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In this thesis, we propose an Integer Linear Programming (ILP) formulation to perform 

task assignment and path planning in applications of distributed multiple unmanned aerial 

vehicle (multi-UAV) environment in which a set of drones are assigned to ensure that each task 

is visited once while all drones return to its initial location. The objective is to minimize the 

sum of distances traversed by all drones, while opting out the possibilities of any sub tours, 

thereby achieving optimal solutions. Several experiments with various different number tasks 

and drones are carried out to verify the correctness of our proposed formulation. Numerical 

results show that introducing more drones for numerous tasks can typically reduce the total 

distance and shorten the mission completion time. Despite it optimality advantage, the 

computational time requirement to find the solution is the main concern. Therefore, we 

conducted extensive simulation experiments to determine its limit with respect to the number 

of drones and tasks. Based on out tests using a computer notebook with Pentium 10, 8 GB 

RAM and 256 GB SSD, the algorithm will find optimal solutions under few minutes for systems 

with no more than 27 tasks, regardless of the number of drones being deployed. For, larger 

number of tasks beyond this limit, solutions are not available even after one hour of 

simulation time. 
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CHAPTER 1 

Preface 
 

1.1. Introduction  
Task assignment and path planning are critical aspects of coordinating multiple 

Unmanned Aerial Vehicles (UAVs) in various applications, ranging from surveillance and 

reconnaissance to disaster response and package delivery. The efficient allocation of 

tasks and optimal path planning for UAVs can significantly enhance their performance, 

reduce mission completion time, and improve overall mission success rates. In recent 

years, researchers have focused on developing intelligent algorithms and optimization 

techniques to address these challenges. One such approach is the utilization of Integer 

Linear Programming (ILP) for task assignment and path planning of multiple UAVs. 

The ILP framework provides a mathematical modeling technique to formulate 

complex optimization problems involving discrete decision variables, objective functions, 

and a set of constraints. By representing the task assignment and path planning problem 

as an ILP model, it becomes possible to find an optimal solution considering various 

factors such as resource constraints, number of tasks and distance. The ILP approach 

offers the advantage of rigorous mathematical optimization, allowing for systematic 

exploration of the solution space. 

The task assignment problem involves determining which tasks should be 

assigned to each UAV, considering factors such as task importance, UAV capabilities, and 

mission requirements. Path planning, on the other hand, focuses on finding optimal 

routes or trajectories for the UAVs to navigate from their current locations to the 

assigned tasks. The path planning problem is challenging due to several factors, including 

limited UAV resources, distance, and potential conflicts with other UAVs or obstacles. 

ILP-based path planning models can incorporate these constraints and generate collision-

free paths that optimize criteria such as travel distance, mission completion time, or 

energy consumption. 

The integration of task assignment and path planning within an ILP framework 

enables a comprehensive optimization approach for multiple UAVs. By jointly considering 

task assignment and path planning, the ILP model can account for dependencies and 

interactions between tasks and paths, leading to more efficient and coordinated UAV 

operations.  

Several research studies have investigated the application of algorithms in the 

context of task assignment and path planning for multiple UAVs. In (2017) [1] the realm 

of multi-AUV task allocation, an inventive auction algorithm is employed for hunting task 

assignments, featuring advancements in auctioneer selection and bidding value 

calculation to enhance security and robustness, yielding superior outcomes compared to 

traditional and alternative allocation methods. In (2020) [2] presented paper addresses 

multi-robot task allocation and path planning in a two-dimensional warehouse setting, 
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utilizing a market auction-based allocation algorithm and an enhanced Astar algorithm 

considering task costs and inter-task distances to optimize total distance and runtime; 

simulation demonstrates effective task execution and collision-free paths. Yang et al. 

(2020) [3] developed an ILP-based approach for multi-UAV surveillance task assignment, 

incorporating multiple objectives and constraints. 

Moreover, the use of ILP in UAV task assignment and path planning has been 

extended to specific domains and applications. For instance, Chen et al. (2018) [4] 

focused on the allocation of sensing tasks to UAVs in a target tracking scenario, 

considering both sensing and communication constraints. Guo et al. (2020) [5] proposed 

an ILP-based approach for task assignment and path planning of UAVs in precision 

agriculture applications, optimizing crop coverage and minimizing travel distance. These 

studies demonstrate the versatility and effectiveness of ILP in addressing task assignment 

and path planning challenges in various UAV applications. 

In summary, task assignment and path planning of multiple UAVs play a crucial 

role in optimizing mission performance and resource utilization. The distance factor and 

the surety of completion of task without any repetition or making loops have been done 

in this research. The following sections of this paper will delve into the details of ILP-

based approaches, algorithms, and case studies related to task assignment and path 

planning for multiple UAVs. This ILP-based drone routing and task assignment solution 

offers several notable advantages. It exhibits exceptional flexibility and adaptability, 

accommodating diverse scenarios and parameters, making it suitable for various 

applications. The inclusion of visualizations using Matplotlib enhances the code's 

accessibility and facilitates a clear understanding of optimized drone routes. It is well-

structured and easy to modify, making it accessible to a wide audience. By leveraging 

optimization techniques through ILP formulation, the code efficiently minimizes the total 

distance traveled. It further stands out for its capability to generate random scenarios, 

allowing for simulations. Additionally, this code is forward-thinking, with potential for 

future enhancements and addresses practical challenges through the Miller-Tucker-

Zemlin (MTZ) method for subtour elimination. The code's effectiveness depends on 

specific problem instances and constraints, but it serves as a versatile tool for addressing 

a broad range of drone routing and task assignment challenges. 

 

1.2. Problem Statement  
The efficient assignment of multiple tasks to UAVs is crucial for optimizing 

mission performance and resource utilization. Existing research has explored various 

approaches for UAV task assignment, path planning and minimum distance. However, 

there is a need for a comprehensive solution that considers the global mission planning, 

computational complexity, path planning, and resource allocation aspects. This research 

aims to develop an architecture utilizing ILP to enable mission planning, agent-to-task 

assignment, and optimal utilization of UAVs in complex environments. The proposed 

algorithm will address the challenges associated with multi-task assignment for UAVs and 

provide an optimal solution for improved mission execution and resource management. 
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A key aspect of this research is to identify how large the problem can be resolved by the 

proposed approach to achieve the optimal solution. 

