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An imbalance in gut microbiome is strongly linked to liver inflammation disease and hepatocellular
carcinoma (HCC) via the gut-liver axis. However, the understanding of how gut microbiota interacts with the host
gene expression is still limited. In this study, we aim to investigate the relationship between gut microbiome profile
and transcriptomic profile in patients with HCC. In this study, 17 patients with viral-related HCC, 13 non-viral-
related HCC, and 10 healthy controls were recruited. We investigated gut microbiome profile from fecal samples
using 16S rRNA sequencing and host transcriptomic profile from the peripheral blood mononuclear cells (PBMCs)
using RNA sequencing method. Individual datasets were examined and integrated for association analysis between
two datasets using bioinformatic tools. Moreover, machine learning has been performed to detect HCC and then
identify that bacterial and genes that can be used as diagnostics for HCC. Based on Pearson’s correlation analysis, the
interaction of 268 gut microbes and 6,137 genes were performed. We found that 4 genera of bacteria were associated
with 18 host genes expression. In these interactions, these bacteria was related to lipopolysaccharide (LPS)
production and the functional analysis of those genes was mainly involved in signal transduction and immune
regulation. Finally, based on machine learning approach, 4 genera of bacteria including Eubacterium, Eubacterium
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Specificity = 80% and Accuracy = 86%). However, the performance in differentiate the non-viral and viral-related
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associated with specific host gene expression. The modulation of gut microbiota might improve gut homeostasis
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Chapter 1 Introduction

1.1 Background of research

Liver cancer is currently one of the major health issues in the world with an anticipated
incidence of more than 1 million cases by 2025 [1,2]. Hepatocellular carcinoma (HCC) is the
most common type of liver cancers and it has extremely high 90% mortality-to-incidence ratio.
Hepatitis B and C infections are the leading factor of the development of HCC although alcoholic,
non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver diseases (NAFLD), aflatoxin
exposure and fluke infection can lead to the progression of HCC [3, 4].

Currently, the modalities recommended for surveillance of HCC are liver ultrasound
combined with or without biological biomarkers, such as alpha-fetoprotein (AFP) every 6 months.
AFP isthe most commonly used biomarker in surveillance and diagnosis of HCC [5, 6]. It is
considered positive if its level is higher than 20 ng/mL. However, its specificity and sensitivity
are limited in the early-stage of HCC [7, 8].

According to 2012 from previous studies, the human body is composed of both visible
and invisible components. The complete human body consists of the visible organs and invisible
microorganisms, such as bacteria, fungi and viruses. In fact, invisible cells contain many more
genes than visible cells [9]. The study of the human microbiome project began around 2,000. The
purpose of this research was to characterize the microbial population, which inhabited the human
body, and demonstrate how the microbial populations in the different parts of the body diff ered
from each other [10]. Currently, the gut-liver axis has been the focus of this research. It refers to
the bidirectional communication between liver and intestinal. Primary bile acids and
antimicrobial molecules should be secret to the biliary tract by the liver. Molecules in the
intestinal lumen that are supported by gut microbiomes can convert primary bile acid to
secondary bile acid, which isnot harmful. This procedure retains the balance of the liver and
intestinal system, called eubiosis [11]. A stronger understanding of the factors affecting the
manipulation of gut microbiome diversity on liver disease has been established from studiesof
the link between gut microbiota and metabolites [12].

A new paradigm in biomedical research to identify the genetic cause of human disorders
has been accomplished by next generation sequencing (NGS) [13]. In previous studies, NGS was

applied to identify novel genetic alterations and cancer genomes that drove tumor progression



[14]. The study in transcriptome profile can provide overall of genes expression and help
understand the disease mechanism. Currently, most transcriptomic profile studies with RNA -
sequencing technique use samples from tissues. However, few studies using liquid biopsy sample
including peripheral blood mononuclear cells (PBMCs) are reported [15].

The use of integrated multi-omics of gut microbiome and host transcriptome in PBMCs
of viral- and non-viral related-HCC patients as potential biomarkers has not been reported yet.
We obtained paired fecal and blood specimen from the patients and healthy individuals. The
objective of this study is to examine the association between gut microbiome and host gene
expression data. Then, machine learning models were performed to analyze significant candidate
bacteria or genes for diagnosis of HCC. Finally, we hope that this study will be able to find
diagnostic biomarker for differentiating etiology of HCC and improve efficacy of diagnosisin

HCC patients, especially in non-viral related-HCC patients.

1.2 Research questions

* Do the gut microbiota and host transcriptome profiles of HCC patients differ from healthy
controls?

* Do the gut microbiota associate with host transcriptome profile in patients with HCC?

* Does the interaction of gut microbiota and host transcriptome represent as biomarkers for

diagnosis of HCC

1.3 Objectives of work

* To investigate gut microbiome profiles of HCC patients and control groups.

* To investigate host gene profiles of HCC patients and control groups.

* To explore the interaction of the host-microbe in HCC using bioinformatic tools.

* To identify the biomarkers of host-microbe in diagnosis of patients with HCC.

1.4 Hypothesis
* Gut microbiome profilesof HCC patients may differ in comparison with those of healthy

controls.



* Host transcriptome profiles of HCC patients may differ in comparison with those of healthy
controls.
* Association of gut microbiota and host transcriptome might be used as diagnostic biomarkers

for HCC.

1.5 Expected benefits

* The different between gut microbiome and transcriptomic profiles of Asian HCC patients who
different lifestyle including habitat, heredities and dietary backgrounds.

* The association of gut microbiome and host transcriptome in HCC patients with viral and non-
viral related, including the impact of the gut-liver axis on gut microbiome diversity and
differential expression genes to clarify how gut microbiota influence the transcriptome profiles of
HCC.

* The use of the novel non-invasive biomarkers from outcome of this study, together with the

conventional biomarkers to benefit efficacy of diagnosis in HCC patients.



Chapter 2 Literature review

2.1 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most prevalent type of primary liver cancers and
has a high mortality rate from cancer. The mortality to incidence ratio is 0.91. It affects men 2.3
times more commonly than women while 72% of newly diagnosed cases are found in Asia[1,2].
The most significant risk factors for the development of HCC continue to be chronic liver disease
and cirrhosis whereas viral hepatitis and excessive alcohol consumption are ranked as the most
relevant factors [3, 4].

Cirrhosis and/or HCC can develop from chronic viral hepatitis. The most two types of
hepatitis that cause chronic hepatitis are hepatitis B and C. The double-stranded, circular DNA
molecule known as the hepatitis B virus (HBV) has eight genotypes (A to H). In comparison to
genotypes B and C, genotypes A and D are more prevalent in Asia and the Middle East [5].
Sexual contact, intravenous injections, and tainted blood transfusions are ways that hepatitis B is
transmitted. The main source of HBV infection worldwide is vertical transfer from mother to
fetus. Hepatitis B is a disease that affects 5% of people worldwide [16]. There are six distinct
HCV genotypes that are isolated. Genotypes I, I, and I1I are more prevalent in Western countries,
while type IV is more prevalent in the Middle East. 80% of HCV -positive patients proceed to
chronic hepatitis, and 20% of HCV-positive patients eventually develop cirrhosis [6]. Similar to
the emerging roles of NAFLD and metabolic syndrome in the development of HCC, alcoholism
and consum ption of foods contaminated with aflatoxin B1 are additional risk factors. T he
continued use of alcohol increases the risk of developing HCC. The level of alcohol taken over
the course of alifetime is correlated with the risk of liver disease while heavy drinking is being
more associated with HCC than social drinking [17].

The HBV genotype can be classified into 8 genotypes (A to H) and four of these
genotypes have been lately described with subgenotypes (A, B, C and F). The genotypes exhibit a
clear geographic separation. The common prevalence of HBV genotype worldwide is genotype A
and found in northwestern Europe, North America, and Africa [18]. Meanwhile, HBV genotype B
and C are frequently found is Asia and Oceania [ 18]. Genotype D is widespread throughout the
world but it is most prevalent in the Mediterranean region [18]. Genotype E is found in Africans

on the West Coast of Africaand Madagascar on the east [ 19]. Genotypes F and H are only found



in the Amerindian communities of Central America [20] while genotype H is also discovered in
Californiaand Mexico [21]. Genotype G has only been isolated so far from HBV carriers in
France, Germany, the United Kingdom, Italy, and the United States of America (USA) [22]. Most
HBYV genotypes found in Thailand are genotype C and genotype B accounting for 87.5% and
10.5%, respectively [23].

