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When planning radiation therapy, late-effect complications due to radiotherapy should be considered. One
of the most common complications of head and neck radiotherapy is hypothyroidism. Although clinical and dosimetry data are
usually used to assess the risk of hypothyroidism after radiation for nasopharyngeal cancer, the outcome is still unsatisfactory.
Medical imaging can provide additional information and increase prediction accuracy. The aim of this study was to predict

hypothyroidism in patients with nasopharyngeal cancer using CT radiomics combined with clinical and dosimetric data.

The study included 220 participants who were diagnosed with hypothyroidism within 2 years after
radiotherapy. Manual segmentation covered the thyroid gland, and feature extractions were performed from pretreatment CT
images. All radiomics features were analyzed with clinical and dosimetry information, and the model was constructed using
logistic regression, random forest, and gradient boosting. In addition to the radiomics model, conventional, and combined

models were built based on the tree-based predictive algorithms.

The findings of the study demonstrated that the combined model had the highest validation performance,
as indicated by AUCs of 0.80 = 0.06 and 0.81 £ 0.06 in logistic regression and random forest, respectively, which were greater
than the conventional mode with the AUCs of 0.68 £ 0.07 and 0.71 + 0.06 (p-value < 0.05). The combined model used in this
study used radiomics features, with the majority of these features coming from texture-based classes and filtered-based classes,
while the important clinical and dose factors were bilateral neck metastasis, pretreatment TSH level, age, TR V40, and TR

mean.

In conclusion, the combination of CT radiomics with clinical and dose information can predict the RIH
in nasopharyngeal cancers and significantly improve the performance of prediction models compared to the conventional
method. We contend that pretreatment thyroid images contain valuable information that can be used to predict the risk of

hypothyroidism after nasopharyngeal radiotherapy.
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CHAPTER I: INTRODUCTION

1. Background and rationale

Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers
(HNC) with specific etiological, clinical, epidemiological, and genetic characteristics. More than
70% of NPC cases occurred in Southeast Asia and South China [1]. GLOBOCAN 2020 [2]
reported that during 2020 Thailand found 2,316 new cases of NPC, which were 1.2% of all
cancers and found up to 1482 cancer deaths, 1.2% of which were from NPC. Radiotherapy,
chemotherapy, and surgery are the main treatments to control and manage HNC. The major
treatment is radiotherapy by using various techniques to provide a high dose at a target volume
while maintaining an acceptable low dose to critical organs to avoid complications. Since the
thyroid gland's location is anterior to the neck regions, it is exposed to high radiation doses.
Moreover, the thyroid gland is a highly radiosensitive organ, which results in a higher risk of
complications. According to Kazemi et al. [3], it was reported that hypothyroidism, which
occurred in 15%-48% of patients after radiation treatment, is the most common radiation side
effect of HNC treatment. Therefore, prevention strategies should be considered because of its
effect on the quality of life after the treatment course.

At present, hypothyroidism is diagnosed by laboratories and clinical symptoms only.
Several studies [4, 5] investigated predictors for radiation-induced hypothyroidism based on pre-
treatment clinical and dose parameters. Lertbusayanukul et al. [4] validated a prior report of dose
factors in hypothyroidism after intensity-modulated radiation treatment (IMRT) in patients with
nasopharyngeal carcinoma (NPC). It was found that TSH greater than 1.55 JLU/ml and VS, less
than 10 cm’ were important predictors. Another study by Peng et al. [5] suggested that using the
pre-treatment volume (< 20 cm’) and V.60 (> 80%) of thyroid glands can be predictors with
moderate prediction results (AUC = 0.64). Therefore, an effective predictive model is needed to
improve the treatment planning and reduce the occurrence of radiation induced hypothyroidism.

Medical imaging plays a key role in cancer diagnosis and treatment since it is needed for
treatment planning, treatment monitoring, and evaluation of treatment response. The treatment
planning system must use imaging guidance before radiation treatment. CT with other modalities

(e.g., MRI, PET) will be examined first to define the dose to the tumor target volume and organ at
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risk volume. Rapidly increasing computer technology and imaging methods have enabled the
storage and use of medical image data in various techniques and clinical applications. More than
the applications of traditional images are used for diagnostic and treatment monitoring by human
observation, hidden information in images may be useful for improving treatments. Radiomics
refers to the automated extraction of quantitative features from medical images for the
development of diagnostic and prognostic biomarkers. Using a statistical analysis approach with
radiomics features and clinical data could develop a novel predictive tool in clinical application.
There have research studies on predicting locoregional recurrence, treatment response, and
survival as well as complications in HNC patients after treatment using radiomics [6]. Sheikh et
al. [7] used radiomics features from salivary glands to study post-radiation xerostomia. They
suggested that baseline CT and MR imaging features may reflect baseline salivary gland function
and potential risk for radiation injury.

The objective of this study was to use radiomics from pretreatment contrast-enhanced CT
images, dosimetry parameters, and clinical data to predict hypothyroidism within 2 years. The
hypothesis was that radiomics with clinical and dosimetry data can improve the prediction of
radiation-induced hypothyroidism and has potential to be a new tool in pre-treatment planning to

optimize dose constraints on the thyroid gland to reduce thyroid complication effects.

2. Research questions

1) What is the best model to predict radiation-induced hypothyroidism after radiation
treatment in nasopharyngeal cancer patients?

2) What is the additional gain from using radiomics as compared to using only clinical
and dosimetry data?

3) What are the radiomics signatures of radiation-induced hypothyroidism after

radiationtherapy in nasopharyngeal cancer patients?

3. Research objectives
1) To develop an effective model for predict radiation-induced hypothyroidism after

radiation treatment in nasopharyngeal cancer patients.



11

2) To evaluate whether the superior performance of the model that uses radiomics is
better than clinical and dosimetry data alone.
3) To identify the radiomics signatures of radiation-induced hypothyroidism after

radiationtherapy in nasopharyngeal cancer patients.

4. Scope
This study focused on using radiomics from pre-treatment contrast enhanced CT to
develop a model for predicting radiation-induced hypothyroidism after radiationtherapy in

nasopharyngeal cancer patients.

5. Expected benefits

1. Radiation-induced hypothyroidism predictive models using CT radiomics combined
with clinical and dosimetry data.

2. Propose guidance for the important clinical, dose, and image predictors relevant to
RIH that help to adjust the treatment plan and reduce the occurrence of thyroid complications

after radiation treatment in nasopharyngeal cancers.



12

CHAPTER II: THEORY

1. Radiation-induced hypothyroidism

1.1 Head and neck cancers

Lip
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Figure 1 Anatomical site of HNSCC development. HNSCC arises from the mucosal epithelium of

oral cavity, nasopharynx, oropharynx, hypophalynx and larynx.[8]

Head and neck squamous cell carcinomas (HNSCC) are the most common malignancies
that arise in the head and neck. It is developed from the mucosal epithelium in the oral cavity,
pharynx, and larynx as show in Figure 1. The prevalence of HNSCC varies by region and has
been linked to tobacco-derived carcinogen exposure, excessive alcohol intake, or both. Moreover,
the incidence of HNSCC caused by Human Papillomavirus (HPV) has raised up over the last 30
years, especially for oropharyngeal cancers. This has led to a new subgroup of patients with
HNSCC who have different clinical characteristics and molecular biology and more
radiosensitivity [9, 10].

1.2 Treatment of head and neck cancers

HNSCC is predominantly a loco-regional disease with only about 5% of patients having
distant metastases at the time of diagnosis. Over 60% of patients have locally advanced disease
(stage III and VI) at diagnosis. The main treatment consists of surgery, radiotherapy, and recent

years with additional of chemotherapy. For early-stage patients, one treatment modality is
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sufficient; however, for advanced-stage patients, all treatments must be combined for tumor
control, and fractionation can be used to improve the outcome. In the last three decades,
technological development in radiotherapy has been improved from 2D-RT based on X-ray
images to 3D-CRT (3-dimensional conformal treatment). Three or more treatment fields are used
in 3D-CRT as shown in Figure 2 to deliver a homogeneous dosage to the target area.
Furthermore, the deployment of multi-leaf collimators and more complex computer algorithms
have enabled intensity modulated RT (IMRT) and volumetric modulated arc therapy (VMAT).
With these treatment techniques, there is the possibility of conserving normal tissues while

increasing radiation dose to the tumor and other target areas [11].

Figure 2 Radiation beam directions. A, Two opposing beams of single intensities, represented by
the yellow arrows, create a single-dose distribution through a nasopharynx tumor. B, Intensity

modulated radiotherapy allows multiple beams of different intensities[12]

1.3 Radiation treatment planning
Radiation treatment is an external beam radiation using linear accelerators. Intensity-
modulated radiation therapy (IMRT) has been successfully implemented because of advances in
technology like inverse treatment planning and the multileaf collimator-equipped linear
accelerator. These methods allow for the modulation of radiation intensity to give a larger
radiation dose to the targets with a sharply conformal target volume coverage while significantly
reducing the exposure to the surrounding normal tissues. In daily practice, treatment planning for

head and neck cancer patients is initiated with a therapeutic CT scan of the patient to fixate in the
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treatment position. In the treatment planning system, the oncologist and the radiologist
collaborate to define the tumor volume and clinically relevant target areas. Planning target
volumes are then generated, and a dose calculation is performed to ensure that adequate dose
distributions are used to cover tumor areas during radiotherapy, and treatment doses of normal
tissue are below the tolerance thresholds as indicated by clinical guidelines. At present, treatment
planning systems allow a rather precise calculation of the treatment dose for small areas. More
information on ionizing radiation tolerance levels in various organs led to RT dose-planning,
which restricts a specific dose (dose-constraint) or treated volume to an organ using either a

single value, such as the mean dose to the organ, or multiple dose-volume constraints.

1.4 Toxicity
The toxicity of normal tissues is the limiting factor in radiotherapy. Optimization of
target dose delivered while minimizing toxicity to normal tissue is an important challenge for
radiotherapy. Toxicity has typically been classified into two categories: acute reactions and late
reactions. Acute reaction toxicity is defined as effects that occur within 90 days after the start
of radiotherapy, whereas late reactions occur more than 90 days (and up to years after RT).
However, the relevance of this diagnosis in grading and reporting adverse effects has been
challenged internationally. In HNSCC, common acute effects during treatment are pain,
mucositis, dysphagia, xerostomia, mucosal edema, and erythema. Common late effects consist of
xerostomia, dysphagia, mucosal edema, hypothyroidism, and skin fibrosis. Adverse event
reporting in cancer treatment, and specifically radiation oncology have been the Common
Terminology Criteria for Adverse Events (CTCAE) and the LENT/SOMA scale [13, 14]. LENT
is an acronym for Late Effects Normal Tissues, while SOMA defines toxicity from Subjective,
Objective, Management related and Analytic measures (i.e. blood test, CT or the like).
Toxicology scores can be converted into binary data, which can be used to analyze radiation dose-
response relationships and predict toxicity in patients receiving radiation therapy.
1.5 Thyroid gland
As shown in Figure 3A, the thyroid gland is a butterfly-shaped structure that is located
anterior to the trachea and inferior to the larynx, as shown in figure 3A. The gland consists of two

lobes, right and left, which are connected through the isthmus. The isthmus, or medial region, is
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flanked by wing-shaped left and right lobes. The tissue of the thyroid gland is composed of
thyroid follicles. Colloid (figure 3B) is a type of follicle that has a central cavity filled with a
sticky fluid. The colloid is surrounded by epithelial follicle cells and is the center of thyroid
hormone production. The hormone's production is dependent on the hormone's essential and

unique component: iodine [15].