 

1.3. Research Objective 
This thesis aims to develop and implement an integer linear programming (ILP) 

formulation for optimal task assignment and path planning of multiple UAVs. The 

algorithm will simultaneously address task assignment and path planning, resulting in 

global optimal solution efficient execution of multiple tasks. The proposed technique will 

incorporate an objective function that considers task assignment performance, and a 

constraint penalty term will ensure a balanced workload distribution among UAVs while 

optimizing resource utilization. The results demonstrate the proposed algorithm in multi-

task assignment and path planning for UAVs. The thesis will provide a detailed 

methodology, simulations, and presentation of results to enhance understanding of path 

planning and task allocation. The computational time requirement of our approach will 

be systematically evaluated with various problem sizes so that the limit of the problem 

sizes can be identified.  

 

1.4. Significance of Research 
This research focuses on the significance of developing an ILP-based technique 

for efficient task allocation, resource management, and path planning in UAVs. These 

versatile aerial vehicles are increasingly utilized in various domains, such as deliveries, 

warfare, and passenger transportation. However, effectively managing their multitasking 

capabilities poses a complex challenge. By leveraging ILP, the research aims to optimize 

task allocation and path planning, thereby enhancing operational efficiency and 

effectiveness. Computational requirements are the key aspect of this research. Such that 

we will be able to determine the largest size of the problems one can solve with a 

reasonable time, which is suitable for practical use.  
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CHAPTER 2 

Survey 
 

2.1. Literature Review and Background  
Historically the use of UAVs was first reported in 1849, serving as balloon carrier 

to initiate wars on Austrian forces. In early ages drones were only used as Warcraft. With 

the passage of time much research has been conducted and many other tasks are also 

achieved by using this technology. In the present era, this technology has been used to 

deliver packages, for transportation of goods and as well as passengers, and in space 

missions also to provide necessary stuff to space station without any human 

intervention.  

In addressing the complex challenge of multi-UAV target assignment and path 

planning (MUTAPP) [6], this study introduces a novel approach, termed Simultaneous 

Target Assignment and Path Planning (STAPP). By leveraging the Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG) algorithm, STAPP transforms the MUTAPP 

problem into a trainable multi-agent system. This enables the real-time resolution of 

target assignment and path planning in dynamic UAV environments, facilitated by a 

streamlined neural network and further enhanced through innovative training 

techniques. Experimental validation underscores the efficacy of the proposed STAPP 

method. In order to cluster the search space, one method compares the distance 

traveled by each UAV, and the other [7] employs a cost function that approximates the 

traveled distance. 

Although several collision avoidance approaches have been reported, there is a 

lack of highlighting the key components shared by these approaches. In this subject of 

[8] to provide researchers with a state-of-the-art overview of various approaches for 

multi-UAV collision avoidance. [9] Addressing the intricate Multi-agent Pickup and 

Delivery (MAPD) challenge prevalent in automated warehouse logistics and mail 

sortation, this study introduces an innovative coupled approach. By integrating a 

marginal-cost assignment heuristic and a meta-heuristic enhancement strategy based on 

Large Neighborhood Search, task assignments are guided by actual delivery costs, 

thereby outperforming conventional lower-bound estimate methods. The method's 

efficacy is substantiated through numerical simulations, demonstrating enhanced 

efficiency and substantial improvements over recent approaches, even extending to 

scenarios involving multiple tasks per robot. To accomplish this task, a novel system 

framework is designed and proposed to accomplish simultaneous moving target tracking 

and path planning by a quadrotor UAV with an onboard embedded computer, vision 

sensors, and a two-dimensional laser scanner [10]. The area between the UAV group 

range and the group communication range is called the insecurity range and, in the 

region, multi-UAV communication can cause serious information leakage. To resolve this 

problem [11] consider two aspects, namely, cooperative control and secure 

communication. UAV path planning problem is an important component of UAV mission 
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planning system, which needs to obtain optimal route in the complicated field. To solve 

this problem, a novel hybrid algorithm called HSGWO-MSOS is proposed by combining 

simplified grey wolf optimizer (SGWO) and modified symbiotic organisms search (MSOS) 

[12]. [13] propose a Deep Reinforcement Learning (DRL) approach for UAV path planning 

based on the global situation information. UAV path planning is modelled as the 

optimization problem, in which fitness functions include travelling distance and risk of 

UAV, three constraints involve the height of UAV, angle of UAV, and limited UAV slope 

[14]. [13] study the trajectory and resource allocation design for downlink energy-

efficient secure UAV communication systems, where an information UAV assisted by a 

multi-antenna jammer UAV serves multiple ground users in the existence of multiple 

ground eavesdroppers. The UAV provides services to IoT terminals as an aerial BS based 

on the wireless-powered communication (WPC) technique. According to this system a 

synergetic scheme for UAV trajectory planning and subplot allocation. [15] present a new 

algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with 

the problem of path planning for UAVs in complicated environments subjected to 

multiple threats. 

While talking about unmanned vehicles. There are two of the main categories 

that are comprises as unmanned vehicles one of them is ground unmanned vehicles and 

other is aerial unmanned vehicles. UAVs are those which work in the concept of auto 

pilot system. This system is evolving in the modern era with the passage of time. In this 

thesis the focus is the problems faced due to aerial unmanned vehicles system and their 

solution both mathematically and in terms of engineering. UAVs are mostly drones, 

modern aircraft without any human involvement (both as a pilot or a guide). Before 

going further, it is necessary to learn which kind of engineering comes under the flag of 

Unmanned aerial vehicles. A person who wants to work in this prime field i.e., field of 

UAVs must understand controller modifications, control systems and communication 

systems associated with UAVs. Before going into technical details, first we learn about 

the basic terminologies. There is a lot of confusion going on while using the words drone 

and UAVs. While watching the news, the word drone is used many times or in simple 

words drone is the military term used primarily by armed forces. UAV is the same thing, 

this word is most common in technological field i.e., the field where people are working 

or researching in this field. In short both these words have the same meanings. 

 

2.1.1. Conventional Auction Algorithm [17]  
The Conventional Auction Algorithm (CAA) is an iterative combinatorial 

optimization algorithm used for solving a variety of problems, including 

resource allocation, task scheduling, and network routing. The algorithm is 

based on a bidding mechanism where each agent in the system makes bids for 

the resources or tasks it needs to complete its objectives. 

The CAA proceeds through a series of rounds, where in each round, 

agents submit bids for the resources they need. The bids are then evaluated, 

and the agents are allocated the resources based on their bids. The algorithm 
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uses a pricing mechanism to determine the value of the resources in each 

round, and agents are incentivized to bid truthfully by paying the amount they 

bid for the resource. 

