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ABSTRACT (THAI) 

 ณภทัร ฤทธ์ิล ้าเลิศ : การใชเ้รดิโอมิกส์ท านายการเกิดภาวะต่อมไทรอยดท์ างานต ่าหลงัจากการฉายรังสีในผูป่้วย
มะเร็งโพรงจมูก. ( Radiomics-based Prediction of Radiation-induced Hypothyroidism in Nasopharyngeal Cancer 
Patients) อ.ท่ีปรึกษาหลกั : ผศ. ดร.โยธิน รักวงษไ์ทย, อ.ท่ีปรึกษาร่วม : อ. ดร.เอกพล ช่วงสุวนิช 

  
                 ภาวะแทรกซ้อนในระยะยาวจากการใชรั้งสีเป็นเร่ืองท่ีส าคญัท่ีควรค านึงถึงในการก าหนดแผนการรักษา  

โรคต่อมไทรอยดท์ างานต ่าเป็นหน่ึงในภาวะแทรกซ้อนท่ีพบไดบ้่อยจากการใชรั้งสีรักษาบริเวณศีรษะและล าคอ  ปัจจุบนัมีการใช้
ขอ้มูลทางคลินิกและขอ้มูลปริมาณรังสีจากแผนการรักษามาช่วยประเมินโอกาสเกิดภาวะต่อมไทรอยดท์ างานต ่าหลงัการฉายรังสี
ในคนไขม้ะเร็งโพรงจมูกแต่ผลการประเมินยงัไม่ดีนัก การน าขอ้มูลภาพทางการแพทยเ์ขา้มาช่วยน่าจะเพ่ิมขอ้มูลท่ีส าคญัในการ
ท านายไดถู้กตอ้งมากขึ้น จุดมุ่งหมายของงานวิจยัน้ีเพ่ือท านายภาวะต่อมไทรอยด์ท างานต ่าในคนไขม้ะเร็งโพรงจมูกโดยการใช้
เรดิโอมิกส์ของภาพเอกซเรยค์อมพิวเตอร์ร่วมกบัขอ้มูลทางคลินิกและขอ้มูลปริมาณรังสี 

                การศึกษาน้ีท าการรวบรวมขอ้มูลจากคนไขม้ะเร็งโพรงจมูกจ านวน 220 คนโดยท่ีได้รับการวินิจฉัยว่ามี
ภาวะต่อมไทรอยด์ท างานต ่าหลงัการฉายรังสีในช่วงเวลา 2 ปี เร่ิมจากก าหนดขอบเขตของภาพต่อมไทรอยด์และดึงขอ้มูลภาพ
เปลี่ยนเป็นขอ้มูลเชิงตวัเลขจากภาพเอกซเรยค์อมพิวเตอร์ก่อนการฉายรังสี ฟีเจอร์เรดิโอมิกส์ทั้งหมดจะถูกน าไปวิเคราะห์ร่วมกบั
ขอ้มูลทางคลินิกและขอ้มูลปริมาณรังสีจากแผนการรักษาของคนไข้ โดยท าการสร้างโมเดลในการท านายโรคด้วยวิธี  logistic 
regression random forest และ gradient boosting เพื่อสร้างโมเดลเรดิโอมิกส์ โมเดลคลินิกและปริมาณรังสี และโมเดลขอ้มูลรวม 

                ผลการศึกษา พบว่าโมเดลขอ้มูลรวมจากการใช ้logistic regression และ random forest มีประสิทธิภาพใน
การท านายสูงท่ีสุด โดยมีค่า AUC อยู่ท่ี 0.80 ± 0.06 และ 0.81 ± 0.06 ตามล าดบั และพบว่าสามารถท านายไดดี้กว่าการใชโ้มเดล
คลินิกและปริมาณรังสีอยา่งมีนยัส าคญัทางสถิติ (p-value < 0.05) โดยมีค่า AUC อยูท่ี่ 0.68 ± 0.07 และ 0.71 ± 0.06 โดยฟีเจอร์เรดิ
โอมิกส์ท่ีใชใ้นโมเดลขอ้มูลรวมน้ีส่วนใหญ่มาจาก ฟีเจอร์กลุ่ม texture-based และกลุ่ม filtered-based ร่วมกบัตวัแปรท่ีส าคญัทาง
คลินิคและปริมาณรังสี คือ การแพร่กระจายของต่อมน ้ าเหลืองท่ีคอ, ค่า TSH ก่อนการรักษา, อายุ, ร้อยละของต่อมไทรอยด์ท่ี
ไดรั้บปริมาณรังสีอยา่งนอ้ย 40 Gy และปริมาณรังสีเฉลี่ยท่ีต่อมไทรอยดไ์ดรั้บ 

                โดยสรุป การใชข้อ้มูลเรดิโอมิกส์จากภาพเอกซเรยค์อมพิวเตอร์ร่วมกบัขอ้มูลทางคลินิกและปริมาณรังสี
สามารถใชท้ านายโอกาสการเกิดภาวะต่อมไทรอยด์ท างานต ่าไดแ้ละมีประสิทธิภาพดีกว่าการใชวิ้ธีดั้งเดิมอย่างมีนัยส าคญั แสดง
ว่าภาพไทรอยดน์ั้นมีขอ้มูลท่ีส าคญัท่ีช่วยให้สามารถท านายภาวะไทรอยดท์ างานต ่าจากการใชรั้กษาในผูป่้วยมะเร็งโพรงจมูก 
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ABSTRACT (ENGLISH) 

# # 6371009921 : MAJOR BIOMEDICAL ENGINEERING 
KEYWORD: Hypothyroidism, Nasopharyngeal cancer, Radiomics, CT, Medical images 
 Napat Ritlumlert : Radiomics-based Prediction of Radiation-induced Hypothyroidism in Nasopharyngeal Cancer 

Patients. Advisor: Asst. Prof. YOTHIN RAKVONGTHAI, Ph.D. Co-advisor: EKAPOL CHUANGSUWANICH, 
Ph.D. 

  
             When planning radiation therapy, late-effect complications due to radiotherapy should be considered. One 

of the most common complications of head and neck radiotherapy is hypothyroidism. Although clinical and dosimetry data are 
usually used to assess the risk of hypothyroidism after radiation for nasopharyngeal cancer, the outcome is still unsatisfactory. 
Medical imaging can provide additional information and increase prediction accuracy. The aim of this study was to predict 
hypothyroidism in patients with nasopharyngeal cancer using CT radiomics combined with clinical and dosimetric data. 

            The study included 220 participants who were diagnosed with hypothyroidism within 2 years after 
radiotherapy. Manual segmentation covered the thyroid gland, and feature extractions were performed from pretreatment CT 
images. All radiomics features were analyzed with clinical and dosimetry information, and the model was constructed using 
logistic regression, random forest, and gradient boosting. In addition to the radiomics model, conventional, and combined 
models were built based on the tree-based predictive algorithms. 

            The findings of the study demonstrated that the combined model had the highest validation performance, 
as indicated by AUCs of 0.80 ± 0.06 and 0.81 ± 0.06 in logistic regression and random forest, respectively, which were greater 
than the conventional mode with the AUCs of 0.68 ± 0.07 and 0.71 ± 0.06 (p-value < 0.05). The combined model used in this 
study used radiomics features, with the majority of these features coming from texture-based classes and filtered-based classes, 
while the important clinical and dose factors were bilateral neck metastasis, pretreatment TSH level, age, TR V40, and TR 
mean. 

            In conclusion, the combination of CT radiomics with clinical and dose information can predict the RIH 
in nasopharyngeal cancers and significantly improve the performance of prediction models compared to the conventional 
method. We contend that pretreatment thyroid images contain valuable information that can be used to predict the risk of 
hypothyroidism after nasopharyngeal radiotherapy. 
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CHAPTER I: INTRODUCTION 
 

1. Background and rationale 
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers 

(HNC) with specific etiological, clinical, epidemiological, and genetic characteristics.  More than 
70% of NPC cases occurred in Southeast Asia and South China  [1].  GLOBOCAN 2020 [2] 
reported that during 2020 Thailand found 2,316 new cases of NPC, which were 1.2% of all 
cancers and found up to 1482 cancer deaths, 1.2% of which were from NPC. Radiotherapy, 
chemotherapy, and surgery are the main treatments to control and manage HNC. The major 
treatment is radiotherapy by using various techniques to provide a high dose at a target volume 
while maintaining an acceptable low dose to critical organs to avoid complications. Since the 
thyroid gland's location is anterior to the neck regions, it is exposed to high radiation doses. 
Moreover, the thyroid gland is a highly radiosensitive organ, which results in a higher risk of 
complications. According to Kazemi et al.  [3], it was reported that hypothyroidism, which 
occurred in 15%-48% of patients after radiation treatment, is the most common radiation side 
effect of HNC treatment. Therefore, prevention strategies should be considered because of its 
effect on the quality of life after the treatment course. 

At present, hypothyroidism is diagnosed by laboratories and clinical symptoms only. 
Several studies [4, 5] investigated predictors for radiation-induced hypothyroidism based on pre-
treatment clinical and dose parameters. Lertbusayanukul et al. [4] validated a prior report of dose 
factors in hypothyroidism after intensity-modulated radiation treatment (IMRT) in patients with 
nasopharyngeal carcinoma (NPC). It was found that TSH greater than 1.55 μU/ml and VS60 less 
than 10 cm3 were important predictors. Another study by Peng et al.  [5] suggested that using the 
pre-treatment volume (< 20 cm 3) and V30,60 (> 80%) of thyroid glands can be predictors with 
moderate prediction results (AUC = 0.64). Therefore, an effective predictive model is needed to 
improve the treatment planning and reduce the occurrence of radiation induced hypothyroidism. 

Medical imaging plays a key role in cancer diagnosis and treatment since it is needed for 
treatment planning, treatment monitoring, and evaluation of treatment response. The treatment 
planning system must use imaging guidance before radiation treatment. CT with other modalities 
(e.g., MRI, PET) will be examined first to define the dose to the tumor target volume and organ at 
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risk volume. Rapidly increasing  computer technology and imaging methods have enabled the 
storage and use of medical image data in various techniques and clinical applications. More than 
the applications of traditional images are used for diagnostic and treatment monitoring by human 
observation, hidden information in images may be useful for improving treatments. Radiomics 
refers to the automated extraction of quantitative features from medical images for the 
development of diagnostic and prognostic biomarkers. Using a statistical analysis approach with 
radiomics features and clinical data could develop a novel predictive tool in clinical application. 
There have research studies on predicting locoregional recurrence, treatment response, and 
survival as well as complications in HNC patients after treatment using radiomics  [6]. Sheikh et 
al. [7] used radiomics features from salivary glands to study post -radiation xerostomia. They 
suggested that baseline CT and MR imaging features may reflect baseline salivary gland function 
and potential risk for radiation injury. 

The objective of this study was to use radiomics from pretreatment contrast-enhanced CT 
images, dosimetry parameters, and clinical data to predict hypothyroidism within 2 years. The 
hypothesis was that radiomics with clinical and dosimetry data can improve the prediction of 
radiation-induced hypothyroidism and has potential to be a new tool in pre-treatment planning to 
optimize dose constraints on the thyroid gland to reduce thyroid complication effects. 

 
2. Research questions 
 1) What is the best model to predict radiation -induced hypothyroidism after radiation 
treatment in nasopharyngeal cancer patients? 
 2) What is the additional gain from using radiomics as compared to using only clinical 
and dosimetry data? 
 3) W hat are the radiomics signatures of radiation -induced hypothyroidism after 
radiationtherapy in nasopharyngeal cancer patients? 
 
3. Research objectives 
 1) To develop an effective model for predict radiation -induced hypothyroidism after 
radiation treatment in nasopharyngeal cancer patients. 
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 2) To evaluate whether the superior performance of the model that uses radiomics is 
better than clinical and dosimetry data alone. 
 3) To identify the radiomics signatures of radiation -induced hypothyroidism after 
radiationtherapy in nasopharyngeal cancer patients. 
 
4. Scope 
  This study focused on using radiomics from pre -treatment contrast enhanced CT to 
develop a model for predicting radiation -induced hypothyroidism after radiationtherapy in 
nasopharyngeal cancer patients. 
 
