, respectively, and the elements arising during Quadtree 

decomposition are limited in size to ≤ 16 pixels. The MMTO for AM are successfully performed 

using the SBFEM and the optimal results in Figure 3.46 show that the least stiff materials are 

located toward the middle, while the stiffest are toward the top and bottom surfaces. Again, the 

results of AM from a convolution-filtered technique are less computationally efforted than UM in 

MMTO. In addition, AM results with non-uniform mesh layout provide stiffer structure and 

therefore lower compliance. However, the image-based implementations of previous 2 examples 

are not complex in geometry, the next example considers more complexity of structure. 
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Figure 3.46 AM multimaterials symmetric beam designs with individual global volume 

constraints for each of (a) 2; (b) 3; (c) 4; and (d) 5 candidate materials. 

 

Figure 3.47 Objective value vs. iteration for AM multimaterial symmetric beams with individual 

global volume constraints for each of the candidate materials 

  

C = 23.7051 C = 31.0265 

C = 29.2482 C = 30.0823 
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4.3 2D MMTO circular domain with static load structures 
From example 3.1.4, we extend the donut-shaped domain with torsion loaded boundary 

conditions shown in Figure 3.48. The fixed support is applied at the inner circle of the annular 

domain (i.e., magenta color). With multi-materials design, the global volume constraint is set to 

appear no more than 50 % of initial volume fraction. The candidate materials and specified 

volume constraints for all cases are prescribed in Table 3.11. The BESO parameters include 

evolutionary rate ratio (𝐸𝑅) = 5 %, 𝑟𝑚𝑖𝑛= 8 pixels, and the convergence criterion () = 0.01 %. 

Figure 3.49(a)–(d) illustrates the final topology outcomes for all cases for the UM scenario. All 

candidate materials show up in the final design as expected when each material is governed by a 

separate global constraint, and they are distributed so that stiffer materials are located where 

stress is anticipated to be high and more compliant materials are located where stress is 

anticipated to be low. 

For AM scheme, the MATLAB built-in function conv2-type filter is applied with 𝑟𝑑𝑒𝑛 equal to 

8 pixels. The elements appearing during quadtree decomposition are limited in size 

to ≤ 32 pixels. Figure 3.49(e)–(h) shows the final topology results for 2–5 candidate materials. 

This optimal AM designs are analogized to the UM design as mentioned earlier. Nevertheless, 

compared to their heuristically and uniformly optimized counterparts, continuously optimized 

AM quadtree architectures perform much stiffer (less compliant). Table 3.12 compares the 

outcomes between UM and AM, including the number of iterations, average time, and 

compliance. The circular domain problem's total CPU time is presented. Since the 

addition/elimination procedures must be accessed several times during each iteration, the bi-

section technique takes longer as the number of distinct volume restrictions increases. However, 

because the AM method only makes up a minor portion of the overall duration, an analysis ends 

almost twice as quickly as UM situations, as shown in Table 3.12. The evolutionary goal value 

for the circular domain of UM and AM multi-materials with individual global volume restrictions 

is displayed in Figure 3.50 for each of the candidate materials. 
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Figure 3.48 Donut shaped structure: (a) loads and boundary conditions and (b) an input image. 

 

Figure 3.49 Multimaterials circular domain designs with individual global volume constraints for: 
(a)–(d) are UM with 2–5 candidate materials, (e)–(h) are AM with 2–5 candidate materials and 

(i)–(l) are final mesh for 2–5 candidate materials design 
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Case Design Iterations Avg. time (s) C. 
UM 2-Mats Figure 3.49(a) 96 80.3370 200.7699 
UM 3-Mats Figure 3.49(b) 167 92.7677 279.7902 
UM 4-Mats Figure 3.49(c) 103 111.3124 254.2492 
UM 5-Mats Figure 3.49(d) 105 123.3882 266.7068 
AM 2-Mats Figure 3.49(e) 105 39.5650 199.9406 
AM 3-Mats Figure 3.49(f) 138 43.8096 278.7055 
AM 4-Mats Figure 3.49(g) 89 47.2396 254.1845 
AM 5-Mats Figure 3.49(h) 110 57.3125 266.0662 

Table 3.12 Comparative results between UM and AM for MMTO circular domain. 

 
Figure 3.50 Objective value vs. iteration for (a) UM multi-materials and (b) AM multi-materials 

circular domain. 
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4.4 3D MMTO MBB cantilever beam with static load structures 
Problem statement 
A 3D framework is also extended for the MMTO with static load. Again, the arising elements in 

this specific problem are subdivided by using polyhedral elements. The potential materials and 

stated volume limitations for each situation are shown in Table 3.13 when designing a 3D 

cantilever beam with a vertical point load at the tip. Figure 3.51 shows the domain and boundary 

conditions, where P is a unit load and the length parameter, 𝐿, is assumed to be 128. 

 

Figure 3.51 Problem domain of the 3D MBB beam cantilever. 

Mat. 𝐸(𝑚) 
2-material  3-material  4-material 
𝑔1 𝑔2  𝑔1 𝑔2 𝑔3  𝑔1 𝑔2 𝑔3 𝑔4 

  1 1 ✓   
✓    ✓    

  2 0.8         ✓   

  3 0.5  ✓   ✓       

  4 0.4          ✓  

  5 0.2      ✓     ✓ 

Volume fraction 1

5
 

1

5
  2

15
 

2

15
 

2

15
  1

10
 
1

10
 
1

10
 
1

10
 

Table 3.13 The potential materials and volume restrictions for the 3D MBB beam problem. 

MMTO Results using the SBFEM with uniform mesh 
For MMTO with uniform mesh, the 128 × 64 × 16 domain is separated into 131,072 eight-node 

polygonal elements with unit edge length, and the BESO parameters used in this example include 

𝐸𝑅 = 5%, 𝑟𝑚𝑖𝑛 = 5 voxels, and  = 0.01%. 
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Figure 3.52 Uniform mesh 2–phase materials 3D cantilever beam designs with individual global 

volume constraints. 

 

(a) 3D cantilever design based on two volume constraints at final stage (110 iterations). 

(b) Separated material with individual global volume constraints 

(c) Iteration histories curves of compliance values and volume constraints (C. = 0.8744). 
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Figure 3.53 Uniform mesh 3–phase materials 3D cantilever beam designs with individual global 

volume constraints. 

(a) 3D cantilever design based on three volume constraints at final stage (105 iterations). 

(b) Separated material with individual global volume constraints 

(c) Iteration histories curves of compliance values and volume constraints (C. = 1.1187). 
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Figure 3.54 Uniform mesh 4–phase materials 3D cantilever beam designs with individual global 

volume constraints. 

 

(a) 3D cantilever design based on four volume constraints at final stage (97 iterations). 

(b) Separated material with individual global volume constraints 

(c) Iteration histories curves of compliance values and volume constraints (C. = 1.051). 
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To get the best topological shape in each situation, the uniform mesh MMTO-BESO techniques 

were effectively used. The solution specifics (i.e., design shape with individual global volume 

restrictions and iteration history curves of compliance values) for a 3D cantilever beam were 

shown in a sequence of Figure 3.52 to Figure 3.54. It is obvious that the BESO method allows for 

both the addition of required elements as well as their deletion for different intended volume 

fractions. First material's layout position is mostly constant, but another material's topology 

rapidly changes as a result of which the structure tends to define volume restrictions. Figure 3.55 

shows the mean compliance's history of convergence for 3D short cantilever beams with uniform 

mesh and multiple materials and individual global volume limitations based on static load. 

 

Figure 3.55 Iteration vs. objective value for uniform mesh multi-materials for each of the 

potential materials, 3D short cantilever beams with unique global volume limitations are set. 

MMTO Results using the SBFEM with AM 
In the same manner as non-uniform mesh in 2D cases, the convolution-filtered techniques are 

directly applied with 𝑟𝑑𝑒𝑛  and 𝑟𝑚𝑖𝑛 = 5 voxels, respectively, and the elements arising during 

octree decomposition are limited in size to ≤ 4 voxels. 
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Figure 3.56 AM 2–phase materials 3D cantilever beam designs with individual global volume 

constraints. 

(a) AM 3D cantilever design based on two volume constraints at final stage (66 iterations). 

(b) Separated material with individual global volume constraints 
 

(c) Iteration histories curves of compliance values and number DOFs (C. = 0.8625). 
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Figure 3.57 AM 3–phase materials 3D cantilever beam designs with individual global volume 

constraints. 

(a) AM 3D cantilever design based on three volume constraints at final stage (91 iterations). 

(b) Separated material with individual global volume constraints 
 

(c) Iteration histories curves of compliance values and number DOFs (C. = 1.1172). 
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Figure 3.58 AM 4–phase materials 3D cantilever beam designs with individual global volume 

constraints. 

 

(a) AM 3D cantilever design based on four volume constraints at final stage (106 iterations). 

(b) Separated material with individual global volume constraints 
 

(c) Iteration histories curves of compliance values and number DOFs (C. = 1.0500). 
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For non-uniform mesh MMTO cases, Figure 3.56 to Figure 3.58 presented the solution details 

(i.e., non-uniform grid design shape with individual global volume constraints and iteration 

histories curves of compliance values) for 3D cantilever beam. A comparative investigation of the 

cases illustrated by previous figures indicate that the different multi-materials designs lead to 

different geometrical and topological configurations. Obviously, the topological results from AM 

agreed well with the uniform mesh results. Moreover, for this specific numerical example, an 

analysis based on convolution filtered technique concludes at least 2x faster, when comparing the 

uniform mesh results. 

The full convergence and number degrees of freedom plot for all cases is provided in Figure 3.59. 

It is evidenced that the amount of DOFs is also converged by employing the convolution filtered 

scheme. 

 

Figure 3.59 Objective value and number degrees of freedom vs. iteration for non-uniform mesh 

multi-materials 3D short cantilever beams for each of the candidate materials. 
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4.5 3D MMTO cantilever beam with uniformly static load structures 
Problem statement 
The SMTO with uniformly distributed loads in example 3.2.2 is also extended in a MMTO. In 

this specific example, the weights of all materials 𝑊(𝑚) are considered in volume fractions. To 

separate the individual mass of each material for all cases, the final volumes are modified 

(i.e., 𝑊(𝑚) × 𝑔𝑖 ) to match total weight equally. In this example, a 3D cantilever beam with a 

vertical distributed load at the bottom-right edge is designed subject to volume constraints. The 

limited materials and volume fractions for all cases are shown in Table 3.14. The domain and 

boundary conditions for the beam are depicted in Figure 3.60, where the length parameter, 𝐿, is 

set to 192 and F represents a unit load. 

 
Figure 3.60 Load and boundary conditions for 3D MMTO cantilever under distributed load. 

Mat. 𝑊(𝑚) 𝐸(𝑚) 
2-material  3-material  4-material 
𝑔1 𝑔2  𝑔1 𝑔2 𝑔3  𝑔1 𝑔2 𝑔3 𝑔4 

  1 1 1 ✓   
✓    ✓    

  2 0.8 0.8         ✓   

  3 0.5 0.5  ✓   ✓       

  4 0.4 0.4          ✓  

  5 0.2 0.2      ✓     ✓ 

Volume fraction 3

40
 

3

20
  1

20
 

1

10
 
1

4
  3

80
 
3

64
 
3

32
 
3

16
 

Total mass 
3

40
 

3

40
  

1

20
 

1

20
 

1

20
  

3

80
 
3

80
 
3

80
 
3

80
 

Table 3.14 The candidate materials, volume constraints and total mass for 3D cantilever beam. 
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MMTO Results using the SBFEM with uniform mesh 
For MMTO with uniform mesh, thanks to the symmetry with respect to x–y plane, the 

192 × 96 × 48 domain is discretized with 2 unit sized into 110,592 eight-node hexahedral 

elements with unit edge length, and the BESO parameters used in this example include 𝐸𝑅 = 5%, 

𝑟𝑚𝑖𝑛 = 6 voxels, and  = 0.01%. The uniform mesh MMTO-BESO approaches were successfully 

performed to obtain the optimal topological shape of all cases. A series of Figure 3.61 to Figure 

3.63 represented the solution details (i.e., design shape with individual global volume constraints) 

for 3D cantilever beam under uniformly distributed loads. It can be observed that the "hardest" 

material (red) is placed to the top and bottom sides, where the tension-compression state's internal 

forces are at their highest, while the "softer" material components (grey, green, and blue), which 

are supported by lower internal forces, are added to the center side. 

 

Figure 3.61 UM 2–phase materials 3D cantilever beam designs with separated global volume 
constraints. 