The CAA is a decentralized algorithm that does not require a central 

authority to coordinate the resource allocation. It is known to be efficient and 

can converge to a stable allocation in a finite number of rounds. However, the 

algorithm does not guarantee an optimal allocation and can suffer from issues 

such as bid shading and collusion among agents. 

In the figure below, it is assumed that possible D2D users are spread in 

PPP form, and the path-loss impact and log-normal shadowing propagation 

possibilities between the likely D2D transmitter and receivers in a multicast 

group are considered. A multicast D2D transmitter in a multicast D2D group can 

send the same data to numerous D2D receivers after assessing the receiver's 

channel demand criteria. Because multicast D2D receivers have varying channel 

characteristics, the D2D transmitter will make an informed selection in favor of 

those receivers that can meet the channel parameters established by the D2D 

transmitter. 

 

  

Figure 1  An Example of Conventional Auction Algorithm  
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2.1.2. Consensus Based Bundle Algorithm [18],[19] 
The Consensus-Based Bundle Algorithm (CBBA) is a distributed task 

allocation algorithm that can be used for multi-agent systems. It is designed to 

allocate tasks among a group of agents in a decentralized and scalable manner. 

The CBBA proceeds through a series of rounds, where each agent 

proposes a set of tasks that it can accomplish. These sets of tasks are called 

bundles. Each agent then broadcasts its bundle to the other agents in the system. 

The agents then use a consensus algorithm to determine the best bundle for each 

agent. The CBBA is known for its scalability, robustness, and efficiency. It has been 

applied in various domains, including robotics, UAVs, and sensor networks. The 

algorithm has been shown to be effective in situations where communication 

bandwidth is limited, and agents must make decisions quickly. 

2.1.3. DTA Based on Sequential Item Auction (DTAP) [20]  
The Dynamic Task Allocation based on Sequential Single Item Auctions 

(DTAP) is a distributed task allocation algorithm designed for multi-agent 

systems. It is based on a sequence of single-item auctions, where each auction 

allocates one task to one agent. The DTAP algorithm proceeds through a series 

of rounds, where each round consists of multiple sequential single-item 

auctions. In each auction, agents bid for the right to perform a single task. The 

auction proceeds in a descending price format, where the price of the task 

decreases until a single agent remains, and the task is allocated to that agent. 

After each auction, the allocated task is removed from the set of 

available tasks, and the next auction begins. The process continues until all 

tasks are allocated. The DTAP algorithm is known for its simplicity, scalability, 

and efficiency. It has been applied in various domains, including robotics, UAVs, 

and sensor networks. The algorithm is particularly effective in situations where 

communication bandwidth is limited, and agents must make decisions quickly. 

Overall, the DTAP algorithm provides a simple and efficient approach to 

dynamic task allocation in multi-agent systems, making it a popular choice for 

various applications. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

Methodology and Results 
 

3.1. Proposed Integer Linear Programming 
ILP is a mathematical optimization technique used to solve optimization 

problems where the objective function and constraints are linear, and the decision 

variables are restricted to integer values. ILP can be used to model and solve a wide 

range of optimization problems in various domains such as finance, logistics, scheduling, 

and resource allocation. For example, it can be used to optimize production schedules, 

vehicle routing, portfolio management, and many other problems where decisions need 

to be made on discrete quantities. ILP is particularly useful in situations where decision 

variables are required to take integer values or when the optimization problem involves 

logical constraints, such as selecting one option from a set of options or satisfying a set 

of conditions. It provides an efficient and effective way to model and solve complex 

optimization problems with discrete decision variables. It formulates the problem as a 

mathematical program and seeks an optimal solution by satisfying all constraints. Here 

are some characteristics of ILP: 

Centralized: ILP is a centralized approach where all variables and constraints are 

formulated as a single optimization problem. It requires a central solver or optimizer to 

find the optimal solution. 

Deterministic: ILP aims to find the exact optimal solution to the given problem. It 

relies on mathematical techniques to systematically explore the solution space and 

determine the best feasible solution. 

Global Optimization: ILP seeks to optimize a defined objective function while 

satisfying a set of linear constraints. The objective function can be tailored to various 

optimization goals, such as maximizing revenue, minimizing costs, or maximizing 

resource allocation efficiency. 

Complexity: ILP can be computationally expensive for large-scale problems, as 

the search space increases exponentially with the number of variables and constraints. 

Solving ILP problems requires specialized solvers and techniques. 

 

3.2. Code Description 
The code implements an ILP formulation to solve a drone routing problem. The 

goal is to optimize the allocation of tasks to a fleet of drones to minimize the total 

distance traveled by the drones. The code utilizes the matplotlib library to generate 

visual representations of the drone routes and task locations. It creates a grid of 

subplots to display multiple instances of the problem. Each subplot represents a 
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different scenario with a specific set of randomly generated tasks and drone 

locations. 

The ILP formulation begins by defining the decision variables, including binary 

variables  to indicate whether a drone travels directly between two tasks, binary 

variables 1

,k jy  to represent whether a drone visits a specific task, and binary 

variables  to indicate whether a task is visited by any drone. The objective 

function is then defined as the sum of the distances traveled by the drones, which 

includes the distances between drones and tasks (DistDT) and between tasks 

(DistTT). Several constraints are added to the problem. These constraints ensure that 

each task is visited exactly once by a drone, each drone starts and ends at its origin, 

and each task is visited by only one drone. Additionally, the Miller-Tucker-Zemlin 

(MTZ) method is used to eliminate subtours and ensure that the routes form a single 

closed loop.  After the ILP problem is defined, it is solved using the PuLP library. The 

solution status and the total distance traveled by the drones are then printed. The 

code further visualizes the solution by plotting the drone routes and task locations 

on the corresponding subplot. The routes are displayed using different line styles and 

colors to distinguish between drone movements and task connections. 

The code repeats the above process for different scenarios, varying the task and 

drone locations, and generates multiple subplots to compare the solutions. The 

resulting visualization provides insights into the effectiveness of the ILP formulation 

in solving the drone routing problem and optimizing the total distance traveled by 

the drones. 

 

3.2.1. Formulation and Results 
 

Table 1 Variables involved in the constraints. 