5. Expected benefits  
 1. Radiation-induced hypothyroidism predictive models using CT radiomics combined 
with clinical and dosimetry data. 
 2. Propose guidance for the important clinical, dose, and image predictors relevant to 
RIH that help to adjust the treatment plan and reduce the occurrence of thyroid complications 
after radiation treatment in nasopharyngeal cancers. 
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CHAPTER II: THEORY 
 

1. Radiation-induced hypothyroidism 
 1.1 Head and neck cancers 

 

 
Figure 1 Anatomical site of HNSCC development. HNSCC arises from the mucosal epithelium of 

oral cavity, nasopharynx, oropharynx, hypophalynx and larynx.[8] 
 

 

Head and neck squamous cell carcinomas (HNSCC) are the most common malignancies 
that arise in the head and neck. It is developed from the mucosal epithelium in the oral cavity, 
pharynx, and larynx as show in Figure 1. The prevalence of HNSCC varies by region and has 
been linked to tobacco-derived carcinogen exposure, excessive alcohol intake, or both. Moreover, 
the incidence of HNSCC caused by Human Papillomavirus (HPV) has raised up over the last 30 
years, especially for oropharyngeal cancers. This has led to a new subgroup of patients with 
HNSCC who have different clinical characteristics and molecular biology and more 
radiosensitivity  [9, 10]. 

1.2 Treatment of head and neck cancers 
HNSCC is predominantly a loco-regional disease with only about 5% of patients having 

distant metastases at the time of diagnosis. Over 60% of patients have locally advanced disease 
(stage III and VI) at diagnosis. The main treatment consists of surgery, radiotherapy, and recent 
years with additional of chemotherapy. For early-stage patients, one treatment modality is 
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sufficient; however, for advanced-stage patients, all treatments must be combined for tumor 
control, and fractionation can be used to improve the outcome. In the last three decades, 
technological development in radiotherapy has been improved from 2D-RT based on X-ray 
images to 3D-CRT (3-dimensional conformal treatment). Three or more treatment fields are used 
in 3D-CRT as shown in Figure 2 to deliver a homogeneous dosage to the target area.  
Furthermore, the deployment of multi-leaf collimators and more complex computer algorithms 
have enabled intensity modulated RT (IMRT) and volumetric modulated arc therapy (VMAT). 
With these treatment techniques, there is the possibility of conserving normal tissues while 
increasing radiation dose to the tumor and other target areas [11]. 

 

 

Figure 2 Radiation beam directions. A, Two opposing beams of single intensities, represented by 
the yellow arrows, create a single-dose distribution through a nasopharynx tumor. B, Intensity 

modulated radiotherapy allows multiple beams of different intensities[12] 
 

1.3 Radiation treatment planning 
 Radiation treatment is an external beam radiation using linear accelerators. Intensity-
modulated radiation therapy (IMRT) has been successfully implemented because of advances in 
technology like inverse treatment planning and the multileaf collimator-equipped linear 
accelerator. These methods allow for the modulation of radiation intensity to give a larger 
radiation dose to the targets with a sharply conformal target volume coverage while significantly 
reducing the exposure to the surrounding normal tissues. In daily practice, treatment planning for 
head and neck cancer patients is initiated with a therapeutic CT scan of the patient to fixate in the 
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treatment position. In the treatment planning system, the oncologist and the radiologist 
collaborate to define the tumor volume and clinically relevant target areas. Planning target 
volumes are then generated, and a dose calculation is performed to ensure that adequate dose 
distributions are used to cover tumor areas during radiotherapy, and treatment doses of normal 
tissue are below the tolerance thresholds as indicated by clinical guidelines. At present, treatment 
planning systems allow a rather precise calculation of the treatment dose for small areas. More 
information on ionizing radiation tolerance levels in various organs led to RT dose-planning, 
which restricts a specific dose (dose-constraint) or treated volume to an organ using either a 
single value, such as the mean dose to the organ, or multiple dose-volume constraints. 
 

1.4 Toxicity 
 The toxicity of normal tissues is the limiting factor in radiotherapy. Optimization of 
target dose delivered while minimizing toxicity to normal tissue is an important challenge for 
radiotherapy. Toxicity has typically been classified into two categories: acute reactions and late 
reactions. Acute reaction toxicity is defined as effects that occur within 90 days after the start 
of radiotherapy, whereas late reactions occur more than 90 days (and up to years after RT). 
However, the relevance of this diagnosis in grading and reporting adverse effects has been 
challenged internationally. In HNSCC, common acute effects during treatment are pain, 
mucositis, dysphagia, xerostomia, mucosal edema, and erythema. Common late effects consist of 
xerostomia, dysphagia, mucosal edema, hypothyroidism, and skin fibrosis. Adverse event 
reporting in cancer treatment, and specifically radiation oncology have been the Common 
Terminology Criteria for Adverse Events (CTCAE) and the LENT/SOMA scale [13, 14]. LENT 
is an acronym for Late Effects Normal Tissues, while SOMA defines toxicity from Subjective, 
Objective, Management related and Analytic measures (i.e. blood test, CT or the like). 
Toxicology scores can be converted into binary data, which can be used to analyze radiation dose-
response relationships and predict toxicity in patients receiving radiation therapy. 

1.5 Thyroid gland 
 As shown in Figure 3A, the thyroid gland is a butterfly-shaped structure that is located 
anterior to the trachea and inferior to the larynx, as shown in figure 3A. The gland consists of two 
lobes, right and left, which are connected through the isthmus. The isthmus, or medial region, is 
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flanked by wing-shaped left and right lobes. The tissue of the thyroid gland is composed of 
thyroid follicles. Colloid (figure 3B) is a type of follicle that has a central cavity filled with a 
sticky fluid. The colloid is surrounded by epithelial follicle cells and is the center of thyroid 
hormone production. The hormone's production is dependent on the hormone's essential and 
unique component: iodine [15]. 
 

 

Figure 3 Thyroid anatomy: (a) Thyroid anatomy, (b) Thyroid follicle cells [16] 
 

 

1.6 Synthesis and release of thyroid hormones 
 Hormones are created in the colloid when atoms of the mineral iodine bind to a 
glycoprotein known as thyroglobulin, which is released into the colloid by follicle cells. The 
hormones are assembled in the following steps: 
 1. Thyroglobulin synthesis 
 Thyroglobulin is synthesized and released by the endoplasmic reticulum and Golgi 
apparatus in follicular cells of the thyroid gland. Thyroglobulin is a large glycoprotein that 
contains 140 molecules of the amino acid tyrosine and is stored in the follicle. 
 2. Iodine trapping 
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 Iodide (I-) from the blood stream enters follicular cells by active transport via an 
electrochemical gradient called iodide trapping. It passes through follicular cells along with Na+ 
by using a sodium-iodide symport pump (iodide pump).  
 3. Transport of iodine into follicular cavity 
 After that, iodide enters the follicular cavity by an iodide-chloride pump (pendrin). 
Iodide was oxidized into iodine (I0) using thyroid peroxidase as an activator. 
 4. Iodination of tyrosine 
 Iodination of tyrosine is iodine combined with tyrosine, which occurs on thyroglobulin. 
This iodination process was activated by the iodinase enzyme from follicular cells. Then tyrosine 
was iodized into MIT (mono-iodothyrosine) and DIT (di-iodothyrosine), which are called 
iodotyrosine residues. 
 5. Coupling reaction 
 Iodotyrosine residues were combined into thyroid hormones in three patterns: 1) DIT + 
MIT = T3 (triiodothyrosine), 2) MIT + DIT = reverse T3 (less than 1%), and 3) DIT + DIT = T4 
(thyroxine). T3, T4 hormones will enter the bloodstream and regulate the whole body.  
 The production and release of thyroid hormone is controlled by negative feedback, as 
shown in Figure 4, that involves the hypothalamus, pituitary gland, thyroid gland, and 
multiple hormones. Start with the hypothalamus releasing thyroid-releasing hormone (TRH), 
which stimulates the pituitary gland to produce and release thyroid-stimulating hormone (TSH). 
Then, TSH triggers the thyroid gland to produce T4 and T3. The total amount of hormones that 
TSH triggers to release is about 80% T4 and 20% T3. When the levels of T3 and T4 increase, 
they prevent the release of TRH, while when T3 and T4 levels drop, the feedback loop starts 
again. This system allows the body to maintain a constant level of thyroid hormone balance. An 
imbalance in the hormones associated with this system can occur if there are problems with the 
hypothalamus, pituitary gland, or thyroid. 
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Figure 4  Negative feedback of thyroid hormones. Hypothalamus releases thyrotropin-releasing 
hormone (TRH), which triggers pituitary gland to release thyroid-stimulating hormone (TSH), 

which stimulates thyroid to release T3 and T4 [17] 
 

1.7 Hypothyroidism 
 Several conditions can result from abnormal thyroid hormone levels. Hypothyroidism is 
one of the most common conditions that is defined as a decreased function of the thyroid gland. It 
is characterized by TSH levels above the normal range (0.3-4.0 mIU/I). Hypothyroidism can be 
subclinical or overt. Subclinical hypothyroidism is elevated TSH and normal T4 and T3, while 
overt hypothyroidism is elevated TSH and T4 and/or T3 below the normal range. Hypothyroidism 
symptoms can include being tired, gaining weight, and being unable to tolerate cold temperatures. 
Autoimmune disease, hyperthyroidism therapies, radiation therapy, thyroid surgery, and certain 
drugs are all possible causes. Hormone replacement therapy is the most common treatment for 
hypothyroidism. It may not cause noticeable symptoms in the early stages. Untreated 
hypothyroidism can lead to several health issues over time, including obesity, joint discomfort, 
infertility, and heart disease.  
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

2. Radiomics in oncology 
 Radiomics is the extraction of mineable high-dimensional data from radiologic images, 

and it has been used in oncology to improve diagnosis and prognosis with precision medicine 
[18]. Since imaging data might have meaningful information about tumor biology, behavior, and 
pathophysiology. It may reveal information that is not apparent from conventional radiologic 
images and clinical interpretation. Radiomics quantifies textural information through 
mathematical extraction of the spatial distribution of signal intensities and pixel relationships, 
using analysis methods from the field of AI. The workflow of radiomics includes curation of 
clinical and imaging data, image preprocessing, tumor segmentation, feature extraction, model 
development, and model validation as show in Figure 5. This research field needs the cooperation 
of multiple disciplines, including radiologists, image scientists, and data scientists. Radiomics 
features can be obtained at a single (typically pretreatment) or multiple time points (delta 
radiomics) and applied to imaging data. 
 

 

Figure 5 Workflow of radiomics [19] 
 

 

2.1 Applications in oncology  
 In oncology, radiomics can be applied to several tasks, for example, classification, 
treatment response prediction, and side effect prediction. Classification involves dividing subjects 
into outcome categories such as benign and malignant, normal and disease, tumor stage, presence 
of metastases. Treatment response prediction models use clinical outcomes to stratify patients into 
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different risk groups on the basis of clinical endpoint occurrences. For side effect prediction, it 
involves the treatment toxicity after treatment, such as radiation-induced brain injury and 
xerostomia. 

 2.2 Planning a radiomics study 
 When planning a radiomics study, it needs to propose an interesting clinical task and 
check how possible it is. The important factor is having adequate data to support the development 
of a radiomics signature. As a general guideline, in binary classification investigations, 10–15 
samples per feature in the final radiomics signature should be obtained. This varies by study, but 
it is a good rule of thumbs when starting a new project. The rule should be applied to the smaller 
class if the class sizes are unequal. In fact, when developing a model, it is difficult to control the 
number of final radiomics signature. It depends on the data and the model algorithm used. After 
the research question and study population have been selected, collecting pilot data to help detect 
and minimize potential problems before collecting full data. 

 2.3 Radiomics workflow 
 The radiomics workflow is divided into several tasks that are usually performed in this 
order. 

 1. Image acquisition 
 Imaging data acquired from CT, PET, MRI, or US examinations. CT and PET data are 
signal intensities, which are inherent quantitative data. MRI has good tissue contrast, but several 
sequence and scanning parameters can affect feature stability. The US is more operator 
dependent. Therefore, the choice of radiomics image depends on the task and clinical interest. 

