CHAPTER HII
THE CHURCH-ROSSER THEOREM

The main topic of this chapter is the Church-Rosser theorem of which we will
state and prove three versions. In the first section we state and prove some general
' lemmas which are used in the proof of the theorem. In the second section we define
residuals and minimal complete developments (MCD’s), two concepts which are the
keys to proving the theorem. The Church-Rosser theorem for B3-reduction is proved
in the third section by first proving a Church-Rosser theorem for MCD’s. In the last

section, we define fd-equality and state and prove relevant results about it.
3.1 Preliminary Lemmas

Lemma 3.1.1. Let R be a potential redex and P be a pattern, If [N/xy,..., Ni/xJP =R
for some distinct variables xi,..., Xx, k > 1, and some terms Njy,..., N, then P = x; for

some 1 <t<k.

Proof. Assume [Ny/xXi,..., Ni/x¢]P = R for some distinct variables xi,..., Xy, k = 1, and
some terms Ny,..., Nk. Suppose P # x; for all 1 <i <k. If P is an atom, then
P =[Ny/xy,..., Nk/xk]P = R, which is a contradiction, since R contains an abstraction.
Hence P = PP, for some .pattems P,and P,, where P, is not a variable.
Since R is a potential redex, R = AN for some abstraction A and some term N,
So we have AN =R = [Ny/xy,..., Ni/xiP = [N/x1,..., N JPi [NUXo,.., NefxulPa
4 -'By Note 2.1.3(b), A = [Ni/xy,..., Ni/xk]P;. Since P) is not a variable, by
Lemma 2.1.10(b) [Ny/xi,..., Ni/x]P| is of the same form as P;. This implies P, is an

abstraction, which is impossible. O
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Lemma 3.1.2. Let AP.Q be a simple abstraction with FV(P) = {xy,..., Xk}, k =1, and
N be a term such that AP.Q =, N. Then N = A[y)/xi,..., Yi/x]P.Q’ for some distinct

variables yj,..., Yk and some term Q' such that {yi,..., i} N FV(\P.Q) =J and

Q' = [y1/x1,..-, /%] Q.

Proof. Since AP.Q =, N, there exists a sequence of terms AP.Q = A), A,,..., An= N,
n 2 1, such that for each 1 <i<n, A is obtained from A; by a single change of
bound variable. Induct on n.

If n = 1, then, by Corollary 2.1.12(c) N = AP.Q = A[x,/xi,..., Xi/Xk]P.Q, where
{xl,..., xx} NFV(AP.Q) = & and Q = [xy/xy,..., Xk/X]Q.

Now suppose n > 1. Since AP.Q =4 A,.1, by induction
Ang = A[yi/Xp,...y yk/xk]P.Q'for some distinct variables yy,..., yx and some term Q',
where {yi,..., yx} N FV(AP.Q) = & and Q' =, [yi1/X1,..., Ye/x]Q.

Since N is obtained from A,,.; by a single change of bound variable, there are
two cases as follows.

Case 1. No variable in P has been changed.

By Lemma 2;2.4, N = A[y1/X1,..., Yi/%cJP.Q" for some term Q”, where
Q" =, Q. Then we are finished since Q"= [y1/X1,..., yi/xk]Q.

Case 2. Some variable in P-has been changed.

Then N = A[w/yi][yi/X1,..., Yi/Xk]P.fw/y]Q’ for some 1 <t <k, and some
variable w, where w ¢ FV(([y1/X1,..., yk/xk]P)Q')‘ Without loss of generality, assume
t= 1. By Corollary 2.1.17(a), N = A[w/xy, Y2/Xa,..., Yi/Xe]P.[W/y1]Q), so it only
remains to show that [w/y;]Q' =, [W/X1, y2/X2,..., Yi/Xx]Q and
{w, Y25.0 Yk} N FV(AP.Q) = .