Notations Description 
K The number of Drones 

N The number of Tasks 

,dist i kDT  Distance between task i and 
Drone k, {1, , }i N  and 

{1, , }k K   

,dist i jTT  Distance between task i and 
task j , {1, , }i j N   

 

            The decision variables considered for the ILP formulation are as below:  
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,

1, if drone travels from task  to task , , {1, , } and 

0, otherwise
i j

i j i j N i j
x

  
= 


 

1

,

1, if drone travels from its origin  to task , {1, , } and {1, , } 

0, otherwise
k j

k j k K j N
y

   
= 


 

2

,

1, if drone travels from task  to its origin , {1, , } and {1, , } 

0, otherwise
i k

i k i N k K
y

   
= 


 

time instant at which task  is visited, {1, , }iu i i N=   

The objective function is given as: 

1 2

, , , , , ,

1 1 1 1, 1 1

minimize  dist  dist  dist
N K N N N K

k j j k i j j k i k i k

j k j i i j i k

y DT x TT y DT
= = = =  = =

+ +          

The above objective is to minimize the total distance that a drone(s) 

takes to complete the task starting from its origin and returning to its origin. 

The term of  𝑦𝑘,𝑗
1  shows that drone is starting from its origin k and moving to 

task j. The term with  𝑥𝑖,𝑗  represents that the drone travels from task i to 

task j. The term with 𝑦𝑖,𝑘
2  represents the return of drone(s) after completing 

the task. 

Following are the “constraints” that are considered for the above ILP objective:                                            

1

,

1 1

N K

k j

j k

y K
= =

                                                                                                                        (1) 

1

, ,

1 1

1, {1, , }
K N

k j i j

k i

y x j N
= =

+ =                                                                                      (2) 

2

, ,

1 1

1, {1, , }
K N

i k i j

k j

y x i N
= =

+ =                                                                                        (3) 

1 2

, ,

1 1

, {1, , }
N N

k j i k

j i

y y k K
= =

=                                                                                           (4) 

,1 (1 ), , {1, , } and j i i ju u N x i j N i j−  − −                                                         (5) 

In the task assignment scenario, the constraint (1) dictates that the number 

of drones commencing from their origin to execute a task must not exceed the 

limit of K drones. This limitation ensures efficient utilization of resources and 

maintains a manageable workload distribution. By adhering to this constraint, 

the system can optimize the allocation of tasks among the available drones while 
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considering the limitations of their origin locations. One important thing to note 

is that when we are considering the case of only one drone the “k” is opted out 

from the equation. Constraint (2) in the task allocation process, it is required that 

each task is assigned to drone in such a way that they arrive at the task location 

exactly once. This condition ensures that the tasks are efficiently distributed 

among the drones, avoiding duplication or omission. By enforcing this constraint, 

the system can maintain a reliable and accurate execution of tasks, optimizing 

the overall performance and preventing any inconsistencies or inefficiencies in 

the assignment process. Constraint (3) ensures that each task is assigned to 

drone and arrives exactly once, it is also crucial that the drone leave the task 

location exactly once. This requirement guarantees that the drones complete 

their assigned tasks and move on to subsequent assignments without any 

redundant or missed operations. By enforcing this constraint, the system 

maintains a streamlined workflow, minimizing delays and maximizing the 

efficiency of task execution. It also enables proper resource allocation and 

scheduling, allowing for effective coordination among the drones in the system. 

Constraint (4) as part of the task assignment process, it is essential that each 

drone, after completing its assigned task, returns to its original starting point. 

This requirement ensures that the drones maintain a closed loop trajectory, 

completing their mission and returning to their designated origin. By enforcing 

this constraint, the system can optimize the utilization of resources and ensure 

the efficient operation of the drones. It also allows for better planning and 

coordination of subsequent tasks, as the drones are available at their designated 

starting locations for future assignments. Constrain (5) the sub-tour elimination 

constraint, derived from the Miller-Tucker-Zemlin method, is a crucial 

component in optimizing the task assignment process. This constraint ensures 

that the solution does not contain any sub-tours, meaning that all drones' routes 

form a single connected tour. By imposing this constraint, the system prevents 

inefficient and overlapping routes, leading to a more optimal and streamlined 

allocation of tasks among the drones. This constraint enhances the overall 

efficiency and effectiveness of the task assignment algorithm, reducing 

redundancy and improving the overall performance of the system. 

 

3.3. Examples 
Ex#1 Suppose an example with one drone using the constraints that we have 

introduced earlier in the above section.  

Objective: 
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1 2 1 2 1 2

1 1 21 1 2 2 1 1 31 1 3 3 1 1 41 1 4 4

1 2 1 2 1 2

1 1 51 1 5 5 2 2 12 2 1 1 2 2 32 2 3

minimize distDT distTT distDT distDT distTT distDT distDT distTT distDT

distDT distTT distDT distDT distTT distDT distDT distTT d

y x y y x y y x y

y x y y x y y x y

+ + + + + + + +

+ + + + + + + + + 3

1 2 1 2 1 2

2 2 42 2 4 4 2 2 52 2 5 5 3 3 13 3 1 1

1 2 1 2 1 2

3 3 23 3 2 2 3 3 43 3 4 4 3 3 53 3 5

istDT

distDT distTT distDT distDT distTT distDT distDT distTT distDT

distDT distTT distDT distDT distTT distDT distDT distTT dis

y x y y x y y x y

y x y y x y y x y

+

+ + + + + + + + +

+ + + + + + + + 5

1 2 1 2 1 2

4 4 14 4 1 1 4 4 24 4 2 2 4 4 24 4 2 1

1 2 1 2 1 2

4 4 34 4 3 3 4 4 54 4 5 5 5 5 15 5 1

tDT

distDT distTT distDT distDT distTT distDT distDT distTT distDT

distDT distTT distDT distDT distTT distDT distDT distTT distD

y x y y x y y x y

y x y y x y y x y

+

+ + + + + + + + +

+ + + + + + + + 1

1 2 1 2 1 2

5 5 25 5 2 2 5 5 35 5 3 3 5 5 45 5 4 4

T

distDT distTT distDT distDT distTT distDT distDT distTT distDTy x y y x y y x y

+

+ + + + + + + +

 

 

Figure 2 Drone choosing the path of its start. 

Following the equation number (1) the new equation that we get for this 

problem is below: 

 

                                                       1 1 1 1 1

1 2 3 4 5 1y y y y y+ + + + =                                          (6) 

 Equation (7) is derived from the equation (2). 

