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CHAPTER 1
INTRODUCTION

1.1 Overview

Major Depressive Disorder (MDD) is a common disorder in the global population. The
impact of COVID-19 worsens the depression situation [1-5]. Patients who suffer from depression
has rapidly increased during the pandemic. Depression is a fatal disorder that interferes with daily
life and can lead to suicide. The prevention of life-threatening depression requires fast diagnosis
and proper treatment. However, medical personnel are inadequate to measure depression for all
citizens. One solution to reduce the responsibility of medical personnel that is currently utilized
is the capability of artificial intelligence that can support medical personnel as a decision-support

tool or primary decision tool.

Clinical interviews are one of the methods used to diagnose depression [6]. There is a list
of questions to estimate mood, anhedonia (the inability to feel pleasure), anergia (a continual
feeling of lack of energy), concentration, appetite, sleep, guilt, and suicide. To diagnose
depression, a psychiatrist examines the patient's expression, posture, voice tone, and response
content. Similarly, artificial intelligence has the capability of video, voice, and text processing that

could potentially mimic a psychiatrist's observation.

Artificial intelligence has various approaches to processing data. Utilizing data from
medical services necessitates obtaining patient consent, making it difficult to create large
datasets. Therefore, a feature extraction tool is necessary to protect the privacy of patient
information. Interview videos contain three types of data. There are expressions, voices, and
textual content. The voice and textual content data are private because patients can be
effortlessly identified by them. Hence, expression is a strategy to extract features for patient

privacy protection.

The Facial Action Coding System (FACS) [7] defines a set of facial muscle movements
that correspond to the displayed facial emotion. Facial expression features are extracted in this
system to avoid identification. The OpenFace [8] tool takes responsibility for extracting features
from interview videos. The extracted features are called Action Units (AUs). Therefore, the data

set that was extracted from the tool is a time-series that contains a set of Action Units (AUSs).



This thesis proposes deep learning approaches to time-series classification. In this
research, we develop a fusion model to improve depression and non-depression classification

from real-world data extraction and explain the result of the model in terms of facial key points.

1.2 Aims and Objectives

1. To provide methods that can improve the accuracy of the depression and non-
depression classification models by utilizing time-series facial key point data
extracted from interview videos to protect data privacy.

2. To explain the results of methods in terms of facial key point data.

1.3 Scope of Work

® FEmploy the dataset from the DMIND application, which is the result of a
collaboration between Chulalongkorn University's faculties of medicine and
engineering.

® Use facial key points that were extracted from the interview video as input.

® Develop neural network architectures for depression (moderate, severe) and non-

depression (normal, mild) classifications.

® Fvaluate the performance of the proposed neural network architectures in terms of

classification.

® Explain the results of the proposed methods in terms of facial key points.

1.4 Expected Benefits

® Facial key point data can be used to differentiate between depression and non-

depression.

® [acial expression video data can be made private by extracting time-series facial key

point data.
® Patients can be helped to become aware of depression disorders.

® Medical personnel can be helped to reduce their workload.



® The insight of an explainable method can help people observe depression

symptomes.

1.5 Publication

Mahayossanunt, Y.; Nupairoj, N.; Hemrungrojn, S.; Vateekul, P. Explainable Depression Detection
Based on Facial Expression Using LSTM on Attentional Intermediate Feature Fusion with Label

Smoothing. Sensors 2023, 23, 9402. https://doi.org/10.3390/523239402



CHAPTER 2
BACKGROUND KNOWLEDGE

2.1 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) [7] is a system that describes facial muscle
movements as action units. Table 1 lists all of the action units employed in this thesis. This
system includes gaze direction and head pose. The original creator is Carl-Herman Hjortsjé who
created 23 facial motion units in 1970. Paul Ekman, and Wallace Friesen continued to develop

this system after it was first published in 1978 and substantially updated in 2002.

Table 1 Action Units.

Action Unit Description Example

1 Inner Brow Raise

2 Quter Brow Raise

4 Brow Lowerer

5 Upper Lid Raise




6 Cheek Raise

7 Lids Tight

9 Nose Wrinkle

10 Upper Lip Raiser

12 Lip Corner Puller

14 Dimpler

15 Lip Corner Depressor




17 Chin Raiser
20 Lip Stretch
23 Lip Tightener
25 Lips Part

26 Jaw Drop

28 Lip Suck

a5 Blink




2.2 OpenFace 2.2.0: Facial Behavior Analysis Toolkit

OpenFace [8] is an open source framework that provides facial land mark detection [9] in
Figure 1, head pose tracking [10] in Figure 2, eye gaze [11] in Figure 3 and facial action unit
estimation [12] in Figure 4. Table 2 shows the results of the Openface tracking estimation. As a
result, the tracking values provided by Openface cannot achieve 100% accuracy. Therefore, the

maximum tracker's confidence value is 98%.

Figure 2 Head Pose Tracking [8].



Figure 3 Gaze Tracking [8].
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Fieure 4 Facial Action Unit Recognition [8].

Table 2 Estimated Results of Openface.

* CCC refers to concordance correlation coefficient.

Openface Mean Absolute Error
Head pose estimation results [8] on the BU dataset [13] 2.6
Head pose estimation results [8] on ICT-3DHP dataset [14] 3.2
Gaze estimation results [8] on MPliGaze dataset [15] 9.1
Action units estimation results [8] on DISFA validation set [16] Ccco.73

The output format of the Openface tool is an extracted features file that contains time-
series basic information, head pose tracking, gaze tracking, and facial action units. The following is

a description of header information.



Basic Information Section

® frame: the number of the frame (in the case of sequences).

® face id: the face id (in case of multiple faces)

® timestamp: the timer of video being processed in seconds (in case of sequences)
® confidence: the tracker's confidence in its current landmark detection estimate.

® success: the track is successful.