 2. Data curation and image preprocessing 
 Nonimaging and clinical data are typically collected to be analyzed with radiomics data. 
Before integrating clinical and radiomics data, curation steps to identify missing or incomplete 
data can then be taken, also for correction of typographic errors or inconsistencies in data. 
 Before feature extraction, image data can be enhanced through preprocessing 
steps. While preprocessing may improve image quality, it must also have an effect on the 
radiomics signature. In MRI, signal intensity is arbitrary, and hence normalization of signal 
intensity is recommended. Because of the lack of consensus on this issue, the z-score is a simple 
way to fix it. The z-score is computed by subtracting the mean signal intensity of the area of 
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interest (ROI) from the pixel signal intensity and dividing the result by the standard deviation. 
Bias field correction should also be applied with MRI to correct for the spatial field 
inhomogeneities encountered. In CT, threshold on voxel Hounsfield units can be applied 
to image data to exclude voxels that are assumed to contain noninformative tissues, such as low 
values that may correspond to air within the lung, and high values to bone or calcification. 
Because some radiomics feature values are influenced by voxel size, all samples should be 
resampled to the same spatial resolution. The use of linear interpolation is generally advised. 
Motion correction can be used to correct for misregistration, blurring, or motion artifacts but this 
additional processing has the potential to impact radiomic information in the images. The use of 
motion control techniques, such as breath holding, is advised. Before extracting features, image 
filtration can be used as a preprocessing step to highlight image properties. Wavelet filters, which 
separate high- and low-spatial-frequency information, and Laplacian of Gaussian (LoG) filters, 
which emphasize areas of fast change (e.g., edge detection), are two examples.  

 3. Image segmentation 
 Tumor delineation is performed by drawing ROIs in tumor areas, tumor 
subregions, peritumoral zones, or organs of interest according to research hypothesis as show in 
Figure 6. Radiation therapy tumor volume data used for treatment planning can also be 
used, but this may differ from ROIs specifically drawn for radiomics analysis. Segmentation can 
be automatic, manual, or semi-automatic in 2D or 3D. When manual delineation is used, 3D ROIs 
will capture all the information, but it will be time-consuming to draw. Automatic segmentation is 
possibly faster and more reproducible, but it may require larger datasets where manual 
segmentation is not possible. However, this step should be checked by a radiologist for correct 
radiomics feature calculation. Additionally, in manual segmentation, it may be necessary to 
perform feature stability by multiple segmentations of the same tumor to evaluate radiomics 
features independently from the observers. 
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Figure 6 Tumor segmentation. A, two representative 3-D representations of a round tumour (top) 
and spiky tumour (bottom) measured by computed tomography (CT) imaging. B, Texture 

differences between non-small cell lung cancer (NSCLC) tumours measured using CT [20] 
 

4. Feature extraction 
 The final step before model building and validation is feature extraction, which is the 
calculation of radiomics features from each ROI that will be used in the model. Radiomics 
features are hand-crafted approaches, whereas deep learning approaches are learned directly from 
the images. The features were divided into four categories: shape-based, first-order-based, 
texture-based, and filtered image-based [21]. 

Shape-based features 
 This feature type expresses the shape and size of tumors or ROIs. For 3D shape features, 
these characteristics are only calculated on the non-derived image and mask since they are 
independent of the gray level intensity distribution in the ROI. The examples of features in this 
group include mesh volume, voxel volume, surface area to volume ratio, sphericity, etc. 
 Example: Sphericity is an example of a shape-based feature that is calculated from the 
equation below. 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
√36𝜋𝑉23

𝐴
, 

   
 V represents volume and A represents the area of tumors. Sphericity has a value from 0 
to 1, so if sphericity equals 1, it means that tumors are circular in shape. 
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 First-order features 
 First-order features are those that are dependent on the statistical value of voxel 
intensities in the tumor region, such as mean, standard deviation, skewness, kurtosis, maximum 
and minimum values, energy, and entropy. 
 Example: Entropy is defined as a measure of randomness or disorder in the image values. 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝(𝑖) 𝑙𝑜𝑔2 (𝑝(𝑖)+ ∈)

𝑁𝑔

𝑖=1

 

  
 Ng is the number of non-zero bins, evenly spaced from 0, with a width specified in the 
bin width parameter. P(i) be the first order histogram with Ng discrete intensity levels. 
 Texture features  
 This group explained the texture of voxel intensities; that is, the spatial locations of 
the signal intensities of two or more pixels are used when computing the features. For example, 
gray-level co-occurrence matrix (GLCM) features consider the signal intensities of pairs of pixels 
separated by a given distance and direction, while gray-level size-zone matrix (GLSZM) features 
consider the sizes of contiguous regions that share the same signal intensity after 
discretization. After that, it can calculate features such as energy, local homogeneity, or entropy. 
 Example: The GLCM (Gray Level Co-occurrence Matrix) functions characterize the 
texture of an image by calculating how often pairs of pixels with specific values and in a specified 
spatial relationship occur in an image. 
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Figure 7 Gray Level Co-occurrence Matrix, which is calculated from the original image in 0° 
and 45° directions. 

 

Wavelet features 
 Wavelet is one of the image processing techniques which is used to divide information 
present on an image (signals) into two discrete components. A signal is passed through two filters, 
high pass and low pass filters. The image is then decomposed into high frequency (details) and low 
frequency components. At every level, we get 4 sub-signals as show in Figure 8. The 
approximation shows an overall trend of pixel values and the details as the horizontal, vertical and 
diagonal components. After that, it can calculate features using equation of first-order features and 
texture features. 
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Figure 8 Decomposition of an image 2-D discrete wavelet transform (2-D DWT). [22] 
 

 5. Model construction  
 When clinical and radiomics data are collected, statistical models are built to predict 
study endpoints, such as tumor type or survival time. A typical model uses input features, 
including radiomics features and clinical features, to predict outcomes such as benign versus 
malignant or risk of recurrence. The final models discovered from a radiomics analysis are 
determined by validating the model on new test data. To avoid model bias, validation data should 
be kept separate from the model training phase, and final validation should only be performed 
once. Many models have tuning and optimizing parameters, which is an important step for good 
model performance. Poorly tuned parameters can lead to overfitting or underfitting of the model. 
 
3. Machine learning 
 Machine learning is a subfield of artificial intelligence (AI) and computer science that 
relies on using data and algorithms to simulate human learning processes and progressively 
increase accuracy. Machine learning is an important component of the development of data 
science. Using statistical methods, algorithms are trained to make classifications or predictions 
about the outcome. There are many to ML training methods to choose from including: supervised 
learning, unsupervised learning, and semi-supervised learning.  
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Figure 9 Machine learning training methods [23] 
 

Supervised machine learning algorithms use labeled examples to apply what they have 
learned in the past to predict future events. The learning method creates an inferred function to 
predict output values by investigating a known training dataset. After sufficient training, the 
system can provide targets for any new input. To identify mistakes and make the model more 
accurate, it can also compare its output with the desired, correct output. 
 Unsupervised machine learning algorithms are used when the data used to train is 
neither classified nor labeled. Unsupervised learning investigates how systems might extrapolate 
a function from unlabeled data to describe a hidden structure. The system cannot be ever certain 
that the output is correct. Instead, it infers from datasets what the result is supposed to be. 
 Reinforcement Machine learning algorithms are a type of learning that interactions 
with its surroundings by taking actions and identifying mistakes or rewards. Trial-and-error 
learning and delayed rewards are two of reinforcement learning's most important features. With 
this technique, software agents and machines may automatically decide the best way to proceed in 
a specific situation in order to enhance performance. 
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Machine learning algorithms are commonly used, such as linear regression, logistic 
regression, neural networks, decision trees, random forests, and clustering [24]. 
 
Logistic Regression 

Logistic Regression is used when the outcome variables are categorical ,such as disease 
or normal, pass or fail, malignant or not. These methods estimate the probability of events by 
using the logistic function. Logistic regression is developed from linear regression, but linear 
regression is unbounded and not suitable for classification problems. The outcome value of 
logistic regression strictly ranges from 0 to 1 [25]. 
 
Decision trees  
 Theses method used for both regression and classification problems. As they visually 
flow like trees, it was given that name. In the classification scenario, they begin at the tree's root 
and go through binary splits depending on possible outcomes until they reach a leaf node, where 
the final binary result is given. 
 

 

Figure 10 Example of a decision tree [23] 
 

 
Random Forest 
 The Random Forest approach uses ensemble learning techniques with the decision tree 
framework to generate many randomly selected decision trees from the input. The results are 
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averaged to produce an output that frequently produces accurate predictions and classifications.
   
Gradient boosting classifier 
 The primary concept underlying this algorithm is to build models in sequence while 
attempting to minimize the errors of the prior model. To reduce the errors, building a new model 
based on the errors or residuals of the old model does this. Gradient Boosting Regressor is used 
when the target column is continuous; Gradient Boosting Classifier is used when the problem is 
binary classification [26]. 
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CHAPTER III: RELATED LITERATURE REVIEWS 
 

Late effect complications due to radiotherapy should be considered when planning 
treatment since they affect quality of life after treatment. Radiation-induced hypothyroidism is 
one of the most common complications of head and neck cancers. To evaluate the risk of 
radiation-induced hypothyroidism in nasopharyngeal cancer, we usually use clinical and 
dosimetric data, but the result was still unsatisfied. For more information, medical images may 
help improve predictive performance. For the radiotherapy workflow, it is necessary to use 
imaging to guide treatment planning for tumor delineation, normal structure segmentation, and 
dose calculation. These imaging data make it possible to enhance the prediction of radiation-
induced hypothyroidism. Recently, radiomics has become an interesting research field in many 
oncologic tasks, including predicting complications due to radiation treatment. For instance, the 
use of MRI and CT radiomics to predict radiation-induced xerostomia from head and neck cancer 
treatment and MRI radiomics to early detect radiation-induced brain injury in nasopharyngeal 
cancer. 

In HNC publications, Haider SP et al [6]. provided an overview of recent radiomics 
studies. There has been increasing interest in the application of radiomics for prediction of 
molecular biomarkers, prognostication, and treatment response in HNC. Classification and 
regression models are mostly applied to prediction of molecular markers, specification of 
genomic signatures, diagnostic differentiation of suspected tissue, survival prognostication, and 
prediction of treatment response. The big data and open-source machine learning algorithms led 
to the development of new multivariate diagnostic and prognostic biomarkers integrated with 
radiomics features and clinical information for risk stratification, outcome prediction, and 
precision treatment planning in HNC. One of the radiomics applications was the prediction of 
post chemoradiotherapy complications. Side effects that can occur from the treatment include 
xerostomia, trismus, hearing loss, mucositis, and dermatitis. Identifying patients who are at risk of 
developing specific side effects may assist oncologists in planning personalized treatment 
strategies. Many studies have used radiomics biomarkers to predict the occurrence or severity of 
treatment-related toxicities based on bioimaging features of at-risk organs.  
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According to Zhang YM et al [27], they collected the studies of radiomics for diagnosis 
and radiotherapy of NPC. The resolution of soft tissue on MRI is better than on CT and PET-CT 
and clearly shows the range of parapharyngeal space, skull base, and intracranial tumors. Because 
NPC used MRI as the gold standard for evaluation, most radiomics studies on NPC have focused 
on MRI images, but CT, PET-CT, and PET-MRI images can also be used. In addition, most 
studies were retrospective, which provided valuable clinical guidance for diagnosis, differential 
diagnosis, treatment, recurrence, and prognosis of disease. For NPC diagnosis, the radiomics 
model that combined clinical data with features extracted from MRI was used to analyze the 
survival subgroups of early NPC. Moreover, using PET-MRI radiomics revealed the subtle 
changes in local lesions. Radiomics was helpful not only for the diagnosis of NPC but also for 
differential diagnoses and treatment response prediction. 