         

1

1 21 31 41 51

1

2 12 32 42 52

1

3 13 23 43 53

1

4 14 24 34 54

1

5 15 25 35 45

1

1

1

1

1

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

                                            (7) 

Driven equation (8) and (9) is from Equation (3)  

       2 2 2 2 2

1 2 3 4 5 1y y y y y+ + + + =                                              (8) 
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2

1 12 13 14 15

2

2 21 23 24 25

2

3 31 32 34 35

2

4 41 42 43 45

2

5 51 52 53 54

1

1

1

1

1

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

                                            (9) 

 1 (1 )j i iju u N x−  − −                                              (10) 

                    

Solution: 

Table 2 Distance calculation between Drone and Task 

Drones Task Distance (m) 

0 1 2.00 

0 2 1.80 
0 3 2.24 

0 4 3.16 

0 5 4.57 
 

 

Table 3 Distance calculation between Task and Task 

Task(i) Task(j) Distance 
(m) 

Task(i) Task(j) Distance 
(m) 

1 2 1.80 2 1 1.80 
1 3 3.61 2 3 2.06 

1 4 3.16 2 4 1.05 
1 5 4.00 2 5 2.77 

3 1 3.61 4 1 3.16 

3 2 2.06 4 2 1.50 
3 4 2.24 4 3 2.24 

3 5 3.77 4 5 1.56 

5 1 4.00 5 2 2.77 
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                                                                                                     Total Distance = 12.61m 

  

 

 

 

 

 

 

 

 

 

 

The ILP formulation selects the shortest path to completion of the journey. 

Distance is calculated initially from drone to task, then from task to task, and finally 

after making potential pathways. ILP selects the shortest one.  

 

1 1 1 1 1

1 2 3 4 5 1y y y y y+ + + + =  

1

1

1 1 1 1

2 3 4 5

1

0

y

y y y y

=

= = = =
 

Entering Equation: 

21

31

41

51

0,

0,

0,

0,

x

x

x

x

=

=

=

=

  

12

32

42

52

1,

0,

0,

0,

x

x

x

x

=

=

=

=

  

13

23

43

53

0,

0,

1,

0,

x

x

x

x

=

=

=

=

 

14

24

34

54

0,

0,

0,

1,

x

x

x

x

=

=

=

=

 

15

25

35

45

0

1

0

0

x

x

x

x

=

=

=

=

 

Leaving Equation: 

2

3

2 2 2 2

1 2 4 5

1

0

y

y y y y

=

= = = =
 

Subtour-Elimination Equation: 

                                       

5 3 3.77 5 4 1.56 
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                                       Table 4 Subtour Equation 

1u  1 

2u  2 

3u  5 

4u  4 

5u  3 

                      

1 (1 )j i iju u N x−  − −                                                           

If 12x =1 

2 1 12

2 1

2 1

2 1

2 1

2 1

2 1

1 5(1 )

1 5(1 1)

1 5(0)

1 0

1

1

1

u u x

u u

u u

u u

u u

u u

u u

−  − −

−  − −

−  −

−  −

− 

− 

 +

From Table we can confirm this which shows that 2 1u u  

1. 13x =1                                   2. 14x =1                              3. 15x =1 

3 1 13

3 1

3 1

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

        

4 1 14

4 1

4 1

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

      

5 1 15

5 1

5 1

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

 

If 25x =1 

5 2 25

5 2

5 2

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

From the table and figure (2) it can be seen that 5 2u u  

 

 

4. 21x =1                                            5. 23x =1                                  6. 24x =1  

1 2 21

1 2

1 2

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

             

3 2 23

3 2

3 2

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

        

4 2 24

4 2

4 2

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +
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7. 31x =1 

1 3 31

1 3

1 3

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

 

8. 32x =1                                  9. 34x =1                               10. 35x =1 

2 3 32

2 3

2 3

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

        

4 3 34

4 3

4 3

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

         

5 3 35

5 3

5 3

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

 

 

11. 43x =1 

3 4 43

3 4

3 4

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +

 

12. 41x =1                                  13. 42x =1                                   14. 45x =1 

1 4 41

1 4

1 4

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

       

2 4 42

2 4

2 4

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

     

5 4 45

5 4

5 4

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

 

15. 54x =1 

4 5 54

4 5

4 5

1 5(1 )

1 5(1 1)

1  

u u x

u u

u u

−  − −

−  − −

 +

 

 

 

16. 51x =1                                   17. 52x =1                                  18. 53x =1 

1 5 51

1 5

1 5

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

     

2 5 52

2 5

2 5

1 5(1 )

1 5(1 1)

1  Not possible

u u x

u u

u u

−  − −

−  − −

 +

      

3 5 53

3 5

3 5

1 5(1 )

1 5(1 1)

1

u u x

u u

u u

−  − −

−  − −

 +
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Ex#2. This example includes the two drones. It clarifies each constraint. 

 

Figure 3 Two drones with 5 tasks 

 

Table 5 Distance Calculation between Drone and Task case#2 

 

 

 

 

 

 

 

 

Table 6 Distance Calculation between Task and Task case#2 

 

Task(i) Task(j) Dist 
(m) 

Task(i) Task(j) Dist 
(m) 

Task(i) Task(j) Dist 
(m) 

1 2 1.80 2 1 1.80 3 1 3.61 

1 3 3.61 2 3 2.06 3 2 2.06 
1 4 3.16 2 4 1.50 3 4 2.24 

1 5 4.00 2 5 2.77 3 5 3.77 

4 1 3.16 4 2 1.50 4 3 2.24 

Drone 1 Task Distance 
(m) 

Drone 2 Task Distance 
(m) 

0 1 1.41 1 1 3.61 

0 2 0.50 1 2 1.80 
0 3 2.24 1 3 1.41 

0 4 2.00 1 4 1.00 
0 5 3.23 1 5 2.42 
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4 5 1.56 5 1 4.00 5 2 2.77 

5 3 3.77 5 4 1.56 
                                                                                                 Total Distance = 11.35m 

 

1 1 1 1 1 1 1 1 1 1

1,1 1,2 1,3 1,4 1,5 2,1 2,2 2,3 2,4 2,5 2y y y y y y y y y y+ + + + + + + + +                            (11)                                                                                       

1

1,1 21 31 41 51

1

1,2 12 32 42 52

1

1,3 13 23 43 53

1

1,4 14 24 34 54

1

1,5 15 25 35 45

1

2,1 21 31 41 51

1

2,2 12 32 42 52

1

2,3 13 23 43 53

1

2,4 14 24 3

1

1

1

1

1

1

1

1

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

y x x x x

y x x x

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + + =

+ + + 4 54

1

2,5 15 25 35 45

1

1

x

y x x x x

+ =

+ + + + =

                                                                                     (12) 

2 2 2 2 2 2 2 2 2 2

1,1 2,1 3,1 4,1 5,1 1,2 2,2 3,2 4,2 5,2y y y y y y y y y y K+ + + + + + + + +                           (13)                                                                       