Hyoid bone

Thyroid cartilage

Isthmus of the
thyroid

arteries  — Trachea

— Parafollicular cell

~— Colloid-containing
follicle

Follicle cells
(cuboidal epithelium)

Figure 3 Thyroid anatomy: (a) Thyroid anatomy, (b) Thyroid follicle cells [16]

1.6 Synthesis and release of thyroid hormones

Hormones are created in the colloid when atoms of the mineral iodine bind to a
glycoprotein known as thyroglobulin, which is released into the colloid by follicle cells. The
hormones are assembled in the following steps:

1. Thyroglobulin synthesis

Thyroglobulin is synthesized and released by the endoplasmic reticulum and Golgi
apparatus in follicular cells of the thyroid gland. Thyroglobulin is a large glycoprotein that
contains 140 molecules of the amino acid tyrosine and is stored in the follicle.

2. lodine trapping
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Iodide (I) from the blood stream enters follicular cells by active transport via an
electrochemical gradient called iodide trapping. It passes through follicular cells along with Na
by using a sodium-iodide symport pump (iodide pump).

3. Transport of iodine into follicular cavity

After that, iodide enters the follicular cavity by an iodide-chloride pump (pendrin).
Todide was oxidized into iodine (IO) using thyroid peroxidase as an activator.

4. Iodination of tyrosine

Iodination of tyrosine is iodine combined with tyrosine, which occurs on thyroglobulin.
This iodination process was activated by the iodinase enzyme from follicular cells. Then tyrosine
was iodized into MIT (mono-iodothyrosine) and DIT (di-iodothyrosine), which are called
iodotyrosine residues.

5. Coupling reaction

Todotyrosine residues were combined into thyroid hormones in three patterns: 1) DIT +
MIT = T3 (triiodothyrosine), 2) MIT + DIT = reverse T3 (less than 1%), and 3) DIT + DIT = T4
(thyroxine). T3, T4 hormones will enter the bloodstream and regulate the whole body.

The production and release of thyroid hormone is controlled by negative feedback, as
shown in Figure 4, that involves the hypothalamus, pituitary gland, thyroid gland, and
multiple hormones. Start with the hypothalamus releasing thyroid-releasing hormone (TRH),
which stimulates the pituitary gland to produce and release thyroid-stimulating hormone (TSH).
Then, TSH triggers the thyroid gland to produce T4 and T3. The total amount of hormones that
TSH triggers to release is about 80% T4 and 20% T3. When the levels of T3 and T4 increase,
they prevent the release of TRH, while when T3 and T4 levels drop, the feedback loop starts
again. This system allows the body to maintain a constant level of thyroid hormone balance. An
imbalance in the hormones associated with this system can occur if there are problems with the

hypothalamus, pituitary gland, or thyroid.
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Figure 4 Negative feedback of thyroid hormones. Hypothalamus releases thyrotropin-releasing
hormone (TRH), which triggers pituitary gland to release thyroid-stimulating hormone (TSH),

which stimulates thyroid to release T3 and T4 [17]

1.7 Hypothyroidism

Several conditions can result from abnormal thyroid hormone levels. Hypothyroidism is
one of the most common conditions that is defined as a decreased function of the thyroid gland. It
is characterized by TSH levels above the normal range (0.3-4.0 mIU/I). Hypothyroidism can be
subclinical or overt. Subclinical hypothyroidism is elevated TSH and normal T4 and T3, while
overt hypothyroidism is elevated TSH and T4 and/or T3 below the normal range. Hypothyroidism
symptoms can include being tired, gaining weight, and being unable to tolerate cold temperatures.
Autoimmune disease, hyperthyroidism therapies, radiation therapy, thyroid surgery, and certain
drugs are all possible causes. Hormone replacement therapy is the most common treatment for
hypothyroidism. It may not cause noticeable symptoms in the early stages. Untreated
hypothyroidism can lead to several health issues over time, including obesity, joint discomfort,

infertility, and heart disease.
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2. Radiomics in oncology
Radiomics is the extraction of mineable high-dimensional data from radiologic images,

and it has been used in oncology to improve diagnosis and prognosis with precision medicine
[18]. Since imaging data might have meaningful information about tumor biology, behavior, and
pathophysiology. It may reveal information that is not apparent from conventional radiologic
images and clinical interpretation. Radiomics quantifies textural information through
mathematical extraction of the spatial distribution of signal intensities and pixel relationships,
using analysis methods from the field of Al. The workflow of radiomics includes curation of
clinical and imaging data, image preprocessing, tumor segmentation, feature extraction, model
development, and model validation as show in Figure 5. This research field needs the cooperation
of multiple disciplines, including radiologists, image scientists, and data scientists. Radiomics
features can be obtained at a single (typically pretreatment) or multiple time points (delta

radiomics) and applied to imaging data.
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Figure 5 Workflow of radiomics [19]

2.1 Applications in oncology
In oncology, radiomics can be applied to several tasks, for example, classification,
treatment response prediction, and side effect prediction. Classification involves dividing subjects
into outcome categories such as benign and malignant, normal and disease, tumor stage, presence

of metastases. Treatment response prediction models use clinical outcomes to stratify patients into
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different risk groups on the basis of clinical endpoint occurrences. For side effect prediction, it
involves the treatment toxicity after treatment, such as radiation-induced brain injury and
xerostomia.

2.2 Planning a radiomics study

When planning a radiomics study, it needs to propose an interesting clinical task and
check how possible it is. The important factor is having adequate data to support the development
of a radiomics signature. As a general guideline, in binary classification investigations, 10—15
samples per feature in the final radiomics signature should be obtained. This varies by study, but
it is a good rule of thumbs when starting a new project. The rule should be applied to the smaller
class if the class sizes are unequal. In fact, when developing a model, it is difficult to control the
number of final radiomics signature. It depends on the data and the model algorithm used. After
the research question and study population have been selected, collecting pilot data to help detect
and minimize potential problems before collecting full data.

2.3 Radiomics workflow

The radiomics workflow is divided into several tasks that are usually performed in this
order.

1. Image acquisition

Imaging data acquired from CT, PET, MRI, or US examinations. CT and PET data are
signal intensities, which are inherent quantitative data. MRI has good tissue contrast, but several
sequence and scanning parameters can affect feature stability. The US is more operator
dependent. Therefore, the choice of radiomics image depends on the task and clinical interest.

2. Data curation and image preprocessing

Nonimaging and clinical data are typically collected to be analyzed with radiomics data.
Before integrating clinical and radiomics data, curation steps to identify missing or incomplete
data can then be taken, also for correction of typographic errors or inconsistencies in data.

Before feature extraction, image data can be enhanced through preprocessing
steps. While preprocessing may improve image quality, it must also have an effect on the
radiomics signature. In MRI, signal intensity is arbitrary, and hence normalization of signal
intensity is recommended. Because of the lack of consensus on this issue, the z-score is a simple

way to fix it. The z-score is computed by subtracting the mean signal intensity of the area of
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interest (ROI) from the pixel signal intensity and dividing the result by the standard deviation.
Bias field correction should also be applied with MRI to correct for the spatial field
inhomogeneities encountered. In CT, threshold on voxel Hounsfield units can be applied
to image data to exclude voxels that are assumed to contain noninformative tissues, such as low
values that may correspond to air within the lung, and high values to bone or calcification.
Because some radiomics feature values are influenced by voxel size, all samples should be
resampled to the same spatial resolution. The use of linear interpolation is generally advised.
Motion correction can be used to correct for misregistration, blurring, or motion artifacts but this
additional processing has the potential to impact radiomic information in the images. The use of
motion control techniques, such as breath holding, is advised. Before extracting features, image
filtration can be used as a preprocessing step to highlight image properties. Wavelet filters, which
separate high- and low-spatial-frequency information, and Laplacian of Gaussian (LoG) filters,
which emphasize areas of fast change (e.g., edge detection), are two examples.
3. Image segmentation

Tumor delineation is performed by drawing ROIs in tumor areas, tumor
subregions, peritumoral zones, or organs of interest according to research hypothesis as show in
Figure 6. Radiation therapy tumor volume data used for treatment planning can also be
used, but this may differ from ROIs specifically drawn for radiomics analysis. Segmentation can
be automatic, manual, or semi-automatic in 2D or 3D. When manual delineation is used, 3D ROIs
will capture all the information, but it will be time-consuming to draw. Automatic segmentation is
possibly faster and more reproducible, butit may require larger datasets where manual
segmentation is not possible. However, this step should be checked by a radiologist for correct
radiomics feature calculation. Additionally, in manual segmentation, it may be necessary to
perform feature stability by multiple segmentations of the same tumor to evaluate radiomics

features independently from the observers.
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Figure 6 Tumor segmentation. A, two representative 3-D representations of a round tumour (top)
and spiky tumour (bottom) measured by computed tomography (CT) imaging. B, Texture

differences between non-small cell lung cancer (NSCLC) tumours measured using CT [20]

4. Feature extraction

The final step before model building and validation is feature extraction, which is the
calculation of radiomics features from each ROI that will be used in the model. Radiomics
features are hand-crafted approaches, whereas deep learning approaches are learned directly from
the images. The features were divided into four categories: shape-based, first-order-based,
texture-based, and filtered image-based [21].

Shape-based features

This feature type expresses the shape and size of tumors or ROIs. For 3D shape features,
these characteristics are only calculated on the non-derived image and mask since they are
independent of the gray level intensity distribution in the ROI. The examples of features in this
group include mesh volume, voxel volume, surface area to volume ratio, sphericity, etc.

Example: Sphericity is an example of a shape-based feature that is calculated from the

equation below.

33612

sphericity = "

2

V represents volume and A represents the area of tumors. Sphericity has a value from 0

to 1, so if sphericity equals 1, it means that tumors are circular in shape.
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First-order features

First-order features are those that are dependent on the statistical value of voxel
intensities in the tumor region, such as mean, standard deviation, skewness, kurtosis, maximum
and minimum values, energy, and entropy.

Example: Entropy is defined as a measure of randomness or disorder in the image values.
Ng

entropy = — Z p(i) log2 (p(i)+ €)

i=1

Ng is the number of non-zero bins, evenly spaced from 0, with a width specified in the
bin width parameter. P(i) be the first order histogram with Ng discrete intensity levels.