HCV genotypes can be classified into 6 genotypes (I to VI) and sub genotypes are
approximately 25% of nucleotide sequence dissimilarity [24]. Genotypes I and I1I are the majority
of infections worldwide and found mostly in East Asia. Genotypes Il and IV are found in East
Asia while Genotype IV is mostly found in North and Middle East Africa. Genotype V isonly
found in Southern and Eastern Africa [25]. The majority of HCV found in Thailand are genotype

I, TIT and VT accounting for 28%, 31% and 41%, respectively [26].

2.2 Hepatitis B-related hepatocellular carcinoma
HCC ismost frequently caused by chronic HBV infection worldwide. HBV is

responsible for more than 50% of HCC cases globally and 70—-80% of HCC cases in regions with
ahigh HBV epidemiology. The mechanism of chronic hepatitis as a significant risk factor for
HCC hasbeen recognized in hepatic cells, activated immune response, cy tokine release,
inflammation and fibrosis. HBV -related HCC develops after 25 to 30 years of infection as a result
of recurrent cellular regeneration and chronic inflammation. Another important risk factor for the
development of HCC is cirrhosis carried upon with chronic hepatic injury. Cirrhosis is reported in
80-90% of HCC cases associated with HBV [27].

2.2.1 Hepatitis B infection

HBYV infection is mainly transmitted by blood and semen. Three main transmission
methods are mostly found. In regions with a high endemicity, most neonatal HBV transmission
occurs between infected mothers and their newborn babies. In regions with a low endemicity, the
risk of infection is high in the number of sex partners and men who have sex with men (MSM).

The last major source of infection is inappropriate injections, blood transfusions, or hemodi alysis

[28].



2.2.2 Hepatitis B genome and structure

HBYV is amember of the Hepadnavirus family. The infectious HBV virion has a diameter
of 42 nm and contains 3.2 kb of partly double stranded rcDNA in a nucleocapsid (core) that is
encapsulated in a lipid bilayer dotted with complexes of viral glycoproteins (Figure 1). A single
copy of the viral genomic DNA and DNA polymerase are packaged in the nucleocapsid, which is
made up of viral capsid proteins. There are three viral glycoproteins called "large" (L, LHBs),
"middle" (M, MHBs), and "small" (S, SHBs) surface antigens that are present on the envelope

membrane [29, 30].

core protein

Figure 1 The mature HBV virion [30]

2.3 Hepatitis C-related hepatocellular carcinoma
Hepatitis C virus has demonstrated to be a major health concern due to the cause of liver

cirrhosis and risk of developing liver cancer [31]. According to the current reports, the prevalence
rate increased during the past decade to 2.8%, or more than 185 million infections worldwide
[32].

2.3.1 Hepatitis C infection

HCV is mainly spread via percutaneous blood exposure associated with health procedures
or through sharing contaminated injection equipment. Sexual and mother-to-infant transmission
are also possible but less frequent. At present, receiving a tattoo in an unregulated setting, patient -
to-patient transmission, and needle-stick injuries among healthcare workers remain risk factors

for HCV transmission [33].



2.3.2 Hepatitis C genome and structure

HCV is amember of the Flaviviridae family, genus Hepacivirus [34]. HCV genome is a
single stranded RNA of positive polarity containing 9.6 kb. HCV virions have an approximate 45 -
65 nm diameter and two anchoring envelope glycoproteins (El and E2) that are encased in a lipid
bilayer [35]. The HCV genome contains 2 sections. The first is the untranslated (UTR) region and

the second is the coding region (Figure 2) [36,37].
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Figure 2 HCV virion and genome organization [37]

2.4 non-B non-C (NBNC)-related hepatocellular carcinoma

There are numerous HCC patients (5-20%) who test negative for the hepatitis C and
hepatitis B virus infection indicators called non-B and non-C (NBNC) [38, 39]. The underlying
liver diseases that contribute to NBNC-HCC vary including NAFLD, NASH, alcoholic liver
disease, autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing
cholangitis (PSC) and aflatoxins. However, NAFLD (non-alcoholic fatty liver disease) is the most
common cause of liver diseases. Patients with increased body mass index (BMI) and diabetes
mellitus (DM) are associated with developing NAFLD. Moreover, NAFLD can lead to liver
cirrhosis and HCC according to increased clinical evidence [40, 41]. In addition, metabolic
syndrome increases the risk of HCC. The incidences of HCC associated with inflammatory and

angiogenic alterations driven along with insulin resistance and fatty liver disease have increased

[42, 43].



2.5 Diagnosis of HCC

More than 40 years ago, Alpha-fetoprotein (AFP) was identified as a marker for HCC
and described asa way to identify preclinical HCC [7]. Increased AFP that indicates may be
tumor. AFP cutofflevel of 10to 20 ng/mL wasreported to have a sensitivity and specificity of
80% and 60%, respectively [8]. Even with advanced disease, tumors that had normal AFP levels
at the time of diagnosis frequently remained stable. So, the diagnosis challenge was based on only
the AFP level. Liver biopsy is the gold standard for diagnosis of HCC. Unfortunately, it has many
problems involved including invasive methods, causing pain, anxiety and discomfort to patients.
Currently, more sensitivity techniques have been used, such as computerized tomography scan
(CT) and magnetic resonance imaging (MRI) [44]. Even though imaging techniques have been
recommended as the current guidelines for the diagnosis of HCC, their disadvantages include
cost, radiation exposure, and the need for iodinated contrast [45].

Currently, liquid biopsy including nucleic acid, circulating tumor cells (CTCs) and
extracellular vehicles (EVs) refer to molecular analysis and release into the bloodstream or other
body fluids [46]. Therefore, this method has shown encouraging results for several cancer-related
applications including non-invasive biomarkers for prognostic [47-49]. At present, peripheral
blood mononuclear cells (PBMCs) can be demonstrated for alteration of total RNA representing

cancer-induced genes that can serve as a new HCC prognostic and diagnostic marker [50-52].

2.6 The gut microbiota and hepatocellular carcinoma

Physiological relationship between intestinal tract and liver has been called the “gut-liver
axis” (Figure 3) [12, 53]. An effect of metabolite in the intestinal on the liver is thought to play a
key role in the development and progression of HCC [54]. Currently, gut microbiome can be
suggested as a non-invasive biomarker for diagnosis of HCC [55]. Classification of disease
severity by gut microbiome can be used for targeted and personalized treatment as well as being

used as an indicator of the response to cancer [11,56].
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Figure 3 The communication between the liver and the gut is bidirectional [11]

Major gut microbiome metabolite product during the fermentation of polysaccharide is
short chain fatty acids (SCF As). For example Butyrate, which is mainly produced by Firmicutes
phylum. Butyrate is essential role in an immunity activity and improved function intestinal barrier
[57].1In arecent study of characterizing gut microbiome in hepatocellular carcinoma (HCC)
patients with different stages and evaluating potential of microbiome to non-invasive biomarker
for HCC, the results showed microbial diversity increased in liver cirrhosis and early HCC.
Actinobacteria increased more in early HCC than liver cirrhosis,and Butyrate production
decreased. Furthermore, to identify microbial biomarkers and construct HCC classifiers by the
Random Forest model, the results showed an area under the curve of 80.64% between early HCC
and non-HCC. This study has the strong diagnostic potential for early HCC and advanced HCC
because it was validated in the HCC group from Northwest and Central China [58]. In another
study of exploring what features of gut microbiota are associated with cirrhosis hepatocellular
carcinoma (HCC) and non-alcoholic fatty liver disease (NAFLD), the whole population had three
groups (cirrhosis with HCC-group, cirrhosis with non-HCC-group and healthy control-group).
The results showed high abundance levels of Enterobacteriaceae and Streptococcus with low
abundance levels of Akkermansia in the cirrhosis group. Meanwhile, it showed high abundance
levels of Bacteroides and Ruminococcaceae with low abundance levels of Bifidobacterium in the
HCC group. Moreover, the study explored intestinal permeability, inflammatory status and
circulating mononuclear cells by cell assay. They constructed a model correlation of these
features of HCC progression, the results founded correlation between Akkermansia, Bacteroides

and Bifidobacterium with calprotectin. This study suggests gut microbiota from patients with
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cirrhosis and NAFLD are significantly correlated with systemic inflammation in the process of
hepatocarcinogenesis. It is unclear from this study's research gap if these alterations can vary
depending on the disease's stage or if they may be linked to certain tissue or metabolic changes
[59]. However, there is limited research on the association of gut microbiome and viral -HCC or

non-viral-HCC.