Pose Tracking Section

® pose Tx: the horizontal location of the head with respect to the camera in

millimeters.
® pose Ty: the vertical location of the head with respect to the camera in millimeters.
® pose Tz: the millimeter distance between the head and the camera.
® pose Rx: rotation is in radians around the X axis (pitch), a left-handed positive sign.
® pose Ry: rotation is in radians around the Y axis (yaw), a left-handed positive sign.

® pose Rz: rotation is in radians around the Z axis (roll), a left-handed positive sign.

Gaze Tracking Section

® gaze 0 x: x eye gaze direction vector in world coordinates for the leftmost eye

® caze 0 y:y eye gaze direction vector in world coordinates for the leftmost eye

® caze 0 z: z eye gaze direction vector in world coordinates for the leftmost eye

® gaze 1 x: x eye gaze direction vector in world coordinates for the rightmost eye

® caze 1 y:y eye gaze direction vector in world coordinates for the rightmost eye

® caze 1 z:z eye gaze direction vector in world coordinates for the rightmost eye

® caze angle x: eye gaze direction in radians in world coordinates from left to right

(from positive to negative)
® caze angle y: eye gaze direction in radians in world coordinates from up to down

(from positive to negative)
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Facial Action Units
The system can detect the intensity (from 0 to 5) of 17 AUs:

AUO1 r, AUO2 r, AUO4 r, AUO5 r, AUO6 r, AUO7 r, AUO9 r, AU10 r, AUI2 r, AU14 T,
AU15 r, AU17 r, AU20 r, AU23 r, AU25 1, AU26 1, AUG5 1

And the presence (0 absent and 1 present) of 18 AUs:

AUO1 ¢, AUO2 ¢, AUO4 ¢, AUO5 ¢, AUO6 ¢, AUO7 ¢, AUQO9 ¢, AU10 ¢, AU12 ¢, AU14 c,
AU15 ¢, AU17 ¢, AU20 c, AU23 c, AU25 ¢, AU26 ¢, AU28 c, AU45 c

23 Machine Learning

2.3.1 Fusion Model
Machine learning fusion model architectures [17] have three types of strategies. A fusion
model can be used to combine different types of input data or to run multiple machine learning

models at the same time. The three types of fusion strategies are listed below.

® Farly Fusion
® |ntermediate/Joint Fusion

® | ate/Decision Fusion

Early Fusion

The goal of early fusion is to combine data before putting it into a model. Combined
data can be original data or features extracted from raw data. There are various combinatorial
methods. In a neural network, data combining typically occurs through a concatenation layer or

pooling layer. Figure 5 depicts an early fusion model architecture.
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Modalityl Modality2

000000 000000
MQOOOO@

[ Model }

Figure 5 Early Fusion.

Intermediate/Joint Fusion

The combination of output from multiple neural networks before making a decision is
known as intermediate/joint fusion. This strategy can update weights for all neural networks
because the loss from the model can be propagated back to multiple neural networks. Figure 6

shows an example of an intermediate/joint fusion model's architecture.

000000 060000

[ Neural Network1 ] { Neural Network2 J

@08® 000U
©9880000)

[ Final Model J
l

Output

Figure 6 Intermediate/Joint Fusion.
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Late/Decision Fusion

Late/Decision Fusion is the predictions of multiple model aggregation at the decision
level. This fusion strategy can be called decision fusion. There are various aggregation techniques,

for instance, majority voting, averaging, and weight voting.

000000 ©60000)
Mocilell J [ MocileLZ }
[ PredicI:tionl } { PrediTtionZ ]

[ Aggregation J

Figure 7 Late/Decision Fusion.

2.3.2 Long Short Term Memory (LSTM)
Long Short Term Memory (LSTM) [18] a type of recurrent neural network that can
partially solve the vanishing gradient problem in recurrent neural networks. LSTM has a cell state

and gate to control data flow. Figure 8 shows a long short term memory diagram.

Memory cell state / @ G_\ \

St

tanh

(@3]

©

Forget gate Input gate Input node Output gate
o ‘ € | tanh

fy [ ‘ [
Hidden state t 1‘ h,
)

Input

O

Figure 8 Long Short Term Memory.
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2.3.3 Label Smoothing
Label smoothing is a technique in machine learning that prevents models from
becoming overconfident. This technique can increase robustness and improve the classification

model. The following is the definition of a soft label and a hard label. [19].

® A soft label is a score that has some probability or likelihood attached to it. For

instance, [0.2, 0.8].

® A hard label is typically classified into one of two categories. It is binary in nature

(either 0 or 1).

The formula for label smoothing that transforms a hard label into a soft label is shown

in(1)

vi® = yr(1—o)+oc/K
(1)
Where:

® ylSisasoft label.
® v, is ahard label.
® & is a label smoothing that should be in range 0 to 1.

® K is a number of classes.

2.3.4 Attention Mechanism

Attention mechanism [20] is a technique that focuses the model's attention on a specific
point. This method can improve the model’s performance and be used for explaining predicted
results. Figure 9 shows an attention model diagram. The bidirectional LSTM generates a sequence

of forward and backward hidden states in the encoder ( 2 ). The context vector is calculated by

weighting the hidden states ( 3 ). Each hidden state is weighted by 0. The weight O;.(the

alignment score) is computed by a softmax function ( 4 ). The score function used in the

alignment score uses tanh as a non-linear activation function, U, and Wa as the weight

matrices ( 5).



Figure 9 Attention Model Diagram [20].

Hidden States

Context Vector

Ty
ci = Z agih;
=

Alignment Score

exp (score(sy—1, hy))

Aei = allgn(yt:xi) = Z?—l exp (score(S,—, i)

Score Function

score(sy, hy) = vitanh (Wy[se; hi])

14

(2)

(3)

(4)

(5)
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2.3.5 Transformer Model

Transformer Model [21] is a novel architecture that is used to solve sequence-to-
sequence tasks with long-range dependencies. The transformer model utilizes attention to
handle the dependencies between input and output. Figure 10 shows the transformer model
architecture, in which the encoder block has one layer of multi-head attention followed by a

feed-forward neural network.