Texture features

This group explained the texture of voxel intensities; that is, the spatial locations of
the signal intensities of two or more pixels are used when computing the features. For example,
gray-level co-occurrence matrix (GLCM) features consider the signal intensities of pairs of pixels
separated by a given distance and direction, while gray-level size-zone matrix (GLSZM) features
consider the sizes of contiguous regions that share the same signal intensity after
discretization. After that, it can calculate features such as energy, local homogeneity, or entropy.

Example: The GLCM (Gray Level Co-occurrence Matrix) functions characterize the
texture of an image by calculating how often pairs of pixels with specific values and in a specified

spatial relationship occur in an image.
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Figure 7 Gray Level Co-occurrence Matrix, which is calculated from the original image in 0°

and 45° directions.

Wavelet features
Wavelet is one of the image processing techniques which is used to divide information
present on an image (signals) into two discrete components. A signal is passed through two filters,
high pass and low pass filters. The image is then decomposed into high frequency (details) and low
frequency components. At every level, we get 4 sub-signals as show in Figure 8. The
approximation shows an overall trend of pixel values and the details as the horizontal, vertical and
diagonal components. After that, it can calculate features using equation of first-order features and

texture features.
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Figure 8 Decomposition of an image 2-D discrete wavelet transform (2-D DWT). [22]

5. Model construction

When clinical and radiomics data are collected, statistical models are built to predict
study endpoints, such as tumor type or survival time. A typical model uses input features,
including radiomics features and clinical features, to predict outcomes such as benign versus
malignant or risk of recurrence. The final models discovered from a radiomics analysis are
determined by validating the model on new test data. To avoid model bias, validation data should
be kept separate from the model training phase, and final validation should only be performed
once. Many models have tuning and optimizing parameters, which is an important step for good

model performance. Poorly tuned parameters can lead to overfitting or underfitting of the model.

3. Machine learning

Machine learning is a subfield of artificial intelligence (AI) and computer science that
relies on using data and algorithms to simulate human learning processes and progressively
increase accuracy. Machine learning is an important component of the development of data
science. Using statistical methods, algorithms are trained to make classifications or predictions
about the outcome. There are many to ML training methods to choose from including: supervised

learning, unsupervised learning, and semi-supervised learning.
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Figure 9 Machine learning training methods [23]

Supervised machine learning algorithms use labeled examples to apply what they have
learned in the past to predict future events. The learning method creates an inferred function to
predict output values by investigating a known training dataset. After sufficient training, the
system can provide targets for any new input. To identify mistakes and make the model more
accurate, it can also compare its output with the desired, correct output.

Unsupervised machine learning algorithms are used when the data used to train is
neither classified nor labeled. Unsupervised learning investigates how systems might extrapolate
a function from unlabeled data to describe a hidden structure. The system cannot be ever certain
that the output is correct. Instead, it infers from datasets what the result is supposed to be.

Reinforcement Machine learning algorithms are a type of learning that interactions
with its surroundings by taking actions and identifying mistakes or rewards. Trial-and-error
learning and delayed rewards are two of reinforcement learning's most important features. With
this technique, software agents and machines may automatically decide the best way to proceed in

a specific situation in order to enhance performance.
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Machine learning algorithms are commonly used, such as linear regression, logistic

regression, neural networks, decision trees, random forests, and clustering [24].

Logistic Regression

Logistic Regression is used when the outcome variables are categorical ,such as disease
or normal, pass or fail, malignant or not. These methods estimate the probability of events by
using the logistic function. Logistic regression is developed from linear regression, but linear
regression is unbounded and not suitable for classification problems. The outcome value of

logistic regression strictly ranges from 0 to 1 [25].

Decision trees

Theses method used for both regression and classification problems. As they visually
flow like trees, it was given that name. In the classification scenario, they begin at the tree's root
and go through binary splits depending on possible outcomes until they reach a leaf node, where

the final binary result is given.
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Figure 10 Example of a decision tree [23]

Random Forest
The Random Forest approach uses ensemble learning techniques with the decision tree

framework to generate many randomly selected decision trees from the input. The results are
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averaged to produce an output that frequently produces accurate predictions and classifications.

Gradient boosting classifier

The primary concept underlying this algorithm is to build models in sequence while
attempting to minimize the errors of the prior model. To reduce the errors, building a new model
based on the errors or residuals of the old model does this. Gradient Boosting Regressor is used
when the target column is continuous; Gradient Boosting Classifier is used when the problem is

binary classification [26].
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CHAPTER III: RELATED LITERATURE REVIEWS

Late effect complications due to radiotherapy should be considered when planning
treatment since they affect quality of life after treatment. Radiation-induced hypothyroidism is
one of the most common complications of head and neck cancers. To evaluate the risk of
radiation-induced hypothyroidism in nasopharyngeal cancer, we usually use clinical and
dosimetric data, but the result was still unsatisfied. For more information, medical images may
help improve predictive performance. For the radiotherapy workflow, it is necessary to use
imaging to guide treatment planning for tumor delineation, normal structure segmentation, and
dose calculation. These imaging data make it possible to enhance the prediction of radiation-
induced hypothyroidism. Recently, radiomics has become an interesting research field in many
oncologic tasks, including predicting complications due to radiation treatment. For instance, the
use of MRI and CT radiomics to predict radiation-induced xerostomia from head and neck cancer
treatment and MRI radiomics to early detect radiation-induced brain injury in nasopharyngeal
cancer.

In HNC publications, Haider SP et al [6]. provided an overview of recent radiomics
studies. There has been increasing interest in the application of radiomics for prediction of
molecular biomarkers, prognostication, and treatment response in HNC. Classification and
regression models are mostly applied to prediction of molecular markers, specification of
genomic signatures, diagnostic differentiation of suspected tissue, survival prognostication, and
prediction of treatment response. The big data and open-source machine learning algorithms led
to the development of new multivariate diagnostic and prognostic biomarkers integrated with
radiomics features and clinical information for risk stratification, outcome prediction, and
precision treatment planning in HNC. One of the radiomics applications was the prediction of
post chemoradiotherapy complications. Side effects that can occur from the treatment include
xerostomia, trismus, hearing loss, mucositis, and dermatitis. Identifying patients who are at risk of
developing specific side effects may assist oncologists in planning personalized treatment
strategies. Many studies have used radiomics biomarkers to predict the occurrence or severity of

treatment-related toxicities based on bioimaging features of at-risk organs.
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According to Zhang YM et al [27], they collected the studies of radiomics for diagnosis
and radiotherapy of NPC. The resolution of soft tissue on MRI is better than on CT and PET-CT
and clearly shows the range of parapharyngeal space, skull base, and intracranial tumors. Because
NPC used MRI as the gold standard for evaluation, most radiomics studies on NPC have focused
on MRI images, but CT, PET-CT, and PET-MRI images can also be used. In addition, most
studies were retrospective, which provided valuable clinical guidance for diagnosis, differential
diagnosis, treatment, recurrence, and prognosis of disease. For NPC diagnosis, the radiomics
model that combined clinical data with features extracted from MRI was used to analyze the
survival subgroups of early NPC. Moreover, using PET-MRI radiomics revealed the subtle
changes in local lesions. Radiomics was helpful not only for the diagnosis of NPC but also for
differential diagnoses and treatment response prediction.

For side effect prediction, Sheikh K et al. [7] proposed a study for predicting acute
radiation-induced xerostomia in HNC using MR and CT radiomics of the parotid and
submandibular gland. The patient datasets included 266 HNC patients who were treated with
IMRT from 2009-2018. The patients were diagnosed with moderate to severe xerostomia after a
3-month treatment course by physicians using the NCI-CTCAE v4 criteria. The pre-treatment CT
and TIW-MR images used for contralateral parotid and submandibular glands delineations by
radiation oncologists also by inhouse automate segment software for dose volume histograms
(DVH) features. For radiomics extractions, radiomics features were extracted from CT and MR
images of bilateral parotid and submandibular glands by pyradiomics software into 5 categories:
shape-based, first-order-based, second-order-based (GLCM, GLRLM, and GLSZM), and wavelet
fitration based. To develop a prediction model, a generalized linear model with ten-fold cross
validation was used for radiation-induced xerostomia. The results showed that the highest model
performance was the combined clinical + DVH + CT + MR model with an AUC of 0.79 £ 0.01 in
the validation set and 0.68 in the test set, which was no different from combined models without
clinical information. The CT + MRI radiomics model was significantly different than the CT or
MRI ROC only, and it was approximately equal to the performance of the DVH model. In
conclusion, they suggested that the pre-treatment CT and MRI image features combined with the

DVH features may reflect baseline salivary gland function and potential risk for radiation injury.
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Another radiomics study on side effect prediction was reported by Zhang B et al [28].
The study aimed to develop radiomics models for early detection of radiation-induced brain
injury in NPC. It included 242 NPC patients who underwent radiotherapy and regular follow-up
MRI examinations between January 2006 and August 2016. Radiation-induced temporal lobe
injury (RTLI) was diagnosed based on MRI with a follow-up time of less than 112 months by two
independent radiologists. The middle and lower portions of the medial temporal lobe were
segmented by open-source software in contrast-enhanced T1-weighted and T2-weighted images.
Radiomics features were extracted from the medial temporal lobe, gray matter, and white matter
after that feature selection was performed using the relief algorithm. For model construction, they
developed three radiomics models, 1, 2, and 3, to predict RTLI at the last 1, 2, and 3 MRI scans
(N-1, N-2, and N-3) before MRI confirmation using random forest and evaluated by AUC values.
Predictive performance was compared based on different combinations of segmented tissue and
the number of top-ranked features. The results found that the AUC of radiomics models with
longitudinal MRI was 0.872, 0.836, and 0.780 for RTLI in advance. From this result, the
radiomics approach allowed us to identify imaging phenotypes and to detect pathophysiological
changes. The different MRI measurements contained additional information for which the
combination of these measurements may improve the predictive performance of RTLI.

For radiation-induced hypothyroidism, Lertbutsayanukul C et al [4] validated
previously reported dosimetric parameters and clinical factors affecting hypothyroidism after
radiotherapy treatment in NPC patients. Participants included 178 NPC patients from October
2010 to September 2015 who were diagnosed with hypothyroidism after radiotherapy treatment.
Radiation-induced hypothyroidism was defined as a TSH value outside of the upper limit
reference range (reference range 0.3 - 4.2 LU/ml), with or without reduced FT4 (reference range
0.8 - 1.8 ng/dl), regardless of symptoms. Using cox proportional hazard models with univariate
and multivariate analysis to identify the predictors of radiation-induced hypothyroidism. The
median latency period of hypothyroidism was 21 months, and the median mean dose of thyroid
gland that was received of 53.5 Gy. Female, smaller thyroid volumes, higher pre-
treatment TSH more than 1.55 JAU/ml and VS60 <10 cm’ were significantly correlated with
radiation-induced hypothyroidism in univariate analysis. In multivariate analysis, only pre-

treatment TSH and VS60 were significant predictors. The limitation was mentioned as the follow-
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up time that was not long enough to assess late hypothyroidism. Finally, they suggested that a
pre-treatment TSH more than 1.55 [AU/ml should be considered because of the risk of
hypothyroidism, and VS60 <10 cm’ is recommended for treatment planning.