2.7 16S rRNA sequencing for gut microbiome

The most widely used genetic marker has been the 16S rRN A gene sequence, which has
been used in bacterial taxonomy and phylogeny research. The length of the 16S rRNA geneis
enough for informatics approx. 1,500 base pairs to represent in almost all bacteria. Bacterial
genome database being used with 16S rRNA sequencing to identify bacteria composition.
Another difficult challenge is choosing primers that would specifically target specific 16S rRNA
gene regions for bacterial taxonomy characterization. Several different 16S rRNA gene variable
regions have been targeted in studies of gut microbiome, including V3, V4 and V3-V4.In Chen Z
et al. primer pairs targeting the 16S rRNA gene V1-V2, V3-V4, and V4 regions was performed to
profile the community of gut microbes. They discovered a higher alpha diversity and richness

[60].

2.8 Transcriptomic profile in hepatocellular carcinoma

Genome-wide mapping of gene expression in tissue has been used for identifying
biomarkers for diagnosis, prognosis, and new treatments in various diseases, especially cancer
[13]. However, gene expression data based on microarray technique did not provide sufficient
insight. RNA-sequencing is currently capable of evaluating changes at the molecular level that are
related to disease pathogenesis [14].

At present, transcriptomic profile hasthe report with RNA -sequencing technique in
tissues or liquid biopsy, for example peripheral blood mononuclear cells (PBMCs). In this
research, the profiles of long non-coding RNA s (IncRNAs) obtained from PBMCs of HCC
patients. The results showed gene expression levels of three up -regulating genes, MIR4435-2HG,
SNHG9 and Inc-LCP2-1 and one down-regulating gene, Inc-POLD3-2. Functions of these genes

are reported to have an association with carcinogenesis and immune response [15]. Moreover,
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most previous studies in patients caused by hepatitis B or C virus infection and hepatocellular
carcinoma at early stage could not be ameasure for biomarker. In particular, only few studies
have been conducted in patients with non-viral related hepatocellular carcinoma (NBNC-HCC).
Consequently, research at the transcriptional level will support current data and provide a

molecular perspective on the disease progression.

2.9 Machine learning in precision medicine

Machine learning-based big data analysis offers a number of benefits for integrating and
analyzing alarge amount of complex health-care data [61]. In the previous report, machine
learning has been used to analyze biological data at various levels, including DNA, RNA and
protein, as well as data from bacteria, such as gut microbiome. Integration of all data has been
called “multi-omics" analysis [62]. The previous study was to find association between gut
microbiome and host transcriptome in hepatitis B related with HCC patients. Moreover, th is study
used the models of Random Forest and Support Vector Machine model to further confirm gut
microbiota's ability to predict clinical outcomes. The analysis of integration analysis between gut
microbiota and host transcriptome showed 3 bacteria (Bacteroides, Lachnospiraceae incertae
sedis and Clostridium XIVa) increased with non-small HCC and had relation with 31 genes with
progression of cancer. Furthermore, the results showed the potential of gut microbiota for
predicting clinical outcome yielding area under the curve at 81% [63]. However, the previous
study was conducted in tissues samples. Therefore, the development of machine learning can be
used as a tool for diagnosis and making treatment decisions more effective for patients. It is
expected that the combination of machine learning with omics data from the same HCC patients
can be used for determining patients who are more susceptible to develop liver cancer and

allowing patients have a better quality of life in the future.



3.1 Research workflow

Chapter 3 Research Methodology

12

All samples were obtained from Chulalongkorn Memorial Hospital, Thailand and were

used for gut microbiome and host gene expression analysis. Correlation based analyses were

conducted to uncover microbe-associated genes, identify microbial markers, and develop HCC

classifiers using machine learning model. The study integrated gut microbiome, transcriptome,

and clinical data for comprehensive insights.
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Figure 4 Research workflow. A total of fecal and blood samples from Chulalongkorn Memorial

Hospital, Bangkok, Thailand were collected. DNA was extracted from fecal samples to

characterize gut microbiome. RN A was extracted from blood samples to investigate host gene

expression. Based on gut microbiome, transcriptome and clinical data, correlation -based analysis

was performed to discover microbe-associated gene, identify microbial markers, and construct

HCC classifier by machine learning model.
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3.2 Experiment design

Fecal and blood samples from healthy control and HCC patients were obtained. DNA
from fecal samples were characterized for the gut microbiome profile, while RNA from blood
samples were analyzed for host gene expression profile. We aimed to integrated analysis of gut
microbiome, transcriptome, and clinical data for the discovery of microbes-associated genes and
microbial markers. Then, machine learning was performed in building the hepatocellular

carcinoma (HCC) classifiers model.
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Figure 5 Experimental design in detail

3.3 Sample size calculation

This research was the case-control study, which are compared the gut microbiome and
gene expression of patients with viral related-HCC and non-viral related-HCC. Sample size
calculation was determ ined using Statulator provided at

https://statulator.com/SampleSize/ss2P.html based on a reference study of Epidemiology and
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Survival of Hepatocellular Carcinoma in the Central Region of Thailand from 2007 to 2012, the

results was found that 5,929 patients were diagnosed with hematologic malignancy and 308

(5.19%) had final diagnosed with HCC [64]. The defined formula was shown in Figure 6.

2
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Figure 6 Formula for sample size calculation

P (exposure | case) = 0.0519 P (exposure | control) = 0.35
Ratio (control: case) = 1 o =0.05 B =0.20
n, . = 31 for each group
With the assuming of 5% of subjects in the reference population was the factor of
interest. Therefore, the study would require a sample size of 32 for each group to achieve a power

of 80% for detecting a difference in proportions of 0.20 between the two groups (test — reference

group) at a two sided p-value of 0.05 [65].

3.4 Participant information

3.4.1 For healthy control group

The control group consisted of healthy volunteers who had no metabolic syndrome and
liver diseases. The consent forms, which were completed by all participants before their samples
were collected, was approved by the Institute Ethics Committee of the Chulalongkorn University

Faculty of Medicine (IRB No.108/60 and IRB No0.312/64).
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® TInclusion criteria for healthy control group

Male and female Thai patients above or equal to 18 years old. Body mass index
(BMI) and serological tests (including the detection of hepatitis B surface antigen and hepatitis C
virus antibody) results were in the normal range. The healthy group had no evidence of liver
disease and underlying history of metabolic syndromes.

® Exclusion criteria for healthy control group

The exclusion criteria for healthy control included hypertension, diabetes,
obesity, metabolic syndrome, irritable bowel syndrome (IBD), non-alcoholic fatty liver disease
and liver cirrhosis. Additionally, people, who had taken probiotics or antibiotics within the four
weeks before enrollment, were excluded.

3.3.2 For HCC patient group
Total of HCC patients were diagnosed using the international guidelines at the King

Chulalongkorn Memorial Hospital, Bangkok, Thailand. The consent forms, which were
completed by all participants before their samples were collected, was approved by the Institute
Ethics Committee of Faculty of Medicine, Chulalongkorn University (IRB No. 0371/66).

® Inclusion criteria for HCC patient group

Male and female Thai patients above or equal to 18 years old. The diagnosisof
HCC patients was confirmed by computed Tomography (CT) and magnetic Resonance Imaging
(MRI) regarding the clinical guideline of the American Association for the Study of Liver
Diseases (AASLD). Patients with metabolic illnesses, such as hypertension, dyslipidemia, and
type 2 diabetes were included. Additionally, patients, who previously had HCV or HBV
infections and went on to develop HCC, were included.

® Exclusion criteria for HCC patient group

The exclusion criteria included patients with Intrahepatic cholangiocarcinoma,
prior anticancer therapy, and participants missing clinical information or clinical outcome data.
Moreover, people, who had taken probiotics or antibiotics within the four weeks before

enrollment, were also excluded.
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3.4 Sample collection

3.4.1 Fecal sample collection

Participants received guidance on how to employ the suitable fecal collection method
based on the standard operating procedures (SOPs) [66]. A DNA/RNA Shield™ - Fecal
Collection tube (Zymo Research Corp.) containing the reagent, which could preserve microbial
nucleic acids and inactivate pathogens from fecal samples, was provided to the participants. In the
laboratory, the samples were immediately stored at -80 °C until further experiment was required.