Output
Probabilitics

Feed
Forward
Add & Norm
Add & Norm Multi-Head
Fead Attention
Forward T 7 N
|
N Add & Norm
r—-' Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
L t
o J —
Pasitional Pasilional
Encodi ¥ & coding
ncoding 1 Encoding
Input Output
Embedding Embedding
Inpuls Oulpuls

(shifted right)

Figure 10 Transformer Model Architecture [21].
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2.3.6 Evaluation Measures

The following are some common performance metrics for classification:

® Accuracy
® Confusion Matrix

® Precision

® Recall
® [1 score
Accuracy

Accuracy is the ratio between the number of correctly predicted results and the total

number of results. Accuracy formular shows in ( 6 ).

Number of correct predictions

Accuracy =
Y Total number of predictions

(6)

Confusion Matrix

Confusion matrix is a table that contains different combinations of predicted and actual
values. The values are true positive value, true negative value, false positive value, and false

negative value. Table 3 shows the confusion matrix.

Table 3 Confusion Matrix.

Positive Actual Values Negative Actual Values
Positive Predicted Values True Positive Value False Positive Value
(TP) (FP)
Negative Predicted Values False Positive Value False Negative Value
(FP) (FN)
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Precision

Precision is a measure of relevant instances among the retrieved instances. It can be

called positive predictive value. Precision formular is shown in ( 7).

True Positive Value

Precision =
True Positive Value + False Positive Value

(7)

Recall

Recall is a measure of the relevant instances that were retrieved. It can be called

sensitivity. Recall formular is shown in (18 ).

True Positive Value

Recall =
eca True Positive Value + False Negative Value

(8)

F1 Score

F1 score is a measure of model accuracy on a dataset. It is defined as the harmonic

mean of precision and recall. F1 score formular shows in (9 ).

Precision X Recall
F1score =2 X

Precision + Recall

(9)
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2.4 Integrated Gradient

Integrated Gradient (IG) [22] is an interpretability technique used in machine learning and
deep learning models to visualize the input features and model predictions. The advantage of

this technique is that the original deep neural networks are not modified while applying IG.

The integrated gradient technique is to compute the integral of the gradients of the
model's predictions with respect to the input features along the straight-line path from a baseline
(zero input) to the input being interpreted. By integrating the gradients along this path, Integrated
gradients assigns an important score to each feature, indicating how much it contributes to the
model's prediction for a specific input. The formula for computing the integrated gradient for a

particular input feature i shows in ( 10)

1
1G;(x) = (x; — x’i)f @d“
a=0 2

(10)

Where:

® [G;(x) is the integrated gradient for the i feature of the input x

® x; is the value of the i feature in the input being interpreted.

® x'; is the value of the i feature in the baseline input.

® F(z(a)) is the model's prediction function, where z(a) is the interpolated input
along the path from the baseline to the actual input, defined as
z(@) =x + a(x —x")

® The integral term represents the partial derivative of the model's prediction with

respect to the i feature, evaluated at the interpolated inputs z(a).
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CHAPTER 3
LITERATURE REVIEW

3.1 Facial Expressions and Depression Relation

Facial expressions can show human emotion that is associated with depression
symptoms. During a depression diagnosis interview, the patients’ facial expressions represent their
feelings and emotions, which can be used in depression classification. In the medical field, there
are studies about facial expressions, depression, and brain network relationships. In [23], they
experiment with the effects of positive and negative facial expressions on
electroencephalographic (EEG) analysis. The results show that facial expression can be used to
identify the side of the facial muscles in EGG analysis. In [24], they experiment with the effect of
happy and sad facial expression reactions in depressed patients and non-depressed volunteers
by using functional magnetic resonance imaging (fMRI). The results show that depressed patients
respond to sad facial expressions more than normal people and respond to happy facial
expressions less than normal people. In [25], the results confirmed that neural activity in the
cerebellum from fMRI scans has a relationship with depression. The study, as previously
described, confirms that facial expression is related to the brain network via EGG and MRI
observations. Furthermore, [26] shows that facial modality is associated with voice modality in
emotion expression, and the experimentation in [27] shows that humans can distinguish
depression symptoms from facial expressions. In the same direction, [28] proves that depression
can be predicted by using face and eye movement tracking during a cognitive task. As a result,
depression symptoms manifest as intensities of reduced mouth or eye movements at various
stages of a cognitive task. Therefore, the evidence that facial expressions are related to

depression symptoms exists today.

3.2 Depression Detection Approaches

Artificial intelligence technology rapidly enhances various fields. The medical field is the
one that exploits this technology to improve medical performance. Diagnosis is a popular area in
which Al can play a role as a pre-diagnosis or decision-support tool because it improves the
speed and accuracy of the diagnosis process. Currently, there are several techniques in artificial

intelligence to detect psychiatric disorders [29]. There are three main categories of raw data that
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become the input of the detected model: MRI, EGG, and kinesics diagnosis (including behavioral,
facial, and other physical data). Algorithms that are used with this data can be categorized into
five types. There are Bayesian models, logistic regression, decision trees, support vector
machines, and deep learning. In this thesis, we focus on depression detection using facial
expressions. Therefore, facial cues that express depression symptoms are pupil dilation, action

units, facial expressions (emotion), and head pose [30].