Peng L et al. [5] proposed a new model for predicting hypothyroidism after intensity-
modulated radiotherapy (IMRT) for NPC. A total of 545 NPC patients treated between 2011 and
2015 were included if they were identified as euthyroid before radiotherapy and were assessed for
thyroid function regularly after the treatment course. Dose volume histograms were retrieved
from treatment planning, including thyroid volume, dosimetry parameter: V_(percentage of
thyroid volume receiving more than x Gy of radiation) and dosimetry parameter: V,, (percentage
of thyroid volume receiving > 1 Gy, while <b Gy radiation). The outcome was the development
of hypothyroidism within two years after IMRT. To identify predictors, they used least
absolute shrinkage and selection operator and multivariate logistic regression. The results
indicated that the combination of thyroid volume and V,,, could be useful as predictors of
radiation-induced hypothyroidism after IMRT in NPC patients by an AUC of 0.643 (0.590-
0.695).

Zhai R et al. [29] revealed the importance of clinical and dosimetric factors to predict the
risk of hypothyroidism after treatment with IMRT in NPC patients. All 404 non-met NPCs were
included in the study. All patients had thyroid function tests before and after
radiotherapy. Univariate and multivariate Cox regression analyses were used to identify the main
factors for hypothyroidism prediction. The results found that the mean dose of thyroid, V30-V50
(percentage of thyroid volume receiving dose to thyroid), and VS45-VS60 (the volumes of
thyroid spared from various dose levels) were statistically significant in multivariate analyses.

According to Smyczynska U et al. [30], they developed a radiomics NTCP model for
radiation-induced hypothyroidism. Prior to receiving IMRT for OPC, the thyroid function of all
98 patients was normal, and RIH was observed in the patient after treatment for 2 years. CT
images and clinical data were used to develop the NTCP model. The results found that radiomics-
based models did not outperform state-of-the-art NTCP models (p > 0.05).

Based on the aforementioned studies, the use of radiomics with complication effect
prediction is possible. Predictive models can be developed using machine learning and statistical

approaches. Sheikh K et al. and Zhang B et al. used a machine learning algorithm which may be
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suitable for radiomics features. Since extracted features are numerous when compared to the
patient cases, feature selection is important to exclude redundant or uncorrelated features and
reduce the probability of overfitting. According to Peng L et al. they used the statistical model to
predict the probability of hypothyroidism, and the performance was moderate, while Smyczynska
U et al. showed that CT images did not exceed the NTCP model in oropharyngeal cancers. To
improve the performance, it might add radiomics information to the predictive model. For
effective personal treatment and side effect reduction, the wuse of clinical and
dosimetric information combined with radiomics data should be a new tool to develop an

effective predictive model for radiation-induced hypothyroidism.
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CHAPTER IV: MATERIALS AND METHODS

1. Research design

This study was a retrospective cohort study.

2. Research design model

This thesis was designed to develop a predictive model for RIH in nasopharyngeal
carcinoma patients. The radiomics features of the thyroid gland from CT contrast enhanced before
treatment, combined with clinical and dosimetric information, were used in model construction.
ROC analyses were evaluated the model performance. The scope of the study was defined by the

following steps, as depicted in Figure 11.

s A
Pre-treatment (
Treatment planning system
CT contrasted enhance L
l ™
Thyroid segmentation
N\ l J
4 N 4 N
Feature extraction Collect clinical information [ Dose volume histogram
l J l J l
e N N
Radiomic features Clinical features Dosimetric features
T l S
; - ~
Shape based Feature selection
First order based q )
Texture based l Radiomics model
e N ; :
Filtered based Dosimetric model
Model construction Clinical model
l ~/ Combined model
External validation ]

.

Figure 11 Research design model
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Radiomics features

- Collected pretreatment CT contrast-enhanced images from the treatment planning
system.

- Manual thyroid segmentation.

- Radiomics features extraction.

Clinical and dosimetry information

- Collected patient information.

- Calculated dosimetry parameters from the treatment planning system.

Model construction and validation

- Feature selected based on the recursive feature elimination technique and fisher
information.

- Model construction using radiomics features, clinical features, dosimetry features, and
combined features.

- Selected final model based on validation performance.

- Validated in the testing set.

3. Research conceptual framework

Parameters setting
- Binwidth
[ Segmentation J - Normalization [ Image acquisition parameters ]

R

4{ Radiomics feautures 1|

k.

[ Clinical feautures ]—{ RIH Model }—[ Dosimetric feautures }

Figure 12 Factors affecting the RIH model
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4. Materials and methods
This section discusses the methodology for developing a predictive model. We
started with the patient’s collection, radiomic feature extraction and the model construction.
Population and sample
A total of 220 patients with NPC who were diagnosed with hypothyroidism within 2
years after radiation therapy treatment from 2010-2020 were included in this study. All
participants were chosen from patients with NPC in the Division of Radiation Oncology,
Department of Radiology, King Chulalongkorn Memorial Hospital.
The inclusion criteria are as follows:
1) NPC patients in King Chulalongkorn Memorial Hospital treated with definite RT
(IMRT/VMAT) with or without chemotherapy 70 Gy in 33-35 fractions.
2) Age more than 18 years.
3) Normal baseline thyroid function test (TFT).
4) At least 2-years TFT follow up or less than 2-years TFT follow up but develop RHT
The exclusion criteria are as follows:
1) History of pre-existing thyroid disease.
2) Abnormal or no baseline TFT.
3) History of thyroid surgery.
4) History of radiotherapy at neck.
Image acquisition
All NPC patients underwent a CT simulation before radiotherapy treatment. A 64
detector-row CT simulator was used to acquire CT images (Revolution CT; GE Healthcare,
Chicago, IL, USA). Acquisition protocols included a noncontrast phase and a contrast-enhanced
phase in helical mode at 120 kV with smart mA by 2.5 mm slice thickness.
Thyroid segmentation
Manual 3D segmentation of the thyroid gland was performed by radiation oncologists.
The region of interest (ROI) covering the thyroid gland in contrast-enhanced CT images were
drawn using the Eclipse Contouring software (Varian Medical System, Inc: version 15.5).
To filter out radiomics features that depended on the observer, a multiple delineation test was

performed by having three radiologists segmented the thyroid ROI from the same set of thirty



38

randomly selected patients. The radiomics features were extracted into three sets from the same
images to measure the reliability of the feature’s value among multiple delineations in thyroid
segmentation. The intraclass coefficient (ICC) was used to evaluate the reliability of feature
values by comparing the variability of different values for the same subject to the total variation
across all ratings and all subjects. Two-way random effects, absolute agreement, and multiple
raters or measurements were applied from the open-source Pingouin package [32]. ICC cutoffs of
0.5, 0.75 and 0.9 were then applied to select radiomics features before the model development

step as displayed in Figures 13-14.



39

Figure 13 3D thyroid segmentation using 3D slicer software.

Feature extraction

Radiomic features | |-| Radiomic features Il — Radiomic features Il

; ; : ; 5 ; Robust features
ICC > 0.9, Excellent

Thyroid segmentation ICC > 0.75, Good
N =30 ICC > 0.5, Moderate

Figure 14 Workflow for ICC testing.

Features extraction
Feature extractions were performed from CT contrast enhanced images using
Pyradiomics software package (version 3.0) package accessed using 3D slicer (version 4.11.2)
[21, 33]. All radiomics features consisted of 14 shape-based features, 18 first-order statistics
features, 73 texture-based features, and 1,183 filtered-based features. The bin width parameter

was varied from 0.05, 0.1, 0.15, and 0.2 to achieve the best performance of the radiomics model.
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Figure 15 Example of radiomics features from CT images, which were divided into 4 classes.

Right and left lobe thyroid glands in radiomics feature values
To investigate the difference of left and right in the thyroid gland in radiomics feature
value, we evaluated the difference in radiomics features between two lobes by randomly selecting

30 cases and calculating the radiomics features in each lobe to compare the average feature value.

Clinical information and dosimetry information
Clinical variables were collected from the hospital information system. Dosimetric
variables were calculated from the dose volume histogram via the treatment planning system,
which are V,,, Vy,, V, Pity, Pits; (V,: Percentage of thyroid volume that has received at least x
Gy radiation, Pit: Percentage of pituitary volume that has received at least x Gy radiation), VS,,,
VS, VS, (VS,: Percentage of thyroid volume preserved from x Gy of radiation), the mean dose
of thyroid and pituitary gland, the maximum dose of thyroid and pituitary gland, and the

minimum dose of thyroid and pituitary gland dose.
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Model construction

The radiomics features were screened using an intraclass correlation greater than 0.5,
0.75 and 0.9 to ensure that only robust features were used, given the manual segmentation. For
model development, the data was divided into two groups: training and testing, which were split
80:20 %. Three predictive algorithms, logistic regression with regularization, random forest, and
gradient boosting classifier were performed by the scikit-learn library [34]. The recursive
elimination method and fisher information were utilized in the feature selection process. The
models were internally validated using 5-fold cross-validation repeated 20 times. Their
performance was evaluated using ROC analysis in terms of area under the curve (AUC). In
addition to the radiomics model, clinical, dosimetric and combined models were built based on

the two predictive algorithms shown in Figure 16.

Training set 80% Testing set 20% N
Radiomics features Clinical features Dosimetric features

BW = 0.05, 0.1, 0.15, 0.2

v

Feature selection

5-fold CV

Radiomics model

Logistic regression .

Clinical model H

Random forest . .
Dosimetric model

Gradient boosting tree .

Combined model

Figure 16 Model construction workflow
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Figure 17 Testing model robustness to variation in segmentation workflow

Testing the model robustness for variation in segmentation
To test the model robustness for variation among observers in segmentation, radiomics
features in the final model were perturbed by adding a zero-mean gaussian noise with standard
deviation estimated from multiple delineation testing which were randomly selected from 30
patients and 3 observers to segment. The final model was tested with perturbed radiomics features
to evaluate the mean and standard deviation of the AUC value as shown in Figure 17.
Statistical analysis
The mean and standard deviation (SD) values were calculated for continuous variables,
while the counts and percentages were used to summarize categorical features. The differences in
feature values between patients with and without RIH were evaluated using the Mann-Whitney U
tests and Chi-square tests. The difference in predictive performance of the models were evaluated
using signed rank tests. The Benjamini-Hochberg procedure was performed to control for

multiple testing. A p-value cutoff of 0.05 was set to define statistical significance.