3.4.2 Blood sample collection

Blood specimens with an approximate size of 3 ml were collected in an EDTA tube from
healthy control and HCC patients before performing chemoembolization treatments at King
Chulalongkorn Memorial Hospital, Bangkok, Thailand between 2019 to 2021. Fresh EDTA blood
specimens were used to isolate peripheral blood mononuclear cells (PBMCs). PBMCs were
isolated at 2,500 rpm for 15 minutes at room temperature and then washed 2 times with PBS. The
isolated PBMCs were suspended in PBS for 1 m1 and stored at —80 °C until further experiment
was required.

3.4.3 Clinical collection

Clinical characteristics data of all participants were collected before performing
chemoembolization treatments at King Chulalongkorn Memorial Hospital, Bangkok, Thailand
from hospital information system (HIS) including gender, age, body mass index (BMI), liver
biochemistry, serological test, liver function, renal function, electrolyte, radiomic data, Child-
Pugh classification, staging of HCC classified by the Barcelona Clinic Liver Cancer (BCLC),

history underlying and overall survival times.

3.5 Fecal sample for DNA extraction

DN A was extracted from a Im1 frozen aliquot of each stool sample using
ZymoBIOMICSTNI DNA Miniprep kit (Zymo Research Corporation). DN A extraction using a
bead beating system to complete homogenization/disruption of the microbial cell walls and
accurate microbial DN A analysis. DNA concentration and purity were measured by DeNovix ™
UV-Vis spectrophotometer and stored at =20 °C until further experiment was required. Moreover,

we performed to amplify hypervariable region of bacterial genes (V3-V4 region) by polymerase
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chain reaction (PCR) for confirmation. The PCR conditions started with the initial activation at
95°C for 2 minutes, the denaturation step at 95°C for 30 seconds, then the annealing step at 53°C
for 40 seconds, the extension step at 72°C for 60 seconds and 40 cycles of amplification were
recommended. The final step was the final extension at 72°C for 10 minutes. The PCR products
can be evaluated by agarose gel electrophoresis before sending to 16S RN A sequencing
distributor.

3.5.1 16S rRNA sequencing

The hypervariable V3-V4 region of the 16S rRN A gene (341F/785R) was targeted by a
primer set used to amplify the extracted DNA samples (Table 1). Amplicon sequencing is a
highly focused strategy that enables researchers to examine genetic diversity in certain genomic
regions. In this procedure, Amplicon-based 16S rRNA was examined by ZymoBIOMIC®. Target
sequencing of the DNA sample and amplification was performed using the Quick-16S™ NGS
Library Prep Kit (ZymoResearch, CA) and real -time PCR technique, respectively. DNA clean
and concentration by concentrator ™ (ZymoResearch, CA) were selected. DNA integrity was
examined by TapeStation® (Agilent Technologies, USA) for library quantification. Positive
control were used from ZymoBIOMIC® Microbial Community DNA standard. The final library
will be sequenced on Illumina® MiSeq™ platform.

Table 1 Primer sequence for 16S rRNA sequencing

Primer name | Primer sequence Amplicon size | Reference

V3-V4 region | 5’-CCTACGGGNGGCWGCAG-3’ 444 bases pair [67]

5’-CCTGCCTTTGCAATRTCIACRAANGC-3’

3.5.2 Data preprocessing and analysis

Raw read data from [llumina® MiSeq™ platform of each sample following from
nfcore/ampliseq analysis pipeline (doi: 10.5281/zenodo.1493841) (Figure 7) [68, 69]. The first
step of ampliseq pipeline is to preprocess the data including FastQ C and Cutadapt tools for
sequencing quality control and trimming of read (primer and adapters). The output containing
report quality metrics and summary of read numbers that pass Cutadapt tool. The next step to

infer amplicon sequence variants (ASVs) using DADA2 tool. DADA2 reduces sequence errors
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and dereplicates sequences by quality filtering, denoising and PCR chimera removal. In addition,
DADAZ2 resolves variations of as little as one nucleotide and infers sample sequences exactly
which is an advantage over traditional operational taxonomic units (OTU). The output containing
fasta file with ASV sequences and counts for each ASV sequences. The next step for taxonomy
classification was performed using the SILVA 0f99% 16S rRNA gene reference database [70].
ASV sequences and counts data as produced before with DAD A2 tool are imported into QIIME2
tool for taxonomic classification aligning with the reference database. The output contains tab -
separated absolute abundance table at the taxa level. Moreover, QIIME2 tool can provide relative
abundance tables using total sum scaling normalization (TSS) for various taxonomic levels as the
final data for future downstream analysis and visualization. Barplot, diversity analysis (alpha and
beta diversity) using various methods and performs pairwise comparison of groups of samples.
PICRUSt2 is software for predicting the functional potential of a bacterial community based on
marker gene sequences. Functional usually refers to several gene family databases are supported
by default including the Kyoto Encyclopedia of Genes and Genomes (KEGG), orthologs (KO),
Enzyme Classification (EC) numbers and MetaCyc ontology are among the features that
PICRUSt2 could be capable of accomplishing (Figure 8) [71] The differentially abundant taxa
was assessed using the Linear Discriminant Analysis Effect Size (LEfSe) method

(https://huttenhower.sph.harvard.edu/galaxy/).
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Figure 7 nf-core/ampliseq bioinformatics analysis pipeline [69]
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Figure 8 PICRUSt 2.0 Flowchart [71]

3.6 Blood sample for RNA extraction
Total RNA were extracted from PBMCs sample using TRIzol LS reagent (Invitrogen,

USA) based on manufacturer’s protocol. RN A concentration and RN A integrity were measured
by RNA integrity by Qubit® 4 fluorometer (Invitrogen, USA) and TapeStation® (Agilent
Technologies, USA), respectively.

3.6.1 Total RNA sequencing

Next generation sequencing library preparations were constructed according to the
manufacturer’s protocol (NEBNext® Ultra™ RNA Library Prep Kit for [llumina®). The poly(A)
mRNA isolation was performed using NEBNext Poly(A) mRNA Magnetic Isolation Module
(NEB) or Ribo-Zero™ rRNA removal Kit (illumina). The mRNA fragmentation and priming was
performed using NEBNext First Strand Synthesis Reaction Buffer and NEBNext Random
Primers. First strand cDN A was synthesized using ProtoScript II Reverse Transcriptase and the
second-strand cDNA was synthesized using Second Strand Synthesis Enzyme Mix. The purified
double-stranded cDNA by AxyPrep Mag PCR Clean-up (Axygen, USA) was then treated with
End Prep Enzyme Mix to repair both ends and add a dA -tailing in one reaction, followed by a T-

A ligation to add adaptors to both endsto purified double-stranded cDNA. Size selection of
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Adaptor-ligated DNA was then performed using AxyP rep Mag PCR Clean-up (Axygen, USA),
and fragments of ~360 bp (with the approximate insert size of 300 bp) were recovered. Next, each
sample was amplified by PCR for 11 cycles using P5 and P7 primers, with both primers carrying
sequences which can anneal with flow cells to perform bridge PCR and P7 primer carrying a six -
base index to allow multiplexing. The PCR products were later cleaned up using AxyPrep Mag
PCR Clean-up (Axygen), validated using an Agilent 2100 Bioanalyzer (Agilent Technologies,
USA) and quantified by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Then libraries
with different indices were multiplexed and loaded on an [1lumina HiSeq instrument according to
manufacturer’s instructions (I1lumina, US A). Sequencing was carried out using a 2x 150bp paired
end (PE) configuration. Image analysis and base calling were conducted by the HiSeq Control
Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on the HiSeq instrument.

3.6.2 RNA-seq data preprocessing and analysis

RNA sequencing was analyzed based on ‘new Tuxedo’ protocol (Figure 9) [72]. Raw read
data from Illumina Hiseq was performed using Fastp tool (version 0.21.1) for check quality,
remove adapter, and remove for low quality sequence [73]. Sequencing reads were aligned using
HISAT2 (version 2.1.0) with human reference sequence (Illumina GRCh38) [ 74]. StringTie tool
(version 2.1.6) was used for alignment data to map for efficient transcript assembly and
quantitation of RNA-Seq data [75]. Differential gene expression was analyzed with DESeq2
comparison between HCC subgroups. Total RNAs possessing a read count 3 20 in 35 samples
were chosen for subsequent analysis. A hierarchical cluster analysis of differentially expressed
genes (DEGs) was performed to explore the expression pattern of genes in viral-related HCC and
non-viral-related HCC groups. Specific gene expression that would be up-regulated and down-

regulated were used at 1.5-fold change and P-value < 0.05.
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Figure 9 new Tuxedo protocol. RNA-seq read are mapped for each sample to the reference
genome (Steps 1 and 2). The transcripts in each sample are assembled and quantified with
StringTie (Step 3). After assembled, transcripts are merged together and creates a uniform set of
transcripts for all samples (Step 4). The gffcompare program was used to compares the genes and
transcripts with the annotation and reports statistics on this comparison (Step 5). The Ballgown
tool provides functions to organize, visualize, and analyze the expression measurements for

assembled transcripts (Step 6-7) [72].