 

1 (1 )j i iju u N x−  − −                                                                                                  (14) 

Solution 

1 1

1,2 2,3

1 1 1 1 1 1 1 1

1,1 1,3 1,4 1,5 2,1 2,2 2,4 2,5

1

0

y y

y y y y y y y y

= =

= = = = = = = =
 

21 12 13 14 15

31 32 23 24 25

41 42 43 34 35

51 52 53 54 45

1,   0,    0,  0,  0

0,   0,   0,  0,  0

0,   0,   0,  1,  0

0,   0,    0,  0,  1

x x x x x

x x x x x

x x x x x

x x x x x

= = = = =

= = = = =

= = = = =

= = = = =
 

2 2

1,1 5,2

2 2 2 2 2 2 2 2

2,1 3,1 4,1 5,1 1,2 2,2 3,2 4,2

1

0

y y

y y y y y y y y

= =

= = = = = = = =
 

1u
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21

1 2 21

1 2

1 2

19. 1

1 5(1 )

1

1

x

u u x

u u

u u

=

−  − −

− 

 +
   

12

2 1 12

2 1

2 1

20.  1

1 2(1 )

1

1  Not possible

x

u u x

u u

u u

=

−  − −

− 

 +
 

 

 

 

43

3 4 43

3 4

3 4

21. 1

1 (1 )

1

1  Not possible

x

u u N x

u u

u u

=
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From the Miller-Tucker-Zemlin approach, we built the subtour-elimination 

equation. But to make this clearer, we may give an example that explains this 

strategy in more detail. 

 This case will demonstrate more about the subtour-elimination equation. 

2u
 

1 

3u  1 

4u  2 

5u  3 
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Figure 4 Subtour-Elimination Equation case#3 

If there are two drones included how do the elimination equation looks like. 

It is concluded that there is no effect on two drones’ equation each case will have 

their own “
j

u ” and “
i

u ” values in this scenario. 

 

Figure 5 Subtour-Elimination Equation case#4 

 

 The values of elimination equation variables can be seen in the Figure 5 

clearly for two drones’ scenario. 

. 

3.4. Results 
The results reported demonstrate how the drones perform in various settings 

using Integer Linear Programming (ILP). The graph has twelve jobs, and we divided it 

into four sections to demonstrate how our program works. Referring to figure (a) has 

one drone, the figure (b) has two drones, and the figure (c) and figure (d) have three 

and four drones, respectively. We are examining how the journey should be done 

and what implications it should have on the distance traveled. Increasing the number 

of drones with the same number of jobs will affect how the program behaves. 

Following multiple trials, we obtained certain findings demonstrating the nature 

of our program based on Integer Linear Programming. 
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               (a) One drone                                          (b) Two drones 

                       

                (c) Three drones                                       (d) Four drones     

Figure 6 Experiment no.1 

In this experiment, it can be observed that when there is just one drone, it 

completes all the duties and its distance is measured which is 326.17m, which can be 

seen in Figure 8(a). When we raise the number of drones by one, we can observe a 

difference in the distance, and it becomes 323.7m Figure 8(b) decreases almost 

three meter. When we increase the number of drones by one more, the distance 

becomes shorter which is in Figure 8(c) 293.71m decreases 30m than earlier. Finally, 

when we use four drones with twelve jobs, we can see a significant change by 30m 

in the distance of previous scenario and 63m from the first journey which is 263.51 

in Figure 8(d). From this it can be concluded that increasing the number of drones 

can decrease the distance and cost of the journey. This scenario shows how the 

increase in drone is beneficial. 

                              

                                      (a) One drone                            (b) Two drone 
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                                       (c) Three drone                         (d) Four drone 

Figure 7 Experiment no.2 

In experiment #4, it is demonstrated that employing only three drones 

reduces the distance and eliminates the need for a fourth. The reason is that the 

whichever task is near to the drone it takes that then go for next as we can see in the 

Figure(a) the one drone is taking responsibility of all tasks but when we increased 

the drone by one in Figure(b) drone one only takes task 1,6,8 where other tasks 

2,3,4,5,7,9,10,11,12 go with drone two because it is more nearer to it. Figure(c) 

shows that after the addition of drone three the task 10 goes with it because it is 

nearer than the other two drones. Drone two is not used in Figure(c) because the 

other three drones are near to tasks and are giving a satisfactory result. 

Table 7 Distance Calculation between Drone and Task 

Drone Distance (m) 

1 363.11 

2 351.37 
3 328.97  

4 316.75 
 

 

                 

                         (a) One Drone                                           (b) Two drones 
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                          (c) Three drones                                       (d) Four drones 

Figure 8 Experiment no. 3 

In this experimental setup, the specific task locations, yet the common 

theme across all scenarios is the satisfactory performance of the two drones in each 

graph, rendering the use of the remaining two drones unnecessary. However, a 

noteworthy change occurs in the last graph as the drone assigned for travel shifts 

from number 2 to number 4. This alteration is attributed to the inherent 

characteristics of the tasks. For relatively straightforward tasks, the journey's 

completion via drone number 4 is more expedient compared to drone number 2. As 

a result, this modification leads to a reduction in overall travel distance, albeit the 

reduction may not be substantial but remains significant in optimizing the operation. 

 

Table 8 Distance Calculation 

Drone Distance (m) 

1 318.03 

2 293.89  
3 293.89 

4 293.38 
 

                      

                       (a) One drone                                                           (b) Two drones 
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                       (c) Three drones                                                        (d) Four drones 

Figure 9 Experiment no. 4 

In this specific scenario, a single drone is exclusively employed to execute a 

journey, and it consistently yields satisfactory results. This optimized approach of 

utilizing a sole drone for journey completion is notable for its efficacy in achieving 

the desired objectives while minimizing operational complexity and resource 

allocation. By harnessing the capabilities and technologies of a single drone, it 

streamlines the coordination and control processes, reducing the need for multi-

drone deployments, which can be operationally demanding and resource intensive. 

The efficiency and reliability exhibited by this solitary drone operation underscore its 

proficiency in providing a cost-effective and technically sound solution for journey 

execution, aligning with the overarching objective of enhancing performance and 

resource utilization. 