Suppose w € FV(AP.Q). Since Q' =, [y1/X1,..., Yi/X¢]Q, by Lemma 2.2.5
FV(Q)) = FV([y1/X,..., y/%]Q). So we have
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w e FV(Q) — {X1,..., X} < FV([y1/X1,..., Y/x]Q) = FV(Q'), a contradiction. Hence
{W, ¥2,..., Yk} N FV(AP.Q) = &. Finally, by Lemma 2.2.7 and Corollary 2.2.8 we have

[W/y11Q' =o [WYIIIY /X115 Yi/Xi]Q = [WK1, Yo Xapeor, /X]Q. 0

Lemma 3.1.3. Let P be a pattern with FV(P) = {x;,..., X}, k 2 1, y1,..., Y« be distinct
variables, and Q be a term. If {yj,..., yx} " FV(AP.Q) = &, then
AP.Q =q A[y1/X15ey Y/XKIP.[Y1/X15000, Yi/Xi] Q.

Proof. Assume {yi,..., e} N EV(AP.Q)=@. Let S = {i |1<i<kand yi ¥ X;} and

| S|=m and induct on m.
Suppose m = 0, so that y; = x; for all 1 <i <k. Hence

AP.Q = My1/X1,..., YW/XeIPL YK1oY Q.
Now assume m > 0, Without loss of generality, assume y; # x;.
Case 1. x; £yjforall 1 <i<k.
Then x; ¢ FV([y1/X1,..., yi/Xk](PQ)). By the above assumption,

FV(Q) N ({Y15re0s Yi} = {X1500 X}) = FV(Q) A ({¥15-..., Y} —FV(P))

- | = {1,000, Y} A FVORQ) =2,

. Hence A[yi/Xi,..., Yi/XkJP.[y1/X1,..., Yi/Xk]Q
=¢ AXVY 1Y 1X 105 Y/XKOP. X1V [Y1/X s s YR/XKIQ
= A[x)/X1, Yo/X2,. .., Y/X(JP[X1/y1][Y1/X1s. ., Y/XK]Q (by Corollary 2.1.17)
=q A[X1/X1, Yo/Xa,.. .5 YR/Xk]P.[X1/X1, Yo/X2,..., Yi/Xk]Q (by Corollary 2.2.8)
=4 AP.Q. (by induction)
Case 2. x; =y, for some 1 <t<k.
Without loss of generality, assume t =2, Note that y; # x; since X $ X2.
Choose a variable w ¢ FV(xy...xxy1...YkPQ). Then

ALY1/X1500es YR/XKIP.[Y1/X 150005 Yi/Xk]Q
= Aly1/X1, X1/X2, Ya/Xa,..., Y/X]P.[y1/X1, X1/X2, Y3/X34..., Yi/%x]Q
=y l[w/xl][y17x1, X1/X2, Y3/X3,..., Yi/X]P.[W/x(][y1/X1, X1/X2, Y3/X3,..., Yi/%c]Q
=q MY1/X1, WX, y3/Xa,..., Ye/Xk]P.[y1/X1, WX, y3/X3,..., Yi/Xk]Q
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=, Mx1/1 ][y 1/X1,W/Xa, Y3/X3,.. ., Ye/Xk P [X1/y1][y1/%0,W/X2, Y3/X3,..., Yi/Xk]Q
=q M[X1/X1,W/X2, Y3/X3,..., Yi/XK]P.[X1/X1,W/X2, Y3/X3,..., Yi/Xk]Q

=, AP.Q. : (by induction) 0

Lemma 3.1.4. Let P and P’ be patterns with FV(P) c {xi,..., xx}, k=1, and
P'= [yi/X1,..., Yi/Xi]P for some distinct variables yi,..., yx and let Q and N be terms. If
(AP.Q)N is a B-redex, then (AP .Q)[Uj/uy,..., Un/um]N is also a B-redex for any