3.7 Association between ASVs and differential gene expression

ASVs abundance and differential gene expression level were performed in correlation
with Pearson’s correlation coefficient for each pair ASV -gene across all samples. ASV that was
presented in 10% of all samples was eliminated to decrease the computational load and minimize

contingency. Gene expression values were calculated using DESeq2, such that each gene was
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assigned a reliable fold change. Specific gene expression that would be up -regulated and down-
regulated were used at 1.5-fold change and P value < 0.05. The statistical significance of each
ASV-gene pair was determined by P-value < 0.05 and a false discovery rate (FDR) < 0.1. The GO
enrichment analysis was performed based on Metascape [76]. The function analysis was
performed based on Reactome pathway database (https://reactome.org) [77]. Reactome web base
offers a complete range of functional annotation tools to help researchers comprehend the

biological significance of lengthy gene lists.

3.8 Microbial and gene-based biomarker discovery for diagnosis

Model construction was performed on the relative abundance discriminating non-viral-
related HCC from viral-related HCC using machine learning model. To address outliers in the
features, we normalized numerical variables and encoded categorical features for classification
purposes. To address the imbalance betw een the HCC subgroup datasets, we employed the
Synthetic Minority Over-sampling Technique (SMOTE). This method involves generating
synthetic instances of the minority class by interpolating between feature vectors of existing
minority class examples. A total of 263 gut microbial taxa and 6,137 genes were considered for
feature selection. Various techniques, such as Correlation-based F eature Selection were employed
on all datasets corresponding to different HCC subgroups. Then the best classifier algorithm
among Support Vector Machine, Random Forest and Logistic Regression was chosen based on
their performance in classifying using features of gut microbiome and gene expression. This study
applied a fundamental machine learning technique, the train-test split, which involved dividing
the dataset into training and testing sets to evaluate the model's generalization to unseen data. The
data was partitioned, with a test set comprising 30% of the total dataset. To assess the
performance of each classifier model in K-fold cross validation, It allows the use of all the
available data for both training and validation to produce a more robust estimate of the model’s
performance [78] and we employed metrics such as area under the curve (AUC), sensitivity,
specificity, and accuracy. Moreover, we optimize hyperparameters using GridSearchCV, a
method that systematically explores a predefined grid of hyperparameter values for a given
model. Through cross-validation, it evaluates each combination to identify the optimal set of

hyperparameters that achieves the best performance for the model.
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3.9 Statistical analysis

Statistical analysis was performed using SPSS V28.0 (SPSS Inc, USA) and GraphPad
Prism V8.0 (GraphPad software, USA). Chi’s square or Fisher’s exact test for categorical data
and the Mann-Whitney U test for non-parametric values was used to compare the continuous data
between the two groups. Microbiome diversity analysis was performed using pairwise
comparisons of groups of samples. More than two groups were compared using ANOVA test.

Statistical significance was defined with P-value < 0.05.

3.10 Ethical consideration

The Helsinki Declaration and Good Clinical Practice for the involvement of human
subjects were followed in the study protocol's execution. Before fecal and blood samples were
collected, each subject completed the informed consent forms, which were reviewed and
approved by the Institute Ethics Committee of the Chulalongkorn University Faculty of Medicine
(IRB No.108/60 and IRB No.312/64). The study was approved by the Institutional Review Board
(IRB) of the faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB

No.0371/66)

3.11 Expected benefit and application

In this study, data of gut microbiome and host transcriptome derived from healthy
volunteers and HCC patients in Thailand population. The data describe daily life and nutrition in
each group of samples. This study will comprehensively identify gut microbio mes and describe
microbial diversity and correlation networks of gut microbiota. For RNA sequencing, the data
provide differential gene expression, of which transcriptional profiles can be investigated.
Understanding associations between two data sets provides new insights to explore the
connections of gut microbiome and host transcriptome for human biomarker discovery.
Additionally, machine learning models based on gut microbiome data can be used as diagnostic

biomarkers in discriminating non-viral-related HCC from viral-related HCC.
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Chapter 4 Result

4.1 Participant information

All of 30 patients with HCC and 10 healthy volunteers were enrolled in the study. From
cause of HCC patients by hepatitis B virus, hepatitis C virus and non-B-non-C (NBNC) or non-
viral-related HCC. Clinical characteristics of these group including healthy volunteers versus
patients with HCC and viral-related HCC (n=17) versus non-viral-related HCC (n=13) were
generally matched. BMI, Platelet, Albumin, AST, ALP, AFP, Maximum size and BCLC stage,
suggesting that there wasno significant confounding factorsaffecting group discrimination
between comparing group (Table 2).

Table 2 Clinical characteristics summary of all participant

Patients Patients with HCC (n=30)
Clinical Healthy
with HCC P-value Viral-related Non-viral-related P-value
parameter (n=10)
(n=30) HCC (n=17) HCC (n=13)
34.3+10.
Age 65.3£10.1 <0.001*  61.1£9.2 70.8+8.6 0.007*
3
Gender <0.001* <0.001*
* Male 5(50%) 28(93.3%) 17(100%) 11(84.6%)
* Female 5(50%) 2(6.7%) 0(0%) 2(15.4%)
BMI 22.0£3.6 25.5+£5.0 0.053 25.24+4.9 25.8+5.2 0.750
Platelet 128.84+59.1 174.0+£89.4 0.108
Albumin 3.6£0.6 3.7+0.6 0.541
AST 66.1£57.1 46.5+28.9 0.267
ALT 51.3+£31.1 28.2+11.6 0.017*
ALP 98.3+37.1 136.7+96.4 0.142
4476.6+17980.
AFP 416.6+911.3 0.950
2
Total mass 0.045*
o1 9(52.9%) 7(53.9%)
°2 4(23.5%) 1(7.7%)
>3 4(23.5%) 5(38.4%)
Maximum
48442 6.2+6.3 0.450

size
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Patients Patients with HCC (n=30)
Clinical Healthy
with HCC  P-value | Viral-related Non-viral-related P-value
parameter (n=10)
(n=30) HCC (n=17) HCC (n=13)
Cirrhosis 15(88.2%) 12(92.3%)
BCLC
0.122
stage
* 0-A 8(47.1%) 6(46.2%)
B 7(41.2%) 4(30.8%)
«C 2(11.7%) 3(23.0%)

Data showed mean+SD; proportion(n%); * P-value<0.05; BMI=Body mass index; AST=Aspartate
transaminase; ALT=Alanine aminotransferase; ALP =Alkaline phosphatase; AFP=Alpha

fetoprotein; BCLC stage=Barcelona clinic liver cancer stage

4.2 Gut microbial diversity in HCC

From 16S rRN A sequencing preprocessing with FastQC tools to check quality in
sequenced reads and Cutadapt to trim primer and adapter from sequencing reads, an average of
37,309.6 ASVs per sample were obtained (Table 3).