                                  Table 9 Distance Calculation 

 

 

 

 

 

Drone Distance (m) 
1 321.22  

2 321.22 

3 321.22 
4 320.29 
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Figure 10 Results of all experiments in graphical form  

  The graph in question serves as a visual representation that elucidates the 

outcomes of individual experiments while highlighting distinctions among various predefined 

scenarios. Each line within this graphical representation effectively captures the way 

distances are attenuated or altered as a function of incrementally augmenting the count of 

deployed drones within the ambit of a twelve-task environment. As experiment no 1,4,6 

shows more potential change than experiment no 2,3,8 but these are better than 

experiment no 5,7 which shows not much changes. In essence, the graph intricately dissects 

the intricate interplay between the number of drones and the dynamic changes in distances 

associated with the specific scenarios under examination.    
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Table 10 Time calculation Drone 1-4 

Task Drone 
1 

Drone 
2 

Drone 
3 

Drone 
4 

 Time (s) Time (s) Time (s) Time (s) 

10 1.04 0.82 0.72 0.70 

12 4.06 2.18 1.56 1.32 

14 2.59 2.45 2.18 1.53 

16 2.43 2.06 3.88 2.82 

20 126.94 14.18 81.71 11.29 

22 75.23 11.52 26.21 15.24 

24 50.08 9.49 10.60 6.37 

25 31.41 6.35 51.18 24.36 

27 75.63 15.21 51.81 20.3 
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Table 11 Time calculation Drone 5-10 

 

 

 

 

 

 

 

 

 

Tasks Drone 
5 

Drone 
6 

Drone 
7 

Drone 
8 

Drone 
9 

Drone 
10 

 Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) 

10 0.73 0.53 0.90 1.82 0.99 1.30 

12 1.53 1.72 1.94 1.46 2.01 1.64 

14 4.02 1.45 2.01 2.61 3.21 1.45 

16 1.99 1.45 1.32 2.89 3.12 2.41 

20 262.63 31.78 9.65 37.74 270.18 150.1 

22 90.3 21.75 45.02 32.13 23.51 18.65 

24 250.8 19.94 30.15 52.12 37.54 85.32 

25 52.15 38.16 45.12 85.14 56.32 15.32 

27 96.36 12.86 75.15 100.6 80.2 55.10 
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In the time calculation process, the Lenovo IdeaPad Slim 3, equipped with an Intel 

Core i3 10th generation processor, proves to be a reliable computational platform. The 

utilization of 8GB of RAM and a speedy 256GB SSD ensures efficient data access and 

manipulation. However, it is worth noting that some of the calculations, highlighted in red, 

have exhibited significant computational complexity, surpassing the one-hour or 60-minute 

threshold. This extended time frame is indicative of the inherent computational challenges 

posed by the Integer Linear Programming (ILP) constraints embedded within the problem. 

ILP, a mathematical optimization technique, often requires solving procedures that involve 

integer variables, leading to increased time complexity. 

The beyond range sections from 27 could also suggest the necessity of algorithmic 

optimization, hardware upgrades, or parallel computing strategies to expedite the solution 

process. Furthermore, it's crucial to consider the impact of the problem size and the inherent 

limitations of the hardware, as larger instances of ILP problems can demand substantial 

computational resources and time. Additionally, increasing the RAM or using a more 

powerful CPU could potentially reduce the computational time, particularly for complex ILP 

problems. 

Various combinations of number of drones and tasks are tested. For our available computer 

resources, the maximum number of tasks that the proposed ilp formulation can solve within 

reasonable time is 27, regardless of the number of drones being used. 
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CHAPTER 4 

Conclusion 
 

In summary, this research introduces a robust and highly effective solution based 
on Integer Linear Programming (ILP) to address the intricate challenges of drone routing 
and task assignment. The central focus of this endeavor is to minimize the cumulative 
distance traveled by drones, a pivotal factor in streamlining the cost-efficiency and 
overall operational effectiveness of drone logistics. The vivid visualizations generated by 
the code serve as tangible evidence of the approach's optimality, solidifying its status as 
a valuable tool for the optimization of drone-based task management. We have done 
experimentation on numerous numbers of tasks to check the optimality of the solution 
by also fluctuating the number of drones. This algorithm performs well with the 27 
number of tasks, and we have checked it with the ten drones. The solution have our 
required result in the form of minimized distance, no subtours or loops and optimal path. 
After 27 tasks the algorithm takes more than sixty minutes to check for the solution. For 
more experimentation above the limit, it needs the advancement of machine instead of 
doing our experiments on. 

Looking ahead, the path to further enhance this model lies in the integration of 
real-world data and the consideration of external factors such as weather conditions and 
airspace regulations. This pragmatic evolution will bolster the model's utility, enabling it 
to tackle the intricate challenges posed by actual operational environments. By 
broadening the model's capabilities in this manner, we are poised to ensure its 
continued role as a steadfast and indispensable tool for organizations and industries that 
strive to harness the full potential of drones in their logistics and operational strategies. 
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APPENDIX A 
 

import matplotlib.pyplot as plt 

import random 

import numpy as np 

from pulp import * 

import time  # Import the time module 

# Create subplots for visualization 

fig, axs = plt.subplots(2, 2) 

seed_value = 42356897 

### 35689742, 56897423, 68974235, 89742356, 97423568, 74235689,42356897   

fig.suptitle('Seed value = ' + str(seed_value) ) 

mycolors = ['red','blue','green', 'cyan'] 

Drones = [(25, 30), (75, 90), (75, 30), (25, 90)] 

nDrones = [1, 2, 3, 4] 

nAxes = nDrones[-1] 

nTasks = 12 

drone_colors = ['C0', 'C1', 'C2', 'C3', 'C4']*5 

 

# Loop through tasks 

for ft in range(nAxes): 

    print("\nft = %d" % ft) 

    row = ft//2 

    col = ft%2 

    # Record the start time 

    start_time = time.time() 

    # Initialize drones and tasks lists 

    AreaWidth = 100 

    AreaHeight = 120 
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    random.seed(seed_value) 

    Tasks = [] 

    for k in range(nTasks): 

        x = round(random.random() * AreaWidth, 2) 

        y = round(random.random() * AreaHeight, 2) 

        Tasks.append((x, y)) 

    for k in range(nTasks): 

        x = Tasks[k][0] 

        y = Tasks[k][1] 

        axs[row, col].scatter(x,y,s = 25, color ='k', alpha=0.8) 

        axs[row, col].text(x+0.3,y+0.3,str(k+1)) 

    for k in range(nDrones[ft]): 

        x = Drones[k][0] 

        y = Drones[k][1] 

        axs[row, col].scatter(x,y,s = 60, color =drone_colors[k], 

                              marker = 's', alpha=0.9) 

        axs[row, col].text(x+0.3,y+0.3,str(k+1) 