For side effect prediction, Sheikh K et al. [7] proposed a study for predicting acute 
radiation-induced xerostomia in HNC using MR and CT radiomics of the parotid and 
submandibular gland. The patient datasets included 266 HNC patients who were treated with 
IMRT from 2009–2018. The patients were diagnosed with moderate to severe xerostomia after a 
3-month treatment course by physicians using the NCI-CTCAE v4 criteria. The pre-treatment CT 
and T1W-MR images used for contralateral parotid and submandibular glands delineations by 
radiation oncologists also by inhouse automate segment software for dose volume histograms 
(DVH) features. For radiomics extractions, radiomics features were extracted from CT and MR 
images of bilateral parotid and submandibular glands by pyradiomics software into 5 categories: 
shape-based, first-order-based, second-order-based (GLCM, GLRLM, and GLSZM), and wavelet 
fitration based. To develop a prediction model, a generalized linear model with ten-fold cross 
validation was used for radiation-induced xerostomia. The results showed that the highest model 
performance was the combined clinical + DVH + CT + MR model with an AUC of 0.79 ± 0.01 in 
the validation set and 0.68 in the test set, which was no different from combined models without 
clinical information. The CT + MRI radiomics model was significantly different than the CT or 
MRI ROC only, and it was approximately equal to the performance of the DVH model. In 
conclusion, they suggested that the pre-treatment CT and MRI image features combined with the 
DVH features may reflect baseline salivary gland function and potential risk for radiation injury. 
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Another radiomics study on side effect prediction was reported by Zhang B et al [28]. 
The study aimed to develop radiomics models for early detection of radiation-induced brain 
injury in NPC. It included 242 NPC patients who underwent radiotherapy and regular follow-up 
MRI examinations between January 2006 and August 2016. Radiation-induced temporal lobe 
injury (RTLI) was diagnosed based on MRI with a follow-up time of less than 112 months by two 
independent radiologists. The middle and lower portions of the medial temporal lobe were 
segmented by open-source software in contrast-enhanced T1-weighted and T2-weighted images. 
Radiomics features were extracted from the medial temporal lobe, gray matter, and white matter 
after that feature selection was performed using the relief algorithm. For model construction, they 
developed three radiomics models, 1, 2, and 3, to predict RTLI at the last 1, 2, and 3 MRI scans 
(N-1, N-2, and N-3) before MRI confirmation using random forest and evaluated by AUC values. 
Predictive performance was compared based on different combinations of segmented tissue and 
the number of top-ranked features. The results found that the AUC of radiomics models with 
longitudinal MRI was 0.872, 0.836, and 0.780 for RTLI in advance. From this result, the 
radiomics approach allowed us to identify imaging phenotypes and to detect pathophysiological 
changes. The different MRI measurements contained additional information for which the 
combination of these measurements may improve the predictive performance of RTLI. 

For radiation-induced hypothyroidism, Lertbutsayanukul C et al. [4] validated 
previously reported dosimetric parameters and clinical factors affecting hypothyroidism after 
radiotherapy treatment in NPC patients. Participants included 178 NPC patients from October 
2010 to September 2015 who were diagnosed with hypothyroidism after radiotherapy treatment. 
Radiation-induced hypothyroidism was defined as a TSH value outside of the upper limit 
reference range (reference range 0.3 - 4.2 μU/ml), with or without reduced FT4 (reference range 
0.8 - 1.8 ng/dl), regardless of symptoms. Using cox proportional hazard models with univariate 
and multivariate analysis to identify the predictors of radiation-induced hypothyroidism. The 
median latency period of hypothyroidism was 21 months, and the median mean dose of thyroid 
gland that was received of 53.5 Gy. Female, smaller thyroid volumes, higher pre-
treatment TSH more than 1.55 μU/ml and VS60 <10 cm3 were significantly correlated with 
radiation-induced hypothyroidism in univariate analysis. In multivariate analysis, only pre-
treatment TSH and VS60 were significant predictors. The limitation was mentioned as the follow-
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up time that was not long enough to assess late hypothyroidism. Finally, they suggested that a 
pre-treatment TSH more than 1.55 μU/ml should be considered because of the risk of 
hypothyroidism, and VS60 <10 cm3 is recommended for treatment planning. 

Peng L et al. [5] proposed a new model for predicting hypothyroidism after intensity-
modulated radiotherapy (IMRT) for NPC. A total of 545 NPC patients treated between 2011 and 
2015 were included if they were identified as euthyroid before radiotherapy and were assessed for 
thyroid function regularly after the treatment course. Dose volume histograms were retrieved 
from treatment planning, including thyroid volume, dosimetry parameter: Vx (percentage of 
thyroid volume receiving more than x Gy of radiation) and dosimetry parameter: Va,b (percentage 
of thyroid volume receiving > 1 Gy, while < b Gy radiation). The outcome was the development 
of hypothyroidism within two years after IMRT. To identify predictors, they used least 
absolute shrinkage and selection operator and multivariate logistic regression. The results 
indicated that the combination of thyroid volume and V30,60 could be useful as predictors of 
radiation-induced hypothyroidism after IMRT in NPC patients by an AUC of 0.643 (0.590-
0.695). 

Zhai R et al. [29] revealed the importance of clinical and dosimetric factors to predict the 
risk of hypothyroidism after treatment with IMRT in NPC patients. All 404 non-met NPCs were 
included in the study. All patients had thyroid function tests before and after 
radiotherapy. Univariate and multivariate Cox regression analyses were used to identify the main 
factors for hypothyroidism prediction. The results found that the mean dose of thyroid, V30–V50 
(percentage of thyroid volume receiving dose to thyroid), and VS45–VS60 (the volumes of 
thyroid spared from various dose levels) were statistically significant in multivariate analyses. 

According to Smyczynska U et al. [30], they developed a radiomics NTCP model for 
radiation-induced hypothyroidism. Prior to receiving IMRT for OPC, the thyroid function of all 
98 patients was normal, and RIH was observed in the patient after treatment for 2 years. CT 
images and clinical data were used to develop the NTCP model. The results found that radiomics-
based models did not outperform state-of-the-art NTCP models (p > 0.05). 

Based on the aforementioned studies, the use of radiomics with complication effect 
prediction is possible. Predictive models can be developed using machine learning and statistical 
approaches. Sheikh K et al. and Zhang B et al.  used a machine learning algorithm which may be 
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suitable for radiomics features. Since extracted features are numerous when compared to the 
patient cases, feature selection is important to exclude redundant or uncorrelated features and 
reduce the probability of overfitting. According to Peng L et al. they used the statistical model to 
predict the probability of hypothyroidism, and the performance was moderate, while Smyczynska 

U et al. showed that CT images did not exceed the NTCP model in oropharyngeal cancers. To 
improve the performance, it might add radiomics information to the predictive model. For 
effective personal treatment and side effect reduction, the use of clinical and 
dosimetric information combined with radiomics data should be a new tool to develop an 
effective predictive model for radiation-induced hypothyroidism. 
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Table 1 Related literature reviews 
Authors N Applications Results 

Sheikh K et al. 
[7] 

2
66 

Predicting acute 
radiation-induced xerostomia in 
HNC using MR and CT 
radiomics 

The pre-treatment CT 
and MRI image features 
combined with the DVH 
features may reflect baseline 
salivary gland function and 
potential risk for radiation 
injury 

Zhang B et al. 
[28] 

2
42 

Develop radiomics 
models for early detection of 
radiation-induced brain injury 
in NPC 

The different MRI 
measurements contained 
additional information for 
which the combination of these 
measurements may improve the 
predictive performance of RTLI 

Lertbutsayanukul 
C et al. [4] 

1
78 

Validated previously 
reported dosimetric parameters 
and clinical factors affecting 
hypothyroidism after 
radiotherapy treatment in NPC 
patients 

Pre-
treatment TSH more than 
1.55 μU/ml should be 
considered because of the risk 
of hypothyroidism, and 
VS60 <10 cm3 is recommended 
for treatment planning 

Peng L et al. [5] 5
45 

Proposed a new model 
for predicting hypothyroidism 
after intensity-modulated 
radiotherapy (IMRT) for NPC 

The combination of 
thyroid volume and V30,60 could 
be useful as predictors of 
radiation-induced 
hypothyroidism after IMRT in 
NPC patients 

Zhai  R et al. 
[29] 

4
04 

To find clinical and 
dosimetric indicators that can 

The likelihood of 
hypothyroidism in NPC 
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Authors N Applications Results 
indicate a patient's likelihood of 
developing hypothyroidism 
after receiving radiotherapy. 

patients following IMRT was 
strongly predicted by thyroid 
Vt40. 

Smyczynska U et 
al. [30] 

9
8 

Using imaging 
biomarkers, create a radiomics 
NTCP model for radiation-
induced hypothyroidism. 

Compared to the 
NTCP models currently in use, 
radiomics models based on CT 
scans demonstrated comparable 
ability to predict RIHT in OPC 
patients. 

Liu Y et al. [31] 3
9 

Investigating radiation-
induced changes of computed 
tomography (CT) radiomics in 
parotid glands (PGs) and saliva 
amount (SA) can predict acute 
xerostomia during the RT for 
nasopharyngeal cancer (NPC) 

Radiation-induced 
acute xerostomia level could be 
early predicted based on the SA 
and radiomics changes of the 
PGs during IMRT delivery. 
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CHAPTER IV: MATERIALS AND METHODS 
 

1. Research design 
 This study was a retrospective cohort study. 
 
2. Research design model 
 This thesis was designed to develop a predictive model for RIH in nasopharyngeal 
carcinoma patients. The radiomics features of the thyroid gland from CT contrast enhanced before 
treatment, combined with clinical and dosimetric information, were used in model construction. 
ROC analyses were evaluated the model performance. The scope of the study was defined by the 
following steps, as depicted in Figure 11. 
 

 

Figure 11 Research design model  
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Radiomics features 
 - Collected pretreatment CT contrast-enhanced images from the treatment planning 
system. 
 - Manual thyroid segmentation.  
 - Radiomics features extraction. 
 Clinical and dosimetry information 
 - Collected patient information.  
 - Calculated dosimetry parameters from the treatment planning system. 
 Model construction and validation 
 - Feature selected based on the recursive feature elimination technique and fisher 
information. 
 - Model construction using radiomics features, clinical features, dosimetry features, and 
combined features. 
 - Selected final model based on validation performance. 
 - Validated in the testing set. 
 
3. Research conceptual framework  
 

 

Figure 12 Factors affecting the RIH model 
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4. Materials and methods 
 This section discusses the methodology for developing a predictive model. We 
started with the patient’s collection, radiomic feature extraction and the model construction. 

Population and sample 
 A total of 220 patients with NPC who were diagnosed with hypothyroidism within 2 
years after radiation therapy treatment from 2010-2020 were included in this study. All 
participants were chosen from patients with NPC in the Division of Radiation Oncology, 
Department of Radiology, King Chulalongkorn Memorial Hospital.  
     The inclusion criteria are as follows:  
 1) NPC patients in King Chulalongkorn Memorial Hospital treated with definite RT 
(IMRT/VMAT) with or without chemotherapy 70 Gy in 33-35 fractions. 
 2) Age more than 18 years. 
 3) Normal baseline thyroid function test (TFT). 
  4) At least 2-years TFT follow up or less than 2-years TFT follow up but develop RHT 
     The exclusion criteria are as follows: 
  1) History of pre-existing thyroid disease. 
  2) Abnormal or no baseline TFT. 
  3) History of thyroid surgery. 
  4) History of radiotherapy at neck. 

Image acquisition 
 All NPC patients underwent a CT simulation before radiotherapy treatment. A 64 
detector-row CT simulator was used to acquire CT images (Revolution CT; GE Healthcare, 
Chicago, IL, USA). Acquisition protocols included a noncontrast phase and a contrast-enhanced 
phase in helical mode at 120 kV with smart mA by 2.5 mm slice thickness. 

Thyroid segmentation 
 Manual 3D segmentation of the thyroid gland was performed by radiation oncologists. 
The region of interest (ROI) covering the thyroid gland in contrast-enhanced CT images were 
drawn using the Eclipse Contouring software (Varian Medical System, Inc: version 15.5). 
To filter out radiomics features that depended on the observer, a multiple delineation test was 
performed by having three radiologists segmented the thyroid ROI from the same set of thirty 
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randomly selected patients. The radiomics features were extracted into three sets from the same 
images to measure the reliability of the feature’s value among multiple delineations in thyroid 
segmentation. The intraclass coefficient (ICC) was used to evaluate the reliability of feature 
values by comparing the variability of different values for the same subject to the total variation 
across all ratings and all subjects. Two-way random effects, absolute agreement, and multiple 
raters or measurements were applied from the open-source Pingouin package [32]. ICC cutoffs of 
0.5, 0.75 and 0.9 were then applied to select radiomics features before the model development 
step as displayed in Figures 13-14. 
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Figure 13 3D thyroid segmentation using 3D slicer software. 
 

 

 

Figure 14 Workflow for ICC testing. 
 

 

Features extraction 
 Feature extractions were performed from CT contrast enhanced images using 
Pyradiomics software package (version 3.0) package accessed using 3D slicer (version 4.11.2) 
[21, 33]. All radiomics features consisted of 14 shape-based features, 18 first-order statistics 
features, 73 texture-based features, and 1,183 filtered-based features. The bin width parameter 
was varied from 0.05, 0.1, 0.15, and 0.2 to achieve the best performance of the radiomics model. 
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Figure 15 Example of radiomics features from CT images, which were divided into 4 classes. 
 

