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ABSTRACT (THAI) 

 จักรกฤษณ์ ข าเจิม : การศึกษาความสัมพันธ์ระหว่างจุลินทรีย์ในล าไส้และการแสดงออกของยีนโดยการ
วิเคราะห์แบบมัลติโอมิกส์เพื่อหาตัวบ่งชี้ทางชีวภาพใหม่ส าหรับโรคมะเร็งตับ . ( INTEGRATED MULTI-
OMICS ANALYSIS OF GUT MICROBIOME AND HOST TRANSCRIPTOME TO IDENTIFY 
NOVEL BIOMARKERS FOR HEPATOCELLULAR CARCINOMA) อ.ที่ปรึกษาหลัก : รศ. ดร.ธนา
รัตน์ ชลิดาพงศ์, อ.ที่ปรึกษาร่วม : ดร.ณัฐธยาน์ ช่วยเพ็ญ 

  
ความไม่สมดุลของจุลินทรีย์ในล าไส้มีความสัมพันธ์อย่างมากกับโรคมะเร็งตับชนิดปฐมภูมิหรือมะเร็ง

เซลล์ตับ (hepatocellular carcinoma; HCC) โดยตับกับล าไส้นั้นมีความเชื่อมโยงผ่านทางระบบไหลเวียนตับและล าไส้
โดยผ่านทางแกนล าไส้และตับ (Gut-Liver axis) อย่างไรก็ตาม ความเข้าใจเกี่ยวกับความเชื่อมโยงกันของจุลินทรีย์ใน
ล าไส้และการแสดงออกของโฮสต์ยีนยังคงมีจ ากัด  โดยวัตถุประสงค์ในการศึกษานี้ มุ่งศึกษาไปยังความสัมพันธ์ระหว่าง
โปรไฟล์ของจุลินทรีย์ในล าไส้และโปรไฟล์การแสดงออกของโฮสต์ยีนในผู้ป่วยมะเร็งตับ  ในการศึกษานี้ผู้วิจัยคัดเลือก
ผู้ป่วยมะเร็งตับ  ที่มีสาเหตุมาจากการติดเชื้อไวรัสบีหรือซีจ านวน  17 ราย กลุ่มมะเร็งตับที่ไม่ได้ มีสาเหตุมาจากการติด
เชื้อไวรัสจ านวน  13 ราย และกลุ่มอาสาสมัครสุขภาพดีจ านวน 10 ราย  และท าการตรวจสอบโปรไฟล์จุลินทรีย์ในล าไส้
จากตัวอย่างอุจจาระโดยใช้การวิเคราะห์การจัดล าดับของนิวคลิโอไทด์ของยีน 16S ribosomal RNA (16S rRNA) ด้วย
เทคนิค next generation sequencing (NGS) และโปรไฟล์การแสดงออกของโฮสต์ยีนจากเซลล์เม็ดเลือดขาวชนิดโมโน
นิวเคลียร์ โดยใช้การวิเคราะห์การจัดล าดับของอาร์เอ็นเอ  ด้วยเทคนิค NGS เช่นเดียวกัน ชุดข้อมูลในแต่ละชุดได้รับการ
ตรวจสอบและวิเคราะห์ร่วมกันเพื่อหาความสัมพันธ์ระหว่างชุดข้อมูลสองชุดโดยใช้เครื่องมือชีวสารสนเทศ  นอกจากนี้
ยังใช้โมเดลการเรียนรู้ของเครื่อง เพื่อระบุจุลินทรีย์ในล าไส้และยีนที่สามารถใช้ส าหรับการวินิจฉัยมะเร็งตับ  จากผลการ
วิเคราะห์สหสัมพันธ์ของเพียร์สันโดยใช้ข้อมูลจุลินทรีย์ในล าไส้จ านวน 268 แท็กซ่า และ ยีนจ านวน 6,137 ยีน พบว่า
จุลินทรีย์ในล าไส้ 4 แท็กซ่า มีความสัมพันธ์กับการแสดงออกของโฮสต์ยีน 18 ยีน ซ่ึงเป็น  แบคทีเรียที่สังเคราะห์ไลโป
โพลีแซ็กคาไรด์  และมีความสัมพันธ์กับยีนที่มีความเกี่ยวข้องกับการตอบสนองของระบบภูมิคุ้มกันของร่างกาย ซ่ึงมี
บทบาทในการส่งเสริมการพัฒนาของโรคมะเร็งตับ  จากนั้นได้น าโมเดลการเรียนรู้ของเครื่องมาใช้ทดสอบ
ประสิทธิภาพของการวินิจฉัยโรค  พบว่า จุลินทรีย์ในล าไส้จ านวน 4 แท็กซ่า ได้แก่  Eubacterium, , Eubacterium 
nodatum group, Lachnospiraceae AC2044 group  และ Ruminococcus gnavus group สามารถน ามาใช้เป็นตัวบ่งชี้ทาง
ชีวภาพในการวินิจฉัยแยกผู้ป่ วยมะเร็งตับที่ไ ม่ได้มีสาเหตุมาจากการติดเชื้อไวรัสตับอัก เสบ  กับผู้ป่ วยมะเร็งตับที่ มี
สาเหตุมาจากการติดเชื้อไวรัสตับอักเสบ  (AUC = 0.85, Sensitivity = 88%, Specificity = 80% and Accuracy = 86%) 
อย่างไรก็ตามโฮสต์ยีนที่พบดังกล่าวนั้น มีประสิทธิภาพในการแยกโรคได้ไม่ดีเท่าที่ควร จากการศึกษาครั้งนี้ชี้ ให้เห็นว่า
การเปลี่ยนแปลงของแบคทีเรียที่จ า เพาะมีความสัมพันธ์กับการแสดงออกของโฮสต์ยีน  ดังนั้นการปรับเปลี่ ยนจุลินทรีย์
และเพิ่มความสมดุลของจุลินทรีย์ในล าไส้  อาจมีส่วนช่วยในการชะลอการด าเนินโรค  โดยเฉพาะอย่างยิ่งในผู้ ป่วย
มะเร็งตับชนิด HCC ที่ไม่ได้มีสาเหตุมาจากการติดเชื้อไวรัส 
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ABSTRACT (ENGLISH) 
# # 6470111021 : MAJOR BIOMEDICAL ENGINEERING 
KEYWORD: Hepatocellular carcinoma, Transcriptome, Gut microbiome, Diagnosis, Biomarkers  
 Jakkr it Khamjerm : INTEGRATED MULTI -OMICS ANALYSIS OF GUT MICROBIOME AND 
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CARCINOMA. Adv iso r: Assoc.  Pro f . THANARAT CHALIDABHONGSE,  Ph.D. Co -adviso r : 
NATTHAYA CHUAYPEN, Ph.D. 

  
An imbalance in gut microbiome is strongly linked to liver inflammation disease and hepatocellular 

carcinoma (HCC) via the gut-liver axis. However, the understanding of how gut microbiota interacts with the host 
gene expression is still limited. In this study, we aim to investigate the relationship between gut microbiome profile 
and transcriptomic profile in patients with HCC. In this study, 17 patients with viral-related HCC, 13 non-viral-
related HCC, and 10 healthy controls were recruited. We investigated gut microbiome profile from fecal samples 
using 16S rRNA sequencing and host transcriptomic profile from the peripheral blood mononuclear cells (PBMCs)  
using RNA sequencing method. Individual datasets were examined and integrated for association analysis between 
two datasets using bioinformatic tools. Moreover, machine learning has been performed to detect HCC and then 
identify that bacterial and genes that can be used as diagnostics for HCC. Based on Pearson’s correlation analysis, the 
interaction of 268 gut microbes and 6,137 genes were performed. We found that 4 genera of bacteria were associated 
with 18 host genes expression. In these interactions, these bacteria was related to lipopolysaccharide (LPS) 
production and the functional analysis of those genes was mainly involved in signal transduction and immune 
regulation. Finally, based on machine learning approach, 4 genera of bacteria including  Eubacterium, Eubacterium 
nodatum group, Lachnospiraceae AC2044 group  and Ruminococcus gnavus group were revealed to be diagnostic 
biomarkers in discriminating non-viral-related HCC from viral-related HCC (AUC = 0.85, Sensitivity = 88%, 
Specificity = 80% and Accuracy = 86%). However, the performance in differentiate the non -viral and viral-related 
HCC of host genes were not satisfactory. Our results suggested that alteration of the abundance of specific taxa was 
associated with specific host gene expression. The modulation of gut microbiota might improve gut homeostasis 
especially in patients with non-viral-related HCC. 
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Chapter 1 Introduction 
1.1 Background of research 
 Liver cancer is currently one of the major  health issues in the world with an anticipated 
incidence of  more than 1 million cases by 2025 [1, 2]. Hepatocellular  carcinoma (HCC) is the 
most common type of liver  cancers and it has extremely high 90% mortality -to-incidence ratio. 
Hepatitis B and C infections are the leading factor of the development of HCC although alcoholic, 
non-alcoholic steatohepatitis (NASH), non -alcoholic fatty liver  diseases (NAFLD), af latoxin 
exposure and fluke infection can lead to the progression of HCC [3, 4]. 
 Currently, the modalities recommended for  surveillance of HCC are liver  ultrasound 
combined with or without biological biomarkers, such as alpha-fetoprotein (AFP) every 6 months. 
AFP is the most commonly used biomarker in surveillance and diagnosis of  HCC [5, 6]. It  is 
considered positive if its level is higher  than 20 ng/mL. However, its specif icity and sensitivity 
are limited in the early-stage of HCC [7, 8]. 
 According to 2012 from previous studies, the human body is composed of both visible 
and invisible components. The complete human body consists of the visible organs and invisible 
microorganisms, such as bacteria, fungi and viruses. In fact, invisible cells contain many more 
genes than visible cells [9]. The study of the human microbiome project began around 2,000. The 
purpose of  this research was to character ize the microbial population, which inhabited the human 
body, and demonstrate how the microbial populations in the different parts of  the body diff ered 
from each other [10]. Currently, the gut-liver axis has been the focus of this research. It refers to 
th e bidirectiona l communicatio n b etween liver  and intestina l.  Prim ary bile a cid s an d 
antim icrobial molecules should be secret to the biliary tract by the liver. Molecules in the 
intestin al lum en that are supported by gu t microbiom es can convert primary bile acid to 
secondary bile acid, which is not harmful. This procedure retains the balance of  the liver and 
intestinal system, called eubiosis [11]. A stronger understanding of the factors affecting the 
manipulation of gut microbiome diversity on liver  disease has been established from studies of 
the link between gut microbiota and metabolites [12]. 
 A new paradigm in biomedical research to identify the genetic cause of human disorders 
has been accomplished by next generation sequencing (NGS) [13]. In previous studies, NGS was 
applied to identify novel genetic alterations and cancer  genomes that drove  tumor progression 
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[14] . The study in transcriptome profile can provide overall of  genes expression an d help 
understand the disease mechanism. Currently, most transcriptomic profile studies with RNA - 
sequencing technique use samples from tissues. However, few studies using liquid biopsy sample 
including peripheral blood mononuclear cells (PBMCs) are reported [15]. 
 The use of integrated multi-omics of gut microbiome and host transcriptome in PBMCs 
of viral- and non-viral related-HCC patients as potential biomarkers has not been  reported yet. 
We obtained paired fecal and blood specimen from the patients and healthy individuals. The 
objective of  this study is to examine the association between gut microbiome and host gene 
expression data. Then, machine learning models were performed to analyze significant candidate 
bacteria or genes for diagnosis of  HCC. Finally, we hope that this study will be able to find 
diagnostic biomarker for differentiating etiology of HCC and improve efficacy of  diagnosis in 
HCC patients, especially in non-viral related-HCC patients. 
 