5. Ethical consideration

The current investigation was conducted using a retrospective cohort design and
was approved by the Institutional Review Board of the Faculty of Medicine of Chulalongkorn
University (IRB Number: 745/61). All methods were performed in accordance with relevant

guidelines and regulations.



CHAPTER V: RESULTS

Table 2 Patient Characteristics

RIH No RIH P-value
mean+SD
(N=106) (N=114)
Age (years) 48.28+11.71 46.53 £11.22 49.90 +£11.96 0.05
(18-83) (21-70) (18-83)
Sex (%)
Male/Female 72.27/27.73 66.98/33.02 77.19/22.81 0.10
T stage (%)

T1 31.36 33.01 29.82 0.36

T2 33.18 3491 31.58

T3 7.73 16.04 19.30

T4 17.73 16.04 19.30
N stage (%) 0.06

NO 8.18 4.72 11.40

N1 28.64 23.58 33.34

N2 51.82 57.55 46.49

N3 11.36 14.15 8.77
Clinical stage (%) 0.73

I 1.82 1.89 1.75

1I 17.27 16.04 18.42

I 51.82 52.83 50.88
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RIH No RIH P-value
mean+SD
(N=106) (N=114)
IVA 19.55 17.92 21.05
IVB 9.54 11.32 7.90
FT4 before treatment 1.25+0.22 1.24 £0.23 1.25+0.22 0.45
(ng/dl) (0.42-1.80) (0.42-1.68) (0.68-1.78)
TSH before treatment 2.24+5.19 2.68 +£7.08 1.83 £2.30 <0.05
(HU/ml) (0.31-3.55) (0.46-3.55) (0.31-2.23)
Thyroid volume <0.05
14.78 + 6.82 13.23 £ 6.43 15.06 £7.07
before treatment
(5.00-61.80) (5.50-46.70) (5.00-61.80)
(cm’)
Pituitary volume 0.61
0.25+0.17 0.26 +0.18 0.24 +0.16
before treatment
(0.00-1.00) (0.00-1.00) (0.00-0.80)

(cm’)




Table 3 Dosimetry parameters

Dosimetry parameters mean+SD RIH No RIH p-value
(N=92) (N=103)
Minimum dose to thyroid 3441 +7.13 34.82+£6.68 34.02+£7.55 0.41
gland (Gy) (2.64-7.13) (2.64-53.10) (10.94-51.80)
Maximum dose to the 66.34 +7.76 66.93 +7.55 65.79 +7.94 0.19
thyroid gland (Gy) (46.69-101.90) (53.60-91.90) (46.69-101.90)
Mean dose to thyroid 52.36 +6.68 53.05+6.11 51.72+7.14 0.10
gland (Gy) (29.80-74.20) (29.80-71.60) (32.80-74.20)
TR V,, (%) 88.93 +16.31 91.16 £13.38 86.86 +18.45 0.19
(8.90-100.00) (41.20-100.00) (8.90-100.00)
TR V, (%) 64.93 £24.45 67.08 +23.10 62.94 £25.57 0.24
(0.00-100.00) (10.00-100.00) (0.00-99.70)
TR V, (%) 14.89 £19.70 17.34 £20.97 12.62 £18.23 0.08
(0.00-83.40) (0.00-83.40) (0.00-78.60)
TR VS,, (%) 16.31 £21.49 14.07 £ 20.30 18.39 £22.42 0.12
(0.00-71.96) (0.00-56.63) (0.00-71.96)
TR VS,, (%) 44.59 £19.44 46.07 + 18.64 4321 £20.13 0.17
(0.00-74.20) (0.00-71.60) (0.08-74.20)
TR VS, (%) 45.83 £17.19 4742 £16.24 44.35+£17.98 0.12
(5.49-74.20) (5.49-71.60) (6.73-74.20)
Minimum dose to the 45.44 £20.17 44.11 £20.51 46.67 £19.86 0.42
pituitary gland (Gy) (4.45-96.70) (4.45-75.00) (9.40-96.70)




(0.00-100.00)

(0.00-100.00)

(0.00-100.00)

Dosimetry parameters mean+SD RIH No RIH p-value
(N=92) (N=103)

Maximum dose to the 60.80 + 15.45 58.97 £ 16.68 62.49 +14.08 0.16
pituitary gland (Gy) (7.00-102.00) (7.00-84.50) (16.40-102.00)

Mean dose to the 5291 +17.68 51.34 +18.14 5436+17.19 0.28
pituitary gland (Gy) (0.50-100.60) (6.10-82.50) (0.50-100.60)

Pit V, (%) 64.98 £42.78 64.33 £43.03 65.58 +42.72 0.85
(0.00-100.00) (0.00-100.00) (0.00-100.00)

Pit V,, (%) 56.12 £44.93 56.14 £45.03 56.11 £45.03 0.86

TR V,,, V,s, Vs, Vi, = Percentage of thyroid volume that has received at least 40, 45, 50, 60 Gy

TR VS,,, VS, VS, = Percentage of thyroid volume preserved from 40, 50, 60 Gy

Pit V,, V= Percentage of pituitary volume that has received at least 50, 55 Gy

Table 2 provides patient information for the 220 participants, which consisted of NPC
patients who had a RIH of 106 (48.18%) and non-RIH of 114 (51.82%). The average age was
48.28 + 11.71 years, and men outnumbered women by 159 (72.27%) to 61 (27.73%). For TNM
staging, most patients were clinically staged 3, with a mean of 51.82%, a T2 stage of 33.18%, and
a N2 stage of 51.82%, respectively. Before treatment, the mean FT4 level was 1.25 £+ 0.22 ng/dl,
and the mean TSH level was 2.24 + 5.19 JLU/ml. The mean volumes of the pituitary and thyroid
glands before RT were 0.25 + 0.17 cm’ and 14.78 + 6.82 cm3, respectively. Figures 18-19 show
two clinical variables. TSH level before treatment and thyroid volume before treatment, which
showed a statistical difference between patients with RIH and non-RIH patients (p-value < 0.05).

As indicated in Table 3, dosimetry data from the dose volume histogram were recorded from

treatment planning and did not reveal any differences between the RIH and non-RIH groups.
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Figure 18 TSH level before treatment
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Figure 19 Thyroid volume before treatment



Table 4 Number of radiomics features after filtration from the intraclass correlation test

48

Feature class No. of features | ICC > 0.90 ICC > 0.75 ICC > 0.50
Shape based 14 4 4 5
First order statistics 18 14 14 17
Texture based 73 27 44 63
Filter-based 1183 573 776 941
Total 1288 617 838 1026

- Less than 0.50: Poor reliability

- Between 0.5 and 0.75: Moderate reliability

- Between 0.75 and 0.9: Good reliability

- Greater than 0.9: Excellent reliability

Pretreatment CT contrast-enhanced images were extracted into four classes of 1,288

radiomics features. To use features that did not depend on the observer, we kept features based on
the ICC value. ICC values greater than 0.5, 0.75, and 0.9 were used to reduce the number of

radiomics features to 617, 838 and 1026 radiomics features, as demonstrated in Table 4.

Table 5 Number of radiomics features that differ in RIH and non-RIH groups in each bin width.

No. of features that that differ in RIH and non-RIH groups

Feature class (p-value < 0.05)

BW 0.05 BW 0.1 BW 0.15 BW 0.2
Shape based 1 1 1 1
First order based 1 3 1 1
Texture based 3 12 2 2
Filtered base 475 461 489 484
Total 480 477 493 488
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Table 6 Radiomics feature univariate analysis

Radiomics features mean+SD RIH non-RIH AUC
BW 0.05: wavelet- 4223x107+ 4323x 107+ 4131x107+
0.64
HLL glem MaximumProbability 0.03 0.04 0.03
BW0.1:
13.99x 107+ 1539x 107+ 12,68 x 107+
log-sigma-1-0-mm- 0.64
0.00 0.00 0.00

3D _ngtdm_Coarseness

BW 0.15: 922 x 107+ 10.30x 10°+ 8.18x 107+

0.65
wavelet-LLH ngtdm_Strength 0.00 0.00 0.00
BW 0.2: 8.91x 107+ 9.88x10°+ 8.02x 107+

0.65
wavelet-LLH_ngtdm_Strength 0.00 0.00 0.00

The number of radiomics features with a statistical difference (p-value less than 0.05) in
each bin width between RIH and non-RIH groups is shown in Table 5. Only one feature was
different in the shaped-based class, 1-3 features in the first-order class, 2—12 features in the
texture-based class, and 461-489 features in the filtered-based class. Univariate analysis of
radiomics features indicated that while the values of several features significantly differ between
patients with and without RTH, they are only moderately predictive of RIH (Table 6, AUC = 0.64-
0.65). Highly predictive radiomics features include the wavelet-
HLL glem MaximumProbability, log-sigma-1-0-mm-3D ngtdm_Coarseness, wavelet-

LLH ngtdm Strength, and wavelet-LLH ngtdm_Strength.



Table 7 Model performance in training and validation sets based on recursive elimination

technique.
Data Type
Train AUC Validation AUC
Dose Clinical | Radiomics p-value
Logistic Regression
+ - - 0.66 +0.02 0.63 +0.06 <0.05
- + - 0.67 £0.01 0.65+0.07 <0.05
+ + - 0.74 £0.01 0.68 £0.07 -
- - + 0.82 £0.01 0.71 £0.07 <0.05
+ - + 0.79 £ 0.02 0.71 £0.07 <0.05
- + + 0.87 £0.01 0.78 £0.07 <0.05
+ + + 0.88+0.01 0.80 = 0.06 <0.05
Random Forest
+ - - 0.84 +0.01 0.51 +£0.06 <0.05
- + - 0.83+0.01 0.69 +0.07 <0.05
+ + v 0.83 +0.02 0.71 £0.06 -
- - + 1.00 +£0.00 0.78 £ 0.06 <0.05
+ - + 1.00 £0.00 0.78 £0.06 <0.05
- + + 1.00 £ 0.00 0.80 +0.06 <0.05
+ + + 1.00 +0.00 0.81 +£0.06 <0.05
Gradient boosting classification
+ - - 0.97 £0.03 0.49 £0.11 <0.05
- + - 0.99 £0.01 0.63 +£0.13 <0.05
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Data Type
Train AUC Validation AUC
Dose Clinical | Radiomics p-value
+ + - 0.95+0.04 0.66 +0.02 -
- - + 0.95+£0.04 0.78 £0.09 <0.05
+ - + 0.95+0.02 0.73 £0.05 <0.05
- + + 0.97 £0.04 0.71 £0.06 <0.05
+ + + 0.93 £0.04 0.73 £0.05 <0.05