distinct variables uy,..., um, m 2 1, and any terms Q', Uyeeoy Une

Proof. Assume (AP.Q)N is a B-redex. Then there exist terms N,..., Ny such that
[N1/x1,..., Ne/x]P = N.
Let uy,..., um, m 2 1, be distinct variables and U,,..., Uy, be terms. Then
[Us/us,..., Un/tm]N= [Ut/ass..., Un/tm][N/X1 Ni/X P
= [Ui/uy,..., Un/um] [IN1/Y1,..., N/YR)[Y1/X15en0, Yi/Xi] P
(by Corollary 2.1.17(a))
= [Uy/uy,..., Un/um][N1/¥15e.s Ni/yi]P’
= [[U/uy,..., Un/tum]Ni/§1,...; [Ut/tgs..., Un/umINW/yi]P'.
l (by Corollary 2.1.17(a))
Hence (AP'.Q")[Ui/uy,..., Un/um]N is a P-redex for any term Q. O

Corollary 3.1.5. Let (AP.Q)N be a 3-redex.
a. For any simple abstraction A such that A =, AP.Q, AN is a p-redex.
b. For any distinct variables xi,..., X, k 2 1, and any terms U,,..., Uy,

[U1/X1,-.s U/xiJ((AP.Q)N) is a B-redex.

Proof. Part (a) follows from Lemmas 2.2.4(b), 3.1.2 and 3.1 .4, while Part (b) follows
from Lemmas 2.1.10(c), 2.1.16 and 3.1.4. 0



Lemma 3.1.6. Let R = (AP.Q)N be a B-redex, x,..., X, k 2 1, be distinct variables,
and S, Uy,..., Ucbe terms. If R b5 S, then [Uy/xy,..., Ue/x(]R > [Ui/xy,..., Up/Xi]S.
To be precise, if R >y S, then [U/xy,..., U/Xc]R >1p S*for some term S*, where

§*=q [U1/X1,.-., Ui/xi]S.

Proof. Assume R >3 S.

Case 1. FV(P)= Q.

~ ThenP=Nand S =Q. Since FV(N) =FV(P) = Q,
[Ui/x1s..., U/xk]R = [U1/Xy,..., U/Xc)(AP.Q) [Uy/x1,..., Up/xc]N
= (\P.[Uy/x1,..., U/x]Q)N
>1a[Us/X15..., Ue/xic]Q.

Case 2. FV(P) - {V1yee0, Ym}-

Then there exist terms Ny,...., Ny such that [Ny/y1,..., Nw/ym]P = N and
S =[Ni/y1,..., Nm/ym]Q. So we have
[Ui/x1,..., U/XkIN = [U/X 10y Un/X IN1/Y 15000y Nen/Ym]P

= [[Ur/X1yery U/ INYY 10 [U1/X1,00, Ur/XkINm/ Y] P
(by Corollary 2.1.17(a), since FV(P) = {y1,..., Ym})

and [Uy/x1,..., Up/x]S = [Ui/X1,.0., Ug/XiJINVS 1000 Neo¥n] Q.

There are cases and subcases as follows. (Note that
FV(Q) N ({X150rs Xk} = {Y15-0, Ym}) = FV(Q) N ({x1,.., X} = FV(P))

= {X1. Xk} NFV(AP.Q).) '
(2.1) {x1,..., Xk} "FV(AP.Q) = @.
_ Then [Ui/xy,..., U/x]R = (AP.Q)[Uy/x,,..., Ur/x]N. By the note above
FV(Q) n ({x15:00s Xk} = {¥15---» Ym}) = &, s0 we have
[Ui/x1,..., Ue/xc]R 15 [[Ur/X1,...y U/ N1, o [Ui/X 1400, Ul/XINm/Ym]Q
=.[Ui/x1,..., U/Xk][N1/y1s..., Ny Q. (by Corollary 2.2.8)

(2.2) {x1,..., Xx} N FV(AP.Q) = {xi,,..., Xi,}-

Then FV(Q) A ({X1510s Xk} = (Y1505 Ym}) = {Xippeons Xi_}.