1.2 Research questions 
• Do the gut microbiota and host transcriptome profiles of  HCC patients differ from healthy 
controls?  
• Do the gut microbiota associate with host transcriptome profile in patients with HCC?  
• Does the interaction of  gut microbiota and host transcriptome represent as biomarkers for 
diagnosis of HCC 
 
1.3 Objectives of work 
• To investigate gut microbiome profiles of HCC patients and control groups. 
• To investigate host gene profiles of HCC patients and control groups. 
• To explore the interaction of the host-microbe in HCC using bioinformatic tools. 
• To identify the biomarkers of host-microbe in diagnosis of patients with HCC.  
 
1.4 Hypothesis 
• Gut microbiom e profiles of  HCC patients m ay differ  in comparison with those of  healthy 
controls. 
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• Host transcriptome profiles of HCC patients may differ  in comparison with those of  healthy 
controls. 
• Association of gut microbiota and host transcriptome might be used as diagnostic biomarkers 
for HCC. 
 
1.5 Expected benefits 
• The different between gut microbiome and transcriptomic prof iles of Asian HCC patients who 
different lifestyle including habitat, heredities and dietary backgrounds. 
• The association of  gut microbiome and host transcriptome in HCC patients with viral and non -
viral related, including the impact of  the gu t-liver  axis on gut m icrobiome diversity an d 
differential expression genes to clarify how gut microbiota influence the transcriptome profiles of 
HCC. 
• The use of  the novel non-invasive biomarkers from outcome of this study, together with the 
conventional biomarkers to benefit efficacy of diagnosis in HCC patients. 
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Chapter 2 Literature review 
2.1 Hepatocellular carcinoma 
 Hepatocellular carcinoma (HCC) is the most prevalent type of pr imary liver cancers and 
has a high mortality rate from cancer . The mortality to incidence ratio is 0.91. It affects men 2.3 
times more commonly than women while 72% of newly diagnosed cases are  found in Asia [1, 2] . 
The most significant r isk factors for the development of HCC continue to be chronic liver disease 
and cirrhosis whereas viral hepatitis and excessive alcohol consumption are ranked as the most 
relevant factors [3, 4]. 
 Cirrhosis and/or  HCC can develop from chronic viral hepatitis. The most two types of 
hepatitis that cause chronic hepatitis are hepatitis B and C. The double-stranded, circular  DNA 
molecule known as the hepatitis B virus (HBV) has eight genotypes (A to H). In comparison to 
genotypes B and C, genotypes A and D are m ore prevalent in Asia and the Middle East [5] . 
Sexual contact, intravenous injections, and tainted blood transfusions are ways that hepatitis B is 
transmitted. The main source of HBV infection worldwide is vertical transfer from mother to 
fetus. Hepatitis B is a disease that affects 5% of people worldwide [16]. There are six distinct 
HCV genotypes that are isolated. Genotypes I, II, and III are more prevalent in Western countries , 
while type IV is more prevalent in the Middle East. 80% of HCV -positive patients proceed to 
chronic hepatitis, and 20% of HCV-positive patients eventually develop cirrhosis [6]. Similar to 
the emerging roles of NAFLD and metabolic syndrome in the development of HCC, alcoholism 
and consumption of foods contaminated with af latoxin B1 are additional r isk factors. T he 
continued use of  alcohol increases the r isk of  developing HCC. The level of alcohol taken over 
the course of  a lifetime is correlated with the r isk of  liver disease while heavy drinking is being 
more associated with HCC than social drinking [17].  
 The HBV  genotype can be classified into 8 genotyp es (A  to H) and four of  these 
genotypes have been lately described with subgenotypes (A, B, C and F). The genotypes exhibit a 
clear geographic separation. The common prevalence of HBV genotype worldwide is genotype A 
and found in northwestern Europe, North America, and Africa [18]. Meanwhile, HBV genotype B 
and C are frequently found is Asia and Oceania [18] . Genotype D is widespread throughout the 
world but it is most prevalent in the Mediterranean region [18]. Genotype E is found in Africans 
on the West Coast of Africa and Madagascar on the east [19]. Genotypes F and H are only found 
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in the Amerindian communities of Central America [20] while genotype H is also discovered in 
California and Mexico [21]. Genotype G has only been isolated so far from HBV carr iers in 
France, Germany, the United Kingdom, Italy, and the United States of America (USA) [22]. Most 
HBV genotypes found in Thailand are genotype C and genotype B accounting for  87.5% and 
10.5%, respectively [23].  
 HCV genotypes can be classif ied into 6 genotypes (I  to VI) and sub genotypes are 
approximately 25% of nucleotide sequence dissimilarity [24]. Genotypes I and III are the majority 
of infections worldwide and found mostly in East Asia. Genotypes II  and IV are found in East 
Asia while Genotype IV is mostly found in North and Middle East Africa. Genotype V is only 
found in Southern and Eastern Africa [25]. The majority of HCV found in Thailand are genotype 
I, III and VI accounting for 28%, 31% and 41%, respectively [26]. 
 
2.2 Hepatitis B-related hepatocellular carcinoma 
 HCC is m o st frequently  cau sed by chron ic HBV infection worldw id e. HBV  is 
responsible for more than 50% of HCC cases globally and 70–80% of HCC cases in regions with 
a high HBV epidemiology. The mechanism of chronic hepatitis as a significant risk factor for 
HCC has b een reco gnized in hepatic cells, activated immune response, cy tokine release, 
inflammation and f ibrosis. HBV-related HCC develops after 25 to 30 years of  infection as a result 
of recurrent cellular regeneration and chronic inflammation. Another important risk factor for the 
development of HCC is cirrhosis carried upon with chronic hepatic injury. Cirrhosis is reported in 
80–90% of HCC cases associated with HBV [27]. 

2.2.1 Hepatitis B infection 
HBV infection is m ainly transm itted by blood and semen. Three m ain transmission 

methods are mostly found. In regions with a high endemicity, most neonatal HBV transmission 
occurs between infected mothers and their newborn babies. In regions with a low endemicity, the 
risk of  infection is high in the number of sex partners and men who have sex with men (MSM). 
The last major source of infection is inappropriate injections, blood transfusions, or hemodi alysis 
[28]. 
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2.2.2 Hepatitis B genome and structure 
HBV is a member of  the Hepadnavirus family. The infectious HBV virion has a diameter 

of 42 nm and contains 3.2 kb of partly double stranded rcDNA in a nucleocapsid (core) that is 
encapsulated in a lipid bilayer  dotted with complexes of viral glycoproteins (Figure 1). A single 
copy of the viral genomic DNA and DNA polymerase are packaged in the nucleocapsid, which is 
made up of viral capsid proteins. There are three viral glycoproteins called "large" (L, LHBs), 
"middle" (M, MHBs), and "small" (S, SHBs) surface antigens that are present on the envelope 
membrane [29, 30]. 

 
Figure 1 The mature HBV virion [30] 

 
2.3 Hepatitis C-related hepatocellular carcinoma 
 Hepatitis C virus has demonstrated to be a major health concern due to the cause of liver 
cirrhosis and r isk of developing liver cancer [31] . According to the current reports, the prevalence 
rate increased during the past decade to 2.8%, or more than 185 million infections worldwide 
[32].  

2.3.1 Hepatitis C infection 
HCV is mainly spread via percutaneous blood exposure associated with health procedures 

or through sharing contaminated injection equipment. Sexual and mother -to-infant transmission 
are also possible but less frequent. At present, receiving a tattoo in an unregulated setting, patient -
to-patient transmission, and needle -stick injuries among healthcare workers remain risk factors 
for HCV transmission [33].  
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2.3.2 Hepatitis C genome and structure 
HCV is a member of the Flaviviridae family, genus Hepacivirus [34] . HCV genome is a 

single stranded RNA of positive polarity containing 9.6 kb. HCV virions have an approximate 45 -
65 nm diameter and two anchoring envelope glycoproteins (E1 and E2) that are encased in a lipid 
bilayer [35]. The HCV genome contains 2 sections. The first is the untranslated (UTR) region and 
the second is the coding region (Figure 2) [36, 37]. 