Researchers have recently focused on the facial modality. They experiment with facial
modality alone or in combination with other modality to predict depression. In [31], multi-model
fusion of visual, voice, and text is proposed with a concordance correlation coefficient (CCC) of
0.67 in the E-DAIC dataset. In [32] they propose a method to reduce AUs in a feed-forward neural
network (FFNN) by using Particle Swarm Optimization (PSO) to select the best predictors of AUs.
The best predictors are AUO4 r, AUQ6 r, AUO9 r, AUL0 r, AU15 r, AU25 r, AU26 r, AUO4 c,
AU12 ¢, AU23 ¢, AU28 ¢, and AU45 c in the Distress Analysis Interview Corpus Wizard-of-Oz
(DAIC WOZ) data set with 97.83% accuracy. In [33] propose a facial and voice fusion transformer
network to estimate depressive levels. They categorize the depression score from PHQ-8 into five
levels for use as the first classification label in multi-task learning. The second multi-task learning
label is the PHQ-8 regression label. Their proposed method achieves a CCC of 0.733 in the E-DAIC
data set. In [34], they propose Fisher Discriminant Ratio (FDR) and Incremental Linear Discriminant
Analysis (ILDA) to reduce and select facial features from the DAIC WOZ dataset. Their method
achieves an F1 score of 80.5%, the highest score in the DAIC WOZ dataset. In [35], they utilize
deep learning to classify posttraumatic stress disorder (PTSD) and major depressive disorder
(MDD) based on facial features, movement intensity, speech, and content. This raw data was
collected from 81 patients in one month. The results show that the PTSD classification reached
90% accuracy and the MDD classification reached 86% accuracy. All studies aim to improve

depression classification performance. The conclusion of this study is shown in Table 4.

According to Table 4, depression prediction using facial features in the artificial
intelligence field appears to be gaining popularity in recent years. Therefore, there are various

possibilities to explore for improving the performance of the model.



Table 4 Related Works of Depression Prediction.

* CCC refers to concordance correlation coefficient.

21

Year Techniques Data sets | Questionnaires | Accuracy | Precision | Recall | F1 score
2019 Multi-Model, E-DAIC PHQ-8 CCC 0.67 - - -
[31] Bi-LSTM

2021 PSO, DAIC WOZ PHQ-8 97.83% - - -
[32] FFNN

2021 Multi-Modal E-DAIC PHQ-8 CCC - - -
[33] Transformer 0.733

2022 FDR, ILDA DAIC WOZ PHQ-8 - - - 80.5%
[34]

2022 FFNN Their own - 86% 83% 82% 82%
[35]

In all related works, the experiment models in [31, 33] can be compared with ours

because the E-DAIC data set is extracted from OpenFace version 2, the same as ours. On the

other hand, the experiment models in [32, 34] use the DAIC WOZ data set that extracted facial

features from OpenFace version 1, which is different from ours. The model in [31] will be the

baseline of our Bi-LSTM model. The model in [33] will be the baseline of our transformer model.
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CHAPTER 4
METHODOLOGY

4.1 Facial Features Extraction

Raw data from DMIND applications contains different numbers of videos depending on
how participants answer the list of DMIND interview questions. The OpenFace tool extracts head
pose, gaze, and action units from all participant videos. The extracted data is a time-series
extracted features file that contains head pose, gaze, and action units per video. However, input
should be one extracted feature file per participant. As a result, the extracted feature files from
each participant are concatenated into a single extracted feature file. Figure 11 shows the facial

feature extraction process.

= = = = Extracted Extracted
Extracted Extracted
Videos Videos 5 . Features Features
i H eatures | eatures
L L - L —
Participant Participant Participant Participant Participant Participant
P P Extract P P Concatenate P P
I r by I I
t L L L Extracted Extracted
Openface Extracted Extracted
Videos Videos Features Features
H H Features H Features  H-
Participant Participant Participant Participant Participant Participant

Figure 11 Facial Features Extraction Process.

4.2 Input Preprocessing

4.2.1  Features Selection

Extracted features files contain head pose, gaze, and action units. Each facial feature
(head pose, gaze, and action units) has a sub-feature group as follows: the head pose feature has
location and rotation sub-feature groups. The gaze feature has vector and radian sub-feature
groups. Sub-feature groups for action units include intensity and presence. We separate data from
extracted feature files by group and standardize all groups by removing the mean and scaling to
unit variance (Standard Scaler). As a result, for input into models, facial features are divided into
six sub-feature groups. The head rotation sub-feature groups and head location sub-feature
groups are repeated with different units, the same as the gaze vector sub-feature groups and
gaze radian sub-feature groups, as shown in Figure 12. We experimented with them using a single

model to compare their results. The results, as shown in Table 5, indicated that the head pose
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location and gaze vector direction have poor performance in classifying depression. Therefore,
the head pose location and gaze vector direction sub-feature groups are not selected for
experimentation to eliminate redundant data and model size. The action units presence sub-
feature groups and the action units intensity sub-feature groups, all of which use distinct
estimation models. Both sub-feature groups are selected. The features selection is shown in

Figure 12 The list of sub-feature groups is summarized as follows:

1. Pose R Head pose rotation has 3 features.
2. Gaze_Angle: Gaze angle direction has 2 features.
3. AU _r: Action unit intensity has 17 features.

4. AU _c: Action unit presence has 18 features.

Openface Extracted Features

angley

z angle x X z X
Group1: Pose Rotation Group2: Pose Location Group3: Gaze Radian Group4: Gaze Vector
3 Features 3 Features 2 Features 6 Features

Selected Features: Groupl, 3, 5,6
Unselected Features: Group2, 3

Total: 40 Selected Features

from 49 Features

Group5: Intensity Action Unit Groupé: Presence Action Unit

17 Features 18 Features

Figure 12 Features Selection.

The longest time-series of inputs is not over 11 minutes. Therefore, this number is
selected to be calculated as timesteps. Timestep is calculated from time (minutes) * 60
(seconds) * 30 (frames/second). In this thesis, the timestep is 19800. To fit the timestep, inputs

that do not reach the timestep are padded with zero.
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422  Label Smoothing

Label smoothing is applied to improve the model's performance because it can prevent
a model from becoming overconfident in its predictions. The model can be improved by label
smoothing because depressive syndrome is not clearly defined, especially at a mild and
moderate level. We apply a label smoothing number with a range of 0 to 0.9 with 0.1 increments

solely on the best model to reduce computation time.