(a) 

(b) 
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Figure 3.62 UM 3–phase materials 3D cantilever beam designs with separated global volume 
constraints. 

 

 

Figure 3.63 UM 4–phase materials 3D cantilever beam designs with separated global volume 
constraints. 
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MMTO Results using the SBFEM with adaptive mesh 
For adaptive mesh MMTO-BESO approaches, the convolution-filtered techniques are employed 

with 𝑟𝑑𝑒𝑛  and 𝑟𝑚𝑖𝑛 =6 voxels, respectively, and the elements sizing are limited to ≤ 16 voxels. 

Note that the minimum element size is set to ≥ 2 voxels to prevent the exceed of CPU memories. 
A series of Figure 3.64 to Figure 3.66 represented the solution details (i.e., design shape with 

individual global volume constraints) for 3D cantilever beam under uniformly distributed loads. It 

should also be noticed that the findings of the 3-phase and 2-phase materials TO for 3D cantilever 

beams required less initial material in comparison to the single-phase material TO from the 

example in section 3.2.2. This is the benefit of employing MMTO with a mass fraction limitation 

since it selects the best candidate material quantity to utilize, and the optimal placement based on 

the specific load instance. The stiffest design with the predefined mass is created to achieve this. 

Table 3.15 demonstrates how the adoption of the total mass limitation that is being discussed 

successfully increases the stiffness of the design. Finally, Figure 3.67 plots the evolutionary 

objective value for the 3D cantilever made of UM and AM multi-materials. 

 
Figure 3.64 AM 2–phase materials 3D cantilever beam designs with separated global volume 

constraints. 

(a) 

(b) 
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Figure 3.65 AM 3–phase materials 3D cantilever beam designs with separated global volume 

constraints. 

 

 
Figure 3.66 AM 4–phase materials 3D cantilever beam designs with separated global volume 

constraints. 
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Case Design Iterations Avg. time (s) C. 
UM 1-Mats Figure 3.27 103 403.5025 4818.9841 
UM 2-Mats Figure 3.61 126 454.8891 4391.6349 
UM 3-Mats Figure 3.62 110 515.5694 4345.3345 
UM 4-Mats Figure 3.63 123 554.7559 4343.4650 
AM 1-Mats Figure 3.28 145 195.9720 4774.9827 
AM 2-Mats Figure 3.64 97 218.7025 4346.5284 
AM 3-Mats Figure 3.65 92 232.5519 4342.9160 
AM 4-Mats Figure 3.66 86 240.8014 4341.6252 

Table 3.15 Comparative results between UM and AM for 3D MMTO cantilever beam structure. 

 

Figure 3.67 Objective value vs. iteration for UM and AM multi-materials cantilever beam 
structure. 
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4.6 3D L-shaped with static load structures 
Problem statement 
The example 3.2.2 is further extended in a MMTO to demonstrate its effectiveness. Similar to the 

previous example, the weights of all materials 𝑊(𝑚) are affected in volume fractions. In essence, 

the 3D L-shaped construction with a single vertical point load at the middle-right node is 

prescribed taking into account volume restrictions, and the candidate materials and stated volume 

constraints for all scenarios are directly shown in Table 3.14. Figure 3.68, where the length 

parameter, 𝐿, is assumed to be 108 and F is a unit load, shows the domain and boundary 

conditions. 

 

Figure 3.68 Load and boundary conditions for 3D L-shaped structure. 

Mat. 𝑊(𝑚) 𝐸(𝑚) 
2-material  3-material 
𝑔1 𝑔2  𝑔1 𝑔2 𝑔3 

  1 1 1 ✓   
✓   

  2 0.8 0.8       

  3 0.5 0.5  ✓   ✓  

  4 0.4 0.4       

  5 0.2 0.2      ✓ 

Volume fraction 3

40
 

3

20
  1

20
 

1

10
 
1

4
 

Total mass 
3

40
 

3

40
  

1

20
 

1

20
 

1

20
 

Table 3.16 The candidate materials, volume constraints and total mass for 3D L-shaped structure. 
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MMTO Results using the SBFEM with uniform mesh 
With the symmetry in x–y plane, the 108 × 108 × 18 domain is discretized with unit sized into 

116,640 eight-node hexahedral elements with unit edge length. The BESO parameters used in this 

example include 𝐸𝑅 = 5%, 𝑟𝑚𝑖𝑛 = 3 voxels, and  = 0.01%. The uniform mesh MMTO-BESO 

approaches were successfully performed to obtain the optimal topological shape of all cases. A 

series of Figure 3.69 to Figure 3.70 represented the solution details (i.e., design shape with 

individual global volume constraints) for 3D L-shaped structure with vertical loads. The "red" 

material is distributed along two sides from the fixed support site in the optimal topology, where 

the local equivalent stress is greater than the others. The softer materials are located where stress 

is expected to be low. After that, this schematic can be exported to an STL structure for use in 

additive manufacturing (3D-printing). 

 

Figure 3.69 UM 2–phase materials 3D L-shaped structure designs with individual global volume 
constraints. 

(a) 

(b) 
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Figure 3.70 UM 3–phase materials 3D L-shaped structure designs with individual global volume 
constraints. 

MMTO Results using the SBFEM with adaptive mesh 
Similar to the AM in 2D cases, the convolution-filtered techniques are employed with 𝑟𝑑𝑒𝑛  and 

𝑟𝑚𝑖𝑛 = 3 voxels, respectively, and the elements arising during octree decomposition are limited 

in size to ≤ 16 voxels. For this specific example, it should be noted that the domains are 

uniformly discretized by 4 unit-voxels in the first iteration to prevent the rapid change in shape of 

a structure. The topological layouts (i.e., non-uniform grid design shape with individual global 

volume constraints) for 3D L-shaped structure are depicted in Figure 3.71 and Figure 3.72. 

Comparative analysis of the scenarios depicted in the preceding illustrations reveals that various 

multi-material designs result in various geometrical and topological arrangements. Evidently, the 

topological results from AM and the uniform mesh results were in good agreement. The 

comparative results (e.g., number of iterations, average time, and compliance) between UM and 

AM are reported in Table 3.17. The overall CPU time for the L-shaped problem is presented; 

increased cost due to a greater number of individual volume constraints presents itself in extra 

time for the bi-section technique, because the addition/elimination procedures must be accessed 

several times in each iteration. However, since the AM method only makes up a minor portion of 

the overall runtime, an analysis concludes nearly twice as quickly as UM scenarios, as shown in 

(a) 

(b) 
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Table 3.17. Finally, the evolutionary objective value for UM and AM multi-materials L-shaped 

structure with individual global volume constraints for each of the candidate materials are plotted 

in Figure 3.73. 

 
Figure 3.71 AM 2–phase materials 3D L-shaped structure designs with individual global volume 

constraints. 

 

Figure 3.72 AM 3–phase materials 3D L-shaped structure designs with individual global volume 
constraints. 

(a) 

(b) 

(a) 

(b) 
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Case Design Iterations Avg. time (s) C. 
UM 1-Mats Figure 3.32 73 1,006.5528 2.45291 
UM 2-Mats Figure 3.69 169 2,964.8140 2.48001 
UM 3-Mats Figure 3.70 96 3,226.9898 2.39537 
AM 1-Mats Figure 3.33 116 213.6520 2.44576 
AM 2-Mats Figure 3.71 77 315.5873 2.47314 
AM 3-Mats Figure 3.72 97 439.0134 2.39470 

Table 3.17 Comparative results between UM and AM for 3D MMTO L-shaped structure. 

 
Figure 3.73 Objective value vs. iteration for UM and AM multi-materials L-shaped structure. 

In conclusion, multi-material design refers to the use of multiple materials in the design of an 

object or structure. This approach allows for greater flexibility in the design process, as it allows 

the designer to select materials that are optimal for different parts of the structure. There are 

several advantages to using a multi-material design approach in topology optimization: 

1. Improved performance: By using multiple materials, it is possible to optimize the design 

for specific performance criteria, such as strength, stiffness, or weight. For example, a 

structure that requires high stiffness in certain areas may benefit from using a stiffer 

material in those areas, while using a lighter material in other areas where weight is a 

concern. 
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2. Cost savings: Using multiple materials can also help to reduce the overall cost of the 

design. By selecting materials that are optimal for specific parts of the structure, it may 

be possible to use less of the more expensive materials, while still meeting the 

performance requirements of the design. 

3. Manufacturing feasibility: In some cases, it may be easier to manufacture a multi-

material design than a single-material design. For example, a design that combines metal 

and plastic components may be easier to manufacture than a design that is made entirely 

of metal. 

Overall, the use of multi-material design in topology optimization offers a number of benefits, 

including improved performance, cost savings, improved manufacturing feasibility, and improved 

durability. 
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CHAPTER 4 TOPOLOGY OPTIMIZATION FOR DYNAMIC LOAD 

1. Introduction. 

As previously mentioned, the SBFEM has been demonstrated to be one of the most appropriate 

strategies for resolving TO issues. Several TO problems have been completely solved using the 

BESO algorithm. In the past, most topology optimization methods were developed for static 

analysis, which is concerned with the behavior of a structure under constant or slowly varying 

loads. However, there is growing interest in extending topology optimization techniques to 

consider dynamic responses as well. This is because many real-world structures are subjected to 

dynamic loads, and it is important to ensure that they are able to withstand these loads without 

failing (Díaaz & Kikuchi, 1992). In addition, the behavior of a structure under dynamic loads may 

be very different from its behavior under static loads, so it is important to take this into account in 

the design process. 

There is increasing interest in using dynamic response topology optimization (TO) techniques, 

which consider the behavior of a structure under dynamic loads, rather than just static imposed 

loads. This is because dynamic forces often play a significant role in real-life situations, and it is 

important to design structures that can withstand these forces. In addition, the optimal design for 

static and dynamic performance of a structure is often carried out separately, and it is up to the 

designer to make multiple revisions to the design to achieve the desired combination of static and 

dynamic performance. 

This chapter presents a method for performing TO of continuum structures using the SBFEM 

(strong form boundary element method) with dynamic loads. The proposed method is applied to 

both 2D and 3D problems, and the results are compared to those obtained using static response 

techniques to demonstrate the effectiveness and usefulness of the method. The goal is to show 

that the proposed method can be used to optimize the design of structures for both static and 

dynamic performance, without the need for multiple revisions by the designer.  
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2. Dynamic and Vibration Analysis 

Dynamic and vibration analysis are important tools in the field of structural engineering for 

predicting the response of structures to various types of loading. These analyses are used to 

evaluate the performance of structures under both static and dynamic loads and can be applied to 

a wide range of structures, including buildings, bridges, and mechanical systems.  

Dynamic analysis involves the study of the motion and behavior of structures under the influence 

of time-varying loads. This type of analysis is used to predict the response of structures to 

earthquakes, wind, and other types of dynamic loads. Dynamic analysis typically involves the use 

of advanced mathematical techniques, such as finite element analysis and modal analysis, to 

determine the natural frequencies, mode shapes, and response of the structure under different 

loading conditions. 

Vibration analysis is a type of dynamic analysis that focuses specifically on the vibrations of 

structures. Vibration analysis is used to predict the response of structures to periodic loads, such 

as those caused by machinery or wind. It is also used to evaluate the effect of vibrations on the 

performance of structures, such as the fatigue life of materials or the comfort of occupants in a 

building. 

Dynamic and vibration analysis are essential tools for ensuring the safety and reliability of 

structures in the built environment. These analyses help engineers to design structures that can 

withstand the various types of loads that they may be subjected to over their lifetime, and to 

identify potential problems before they occur. 

2.1 Equation of Motion 
In order to treat dynamic response, a brief summary of the SBFEM in elastodynamic is given. For 

a more elaborate derivation and detailed explanations, see the report by (C. Song & Wolf, 1997). 