 
Figure 2 HCV virion and genome organization [37] 

 
2.4 non-B non-C (NBNC)-related hepatocellular carcinoma 
 There are numerous HCC patients (5–20%) who test negative for the hepatitis C and 
hepatitis B virus infection indicators called non-B and non-C (NBNC) [38, 39] . The underlying 
liver  diseases that contribute to NBNC -HCC vary including NAFLD, NASH, alcoholic liver 
disease, autoimmune hepatitis (AIH), pr im ary biliary cirrhosis (PBC), pr imary sclerosing 
cholangitis (PSC) and aflatoxins. However, NAFLD (non-alcoholic fatty liver disease) is the most 
common cause of  liver diseases. Patients with increased body mass index (BMI) and diabetes 
mellitus (DM) are associated with developing NAFLD. Moreover, NAFLD can lead to liver 
cirrhosis and HCC according to increased clinical evidence [40, 41]. In addition, metabolic 
syndrome increases the risk of HCC. The incidences of HCC associated with inf lammatory and 
angiogenic alterations driven along with insulin resistance and fatty liver  disease have increased 
[42, 43]. 
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2.5 Diagnosis of HCC 
 More than 40 years ago, Alpha -fetoprotein (AFP) was identif ied as a marker for HCC 
and described as a way to identify preclinical HCC [7]. Increased AFP that indicates may be 
tumor. AFP cutoff level of 10 to 20 ng/mL was reported to have a sensitivity and specificity of 
80% and 60%, respectively [8] . Even with advanced disease, tumors that had normal AFP levels 
at the time of diagnosis frequently remained stable. So, the diagnosis challenge was based on only 
the AFP level. Liver biopsy is the gold standard for  diagnosis of HCC. Unfortunately, it has many 
problems involved including invasive methods, causing pain, anxiety and discomfort to patients. 
Currently, more sensitivity techniques have been used, such as computerized tomography scan 
(CT) and magnetic resonance imaging (MRI) [44] . Even though imaging techniques have been 
recommended as the current guidelines for  the diagnosis of  HCC, their disadvantages include 
cost, radiation exposure, and the need for iodinated contrast [45]. 
 Currently, liquid biopsy including nucleic acid, circulating tumor cells (CTCs) and 
extracellular vehicles (EVs) refer to molecular analysis and release into the bloodstream or other 
body fluids [46]. Therefore, this method has shown encouraging results for several cancer-related 
applications including non-invasive biomarkers for prognostic [47-49] . At present, peripheral 
blood mononuclear cells (PBMCs) can be demonstrated for alteration of total RNA representing 
cancer-induced genes that can serve as a new HCC prognostic and diagnostic marker [50-52]. 
 
2.6 The gut microbiota and hepatocellular carcinoma 
 Physiological relationship between intestinal tract and liver has been called the “gut-liver 
axis” (Figure 3) [12, 53]. An effect of metabolite in the intestinal on the liver is thought to play a 
key role in the development and progression of  HCC [54] . Currently, gut microbiome can be 
suggested as a non -invasive biomarker for  diagnosis of HCC [55] . Classif ication of  disease 
severity by gut microbiome can be used for targeted and personalized treatment as well as being 
used as an indicator of the response to cancer [11, 56]. 
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Figure 3 The communication between the liver and the gut is bidirectional  [11] 

 

 Major gut microbiome metabolite product during the fermentation of polysaccharide is 
short chain fatty acids (SCFAs). For  example Butyrate, which is mainly produced by Firmicutes 
phylum. Butyrate is essential role in an immunity activity and improved function intestinal barrier 
[57] . In a recent study of  character izing gut microbiome in hepatocellular  carcinoma (HCC) 
patients with different stages and evaluating potential of microbiome to non-invasive biomarker 
for HCC, the results showed microbial diversity increased in liver  cirrhosis and early HCC. 
Actinobacter ia increased more in early HCC than liver cirrhosis, and Butyrate production 
decreased. Fur thermore, to identif y microbial biomarkers and construct HCC classifiers by the 
Random Forest model, the results showed an area under the curve of  80.64% between early HCC 
and non-HCC. This study has the strong diagnostic potential for early HCC and advanced HCC 
because it was validated in  the HCC group from Northwest and Central China [58]. In another 
study of  exploring what features of  gut microbiota are associated with cirrhosis hepatocellular 
carcinoma (HCC) and non-alcoholic fatty liver disease (NAFLD), the whole population had three 
groups (cirrhosis with HCC-group, cirrhosis with non-HCC-group and healthy control-group) . 
The results showed high abundance levels of  Enterobacteriaceae and Streptococcus with low 
abundance levels of Akkermansia in the cirrhosis group. Meanwhile, it showed high abundance 
levels of Bacteroides and Ruminococcaceae with low abundance levels of Bifidobacterium in the 
HCC group. Moreover, the study explored intestinal permeability, inf lammatory status and 
circulating m ononuclear cells by cell assay. They constructed a m odel correlation of these 
features of  HCC progression, the results founded correlation between Akkermansia, Bacteroides 
and Bifidobacterium  with calprotectin. This study suggests gut microbiota from patients with 
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cirrhosis and NAFLD are significantly correlated with systemic inf lammation in the process of 
hepatocarcinogenesis. It is unclear from this study's research gap if these alterations can vary 
depending on the disease's stage or if they may be linked to certain tissue or  metabolic changes 
[59] . However, there is limited research on the association of gut microbiome and viral -HCC or 
non-viral-HCC. 
 
2.7 16S rRNA sequencing for gut microbiome 
 The most widely used genetic marker has been the 16S rRNA gene sequence, which has 
been used in bacter ial taxonomy and phylogeny research. The length of the 16S rRNA gene is 
enough for informatics approx. 1,500 base pairs to represent in almost all bacter ia. Bacter ial 
genome database being used with 16S rRNA  sequencing to identify bacteria composition. 
Another difficult challenge is choosing primers that would specifically target specific 16S rRNA 
gene regions for bacterial taxonomy character ization. Several different 16S rRNA gene variable 
regions have been targeted in studies of  gut microbiome, including V3, V4 and V3-V4. In Chen Z 
et al. primer pairs targeting the 16S rRNA gene V1-V2, V3-V4, and V4 regions was performed to 
profile the community of gut microbes. They discovered a higher alpha diversity and richness 
[60]. 
 
2.8 Transcriptomic profile in hepatocellular carcinoma  
 Genome-wide mapping of gene expression in tissue has been used for  identifying 
biomarkers for  diagnosis, prognosis, and new treatments in various diseases, especially cancer 
[13]. However, gene expression data based on microarray technique did not pr ovide suff icient 
insight. RNA-sequencing is currently capable of evaluating changes at the molecular level that are 
related to disease pathogenesis [14]. 
 At present, transcriptomic profile has the report with RNA -sequencing technique in 
tissues or  liquid biopsy, for example peripheral blood mononuclear cells (PBMCs). In this 
research, the profiles of  long non -coding RNAs ( lncRNAs) obtained from PBMCs of HCC 
patients. The results showed gene expression levels of three up -regulating genes, MIR4435-2HG, 
SNHG9 and lnc-LCP2-1 and one down-regulating gene, lnc-POLD3-2. Functions of these genes 
are reported to have an association with carcinogenesis and immune response [15]. Moreover, 
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most previous studies in patients caused by hepatitis B or C virus infection and hepatocellular 
carcinoma at early stage could not be a measure for  biomarker. In particular, only few studies 
have been conducted in patients with non-viral related hepatocellular  carcinoma (NBNC-HCC). 
Consequently, research at the transcriptional level will support current data and provide a 
molecular perspective on the disease progression. 
 
2.9 Machine learning in precision medicine 
 Machine learning-based big data analysis offers a number of  benefits for integrating and 
analyzing a large amount of  complex health -care data [61]. In the previous report, machine 
learning has been used to analyze biological data at various levels, including DNA, RNA and 
protein, as well as data from bacteria, such as gut microbiome. Integration of all data has been 
called “multi -omics'' analysis [62] . The previous study was to find association between gut 
microbiome and host transcriptome in hepatitis B related with HCC patients. Moreover, th is study 
used the models of Random Forest and Support Vector Machine model to further  confirm gut 
microbiota's ability to predict clinical outcomes. The analysis of integration analysis between gut 
microbiota and host transcriptome showed 3 bacter ia (Bacteroides, Lachnospiraceae incertae 
sedis and Clostridium XIVa)  increased with non-small HCC and had relation with 31 genes with 
progression of cancer . Fur thermore, the results showed the potential of gut m icrobiota for 
predicting clinical outcome yielding area under the curve at 81% [63]. However, the previous 
study was conducted in tissues samples. Therefore, the development of machine learning can be 
used as a tool for diagnosis and making treatm ent decisions more effective for  patients. It  is 
expected that the combination of machine learning with omics data from the same HCC patients 
can be used for  determ ining patients who are more susceptible to develop  liver  cancer  and 
allowing patients have a better quality of life in the future. 
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Chapter 3 Research Methodology 
3.1 Research workflow 
 

 All samples were obtained from Chulalongkorn Memorial Hospital, Thailand and were 
used for  gut microbiome and host gene expression analysis. Correlation based analyses were 
conducted to uncover microbe-associated genes, identify microbial markers, and develop HCC 
classif iers using machine learning model. The study integrated gut microbiome, transcriptome, 
and clinical data for comprehensive insights. 
 