4.3 Model Architecture

4.3.1  Baseline Fusion Bi-LSTM Model Architecture

The baseline fusion Bi-LSTM model [31] passes pose, gaze, and facial action units
through its own single layer of 200 Bi-LSTM cells. Their output is concatenated before passing
through the attention layer. The output of attention is passed through another Bi-LSTM with 200
cells, followed by global max pooling. After global max pooling, the output is passed through a
feed-forward network with 128 hidden units. The total number of parameters is 888,786. This

model is shown in Figure 13.

Pose (None, 19800, 6) Gaze (None, 19800, 8) AU (None, 19800, 35

Bi-LSTM (None, 19800, 200) Bi-LSTM (None, 19800, 200) Bi-LSTM (None, 19800, 200)

[ | ]
¥

Concatenate (None , 19800, 600)
Self Atention (None , 19800, 600)

Bi-LSTM (None , 19800, 200)

Global Mac Pooling 1D (None , 200)

Dense (None, 128)

Dense (None, 1)

Figure 13 Baseline Fusion Bi-LSTM Model Architecture.

4.3.2  Baseline Fusion Transformer Model Architecture
The baseline fusion transformer model [33] makes use of the early fusion technique. All
features (pose, gaze, and action units) concatenate before passing through the model.

Unfortunately, we cannot use 2048 timesteps as efficiently as [33] because of the environment.



26

The timesteps that are used in this baseline are reduced to 1320 timesteps (average of 30 frames
per second to 2 frames per second). The multi-head attention number is set to 1, the feed-
forward layer's hidden dimension is set to 2048, and the number of transformer encoders is set
to 6. After that, a rectified linear unit (ReLU) is applied. However, units that used this layer are not
mentioned. Therefore, we use 32 units for ReLU. The total number of parameters is 1,831,270.

This model is shown in Figure 14.

Pose (None, 19800,6) || Gaze (None, 19800,8) | [ AU (None, 19800, 35)
| ] |

v
Concatenate (None, 19800, 49)

AveragePooling1D (None, 1320, 49)

| I Transformer Encoder
| Multi-Head Attention I

(R Add & Norm I x6 times
/] I

| 1

I Feed Forward .

[ Add & Norm I

GlobalMaxPooling1D (None, 49)
Dense (None, 32)
Dense (None, 1)

Figure 14 Baseline Fusion Transformer Model Architecture.

4.3.3  Individual Bi-LSTM Model Architecture

Bidirectional LSTM and self-attention are used to generate individual Bi-LSTM model
architectures for four sub-feature groups. Four models are produced with the same layers that
are shown in Figure 15. Hyperparameters are set for Pose R, Gaze Angle, AU r ,and AU c
respectively, as described in Table 6. The hidden units, units1, and units2, are powers of two. The

selected units are the best values from hyperparameter tuning techniques.
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Table 6 Individual Bi-LSTM Model Hyperparameter.

Hyperparameter Pose R Gaze Angle AU r AU ¢
Features 3 2 17 18
Hidden_units 64 16 128 128
Units1 32 8 64 64
Units2 16 a4 32 32
Total parameters 31,722 20,702 72,314 72,826

Input (None, 19800, features)

Bi-LSTM (None, 19800, hidden_units)

Attention (None, hidden_units)

Dense (None, units1)

Dense (None, units2)

Dense (None, 1)

Figure 15 Individual Bi-LSTM Models Architectures.

4.3.4  Early Fusion Bi-LSTM Model Architecture

Early Fusion Bi-LSTM Model Architecture concatenates four sub-feature groups into one
group. As a result, a model receives one input that contains four sub-features with 40 features.
The model is similar to an individual model. The total number of parameters is 84,090. This

architecture is shown in Figure 16. All hidden units are powers of two.

Pose_R (None, 19800, 3) | | Gaze_Angle (None, 19800, 2) | [ AU_r (None, 19800, 17) | [ AU_c (Nane, 19800, 18)
| | |

¥
Concatenate (None, 19800, 40)

Bi-LSTM (None, 19800, 128)

Attention (None, 128)

Dense (None, 64)

Dense (None, 32)

Dense (None, 1)

Figure 16 Early Fusion Bi-LSTM Model Architecture.
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435  Intermediate Fusion Bi-LSTM Model Architecture
Intermediate Fusion Bi-LSTM Architecture utilizes four Bi-LSTM individual models by
removing the aggregation section. Output from the attention layer of four individual models is
concatenated before the decision layer. The total number of parameters is 225,458. This
architecture is shown in Figure 17. All hidden units are powers of two. The selected units are the

best values from hyperparameter tuning techniques.

Pose_R (None, 19800, 3)

Gaze_Angle (None, 19800, 2)

AU_r (None, 19800, 17)

AU_¢ (None, 19800, 18)

Bi-LSTM (None, 19800, 64)

Bi-LSTM (None, 19800, 16)

Bi-LSTM (None, 19800, 128)

Bi-LSTM (None, 19800, 128)

Attention (None, 64)

Attention (None, 16)

Attention (None, 128)

Attention (None, 128)

0]
Concatenate (None, 336)

Dense (None, 128)

Dense (None, 64)

Dense (None, 1)

Figure 17 Intermediate Fusion Bi-LSTM Model Architecture.

4.3.6 Late Fusion Bi-LSTM Model Architecture
Late Fusion Bi-LSTM Model Architecture utilizes four individual models to determine
depression and average their results. The total number of parameters is 226,556. Figure 18.

depicts the method of aggregation.