Table 3 Preprocessing summary

SamplelD Group Raw_data Trimmed_seq denoisedF denoisedR reads_merging(F&R) input_tax_filter filtered_tax_filter percent_filtered_tax
H33 Healthy 145790 108693 104614 107297 91863 44128 44128 100.00
H34 Healthy 111492 78128 75319 76911 65730 36656 36656 100.00
H36 Healthy 121534 85788 84134 85004 76248 45117 45117 100.00
H37 Healthy 102273 74483 70488 73090 59772 32782 32782 100.00
H38 Healthy 114708 82095 79820 81374 75237 58715 58710 99.99
H39 Healthy 102325 73341 69154 72054 60286 34633 34633 100.00
H40 Healthy 117640 82177 77643 80872 68364 47113 47113 100.00
H45 Healthy 131293 94205 91056 92775 76758 33152 33152 100.00
H46 Healthy 115519 86091 84389 85418 77594 54745 54745 100.00
H47 Healthy 113092 80314 76487 78854 63545 32597 32597 100.00
C22 HBV 110706 80014 77551 78848 68643 33351 33351 100.00
C24 HBV 96585 68272 64411 66847 52941 24577 24577 100.00
C32 HBV 140635 105845 100938 104281 87568 54230 54230 100.00
C36 HBV 76760 50597 49393 49941 44202 23944 23944 100.00
C42 HBV 77537 56953 55747 56492 50337 29949 29949 100.00
C56 HBV 86227 62614 61825 62293 59114 44554 44554 100.00
C5 HBV 47038 39133 36200 38032 30712 21481 21481 100.00
Cl HCV 52208 43255 39690 41782 33210 22870 22870 100.00
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SampleID Group Raw_data Trimmed_seq denoisedF denoisedR reads merging(F&R) input_tax_filter filtered_tax_filter percent_filtered_tax
Cl6 HCV 57361 47399 42048 45316 34975 22336 22336 100.00
C19 HCV 47806 39625 38549 39057 35342 24796 24796 100.00
C20 HCV 49543 39895 38372 39181 33792 24735 24735 100.00
C26 HCV 103710 73481 70331 72398 60977 36327 36327 100.00
C28 HCV 105464 74565 72084 73568 62216 32095 32095 100.00
C34 HCV 101650 72264 71328 71858 66800 41252 41252 100.00
C40 HCV 106415 76362 74510 75378 67565 46899 46899 100.00
C41 HCV 91944 67295 64834 66496 58778 48386 48386 100.00
C60 HCV 103050 78057 76823 77777 73830 71007 71007 100.00
Cl4 INBNC 50525 42483 41091 41766 36869 27259 27259 100.00
C15 INBNC 50438 42492 40533 41657 36283 25958 25958 100.00
C18 INBNC 54101 45340 43507 44519 39474 27520 27520 100.00
C2 INBNC 53180 43647 41215 42448 36250 24231 24231 100.00
C21 INBNC 105621 78926 77734 78453 73698 58296 58296 100.00
C33 INBNC 108599 74011 69498 72371 58299 34074 34074 100.00
C35 NBNC 86969 64510 63373 64035 59660 45198 45198 100.00
C46 INBNC 72197 52761 51640 52283 47190 33843 33843 100.00
C49 INBNC 113427 75556 72362 74258 60671 41520 41520 100.00
C55 INBNC 111111 75154 68876 73164 58541 41282 41282 100.00
C58 INBNC 103894 73797 71270 72611 61696 36243 36243 100.00
C61 INBNC 106493 77864 75691 77020 69064 49175 49175 100.00
Cc9 INBNC 45396 38327 36733 37610 32987 25363 25363 100.00

The alpha diversity of species in each sample were significantly decreased in patient with
HCC group (P-value < 0.05) (Figure 10A-C). However, there was no difference between viral-
related HCC and non-viral-related HCC groups (Figure 11A-C). The beta diversity was calculated
with Bray-Curtis and Jaccard distance by NMDS plot, gut microbiome composition in patient
with subgroup of HCC and healthy control was significantly separated into two different

enterotypes (P = 0.038, Figure 12A-B).
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Figure 10 Gut microbiome diversity between healthy and HCC groups (A) Alpha diversity;
Observed feature (B) Shannon index (C) Pielou evenness, were significantly decreased in patient
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Figure 11 Gut microbiome diversity of all groups (A) Alpha diversity; Observed feature (B)
Shannon index (C) Pielou evenness, were significantly decreased in patient with non-viral-related

HCC (*P = 0.012, 0.003 and 0.003 respectively). (D) Beta diversity; Bray-Curtis distance (*P=

Stress = 0.147 e Strees = 0.187
-------------------- . *P=0.038 *P = 0.04
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Figure 12 Gut microbiome diversity of all groups (A) Beta diversity; Bray-Curtis distance (*P=

0.038). (B) Jaccard distance (*P=0.040)

4.3 Alteration in the composition of gut microbiome associated with HCC

Firmicutes, Bacteroidetes, and Proteobacteria constituted for the majority of the three
bacterial phyla in each group on average up to 80% ofthe ASVs. However, comparison of the
most abundances ASVs at phylum showed Proteobacteria significantly increased in HCC group
comparison with healthy group (Figure 13A). Regarding the top 50 bacterial genera in terms of
relative abundance, it was also evident that 9 genera exhibited significant variations among the

different subgroups of HCC (Figure 13B).
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Figure 13 Gut microbiome composition of all participants (A) Compositions of gut microbiome
at the phylum level between healthy controls and HCC subgroups. (B) Compositions of gut

microbiome at the top 50 genus level between healthy controls and HCC subgroups.

PICRUSt2 was utilized to predict the functional analysis of microbial communities in
different subgroups of HCC. In participants with non-viral-related HCC, the mean proportion
increased and significantly predominant including lipopolysaccharide biosynthesis, fatty acid

metabolism and dioxin degradation (Figure 14).
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Figure 14 Functional pathways predicted by PICRUSt2 that differentiate in viral-related HCC

and non-viral-related HCC.

LEfSe was utilized to identify bacterial taxa linked to healthy, HCC and various causes
within the HCC group. Total 18 bacterial taxa differences in microbiota compositions between

heathy and HCC (Figure 15A). Moreover, 11 bacterial taxa including Eubacterium ,
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Catenibacillus, Paraeggerthella, Gordonibacter, Lachnospiraceae AC2044 group,
Granulicatella, Eubacterium nodatum group, Pygmaiobacter, Erysipelatoclostridium ,
Ruminococcus gnavus group and Bacteroides exhibited significant overrepresentation with a log,,
LDA score> 2 in the fecal samples of patients belonging to the non -viral-related HCC subgroup

(Figure 15B-C).
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Figure 15 LEfSe analysis of differential gut microbial in genus level. (A) Histograms LDA score
between healthy and HCC group. (B) Histograms LDA score between HCC subgroups. (C)

Cladogram between HCC subgroups.

4.4 Overview of host transcriptome in subgroup of HCC

We hypothesized that change in host transcriptome may be correlated with change in gut
microbiome. Thus, we performed a transcriptome analysis of total RNA expression profile from
PBMCs between healthy and HCC group, atotal of 261 genes were identified to be differentially
expressed in HCC patients, which included 39 up-regulated (P-value < 0.05, log2FC > 1.5) and
222 down-regulated genes (P-value < 0.01,1l0og2FC < -1.5) in HCC group (Figure 16A)
Moreover, we performed a transcriptome analysis of total RNA expression profile from PBMCs
of 17 patients with viral-related HCC and 13 patients with non-viral-related HCC, atotal of 80
genes were identified to be differentially expressed in subgroup of HCC patients, which included
70 up-regulated (P-value < 0.05,10g2FC > 1.5) and 10 down-regulated genes (P-value < 0.01,

log2FC < -1.5) in non-viral-related HCC (Figure 16B).
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Figure 16 Transcriptome profiles of PBMCs. (A) A volcano plot of differential gene expression

of healthy and HCC group. (B) A volcano plot of differential gene expression of non-viral-related

HCC compared with viral-related HCC.

4.5 Association of host transcriptome profile influenced by gut microbiome

Based on Pearson’s correlation analyses, we tested the associations between host gene

expressed ang gut microbiome to discover host-gut microbe and to clarify how gut microbiota

influence the transcriptome profiles of HCC. A total of 6,137 genes and 268 gut microbes were

performed. A total of 1,644,716 gene pairs were calculated. Total of 23 genes and 7 gut microbes

were identified as positively correlated (Table 4).