 
Figure 4  Research workflow. A total of fecal and blood samples from Chulalongkorn Memorial 
Hospital, Bangkok, Thailand were collected. DNA  was extracted from  fecal samples to 
characterize gut microbiome. RNA was extracted from blood samples to investigate host gene 
expression. Based on gut microbiome, transcriptome and clinical data, correlation -based analysis 
was performed to discover microbe-associated gene, identify microbial markers, and construct 
HCC classifier by machine learning model. 
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3.2 Experiment design 
 

Fecal and blood samples from healthy control and HCC patients were obtained. DNA 
from fecal samples were characterized for the gut microbiome profile, while RNA from blood 
samples were analyzed for  host gene expression profile. We aimed to integrated analysis of gut 
microbiome, transcriptome, and clinical data for the discovery of microbes-associated genes and 
microbial markers. Then, m achine learning was perform ed in building the hepatocellular 
carcinoma (HCC) classifiers model. 

 
 

 

 
Figure 5 Experimental design in detail 

 

3.3 Sample size calculation 
 This research was the case-control study, which are compared the gut microbiome and 
gene expression of patients with viral related -HCC and non-viral related-HCC. Sample size 
c a l c u l a t i o n  w a s  d e t e r m i n e d  u s i n g  S t a t u l a t o r  p r o v i d e d  a t 
https://statulator .com/SampleSize/ss2P.html based on a reference study of  Epidemiology and 
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Survival of Hepatocellular Carcinoma in the Central Region of Thailand from 2007 to 2012, the 
results was found that 5,929 patients were diagnosed with hematologic malignancy and 308 
(5.19%) had final diagnosed with HCC [64]. The defined formula was shown in Figure 6.  
 

 
Figure 6 Formula for sample size calculation 

 
P (exposure | case) = 0.0519 P (exposure | control) = 0.35 

  Ratio (control: case) = 1  α = 0.05 β = 0.20  
ncase = 31 for each group 

With the assuming of  5% of subjects in the reference population was the factor of 
interest. Therefore, the study would require a sample size of  32 for each group to achieve a power 
of 80% for detecting a difference in proportions of 0.20 between the two groups (test – reference 
group) at a two sided p-value of 0.05 [65]. 
 
3.4 Participant information 

3.4.1 For healthy control group 
The control group consisted of healthy volunteers who had no metabolic syndrome and 

liver diseases. The consent forms, which were completed by all participants before their samples 
were collected, was approved by the Institute Ethics Committee of the Chulalongkorn University 
Faculty of Medicine (IRB No.108/60 and IRB No.312/64). 
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• Inclusion criteria for healthy control group  
  Male and female Thai patients above or  equal to 18 years old. Body mass index 
(BMI) and serological tests ( including the detection of hepatitis B surface antigen and hepatitis C 
virus antibody) results were in the normal range. The healthy group had no evidence of liver 
disease and underlying history of metabolic syndromes. 

• Exclusion criteria for healthy control group  
  The exclusion cr iteria for healthy control included hypertension, diabetes, 
obesity, metabolic syndrome, irr itable bowel syndrome (IBD), non -alcoholic fatty liver disease 
and liver cirrhosis. Additionally, people, who had taken probiotics or antibiotics within the four 
weeks before enrollment, were excluded. 

3.3.2 For HCC patient group 
Total of  HCC patients were diagnosed using the international guidelines at the King 

Chulalongko rn Memorial Hospital, Bangkok, Thailand. The consen t form s, which were 
completed by all participants before their samples were collected, was approved by the Institute 
Ethics Committee of Faculty of Medicine, Chulalongkorn University (IRB No. 0371/66). 

• Inclusion criteria for HCC patient group 
  Male and female Thai patients above or equal to 18 years old. The diagnosis of 
HCC patients was confirmed by computed Tomography (CT) and magnetic Resonance Imaging 
(MRI) regarding the clinical guideline of  the American Association for  the  Study of Liver 
Diseases (AASLD). Patients with metabolic illnesses, such as hypertension, dyslipidemia, and 
type 2 diabetes were included. Additionally , patien ts, who previously had HCV  or HBV 
infections and went on to develop HCC, were included. 

• Exclusion criteria for HCC patient group 
  The exclusion cr iter ia included patients with Intrahepatic cholangiocarcinoma, 
prior anticancer therapy, and participants missing clinical information or clinical outcome data. 
Moreover, people, who had taken probiotics o r  antibiotics w ithin  the four  weeks before 
enrollment, were also excluded. 
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3.4 Sample collection 
3.4.1 Fecal sample collection 
Participants received guidance on how to employ the suitable fecal collection method 

based on the standard operating procedures (SOP s) [66] . A DNA/RNA Shield TM  - Fecal 
Collection tube (Zymo Research Corp.)  containing the reagent, which could preserve microbial 
nucleic acids and inactivate pathogens from fecal samples, was provided to the participants. In the 
laboratory, the samples were immediately stored at -80 °C until further experiment was required. 

3.4.2 Blood sample collection 
Blood specimens with an approximate size of 3 ml were collected in an EDTA tube from 

healthy control and HCC patients before performing chemoembolization treatments at King 
Chulalongkorn Memorial Hospital, Bangkok, Thailand between 2019 to 2021. Fresh EDTA blood 
specim ens were used to isolate peripheral blood mononuclear cells (PBMCs). PBMCs were 
isolated at 2,500 rpm for 15 minutes at room temperature and then washed 2 times with PBS. The 
isolated PBMCs were suspended in PBS for 1 ml and stored at −80 °C until further experiment 
was required. 

3.4.3 Clinical collection 
Clin ical characteristics data of  all participants were collected before perform in g 

chemoembolization treatments at King Chulalongkorn Memorial Hospital, Bangkok, Thailand 
from hospital information system (HIS) including gender, age, body mass index (BMI), liver 
biochemistry, serological test, liver  function, renal function, electrolyte, radiomic data, Child -
Pugh classification, staging of  HCC classified by the Barcelona Clinic Liver  Cancer (BCLC),  
history underlying and overall survival times. 
 
3.5 Fecal sample for DNA extraction 

DNA w as  ex tra ct ed  from  a 1m l fro zen  a liq uo t o f  e ach  s to o l sam p le  u s in g 
ZymoBIOMICSTM  DNA Miniprep kit (Zymo Research Corporation). DNA extraction using a 
bead beating system to complete homogenization/disruption of the microbial cell walls and 
accurate microbial DNA analysis. DNA concentration and purity were measured by DeNovix™ 
UV-Vis spectrophotometer and stored at -20 °C until further  experiment was required. Moreover, 
we performed to amplify hypervariable region of bacterial genes (V3-V4 region) by polymerase 
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chain reaction (PCR) for confirmation. The PCR conditions started with the initial activation at 
95°C for  2 minutes, the denaturation step at 95°C for 30 seconds, then the annealing step at 53°C 
for  40 seconds, the extension step at 72°C for 60 seconds and 40 cycles of amplification were 
recommended. The final step was the final extension at 72°C for 10 minutes. The PCR products 
can be evaluated  by agarose gel electrop horesis before sendin g to 16S  RNA  sequencin g 
distributor. 

3.5.1 16S rRNA sequencing 
The hypervariable V3-V4 region of the 16S rRNA gene (341F/785R) was targeted by a 

pr imer set used to amplify the extracted DNA samples (Table 1). Amplicon sequencing is a 
highly focused strategy that enables researchers to examine genetic diversity in certain genomic 
regions. In this procedure, Amplicon-based 16S rRNA was examined by ZymoBIOMIC®. Target 
sequencing of  the DNA sample and amplif ication was performed using the Quick -16S™ NGS 
Library Prep Kit (ZymoResearch, CA) and real -time PCR technique, respectively. DNA clean 
and concentration by concentrator ™ (ZymoResearch, CA) were selected. DNA integrity was 
examined by TapeStation® (Agilent Technologies, USA) for library quantification. Positive 
control were used from ZymoBIOMIC® Microbial Community DNA standard. The final library 
will be sequenced on Illumina® MiSeq™ platform. 
Table 1 Primer sequence for 16S rRNA sequencing 
Primer name Primer sequence Amplicon size Reference 

V3-V4 region 5’-CCTACGGGNGGCWGCAG-3’ 

5’-CCTGCCTTTGCAATRTCIACRAANGC-3’ 

444 bases pair [67] 

 
3.5.2 Data preprocessing and analysis  
Raw read data from  Illum ina®  MiSeq™  platform of  each samp le follow in g from 

nfcore/ampliseq analysis pipeline (doi: 10.5281/zenodo.1493841)  (Figure 7) [68, 69] . The f irst 
step of  ampliseq pipeline is to preprocess the data including FastQC and Cutadapt tools for 
sequencing quality control and trimming of read (primer and adapters). The output containing 
report quality metrics and summary of read numbers that pass Cutadapt tool. The next step to 
infer amplicon sequence variants (ASVs) using DADA2 tool. DADA2 reduces sequence errors 
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and dereplicates sequences by quality f iltering, denoising and PCR chimera removal. In addition, 
DADA2 resolves variations of as little as one nucleotide and infers sample sequences exactly 
which is an advantage over traditional operational taxonomic units (OTU). The output containing 
fasta f ile with ASV sequences and counts for each ASV sequences. The next step for taxonomy 
classification was performed using the SILVA of 99% 16S rRNA gene reference database [70] . 
ASV sequences and counts data as produced before with DADA2 tool are imported into QIIME2 
tool for taxonomic classification aligning with the reference database. The output contains tab -
separated absolute abundance table at the taxa level. Moreover, QIIME2 tool can provide relative 
abundance tables using total sum scaling normalization (TSS) for various taxonomic levels as the 
final data for future downstream analysis and visualization. Barplot, diversity analysis (alpha and 
beta diversity) using various methods and performs pairwise comparison of groups of  samples. 
PICRUSt2 is software for  predicting the functional potential of a bacterial community based on 
marker gene sequences. Functional usually refers to several gene family databases are supported 
by default including the Kyoto Encyclopedia of  Genes and Genomes (KEGG), orthologs (KO), 
Enzyme C lassif ication (EC) numbers and MetaCyc ontology are among the features that 
PICRUSt2 could be capable of accomplishing (Figure 8) [71]  The differentially abundant taxa 
was  a sse ssed  u sin g  the  Linear  D isc rim inant A na ly sis Effe ct S iz e (LEfS e ) m eth o d 
(https://huttenhower.sph.harvard.edu/galaxy/). 