 
Right and left lobe thyroid glands in radiomics feature values 

 To investigate the difference of left and right in the thyroid gland in radiomics feature 
value, we evaluated the difference in radiomics features between two lobes by randomly selecting 
30 cases and calculating the radiomics features in each lobe to compare the average feature value. 
 

Clinical information and dosimetry information 
 Clinical variables were collected from the hospital information system. Dosimetric 
variables were calculated from the dose volume histogram via the treatment planning system, 
which are V40, V50, V60, Pit50, Pit55 (Vx: Percentage of thyroid volume that has received at least x 
Gy radiation, Pitx: Percentage of pituitary volume that has received at least x Gy radiation), VS40, 
VS50, VS60 (VSx: Percentage of thyroid volume preserved from x Gy of radiation), the mean dose 
of thyroid and pituitary gland, the maximum dose of thyroid and pituitary gland, and the 
minimum dose of thyroid and pituitary gland dose. 
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Model construction 
 The radiomics features were screened using an intraclass correlation greater than 0.5, 
0.75 and 0.9 to ensure that only robust features were used, given the manual segmentation. For 
model development, the data was divided into two groups: training and testing, which were split 
80:20 %. Three predictive algorithms, logistic regression with regularization, random forest, and 
gradient boosting classifier were performed by the scikit-learn library [34]. The recursive 
elimination method and fisher information were utilized in the feature selection process. The 
models were internally validated using 5-fold cross-validation repeated 20 times. Their 
performance was evaluated using ROC analysis in terms of area under the curve (AUC). In 
addition to the radiomics model, clinical, dosimetric and combined models were built based on 
the two predictive algorithms shown in Figure 16. 
 

 

Figure 16 Model construction workflow  
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Figure 17 Testing model robustness to variation in segmentation workflow 
 

 

Testing the model robustness for variation in segmentation 
 To test the model robustness for variation among observers in segmentation, radiomics 
features in the final model were perturbed by adding a zero-mean gaussian noise with standard 
deviation estimated from multiple delineation testing which were randomly selected from 30 
patients and 3 observers to segment. The final model was tested with perturbed radiomics features 
to evaluate the mean and standard deviation of the AUC value as shown in Figure 17. 

Statistical analysis 
 The mean and standard deviation (SD) values were calculated for continuous variables, 
while the counts and percentages were used to summarize categorical features. The differences in 
feature values between patients with and without RIH were evaluated using the Mann-Whitney U 
tests and Chi-square tests. The difference in predictive performance of the models were evaluated 
using signed rank tests. The Benjamini-Hochberg procedure was performed to control for 
multiple testing. A p-value cutoff of 0.05 was set to define statistical significance. 
 

5. Ethical consideration 
 The current investigation was conducted using a retrospective cohort design and 
was approved by the Institutional Review Board of the Faculty of Medicine of Chulalongkorn 
University (IRB Number: 745/61). All methods were performed in accordance with relevant 
guidelines and regulations. 
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CHAPTER V: RESULTS 
 

Table 2 Patient Characteristics 
 

mean±SD 
RIH  

(N=106) 

No RIH  

(N=114) 

P-value 

Age (years) 

 

48.28±11.71 

(18-83) 

46.53 ± 11.22 

(21-70) 

49.90 ± 11.96 

(18-83) 

0.05 

 

Sex (%) 

Male/Female  

 

72.27/27.73  

 

66.98/33.02  

 

77.19/22.81  

 

0.10 

T stage (%) 

T1 

T2 

T3 

T4 

 

31.36  

33.18  

7.73  

17.73  

 

33.01  

34.91  

16.04  

16.04  

 

29.82  

31.58  

19.30  

19.30  

 

0.36 

N stage (%) 

N0 

N1 

N2 

N3 

 

8.18  

28.64  

51.82  

11.36  

 

4.72  

23.58  

57.55  

14.15  

 

11.40  

33.34  

46.49  

8.77  

0.06 

Clinical stage (%) 

I 

II 

III 

 

1.82  

17.27  

51.82  

 

1.89  

16.04  

52.83  

 

1.75  

18.42  

50.88  

0.73 
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mean±SD 

RIH  

(N=106) 

No RIH  

(N=114) 

P-value 

IVA 

IVB 

19.55  

9.54  

17.92  

11.32  

21.05  

7.90  

FT4 before treatment 

(ng/dl) 

1.25 ± 0.22 

(0.42-1.80)  

1.24 ± 0.23 

(0.42-1.68)  

1.25 ± 0.22 

(0.68-1.78)  

0.45 

TSH before treatment 

(μU/ml) 

2.24 ± 5.19 

 (0.31-3.55) 

2.68 ± 7.08 

 (0.46-3.55) 

1.83 ± 2.30 

 (0.31-2.23) 

< 0.05 

Thyroid volume 

before treatment 

(cm3) 

14.78 ± 6.82 

(5.00-61.80) 

13.23 ± 6.43 

(5.50-46.70) 

15.06 ±7.07 

(5.00-61.80) 

< 0.05 

Pituitary volume 

before treatment 

(cm3) 

0.25 ± 0.17 

(0.00-1.00) 

0.26 ± 0.18 

(0.00-1.00) 

0.24 ± 0.16 

(0.00-0.80) 

0.61 
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Table 3 Dosimetry parameters 
Dosimetry parameters mean±SD RIH 

(N=92) 

No RIH 

(N=103) 

p-value 

Minimum dose to thyroid 

gland (Gy) 

34.41 ± 7.13 

(2.64-7.13) 

34.82 ± 6.68 

(2.64-53.10) 

34.02 ± 7.55 

(10.94-51.80) 

0.41 

Maximum dose to the 

thyroid gland (Gy) 

66.34 ± 7.76 

(46.69-101.90) 

66.93 ± 7.55 

(53.60-91.90) 

65.79 ± 7.94 

(46.69-101.90) 

0.19 

Mean dose to thyroid 

gland (Gy) 

 52.36 ± 6.68 

(29.80-74.20) 

53.05 ± 6.11 

(29.80-71.60) 

51.72 ± 7.14 

(32.80-74.20) 

0.10 

TR V40 (%) 88.93 ± 16.31 

(8.90-100.00) 

91.16 ± 13.38 

(41.20-100.00) 

86.86 ± 18.45 

(8.90-100.00) 

0.19 

TR V50 (%) 64.93 ± 24.45 

(0.00-100.00) 

67.08 ± 23.10 

(10.00-100.00) 

62.94 ± 25.57 

(0.00-99.70) 

0.24 

TR V60 (%) 14.89 ± 19.70 

(0.00-83.40) 

17.34 ± 20.97 

(0.00-83.40) 

12.62 ± 18.23 

(0.00-78.60) 

0.08 

 

TR VS40 (%) 16.31 ± 21.49 

(0.00-71.96) 

14.07 ± 20.30 

(0.00-56.63) 

18.39 ± 22.42 

(0.00-71.96) 

0.12 

 

TR VS50 (%) 44.59 ± 19.44 

(0.00-74.20) 

46.07 ± 18.64 

(0.00-71.60) 

43.21 ± 20.13 

(0.08-74.20) 

0.17 

 

TR VS60 (%) 45.83 ± 17.19 

(5.49-74.20) 

47.42 ± 16.24 

(5.49-71.60) 

44.35 ± 17.98 

(6.73-74.20) 

0.12 

 

Minimum dose to the 

pituitary gland (Gy) 

45.44 ± 20.17 

(4.45-96.70) 

44.11 ± 20.51 

(4.45-75.00) 

46.67 ± 19.86 

(9.40-96.70) 

0.42 
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Dosimetry parameters mean±SD RIH 

(N=92) 

No RIH 

(N=103) 

p-value 

Maximum dose to the 

pituitary gland (Gy) 

60.80 ± 15.45 

(7.00-102.00) 

58.97 ± 16.68 

(7.00-84.50) 

62.49 ± 14.08 

(16.40-102.00) 

0.16 

 

Mean dose to the 

pituitary gland (Gy) 

52.91 ± 17.68 

(0.50-100.60) 

51.34 ± 18.14 

(6.10-82.50) 

54.36 ± 17.19 

(0.50-100.60) 

0.28 

 

Pit V50 (%) 64.98 ± 42.78 

(0.00-100.00) 

64.33 ± 43.03 

(0.00-100.00) 

65.58 ± 42.72 

(0.00-100.00) 

0.85 

 

Pit V55 (%) 56.12 ± 44.93 

(0.00-100.00) 

56.14 ± 45.03 

(0.00-100.00) 

56.11 ± 45.03 

(0.00-100.00) 

0.86 

 

TR V40, V45, V50, V60 = Percentage of thyroid volume that has received at least 40, 45, 50, 60 Gy 

TR VS40, VS50, VS60 = Percentage of thyroid volume preserved from 40, 50, 60 Gy 

Pit V50, V55 = Percentage of pituitary volume that has received at least 50, 55 Gy  

Table 2 provides patient information for the 220 participants, which consisted of NPC 
patients who had a RIH of 106 (48.18%) and non-RIH of 114 (51.82%). The average age was 
48.28 ± 11.71 years, and men outnumbered women by 159 (72.27%) to 61 (27.73%). For TNM 
staging, most patients were clinically staged 3, with a mean of 51.82%, a T2 stage of 33.18%, and 
a N2 stage of 51.82%, respectively. Before treatment, the mean FT4 level was 1.25 ± 0.22 ng/dl, 
and the mean TSH level was 2.24 ± 5.19 μU/ml. The mean volumes of the pituitary and thyroid 
glands before RT were 0.25 ± 0.17 cm3 and 14.78 ± 6.82 cm3, respectively. Figures 18-19 show 
two clinical variables. TSH level before treatment and thyroid volume before treatment, which 
showed a statistical difference between patients with RIH and non-RIH patients (p-value < 0.05). 
As indicated in Table 3, dosimetry data from the dose volume histogram were recorded from 
treatment planning and did not reveal any differences between the RIH and non-RIH groups.  
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Figure 18 TSH level before treatment 

 

 

 

Figure 19 Thyroid volume before treatment 
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Table 4 Number of radiomics features after filtration from the intraclass correlation test 
Feature class No. of features ICC > 0.90 ICC > 0.75 ICC > 0.50 
Shape based 14 4 4 5 
First order statistics 18 14 14 17 
Texture based 73 27 44 63 
Filter-based 1183 573 776 941 
Total 1288 617 838 1026 

- Less than 0.50: Poor reliability  
- Between 0.5 and 0.75: Moderate reliability 
- Between 0.75 and 0.9: Good reliability 
- Greater than 0.9: Excellent reliability 
 

Pretreatment CT contrast-enhanced images were extracted into four classes of 1,288 
radiomics features. To use features that did not depend on the observer, we kept features based on 
the ICC value. ICC values greater than 0.5, 0.75, and 0.9 were used to reduce the number of 
radiomics features to 617, 838 and 1026 radiomics features, as demonstrated in Table 4. 

 

Table 5 Number of radiomics features that differ in RIH and non-RIH groups in each bin width. 

Feature class 

No. of features that that differ in RIH and non-RIH groups 
(p-value < 0.05) 

BW 0.05 BW 0.1 BW 0.15 BW 0.2 
Shape based 1 1 1 1 
First order based 1 3 1 1 
Texture based 3 12 2 2 
Filtered base 475 461 489 484 
Total 480 477 493 488 
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Table 6 Radiomics feature univariate analysis 

 
The number of radiomics features with a statistical difference (p-value less than 0.05) in 

each bin width between RIH and non-RIH groups is shown in Table 5. Only one feature was 
different in the shaped-based class, 1-3 features in the first-order class, 2–12 features in the 
texture-based class, and 461-489 features in the filtered-based class. Univariate analysis of 
radiomics features indicated that while the values of several features significantly differ between 
patients with and without RIH, they are only moderately predictive of RIH (Table 6, AUC = 0.64-
0.65). Highly predictive radiomics features include the wavelet-
HLL_glcm_MaximumProbability, log-sigma-1-0-mm-3D_ngtdm_Coarseness, wavelet-
LLH_ngtdm_Strength, and wavelet-LLH_ngtdm_Strength. 
 