Table 8 Model performance in training and validation sets based on fisher information.
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Data Type
Train AUC Validation AUC
Dose Clinical | Radiomics p-value
Logistic Regression
+ - - 0.65+0.01 0.63 +£0.09 <0.05
- + - 0.66 +0.01 0.65 +0.06 <0.05
+ + - 0.68 £0.02 0.68 £0.10 -
- - + 0.63 £0.01 0.62 +0.07 <0.05
+ - + 0.66 + 0.02 0.64 +£0.07 <0.05
- + + 0.68 +£0.02 0.65 +0.06 <0.05
+ + + 0.71 £0.02 0.70 £ 0.07 <0.05
Random Forest
+ - 2 0.82 +0.00 0.61 +£0.08 <0.05
- + - 0.83 +£0.01 0.70 £0.07 <0.05
+ + - 1.00 £ 0.00 0.48 +0.06 -
- - + 1.00 +0.00 0.72 £0.06 <0.05
+ - + 0.86 £ 0.01 0.74 £0.07 <0.05
- + + 0.97 £0.01 0.70 £0.07 <0.05
+ + + 0.95+0.00 0.76 £0.07 <0.05
Gradient boosting classification
+ - - 0.57 £ 0.00 0.48 £0.10 <0.05
- + - 0.85+0.00 0.63 +£0.09 <0.05
+ + - 0.92+0.04 0.58 +0.11 -
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Data Type
Train AUC Validation AUC
Dose Clinical | Radiomics p-value
- - + 0.89 +0.06 0.67+0.07 <0.05
+ - + 1.00 £0.00 0.71 +0.07 <0.05
- + + 0.95+0.01 0.64 +0.09 > 0.05
+ + + 1.00 £0.00 0.70 £ 0.06 >0.05
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Model performance

Model performance in training and validation sets is displayed in Table 7-8. For
recursive elimination technique in feature selection step, the combined model had the best
validation performance in logistic regression, as indicated by an AUC of 0.80 + 0.06, which was
higher than the dose, clinical and clinical & dose, which had AUCs of 0.63 + 0.06, 0.65 + 0.07,
and 0.68 + 0.07, respectively. The radiomics had an AUC of 0.71 £ 0.07, which is comparable to
the radiomics & dose, while the AUC for the radiomics & clinical is 0.78 + 0.07. The results of
the random forest demonstrate the same pattern as the logistic regression. The combined model
had the highest AUC of 0.81 £ 0.06, which was higher than the dose, clinical, and clinical & dose,
which had AUCs of 0.51 £0.06, 0.69 £ 0.07, 0.71 £0.06, respectively. The radiomics in the
random forest algorithm received an AUC of 0.78 = 0.06, which is equal to the radiomics & dose,
while the AUC for the radiomics & clinical was 0.80 + 0.06. In gradient-boosting classification,
the radiomics model had the highest AUC of 0.78 = 0.09, which is greater than the dose, clinical,
and clinical & dose models in AUCs of 0.49 £0.11, 0.63 + 0.13, and 0.66 + 0.02, respectively.
The performance of radiomics & dose, radiomics & clinical, and the combined model were better
than the conventional model but not greater than the radiomics model.

Based on fisher information in the feature selection step, as shown in Table 8, the
combined model had the greatest validation performance with an AUC of 0.70 £ 0.07 in logistic
regression, which was slightly more than the dose, clinical, and clinical & dose models by AUCs
0f 0.63 £0.09, 0.65 +0.06, and 0.68 + 0.10, respectively. Radiomics model, radiomics & dose,
and radiomics & clinical had AUCs in validation performance of 0.62 £+ 0.07, 0.64 + 0.07, and
0.65 £ 0.06. In random forest, the combined data type also showed the best validation
performance with an AUC of 0.76 £+ 0.07, which was greater than the dose, clinical, and clinical
& dose models with AUCs of 0.61 + 0.08, 0.70 = 0.07, and 0.48 + 0.06. Radiomics model,
radiomics & dose, and radiomics & clinical had AUCs of 0.72 + 0.06, 0.74 £ 0.07, and 0.70 +
0.07, respectively. In the gradient boosting classifier, the radiomics & dose model had validation
performance comparable to the combined model with an AUC of 0.71 + 0.07 and 0.70 £ 0.06
which was higher than the dose, clinical, clinical & dose, and radiomics & clinic models with

AUCs 0f 0.48 £ 0.10, 0.63 = 0.09, 0.58 £ 0.11, and 0.64 £ 0.09, respectively.
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Figure 20 Performance of the combined model compared to other models in the train set (a) and

the validation set (b) in the logistic regression
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Figure 21 Performance of the combined model compared to other models in the train set (a) and

the validation set (b) in the random forest
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Table 9 Model performance in the test dataset in logistic regression
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Model AUC accuracy | precision | Fl-score recall specificity
Dose 0.49 0.50 0.50 0.50 0.52 0.50
Clinical 0.62 0.64 0.68 0.62 0.86 0.44
Clinical & dose 0.63 0.57 0.57 0.57 0.57 0.57
Radiomics 0.70 0.66 0.70 0.65 0.86 0.48
Radiomics & dose 0.71 0.64 0.64 0.64 0.67 0.61
Radiomics & clinical 0.71 0.70 0.72 0.70 0.81 0.61
Combined 0.72 0.72 0.74 0.73 0.81 0.68
Table 10 Model performance in the test dataset in random forest
Model AUC accuracy | precision | Fl-score recall specificity
Dose 0.45 0.45 0.45 0.45 0.43 0.50
Clinical 0.62 0.61 0.62 0.61 0.67 0.57
Clinical & dose 0.67 0.68 0.69 0.68 0.76 0.61
Radiomics 0.70 0.61 0.61 0.61 0.57 0.61
Radiomics & dose 0.70 0.64 0.64 0.64 0.67 0.61
Radiomics & clinical 0.73 0.70 0.71 0.70 0.71 0.70
Combined 0.74 0.73 0.73 0.73 0.76 0.70
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Figure 23 Confusion matrices for the best combined models on the held-out test dataset. (a) The

combined logistic regression model. (b) The combined random forest model.

The top performing models, namely the combined logistic regression model and the
combined random forest model, were then evaluated on a held-out test dataset (Table 9-10).
The combined models again outperformed the models variants that utilized only clinical and
dosimetric data in almost all metrics. The only exception is sensitivity where the combined
models did not achieve the best performances. It should be noted that although the combined
logistic regression model and the combined random forest model achieved similar AUCs (0.72
and 0.74, respectively), they have different tradeoffs. While the combined random forest model
achieved higher sensitivity in the high specificity range (>0.70), the opposite is true in the
intermediate specificity range. The confusion matrices (Figure 23) also suggested that the
combined logistic regression model tends to produce slightly more false positives than false
negatives while the combined random forest model behaves in the opposite manner. Hence,

multiple metrics should be considered when selecting the best model and cutoff value.

Table 11 Optimal threshold points of combined model

Moel type Threshold TPR FPR 1-FPR

LR: Combined model 0.61 0.67 0.30 0.70

RF: Combined model 0.52 0.76 0.30 0.70
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Figure 25 The optimal threshold point for the combined model of random forest

For the combined model in logistic regression, the optimal cutoff point was 0.61 (Table
11), so anything above this can be labeled as 1 else 0. Figure 24 displayed the output that where
TPR is crossing 1-FPR, TPR was 67% and FPR was 30%. In the combined model in random
forest, the optimal cutoff point was 0.52, where the TPR crossed the 1-FPR and the TPR was 76%
and the FPR was 30%, as shown in Figure 25.

The features selected in the combined logistic regression model consisted of three
clinical features: bilateral neck metastasis, pretreatment TSH level, and age; one dosimetry
feature: TR V,,; and 26 radiomics signatures (Table 12). The radiomics feature's top three high
positive  coefficients were log-sigma-1-0-mm-3D ngtdm contrast, log-sigma-1-0 mm-

3D _glszm LowGrayLevelZoneEmphasis, and log-sigma-2-0-mm-3D_ngtdm_coarseness, while
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the top three high negative coefficients were wavelet-
HHL glszm SmallAreal. owGrayLevelEmphasis, wavelet-LLH_glrlm_ShortRun
LowGrayLevelEmphasis, and wavelet-LLL_firstorder Minimum. For random forest, the feature
selected comes from two clinical and dose variables: pre-treatment TSH level and mean dose to
thyroid (TR mean), respectively. Thirty-four radiomics signatures were selected, and the
radiomics features of high importance were wavelet-HHL glszm SmallAreaEmphasis, log-
sigma-2-0-mm-3D _firstorder TotalEnergy, and log-sigma-3-0-mm-3D glem Idn as shown in

Figures 27 and Table 13.

Radiomics feature values in right and left-lobe thyroid glands

The results showed that more than 90% of radiomics features in the right and left
lobes had no difference in the mean value of radiomics features (p-value > 0.05). For those
features which were selected in the final combined models, more than 95% of the radiomics
features had no difference in terms of average feature value in each lobe of the thyroid gland, as
displayed in the Appendix Table 1 and Appendix Figure 1. This implied that there were no
heterogeneities of radiation-induced thyroid effects on the different sides because the thyroid is a
parallel organ that contains a number of thyroid follicles in both lobes that are independent

functional subunits. All subunits must be disabled to cause organ failure.

Testing the model robustness for variation in segmentation

The results of the prediction of the final model from multiple segmentation by
simulated variation in radiomics feature values found that the combined model in logistic
regression had an average AUC of 0.81 + 0.06 and the combined model in random forest had an

AUC 0f 0.82 £ 0.04.
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Figure 26 Feature selected in the combined model from logistic regression (The red bars

represent the clinical and dose selected features)
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Figure 27 Feature selected in the combined model from random forest (The red bars represent

the clinical and dose selected features)



Table 12 Radiomics signatures of the combined model in logistic regression

Feature name

Feature class

original firstorder Minimum

First order statistic

original ngtdm Complexity

Texture-based

wavelet-HHL glszm_SmallAreal owGrayLevelEmphasis

Filter-based/ Texture-based

wavelet-LLH glrlm ShortRunLowGrayLevelEmphasis

Filter-based/ Texture-based

wavelet-LLL_firstorder Minimum

Filter-based/ Texture-based

wavelet-HHL glszm SmallAreaEmphasis

Filter-based/ Texture-based

wavelet-LLH glrlm LowGrayLevelRunEmphasis

Filter-based/ Texture-based

wavelet-LHH glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

wavelet-LLH ngtdm_Contrast

Filter-based/ Texture-based

wavelet-LHH_glszm SmallAreaEmphasis

Filter-based/ Texture-based

wavelet-HHL glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

wavelet-LHH_glszm_SmallAreaHighGrayLevelEmphasis

Filter-based/ Texture-based

wavelet-LLH glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

wavelet-LLL ngtdm Complexity

Filter-based/ Texture-based

wavelet-HLL glszm LowGrayLevelZoneEmphasis

Filter-based/ Texture-based

wavelet-LLH_glem_Idmn

Filter-based/ Texture-based

wavelet-LLL glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

log-sigma-1-0-mm-3D_glcm_Idmn

Filter-based/ Texture-based

log-sigma-5-0-mm-3D_glszm SmallAreaEmphasis

Filter-based/ Texture-based

log-sigma-5-0-mm-

3D_glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based
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Feature name