 

 
Figure 7 nf-core/ampliseq bioinformatics analysis pipeline [69] 
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Figure 8 PICRUSt 2.0 Flowchart [71] 

 
3.6 Blood sample for RNA extraction 

Total RNA were extracted from PBMCs sample using TRIzol LS reagent (Invitrogen, 
USA) based on manufacturer’s protocol. RNA concentration and RNA integrity were measured 
by RNA  integrity by Qubit® 4 f luorometer  (Invitrogen, USA) and TapeStation® (Agilent 
Technologies, USA), respectively. 

3.6.1 Total RNA sequencing  
Next generation sequencing library preparations were constructed according to the 

manufacturer’s protocol (NEBNext® Ultra™ RNA Library Prep Kit for Illumina®). The poly(A) 
mRNA isolation was performed using NEBNext Poly(A) mRNA Magnetic Isolation Module 
(NEB) or Ribo-Zero™ rRNA removal Kit (illumina) . The mRNA fragmentation and priming was 
performed using NEBNext First Strand Synthesis Reaction Buffer and NEBNext  Random 
Primers. First strand cDNA was synthesized using ProtoScript II Reverse Transcriptase and the 
second-strand cDNA was synthesized using Second Strand Synthesis Enzyme Mix. The purified 
double-stranded cDNA by AxyPrep Mag PCR Clean-up (Axygen, USA) was then treated with 
End Prep Enzyme Mix to repair  both ends and add a dA -tailing in one reaction, followed by a T-
A ligation to add adaptors to both ends to purif ied double-stranded cDNA. Size selection of 
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Adaptor-ligated DNA was then performed using AxyP rep Mag PCR Clean-up (Axygen, USA), 
and fragments of ~360 bp (with the approximate insert size of 300 bp) were recovered. Next, each 
sample was amplif ied by PCR for 11 cycles using P5 and P7 primers, with both pr imers carrying 
sequences which can anneal with f low cells to perform bridge PCR and P7 pr imer carrying a six -
base index to allow multiplexing. The PCR products were later cleaned up using AxyPrep Mag 
PCR Clean-up (Axygen) , validated using an Agilent 2100 Bioanalyzer  (Agilent Technologies, 
USA) and quantified by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Then libraries 
with different indices were multiplexed and loaded on an I llumina HiSeq instrument according to 
manufacturer’s instructions (I llumina, USA). Sequencing was carr ied out using a 2x150bp paired 
end (PE) configuration. Image analysis and base calling were conducted by the HiSeq Control 
Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on the HiSeq instrument. 

3.6.2 RNA-seq data preprocessing and analysis 
RNA sequencing was analyzed based on ‘new Tuxedo’ protocol (Figure 9) [72] . Raw read 

data from Illumina Hiseq was performed using Fastp tool (version 0.21.1)  for check quality, 
remove adapter, and remove for  low quality sequence [73]. Sequencing reads were aligned using 
HISAT2 (version 2.1.0) with human reference sequence (Illumina GRCh38) [74]. StringTie tool 
(version 2.1 .6)  was used for  alignm ent data to m ap for  eff icient transcript a ssembly an d 
quantitation of  RNA -Seq data [75] . Differential gene expression was analyzed with DESeq2 
comparison between HCC subgroups. Total RNAs possessing a read count ³ 20 in ³5 samples 
were chosen for  subsequent analysis.  A hierarchical cluster analysis of differentially expressed 
genes (DEGs) was performed to explore the expression pattern of  genes in viral-related HCC and 
non-viral-related HCC groups. Specific gene expression that would be up-regulated and down -
regulated were used at 1.5-fold change and P-value < 0.05. 
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Figure  9  new Tuxedo protocol. RNA-seq read are m apped for  each sample to the reference 
genome (Steps 1 and 2) . The transcripts in each sample are assembled and quantif ied with 
StringTie (Step 3). After assembled, transcripts are merged together  and creates a uniform set of 
transcripts for all samples (Step 4).  The gffcompare program was used to compares the genes and 
transcripts with the annotation and reports statistics on this comparison (Step 5). The Ballgown 
tool provides functions to organize, visualize, and analyze the expression measurements for 
assembled transcripts (Step 6-7) [72]. 
 

3.7 Association between ASVs and differential gene expression  
ASVs abundance and differential gene expression level were performed in correlation 

with Pearson’s correlation coefficient for each pair ASV -gene across all samples. ASV that was 
presented in 10% of all samples was eliminated to decrease the computational load and minimize 
contingency. Gene expression values were calculated using DESeq2, such that each gene was 
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assigned a reliable fold change. Specific gene expression that would be up -regulated and down-
regulated were used at 1.5-fold change and P value < 0 .05. The statistical signif icance of  each 
ASV-gene pair was determined by P -value < 0.05 and a false discovery rate (FDR) < 0.1. The GO 
enrichment analysis was perform ed based on Metascape [76 ]. The fun ction analysis was 
performed based on Reactome pathway database (https://reactome.org) [77]. Reactome web base 
offers a complete range of  functional annotation tools to help researchers comprehend the 
biological significance of lengthy gene lists. 
 
3.8 Microbial and gene-based biomarker discovery for diagnosis 

Model construction was performed on the relative abundance discriminating non -viral-
related HCC from viral-related HCC using machine learning model. To address outliers in the 
features, we normalized numerical variables and encoded categorical features for classif ication 
purposes. To address the imbalance between the HCC subgroup datasets, we employed the 
Synthetic Minority Over -sampling Technique (SMOTE). This method involves generating 
synthetic instances of  the minority class by interpolating between feature vectors of  existing 
minority class examples. A total of  263 gut microbial taxa and 6,137 genes were considered for 
feature selection. Various techniques, such as Correlation-based Feature Selection were employed 
on all datasets corresponding to different HCC subgroups. Then the best classif ier algorithm 
among Support Vector Machine, Random Forest and Logistic Regression was chosen based on 
their performance in classifying using features of gu t microbiome and gene expression. This study 
applied a fundamental machine learning technique, the train -test split , which involved dividing 
the dataset into training and testing sets to evaluate the model's generalization to unseen data. The 
data was pa rtitioned , w ith  a test set comp rising  3 0%  of th e to ta l dataset. To assess th e 
performance of  each classifier m odel in K -fold cross validation, It allows the use of  all the 
available data for  both training and validation to produce a more robust estimate of t he model’s 
performance [78]  and we employed metr ics such as area under the curve (AUC), sensitivity, 
specificity, and accuracy. Moreover, we optim ize hyperparameters using G ridSearchCV, a 
method that system atically explores a predefined gr id  of hyperparameter  values for  a given 
model. Through cross-validation, it evaluates each combination to identify the optimal set of 
hyperparameters that achieves the best performance for the model. 
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3.9 Statistical analysis 
 Statistical analysis was performed using SPSS V28.0 (SPSS Inc, USA) and GraphPad 
Prism V8.0 (GraphPad sof tware, USA). Chi’s square or Fisher’s exact test for  categorical data 
and the Mann-Whitney U test for non-parametric values was used to compare the continuous data 
between the two g ro ups. Microbiom e diversity  analysis was perform ed using p airw ise 
comparisons of groups of samples. More than two groups were compared using ANOVA test. 
Statistical significance was defined with P-value < 0.05. 
 
3.10 Ethical consideration 

The Helsinki Declar ation and Good Clinical Practice for the involvement of human 
subjects were followed in the study protocol's execution. Before fecal and blood samples were 
collected, each subject completed the inform ed consent forms, which were reviewed and 
approved by the Institute Ethics Committee of the Chulalongkorn University Faculty of Medicine 
(IRB No.108/60 and IRB No.312/64). The study was approved by the Institutional Review Board 
(IRB) of  the faculty of  Medicine, Chulalongkorn University , Bangkok, Thailan d (IRB 
No.0371/66) 
 
3.11 Expected benefit and application 
 In this study, data of  gut microbiome and host transcriptome derived from healthy 
volunteers and HCC patients in Thailand population. The data describe daily life and nutrition in 
each group of  samples. This study will comprehensively identify gut microbiomes and describe 
microbial diversity and correlation networks of gut microbiota. For RNA sequencing, the data 
provide differential gene expression, of which transcriptional profiles can be investigated. 
Und erstanding associations b etween two data sets prov ides new insig hts to  explore th e 
connections of gut microbiom e and host transcriptom e for human biom arker  discovery . 
Additionally, machine learning models based on gut microbiome data can be used as diagnostic 
biomarkers in discriminating non-viral-related HCC from viral-related HCC. 
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Chapter 4 Result 
4.1 Participant information 
 All of 30 patients with HCC and 10 healthy volunteers were enrolled in the study. From 
cause of HCC patients by hepatitis B virus, hepatitis C virus and non -B-non-C (NBNC) or non-
viral-related HCC. Clinical character istics of these group including healthy volunteers versus 
patients with HCC and viral -related HCC (n=17)  versus non -viral-related HCC (n=13) were 
generally matched. BMI, Platelet, Albumin, AST, ALP, AFP, Maximum size a nd BCLC stage, 
suggesting that there was no significant  confounding factors affecting group discrimination 
between comparing group (Table 2). 
Table  2 Clinical characteristics summary of all participant  

Clinical 
parameter 

Healthy 
(n=10) 

Patients 
with HCC 

(n=30) 
P-value 

Patients with HCC (n=30) 
Viral-related 
HCC (n=17) 

Non-viral-related 
HCC (n=13) 

P-value 

Age 
34.3±10.
3 

65.3±10.1 <0.001* 61.1±9.2 70.8±8.6 0.007* 

Gender   <0.001*   <0.001* 
• Male 5(50%) 28(93.3%)  17(100%) 11(84.6%)  