To formulates the equation of motion, an infinitesimal volume of the solid body, Eq. (1.3a), is 

modified as 

𝜕𝑥𝑥

𝜕𝑥
+
𝜕𝑥𝑦

𝜕𝑦
+
𝜕𝑥𝑧

𝜕𝑧
+ 𝑉𝑥 = 𝜌𝑢̈𝑥  (1) 
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𝜕𝑥𝑦

𝜕𝑥
+
𝜕𝑦𝑦

𝜕𝑦
+
𝜕𝑦𝑧

𝜕𝑧
+ 𝑉𝑦 = 𝜌𝑢̈𝑦  

𝜕𝑥𝑧

𝜕𝑥
+
𝜕𝑦𝑧

𝜕𝑦
+
𝜕𝑧𝑧

𝜕𝑧
+ 𝑉𝑧 = 𝜌𝑢̈𝑧 , 

where 𝑉𝑖 is the body forces, 𝜌 is the mass density, and 𝑢̈𝑖  is the accelerations (second derivatives 

of displacements). By using differential operator [𝐿], Eq. (1) can be reduced in matrix notation as 

[𝐿]𝑇{} + {𝑉𝑖} = 𝜌𝑢̈𝑖  (2) 

By omitting body forces, Eq. (2) are simplified as 

[𝐿]𝑇{} = 0 (3) 

The principle of virtual work statement in Eq. (2.2b) is augmented to include the inertial forces 
𝜌{𝑢̈} 

∫ {𝛿𝜀}𝑇{𝜎}𝑑𝑉
𝑉

+∫ {𝛿𝑢}𝑇𝜌{𝑢̈}𝑑𝑉
𝑉

 = {𝛿𝑢𝑏}
𝑇{𝐹} (4) 

Following the derivation of the SBFE equation in Chapter 2, by assembling the contributions of 

mass matrix from all sectors, the principle of virtual work is expressed as 

{𝛿𝑢𝑏}
𝑇[𝐾]{𝑢𝑏}  +  {𝛿𝑢𝑏}

𝑇[𝑀]{𝑢̈} = {𝛿𝑢𝑏}
𝑇{𝐹} (5) 

Since the virtual displacement, 𝛿𝑢𝑏 , is arbitrary, the equation of motion can be state as 

[𝐾]{𝑢𝑏}  + [𝑀]{𝑢̈} = {𝐹} (6) 

By assembling the equation of motion of the S-elements, the equation of the global system is 

constructed in the same manner as the standard FEM 

[𝐾𝐺]{𝑢𝐺}  + [𝑀𝐺]{𝑢̈𝐺} = {𝐹𝐺}, (7) 

where the mass matrices of the S-elements are combined to create the global mass matrix [𝑀𝐺]. 

The external force vector {𝐹𝐺} is created by converting the external forces to comparable nodal 

forces. 
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The nodal displacement vector is divided into unknown displacements {𝑢1} and required nodal 

displacements {𝑢2} in order to impose the boundary constraints. The equation of the global 

system is enlarged as follows when the stiffness matrix, mass matrix, and external force vector 

are separated out. 

[
[𝐾11] [𝐾12]

[𝐾21] [𝐾22]
] {
{𝑢1}

{𝑢2}
}  + [

[𝑀11] [𝑀12]

[𝑀21] [𝑀22]
] {
{𝑢̈1}

{𝑢̈2}
} = {

{𝐹1}

{𝐹2}
} (8) 

By moving the components containing the known displacements, {𝑢2}, to the right side, the 

equations in the first row may be solved to get the unknown displacements, {𝑢1}. 

[𝐾11]{𝑢1}  + [𝑀11]{𝑢̈1} = {𝐹1} − [𝐾12]{𝑢2} − [𝑀12]{𝑢̈2} (9) 

which is represented as a system of second order nonhomogeneous ordinary differential 

equations. 

2.2 Time History Analysis Using the Newmark Method 

Direct integration of Eq. (9) in time yields a dynamic response time-history of the system. The 

mass matrix is symmetric and positive definite, whereas the static stiffness matrix generated using 

the SBFEM is symmetric and semi-positive definite. Time history analysis completely obtains the 

structural reaction at designated intervals for a specific enduring interaction, which is opposed to 

other existing analysis techniques that reveal the structure reaction in the form of amplitudes 

obtained at a single moment. 

The Newmark method is used to solve the above-presented task, and it belongs to the group of 

algorithms that are unconditionally convergent for appropriately defined method parameters. The 

Newmark time integrator operates predictor–corrector scheme with the parameters, 𝛾 and 𝛽. 

Denoting the size of the time step as  𝑡, the system of 2nd order ODE at 𝑙𝑡ℎ time step 𝑡𝑙 = 𝑙𝑡  is 

expressed as 

[𝐾11]{𝑢1}𝑙  + [𝑀11]{𝑢̈1}𝑙 = {𝐹1}𝑙 − [𝐾12]{𝑢2}𝑙 − [𝑀12]{𝑢̈2}𝑙 (10) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 156 

At the initial state, the system is assumed to be at rest with: {𝑢}0 = {𝑢̇}0 = 0, and the 

displacements {𝑢}𝑙 and velocity {𝑢̇}𝑙 are obtained using the correctors as follows. 

{𝑢}𝑙 = {𝑢̃}𝑙 + 𝛽𝑡
2{𝑢̈}𝑙  

{𝑢̇}𝑙 = {𝑢̃̇}𝑙 + 𝛾𝑡{𝑢̈}𝑙 
(11) 
(12) 

where {𝑢̃}𝑙 and {𝑢̃̇}
𝑙
 are the predictors of the displacement and velocities, respectively. 

{𝑢̃}𝑙 = {𝑢}𝑙−1 + 𝑡{𝑢̇}𝑙−1 + (0.5 − 𝛽)𝑡
2{𝑢̈}𝑙−1 (13) 

{𝑢̃̇}
𝑙
= {𝑢̇}𝑙−1 + (1 − 𝛾)𝑡{𝑢̈}𝑙−1 (14) 

Predictor information are computed from the responses at the previous time step (𝑙 − 1) and the 

parameters, 𝛾 and 𝛽, control the stability of the step-by-step integration and the amount of 

numerical damping introduced into the system by the method. 

Substituting both Eqs. (11) and (12) into Eq. (10) and transferring the known term at time step, 𝑙, 

to the right-hand side yields a system of algebraic equations 

(𝛽𝑡
2[𝐾11] + [𝑀11]){𝑢̈1}𝑙  

= {𝐹1}𝑙 − [𝐾11]{𝑢̃1}𝑙 − [𝐾12]{𝑢2}𝑙 − [𝑀12]{𝑢̈2}𝑙  
(15) 

The unknown accelerations {𝑢̈1}𝑙 is directly solved using Eq. (15) and the displacements {𝑢}𝑙 

and velocities {𝑢̇}𝑙 are obtained from both Eqs. (11) and (12) 

At the initial stage (time step 𝑙 = 0), if external forces {𝐹1}0 or prescribed accelerations {𝑢̈2}0 

exist, the initial unknown accelerations {𝑢̈1}0 are obtained by solving 

[𝑀11]{𝑢̈1}0  = {𝐹1}0 − [𝑀12]{𝑢̈2}0 (16) 
The processes of Newmark algorithm are illustrated in Figure 4.1 and the outputs consist of the 

times, displacement responses, velocity responses, and acceleration responses. 
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Figure 4.1 Flowchart of predictor/corrector Newmark algorithm. 

2.3 High Order implicit time integration Method 
A unique time-stepping technique dubbed "High-order Implicit Time Integration Scheme Based 

on Padé Expansions" has recently been created via dynamic analysis based on time domain. This 

numerical method was put out by Chongmin Song, Eisenträger, and Zhang (2022) to deal with the 

matrix exponential solution of a system of first-order ordinary differential equations that were 

expressed in state space. There is no need for a direct inversion of the mass matrix, which is a key 

component of the innovative approach. Based on the diagonal Padé expansion of order 𝑀, an 

order 2𝑀 time-stepping technique is built. Recursively solving one real matrix equation system 

and (𝑀 − 1) 2⁄  complex matrix equation systems is possible when 𝑀 is odd. There exist 𝑀 2⁄  

complex matrices-based systems of equations where M is even. These systems are sparse and 

comparable in complexity to the classical Newmark method since the effective system matrix is a 

linear combination of the static stiffness, damping, and mass matrices. Analytically speaking, the 
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resulting second-order technique is equivalent to the Newmark constant average acceleration 

method. 

This section briefly explains the theory required for the high-order time integration scheme's 

derivation. A Padé series expansion is used as an approximation based on the accurate solution of 

the motion equations. This produces an extremely precise unconditionally stable implicit system 

that can be applied to a number of structural dynamics problems. 

2.3.1 Development of time integration method 

The equation of motion in structural dynamic problems is a semi-discrete system of 2nd-order 

ODEs which can be expressed in time 𝑡 as 

[𝑀]{𝑢̈}𝑡 + [𝐶]{𝑢̇}𝑡 + [𝐾]{𝑢}𝑡 = {𝑓}𝑡 (17) 
With the initial conditions 
{𝑢}𝑡=0 = 𝐮0 (18a) 

{𝑢̇}𝑡=0 = 𝐮̇0 (18b) 

where [𝑀], [𝐶], [𝐾] denote the mass, damping, and stiffness matrices respectively. {𝑓} is the 

external excitation force vector, and {𝑢}, {𝑢̇}, {𝑢̈} represent displacement, velocity, and 

acceleration vectors, respectively. 

The whole simulation time is split up into a finite number of periods in a numerical time-stepping 

process, which is conceptually somewhat similar to a one-dimensional spatial discretization. It is 

assumed, without losing generality, that the time step n covers the range [𝑡𝑛−1, 𝑡𝑛]. With 𝑛 =

1,2,⋯ 𝑛𝑠 being the number of time steps, the time step size (increment) is therefore simply 

stated as ∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1. For each time step, a (local) dimensionless time variable named s is 

added in the sake of clarity and consistency. At the start of a time step, s is specified as 0, and at 

the conclusion, it is equal to 1. As a result, the time inside time step 𝑛 is defined as 

𝑡𝑠 = 𝑡𝑛−1 + 𝑠∆𝑡,     0 ≤ 𝑠 ≤ 1 (19) 
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with 𝑡(𝑠 = 0) = 𝑡𝑛−1 at the start of a time step and 𝑡(𝑠 = 1) = 𝑡𝑛 at the conclusion of a time 

step. The chain rule is used to translate the vectors of velocity and acceleration inside a time step 
(𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛) into terms of the dimensionless time s. 

{𝑢̇} =
1

∆𝑡

𝑑𝐮

𝑑𝑠
=
1

∆𝑡
𝐮̇ (20a) 

{𝑢̈} =
1

∆𝑡2
𝑑2𝐮

𝑑𝑠2
=

1

∆𝑡2
𝐮̈ (20b) 

Therefore, the equation of motion can be expressed in the dimensionless time as 

𝐌𝐮̈ + ∆𝑡𝐂𝐮̇ + ∆𝑡2𝐊𝐮 = ∆𝑡2𝐟 (21) 
Introducing a state-space vector 𝐳 defined as 

𝐳 = {
𝑢̇
𝑢
} (22) 

Eq. (21) can be transformed into a system of first-order ODEs 

𝐳̇ ≡
𝑑𝐳

𝑑𝑠
= 𝐀𝐳 + 𝐅 (23) 

where 𝐀 is the constant coefficient matrix defined as 

𝐀 = [−∆𝑡𝐌
−1𝐂 −∆𝑡2𝐌−1𝐊
𝐈 0

] (24) 

and 𝐅 is the non-homogeneous (force) term 

𝐅 = {∆𝑡
2𝐌−1𝐟
0

} (25) 

The general solution of Eq. (23) at time 𝑡𝑛 is obtained with the matrix exponential function as 

𝐳𝑛 = 𝑒
𝐀𝑠𝐳𝑛−1 + 𝑒

𝐀𝑠∫𝑒𝐀𝜏𝐅(𝜏)𝑑𝜏

𝑠

0

 (26) 

The force vector 𝐟, and thus 𝐅, is expressed as a polynomial expansion at the middle of the time 

step 𝑛 

𝐅𝑛(𝑠) = ∑ 𝐅̃𝑚𝑛
(𝑘)(𝑠 − 0.5)𝑘 =

𝑝𝑓

𝑘=0

𝐅̃𝑚𝑛
(0)
+ 𝐅̃𝑚𝑛

(1)(𝑠 − 0.5) + 𝐅̃𝑚𝑛
(2)(𝑠 − 0.5)2 +⋯+ 𝐅̃𝑚𝑛

(𝑝𝑓)(𝑠 − 0.5)𝑝𝑓  (27) 

The expansion consists of 𝑝𝑓 + 1 terms, where 𝑝𝑓 is the order of the polynomial approximation 

of the forcing function. The solution in Eq. (26) at the end (𝑠 = 1) of the time step is simplified 

to 
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𝐳𝑛 = 𝑒
𝐀𝐳𝑛−1 +∑𝐁𝑘𝐅̃𝑚𝑛

(𝑘)

𝑝𝑓

𝑘=0

 (28) 

where 𝐁𝑘 is integrated by parts and can determined recursively 

𝐁𝑘 = 𝑒
𝐀∫(𝜏 − 0.5)𝑘𝑒−𝐀𝜏𝑑𝜏

1

0

= 𝐀−1 (𝑘𝐁𝑘−1 + (−
1

2
)
𝑘

(𝑒𝐀 − (−1)𝑘)𝐈)     ∀𝑘 = 0,1,2,… , 𝑝𝑓 (29) 

with the starting value at 𝑘 = 0 

𝐁0 = 𝑒
𝐀∫𝑒−𝐀𝜏𝑑𝜏

1

0

= 𝐀−1(𝑒𝐀 − 𝐈) (30) 

2.3.2 Padé expansion of the matrix exponential function 

To reduce computing costs, it may be possible to approximate the matrix exponential in Equation 

(28) with simpler and more computationally efficient functions. One way to do this is to use 

polynomial approximation techniques such as Taylor expansions, which result in explicit time-

stepping systems that are only conditionally stable. This means that there is a critical time 

increment that must not be exceeded in order for the algorithm to be stable. On the other hand, 

using approximation techniques based on rational functions, such as Padé expansions, can result 

in implicit algorithms that are unconditionally stable. In this case, the size of the time step is 

determined solely by the accuracy requirements in relation to the response history, rather than 

being limited by stability considerations. It is worth noting that both Taylor expansions and Padé 

expansions have been proposed as methods for approximating matrix exponentials, but they have 

different properties and may be more or less suitable for different types of problems (Chongmin 

Song, Eisenträger, et al., 2022). 