Table 4 Twenty-four gut-gene pairs filtered by Pearson’s coefficient correlation

Gene symbol Gut microbiome Pearson’s coefficient P-value FDR
EMRI1 Eubacterium 0.92480526 2.84E-13 6.17E-10
TAS2R20 Eubacterium 0.881899 1.20E-10 1.23E-07
FRMD3 Eubacterium ventriosum group 0.81688016 3.67E-08 1.60E-05
ARHGAP26 Eubacterium 0.80716509 7.09E-08 2.75E-05
KIFC3 Eubacterium ventriosum group 0.80376367 8.85E-08 3.29E-05
ZNF407 Eubacterium 0.78740772 2.44E-07 7.58E-05
ZNF320 Eubacterium 0.761265 1.04E-06 0.00025026
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Gene symbol Gut microbiome Pearson’s coefficient P-value FDR
ZFYVE23 Eubacterium ventriosum group 0.76107347 1.05E-06 0.00025221
SLC7A6 Eubacterium 0.7600947 1.10E-06 0.00026271
CD14 Ruminococcus gnavus group 0.7516247 1.69E-06 0.00037421
HIF1A Ruminococcus gnavus group 0.73081233 4.52E-06 0.00084218
LOC100190986  Eubacterium 0.71927356 7.51E-06 0.00127084
NCOA7 Eubacterium 0.67244723 4.69E-05 0.00559694
ENG Ruminococcus gnavus group 0.67139189 4.87E-05 0.00576831
FUCALI Ruminococcus gnavus group 0.64891485 0.00010489  0.01064955
LANCL2 Eubacterium 0.62938557 0.00019449  0.01735448
ZNF317 Eubacterium 0.62737199 0.00020679  0.01819793
TRIM4 Clostridium innocuum group 0.59681349 0.00049896  0.03606712
NRXN3 Eubacterium 0.59242548 0.00056217  0.03945515
LRRC37BP1 Eubacterium nodatum group 0.57719875 0.00083953  0.05349469
TMEM154 Lachnospiraceae AC2044 group 0.55665891 0.00139951  0.07875074
TRIM4 Lachnospiraceae ND3007 group 0.55603137 0.00142081  0.07966113
DIS3L Eubacterium nodatum group 0.55034436 0.001627 0.0882571
LEPR Lachnospiraceae ND3007 group 0.54426299 0.0018758 0.09800949

The increased relative abundance of gut microbe (Eubacterium, Eubacterium nodatum

group, Lachnospiraceae AC2044 group and Ruminococcus gnavus group) were associated with

significant up regulated genes in patients with non-viral-related HCC (Figure 17A). Functional

and pathway analysis exposed set of gene to play an important role in the identification of signal

transduction, programmed cell death, neuronal system, metabolism of proteins, immune system

and disease. Based on Reactome pathway database, the host-gut microbes were significantly

about disease and immune system, which involved immune regulation (Figure 17C). Moreover,

the decreased abundance of gut microbe (Clostridium innocuum group, Eubacterium ventriosum

group and Lachnospiraceae ND3007 group) were associated with significant down regulated

genes in patients with non-viral-related HCC (Figure 17B).
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Figure 17 The association between gut microbiome and host transcriptome in HCC subgroups.
(A) Pearson’s correlation with up regulated host genes and increased gut microbe in non-viral-
related HCC group. (B) Pearson’s correlation with down regulated host genes and decreased gut
microbe in viral-related HCC group. (C) Functional analysis of differentially regulated genes
between patients with HCC subgroups. Regarding up-regulated genes, the immune response and
inflammatory pathways involving the pro-inflammatory genes are among the most significantly

enriched pathways. The dashed line indicates the Fisher exact test P value threshold set at 0.05.

To clarify the localization and functions of these genes within the blood -immune
microenvironment, we examined their expressions in a separate single-cell mapping database
(using SMART-seq2) of hepatocellular carcinoma (HCC) [79]. Interestingly, genes associated
with gut microbes were high expressed in B cell, macrophages, CD8" T cells, CD4" T cells and

NK cells (Figure 18). The genes exhibited an interconnected relationship, indicating that the gut
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microbiota potentially influences the transcriptome of hepatocellular carcinoma (HCC) through

various factors.
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Figure 18 The expressions of host genes related to the gut were examined for each cell type using

SMART-seq?2 data (http://cancer-pku.cn:3838/HCC). Uniform Manifold Approximation and

Projection (UMAP) plots were generated to visualize the cell clusters identified through
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integrated analysis, with each cluster represented by a distinct color (first plot). UM AP plots
depict the distribution of cells across sample types (second plot). UMAP plots depict the

distribution of cells for each specific gene (third plot).

4.6 Gut microbiome and gene marker for HCC subgroups classification

In this study, we explored the distinct characteristics of commonly used machine learning
algorithms for the analysis of multi-omics data, emphasizing the critical importance of algorithm
selection. Our investigation focused on classifying HCC subgroups, employing three prominent
ML algorithms: Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression
(LR). The predictive performance, assessed through fivefold cross-validation, revealed
compelling results. For gene expression data, a set of 18 genes exhibited significant positive
correlations among patients with non-viral-related HCC, demonstrating strong diagnostic
potential for HCC. These genes included EMR 1, TAS2R20, ARHGAP26, ZNF407,ZNF 320,
SLC7A6,LOC100190986, NCOA7, LANCL2, ZNF317, NRXN3, CD14,HIF1A, ENG, FUCAL,
TMEM154, LRRC37BP1,and DIS3L. In parallel, gut microbiome data featured four genera
(Eubacterium, Eubacterium nodatum group, Lachnospiraceae AC2044 group, and Ruminococcus
gnavus group) that exhibited similarly positive correlations in non-viral-related HCC patients.
When evaluating classification performance, the integrated mean Area Under the Curve (AUC)
values underscored the robustness of LR (0.84), SVM (0.83), and RF (0.82) for gut microbiome
variables (Figure 19A-D). Notably, combining both gene expression and gut microbiome data did
not yield optimal classification results for HCC subgroups. However, leveraging the Synthetic
Minority Over-sampling Technique (SMOTE) to address dataset imbalance, particularly with 17
viral-related HCC and 17 non-viral-related HCC cases, enhanced the Random Forest algorithm's
mean AUC to 0.85 (Figure 20A-D). Remarkably, the combined dataset achieved the highest mean
AUC values, reaching 0.87 (Figure 20C). These findings underscore the potential of specific gut
microbiome markers in elucidating disease causation and their promising role in distinguishing
between patients with viral-related and non-viral-related HCC. The integration of multi-omics
data and strategic algorithm selection emerges as a powerful strategy for advancing HCC

subgroup classification and enhancing diagnostic accuracy.
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Figure 19 Receiver operating characteristic analysis of our model classification of non-viral
related HCC versus viral related HCC. The true-positive rate (sensitivity) is plotted against the
false-positive rate (1-specificity). The mean AUC values of ROC curves with fivefold cross-
validations are gene expression set, gut microbiome set and combined of two datasets for
classification model. (A) Logistic Regression model. (B) Support Vector Machine model. (C)

Random forest model. (D) Summary of evaluation matrix.
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Figure 20 Receiver operating characteristic analysis of our model classification of non-viral

related HCC versus viral related HCC after using SMOTE technique. The true-positive rate

(sensitivity) is plotted against the false-positive rate (1-specificity). The mean AUC values of

ROC curves with fivefold cross-validations are gene expression set, gut microbiome set and

combined of two datasets for classification model. (A) Logistic Regression model. (B) Support

Vector Machine model. (C) Random Forest model. (D) Summary of evaluation matrix.
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Chapter 5 Discussion and conclusion

The previous report [63] and our study have shown that the gut community is highly
different in any cohort study, which is associated with host transcriptome. Recent findin gs have
demonstrated that the progression of HCC is caused by genetic and epigenetic changes acquired
via repetitive hepatocyte destruction and regeneration. Our study is the first to report an
association between two datasets from any causation of HCC including viral-related HCC and
non-B-non-C (NBNC) or non-viral-related HCC. The diversity of fecal microbiota was found to
be significantly lower in HCC groups compared to the healthy control group. However, no
significant difference in fecal microbial diver sity was observed between the non-viral-related
HCC group and the viral-related HCC group. In general, patients with viral -related HCC
exhibited greater species richness. In non-viral-related HCC patients, there was a decrease in the
abundance of Firmicutes and an increase in Proteobacteria at the phylum level. Our findings
revealed a distinct pattern in the gut microbiota composition between non-viral-related HCC and
viral-related HCC patients. Specifically, non-viral-related HCC patients exhibited a decrease in
potential anti-inflammatory bacteria and an increase in pro-inflammatory bacteria. Conversely,
viral-related HCC patients demonstrated a higher abundance of potential anti -inflammatory
bacteria. These results suggest that the gut microbiota may have a significant impacton the
progression of viral or non-viral-related HCC. The evidence showed associated with the presence
of particular gut microbes. Distinguished by the enrichment Fubacterium, Catenibacillus,
Paraeggerthella, Gordonibacter, Lachnospiraceae AC2044 group, Granulicatella, Eubacterium
nodatum group, Pygmaiobacter, Erysipelatoclostridium, Ruminococcus gnavus group and
Bacteroides are significantly enriched in non-viral-related HCC group, while Subdoligranulum,
Coprococcus, CAG 56, Lachnospiraceae ND3007 group, Eubacterium ventriosum group,
Clostridium innocuum group, Lachnospiraceae UCG_004, Lachnospiraceae FCS020 group and
Lachnospiraceae UCG_001 were significantly increased in viral -related HCC group. In another
study of exploring what features of gut microbiota are associated with cirrhosis hepatocellular
carcinoma (HCC) and non-alcoholic fatty liver disease (NAFLD), the results showed high
abundance levels of Bacteroides and Ruminococcaceae suggested that gut microbiota are