Pose_R AU r AU ¢
Single Bi-LSTM Model Single Bi-LSTM Model Single Bi-LSTM Model Single Bi-LSTM Model

I I I |
)

Aggregation

Gaze_Angle

Output

Figure 18 Late Fusion Bi-LSTM Model Architecture.
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437  Individual Transformer Model Architecture

Individual Transformer Models Architectures for four sub-feature groups utilize a
transformer encoder, followed by a global average pooling layer and a dense layer. Before the
multi-head attention layer, average pooling that has pool size 15 and stride 15 (average 30
frames per second to 2 frames per second) is applied to reduce timesteps because of memory.
Four models are produced with the same layers that are shown in Figure 19 except for features.
Features are 3, 2, 17, and 18 for Pose R, Gaze Angel, AU r, and AU c, respectively. The total

number of parameters for Pose R, Gaze Angel, AU r, and AU_c are 22,042, 15,890, 108,170, and
114,322, respectively.

Input (None, 19800, features)

AveragePooling1 D (None, 1320, features)

|
Y

Multi-Head Attention

> Add & Norm
|

¥

Feed Forward
—>1 Add & Norm

GlobalMaxPoolinglD (None, features)

Dense (None, 1)

Figure 19 Individual Transformer Model Architecture.

4.3.8  Early Fusion Transformer Model Architecture
Early Fusion Transformer Model Architecture concatenates four sub-feature groups into
one group. As a result, a model receives one input that contains four sub-features with 40

features. The model is similar to an individual model. The total number of parameters is 249,666.

This architecture is shown in Figure 20.
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[ Pose_R (None, 19800, 3) | [ Gaze_Angle (None, 19800, 2) | [ AU_r (None, 19800, 17) | | AU_c (None, 19800, 1) |
1 | ]

v
Concatenate (None, 19800, 40)

AveragePoo]inng (None, 1320, 40)
|

¥
Multi-Head Attention
> Add & Norm
Feed Forward
=3 Add & Norm

|

GlobalMaxPooling1D (None, 40)
Dense (None, 1)

Figure 20 Early Transformer Fusion Model Architecture.

439  Intermediate Fusion Transformer Model Architecture

Intermediate Fusion Transformer Model Architecture utilizes four individual transformer
models by removing the aggregation section. Output from the global average pooling layer of
four individual models is concatenated before the decision layers. The total number of

parameters is 260,418. This architecture is shown in Figure 21.

Input (None, 19800, features)

AveragePooling1D (None, 1320, features)

|
2

Multi-Head Attention

= Add & Norm
|

¥
Feed Forward

—> Add & Norm

GlobalMaxPoolingl D (None, features)

Dense (None, 1)

Figure 21 Intermediate Transformer Fusion Model Architecture.
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4.3.10 Late Fusion Transformer Model Architecture
Late Fusion Transformer Model Architecture employs four separate transformer models
to determine depression and average their decision to results. The total number of parameters is

260,424. The aggregation method is shown in Figure 22.

Pose R Gaze_Angle AU_r AU ¢
Single Transformer Model Single Transformer Model Single Transformer Model Single Transformer Model
Aggregation
Output

Figure 22 Late Transformer Fusion Model Architecture.

4.3.11 Individual Window Block LSTM Model Architecture

Individual Window Block LSTM Model Architecture is utilized: reshape layer, time
distribution with LSTM layer, time distribution with attention, attention layer, and feed forward
layers. The reshape layer is utilized for converting 19800 frames to 30 frames x 660 second. The
model hyperparameter and architecture are shown in Table 7 and Figure 23, respectively. The
hidden units, units1, and units2, are powers of two. The selected units are the best values from

hyperparameter tuning techniques.

Table 7 Individual Window Block LSTM Model Hyperparameter.

Hyperparameter Pose R Gaze Angle AU r AU c
Features 3 2 17 18
Hidden_units 32 32 64 64
Units1 16 16 32 32
Units2 8 8 16 16
Total parameters 6,035 5,907 24,435 24,691




32

Input (None, 19800, features)

Reshape (None, 660, 30, features)

TimeDistribution_LLSTM
(None, 660, 30, hidden_units)
TimeDistribution _Att
(None, 660, hidden_units)
Attention (None, hidden_units)

Dense (None, units1)

Dense (None, units2)

Dense (None, 1)

Figure 23 Individual Window Block LSTM Model Architecture.

4.3.12 Early Fusion Window Block LSTM Model Architecture

Early Fusion Window Block LSTM Model Architecture utilizes a concatenate layer to
concatenate all input features before passing through the following layers. The following layers
are: reshape layer, time distribution with LSTM layer, time distribution with attention layer,
attention layer, and feed forward layers. The total number of parameters is 30,323. The model

architecture is shown in Figure 24. All hidden units are powers of two.

Pose_R (None, 19800, 3) | | Gaze_Angle (None, 19800, 2) | | AU_r (None, 19800, 17) | | AU_c (None, 19800, 18)
| | ] ]

¥
Concatenate (None, 19800, 40)

Reshape (None, 660, 30, 40)
TimeDistribution_ LSTM
(None, 660, 30, 64)
TimeDistribution Att
(None, 660, 64)
Attention (None, 64)
Dense (None, 32)
Dense (None, 16)
Dense (None, 1)

Figure 24 Early Fusion Window Block LSTM Model Architecture.
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Intermediate Fusion Window Block LSTM Model Architecture utilizes a concatenate layer
before feed-forward layers. Each input feature passes through a reshape layer, a time distribution
with an LSTM layer, a time distribution with an attention layer, and an attention layer. The total
number of parameters is 90,057. The model architecture is shown in Figure 25. All hidden units

are powers of two. The selected units are the best values from hyperparameter tuning

techniques.