The approximation of the matrix exponential 𝑒𝐀 is applied by diagonal Padé expansion (see 

Eq. B.2). The diagonal Padé approximation of order 𝑀 is expressed as 

𝑒𝐀 ≈ 𝑒𝑀
𝐀 = 𝐐𝑀

−1(𝐀)𝐏𝑀(𝐀) (31) 

where the polynomials 𝐏𝑀(𝐀) and 𝐐𝑀(𝐀) can be expressed as 

𝐏𝑀(𝐀) = ∑
(2𝑀 −𝑚)!

𝑚! (𝑀 −𝑚)!
𝐀𝑚

𝑀

𝑚=0

 (32a) 
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𝐐𝑀(𝐀) = ∑
(2𝑀 −𝑚)!

𝑚! (𝑀 −𝑚)!
(−𝐀)𝑚

𝑀

𝑚=0

 (32b) 

Unless necessary, the order 𝑀 and the argument 𝐀 will be omitted hereafter for simplicity of 

notation. Pre-multiplying Eq. (28) with 𝐐 and using Eq. (31) leads to 

𝐐𝐳𝑛 = 𝐏𝐳𝑛−1 +∑𝐂𝑘𝐅̃𝑚𝑛
(𝑘)

𝑝𝑓

𝑘=0

 (33) 

where the matrices 𝐂𝑘 are introduced and expressed as polynomials of 𝐀 employing Eqs. (29) 

and (31). The general formula to determine 𝐂𝑘 is given as 

𝐂𝑘 = 𝐐𝐁𝑘 = 𝐀
−1 (𝑘𝐂𝑘−1 + (−

1

2
)
𝑘

(𝐏 − (−1)𝑘)𝐐)     ∀𝑘 = 0,1,2,… , 𝑝𝑓  (34) 

Which can be further simplified to 

𝐂0 = 𝐐𝐁0 = 𝐀
−1(𝐏 − 𝐐)     ∀𝑘 = 0,1,2,… , 𝑝𝑓  (35) 

A computationally efficient implementation process must be developed in order to execute the 

time-stepping strategy shown in Eq. (33) as it still necessitates the explicit computation of the 

matrix 𝐀. This procedure is covered in depth in the next section. 

2.3.3 Time-stepping scheme 

Following Chongmin Song, Zhang, Eisenträger, and Ankit (2022) to develop an efficient 

algorithm, the polynomial 𝐐 is factorized as 
𝐐 = (𝑟1𝐈 − 𝐀)(𝑟2𝐈 − 𝐀)… (𝑟𝑀𝐈 − 𝐀) (36) 

The root 𝑟 are either real or pairs of complex conjugates. Using Eq. (36), Eq. (33) is rewritten as 
(𝑟1𝐈 − 𝐀)(𝑟2𝐈 − 𝐀)… (𝑟𝑀𝐈 − 𝐀)𝐳𝑛 = 𝐛𝑛 (37) 

Where the right-hand side 𝐛𝑛 is expressed as 

𝐛𝑛 =  𝐏𝐳𝑛−1 +∑𝐂𝑘𝐅̃𝑚𝑛
(𝑘)

𝑝𝑓

𝑘=0

 (38) 

Equation (37) is reformulated as series of equations linear in matrix 𝐀 by introducing the 

auxiliary variables 𝐳(𝑘)(𝑘ϵ{1,2,… ,𝑀 − 1}) 
(𝑟1𝐈 − 𝐀)𝐳

(1) = 𝐛𝑛 

(𝑟2𝐈 − 𝐀)𝐳
(2) = 𝐳(1) 

(39) 
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                         … 

(𝑟𝑀𝐈 − 𝐀)𝐳𝑛 = 𝐳
(𝑀−1) 

The equations are solved successively by considering one root a time. 

When a root is real, the corresponding line in Eq. (39) denoted as 

(𝑟𝐈 − 𝐀)𝐱 = 𝐠 (40) 

where 𝑟 is the real root. The unknown vector 𝐱 is determined in relation to given right-hand side 

denoted by 𝐠. Partitioning 𝐱 and 𝐠 into sub-vectors of equal size 

𝐱 = {
x1
x2
} and 𝐠 = {g1g2} (41) 

by using Eq. (24), Eq. (40) is rewritten as 

(𝑟2𝐌+ 𝑟∆𝑡𝐂 + ∆𝑡2𝐊)x1 = 𝑟𝐌g1 − ∆𝑡
2𝐊g2 (42) 

for the solution of x1 and 

x2 =
1

𝑟
(x1 + g2) (43) 

for determining x2. 

For a pair of complex conjugate roots 𝑟 and 𝑟̅ (the overbar indicates a complex conjugate), the 

two equations are considered together and expressed for the unknown vector 𝐱 as 
(𝑟𝐈 − 𝐀)(𝑟̅𝐈 − 𝐀)𝐱 = 𝐠 (44) 

Another auxiliary vector 𝐲 is introduced 
(𝑟𝐈 − 𝐀)𝐲 = 𝐠 (45) 

Partitioning the vector 𝐲 in the same way 

𝐲 = {
y1
y2
} (46) 

the sub-vector y1 is obtained from 
(𝑟2𝐌+ 𝑟∆𝑡𝐂 + ∆𝑡2𝐊)y1 = 𝑟𝐌g1 − ∆𝑡

2𝐊g2 (47) 

While the second sub-vector y2 follows as 

𝑦2 =
1

𝑟
(𝑦1 + g2) (48) 
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The solution of Eq. (44) for the unknown vector 𝐱 is expressed as 

𝐱 =
−1

2Im(𝑟)𝑖
(𝐲 − 𝐲̅) =

Im(𝐲)

Im(𝑟)
 (49) 

It should be noted that the system of algebraic equations (42) and (47) are in the same form as 

that found in the Newmark time-stepping scheme. 

2.4 Natural Frequencies and Mode Shapes 
The system of second order homogeneous ordinary differential equations (subscripts are omitted 

for simplicity) associated with the equation of motion (Eq. (9)) is addressed 

[𝐾]{𝑢}  + [𝑀]{𝑢̈} = 0 (50) 
The harmonic vibration is considered 

{𝑢} = {𝑈} sin𝜔𝑡 (51) 
{𝑢̈} = −𝜔2{𝑈} sin𝜔𝑡 (52) 
where {𝑈} represents the amplitudes of the nodal displacements. 𝜔 is the circular frequency of 

the vibration. A generalized eigenvalue problem can be constructed by substituting Eqs. (51) and 

(52) into Eq. (50) as 

([𝐾] − [𝑀]){𝑈} = 0 (53) 
where the eigenvalues  leads to the natural frequencies 

𝜔 = √ (54) 
Only the positive roots are chosen. The processes of harmonic analysis are illustrated in Figure 

4.2. The eigenvector {𝑈} represents the corresponding mode shapes; the period of free vibration 

is equal to 𝑇 = 2𝜋 𝜔⁄ ; the natural frequencies are sorted in ascending order; and the output 

arguments consist of the initial number of modes of which natural frequencies are the smallest 

and the accompanying mode shapes. 
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Figure 4.2 Flowchart for the calculation of natural frequencies and mode shapes. 
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3. Dynamic Response Topology Optimization 

Structures are actually susceptible to dynamic loads, thus it makes sense to optimize them taking 

these factors into account. With the representation of the shape of the structure as a material 

property and the fact that the dynamic TO has primarily been used in the frequency domain based 

on homogenization (Díaaz & Kikuchi, 1992), a method for determining the shape of the structure 

and TO that maximizes the natural frequency or eigenfrequency has been developed (J. Du & 

Olhoff, 2007; Pedersen, 2000). Reducing vibration and noise is the goal of frequency-domain 

issues (JOG, 2002). A modified structural TO approach based on the level set method was 

recently used by Shu, Wang, Fang, Ma, and Wei (2011) to minimize frequency response at 

certain spots or surfaces on the structure. The eigenvalue, the eigenvector, the applied frequency, 

and the strength of the applied force are significant variables in the frequency domain. The 

performance of harmonic analysis is analogous to transient analysis across a certain range of time, 

and it is specifically done for the range of frequency. As a result, in many situations, time-

dependent constraints might be converted to frequency-dependent constraints, necessitating the 

need for sensitivity analysis on functions with frequency dependence. 

In the specific time domain, another dynamic structural optimization has been investigated (Choi 

& Park, 2002; Jang, Lee, & Park, 2009; Min, Kikuchi, Park, Kim, & Chang, 1999). Minimizing a 

weight or increasing the overall stiffness of a structure are the primary objectives of time-domain 

issues. The numerical computation range gets uncontrollably vast when the structure is massive, 

or the duration of the loads is prolonged. 

The sum of the dynamic compliances across the whole-time range is typically used to describe the 

main target function in dynamic response TO. This situation shows that the compliance profile of 

the optimized model can be quickly improved at a given time, and since only the overall 

compliance is considered, the compliance value at each time step is not regulated, implying that 

the optimal structure can experience significant deformation at a particular moment. A novel TO 

technique for dynamic and nonlinear features has been described (Jang, Lee, Lee, & Park, 2012) 

using the equivalent static loads for nonlinear static response structure optimization (ESLSO) 
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method. In both linear static analysis and nonlinear dynamic analysis, equivalent static loads 

(ESLs) are loads that result in the identical response field at every time step. Lee and Park (2015) 

suggested utilizing ESLSO to optimize topology for nonlinear dynamic systems, while Zhao and 

Wang (2016) suggested employing model reduction techniques to cut down on computing costs 

as dynamic response TO is often costly. A MATLAB implementation for TO of structures subject 

to dynamic loads known as "PolyDyna" was recently reported by Giraldo-Londoño and Paulino 

(2021).  