• Female 5(50%) 2(6.7%)  0(0%) 2(15.4%)  

BMI 22.0±3.6 25.5±5.0 0.053 25.2±4.9 25.8±5.2 0.750 
Platelet    128.8±59.1 174.0±89.4 0.108 
Albumin    3.6±0.6 3.7±0.6 0.541 
AST    66.1±57.1 46.5±28.9 0.267 
ALT    51.3±31.1 28.2±11.6 0.017* 
ALP    98.3±37.1 136.7±96.4 0.142 

AFP    4476.6±17980.
2 

416.6±911.3 0.950 

Total mass      0.045* 
     • 1    9(52.9%) 7(53.9%)  

     • 2    4(23.5%) 1(7.7%)  

     • >3    4(23.5%) 5(38.4%)  

Maximum 
size 

   4.8±4.2 6.2±6.3 0.450 
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Clinical 
parameter 

Healthy 
(n=10) 

Patients 
with HCC 

(n=30) 
P-value 

Patients with HCC (n=30) 
Viral-related 
HCC (n=17) 

Non-viral-related 
HCC (n=13) 

P-value 

Cirrhosis    15(88.2%) 12(92.3%)  

BCLC 
stage 

     0.122 

   • 0-A    8(47.1%) 6(46.2%)  

   • B    7(41.2%) 4(30.8%)  

   • C    2(11.7%) 3(23.0%)  

Data showed mean±SD; proportion(n%); *P-value<0.05; BMI=Body mass index; AST=Aspartate 
transaminase; ALT=Alanine aminotransferase; ALP =Alkaline phosphatase; AFP=Alpha 
fetoprotein; BCLC stage=Barcelona clinic liver cancer stage 
 
4.2 Gut microbial diversity in HCC 
 From  16S rRNA sequencing preprocessing w ith FastQC tools to check quality in 
sequenced reads and Cutadapt to trim primer and adapter from sequencing reads, an average of 
37,309.6 ASVs per sample were obtained (Table 3).  
Table  3 Preprocessing summary 
SampleID Group Raw_data Trimmed_seq denoisedF denoisedR reads_merging(F&R) input_tax_filter filtered_tax_filter percent_filtered_tax 

H33 Healthy 145790 108693 104614 107297 91863 44128 44128 100.00 
H34 Healthy 111492 78128 75319 76911 65730 36656 36656 100.00 
H36 Healthy 121534 85788 84134 85004 76248 45117 45117 100.00 
H37 Healthy 102273 74483 70488 73090 59772 32782 32782 100.00 
H38 Healthy 114708 82095 79820 81374 75237 58715 58710 99.99 
H39 Healthy 102325 73341 69154 72054 60286 34633 34633 100.00 
H40 Healthy 117640 82177 77643 80872 68364 47113 47113 100.00 
H45 Healthy 131293 94205 91056 92775 76758 33152 33152 100.00 
H46 Healthy 115519 86091 84389 85418 77594 54745 54745 100.00 
H47 Healthy 113092 80314 76487 78854 63545 32597 32597 100.00 
C22 HBV 110706 80014 77551 78848 68643 33351 33351 100.00 
C24 HBV 96585 68272 64411 66847 52941 24577 24577 100.00 
C32 HBV 140635 105845 100938 104281 87568 54230 54230 100.00 
C36 HBV 76760 50597 49393 49941 44202 23944 23944 100.00 
C42 HBV 77537 56953 55747 56492 50337 29949 29949 100.00 
C56 HBV 86227 62614 61825 62293 59114 44554 44554 100.00 
C5 HBV 47038 39133 36200 38032 30712 21481 21481 100.00 
C1 HCV 52208 43255 39690 41782 33210 22870 22870 100.00 
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SampleID Group Raw_data Trimmed_seq denoisedF denoisedR reads_merging(F&R) input_tax_filter filtered_tax_filter percent_filtered_tax 

C16 HCV 57361 47399 42048 45316 34975 22336 22336 100.00 
C19 HCV 47806 39625 38549 39057 35342 24796 24796 100.00 
C20 HCV 49543 39895 38372 39181 33792 24735 24735 100.00 
C26 HCV 103710 73481 70331 72398 60977 36327 36327 100.00 
C28 HCV 105464 74565 72084 73568 62216 32095 32095 100.00 
C34 HCV 101650 72264 71328 71858 66800 41252 41252 100.00 
C40 HCV 106415 76362 74510 75378 67565 46899 46899 100.00 
C41 HCV 91944 67295 64834 66496 58778 48386 48386 100.00 
C60 HCV 103050 78057 76823 77777 73830 71007 71007 100.00 
C14 NBNC 50525 42483 41091 41766 36869 27259 27259 100.00 
C15 NBNC 50438 42492 40533 41657 36283 25958 25958 100.00 
C18 NBNC 54101 45340 43507 44519 39474 27520 27520 100.00 
C2 NBNC 53180 43647 41215 42448 36250 24231 24231 100.00 
C21 NBNC 105621 78926 77734 78453 73698 58296 58296 100.00 
C33 NBNC 108599 74011 69498 72371 58299 34074 34074 100.00 
C35 NBNC 86969 64510 63373 64035 59660 45198 45198 100.00 
C46 NBNC 72197 52761 51640 52283 47190 33843 33843 100.00 
C49 NBNC 113427 75556 72362 74258 60671 41520 41520 100.00 
C55 NBNC 111111 75154 68876 73164 58541 41282 41282 100.00 
C58 NBNC 103894 73797 71270 72611 61696 36243 36243 100.00 
C61 NBNC 106493 77864 75691 77020 69064 49175 49175 100.00 
C9 NBNC 45396 38327 36733 37610 32987 25363 25363 100.00 

 
The alpha diversity of species in each sample were significantly decreased in patient with 

HCC group (P-value < 0.05) (Figure 10A-C). However, there was no difference between viral-

related HCC and non-viral-related HCC groups (Figure 11A-C). The beta diversity was calculated 

with Bray-Curtis and Jaccard distance by NMDS plot, gut microbiome composition in patient 

with subgroup of HCC and healthy control was significantly separated into two different 

enterotypes (P = 0.038, Figure 12A-B). 
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A B C 

   
Figure 10 Gut microbiome diversity between healthy and HCC groups (A) Alpha diversity; 
Observed feature (B) Shannon index (C) Pielou evenness, were significantly decreased in patient 
HCC (*P = 0.036, 0.020 and 0.050 respectively). 
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Figure 11 Gut microbiome diversity of all groups (A) Alpha diversity; Observed feature (B) 
Shannon index (C) Pielou evenness, were significantly decreased in patient with non-viral-related 
HCC (*P = 0.012, 0.003 and 0.003 respectively). (D) Beta diversity; Bray-Curtis distance (*P= 
0.038). 
 
A B 

  
Figure 12 Gut microbiome diversity of all groups (A) Beta diversity; Bray-Curtis distance (*P= 
0.038). (B) Jaccard distance (*P= 0.040) 
 
4.3 Alteration in the composition of gut microbiome associated with HCC 
 Firmicutes, Bacteroidetes, and Proteobacteria constituted for the majority of the three 
bacterial phyla in each group on average up to 80% of the ASVs. However, comparison of the 
most abundances ASVs at phylum showed Proteobacteria significantly increased in HCC group 
comparison with healthy group  (Figure 13A). Regarding the top 50 bacterial genera in terms of 
relative abundance, it was also evident that 9 genera exhibited signif icant variations among the 
different subgroups of HCC (Figure 13B). 
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Figure 13 Gut microbiome composition of all participants (A) Compositions of gut microbiome 
at the phylum level between healthy controls and HCC subgroups. (B) Compositions of gut 
microbiome at the top 50 genus level between healthy controls and HCC subgroups. 
 

PICRUSt2 was utilized to predict the functional analysis of microbial communities in 
different subgroups of HCC. In participants with non-viral-related HCC, the mean proportion 
increased and significantly predominant including lipopolysaccharide biosynthesis, fatty acid 
metabolism and dioxin degradation (Figure 14).  

 

 
Figure 14 Functional pathways predicted by PICRUSt2 that differentiate in viral-related HCC 
and non-viral-related HCC. 
 

LEfSe was utilized to identify bacterial taxa linked to healthy, HCC and various causes 
within the HCC group. Total  18 bacterial taxa differences in microbiota compositions between 
heath y and  HCC (F igu re 1 5A ).  Mo reov er, 1 1 bacter ial taxa inclu ding  Eub acterium , 
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Caten iba cillu s, Paraeg g erth ella , G ordo nib ac ter, L a ch no spira ce ae  AC2 04 4 g rou p , 
Gran ulicatella , Eu bacteriu m noda tu m group , Pygm aiob acte r, Erysip ela toc lostridium , 
Ruminococcus gnavus group and Bacteroides exhibited significant overrepresentation with a log10 
LDA score > 2 in the fecal samples of patients belonging to the non -viral-related HCC subgroup 
(Figure 15B-C). 
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Figure 15 LEfSe analysis of differential gut microbial in genus level. (A) Histograms LDA score 
between healthy and HCC group. (B) Histograms LDA score between HCC subgroups. (C) 
Cladogram between HCC subgroups. 

 
4.4 Overview of host transcriptome in subgroup of HCC 
 We hypothesized that change in host transcriptome may be correlated with change in gut 
microbiome. Thus, we performed a transcriptome analysis of total RNA expression profile from 
PBMCs between healthy and HCC group, a total of 261 genes were identified to be differentially 
expressed in HCC patients, which included 39 up-regulated (P-value < 0.05, log2FC > 1.5)  and 
222 down-regulated genes (P -value < 0.01 , log2FC < -1.5)  in HCC group (Figu re 16A ) 
Moreover, we performed a transcriptome analysis of total RNA expression prof ile from PBMCs 
of 17 patients with viral-related HCC and 13 patients with non -viral-related HCC, a total of 80 
genes were identified to be differentially expressed in subgroup of HCC patients, which included 
70 up-regulated (P-value < 0.05, log2FC > 1.5)  and 10 down-regulated genes (P -value < 0.01, 
log2FC < -1.5) in non-viral-related HCC (Figure 16B).   
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Figure 16 Transcriptome profiles of  PBMCs. (A) A volcano plot of  differential gene expression 
of healthy and HCC group. (B) A volcano plot of differential gene expression of non-viral-related 
HCC compared with viral-related HCC. 
 