Intermediate Fusion Window Block LSTM Model Architecture

Pose_R (None, 19800, 3)

Gaze_Angle (None, 19800, 2)

AU_r (None, 19800, 17)

AU_¢ (None, 19800, 18)

Reshape (None, 660, 30, 3)

Reshape (None, 660, 30, 16)

Reshape (None, 660, 30, 17)

Reshape (None, 660, 30, 18)

TimeDistribution_LSTM
(None, 660, 30, 32)

TimeDistribution_LSTM
(None, 660, 30, 32)

TimeDistribution_LSTM
(Nonc, 660, 30, 64)

TimeDistribution_LSTM
(None, 660, 30, 64)

TimeDistribution _Att
(None, 660, 32)

TimeDistribution _Att

(None , 660, 32)

TimeDistribution _Att
(None , 660 , 64)

TimeDistribution _Att
(None , 660 , 64)

Attention (None, 32)

Attention (None, 32)

Attention (None, 64)

Attention (None, 64)

T

K ]

Concatenate (None, 192)

Dense (None, 128)

Dense (None, 64)

Dense (None, 32)

Dense (None, 16)

Dense (None, 1)

Figure 25 Intermediate Fusion Window Block LSTM Model Architecture.

4.3.14 Late Fusion Window Block LSTM Model Architecture

Late Fusion Window Block LSTM Model Architecture utilizes a single window block LSTM

model. Four input features are passed through their single model and averaged in the aggregation

layer to determine the output. The total number of parameters is 61,068. The model architecture

is shown in Figure 26.

Pose_R
Single Window Block
LSTM Model

Gaze_Angle AU_r AU_¢
Single Window Block Single Window Block Single Window Block
LSTM Model LSTM Model LSTM Model
Aggregation
Output

Figure 26 Late Fusion Window Block LSTM Model Architecture.
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4.4 Integrated Gradient Explanation

The integrated gradient is applied to the best model to explain its result. The methods
to calculate the integrated gradient in time-series are the same as image classification. We
compute integrated gradients for each input feature from baseline time-series input (zero-
initialized time-series) to actual time-series with equally spaced intermediate steps. The
integrated gradients express the contribution of their input features. Finally, we calculate the
mean value of integrated gradient feature values to visualize the importance of features for
depression or non-depression. We also calculate the absolute mean value of integrated gradient
feature values to visualize the importance of features for arranging the important features in

order.
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CHAPTER 5
EXPERIMENTS AND RESULTS

5.1 Experimental Setups

5.1.1 Environment Detail
A desktop computer is used to run this experiment. The processor is an Intel® CoreTM
i9-12900K, 12th Generation, 3.19 GHz. RAM is 64 GB. Nvidia GeForce RTX 3090 is the GPU. The

operating system is Windows 10 Pro.

5.1.2 Data Distribution

Raw data has 106 normal, 234 mild, 112 moderate, and 22 severe. Raw data is separated
in the ratio 80:10:10 for three data sets: training, development, and testing. This three-data set is
for training, validation, and testing. In 4 classes, the training data set has 84 normal, 186 mild, 90
moderate, and 18 severe. The development and testing data sets contain the same amount of
data: 11 normal, 24 mild, 11 moderate, and 2 severe. Figure 27. depicts the data set with four
classes. After separating, the training data set has 270 non-depressions and 108 depressions. Both
the development and testing data sets contain the same amount of data, with 35 non-
depressions and 13 depressions. Figure 28 depicts the data set with two classes. To balance the
data, we duplicate the depression data set in the training data set shown in Figure 29. Finally, the

training data set has 270 non-depressions and 216 depressions.

Figure 27 Train Data Set, Dev Data Set, Test Data Set in 4 Class.
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Figure 28 Train Data Set, Dev Data Set, Test Data Set in 2 Class.

Diguble
Deprassion Class

Depression Hon-Depression

Figure 29 Double Depression Class in Train Data Set.

5.1.3 Implementation

The models that are used in this experiment are implemented following the Model
Architecture in section 4.3 Model Architecture. After getting the results of all the models,
the best model is selected to experiment with varying the label smoothing hyperparameter to

improve performance.

5.1.4 Evaluation
The result of all models is expressed in terms of the evaluation measures described in
2.3.6 Evaluation Measures. The accuracy, confusion matrix, precision, recall, and F1 score of all

models are compared to find the best model by the comparing macro F1 score.
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5.1.5 Explanation

An integrated gradient is applied to the result of the best model to visualize the
important input feature value. The important input features are expressed in terms of the impact

on depression or non-depression and the order of impact.

5.2 Experimental Results

The result of Bi-LSTM model is shown in Table 8. As a result, action unit classification
and intermediate fusion have the same accuracy of 85.42%. The difference is that intermediate
fusion has better macro precision at 91.67%. Action unit classification has better macro recall at
77.91% and a better macro F1 score at 79.99%. The result of the transformer model is shown in
Table 9. As a result, the best model is the intermediate fusion model, which achieves an
accuracy of 83.33%, macro precision of 81.20%, macro recall of 74.07%, and macro F1 score of
76.41%. The result of the window block LSTM model is shown in Table 10. As a result, the best
model is the intermediate fusion model, which achieves an accuracy of 89.58%, macro precision
of 87.50%, macro recall of 85.60%, and a macro F1 score of 86.48%. The trend of almost all
features between the three methods (Bi-LSTM, transformer, and window block LSTM) is similar,

while window block LSTM has the best performance.

As a result, experimental models of the Bi-LSTM model, transformer model, and window
block LSTM have better performance than baseline (see Table 11). The Bi-LSTM baseline
achieves an accuracy of 66.78% and a macro F1 score of 40.74%. The transformer model
baseline achieves an accuracy of 66.78% and a macro F1 score of 59.44%. Above the Bi-LSTM
baseline, our Bi-LSTM increases to 24.25% accuracy and an 89.08% macro F1-score. The same as
our transformer model, which increases a 21.21% accuracy and a 25.05% macro Fl-score above
the transformer baseline. The window block LSTM has the best performance, achieving an

accuracy of 89.58% and a macro F1 score of 86.48%.