3.1 Topology Optimization in the Time Domain 
Topology optimization determines the optimal layout of structures under applied forces. The 

presence of dynamic load regimes poses major challenges in any standard design techniques, and 

the problem is known as a dynamic response topology optimization. This section proposes a 

novel image-based adaptive scaled boundary finite element (SBFE) method for the optimal 

topology design of continuum (in-plane two-dimensional) structures under time-dependent 

dynamic responses. In essence, a so-called bi-evolutionary structural optimization (BESO) 

algorithm is developed within the SBFE framework that advantageously enables automatic 

adaptive meshes using the simple yet effective image-based procedures. The mechanical 

compliance is minimized under a series of decreasing volume fractions in the time domain. What 

is important is the images of stress responses well present the criteria, rather than some specific 

error functions, for automatic adaptive mesh schemes. Underpinning the digital images, a 

quadtree/octree mesh refinement overcomes the problems associated with hanging nodes and 

provides the fast mesh convergence during the optimization process. Moreover, a single-step 

high-order implicit time integration technique (incorporating an adjustable numerical dissipation 

at high frequency) provides a close approximation of equivalent static loads presenting dynamic 

responses of the optimally designed topology structure in the time domain. The calculated 

equivalent static forces provide the accurate displacement field as one mapped under the actual 

dynamic responses at each time step. Various numerical examples and benchmarks illustrate the 

accuracy and robustness of the proposed dynamic response topology optimization method. 
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3.1.1 Problem statement 

Some researchers often use the accumulation of compliance over all time steps when analyzing 

the dynamic response to a problem. However, in time-dependent topology optimization, 

maximizing the stiffness of a structure involves minimizing the risk of failure, especially because 

high strain energy at certain locations can make the structure more prone to failure. The modified 

objective function, defined by the weighted sum of compliances near the peaks in the time 

domain (Jang et al., 2012), aims to address this issue. The objective function can be expressed as 

follows: 

min 𝐶(𝐮𝒗, 𝑥𝑒
𝑚) =∑𝜔𝑣

𝑤

𝑣=1

(𝐅𝑣
𝑇𝐮𝒗);  𝑣 = 1,… ,𝑤 

𝑠. 𝑡. ℎ𝑗(𝑥𝑒
𝑚) =

∑ [𝑉𝑒∏ (𝑥𝑒
𝑚)𝑗

𝑚=1 ]𝑒

∑ 𝑉𝑒𝑒
≤ 𝑉𝑗

∗  𝑗 = 1, … ,𝑀 

  𝐌(𝑥𝑒
𝑚)𝐮̈(𝑡) + 𝐂(𝑥𝑒

𝑚)𝐮̇(𝑡) + 𝐊(𝑥𝑒
𝑚)𝐮(𝑡) = 𝐅(𝑡)  𝑡 = 1,… , 𝑙 

  𝑥𝑒
𝑚 = 𝑥𝑚𝑖𝑛 𝑜𝑟 1, 𝑒 = 1,… , 𝑛;  𝑚 = 1,… ,𝑀 

(55) 

where 𝑤 is the number of time steps near the peak with 𝑙 is the total number of time steps in 

dynamic analysis, 𝜔𝑣 is the weighting factor (usually setting to 1), 𝐅𝑣𝑇 is dynamic load vector at 

the 𝑣𝑡ℎ time step, 𝐮𝒗 displacement vector of the 𝑣𝑡ℎ time step, 𝐌(𝑥𝑒𝑚) is the mass matrix, 

𝐂(𝑥𝑒
𝑚) is the damping matrix, 𝐊(𝑥𝑒𝑚) is the stiffness matrix corresponding to the design 

variable 𝑥𝑒𝑚, 𝐮̈(𝑡) is the acceleration vector, 𝐮̇(𝑡) is the velocity vector, 𝐮(𝑡) is the 

displacement vector, 𝑉𝑒 is the volume vector of each element and 𝑉𝑗∗ is the specific volume 

fraction of the structure given by the user, totally 𝑀 constraints for 𝑀 materials, 𝑥𝑚𝑖𝑛 is the 

lower bound of the design variable, and 𝑛 is the total number of elements. 

For volume constrained with compliance minimization, the sensitivity for equivalent static loads 

method for nonlinear static response structural optimization (ESLSO) is described as 
𝜕𝐶(𝐮𝒗, 𝑥𝑒

𝑚)

𝜕𝑥𝑒
𝑚 =

1

2
(𝑥𝑒
𝑚)𝑝−1∑𝜔𝑣

𝑤

𝑣=1

𝐮𝒗
𝑻
𝐊𝒆
𝐸𝒆

𝝏𝐸

𝝏𝝋𝒆
𝒎
𝐮𝒗 (56) 
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3.1.2 The ESLSO Procedure 

The loads that generate the same displacement field as dynamic loads at each time step are called 

ESLs and the governing equation of dynamic analysis is 

𝐌(𝑥𝑒
𝑚)𝐮̈(𝑡) + 𝐂(𝑥𝑒

𝑚)𝐮̇(𝑡) + 𝐊(𝑥𝑒
𝑚)𝐮(𝑡) = 𝐅(𝑡)  𝑡 = 1,… , 𝑙 (57) 

The above equation can be modified to obtain the ESLs vector as 
𝐅𝒆𝒒(𝑡) + 𝐊(𝑥𝑒

𝑚)𝐮(𝑡) = 𝐅(𝑡) −𝐌(𝑥𝑒
𝑚)𝐮̈(𝑡) + 𝐂(𝑥𝑒

𝑚)𝐮̇(𝑡)  𝑡 = 1,… , 𝑙 (58) 

where 𝐅𝒆𝒒(𝑡) is ESLs vector at the time step, 𝑡, and includes the dynamic characteristics of 

𝐌(𝑥𝑒
𝑚)𝐮̈(𝑡) + 𝐂(𝑥𝑒

𝑚)𝐮̇(𝑡). The ESLs vector can be evaluated by multiplying the linear 

stiffness matrix and the dynamic displacement at each time step as follows: 
𝐅𝒆𝒒(𝑡) = 𝐊(𝑥𝑒

𝑚)𝐮(𝑡)  𝑡 = 1,… , 𝑙 (59) 

It is observed that a point force creates ESLs that are imposed on all nodes and ESLs are only 

artificial loads designed to complement the two displacement fields. As stated previously, ESLSO 

was first designed for size/shape optimization, and this dissertation expands on the ESLSO for 

dynamic response TO. 

The optimization process using ESLSO for TO is illustrated in Figure 4.3 and the steps are as 

follows: 

1. Set the initial design variables and parameters (iteration: 𝑘 = 0, design variables 
(𝑥𝑒
𝑚)(𝑘) = (𝑥𝑒

𝑚)(0) and BESO parameter: 𝑅𝑅, 𝑟𝑚𝑖𝑛, 𝑝 and 𝑉𝑗∗. 
2. Perform nonlinear dynamic analysis with (𝑥𝑒𝑚)(𝑘) in Eq. (57) 
3. Check the response profile of the compliance in the nonlinear dynamic system along 𝑣 =

1, … , 𝑤 by 𝜎𝑣𝑇𝜀𝑣 and find the number of peak points in the profile. 
4. Generate ESLs using Eq. (59) at the time steps near the peaks that are obtained from step 

3. 
5. Solve the linear static response TO problem as described in Eq. (55). 
6. Compute elemental sensitivity number as Eq. (56) and filtered sensitivity number. 
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7. Check the convergence criterion. If the criterion is satisfied, the optimization process 
terminates; however, if the convergence criterion is not satisfied, go to step 8. The 
convergence criterion is defined as Eq. (4.15) 

8. Update the design variables, set 𝑘 = 𝑘 + 1, then go to step 2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 170 

 

Figure 4.3 Process of linear dynamic response topology optimization using ESLSO. 
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3.1.3 Numerical examples and expected results 

1. Mean compliance design of structure under half-cycle sinusoidal loading 

In this example, the design domain is a 2𝐿 × 𝐿 cantilevered rectangular area. A half-cycle 

sinusoidal load is vertically applied at the centerline of the right end of the structure as shown in 

Figure 4.4 and the compliance response of the structure during loading phase is taken as the 

objective function. The prescribed volume fraction of single material design is 0.5; three load 

cases of 𝑡𝑓 = 0.1, 0.01, and 0.001 are considered; the time step used in the time integration is set 

to 𝑡 = 0.0001 for all cases; and the BESO parameters include 𝐸𝑅 = 5%, radius of the 

sensitivity filter 𝑟𝑚𝑖𝑛 = 6 pixels, and convergence criterion,  = 0.01% 

For MMTO design, the candidate materials have elastic modulus, 𝐸, regularly spaced in the range 
[0.7𝐸11, 2.1𝐸11], Poisson’s ratio of 0.3 and structural density, 𝜌0 = 7800 for fully solid 

material are assumed. The candidate materials and specified volume constraints for all cases are 

summarized in Table 4.1. 

 
Figure 4.4 Design of structure under half-cycle sinusoidal loading. 

(a) Design domain and boundary conditions (b) half-cycle sinusoidal load 

(c) elastic modulus of 3 materials 
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Mat. 

𝐸(𝑚) 𝜌(𝑚) 
1-material  2-material  3-material 
𝑔1  𝑔1 𝑔2  𝑔1 𝑔2 𝑔3 

1 2.1𝐸11 7800 ✓  ✓   ✓   

2 1.35𝐸11 4500    ✓   ✓  

3 0.7𝐸11 2700        ✓ 

Volume fraction 
1

2
  

1

4
 

1

4
  

1

6
 

1

6
 

1

6
 

Table 4.1 The candidate materials and specified volume constraints for structure under half-cycle 

sinusoidal loading. 

SMTO and MMTO for static load designs 
For the static load designs, the first example is solved to numerically validate the proposed 

method. Figure 4.5 (a) and (b) demonstrates the UM and AM results of static topology 

optimization. It can be observed that the AM scheme provides less computational time effort and 

complexity layout than UM approach. Figure 4.5 (c) and (d) demonstrates the AM results of static 

multi-phase materials topology optimization (MMTO). 

 
Figure 4.5 Topological layouts of short–cantilevered structure under static forces. 

(a) UM static design (SMTO) (b) AM static design (SMTO) 

(c) AM 2–phase materials static design (d) AM 3–phase materials static design 
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SMTO and MMTO for sinusoidal loading designs 

For dynamic topology optimization, the first example is solved to numerically validate the 

proposed method. For SMTO, the International System of Units (SI) is adopted and Young’s 

modulus E0 = 2.0E11, Poisson’s ratio ν = 0.3 and structural density ρ0 = 7800 for fully solid 

material are assumed. Figure 4.6 shows the results of dynamic topology optimization using 

ESLSO. The single-phase material designs shown in Figure 4.6 (a)–(f) also demonstrate that, for 

mean dynamic compliance design of structures under a half-cycle sinusoidal loading, when the 

loading time is long, the dynamic design will be similar with the static design; when the loading 

time becomes short, the dynamic design will be different from the static one. This is because that, 

although a sinusoidal load keeps its magnitude constant during the loading phase, it has essential 

difference from a static load. A static load only contains static component, while a sinusoidal load 

not only contains a static component, but also contains dynamic components with various 

frequencies. When the loading time is long, the characteristics of the sinusoidal load is dominated 

by its static component; when the loading time is short, the characteristic of the sinusoidal load is 

dominated by those components with higher frequencies. Since we concluded that the long 

loading time is similar to the static design, the multi-phase materials design using ESLSO are 

performed by setting tf = 0.1 s. The topological results for UM and AM multi-phase materials 

using ESLSO are depicted in Figure 4.6 (g)–(j). As anticipated, in the ideal topology, the stiffer 

material ("red") is spread along two sides from the fixed support site, where the local equivalent 

stress is greater than the others. The softer materials (“green and blue”) are located where stress is 

expected to be low. 

It is noted that the dynamic designs for the load case of tf = 0.001 s in Figure 4.6 (c) and (f) are 

statically weak, and its dynamic performance is worse than that of the static design. This shows 

that the dynamic response design problems may have many local optimums and some of which 

may be not practical. The structural compliance of the single material and multi-phase materials 

for both UM and AM are evaluated, as shown in Table 4.2 and Table 4.3. For both optimized 

models in Figure 4.5 (a) and Figure 4.6 (a), the structural compliance from static analysis are 
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similar and the maximum compliance from dynamic analysis are similar as well. This means that 

dynamic response topology optimization can be replaced by static topology optimization which 

costs lower. This matches with the conclusion of (Jang et al., 2012) that the results of dynamic 

response optimization with a single dynamic load are the same as those of static topology 

optimization. 

 
Figure 4.6 Topological layouts of short–cantilevered structure under sinusoidal loading. 

(a) UM SMTO ESLs 
design (tf = 0.1 s) 

(b) UM SMTO ESLs 
design (tf = 0.01 s) 

(c) UM SMTO ESLs 
design (tf = 0.001 s) 

(d) AM SMTO ESLs 
design (tf = 0.1 s) 

(e) AM SMTO ESLs 
design (tf = 0.01 s) 

(f) AM SMTO ESLs 
design (tf = 0.001 s) 

(g) UM 2-phase materials 
ESLs design (tf = 0.1 s) 

(h) AM 2-phase materials 
ESLs design (tf = 0.1 s) 

(i) UM 3-phase materials ESLs 
design (tf = 0.1 s) 

(j) AM 3-phase materials ESLs 
design (tf = 0.1 s) 
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Load cases 
SMTO 

C. from static analysis 
C. at peak points from 

dynamic analysis 
 UM AM UM AM 

Static load design 0.0001549 
Figure 4.5 (a) 

0.0001530 
Figure 4.5 (b) 

0.0029760 
Figure 4.5 (a) 

0.0029293 
Figure 4.5 (b) 

ESLs design (tf = 0.1) 0.0001639 
Figure 4.6 (a) 

0.0001616 
Figure 4.6 (d) 

0.0029899 
Figure 4.6 (a) 

0.0029447 
Figure 4.6 (d) 

ESLs design (tf = 0.01) 0.0003127 
Figure 4.6 (b) 

0.0003064 
Figure 4.6 (e) 

0.0009362 
Figure 4.6 (b) 

0.0009181 
Figure 4.6 (e) 

ESLs design (tf = 0.001) 0.0000090 
Figure 4.6 (c) 

0.0000047 
Figure 4.6 (f) 

0.0000257 
Figure 4.6 (c) 

0.0000087 
Figure 4.6 (f) 

Table 4.2 Compliance of single-material for short-cantilever beam under different loadings. 
 