    # Loop through drones 

    for drn in range(nDrones[ft]): 

        # Record the start time for this drone's trip 

        start_time = time.time() 

        # Calculate and print the time it takes for the drone to reach each task 

        for j, task in enumerate(Tasks): 

            x1, y1 = Drones[drn] 

            x2, y2 = task 

            distance = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 

            elapsed_time = time.time() - start_time 

            print(f"Drone {drn + 1} to Task {j + 1} time: {elapsed_time:.2f} seconds") 

##In this loop the tasks and drones lists are plotted on subplots defined by 
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##'row' and 'col'. s is parameter size set and alpha controls the transparency of 

##of point 

    DistDT = {} 

    for m in range(nDrones[ft]): 

        for n in range(nTasks): 

            dist = ((Drones[m][0]-Tasks[n][0])**2 

                    +(Drones[m][1]-Tasks[n][1])**2)**0.5 

            DistDT[(m,n)] = dist 

            print("DistDT",m,":",n+1,"= %.2f"%dist) 

    DistTT = {} 

    for m in range(nTasks): 

        for n in range(nTasks): 

            if m!=n: 

                dist = ((Tasks[m][0]-Tasks[n][0])**2 

                        +(Tasks[m][1]-Tasks[n][1])**2)**0.5 

                DistTT[(m,n)] = dist 

                print("DistTT",m+1,":",n+1,"= %.2f"%dist) 

 

##DistDT is the distance from drone to task and DistTT is the distance between 

##task to task. For the calculation of distance Euclidean formula is used. 

     

    ## ILP formulation 

    SRC = range(1,nTasks+1) #Source 

    DST = range(1,nTasks+1) #Destination 

    DRN = range(1,nDrones[ft]+1) #Drone 

    Trips = [(i,j) for i in SRC for j in DST if i!=j ] 

    print("Trips = ",Trips) 

    prob = LpProblem("Drone Problem", LpMinimize) 

    #Defining Variables 
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    y1 = LpVariable.dicts("y1", (DRN, DST), cat ="Binary") ##### 

    y2 = LpVariable.dicts("y2", (SRC, DRN), cat ="Binary") ##### 

    x = LpVariable.dicts("x", (SRC, DST), cat="Binary")    

 

    u = LpVariable.dicts('u', (SRC), lowBound=1, upBound=len(Tasks), cat='Integer') # 

we need to keep track of the order in the tour to eliminate the possibility of subtours      

    #The objective function is added to 'prob' first 

    prob += ( 

         lpSum([y1[drn][j] *DistDT[(drn-1,j-1)] for j in DST for drn in DRN]) 

         + lpSum([x[i][j] * DistTT[(i-1,j-1)] for (i, j) in Trips]) 

         + lpSum([y2[i][drn] *DistDT[(drn-1,i-1)] for i in SRC for drn in DRN]), 

        "Total Distance ")    

    #Constraint 1: Drone(s) starts from its origin and goes to its nearest task 

    prob += lpSum([y1[drn][j] for drn in DRN for j in DST]) <= nDrones 

    #Constraint 2: for each task, drone(s) must arrive exactly once          

    for j in DST: 

        prob += lpSum([y1[drn][j] for drn in DRN] + [x[i][j] for i in SRC if i!=j]) == 1 

    #Constraint 3: for each task, the drone must leave exactly once 

    for i in SRC: 

        prob += lpSum([y2[i][drn] for drn in DRN] + [[x[i][j]] for j in DST if i!=j]) == 1 

    #Constraint 4: The outgoing drones must return back to its origin 

    for drn in DRN: 

        prob += lpSum(y1[drn][j] for j in DST) == lpSum(y2[i][drn] for i in SRC) 

    # #Constraint 5: Miller-Tucker-Zemlin (MTZ) Method for subtour elimination 

    for i in SRC: 

        for j in DST: 

            if i != j: 

                prob += u[j] - u[i] >= 1 - (len(Tasks) * (1 - x[i] [j]))  

    prob.writeLP("myChain%d.lp"%ft) 

    prob.solve() 
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    print("Status:", LpStatus[prob.status])   

    print("Total distance (ILP): %.2f"%pulp.value(prob.objective)) 

    ListOfTasks = [[] for k in range(nDrones[ft] 

                                     )] 

    for drn in DRN: 

        for j in DST: 

            if value(y1[drn][j])==1: 

                ListOfTasks[drn-1].append(j) 

                break 

        print('Drone ', drn, ':', ListOfTasks[drn-1]) 

        if len(ListOfTasks[drn-1])>0:   ### the drone is active 

            i = ListOfTasks[drn-1][0] 

            search = True 

            while (search): 

                if value(y2[i][drn])==1: 

                    search = False 

                else: 

                    for j in DST: 

                        if value(x[i][j])==1: 

                            ListOfTasks[drn-1].append(j) 

                            i = j 

                            break 

            print('Drone ', drn, ':', ListOfTasks[drn-1]) 

            axs[row, col].plot([Drones[drn-1][0],Tasks[ListOfTasks[drn-1][0]-1][0]], 

                               [Drones[drn-1][1],Tasks[ListOfTasks[drn-1][0]-1][1]], 

                               color=drone_colors[drn-1]) 

            t1 = ListOfTasks[drn-1][0] 

            for t2 in ListOfTasks[drn-1][1:]:          

                axs[row, col].plot([Tasks[t1-1][0],Tasks[t2-1][0]], 
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                                   [Tasks[t1-1][1],Tasks[t2-1][1]], 

                               color=drone_colors[drn-1]) 

                t1 = t2 

            axs[row, col].plot([Tasks[ListOfTasks[drn-1][-1]-1][0],Drones[drn-1][0]], 

                               [Tasks[ListOfTasks[drn-1][-1]-1][1],Drones[drn-1][1]], 

                    color=drone_colors[drn-1], linestyle='--')      

    title_temp = np.round(value(prob.objective),2)           

    axs[row, col].set_title("Total distance = " + str(title_temp) + ' m') 

    # Record the end time 

    end_time = time.time() 

    # Calculate and print the elapsed time 

    elapsed_time = end_time - start_time 

    print("Elapsed time for ft = %d: %.2f seconds" % (ft, elapsed_time)) 

    # Show plots 

    axs[row, col].set_xlim([0,AreaWidth]) 

    axs[row, col].set_ylim([0,AreaHeight]) 

 

    plt.show(block=False) 

#Calculate the total time for the entire code 

total_execution_time = time.time() - start_time 

print("Total execution time: %.2f seconds" % total_execution_time).
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