significantly correlated with systemic inflammation in the process of hepatocarcinogenesis [59].
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Differences in the composition of gut bacteria between non -B-non-C causes may play a
role in disease development through various pathways [80]. For example, an increase in the
expression levels of specific pro-inflammatory cytokines in the liver. Research findings indicate
that adecline in microbial diversity islinked to an increase in intestinal permeability and the
presence of systemic low-grade inflammation [81]. As a consequence, this association has been
connected to the development of hepatic steatosis. As for subgroups of non-viral-related HCC
specific gut microbial signatures, which correlated with host gene transcriptome. We observed
that patients with 4 genera, Eubacterium, Eubacterium nodatum group, Lachnospiraceae AC2044
group and Ruminococcus gnavus group are positively correlated with several of the disease and
immune system. Fubacterium is a bacterium that is classified as an obligate anaerobe and utilizes
dietary fiber through fermentation to generate short-chain fatty acids (SCF As), which include
butyric acid [82]. The involvement of SCF As in the pathogenesis of NAFLD is crucial as they
have the potential to influence and maintain intestinal homeostasis, while also positively affecting
glucose and lipid metabolism. In human peripheral blood mononuclear cells (PBMC), SCFAs
such as propionate and butyrate have been found to suppress the expression of lipopolysaccharide
(LPS)-induced cytokines, specifically interleukin-6 (IL-6) and IL-12p40. The liver functions as a
source of inflammatory agents and plays a pivotal role in mounting inflammatory responses to
bacterial endotoxins, also known as lipopolysaccharide (LPS) [83]. Kupffer cells (KCs) are the
specialized macrophages naturally present in the liver. Their main role in volves removing
bacteria and soluble bacterial byproducts, while also producing inflammatory cytokines [84].
Toll-like receptor 4 (TLR4) is a type of pattern-recognition receptor (PRR) found on the surface
of Kupffer cells. Its primary function is to detect the presence of microbes and LPS [85]. Several
studies have indicated that short-chain fatty acids (SCF As), including butyrate, can contribute to
the development of colorectal cancer by promoting the conversion of colonic epithelial cells and
causing abnormal cell growth [86]. In our study, the gut microbiome includes several SCFAs-
producing bacteria that are associated with host genes. Moreover, the prediction of pathway
analysis via PICRUSt2 showed differences between the two subgroups of HCC including
lipopolysaccharide biosynthesis that might be stimulate cytokine release, demonstrating TLR4

selectivity in recognition.
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Additionally, we found that Ruminococcus gnavus group was associated with up
regulated CD 14 of non-viral-related HCC patients. The abundance of Ruminococcus gnavus
group increases in patients with liver disease, especially hepatocellular carcinoma [87]. A
previous study demonstrated that the Ruminococcus gnavus group generates glucorhamnan,
which acts as a TLR4 ligand, leading to the subsequent release of tumor necrosis factor-alpha
(TNF-Q0) by dendritic cells [88]. Notably, our study showed Ruminococcus gnavus group
exhibited the most positive association to CD 14 and contributed to liver inflammation. The
translocated LPS isrecognized by CD14 and TLR4, triggering the release of pro-inflammatory
cytokines like tumor necrosis factor alpha (TNFQU), interferon alpha (IFNQ(), interferon-gamma
(INFY), and interleukins (IL1 B or IL6). This can ultimately lead to the onset of endotoxemia
[89]. The functional analysis of the gut microbiome in our findings indicates a connection with
endotoxin and inflammation, which were influenced by various subgroups of HCC. Among them,
lipopolysaccharide biosynthesis were identified exactly in non-viral-related HCC group from
viral-related HCC group. LPS can bereleased from the outer membrane during gram negative
bacterial growth, death, or antibiotic treatment. Thisrelease depends on factors like bacterial
death type, antibiotic concentration, and incubation conditions [90]. Most immune cells express
TLR4 and activate signaling pathways upon LPS binding. CD14, a membrane protein, binds LP S
before TLR4 activation and transfers it to Lymphocyte antigen 96 (MD2), a protein complexed
with TLR4. This leads to two signaling pathways: Myd88 and Toll interleukin-1 receptor domain-
containing adapter-inducing interferon-dependent pathways. These pathways result in the
transcription of proinflammatory cytokines such asIL-8, IL-6,IL-1, IL-12,IFN, and TNF [91].
Recently, there has been an established link between the bloom of the Gram -positive bacterium
Ruminococcus gnavus and the onset of inflammatory bowel disease. Additionally, a recently
discovered polysaccharide produced by this bacterium hasbeen demonstrated to induce the
release of inflammatory cytokines. It has been hypothesized that this stimulation occurs through
the activation of toll-like receptor 4 (TLR4) [92]. Moreover, this study highlights the significance
of algorithm selection in analyzing multi-omics data for Hepatocellular Carcinoma (HCC)
subgroups. Utilizing Support Vector Machine (SVM), Random Forest (RF), and Logistic
Regression (LR), we identified 18 genes and four gut microbiome genera with diagnostic

potential for non-viral-related HCC.LR,SVM, and RF demonstrated robust classification
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performance for gut microbiome variables, with mean AUC values of 0.84, 0.83,and 0.82,
respectively. The integration of gene expression and gut microbiome data did not yield optimal
results. Nevertheless, employing the Synthetic Minority Over -sampling Technique (SMOTE)
proved beneficial, notably enhancing the Random Forest model mean AUC to 0.85. Remarkably,
the combined dataset achieved the highest mean AUC of 0.87, underscoring its potential in
enhancing diagnostic accuracy and disease subgroup classification.

In conclusion, this study has provided valuable insights into the potential significance of
differential gene expression correlated with the gut microbiome in relation to various etiological
factors of HCC. It opens up new avenues for exploring human biomarker discovery. Further
investigations are required to validate our results and gain a deeper understanding of the
mechanisms involved in the interaction between the host-gut microbiome and metabolites in

patients with HCC.
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Chapter 6 Limitation and suggestion

Our study has several limitations. Firstly, it is a retrospective study without follow-up data,
including overall survival (OS) information. As a result, overall survival data is essential for evaluating
the ultimate impact of a treatment protocol on a patient's lifespan. Without such data, researchers may
only be able to assess short-term outcomes, which might not provide a comprehensive picture of the
treatment's efficacy or potential side effects over the long term. This limitation can hinder the ability to
make evidence-based recommendations and may necessitate reliance on surrogate endpoints or
extrapolation, which can introduce uncertainty and potential bias into the analysis

Secondly, our sample size was relatively small. Due to the difficulty in recruiting the patients
following the inclusion and exclusion criteria, our sample collection did not reach the minimum sample
size. Small sample sizes can severely limit the generalizability of machine learning models in clinical
research. Models may not capture the full range of variability and complexity present in the patient
population. As aresult, the models may perform well on the limited data they were trained on but
struggle to generalize to new, unseen data or different patient populations. Additionally, small sample
sizes can lead to reduced statistical power. it becomes challenging to identify statistically significant
patterns or make confident conclusions about the effectiveness of a treatment, the presence of rare
adverse events, or the accuracy of diagnostic models. This limitation can lead to false positives or false
negatives, making it difficult to draw reliable conclusions from the machine learning analysis.

Thirdly, when analyzing the gut microbiome and host transcriptome without including
metabolome data, there is a significant gap in our understanding ofhost-microbiome interactions.
Metabolites are the small molecules produced by both the host and the gut microbiota as a result of
metabolic processes. They play a crucial role in mediating the crosstalk between the two entities.
Metabolites can act as signaling molecules, energy sources, and regulators of various biological
processes, and may affect the composition and activities of the microbiome. To overcome this
limitation, researchers often strive to obtain metabolome data in addition to microbiome and
transcriptome data, enabling a more holistic understanding of host -microbiome interactions and their
impact on health and disease. Integrating all three types of data (metabolome, microbiome, and
transcriptome) can lead to more comprehensive insights and help unravel the complex mechanisms at

play in the gut ecosystem.
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