Load cases 
MMTO 

C. from static analysis 
C. at peak points from 

dynamic analysis 
 AM-2 mats AM-3 mats AM-2 mats AM-3mats 

Static load design 0.0001683 
Figure 4.5 (c) 

0.0002037 
Figure 4.5 (d) 

0.002192 
Figure 4.5 (c) 

0.002902 
Figure 4.5 (d) 

ESLs design (tf = 0.1) 0.0001824 
Figure 4.6 (h) 

0.0002173 
Figure 4.6 (j) 

0.002213 
Figure 4.6 (h) 

0.002881 
Figure 4.6 (j) 

Table 4.3 Compliance of AM single-material for short-cantilever beam under different loadings. 
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2. Design of short cantilever beam with two loads 

The design domain of the structure is displayed in Figure 4.7(a) and the optimal solution based on 

static responses is depicted in Figure 4.7(b). In this example, the structure has two dynamic loads, 

as shown in Figure 4.7(c) and (d). 

The prescribed volume fraction of material is 0.5; a single value of the loading time, 𝑡𝑓 = 0.2 are 

considered; the time step used in the time integration is set to 𝑡 = 0.001 for all cases; and the 

BESO parameters include 𝐸𝑅 = 2%, radius of the sensitivity filter 𝑟𝑚𝑖𝑛 = 8 pixels, and 

convergence criterion  = 0.01%. For the MMTO design, the candidate materials and specified 

volume constraints for all cases are shown in previous example. 

 
Figure 4.7 Design of structure under half-cycle sinusoidal and cosine loadings. 

SMTO and MMTO for static load designs 
As previously demonstrated, the AM (adaptive mesh) scheme greatly reduces the computational 

time and complexity of the topological layout. This example focuses on the results obtained using 

the AM scheme for both static and dynamic design. The static design results, obtained using the 

(a) Design domain and boundary conditions 

(c) half-cycle sinusoidal load (d) half-cycle cosine load 

(b) UM Static design (SMTO) 
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AM scheme, are shown in Figure 4.8, while the results for dynamic topology optimization using 

ESLs with the AM scheme are displayed in Figure 4.9. These results differ significantly from 

those of previous examples. The validity of these results was confirmed through static and 

dynamic analyses, as shown in Table 4.4 and Table 4.5. When the model optimized for dynamic 

response is tested using static analysis, the strain energy is found to be greater than that of the 

model optimized for static conditions. Similarly, when the model optimized for static conditions 

is tested using dynamic analysis, the strain energy is greater than that of the model optimized for 

dynamic response. This can be understood by considering that, for linear elastic problems under 

the assumption of a single static load and small deformation, the magnitude of the load does not 

affect the optimal design, but for structures under two static loads, the ratio of their magnitudes 

can greatly influence the optimal design results. The ratio of the magnitudes of these two dynamic 

loads changes over time, resulting in different designs under dynamic and static load conditions. 

 
Figure 4.8 Results of two static loads topology optimization. 

(a) AM Static design (SMTO) (b) Mesh plotted for AM Static design 

(c) AM 2–phase materials static design (d) AM 3–phase materials static design 
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Figure 4.9 Results of structure under half-cycle sinusoidal and cosine loadings. 

Load cases 
SMTO 

C. from static analysis 
C. at peak points from 

dynamic analysis 
Static load design 0.000099 

Figure 4.8 (a) and (b) 
0.508018 

Figure 4.9 (a) and (b) 
ESLs design (tf = 0.2) 0.000641 

Figure 4.8 (a) and (b) 
0.063961 

Figure 4.9 (a) and (b) 
Table 4.4 Compliance of AM single-material for short-cantilever beam with two loads under 

different loadings. 

  

(a) AM ESLSO design (SMTO) (b) Mesh plotted for AM ESLSO 
design 

(d) AM 3–phase materials ESLSO 
design 

(c) AM 2–phase materials ESLSO 
design 
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Load cases 
MMTO 

C. from static analysis 
C. at peak points from dynamic 

analysis 
 AM-2 mats AM-3 mats AM-2 mats AM-3mats 

Static load design 0.000114 
Figure 4.8 (c) 

0.000137 
Figure 4.8 (d) 

0.564871 
Figure 4.8 (c) 

0.901163 
Figure 4.8 (d) 

ESLs design 
(tf = 0.2) 

0.000737 
Figure 4.9 (c) 

0.000891 
Figure 4.9 (d) 

0.074955 
Figure 4.9 (c) 

0.088975 
Figure 4.9 (d) 

Table 4.5 Compliance of AM multi-material for short-cantilever beam with two loads under 
different loadings. 
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3. Design of 3D MBB simple support beam with uniform dynamic load 

An example of 3D solid structure displayed in Figure is optimized. The uniform dynamic loading 

is acted on the top surface of the beam, as depicted in Figure 4.10. The objective function is the 

summation of strain energy at the all-time steps. The candidate materials and specified volume 

constraints for all cases are shown in example 2. The BESO parameters include 𝐸𝑅 = 5%, 

radius of the sensitivity filter 𝑟𝑚𝑖𝑛 = 4 voxels, and convergence criterion  = 0.01%. The 

specific value of the loading time, 𝑡𝑓 = 0.1, is considered; the time step used in the time 

integration is set to 𝑡 = 0.001 for all cases. 

 

Figure 4.10 Design of 3D solid structure with uniform dynamic loadings. 

 
Mat. 

𝐸(𝑚) 𝜌(𝑚) 
1-material  2-material  3-material 
𝑔1  𝑔1 𝑔2  𝑔1 𝑔2 𝑔3 

1 2.1𝐸11 7800 ✓  ✓   ✓   

2 1.35𝐸11 4500    ✓   ✓  

3 0.7𝐸11 2700        ✓ 

Volume fraction 
3

10
  3

20
 

3

20
  1

10
 

1

10
 

1

10
 

Table 4.6 The candidate materials and specified volume constraints for 3D solid structure under 
dynamic loading. 

  

(a) Design domain and boundary conditions (b) Dynamic loading condition 
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SMTO and MMTO for static and dynamic load designs 
The BESO algorithm was able to effectively find the optimal solutions for a 3D MBB simple 
support beam under both static and dynamic load conditions. The results for these cases, 
including the number of iterations, topological layouts, and structural compliance, are presented 
in Table 4.7. These results follow the same pattern as previous examples. Using the traditional 
method of sensitivity analysis to solve this problem, which has a large number of finite elements, 
would take a significant amount of time. However, the proposed method is able to solve the 
problem with significantly less cost and time. As a result, high-order time integration method is 
based on approximating the derivative of a function using a polynomial expression, which can be 
evaluated more efficiently than the original function. By using the Pade expansion, it is possible 
to achieve high accuracy in the results of the dynamic analysis with a relatively small number of 
calculations. 

Cases Iterations 
C. from static 

analysis 
C. at peak points from 

dynamic analysis 
Optimal shape 

Static load 
design 

57 5.06E-07 1.43E-04 

 

1 MAT ESLs 
(tf = 0.1) 

119 5.19E-07 2.77E-06 

 

2 MATs ESLs 
(tf = 0.1) 

78 6.08E-07 3.00E-06 

 

3 MATs ESLs 
(tf = 0.1) 

77 6.81E-07 3.49E-06 

 
Table 4.7 Optimal results of 3D MBB imply supported beam under static and dynamic loading. 
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3.2 Topology Optimization in the Frequency Domain 
For dynamic behavior of continuum structure, the linear frequency response can be represented 

by the following general eigenvalue problem 

(𝐊 − 𝜔𝑑
2𝐌)𝑈𝑑 = 0, (60) 

where 𝐊 and 𝐌 represent the global structural stiffness and mass matrices of structure and 𝜔𝑑 

represents the 𝑑𝑡ℎ natural frequency response and the corresponding eigenvector 𝑈𝑑. The 

relationship between 𝜔𝑑 and 𝑈𝑑 can be expressed by the Rayleigh quotient 

𝜔𝑑
2 = 𝑑 =

𝑈𝑑
𝑇𝐊𝑈𝑑

𝑈𝑑
𝑇𝐌𝑈𝑑

 (61) 

Our contribution considers the maximization of the natural frequency of vibrating continuum 

structure for both SMTO and MMTO with respect to the volume fraction constraint. 

3.2.1 Problem statement 

In this problem, the dynamic and static characteristics of the structure based on natural frequency 

TO will be considered. The objective function of optimizing the topology of a continuum 

structure without damping for minimum value of the integral dynamic compliance can be written 

as follows: 

min 𝐶(𝑑, 𝑥𝑒
𝑚) = 𝑈𝑻𝐊(, 𝑥𝑒

𝑚)𝑈 = 𝐹𝑻𝑈 

𝑠. 𝑡. ℎ𝑗(𝑥𝑒
𝑚) =

∑ [𝑉𝑒∏ (𝑥𝑒
𝑚)𝑗

𝑚=1 ]𝑒

∑ 𝑉𝑒𝑒
≤ 𝑉𝑗

∗  𝑗 = 1, … ,𝑀 

  (𝐊 − 𝑑𝐌)𝑈𝑑 = 0 

  𝑥𝑒
𝑚 = 𝑥𝑚𝑖𝑛 𝑜𝑟 1, 𝑒 = 1,… , 𝑛;  𝑚 = 1,… ,𝑀 

(62) 

where 𝐶(, 𝑥𝑒𝑚) stands for the dynamic compliance corresponding to design variable, 𝑥𝑒𝑚, and 

𝑑  is eigenvalue that represents the natural frequency response (𝜔𝑑 = √𝑑) of the structure. 𝐊 

and 𝐌 represent global structural stiffness and mass matrices of structure, 𝑉𝑒 is the volume vector 

of each element, and 𝑉𝑗∗ is the specific volume fraction of the structure given by the user, totally 

𝑀 constraints for 𝑀 materials, 𝑥𝑚𝑖𝑛 is the lower bound of the design variable and 𝑛 is the total 

number of elements. 
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3.2.2 MMTO and Compliance sensitivities 

From section 5.2 in Chapter 2, the MMTO problem statement shown in Eq. (5.8) is applied in the 

current approach. Therefore, the sensitivity calculations of compliance based on natural frequency 

responses can be expressed in the same manner of traditional compliance sensitivities as 

𝜕𝐶(𝑥)

𝜕𝑥𝑒
𝑚 =

𝜕𝐶(𝑥)

𝜕
𝑒
𝑚

𝜕
𝑒
𝑚

𝜕𝑥𝑒
𝑚  (63) 

where 𝜕𝐶(𝑥)
𝜕𝑒

𝑚  is harmonic compliance responses vector expressed via the chain rule in an identical 

manner as single material. However, these harmonic compliance responses are included the mass 

of individual materials. For volume constrained structure, the modified compliance 𝜕𝐶(𝑥)
𝜕𝑒

𝑚
 based 

on natural frequency (𝜔𝑑 = √𝑑) derivatives are 

𝜕𝐶(𝑥)

𝜕
𝑒
𝑚
=
𝜕𝜔𝑑

2

𝜕
𝑒
𝑚

 

=
1

2𝜔𝑑𝑈𝑑
𝑇𝐌𝑈𝑑

[2
𝜕𝑈𝑑

𝑇

𝜕
𝑒
𝑚
(𝐊 − 𝜔𝑑

2𝐌)𝑈𝑑 + 𝑈𝑑
𝑇 (

𝜕𝐊

𝜕
𝑒
𝑚
− 𝜔𝑑

2
𝜕𝐌

𝜕
𝑒
𝑚
)𝑈𝑑] 

(64) 

From Eq. (62), it can be further simplified to 

𝜕𝐶(𝑥)

𝜕
𝑒
𝑚
=

1

2𝜔𝑑𝑈𝑑
𝑇𝐌𝑈𝑑

[𝑈𝑑
𝑇 (

𝜕𝐊

𝜕
𝑒
𝑚
− 𝜔𝑑

2
𝜕𝐌

𝜕
𝑒
𝑚
)𝑈𝑑] (65) 

Finally, normalizing the vector 𝑈𝑑𝑇𝐌𝑈𝑑 = 1 leads to the elemental sensitivity based on natural 

frequency as 

𝜕𝐶(𝑥)