 
 
 
 

Radiomics features mean±SD RIH non-RIH AUC 

BW 0.05: wavelet-

HLL_glcm_MaximumProbability 

42.23 x 10-2 ±  

0.03 

43.23 x 10-2 ± 

0.04 

41.31 x 10-2 ± 

0.03 
0.64 

BW 0.1: 

log-sigma-1-0-mm-

3D_ngtdm_Coarseness 

13.99 x 10-5 ±  

0.00 

15.39 x 10-5 ± 

0.00 

12.68 x 10-5 ± 

0.00 
0.64 

BW 0.15: 

wavelet-LLH_ngtdm_Strength 

9.22 x 10-5 ±  

0.00 

10.30 x 10-5 ± 

0.00 

8.18 x 10-5 ± 

0.00 
0.65 

BW 0.2: 

wavelet-LLH_ngtdm_Strength 

8.91 x 10-5 ±  

0.00 

9.88 x 10-5 ± 

0.00 

8.02 x 10-5 ± 

0.00 
0.65 
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Table 7 Model performance in training and validation sets based on recursive elimination 
technique. 

Data Type 
Train AUC Validation AUC 

 

p-value Dose Clinical Radiomics 

Logistic Regression 

+ - - 0.66 ± 0.02 0.63 ± 0.06 < 0.05 

- + - 0.67 ± 0.01 0.65 ± 0.07 < 0.05 

+ + - 0.74 ± 0.01 0.68 ± 0.07 - 

- - + 0.82 ± 0.01 0.71 ± 0.07 < 0.05 

+ - + 0.79 ± 0.02 0.71 ± 0.07 < 0.05 

- + + 0.87 ± 0.01 0.78 ± 0.07 < 0.05 

+ + + 0.88 ± 0.01 0.80 ± 0.06 < 0.05 

Random Forest 

+ - - 0.84 ± 0.01 0.51 ± 0.06 < 0.05 

- + - 0.83 ± 0.01 0.69 ± 0.07 < 0.05 

+ + - 0.83 ± 0.02 0.71 ± 0.06 - 

- - + 1.00 ± 0.00 0.78 ± 0.06 < 0.05 

+ - + 1.00 ± 0.00 0.78 ± 0.06 < 0.05 

- + + 1.00 ± 0.00 0.80 ± 0.06 < 0.05 

+ + + 1.00 ± 0.00 0.81 ± 0.06 < 0.05 

Gradient boosting classification 

+ - - 0.97 ± 0.03 0.49 ± 0.11 < 0.05 

- + - 0.99 ± 0.01 0.63 ± 0.13 < 0.05 
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Data Type 
Train AUC Validation AUC 

 

p-value Dose Clinical Radiomics 

+ + - 0.95 ± 0.04 0.66 ± 0.02 - 

- - + 0.95 ± 0.04 0.78 ± 0.09 < 0.05 

+ - + 0.95 ± 0.02 0.73 ± 0.05 < 0.05 

- + + 0.97 ± 0.04 0.71 ± 0.06 < 0.05 

+ + + 0.93 ± 0.04 0.73 ± 0.05 < 0.05 
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Table 8 Model performance in training and validation sets based on fisher information. 
Data Type 

Train AUC Validation AUC 
 

p-value Dose Clinical Radiomics 

Logistic Regression 

+ - - 0.65 ± 0.01 0.63 ± 0.09 < 0.05 

- + - 0.66 ± 0.01 0.65 ± 0.06 < 0.05 

+ + - 0.68 ± 0.02 0.68 ± 0.10 - 

- - + 0.63 ± 0.01 0.62 ± 0.07 < 0.05 

+ - + 0.66 ± 0.02 0.64 ± 0.07 < 0.05 

- + + 0.68 ± 0.02 0.65 ± 0.06 < 0.05 

+ + + 0.71 ± 0.02 0.70 ± 0.07 < 0.05 

Random Forest 

+ - - 0.82 ± 0.00 0.61 ± 0.08 < 0.05 

- + - 0.83 ± 0.01 0.70 ± 0.07 < 0.05 

+ + - 1.00 ± 0.00 0.48 ± 0.06 - 

- - + 1.00 ± 0.00 0.72 ± 0.06 < 0.05 

+ - + 0.86 ± 0.01 0.74 ± 0.07 < 0.05 

- + + 0.97 ± 0.01 0.70 ± 0.07 < 0.05 

+ + + 0.95 ± 0.00 0.76 ± 0.07 < 0.05 

Gradient boosting classification 

+ - - 0.57 ± 0.00 0.48 ± 0.10 < 0.05 

- + - 0.85 ± 0.00 0.63 ± 0.09 < 0.05 

+ + - 0.92 ± 0.04 0.58 ± 0.11 - 
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Data Type 
Train AUC Validation AUC 

 

p-value Dose Clinical Radiomics 

- - + 0.89 ± 0.06 0.67 ± 0.07 < 0.05 

+ - + 1.00 ± 0.00 0.71 ± 0.07 < 0.05 

- + + 0.95 ± 0.01 0.64 ± 0.09 > 0.05 

+ + + 1.00 ± 0.00 0.70 ± 0.06 > 0.05 
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Model performance 
Model performance in training and validation sets is displayed in Table 7-8. For 

recursive elimination technique in feature selection step, the combined model had the best 
validation performance in logistic regression, as indicated by an AUC of 0.80 ± 0.06, which was 
higher than the dose, clinical and clinical & dose, which had AUCs of 0.63 ± 0.06, 0.65 ± 0.07, 
and 0.68 ± 0.07, respectively. The radiomics had an AUC of 0.71 ± 0.07, which is comparable to 
the radiomics & dose, while the AUC for the radiomics & clinical is 0.78 ± 0.07. The results of 
the random forest demonstrate the same pattern as the logistic regression. The combined model 
had the highest AUC of 0.81 ± 0.06, which was higher than the dose, clinical, and clinical & dose, 
which had AUCs of 0.51 ± 0.06, 0.69 ± 0.07, 0.71 ± 0.06, respectively. The radiomics in the 
random forest algorithm received an AUC of 0.78 ± 0.06, which is equal to the radiomics & dose, 
while the AUC for the radiomics & clinical was 0.80 ± 0.06. In gradient-boosting classification, 
the radiomics model had the highest AUC of 0.78 ± 0.09, which is greater than the dose, clinical, 
and clinical & dose models in AUCs of 0.49 ± 0.11, 0.63 ± 0.13, and 0.66 ± 0.02, respectively. 
The performance of radiomics & dose, radiomics & clinical, and the combined model were better 
than the conventional model but not greater than the radiomics model.  

Based on fisher information in the feature selection step, as shown in Table 8, the 
combined model had the greatest validation performance with an AUC of 0.70 ± 0.07 in logistic 
regression, which was slightly more than the dose, clinical, and clinical & dose models by AUCs 
of 0.63 ± 0.09, 0.65 ± 0.06, and 0.68 ± 0.10, respectively. Radiomics model, radiomics & dose, 
and radiomics & clinical had AUCs in validation performance of 0.62 ± 0.07, 0.64 ± 0.07, and 
0.65 ± 0.06. In random forest, the combined data type also showed the best validation 
performance with an AUC of 0.76 ± 0.07, which was greater than the dose, clinical, and clinical 
& dose models with AUCs of 0.61 ± 0.08, 0.70 ± 0.07, and 0.48 ± 0.06. Radiomics model, 
radiomics & dose, and radiomics & clinical had AUCs of 0.72  ± 0.06, 0.74  ± 0.07, and 0.70  ± 
0.07, respectively. In the gradient boosting classifier, the radiomics & dose model had validation 
performance comparable to the combined model with an AUC of 0.71 ± 0.07 and 0.70 ± 0.06 
which was higher than the dose, clinical, clinical & dose, and radiomics & clinic models with 
AUCs of 0.48 ± 0.10, 0.63 ± 0.09, 0.58 ± 0.11, and 0.64 ± 0.09, respectively. 
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Figure 20 Performance of the combined model compared to other models in the train set (a) and 
the validation set (b) in the logistic regression 
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Figure 21 Performance of the combined model compared to other models in the train set (a) and 
the validation set (b) in the random forest 
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Figure 22 Performance of the combined model in the test set: (a) logistic regression, (b) random 
forest 
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Table 9 Model performance in the test dataset in logistic regression 
Model AUC accuracy precision F1-score recall specificity 

Dose 0.49 0.50 0.50 0.50  0.52 0.50 

Clinical 0.62 0.64 0.68 0.62 0.86  0.44 

Clinical & dose 0.63 0.57 0.57 0.57  0.57 0.57 

Radiomics 0.70 0.66 0.70 0.65 0.86 0.48 

Radiomics & dose  0.71 0.64 0.64 0.64  0.67 0.61 

Radiomics & clinical 0.71 0.70 0.72 0.70  0.81 0.61 

Combined 0.72 0.72 0.74 0.73 0.81 0.68 

 

 

Table 10 Model performance in the test dataset in random forest 
Model AUC accuracy precision F1-score recall specificity 

Dose 0.45 0.45 0.45 0.45 0.43 0.50 

Clinical 0.62 0.61 0.62 0.61 0.67 0.57 

Clinical & dose 0.67 0.68 0.69 0.68 0.76 0.61 

Radiomics 0.70 0.61 0.61 0.61  0.57 0.61 

Radiomics & dose  0.70 0.64 0.64 0.64  0.67 0.61 

Radiomics & clinical 0.73 0.70 0.71 0.70  0.71 0.70 

Combined 0.74 0.73 0.73 0.73 0.76 0.70 
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Figure 23 Confusion matrices for the best combined models on the held-out test dataset. (a) The 
combined logistic regression model. (b) The combined random forest model. 

 
The top performing models, namely the combined logistic regression model and the 

combined random forest model, were then evaluated on a held-out test dataset (Table 9-10). 
The combined models again outperformed the models variants that utilized only clinical and 
dosimetric data in almost all metrics. The only exception is sensitivity where the combined 
models did not achieve the best performances. It should be noted that although the combined 
logistic regression model and the combined random forest model achieved similar AUCs (0.72 
and 0.74, respectively), they have different tradeoffs. While the combined random forest model 
achieved higher sensitivity in the high specificity range (>0.70), the opposite is true in the 
intermediate specificity range. The confusion matrices (Figure 23) also suggested that the 
combined logistic regression model tends to produce slightly more false positives than false 
negatives while the combined random forest model behaves in the opposite manner. Hence, 
multiple metrics should be considered when selecting the best model and cutoff value. 
 
Table 11 Optimal threshold points of combined model 

Moel type Threshold TPR FPR 1-FPR 

LR: Combined model 0.61 0.67 0.30 0.70 

RF: Combined model 0.52 0.76 0.30 0.70 
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Figure 24 The optimal threshold point for the combined model of logistic regression 
 

 

 

 

Figure 25 The optimal threshold point for the combined model of random forest 
 

For the combined model in logistic regression, the optimal cutoff point was 0.61 (Table 
11), so anything above this can be labeled as 1 else 0. Figure 24 displayed the output that where 
TPR is crossing 1-FPR, TPR was 67% and FPR was 30%. In the combined model in random 
forest, the optimal cutoff point was 0.52, where the TPR crossed the 1-FPR and the TPR was 76% 
and the FPR was 30%, as shown in Figure 25. 
 The features selected in the combined logistic regression model consisted of three 
clinical features: bilateral neck metastasis, pretreatment TSH level, and age; one dosimetry 
feature: TR V40; and 26 radiomics signatures (Table 12). The radiomics feature's top three high 
positive coefficients were log-sigma-1-0-mm-3D_ngtdm_contrast, log-sigma-1-0  mm-
3D_glszm_LowGrayLevelZoneEmphasis, and log-sigma-2-0-mm-3D_ngtdm_coarseness, while 
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the top three high negative coefficients were wavelet-
HHL_glszm_SmallAreaLowGrayLevelEmphasis, wavelet-LLH_glrlm_ShortRun 
LowGrayLevelEmphasis, and wavelet-LLL_firstorder_Minimum. For random forest, the feature 
selected comes from two clinical and dose variables: pre-treatment TSH level and mean dose to 
thyroid (TR mean), respectively. Thirty-four radiomics signatures were selected, and the 
radiomics features of high importance were wavelet-HHL_glszm_SmallAreaEmphasis, log-
sigma-2-0-mm-3D_firstorder_TotalEnergy, and log-sigma-3-0-mm-3D_glcm_Idn as shown in 
Figures 27 and Table 13. 
 