Feature class

log-sigma-5-0-mm-3D_ngtdm Complexity

Filter-based/ Texture-based

log-sigma-1-0-mm-3D_ngtdm_Coarseness

Filter-based/ Texture-based

log-sigma-4-0-mm-3D_glszm GrayLevelVariance

Filter-based/ Texture-based

log-sigma-2-0-mm-3D ngtdm Coarseness

Filter-based/ Texture-based

log-sigma-1-0-mm-

3D _glszm LowGrayLevelZoneEmphasis

Filter-based/ Texture-based

log-sigma-1-0-mm-3D ngtdm_Contrast

Filter-based/ Texture-based

* Feature descriptions are shown in the appendix.
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Table 13 Radiomics signatures of the combined model in random forest

Feature name

original shape VoxelVolume

Shape-based

original firstorder Minimum

First order statistic

original glszm LargeAreaHighGrayLevelEmphasis

Texture-based

wavelet-LLH_glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

wavelet-LLH glszm_SmallAreaEmphasis

Filter-based/ Texture-based

wavelet-LLH glszm_ ZoneEntropy

Filter-based/ Texture-based

wavelet-LLH_gldm DependenceNonUniformity

Filter-based/ Texture-based

wavelet-LHL _firstorder TotalEnergy

Filter-based

wavelet-LHL glrlm_GrayLevelNonUniformity

Filter-based/ Texture-based

wavelet-LHL glszm LargeAreaHighGrayLevelEmphasis

Filter-based/ Texture-based

wavelet-LHL gldm_DependenceNonUniformity

Filter-based/ Texture-based

wavelet-LHL gldm_GrayLevelNonUniformity

Filter-based/ Texture-based

wavelet-LHH glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

wavelet-LHH gldm DependenceNonUniformity

Filter-based/ Texture-based

wavelet-LHH ngtdm_Busyness

Filter-based/ Texture-based

wavelet-HLL gldm_ GrayLevelNonUniformity

Filter-based/ Texture-based

wavelet-HLH_firstorder TotalEnergy

Filter-based
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Feature name

wavelet-HLH_glrlm_GrayLevelNonUniformity

Filter-based/ Texture-based

wavelet-HLH gldm GrayLevelNonUniformity

Filter-based/ Texture-based

wavelet-HHL firstorder Skewness

Filter-based

wavelet-HHL glszm_SmallAreaEmphasis

Filter-based/ Texture-based

wavelet-HHL gldm DependenceNonUniformity

Filter-based/ Texture-based

wavelet-HHH_firstorder TotalEnergy

Filter-based

log-sigma-2-0-mm-3D_firstorder Range

Filter-based

log-sigma-2-0-mm-3D _firstorder TotalEnergy

Filter-based

log-sigma-2-0-mm-3D_glrlm HighGrayLevelRunEmphasis

Filter-based/ Texture-based

log-sigma-2-0-mm-3D_glrlm LowGrayLevelRunEmphasis

Filter-based/ Texture-based

log-sigma-3-0-mm-3D_firstorder Energy

Filter-based

log-sigma-3-0-mm-3D_glcm_Idn

Filter-based/ Texture-based

log-sigma-3-0-mm-

3D _glszm_SizeZoneNonUniformityNormalized

Filter-based/ Texture-based

* Feature descriptions are shown in the appendix.
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CHAPTER VI: DISCUSSION

The main findings of the investigation are reviewed in this chapter, including the study
limitations and study direction.

This research aimed to develop and compare three models - a conventional model, a
radiomics model, and a combination model - using data from 220 patients with NPC to predict
RIH. The results showed that the combination model outperformed the conventional model in
logistic regression, random forest, and gradient boosting classifier. The combined model in
logistic regression and random forest using the recursive elimination technique showed the best of
the model’s performance from the combination of data types, while the combined model in the
gradient-boosting classifier had lower performance. Hence, the two combined models from
logistic regression and random forest were chosen to be further explored.

For the model performance in the test dataset, the combined model had satisfactorily high
AUC, accuracy, precision, and Fl-scores in both logistic regression and random forest. The
sensitivity in logistic regression was high but specificity was quite low. In random forest, the
combined model had high sensitivity and specificity. In this clinical application, high sensitivity
might be preferred over specificity because the task is to detect the risk of side effects after
treatment with a new technique or another modality. In the case of a false-positive prediction, the
patient still receives the benefit because they would be treated for the target tumors with a
different technique or different modality. For model prediction from variation of delineation, the
results showed that the final model did not depend on multiple observers’ segmentation, with the
coefficient of variation ranging from 8.7% to 7.4% and 7.4% to 4.9% in logistic regression and
random forest, respectively.

In the final combined logistic regression model, the important clinical and dose factors
were bilateral neck metastasis, pretreatment TSH level, age, and TR V40, while in the random
forest, pretreatment TSH level and TR mean were significant features for prediction. These
findings were consistent with several other studies [4, 29, 35, 36]. For clinical factors, sex, age,
clinical stage, and TSH value were reported as relevant factors in RIH by Zhou L et al. In this
study, younger age, positive nodes, and high pretreatment TSH levels were identified as having a

higher risk of developing RIH. For dosimetry information, TR V40 and TR mean were significant
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features for prediction, which was in agreement with the study by Zhai R et al [29]. They
suggested that TR V40 was highly predictive for hypothyroidism occurrence after treatment in
patients with NPC. Chow et al [37]. also suggested TR mean as one of the most often suggested
dosimetric predictors.

The combined model used in this study incorporated radiomic features, with the majority
of these features coming from texture classes and filtered classes, such as log-
sigma_ngtdm_contrast, log-sigma_ngtdm_coarseness, and wavelet-
HHL glszm SmallAreaEmphasis. The texture of an image reflects the spatial distribution of
intensity levels in a region of interest and can be characterized as fine, coarse, grainy, or smooth,
which can help to identify the characteristics of organs or malignancies. Filtered images enhanced
the border or information that would not have been visible in a traditional image. Configuration
and thyroid texture were interesting points to study in relation to the side effects of radiation
injury. Ishibashi N et al [38]. reported that decreased thyroid gland CT density and increased TSH
levels before and after radatiotherapy result in hypothyroidism, suggesting that a low thyroid CT
intensity before RT might be relevant to a higher risk of RIH. Since it was difficult to distinguish
the textures of the thyroid in a typical image by naked eyes, radiomics was used to extract hidden
characteristics within the images. Figure 28 shows a thyroid gland CT image in patients with RIH
and without RIH after treatment, each with a different radiomics feature value that is not
detectable by the human eyes. NGTDM (Neighboring Gray Tone Difference Matrix) complexity
is a texture-based class calculated from the variance in gray values between a gray value and its
neighbors. The high complexity value means there are several quick fluctuations in the gray level
intensity, and the image is not homogeneous. Wavelet-HHL glszm small area emphasis is a filter-
based and texture-based class that indicates how small areas are distributed, with a larger number

indicating more small areas and smoother textures [21].
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Ngtdm Complexity = 41.036
Wavelet-HHL glszm SmallAreaEmphasis = 0.228597

(a)

Ngtdm Complexity = 28.232
Wavelet-HHL glszm SmallAreaEmphasis = 0.298126

(b)

Figure 28 CT image of the thyroid gland in patients who developed RIH (a) and those who did

not develop RIH (b) after treatment with different radiomics feature values.
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Medical images are one of the most important tools for the success of cancer treatment,
as they provide information on anatomy, tumor location, and organs at risk, including baseline
organ morphology which are crucial in individualizing patient dose during treatment planning.
The application of radiomics for radiation complication prediction has gained attentions recently,
as it has been shown to enhance model performance as compared to clinical data [6, 7].
Smyczynska U et al. [30] reported that radiomics analysis did not significantly improve the
predictive model for RIH, which contradicts to our findings. One of the possible reasons could be
the difference in cancer type. Their predictive model was for oropharyngeal cancer, while we
built the model for nasopharyngeal cancer. These two cancer types are well-known for having
different etiologies and characteristics, which may have influenced the radiomics and clinical
features.

In clinical practice, the probability of radiation-induced hypothyroidism should be
considered before planning to reduce the volume of the thyroid gland exposed, notify patients of
possible side effects after treatment, or change the treatment modality to proton therapy to reduce
the risk of hypothyroidism. Although the mechanism of RIH remains unclear, ionizing radiation
can cause damage to thyroid gland, resulting in alterations in the morphology, vessel structure,
and immune response. The results of our study demonstrated that the combination of CT imaging
with clinical and dose information can significantly improve the performance of prediction
models for RIH. We argue that pretreatment thyroid images contain valuable information that can

be used to predict the risk of hypothyroidism.

Limitations

This study had certain limitations. First, the retrospective design of the study did not
allow for control of CT acquisition protocols, which could have affected radiomics features.
Moreover, this study required a long follow-up period, which resulted in a relatively small sample

size.

Future directions
Collecting data in multiple centers to increase the sample size and test the model's

generalizations in a different population should be studied. Another medical image, such as CT
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non-contrast images, might affect radiomics features, which affect prediction performances, and
should be explored for better results. In addition, the ensemble model and deep learning network

might be study further to increase the prediction performance in this task.
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CHAPTER VII: CONCLUSION

In this work, we developed a model to predict hypothyroidism after radiation treatment in
nasopharyngeal cancers patients using pre-treatment CT images. For effective prediction, this
research used clinical and dosimetry information from treatment planning combined with CT
images before treatment.

Firstly, images were acquired from CT simulation before treatment and then manually
segmented to cover the thyroid gland area. Second, CT images were extracted into numerical
features, which consisted of 1,288 radiomics features divided into 4 classes: shape-based, first-
order statistic, texture-based, and filtered-based. For the feature filtration step, the robust features
were considered using ICC criteria from variation in the segmentation test. Subsequently, in the
model development step, we split 80% of the data for model training and 20% for the test set.
Three machine learning techniques were chosen to build the predictive model: logistic regression,
random forest, and gradient boosting classifier. The hyperparameters of the model were tuned to
get the best performances in the validation set and then performed in the test set. The results were
compared between the dose model, clinical model, clinical and dose, radiomics model, radiomics
and dose model, radiomics and clinical model, and combined model.