𝜕
𝑒
𝑚
=

1

2𝜔𝑑
[𝑈𝑑

𝑇 (
𝜕𝐊

𝜕
𝑒
𝑚
−𝜔𝑑

2
𝜕𝐌

𝜕
𝑒
𝑚
)𝑈𝑑] (66) 

The partial derivative of the element stiffness matrix to topological design variables can be 

expressed explicitly by 

𝜕𝐊

𝜕
𝑒
𝑚
=
𝐊𝒆
𝐸𝒆

𝜕𝐸

𝜕
𝑒
𝑚

 (67) 

Term of 𝜕𝐸
𝜕𝑒

𝑚
 represent the equivalent elastic modulus interpolation function, express as 

𝜕𝐸(1,…,𝑀)

𝜕
𝑒
𝑚

=
𝜕(∑ 𝑤𝑚

𝑀
𝑚=1 𝐸(𝑀−𝑚+1))

𝜕
𝑒
𝑚

= ∑
𝜕𝑤𝑚
𝜕

𝑒
𝑚

𝑀

𝑚=1

𝐸(𝑀−𝑚+1) (68) 
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where 

𝑤𝑚 = [1 − (
𝑚 − 𝑚𝛿𝑚𝑀)

𝑝]∏(𝑗)
𝑝

𝑚−1

𝑗=1

 (69) 

𝛿𝑚𝑀 = {
1,𝑚 = 𝑀 
0,𝑚 ≠ 𝑀 

 (70) 

The partial derivative of the element mass matrix to topological design variables can be expressed 

explicitly by 

𝜕𝐌

𝜕
𝑒
𝑚
=
𝐌𝒆

𝑊𝒆

𝜕𝑊

𝜕
𝑒
𝑚

 (71) 

Term of 𝜕𝑊
𝜕𝑒

𝑚 represent relative density interpolation function, express as 

𝜕𝑊(1,…,𝑀)

𝜕
𝑒
𝑚

=
𝜕(∑ 𝑚

𝑀
𝑚=1 𝑊(𝑀−𝑚+1))

𝜕
𝑒
𝑚

= ∑
𝜕𝑚

𝜕
𝑒
𝑚

𝑀

𝑚=1

𝑊(𝑀−𝑚+1) (72) 

where 

𝑚 = [1 − (
𝑚 − 𝑚𝛿𝑚𝑀)

𝑞]∏(𝑗)
𝑞

𝑚−1

𝑗=1

 (73) 

𝛿𝑚𝑀 = {
1,𝑚 = 𝑀 
0,𝑚 ≠ 𝑀 

 (74) 

where 𝑞 is the penalty factor like 𝑝. In this dissertation, 𝑞 = 1 is used for all examples. 

The separated sensitivity number for each design variable is simply expressed as 

𝜕
𝑒
𝑚

𝜕𝑥𝑒
𝑚 = (𝑥𝑒

𝑚)𝑝−1 (75) 

Finally, by substituting Eqs. (64), (68), (72) and (75) into Eq. (63), the sensitivity number based 

on natural frequency responses can be represented as 

𝜕𝐶(𝑥)

𝜕𝑥𝑒
𝑚 =

1

2𝜔𝑑
[𝑈𝑑

𝑇 (
𝜕𝐊(, 𝑥𝑒

𝑚)

𝜕
𝑒
𝑚

− 𝜔𝑑
2
𝜕𝐌(, 𝑥𝑒

𝑚)

𝜕
𝑒
𝑚

)𝑈𝑑]

=
1

2𝜔𝑑
(𝑥𝑒
𝑚)𝑝−1𝑈𝒆

𝑻 (
𝐊𝒆
𝐸𝒆

𝜕𝐸

𝜕
𝑒
𝑚
− 𝜔𝑑

2
𝐌𝒆

𝑊𝒆

𝜕𝑊

𝜕
𝑒
𝑚
)𝑈𝒆 = 𝛼𝑒

𝑚 
(76) 

where the component-wise of 𝑒𝑚 is the elemental sensitivity number for multimaterial elements 

𝛼𝑒
𝑚 =

1

2𝜔𝑑
(𝑥𝑒
𝑚)𝑝−1𝑈𝒆

𝑻 (
𝐊𝒆
𝐸𝒆

𝜕𝐸

𝜕
𝑒
𝑚
− 𝜔𝑑

2
𝐌𝒆

𝑊𝒆

𝜕𝑊

𝜕
𝑒
𝑚
)𝑈𝒆 (77) 
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3.2.3 Computational procedure 

The proposed evolutionary topology optimization (TO) approach involves an iterative process, 

which is illustrated in a flow chart in Figure 4.11. The process of multi-material TO using Bi-

directional Evolutionary Structural Optimization (MMTO-BESO) begins by starting with a full 

design and gradually decreasing the volume of material 1. As the volume of material 1 decreases, 

the volume of base material 2 increases until the required volume of material 2 is reached. At this 

point, the volume of base material 3 (void element) begins to increase as the volume of material 2 

remains unchanged and the volume of material 1 continues to decrease. 

In summary, the MMTO-BESO approach involves adjusting the volumes of multiple materials in 

an iterative manner to achieve the desired material distribution. The process starts with a full 

design and involves decreasing the volume of one material while increasing the volume of 

another, resulting in a rise in the volume of the void element. This allows for the optimization of 

the material distribution based on the specific design requirements and objectives. 
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Figure 4.11 Flow chart of the dynamic compliance minimization based on natural frequency 

procedure. 
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3.2.4 Numerical example and expected results 

1. Beam with simply supported ends 

For this example, maximize the fundamental frequency responses of a beam-like 2D structure is 

shown in Figure 4.12. The beam with dimensions 8𝐿 × 𝐿 is simply supported at both ends with 

the prescribed volume fraction, 𝑉∗ = 0.5 for a single material design. 

For the MMTO design, it is assumed that all potential materials have a modulus of elasticity, 𝐸, 

evenly distributed between [0.7𝐸11, 2.1𝐸11], a Poisson’s ratio of 0.30, and a structural density 

of 𝜌0 = 7800 for fully solid material are assumed. Table 4.8 provides a summary of the potential 

materials and specified volume restrictions for all scenarios. 

 
Figure 4.12 Design domain and boundary conditions for beam with simply supported ends 

problem. 

 
Mat. 

𝐸(𝑚) 𝜌(𝑚) 
1-material  2-material  3-material 
𝑔1  𝑔1 𝑔2  𝑔1 𝑔2 𝑔3 

1 2.1𝐸11 7800 ✓  ✓   ✓   

2 1.35𝐸11 4500    ✓   ✓  

3 0.7𝐸11 2700        ✓ 

Volume fraction 
1

2
  

1

4
 

1

4
  

1

6
 

1

6
 

1

6
 

Table 4.8 The candidate materials and specified volume constraints for beam with simply 

supported ends. 

Single-phase material design 

For natural frequency-based topology optimization, the first example is solved and compared with 

J. Du and Olhoff (2007) and X Huang et al. (2010) to numerically validate the proposed method.  
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An image resolution of 128  1024 pixels with a uniform element size of 2 pixels is used. The 

Young's modulus E0 = 10 MPa, Poisson's ratio ν = 0.3, and structural density ρ0 = 1 kg/m3 for a 

fully solid material are assumed as the necessary parameters. An evolutionary ratio ER = 2 % 

with rmin = 6 pixels is utilized. Figure 4.13 shows the optimal design with a specific volume 

fraction. The first two eigenmodes of the optimal design are shown in Figure 4.13 (a) and (b). In 

general, as the volume fraction decreases, the first natural frequency increases while the second 

and third natural frequencies decrease. A multimodal example is one in which the first and second 

frequencies become similar in later stages. However, the sensitivity of multiple frequencies is not 

unique due to the lack of usual differentiability properties of the subspace spanned by the 

eigenvectors associated with multiple frequencies. 

 
Figure 4.13 Optimal topology for maximizing the first natural frequency for beam with simply 

supported ends. 

For adaptive mesh design, the convolution-filtered techniques are applied with 𝑟𝑑𝑒𝑛 = 6 voxels. 

and the elements arising during quadtree decomposition are limited in size to ≤ 16 pixels. The 

AM results for maximizing the first natural frequency for beam with simply supported ends are 

depicted in Figure 4.14. As expected, both of UM and AM results are significantly related. In 

addition, the results are compared with the references (J. Du & Olhoff, 2007; X Huang et al., 

(a) UM design for maximizing the first natural frequency (SMTO) 

(b) The first eigenmodes of the optimal design 

(c) The second eigenmodes of the optimal design 
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2010) and reported in Table 4.9. It is noted that the above optimal topology and its natural 

frequencies and eigenmodes agree well with the results in references that previously mentioned. 

 
Figure 4.14 AM design for maximizing the first natural frequency for beam with simply 

supported ends. 

 
Our work references 

UM AM (J. Du & Olhoff, 2007) (X Huang et al., 2010) 
𝜔1 (rad/s) 171.4 172.3 174.7 171.5 
Iterations 65 53 80 53 
Design Figure 4.13 Figure 4.14   
Table 4.9 Comparison results of first natural frequency for single-material beam with simply 

supported ends with references. 

Multi-phase material design 

For MMTO design, the results of all materials cases and specified volume restrictions for all 

scenarios in Table 4.8 are reported in Table 4.10. It should be noted that the AM results are 

limited in element size to ≤ 16 pixels and  ≥ 1 pixel. As expected, both of UM and AM results 

are almost the same. This example shows that the presented natural frequency constraint 

implementation is effectively able to increase the fundamental frequency of the design. 

Case Iterations Avg. time (s) 𝜔1 (rad/s) Topological layout 
UM 2-Mats 108 6.4925 212.9229  
UM 3-Mats 116 6.8497 219.3107  
AM 2-Mats 105 13.9584 214.7164  
AM 3-Mats 129 15.6429 219.5395  

Table 4.10 Results of first natural frequency for multi material beam with simply supported ends.  

(a) AM design for maximizing the first natural frequency (SMTO) 

(b) Mesh plotted for AM design for maximizing the first natural frequency (SMTO) 
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2. Beam with clamped ends 

In this example, the beam of dimensions 7𝐿 × 𝐿 is clamped on both sides as shown in Figure 

4.15 (a). For SMTO, the Young’s modulus E0 = 100 N/cm2, Poisson’s ratio ν = 0.3 and structural 

density ρ0 = 10-6 kg/m3 for fully solid material are assumed. For UM procedure, an image 

resolution 128  896 pixels is discretized with uniformly discretized by square elements of size 2 

pixels. The BESO parameters are ER = 2 %, rmin = 6 pixels and 𝑉∗ = 0.5 for a single material 

design. 

For the MMTO design, Table 4.8 provides a summary of the potential materials and specified 

volume restrictions for all scenarios. 

 
Figure 4.15 Boundary conditions for beam with clamped ends: (a) without concentrated 

nonstructural mass, (b) concentrated mass applied at center and (c) concentrated mass attached at 
the midpoint of the lower edge. 

(a) 

(b) 

(c) 
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Single-phase material design 

For dynamic SMTO based on natural frequency responses, this example is successfully solved in 

both UM and AM cases. Notice that we consider the topology optimization problems for 

maximization of the first natural frequency of vibrating continuum structures. The topological 

layouts for both schemes are displayed in. Figure 4.16 and Figure 4.17. As expected, the AM 

topological layouts provide slightly less complexity shapes than UM layouts. Additionally, the 

first natural frequency of Figure 4.16 (b) and Figure 4.17 (b) are agreed well with the reference 

(X Huang et al., 2010). 

 
Figure 4.16 Optimal topology for maximizing the first natural frequency for beam with clamped 

ends. 

 
Figure 4.17 AM design for maximizing the first natural frequency for beam with clamped ends. 

 

(a) 𝜔1 = 121.8 and 𝜔2 = 128.6 rad/s 

(b) 𝜔1 = 36.5 and 𝜔2 = 175.1 rad/s 

(c) 𝜔1 = 36.4 and 𝜔2 = 169.2 rad/s 

(a) 𝜔1 = 123.6 and 𝜔2 = 128.6 rad/s 

(b) 𝜔1 = 36.6 and 𝜔2 = 171.5 rad/s 

(c) 𝜔1 = 36.6 and 𝜔2 = 165.0 rad/s 
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Multi-phase material design 

For MMTO design, the individual volume constraints with corresponding to material properties 

are followed by Table 4.8. The TO results obtained using AM with different materials are 

displayed in Figure 4.18. Using different materials in the topology optimization process leads to 

significant changes in the design. From Figure 4.16 to Figure 4.18, it can be seen that single-

material topology optimization (SMTO), two-material MMTO (2MMTO), and three-material 

MMTO (3MMTO) all result in different material layouts when different materials are used. One 

primary advantage of using multi-material topology optimization (MMTO) for continuum 

structures under frequency responses is the ability to tailor the material distribution to optimize 

the structure's performance for a specific frequency range. By using multiple materials in the 

design, it is possible to select materials with different mechanical properties and optimize their 

distribution in the structure to achieve the desired frequency response. 