Radiomics feature values in right and left-lobe thyroid glands 
 The results showed that more than 90% of radiomics features in the right and left 

lobes had no difference in the mean value of radiomics features (p-value > 0.05). For those 
features which were selected in the final combined models, more than 95% of the radiomics 
features had no difference in terms of average feature value in each lobe of the thyroid gland, as 
displayed in the Appendix Table 1 and Appendix Figure 1. This implied that there were no 
heterogeneities of radiation-induced thyroid effects on the different sides because the thyroid is a 
parallel organ that contains a number of thyroid follicles in both lobes that are independent 
functional subunits. All subunits must be disabled to cause organ failure. 

 
Testing the model robustness for variation in segmentation 

 The results of the prediction of the final model from multiple segmentation by 
simulated variation in radiomics feature values found that the combined model in logistic 
regression had an average AUC of 0.81 ± 0.06  and the combined model in random forest had an 
AUC of 0.82 ± 0.04. 
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Figure 26 Feature selected in the combined model from logistic regression (The red bars 
represent the clinical and dose selected features) 

 

 

 

 

Figure 27 Feature selected in the combined model from random forest (The red bars represent 
the clinical and dose selected features)  
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Table 12 Radiomics signatures of the combined model in logistic regression 
Feature name Feature class 

original_firstorder_Minimum First order statistic 

original_ngtdm_Complexity Texture-based 

wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis Filter-based/ Texture-based 

wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis Filter-based/ Texture-based 

wavelet-LLL_firstorder_Minimum Filter-based/ Texture-based 

wavelet-HHL_glszm_SmallAreaEmphasis Filter-based/ Texture-based 

wavelet-LLH_glrlm_LowGrayLevelRunEmphasis Filter-based/ Texture-based 

wavelet-LHH_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

wavelet-LLH_ngtdm_Contrast Filter-based/ Texture-based 

wavelet-LHH_glszm_SmallAreaEmphasis Filter-based/ Texture-based 

wavelet-HHL_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

wavelet-LHH_glszm_SmallAreaHighGrayLevelEmphasis Filter-based/ Texture-based 

wavelet-LLH_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

wavelet-LLL_ngtdm_Complexity Filter-based/ Texture-based 

wavelet-HLL_glszm_LowGrayLevelZoneEmphasis Filter-based/ Texture-based 

wavelet-LLH_glcm_Idmn Filter-based/ Texture-based 

wavelet-LLL_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

log-sigma-1-0-mm-3D_glcm_Idmn Filter-based/ Texture-based 

log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis Filter-based/ Texture-based 

log-sigma-5-0-mm-

3D_glszm_SizeZoneNonUniformityNormalized 

Filter-based/ Texture-based 
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Feature name Feature class 

log-sigma-5-0-mm-3D_ngtdm_Complexity Filter-based/ Texture-based 

log-sigma-1-0-mm-3D_ngtdm_Coarseness Filter-based/ Texture-based 

log-sigma-4-0-mm-3D_glszm_GrayLevelVariance Filter-based/ Texture-based 

log-sigma-2-0-mm-3D_ngtdm_Coarseness Filter-based/ Texture-based 

log-sigma-1-0-mm-

3D_glszm_LowGrayLevelZoneEmphasis 

Filter-based/ Texture-based 

log-sigma-1-0-mm-3D_ngtdm_Contrast Filter-based/ Texture-based 

 * Feature descriptions are shown in the appendix. 
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Table 13 Radiomics signatures of the combined model in random forest 
Feature name   

original_shape_VoxelVolume Shape-based 

original_firstorder_Minimum First order statistic 

original_glszm_LargeAreaHighGrayLevelEmphasis Texture-based 

wavelet-LLH_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

wavelet-LLH_glszm_SmallAreaEmphasis Filter-based/ Texture-based 

wavelet-LLH_glszm_ZoneEntropy Filter-based/ Texture-based 

wavelet-LLH_gldm_DependenceNonUniformity Filter-based/ Texture-based 

wavelet-LHL_firstorder_TotalEnergy Filter-based 

wavelet-LHL_glrlm_GrayLevelNonUniformity Filter-based/ Texture-based 

wavelet-LHL_glszm_LargeAreaHighGrayLevelEmphasis Filter-based/ Texture-based 

wavelet-LHL_gldm_DependenceNonUniformity Filter-based/ Texture-based 

wavelet-LHL_gldm_GrayLevelNonUniformity Filter-based/ Texture-based 

wavelet-LHH_glszm_SizeZoneNonUniformityNormalized Filter-based/ Texture-based 

wavelet-LHH_gldm_DependenceNonUniformity Filter-based/ Texture-based 

wavelet-LHH_ngtdm_Busyness Filter-based/ Texture-based 

wavelet-HLL_gldm_GrayLevelNonUniformity Filter-based/ Texture-based 

wavelet-HLH_firstorder_TotalEnergy Filter-based 
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Feature name   

wavelet-HLH_glrlm_GrayLevelNonUniformity Filter-based/ Texture-based 

wavelet-HLH_gldm_GrayLevelNonUniformity Filter-based/ Texture-based 

wavelet-HHL_firstorder_Skewness Filter-based 

wavelet-HHL_glszm_SmallAreaEmphasis Filter-based/ Texture-based 

wavelet-HHL_gldm_DependenceNonUniformity Filter-based/ Texture-based 

wavelet-HHH_firstorder_TotalEnergy Filter-based 

log-sigma-2-0-mm-3D_firstorder_Range Filter-based 

log-sigma-2-0-mm-3D_firstorder_TotalEnergy Filter-based 

log-sigma-2-0-mm-3D_glrlm_HighGrayLevelRunEmphasis Filter-based/ Texture-based 

log-sigma-2-0-mm-3D_glrlm_LowGrayLevelRunEmphasis Filter-based/ Texture-based 

log-sigma-3-0-mm-3D_firstorder_Energy Filter-based 

log-sigma-3-0-mm-3D_glcm_Idn Filter-based/ Texture-based 

log-sigma-3-0-mm-

3D_glszm_SizeZoneNonUniformityNormalized 

Filter-based/ Texture-based 

* Feature descriptions are shown in the appendix. 
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CHAPTER VI: DISCUSSION 
 

The main findings of the investigation are reviewed in this chapter, including the study 
limitations and study direction. 
 This research aimed to develop and compare three models - a conventional model, a 
radiomics model, and a combination model - using data from 220 patients with NPC to predict 
RIH. The results showed that the combination model outperformed the conventional model in 
logistic regression, random forest, and gradient boosting classifier. The combined model in 
logistic regression and random forest using the recursive elimination technique showed the best of 
the model’s performance from the combination of data types, while the combined model in the 
gradient-boosting classifier had lower performance. Hence, the two combined models from 
logistic regression and random forest were chosen to be further explored. 
 For the model performance in the test dataset, the combined model had satisfactorily high 
AUC, accuracy, precision, and F1-scores in both logistic regression and random forest. The 
sensitivity in logistic regression was high but specificity was quite low. In random forest, the 
combined model had high sensitivity and specificity. In this clinical application, high sensitivity 
might be preferred over specificity because the task is to detect the risk of side effects after 
treatment with a new technique or another modality. In the case of a false-positive prediction, the 
patient still receives the benefit because they would be treated for the target tumors with a 
different technique or different modality. For model prediction from variation of delineation, the 
results showed that the final model did not depend on multiple observers’ segmentation, with the 
coefficient of variation ranging from 8.7% to 7.4% and 7.4% to 4.9% in logistic regression and 
random forest, respectively. 

In the final combined logistic regression model, the important clinical and dose factors 
were bilateral neck metastasis, pretreatment TSH level, age, and TR V40, while in the random 
forest, pretreatment TSH level and TR mean were significant features for prediction. These 
findings were consistent with several other studies [4, 29, 35, 36]. For clinical factors, sex, age, 
clinical stage, and TSH value were reported as relevant factors in RIH by Zhou L et al. In this 
study, younger age, positive nodes, and high pretreatment TSH levels were identified as having a 
higher risk of developing RIH. For dosimetry information, TR V40 and TR mean were significant 
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features for prediction, which was in agreement with the study by Zhai R et al [29]. They 
suggested that TR V40 was highly predictive for hypothyroidism occurrence after treatment in 
patients with NPC. Chow et al [37]. also suggested TR mean as one of the most often suggested 
dosimetric predictors.  

The combined model used in this study incorporated radiomic features, with the majority 
of these features coming from texture classes and filtered classes, such as log-
sigma_ngtdm_contrast, log-sigma_ngtdm_coarseness, and wavelet-
HHL_glszm_SmallAreaEmphasis. The texture of an image reflects the spatial distribution of 
intensity levels in a region of interest and can be characterized as fine, coarse, grainy, or smooth, 
which can help to identify the characteristics of organs or malignancies. Filtered images enhanced 
the border or information that would not have been visible in a traditional image. Configuration 
and thyroid texture were interesting points to study in relation to the side effects of radiation 
injury. Ishibashi N et al [38]. reported that decreased thyroid gland CT density and increased TSH 
levels before and after radatiotherapy result in hypothyroidism, suggesting that a low thyroid CT 
intensity before RT might be relevant to a higher risk of RIH. Since it was difficult to distinguish 
the textures of the thyroid in a typical image by naked eyes, radiomics was used to extract hidden 
characteristics within the images. Figure 28 shows a thyroid gland CT image in patients with RIH 
and without  RIH after treatment, each with a different radiomics feature value that is not 
detectable by the human eyes. NGTDM (Neighboring Gray Tone Difference Matrix) complexity 
is a texture-based class calculated from the variance in gray values between a gray value and its 
neighbors. The high complexity value means there are several quick fluctuations in the gray level 
intensity, and the image is not homogeneous. Wavelet-HHL glszm small area emphasis is a filter-
based and texture-based class that indicates how small areas are distributed, with a larger number 
indicating more small areas and smoother textures [21]. 
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Figure 28 CT image of the thyroid gland in patients who developed RIH (a) and those who did 
not develop RIH (b) after treatment with different radiomics feature values. 
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Medical images are one of the most important tools for the success of cancer treatment, 
as they provide information on anatomy, tumor location, and organs at risk, including baseline 
organ morphology which are crucial in individualizing patient dose during treatment planning. 
The application of radiomics for radiation complication prediction has gained attentions recently, 
as it has been shown to enhance model performance as compared to clinical data [6, 7]. 
Smyczynska U et al. [30] reported  that radiomics analysis did not significantly improve the 
predictive model for RIH, which contradicts to our findings. One of the possible reasons could be 
the difference in cancer type.  Their predictive model was for oropharyngeal cancer, while we 
built the model for nasopharyngeal cancer.  These two cancer types are well-known for having 
different etiologies and characteristics, which may have influenced the radiomics and clinical 
features.  

In clinical practice, the probability of radiation-induced hypothyroidism should be 
considered before planning to reduce the volume of the thyroid gland exposed, notify patients of 
possible side effects after treatment, or change the treatment modality to proton therapy to reduce 
the risk of hypothyroidism. Although the mechanism of RIH remains unclear, ionizing radiation 
can cause damage to thyroid gland, resulting in alterations in the morphology, vessel structure, 
and immune response. The results of our study demonstrated that the combination of  CT imaging 
with clinical and dose information can significantly improve the performance of prediction 
models for RIH. We argue that pretreatment thyroid images contain valuable information that can 
be used to predict the risk of hypothyroidism.  

 
Limitations 

This study had certain limitations.  First, the retrospective design of the study did not 
allow for control of CT acquisition protocols, which could have affected radiomics features. 
Moreover, this study required a long follow-up period, which resulted in a relatively small sample 
size.   