In summary, this study demonstrated that incorporating radiomics with clinical and
dosage information had the highest performance and could significantly improve RIH prediction
performance in NPC patients when compared to the conventional methods. We identified the
significant clinical and dosimetry predictors as TSH level before treatment, age, positive nodes,
percentage of thyroid volume that has received at least 40 Gy, and mean dose to thyroid. For
radiomics signatures in RIH prediction, there were 26 variables in logistic regression and 30
variables in random forest, which came from first-order statistic classes, texture-based classes,
and filtered-base classes. These findings could potentially be used in pre- treatment planning to

optimize dose constraints on the thyroid gland and reduce the risk of hypothyroidism.
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Appendix

Table 14 The difference of left and right in the thyroid gland in radiomics feature value

Number of radiomics features: mean of feature value

Radiomics features no difference in the right and left sides/total features %

(p-value > 0.05)

bw 0.05 1166/1288 90.53 %
bw 0.1 1174/1288 91.15%
bw 0.15 1179/1288 91.54 %
bw 0.2 1183/1288 91.84 %
LR: combined model 25/26 96.15 %
RF: combined model 33/34 97.05 %
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Table 15 Feature descriptions of radiomics signatures in combined logistic regression model

Feature name

Feature descriptions

original_firstorder Minimum

Minimum value of voxel intensities in ROI

original ngtdm Complexity

Mean difference of voxel intensities among the

surrounding area and the center voxel from ngtdm

(Neighbouring Gray Tone Difference Matrix)

wavelet-

HHL _glszm SmallAreal owGrayLevelEmp

The percentage of the combined distribution of zones

with smaller sizes and lower gray-level values in the

hasis image from glszm (Gray Level Size Zone Matrix)
after wavelet-HHL transformed
wavelet- The joint distribution of low intensities values and

LLH glrlm_ShortRunLowGrayLevelEmph

asis

shorter run lengths from glrlm (Gray Level Run

Length Matrix) after wavelet-LLH transformed

wavelet-LLL _firstorder Minimum

Minimum value of voxel intensities in ROI after

wavelet-LLL transformed

wavelet-HHL glszm SmallAreaEmphasis

How small size zones are distributed from glszm

(Gray Level Size Zone Matrix) after wavelet-HHL

transformed

wavelet-

LLH_glrlm LowGrayLevelRunEmphasis

How low gray-level values are distributed from glrlm

(Gray Level Run Length Matrix) after wavelet-LLH

transformed

wavelet-

LHH_glszm_SizeZoneNonUniformityNorm

The variability of size zone volumes in the ROI from

glszm (Gray Level Size Zone Matrix) after wavelet-
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Feature name

Feature descriptions

alized

LHH transformed

wavelet-LLH ngtdm_Contrast

The alteration in spatial intensity from ngtdm

(Neighbouring Gray Tone Difference Matrix) after

wavelet-LLH transformed

wavelet-LHH_glszm SmallAreaEmphasis

How small size zones are distributed glszm (Gray

Level Size Zone Matrix) after from wavelet-LHH

transformed

wavelet-

HHL glszm SizeZoneNonUniformityNorm

alized

The variability of size zone volumes in the ROI from

glszm (Gray Level Size Zone Matrix) after wavelet-

HHL transformed

wavelet-

LHH_glszm_ SmallAreaHighGrayLevelEm

phasis

The proportion of the joint distribution of smaller size

zones with higher gray-level intensities from wavelet-

LHH glszm (Gray Level Size Zone Matrix)

wavelet-

LLH glszm_SizeZoneNonUniformityNorm

alized

The variability of size zone volumes in the ROI from

glszm (Gray Level Size Zone Matrix) after wavelet-

LLH transformed

wavelet-LLL_ngtdm Complexity

Mean difference of voxel intensities among the

surrounding area and the center voxel from ngtdm

(Neighbouring Gray Tone Difference Matrix) after

wavelet-LLL transformed

wavelet-

HLL_glszm LowGrayLevelZoneEmphasis

Lower gray-level size zones distributions from glszm

(Gray Level Size Zone Matrix) after wavelet-HLL
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Feature name

Feature descriptions

transformed

wavelet-LLH glcm_Idmn

Calculate the local homogeneity of an image from

glem (Gray Level Co-occurrence Matrix) after

wavelet-LLH transformed

wavelet-

LLL glszm_ SizeZoneNonUniformityNorm

alized

The variability of size zone volumes in the ROI from

glszm (Gray Level Size Zone Matrix) after wavelet-

LLL transformed

log-sigma-1-0-mm-3D_glem_Idmn

Calculated the local homogeneity of an image after

log transformed

log-sigma-5-0-mm-

3D _glszm_SmallAreaEmphasis

How small size zones are distributed from glszm

(Gray Level Size Zone Matrix) after log transformed

log-sigma-5-0-mm-

3D _glszm_SizeZoneNonUniformityNormal

ized

The variability of size zone volumes in the ROI from

glszm (Gray Level Size Zone Matrix) after log

transformed

log-sigma-5-0-mm-3D_ngtdm Complexity

Mean difference of voxel intensities among the

surrounding area and the center voxel from ngtdm

(Neighbouring Gray Tone Difference Matrix) after

transformed

log-sigma-1-0-mm-3D_ngtdm_Coarseness

Calculate of mean difference among the center voxel

and its surrounding areas from ngtdm (Neighbouring

Gray Tone Difference Matrix) after log transformed

log-sigma-4-0-mm-

Measure variance in gray level intensities from glszm
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Feature name

Feature descriptions

3D _glszm_GrayLevelVariance

(Gray Level Size Zone Matrix) after log transformed

log-sigma-2-0-mm-3D_ngtdm_Coarseness

Calculate of mean difference among the center voxel

and its surrounding areas from ngtdm (Neighbouring

Gray Tone Difference Matrix) after log transformed

log-sigma-1-0-mm-

3D _glszm_LowGrayLevelZoneEmphasis

How lower gray-level size zone are distributed from

glszm (Gray Level Size Zone Matrix) after log

transformed

log-sigma-1-0-mm-3D_ngtdm_Contrast

The alteration in spatial intensity from ngtdm

(Neighbouring Gray Tone Difference Matrix) after

log transformed
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Table 16 Feature descriptions of radiomic signatures in combined random forest model

Feature name Feature descriptions
original shape VoxelVolume Volume of the region of interest
original firstorder Minimum Minimum value of voxel intensities in ROI

original glszm LargeAreaHighGrayLevelEmphasis | The percentage of joint distribution between

larger size zones and higher gray-level values

from glszm (Gray Level Size Zone Matrix)

wavelet- The variability of size zone volumes in the

LLH glszm_SizeZoneNonUniformityNormalized ROI from glszm (Gray Level Size Zone

Matrix) after wavelet-LLH transformed

wavelet-LLH glszm SmallAreaEmphasis How small size zones are distributed from

glszm (Gray Level Size Zone Matrix) after

wavelet-LLH transformed

wavelet-LLH glszm ZoneEntropy Randomness in the distribution of hues and

zone sizes from glszm (Gray Level Size Zone

Matrix) after wavelet-LLH transformed

wavelet-LLH_gldm_ DependenceNonUniformity The similarity in the image from gldm (Gray

Level Dependence Matrix) after wavelet-LHL

transformed

wavelet-LHL _firstorder TotalEnergy Size of an image's voxel values that scaled by

the volume of the voxel in cubic after

wavelet-LHL transformed

wavelet-LHL glrlm_GrayLevelNonUniformity Similarity of Gray-level intensity values from




Feature name

Feature descriptions

glrlm (Gray Level Run Length Matrix) after

wavelet-LHL transformed

wavelet-

LHL glszm LargeAreaHighGrayLevelEmphasis

The proportion of the joint distribution of

higher intensity values and larger size zones

from glszm (Gray Level Size Zone Matrix)

after wavelet-LHL transformed

wavelet-LHL gldm DependenceNonUniformity

Similarity of dependence in the image from

gldm (Gray Level Dependence Matrix) after

wavelet-LHL transformed

wavelet-LHL gldm GrayLevelNonUniformity

Similarity of gray-level intensity values in the

image from gldm (Gray Level Dependence

Matrix) after wavelet-LHL transformed

wavelet-

LHH_glszm_SizeZoneNonUniformityNormalized

The alteration of size zone volumes in the

image from glszm (Gray Level Size Zone

Matrix) after wavelet-LHH transformed

wavelet-LHH gldm DependenceNonUniformity

Calculate the similarity of dependence in the

image from gldm (Gray Level Dependence

Matrix) after wavelet-LHH transformed

wavelet-LHH ngtdm_ Busyness

Calculate the alteration of pixel to its

neighbour from ngtdm (Neighbouring Gray

Tone Difference Matrix) after wavelet-LHH

transformed

&0



Feature name

Feature descriptions

wavelet-HLL gldm GrayLevelNonUniformity

Similarity of gray-level intensity values in the

image from gldm (Gray Level Dependence

Matrix) after wavelet-HLL transformed

wavelet-HLH_firstorder TotalEnergy

Size of an image's voxel values that scaled by

the volume of the voxel in cubic after

wavelet-HLH transformed

wavelet-HLH_glrlm_GrayLevelNonUniformity

Similarity of gray-level intensity values in the

image from glrlm (Gray Level Run Length

Matrix) after wavelet-HLH transformed

wavelet-HLH_ gldm_GrayLevelNonUniformity

Similarity of gray-level intensity values in the

image from gldm (Gray Level Dependence

Matrix) after wavelet-HLH transformed

wavelet-HHL _firstorder Skewness

The asymmetry of the range of values

surrounding the mean after wavelet-HHL

transformed

wavelet-HHL glszm SmallAreaEmphasis

Calculate the distribution of small size zones

from glszm (Gray Level Size Zone Matrix)

after wavelet-HHL transformed

wavelet-HHL gldm DependenceNonUniformity

Calculate the similarity of dependence in the

image from gldm (Gray Level Dependence

Matrix) after wavelet-HHL transformed

wavelet-HHH_ firstorder_TotalEnergy

Size of an image's voxel values that scaled by

&1



Feature name

Feature descriptions

the volume of the voxel in cubic after

wavelet-HHH transformed

log-sigma-2-0-mm-3D _firstorder Range

Grayscale values in the ROI after log

transformed

log-sigma-2-0-mm-3D _firstorder_TotalEnergy

Size of an image's voxel values that scaled by

the volume of the voxel in cubic after log

transformed

log-sigma-2-0-mm-

3D _glrlm HighGrayLevelRunEmphasis

Determine how the higher gray-level values

are distributed from glrlm (Gray Level Run

Length Matrix) after log transformed

log-sigma-3-0-mm-3D_firstorder Energy

Calculate the size of an image's voxel values

after log transformed

log-sigma-3-0-mm-3D_glem Idn

Calculate the local homogeneity of an image

after log transformed

log-sigma-3-0-mm-

3D _glszm_SizeZoneNonUniformityNormalized

The alteration of size zone volumes in the

image from glszm (Gray Level Size Zone

Matrix) after log transformed

log-sigma-2-0-mm-3D_glrlm LongRunHighGray

LevelEmphasis

Calculate the joint distribution of long run

lengths with higher gray-level values from

glrlm (Gray Level Run Length Matrix) after

log transformed
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