 

Figure 4.18 AM multi-materials design for maximizing the first natural frequency for beam with 
clamped ends. 

In conclusion, the advantage of MMTO is the ability to optimize the structure's performance 

under dynamic loading conditions. By considering the frequency response of the structure, it is 

possible to optimize the material distribution to minimize the risk of failure or other detrimental 

effects of dynamic loading. 

(a) 𝜔1 = 655.7 and 𝜔2 = 683.3 rad/s (b) 𝜔1 = 655.4 and 𝜔2 = 773.3 rad/s 

(c) 𝜔1 = 207.0 and 𝜔2 = 961.3 rad/s (c) 𝜔1 = 187.9 and 𝜔2 = 928.7 rad/s 

(c) 𝜔1 = 205.9 and 𝜔2 = 869.9 rad/s (c) 𝜔1 = 189.9 and 𝜔2 = 907.0 rad/s 
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Overall, the use of MMTO for continuum structures under frequency responses allows for the 

optimization of the material distribution to achieve the desired performance and can be an 

effective tool for improving the performance of structures subjected to dynamic loading.  
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CHAPTER 5 CONCLUSIONS 

Previous research has demonstrated that Bi-directional Evolutionary Structural Optimization 

(BESO) is an effective method for topology optimization using the traditional finite element 

method (FEM). It has been shown to be efficient, produce high-quality results, and be easy to 

implement. The main aim of this study was to investigate the potential use of BESO with the 

novel image-based adaptive scaled boundary finite element (SBFE) approach. Upon achieving 

this objective, the methodology was extended to consider different material design scenarios. 

A review of various structural topology optimization algorithms that have been applied to 

material design is presented, along with a brief overview of some of these techniques. Material 

design often involves designing continuum structures for a range of applications, such as adaptive 

mesh refinement, structures with multiple materials, and dynamic response topology 

optimization. 

In the first stage, the topology optimization of static loads structures using BESO for image-based 

SBFE method has been sought for topological layouts with adaptive mesh refinement that 

increases the mesh resolution in the boundary region. Our contributions found that the 

quadtree/octree mesh refinement overcomes the problems associated with hanging nodes and 

provides the fast mesh convergence during the optimization process. In addition, the adaptive 

structure outperforms the uniform patterns and provides highly optimal stiffness for specified 

mechanical loads. Meanwhile the adaptive structure covers the inside of the mechanical portion 

with gradually variable void sizes that can be controlled, making it stable for modest, unknown 

disturbance forces. The BESO method is then extended in this dissertation to topology 

optimization problems for structures made of multi-phase materials using material interpolation 

systems with penalization. A novel convolution filter in association with a polytope-based 

adaptive mesh strategy for multi-material topology optimization problems was presented. In 

comparison to the regularly fine mesh, this technique provides smooth boundaries for ideal 

designs while spending less computational effort. 
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Next, An algorithm has been developed for designing structures based on their dynamic 

responses. However, it is generally recognized that dynamic response optimization is 

computationally expensive and that dynamic response topology optimization for large-scale (3D) 

structures is almost impractical. This work addresses this issue by using quadtree/octree meshes 

and pattern-based pre-computation approaches, which reduce memory requirements and 

computational time during simulations. The dynamic analysis is performed using a high-order 

implicit time-stepping approach based on Padé series expansions of the matrix exponential 

function, and the equivalent static loads method for non-linear static response structural 

optimization (ESLSO) is used to optimize the dynamic response topology in the time domain. 

The objective function is defined as the weighted summation of compliances near the peaks, 

which is minimized to maximize the stiffness of the whole design region. The results show that, 

while dynamic response topology optimization does not offer any advantages over static topology 

optimization when dealing with a single load, it can significantly reduce structural compliance 

compared to static topology optimization when multiple dynamic loads are present. 

Thereafter, the BESO model was significantly adjusted by maintaining the same mass/stiffness 

ratio for solid and void elements in order to eliminate artificial localized modes during frequency 

optimization. Several numerical examples and benchmarks involving the plane-stress 2D 

structures are used to prove the validity and efficiency of the proposed method for the frequency 

optimization problems. Then, continuum structures made of multiple materials are included in the 

mathematical framework for performing topology optimization while taking dynamic 

eigenfrequencies into account. The proposed methodology enables designers to select the most 

efficient multi-material design within the intended frequency range from the very beginning of 

the design process. 

Furthermore, the extend SBFEM-powered topology optimization to 3D problems and 

demonstrate an effective means for exporting results to STL format for subsequent additive 

manufacturing (3D printing). The final designs after post-processing generated by Fusion 360 
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software are provided in Figure 5.1. The optimal structural boundaries are automatically 

smoothed and can be exported to manufacturing. 

 

Figure 5.1 3D postprocessing design provided by Fusion 360 software: (a) 3D cantilever beam 
and (b) 3D L-shaped structure. 

Finally, The topology optimization problems addressed in this dissertation are somewhat 

simplified. However, the design scenarios presented in this thesis demonstrate that the BESO 

method can be applied to more complex and advanced applications. In engineering, material 

systems may need to meet a variety of functional or performance requirements, and these 

applications can be expanded upon based on the work presented in this dissertation. 

  

(a) (b) 
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Appendix A 

4-nodes iso-parametric Formulation 

In two-dimensional problem, the standard FEM formulation for continuum solid element is 

generally written and solved for the displacement vector 𝐮 in the domain . To obtain all 

information values from a discrete number of points in the domain, FEM are approximated the 

continuous 𝐮 into a piecewise defined field 𝐮̂ by numerical interpolation technique. All 

displacements in the domain are assembled together as a column vector {
𝑖
}. The displacement 

inside each element can be expressed equivalently in terms of the shape functions as 

1

ˆu u
M

i i

i

N 
=

 =   and 
1

1
M

i

i

N
=

=  (A.1) 

where 𝑀 is the number of element degrees of freedom, 𝑁𝑒 are known as the interpolation or 

shape functions. This shape functions are most often polynomial forms of the independent 

variables, derived to satisfy certain required conditions at the nodes. 

By using Eq. (A.1) using the shape function in term of natural coordinates system (,), the 

approximated displacement function inside each element can be expanded as 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4
ˆ , , , , ,u N N N N             = + + +  (A.2) 

For the iso-parametric 4 nodes element, the individual shape function are 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

1

2

3

4

1
, 1 1

4

1
, 1 1

4

1
, 1 1

4

1
, 1 1

4

N

N

N

N

   

   

   

   

= − −

= + −

= + +

= − +

 (A.3) 

Now we need to convert from the cartesian coordinate system (𝑥, 𝑦) into a natural coordinate 

system (,). By the usual rules of partial differentiation and chain rule, the derivative of a 

shape function in terms of the natural element coordinates system (,) are 
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i i i

i i i

N N Nx y

x y

N N Nx y

x y

  

  

   
= +

    

   
= +

    

 (A.3) 

By written in the matrix form, we obtain 

i i

ii

N x y N

x

NN x y

y

  

 

       
           

 =   
      

          

 (A.4) 

where Jacobian matrix [𝐽] arises because the change of coordinates. 

 

x y

J
x y

 

 

  
  
 =

  
   

 (A.5) 

Equation (A.4) can also be written as  

 
1

ii

i i

NN

x
J

N N

y





−

  
      

=   
    
      

 (A.6) 

The transformation of local to global coordinates requires determinant of Jacobian matrix, which 

can be expressed in term integration from as 

1 1

1 1
detdxdy J d d 

− −
=     (A.7) 

Since the approximated displacement field 𝐮̂ has two directions known 𝑢 and 𝑣. Using the shape 

function to interpolate within the element as follows 
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 (A.8) 
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where 𝑢 and 𝑣 are horizontal and vertical displacement corresponding at each node in element. 

With the defined displacement field, we can apply differential operator [𝐵] = 𝜕[𝑁]. From this 

point, the strain field are obtained as 

0

ˆ0 u

x

y

xy

x

y

y x







 
 
  

  
=   

   
    

 
  

 (A.9) 

Now, the strain field can be expressed in term of (,) by 
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
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− 
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      
= −    

        
          

− − 
        

 (A.10) 

Or written in matrix form as 

     D N =  (A.11) 
where [𝐷] is an operator matrix by 

 

0

1
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y y

x x
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x x y y
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 
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 
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− − 
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 (A.12) 

Introducing [𝐵] matrix as 

( )

 
( )

 
( )

 
3 8 3 2 2 8

B D N
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=  (A.13) 

Now we have matrix [𝐵] expressed in term of  and  with strain field in term of  and , 

respectively. The explicit form of [𝐵] can be obtained by substituting [𝐷] and the shape 

functions [𝑁] into Equation (2.5b). The matrix multiplications yield 
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( )  1 2 3 4

1
,B B B B B

J
   =   (A.14) 

With the submatrices of 𝐵 are given by 
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 (A.15) 

where the dummy index, 𝑖 equal to 1, 2, 3, and 4. The constant 𝑎, 𝑏, 𝑐 and 𝑑 are expanded as 
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 (A.16) 

The determinant |𝐽| is a polynomial in term of ,  and can be expressed as 
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   1 2 3 4

T

cX x x x x=  and  

1

2

3

4

c

y

y
Y

y

y

 
 
 

=  
 
  

 (A.18) 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 202 

Appendix B 

Padé expansion of the exponential function 

To derive an efficient time-stepping scheme, the direct computation of the matrix exponential is 

avoided by employing a rational approximation, i.e., a ratio of two polyomials 𝐏(𝐀) and 𝐐(𝐀). 

The Padé approximation of a function 𝑦(𝑥) of order 𝒪(𝐿,𝑀) is written as 

𝑦𝐿 𝑀⁄ (𝑥) =
𝐏𝐿(𝑥)

𝐐𝑀(𝑥)
=
𝑝0 + 𝑝1𝑥 +⋯+ 𝑝𝐿𝑥

𝐿

𝑞0 + 𝑞𝑥 +⋯+ 𝑞𝑀𝑥𝑀
 (B.1) 

where 𝐿 and 𝑀 are the degrees of polynomials in the numerator and denominator, respectively. 

The constants 𝑝𝑘(𝑘 = 0,1, … , 𝐿) and 𝑝𝑘(𝑘 = 0,1, … ,𝑀) can be determined by equating the 

Padé series with a Taylor expansion. In the present study, only the diagonal Padé approximations 

of the exponential function ex is of interest. Hence, the order of the approximation is 𝒪(𝐿,𝑀) or 

in short 𝑀, which is expressed as 

𝑒𝑀
𝑥 =

𝐏𝑀(𝑥)

𝐐𝑀(𝑥)
 (B.2) 

where the polynomials in the numerator and denominator are given by 

𝐏𝑀(𝑥) = ∑
(2𝑀 −𝑚)!

𝑚! (𝑀 −𝑚)!
𝑥𝑚

𝑀

𝑚=0

 (B.3a) 

𝐐𝑀(𝑥) = 𝐏𝑀(−𝑥) = ∑
(2𝑀 −𝑚)!

𝑚! (𝑀 −𝑚)!
(−𝑥)𝑚

𝑀

𝑚=0

 (B.3b) 

From Eqs. (B.3), it is obvious that 𝐐𝑀(𝑥) = 𝐏𝑀(−𝑥) holds. The accuracy of the approximation 

is of the order of 2𝑀. The denominator polynomial 𝐐𝑀(𝑥) of degree 𝑀 can be factorized as 

𝐐𝑀(𝑥) =∏(𝑟𝑖 − 𝑥)

𝑀

𝑖=1

= (𝑟1 − 𝑥)(𝑟2 − 𝑥)… (𝑟𝑀 − 𝑥) (B.4) 

where 𝑟𝑖 denote the roots of the polynomial, which are either real or pairs of complex conjugates 

numbers. Note that a fraction can be decomposed into partial fractions if the denominator is a 

factorized polynomial, e.g., 
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1

(𝑟1 − 𝑥)(𝑟2 − 𝑥)
=

1

𝑟2 − 𝑟1
(

1

𝑟1 − 𝑥
−

1

𝑟2 − 𝑥
) (B.5) 

with the condition that 𝑟1 ≠ 𝑟2 holds. 
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