4.5 Association of host transcriptome profile influenced by gut microbiome  
 Based on Pearson’s correlation analyses, we tested the associations between host gene 
expressed ang gut microbiome to discover host-gut microbe and to clarify how gut microbiota 
influence the transcriptome profiles of HCC. A total of  6,137 genes and 268 gut microbes were 
performed. A total of 1,644,716 gene pairs were calculated. Total of 23 genes and 7 gut microbes 
were identified as positively correlated (Table 4).  
Table  4 Twenty-four gut-gene pairs filtered by Pearson’s coefficient correlation 
Gene symbol Gut microbiome Pearson’s coefficient P-value FDR 

EMR1 Eubacterium 0.92480526 2.84E-13 6.17E-10 
TAS2R20 Eubacterium 0.881899 1.20E-10 1.23E-07 
FRMD3 Eubacterium ventriosum group 0.81688016 3.67E-08 1.60E-05 
ARHGAP26 Eubacterium 0.80716509 7.09E-08 2.75E-05 
KIFC3 Eubacterium ventriosum group 0.80376367 8.85E-08 3.29E-05 
ZNF407 Eubacterium 0.78740772 2.44E-07 7.58E-05 
ZNF320 Eubacterium 0.761265 1.04E-06 0.00025026 
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Gene symbol Gut microbiome Pearson’s coefficient P-value FDR 

ZFYVE28 Eubacterium ventriosum group 0.76107347 1.05E-06 0.00025221 
SLC7A6 Eubacterium 0.7600947 1.10E-06 0.00026271 
CD14 Ruminococcus gnavus group 0.7516247 1.69E-06 0.00037421 
HIF1A Ruminococcus gnavus group 0.73081233 4.52E-06 0.00084218 
LOC100190986 Eubacterium 0.71927356 7.51E-06 0.00127084 
NCOA7 Eubacterium 0.67244723 4.69E-05 0.00559694 
ENG Ruminococcus gnavus group 0.67139189 4.87E-05 0.00576831 
FUCA1 Ruminococcus gnavus group 0.64891485 0.00010489 0.01064955 
LANCL2 Eubacterium 0.62938557 0.00019449 0.01735448 
ZNF317 Eubacterium 0.62737199 0.00020679 0.01819793 
TRIM4 Clostridium innocuum group 0.59681349 0.00049896 0.03606712 
NRXN3 Eubacterium 0.59242548 0.00056217 0.03945515 
LRRC37BP1 Eubacterium nodatum group 0.57719875 0.00083953 0.05349469 
TMEM154 Lachnospiraceae AC2044 group 0.55665891 0.00139951 0.07875074 
TRIM4 Lachnospiraceae ND3007 group 0.55603137 0.00142081 0.07966113 
DIS3L Eubacterium nodatum group 0.55034436 0.001627 0.0882571 
LEPR Lachnospiraceae ND3007 group 0.54426299 0.0018758 0.09800949 

 
The increased relative abundance of gut microbe (Eubacterium, Eubacterium nodatum 

group, Lachnospiraceae AC2044 group and Ruminococcus gnavus group ) were associated with 
significant up regulated genes in patients with non-viral-related HCC (Figure 17A). Functional 
and pathway analysis exposed set of  gene to play an important role in the identif ication of signal 
transduction, programmed cell death, neuronal system, metabolism of proteins, immune system 
and disease. Based on Reactome pathway database, the host -gut microbes were significantly 
about disease and immune system, which involved immune regulation (Figure 17C). Moreover, 
the decreased abundance of gut microbe (Clostridium innocuum group, Eubacterium ventriosum 
group and Lachnospiraceae ND3007 group ) were associated with signif icant down regulated 
genes in patients with non-viral-related HCC (Figure 17B). 
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Figure 17 The association between gut microbiome and host transcriptome in HCC subgroups. 
(A) Pearson’s correlation with up regulated host genes and increased gut microbe in non -viral-
related HCC group. (B) Pearson’s correlation with down regulated host genes and decreased gut 
microbe in viral-related HCC group. (C) Functional analysis of differentially regulated genes 
between patients with HCC subgroups. Regarding up-regulated genes, the immune response and 
inflammatory pathways involving the pro-inflammatory genes are among the most significantly 
enriched pathways. The dashed line indicates the Fisher exact test P value threshold set at 0.05.
  

To clar ify the localization and functions of  these genes w ithin the blood -immune 
microenvironment, we examined their  expressions in a separate single-cell mapping database 
(using SMART-seq2) of hepatocellular carcinoma (HCC) [79]. Interestingly, genes associated 
with gut microbes were high expressed in B cell, macroph ages, CD8+ T cells, CD4+  T cells and 
NK cells (Figure 18). The genes exhibited an interconnected relationship, indicating that the gut 
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microbiota potentially influences the transcriptome of hepatocellular carcinoma (HCC) through 
various factors. 

 

 

 

 
Figure 18 The expressions of host genes related to the gut were examined for each cell type using 
SMART-seq2 data (http://cancer -pku.cn:3838/HCC). Uniform Manifold Approximation and 
Projection (UMAP ) plots were generated to visual ize the cell clusters identified through 
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integrated analysis, with each cluster represented by a distinct color (f irst plot). UMAP plots 
depict the distribution of cells across sample types (second plot) . UMAP plots depict th e 
distribution of cells for each specific gene (third plot). 
 