The intermediate fusion Bi-LSTM model and window block LSTM model were chosen to
improve performance with label smoothing. The result in Table 12 shows that the intermediate
fusion Bi-LSTM model with label smoothing (0.3, 0.7) achieves 91.67% accuracy, 94.87% macro
precision, 84.62% macro recall, and a 88.21% macro Fl-score. The result in Table 13 shows that

the intermediate fusion window block LSTM model with label smoothing (0.1, 0.9) achieves
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91.67% accuracy, 91.40% macro precision, 87.03% macro recall, and an 88.89% macro Fl-score.
Therefore, the best model is the intermediate fusion window block LSTM model with label
smoothing (0.1, 0.9). Table 14 displays the predicted values of the best model for visualizing four
depression levels. The predicted values show that the false positive value has only a mild level
and the false negative value has only a moderate level. As a result, the model has the potential
to detect normal and severe depression levels because it has more clear-cut data than mild and
moderate depression levels. The accuracy of normal and severe depression levels achieves 100%

in the test data set, which is useful to classify severe depression from normal people.

The integrated gradient results of the best model (intermediate fusion window block
LSTM model with label smoothing) are shown in Figure 30 and Figure 31. Figure 30 shows the
impact of facial features on depression or non-depression, feature by feature. Figure 31 shows

the impact of overall facial features on depression or non-depression.

First, important pose features are shown in Figure 30 (A) and (B). The movement of head
pose features is shown in Figure 32. The important pose features are Pose Rx (head nodding),
Pose Rz (head tilting), and Pose Ry (head turning), respectively. Head nodding and head tilting
impact non-depression, and head turning impacts depression because head nodding and head
tilting are reactions of high energy and favorable to social interaction [36-39]. On the other hand,

head turning means that patients have a lack of concentration on social interests and withdraw.

Second, important gaze features are shown in Figure 30 (C) and (D). The movement of
eye gaze features is shown in Figure 33. The important features are Gaze y (looking up or down)
and Gaze x (looking left or right), respectively. Both gaze features impact depression because
looking around, having a nonspecific gaze, and not having eye contact mean patients have a lack
of concentration and are absent-minded [36-38]. The reduction in eye movement is justified as a

depressive symptom [28].

Third, important action unit regression features are shown in Figure 30 (E) and (F). The
movement of the action unit is shown in Table 1. The obvious features that impact depression
are the AU26 jaw drop, AU20 lip stretcher, and AUO7 lid tightener, which represent grumbling,
frowning, and scowling faces that relate to negative feelings and social disinterest [38]. In
controversy, the features that impact non-depression are the AU06 cheek raiser, AU25 lips part,

AU14 dimpler, and AU12 lip corner puller, which represent the posture of talking and smiling.
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Forth, action unit classification important features are shown in Figure 30 (G) and (H). The
movement of the action unit is shown in Table 1. The obvious features that impact depression
are the AUOT7 lid tightener, the AU26 jaw drop, and the AU25 lips part. In the same direction as
action unit regression, AUO7 and AU26 represent grumbling, frowning, and scowling faces that
relate to negative feelings and social disinterest. However, AU25 represents when people talk. In
the same direction as [38], silence and speaking can be justified as depression or non-depression
depending on the speech content. On the other hand, the features that impact non-depression
are the AU23 lip tightener, the AU12 lip corner puller, the AU45 blink, and the AU09 nose

wrinkle. They represent pursing lips, smiling, and blinking.

Finally, overall features are shown in Figure 31 (A) and (B). The important features are
action unit classification, action unit regression, head pose, and gaze, respectively. Facial
expression can be detected via action unit classification and action unit regression, which make it
easy to observe depression like human observation [27]. Concentration and social interest can be
detected via head pose and gaze. Therefore, machine learning can detect depression through

four main features in the same ways as human observation.
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Table 14 Predicted Values of Intermediate Fusion Window Block LSTM Model with Label
Smoothing (0.05, 0.95)

Predicted Values Normal Moderate Severe

True Positive

False Negative

True Negative

False Positive
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Figure 30 (A) Pose impact on model output, (B) Pose impact on model output magnitude, (C)

Gaze impact on model output, (D) Gaze impact on model output magnitude, (E) AUr impact on

model output, (F) AUr impact on model output magnitude, (G) AUc impact on model output, (H)

AUc impact on model output magnitude.

* Red color refers to a negative effect (tends to be non-depressive)

** Blue color refers to a positive effect (tends to be depressive).
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Figure 31 (A) Positive/negative impact of all features, (B) Absolute impact (magnitude) of all
features.
* Red color refers to a negative effect (tends to be non-depressive).

** Blue color refers to a positive effect (tends to be depressive).
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Figure 32 Head Pose Movement [40].
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CHAPTER 6
CONCLUSION AND FUTURE WORK

Conclusion

Machine learning models can detect depression from extracted facial features in time-
series format without utilizing the original interview video to protect privacy. The well-known
techniques of machine learning that were experimented with in this thesis are the Bi-LSTM
model, transformer model, and window block LSTM model. All our experimental models have
better performance than both the Bi-LSTM baseline and the transformer baseline. Three types of
fusion methods—early fusion, intermediate fusion, and late fusion—are applied to our model.
We also applied label smoothing to improve performance. The best model is intermediate fusion
window block LSTM with label smoothing (0.05, 0.95), which achieves 91.67% accuracy, 91.40%

macro precision, 87.03% macro recall, and 88.89% macro Fl-score.

The important key features that have an influence on depression detection are action
unit classification, action unit regression, pose rotation, and gaze angle, respectively. All features
indicate that patients who have depression symptoms keep frowning, srumbling, scowling, head
turning, no specific gaze, and slow eye movement, which express a lack of concentration, social

disinterest, and negative feelings.

Future Work

The label smoothing techniques can be applied in several ways to set up experiments to
improve model performance since the original depression classes are four and the extracted
features from the Openface tool do not have 100% accuracy. We can apply different label
smoothing values for normal, mild, moderate, and severe classes for binary classification. In the
same direction, extracted features that have poor accuracy can utilize label smoothing

techniques to prevent a model from becoming overconfident in its predictions.
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