 
Future directions 

Collecting data in multiple centers to increase the sample size and test the model's 
generalizations in a different population should be studied. Another medical image, such as CT 
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non-contrast images, might affect radiomics features, which affect prediction performances, and 
should be explored for better results. In addition, the ensemble model and deep learning network 
might be study further to increase the prediction performance in this task. 
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CHAPTER VII: CONCLUSION 
 

In this work, we developed a model to predict hypothyroidism after radiation treatment in 
nasopharyngeal cancers patients using pre-treatment CT images. For effective prediction, this 
research used clinical and dosimetry information from treatment planning combined with CT 
images before treatment.  
 Firstly, images were acquired from CT simulation before treatment and then manually 
segmented to cover the thyroid gland area. Second, CT images were extracted into numerical 
features, which consisted of 1,288 radiomics features divided into 4 classes: shape-based, first-
order statistic, texture-based, and filtered-based. For the feature filtration step, the robust features 
were considered using ICC criteria from variation in the segmentation test. Subsequently, in the 
model development step, we split 80% of the data for model training and 20% for the test set. 
Three machine learning techniques were chosen to build the predictive model: logistic regression, 
random forest, and gradient boosting classifier. The hyperparameters of the model were tuned to 
get the best performances in the validation set and then performed in the test set. The results were 
compared between the dose model, clinical model, clinical and dose, radiomics model, radiomics 
and dose model, radiomics and clinical model, and combined model. 
 In summary, this study demonstrated that incorporating radiomics with clinical and 
dosage information had the highest performance and could significantly improve RIH prediction 
performance in NPC patients when compared to the conventional methods. We identified the 
significant clinical and dosimetry predictors as TSH level before treatment, age, positive nodes, 
percentage of thyroid volume that has received at least 40 Gy, and mean dose to thyroid. For 
radiomics signatures in RIH prediction, there were 26 variables in logistic regression and 30 
variables in random forest, which came from first-order statistic classes, texture-based classes, 
and filtered-base classes. These findings could potentially be used in pre- treatment planning to 
optimize dose constraints on the thyroid gland and reduce the risk of hypothyroidism.  
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Appendix 
 
Table 14 The difference of left and right in the thyroid gland in radiomics feature value 

Radiomics features 

Number of radiomics features: mean of feature value 

no difference in the right and left sides/total features 

(p-value > 0.05) 

% 

bw 0.05 1166/1288 90.53 % 

bw 0.1 1174/1288 91.15 % 

bw 0.15 1179/1288 91.54 % 

bw 0.2 1183/1288 91.84 % 

LR: combined model 25/26 96.15 % 

RF: combined model 33/34 97.05 % 

 
 

 

Figure 29 Mean of radiomics features in right and left lobed thyroid in logistic regression 
combined model 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74 

 

 

 

Figure 30 Mean of radiomics features in right and left lobed thyroid in random forest combined 
model 
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Table 15 Feature descriptions of radiomics signatures in combined logistic regression model 
Feature name Feature descriptions 

original_firstorder_Minimum Minimum value of voxel intensities in ROI 

original_ngtdm_Complexity Mean difference of voxel intensities among the 

surrounding area and the center voxel from ngtdm 

(Neighbouring Gray Tone Difference Matrix) 

wavelet-

HHL_glszm_SmallAreaLowGrayLevelEmp

hasis 

The percentage of the combined distribution of zones 

with smaller sizes and lower gray-level values in the 

image from glszm (Gray Level Size Zone Matrix) 

after wavelet-HHL transformed 

wavelet-

LLH_glrlm_ShortRunLowGrayLevelEmph

asis 

The joint distribution of low intensities values and 

shorter run lengths from glrlm (Gray Level Run 

Length Matrix) after wavelet-LLH transformed 

wavelet-LLL_firstorder_Minimum 

Minimum value of voxel intensities in ROI after 

wavelet-LLL transformed 

wavelet-HHL_glszm_SmallAreaEmphasis How small size zones are distributed from glszm 

(Gray Level Size Zone Matrix) after wavelet-HHL 

transformed 

wavelet-

LLH_glrlm_LowGrayLevelRunEmphasis 

How low gray-level values are distributed from glrlm 

(Gray Level Run Length Matrix) after wavelet-LLH 

transformed 

wavelet-

LHH_glszm_SizeZoneNonUniformityNorm

The variability of size zone volumes in the ROI from 

glszm (Gray Level Size Zone Matrix) after wavelet-
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Feature name Feature descriptions 

alized LHH transformed 

wavelet-LLH_ngtdm_Contrast 

The alteration in spatial intensity from ngtdm 

(Neighbouring Gray Tone Difference Matrix) after 

wavelet-LLH transformed 

wavelet-LHH_glszm_SmallAreaEmphasis 

How small size zones are distributed glszm (Gray 

Level Size Zone Matrix) after from wavelet-LHH 

transformed 

wavelet-

HHL_glszm_SizeZoneNonUniformityNorm

alized 

The variability of size zone volumes in the ROI from 

glszm (Gray Level Size Zone Matrix) after wavelet-

HHL transformed 

wavelet-

LHH_glszm_SmallAreaHighGrayLevelEm

phasis 

The proportion of the joint distribution of smaller size 

zones with higher gray-level intensities from wavelet-

LHH_glszm (Gray Level Size Zone Matrix) 

wavelet-

LLH_glszm_SizeZoneNonUniformityNorm

alized 

The variability of size zone volumes in the ROI from 

glszm (Gray Level Size Zone Matrix) after wavelet-

LLH transformed 

wavelet-LLL_ngtdm_Complexity Mean difference of voxel intensities among the 

surrounding area and the center voxel from ngtdm 

(Neighbouring Gray Tone Difference Matrix) after 

wavelet-LLL transformed 

wavelet-

HLL_glszm_LowGrayLevelZoneEmphasis 

Lower gray-level size zones distributions from glszm 

(Gray Level Size Zone Matrix) after wavelet-HLL 
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Feature name Feature descriptions 

transformed 

wavelet-LLH_glcm_Idmn Calculate the local homogeneity of an image from 

glcm (Gray Level Co-occurrence Matrix) after 

wavelet-LLH transformed 

wavelet-

LLL_glszm_SizeZoneNonUniformityNorm

alized 

The variability of size zone volumes in the ROI from 

glszm (Gray Level Size Zone Matrix) after wavelet-

LLL transformed 

log-sigma-1-0-mm-3D_glcm_Idmn Calculated the local homogeneity of an image after 

log transformed 

log-sigma-5-0-mm-

3D_glszm_SmallAreaEmphasis 

How small size zones are distributed from glszm 

(Gray Level Size Zone Matrix) after log transformed 

log-sigma-5-0-mm-

3D_glszm_SizeZoneNonUniformityNormal

ized 

The variability of size zone volumes in the ROI from 

glszm (Gray Level Size Zone Matrix) after log 

transformed 

log-sigma-5-0-mm-3D_ngtdm_Complexity Mean difference of voxel intensities among the 

surrounding area and the center voxel from ngtdm 

(Neighbouring Gray Tone Difference Matrix) after 

transformed 

log-sigma-1-0-mm-3D_ngtdm_Coarseness Calculate of mean difference among the center voxel 

and its surrounding areas from ngtdm (Neighbouring 

Gray Tone Difference Matrix) after log transformed 

log-sigma-4-0-mm- Measure variance in gray level intensities from glszm 
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Feature name Feature descriptions 

3D_glszm_GrayLevelVariance (Gray Level Size Zone Matrix) after log transformed 

log-sigma-2-0-mm-3D_ngtdm_Coarseness Calculate of mean difference among the center voxel 

and its surrounding areas from ngtdm (Neighbouring 

Gray Tone Difference Matrix) after log transformed 

log-sigma-1-0-mm-

3D_glszm_LowGrayLevelZoneEmphasis 

How lower gray-level size zone are distributed from 

glszm (Gray Level Size Zone Matrix) after log 

transformed 

log-sigma-1-0-mm-3D_ngtdm_Contrast The alteration in spatial intensity from ngtdm 

(Neighbouring Gray Tone Difference Matrix) after 

log transformed 
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Table 16 Feature descriptions of radiomic signatures in combined random forest model 
Feature name Feature descriptions 

original_shape_VoxelVolume Volume of the region of interest 

original_firstorder_Minimum Minimum value of voxel intensities in ROI 

original_glszm_LargeAreaHighGrayLevelEmphasis The percentage of joint distribution between 

larger size zones and higher gray-level values 

from glszm (Gray Level Size Zone Matrix) 

wavelet-

LLH_glszm_SizeZoneNonUniformityNormalized 

The variability of size zone volumes in the 

ROI from glszm (Gray Level Size Zone 

Matrix) after wavelet-LLH transformed 

wavelet-LLH_glszm_SmallAreaEmphasis How small size zones are distributed from 

glszm (Gray Level Size Zone Matrix) after 

wavelet-LLH transformed 

wavelet-LLH_glszm_ZoneEntropy Randomness in the distribution of hues and 

zone sizes from glszm (Gray Level Size Zone 

Matrix) after wavelet-LLH transformed 

wavelet-LLH_gldm_DependenceNonUniformity The similarity in the image from gldm (Gray 

Level Dependence Matrix) after wavelet-LHL 

transformed  

wavelet-LHL_firstorder_TotalEnergy Size of an image's voxel values that scaled by 

the volume of the voxel in cubic after 

wavelet-LHL transformed 

wavelet-LHL_glrlm_GrayLevelNonUniformity Similarity of Gray-level intensity values from 
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Feature name Feature descriptions 

glrlm (Gray Level Run Length Matrix) after 

wavelet-LHL transformed 

wavelet-

LHL_glszm_LargeAreaHighGrayLevelEmphasis 

The proportion of the joint distribution of 

higher intensity values and larger size zones 

from glszm (Gray Level Size Zone Matrix) 

after wavelet-LHL transformed 

wavelet-LHL_gldm_DependenceNonUniformity Similarity of dependence in the image from 

gldm (Gray Level Dependence Matrix) after 

wavelet-LHL transformed 

wavelet-LHL_gldm_GrayLevelNonUniformity Similarity of gray-level intensity values in the 

image from gldm (Gray Level Dependence 

Matrix) after wavelet-LHL transformed 

wavelet-

LHH_glszm_SizeZoneNonUniformityNormalized 

The alteration of size zone volumes in the 

image from glszm (Gray Level Size Zone 

Matrix) after wavelet-LHH transformed 

wavelet-LHH_gldm_DependenceNonUniformity Calculate the similarity of dependence in the 

image from gldm (Gray Level Dependence 

Matrix) after wavelet-LHH transformed 

wavelet-LHH_ngtdm_Busyness Calculate the alteration of pixel to its 

neighbour from ngtdm (Neighbouring Gray 

Tone Difference Matrix) after wavelet-LHH 

transformed 
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Feature name Feature descriptions 

wavelet-HLL_gldm_GrayLevelNonUniformity Similarity of gray-level intensity values in the 

image from gldm (Gray Level Dependence 

Matrix) after wavelet-HLL transformed 

wavelet-HLH_firstorder_TotalEnergy Size of an image's voxel values that scaled by 

the volume of the voxel in cubic after 

wavelet-HLH transformed 

wavelet-HLH_glrlm_GrayLevelNonUniformity Similarity of gray-level intensity values in the 

image from glrlm (Gray Level Run Length 

Matrix) after wavelet-HLH transformed 

wavelet-HLH_gldm_GrayLevelNonUniformity Similarity of gray-level intensity values in the 

image from gldm (Gray Level Dependence 

Matrix) after wavelet-HLH transformed 

wavelet-HHL_firstorder_Skewness The asymmetry of the range of values 

surrounding the mean after wavelet-HHL 

transformed 

wavelet-HHL_glszm_SmallAreaEmphasis Calculate the distribution of small size zones 

from glszm (Gray Level Size Zone Matrix) 

after wavelet-HHL transformed 

wavelet-HHL_gldm_DependenceNonUniformity Calculate the similarity of dependence in the 

image from gldm (Gray Level Dependence 

Matrix) after wavelet-HHL transformed 

wavelet-HHH_firstorder_TotalEnergy Size of an image's voxel values that scaled by 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 82 

Feature name Feature descriptions 

the volume of the voxel in cubic after 

wavelet-HHH transformed 

log-sigma-2-0-mm-3D_firstorder_Range Grayscale values in the ROI after log 

transformed 

log-sigma-2-0-mm-3D_firstorder_TotalEnergy Size of an image's voxel values that scaled by 

the volume of the voxel in cubic after log 

transformed 

log-sigma-2-0-mm-

3D_glrlm_HighGrayLevelRunEmphasis 

Determine how the higher gray-level values 

are distributed from glrlm (Gray Level Run 

Length Matrix) after log transformed 

log-sigma-3-0-mm-3D_firstorder_Energy Calculate the size of an image's voxel values 

after log transformed 

log-sigma-3-0-mm-3D_glcm_Idn Calculate the local homogeneity of an image 

after log transformed 

log-sigma-3-0-mm-

3D_glszm_SizeZoneNonUniformityNormalized 

The alteration of size zone volumes in the 

image from glszm (Gray Level Size Zone 

Matrix) after log transformed 

log-sigma-2-0-mm-3D_glrlm_ LongRunHighGray 

LevelEmphasis 

Calculate the joint distribution of long run 

lengths with higher gray-level values from 

glrlm (Gray Level Run Length Matrix) after 

log transformed 
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