4.6 Gut microbiome and gene marker for HCC subgroups classification  

In this study, we explored the distinct characteristics of  commonly used machine learning 
algorithms for the analysis of multi-omics data, emphasizing the critical importance of algorithm 
selection. Our investigation focused on classifying HCC subgroups, employing three prominent 
ML algorithms: Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression 
(LR). The predictive p erform ance, assessed th ro ugh f ivefold cross-validation, revealed 
compelling results. For gene expression data, a set of  18 genes exhibited signif icant positive 
correlations among patients with non -viral-related HCC, demonstrating strong diagnostic 
potential for HCC. These genes included EMR1, TAS2R20, ARHGAP26, ZNF407, ZNF320, 
SLC7A6, LOC100190986, NCOA7, LANCL2, ZNF317, NRXN3, CD14, HIF1A, ENG, FUCA1, 
TMEM154, LRRC37BP1, and DIS3L. In parallel, gut microbiome data featured four genera 
(Eubacterium, Eubacterium nodatum group, Lachnospiraceae AC2044 group, and Ruminococcus 
gnavus group) that exhibited similarly positive correlations in non-viral-related HCC patients. 
When evaluating classif ication performance, the integrated mean Area Under the Curve (AUC) 
values underscored the robustness of LR (0.84), SVM (0.83) , and RF (0.82) for gut microbiome 
variables (Figure 19A-D). Notably, combining both gene expression and gut microbiome data did 
not yield optimal classif ication results for HCC subgroups. However, leverag ing the Synthetic 
Minority Over-sampling Technique (SMOTE) to address dataset imbalance, particularly with 17 
viral-related HCC and 17 non-viral-related HCC cases, enhanced the Random Forest algorithm's 
mean AUC to 0.85 (Figure 20A-D). Remarkably, the combined dataset achieved the highest mean 
AUC values, reaching 0.87 (Figure 20C). These findings underscore the potential of  specific gut 
microbiome markers in elucidating disease causation and their  promising role in distinguishing 
between patients with viral-related and non-viral-related HCC. The integration of multi -omics 
data and strategic algorithm selection em erges as a powerful strategy for  advancing HCC 
subgroup classification and enhancing diagnostic accuracy. 
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F ig u r e  1 9  Receiver operating characteristic analysis of our model classification of non-viral 
related HCC versus viral related HCC. The true-positive rate (sensitivity) is plotted against the 
false-positive rate (1-specificity). The mean AUC values of ROC curves with fivefold cross-
validations are gene expression set, gut microbiome set and combined of two datasets for 
classification model. (A) Logistic Regression model. (B) Support Vector Machine model. (C) 
Random forest model. (D) Summary of evaluation matrix. 
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F ig u r e  2 0  Receiver operating characteristic analysis of our model classification of non-viral 
related HCC versus viral related HCC after using SMOTE technique. The true-positive rate 
(sensitivity) is plotted against the false-positive rate (1-specificity). The mean AUC values of 
ROC curves with fivefold cross-validations are gene expression set, gut microbiome set and 
combined of two datasets for classification model. (A) Logistic Regression model. (B) Support 
Vector Machine model. (C) Random Forest model. (D) Summary of evaluation matrix. 
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Chapter 5 Discussion and conclusion 
 The previous report [63]  and our  study have shown that the gut community is highly 
different in any cohort study, which is associated with host transcriptome. Recent findin gs have 
demonstrated that the progression of HCC is caused by genetic and epigenetic changes acquired 
via repetitive hepatocyte destruction and regeneration. Our study is the f irst to report an 
association between two datasets from any causation of  HCC including viral-related HCC and 
non-B-non-C (NBNC) or non-viral-related HCC. The diversity of fecal microbiota was found to 
be signif icantly lower in HCC groups compared to the healthy control group. However, no 
significant difference in fecal microbial diver sity was observed between the non-viral-related 
HCC group and the viral -related HCC group. In general, patients w ith viral -related HCC 
exhibited greater species richness. In non-viral-related HCC patients, there was a decrease in the 
abundance of Firmicutes and an increase in Proteobacteria at the phylum level. Our findings 
revealed a distinct pattern in the gut microbiota composition between non -viral-related HCC and 
viral-related HCC patients. Specifically, non-viral-related HCC patients exhibited a decrease in 
potential anti-inflammatory bacter ia and an increase in pro-inflammatory bacteria. Conversely, 
viral-related HCC patients demonstrated a higher abundance of potential anti -inflammatory 
bacteria. These results suggest that the gut m icrobiota may have  a significant impact on the 
progression of viral or non-viral-related HCC. The evidence showed associated with the presence 
of  particular  gut microbes. Distinguished by the enrichm ent Eubacterium, Catenibacillus, 
Paraeggerthella, Gordonibacter, Lachnospiraceae AC2044 group, Granulicatella, Eubacterium 
nodatum group, Pygmaiobacter, Erysipelatoclostridium , Ruminococcus gnavus group and 
Bacteroides are signif icantly enr iched in non-viral-related HCC group, while Subdoligranulum , 
Coprococcus, CAG _56 , Lachnospiraceae ND3007 group, Eubacterium ventriosum group , 
Clostridium innocuum group, Lachnospiraceae UCG_004, Lachnospiraceae FCS020 group  and 
Lachnospiraceae UCG_001 were significantly increased in viral -related HCC group. In another 
study of  exploring what features of  gut microbiota are associated with cirrhosis hepatocellular 
carcinom a (HCC) and non -alcoholic fatty liver  disease (NAFLD), the results showed high 
abundance levels of  Bacteroides and Ruminococcaceae suggested that gut m icrobiota are 
significantly correlated with systemic inflammation in the process of hepatocarcinogenesis [59]. 
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 Differences in the composition of gut bacteria between non -B-non-C causes may play a 
role in disease development through various pathways [80] . For example, an increase in the 
expression levels of  specific pro -inflammatory cytokines in the liver. Research f indings indicate 
that a decline in microbial diversity is linked to an increase in intestinal permeability and the 
presence of systemic low -grade inflammation [81]. As a consequence, this association has been 
connected to the development of hepatic steatosis. As for  subgroups of non -viral-related HCC 
specif ic gut microbial signatures, which correlated with host gene transcriptome. We observed 
that patients with 4 genera, Eubacterium, Eubacterium nodatum group, Lachnospiraceae AC2044 
group and Ruminococcus gnavus group are positively correlated with several of the disease and 
immune system. Eubacterium is a bacterium that is classified as an obligate anaerobe and utilizes 
dietary f iber through fermentation to generate shor t-chain fatty acids (SCFAs), which include 
butyr ic acid [82]. The involvement of  SCFAs in the pathogenesis of  NAFLD is crucial as they 
have the potential to influence and maintain intestinal homeostasis, while also positively affecting 
glucose and lipid metabolism. In human peripheral blood mononuclear  cells (PBMC), SCFAs 
such as propionate and butyrate have been found to suppress the expression of lipopolysaccharide 
(LPS)-induced cytokines, specif ically interleukin-6 (IL-6) and IL-12p40. The liver functions as a 
source of  inflammatory agents and plays a pivotal role in mounting inf lammatory responses to 
bacter ial endotoxins, also known as lipopolysaccharide (LPS) [83] . Kupffer  cells (KCs) are the 
specialized m acrophages naturally present in the liver. Their  main role in volves removing 
bacteria and soluble bacterial byproducts, while also producing inflammatory cytokines [84] . 
Toll-like receptor  4 (TLR4) is a type of pattern -recognition receptor (PRR)  found on the surface 
of Kupffer cells. Its primary function is to detect the presence of  microbes and LPS [85]. Several 
studies have indicated that short-chain fatty acids (SCFAs), including butyrate, can contribute to 
the development of colorectal cancer by promoting the conversion of  colonic epithelial cells and 
causing abnormal cell growth [86]. In our  study, the gut microbiome includes several SCFAs -
producing bacter ia that are associated with host genes. Moreover, the prediction of pathway 
analysis via PICRUSt2 showed differences between the two subgroups of HCC including  
lipopolysaccharide biosynthesis that might be stimulate cytokine release, demonstrating TLR4 
selectivity in recognition. 
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 Additionally, we found that Ruminococcus gnavus group  w as associated w ith u p 
regulated CD14 of non -viral-related HCC patients. The abundance of Ruminococcus gnavus 
group  increases in patients with liver  disease, especially hepatocellular carcinoma [87] . A 
previous study demonstrated that the Ruminococcus gnavus group  generates glucorhamnan, 
which acts as a TLR4 ligand, leading to the subsequent release of tumor necrosis factor -alpha 
(TNF-α )  by dendritic cells [88]. Notably, our  study showed Rum inococcus gnavus group 
exhibited the m ost positive association to CD14 and contr ibuted to liver  inf lammation. The 
translocated LPS is recognized by CD14 and TLR4, triggering the release of pro -inflammatory 
cytokines like tumor necrosis factor alpha (TNFα), interferon alpha (IFNα) , interferon-gamma 
(INFγ) , and interleukins (IL1β  or IL6). This can ultimately lead to the onset of endotoxemia 
[89]. The functional analysis of the gut microbiome in our  findings indicates a connection with 
endotoxin and inflammation, which were influenced by various subgroups of HCC. Among them, 
lipopolysaccharide biosynthesis were identified exactly in non -viral-related HCC group from 
viral-related HCC group. LPS can be released from the outer membrane during gram negative 
bacter ial growth, death, or antibiotic treatment. This release depends on factors like bacter ial 
death type, antibiotic concentration, and incubation conditions [90]. Most immune cells express 
TLR4 and activate signaling pathways upon LPS binding. CD14, a membrane protein, binds LPS 
before TLR4 activation and transfers it to Lymphocyte antigen 96 (MD2), a protein complexed 
with TLR4. This leads to two signaling pathways: Myd88 and Toll interleukin -1 receptor domain-
containing adapter-inducing interferon -dependent pathways. These pathways result in the 
transcription of proinf lammatory cytokines such as IL -8, IL-6, IL-1, IL-12, IFN, and TNF [91] . 
Recently, there has been an established link between the bloom of the Gram -positive bacterium 
Ruminococcus gnavus and the onset of inf lammatory bowel disease. Additionally, a recently 
discovered polysaccharide produced by this bacter ium has been demonstrated to induce the 
release of inflammatory cytokines. It has been hypothesized that this stimulation occurs through 
the activation of toll-like receptor 4 (TLR4) [92] . Moreover, this study highlights the signif icance 
of  algorithm selection in analyzing multi-omics data for Hepatocellular Carcinoma (HCC) 
subgroups. Utilizing Support Vector  Machine (SVM), Ran dom  Forest (RF), and Logistic 
Regression (LR), we identified 18 genes and four gut microbiom e genera w ith diagnostic 
potential for  non -viral-related HCC. LR , SVM, and RF demonstrated robust classif ication 
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perform ance for  gut microbiom e variables, with mean AUC values of  0.84, 0.83, and 0.82, 
respectively. The integration of gene expression and gut microbiome data did not yield optimal 
results. Nevertheless, employing the Synthetic Minority Over -sampling Technique (SMOTE) 
proved beneficial, notably enhancing the Random Forest model mean AUC to 0.85. Remarkably, 
the combined dataset achieved the highest mean AUC of 0.87, underscoring its potential in 
enhancing diagnostic accuracy and disease subgroup classification. 
 In conclusion, this study has provided valuable insights into the potential signif icance of 
differential gene expression correlated with the gut microbiome in relation to various etiological 
factors of HCC. It opens up new avenues for  exploring human biomarker discovery. Fur ther 
investigations are requ ired to validate our  results and gain a deeper  understanding of th e 
mechanisms involved in the interaction between the host-gut microbiome and metabolites in 
patients with HCC. 
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Chapter 6 Limitation and suggestion 
Our study has several limitations. First ly, it is a retrospective study without follow -up data, 

including overall survival (OS) information. As a result, overall survival data is essential for evaluating 
the ultimate impact of a treatment protocol on a patient's l ifespan. Without such data, researchers may 
only be able to assess short-term outcomes, which might not  provide a comprehensive picture of the 
treatment's efficacy or potential side effects over the long term. This limitation can hinder the ability to 
make evidence-based recommendat ions and may necessitate reliance on surrogate endpoints or 
extrapolation, which can introduce uncertainty and potential bias into the analysis  

Secondly, our sample size was relatively small . Due to the difficulty in recruiting the pat ients 
following the inclusion and exclusion criteria, our sample collection did not reach the minimum sample 
size. Small sample sizes can severely limit the generalizability of machine learning models in clinical 
research. Models may not capture the full range of variabi lity and complexity present in the patient 
population. As a result, the models may perform well on the limited data they were trained on but 
struggle to generalize to new, unseen data or different patient populations. Additionally, small sample 
sizes can lead to reduced statistical power. it becomes challenging to identify statistically  significant 
patterns or make confident conclusions about the effect iveness of a treatment, the presence of rare 
adverse events, or the accuracy of diagnostic models. This limitation can lead to false positives or false 
negatives, making it difficult to draw reliable conclusions from the machine learning analysis.  

Thirdly , when analyzing the gut  microbiome and host  transcriptome without including 
metabolome data , there is a significant gap in  our understanding of host -microbiome interactions. 
Metabolites are the small molecules produced by both the host  and the gut microbiota as a result of 
metabolic processes. They play a crucial ro le in mediat ing the crosstalk  between the two entit ies. 
Metabolites can act as signal ing molecules, energy sources, and regulators of various biological 
processes, and may affect  the composi tion and act iv it ies of the microbiome.  To overcome this 
lim itat ion, researchers often st rive to  obtain  metabolome data in  addit ion to  m icrobiome and 
transcriptome data, enabling a more holistic understanding of host -microbiome interactions and their 
impact  on health  and disease. In tegrating all three types of data (metabolome, microbiome, and 
transcriptome) can lead to more comprehensive insights and help  unravel the complex mechanisms at 
play in the gut ecosystem.                 
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