22.1) FV(P) NFV(U;,...U; ) = @.
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Then [Uy/Xy,..., Ud/x]R = (AP.[Ui/X i 5.0, Ui /%, 1Q) [Ur/X1se., Ur/xi]N.
Hence ['U1/x1,..., Uw/x¢JR |
>1 [[Ur/X1,.e0s Un/XINY 150 [Ur/ X1, UldXkINmdYm] [U /X i 50 Ui /X0 1Q
2, [[U1/X 100y U INVY 1 [UVX ey Uk/XkINw/Ym, Ui /X i5een, Ui /X6 1Q
(by Corollary 2.2.8, since {yj,..., ym} N FV(x i X inU il“'U in) =)
=q [U1/%1,..s U/XJIN1/Y 150000 Nl Ym] Q.
(by Corollary 2.2.8, since FV(Q) N ({X1sevs Xk} = {Y150+05 Ym}) = {Xigprees Xi })
(2.2.2) FV(P) nFV(Uiy...Ui ) = {¥j;5-s ¥i,}» Where for each 1<r1 < t,‘yjr is the
1 variable in FV(P) A FV(U; ..U).
By Lemma 2.1.10(¢), there exist variables 7 ,..., z; (as in the lemma) such that

[Ui/xi,..., U/xc](AP.Q)
=AMz /ly; ... [2,/y; JP.[ Ui/xip.0 Ui /X 1123 /y5, - [25,/95,1Q
= Mz /Y5 ZiyiJP-[Ui /X 5o Ui /%3 12 1y ) (23, 15,1Q

(by Corollary 1.1.17(c))
= Mzi/y1,...s Zm/ym]P[Ui /X e, Ui 1250y ) [2,/5,1Q,
where z,= v if r @ {jiseees Jt}- (by Lemma 2.1.11(b))
From the above, we have
[Ui/x1,.., U/ ]N

= [[U1/X150-s Ue/XkIN1/Y 1500, [U1/X 15000 Ui/XkINm/Ym]P
= [[Ui/X1yeeey U/XIN1/Zp5000,[Ur/X 1510y U/ Xk INm/Zi | [21/Y15 - . +» Zeod/ Yen ] P-
(by Corollary 2.1.17(a))
Hence [U/xq,..., Uk/xk]R
>18 [[Ur/X1,00s URkINZL, s [Ur/X 10, UkXiINm/Zn][Ui X ey U /%, ]
[zi/yil---[zi,/y;,]Q _
= [[Ur/x1,..., UdxINV/z4,..,[Ur/R1s.c., U/ INm/Ze] [Ui /X iy Ui /xi ]
[z1/¥15e s Zm/Ym]Q (by Corollary 2.2.8 and Lemmas 2.1.11(b), 2.2.7)
=q [[Ur/x1,..., U/xiIN1/24s...,[Ui/X 1., Un/XkINm/Zim, Ui /Xigpens Ui /% |

[Z1/Y15ee s Zm/Ym]Q
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(by Corollary 2.2.8, since {z,,..., zm} N FV(xi;..x; Ui,...U; ) = @)

Za [U]/X],..., Uk/xk][N]/Z[,..., Nm/zm] [ZI/YI,-I- T Zm/Ym]Q
(by Corollary 2.2.8, since FV([zi/y1,..., Zn/Ym]Q) N ({X1,00, Xk} — {Z1;e.., Zm})
=FV(AP.Q) A {Xyey Xk} = (i Xi_})

=q [U]/X],..., Uk/xk][Nl/yb"-s Nm/Ym]Q~
(by Corollary 2.2.8 and Lemma 2.2.7, since z ¢ {yi,..., ym} implies z, ¢ FV(Q)) O

Lemma 3.1.7. Let R = (A\P.Q| A)N be a 8-redex, X1,..., X, k > 1, be distinct variables,
and Uy,..., Uy be terms. IfR &3S, then [U/xy,..., Ue/%c]R >1s [U1/X1,..., U/xi]S.

Proof. Assume R >3 S.

Case 1. S= (\P.Q)N.

Then (AP.Q)N is a B-redex. So we have
[Ui/x1,..., U/xkJ(AP.Q) [Ur/x1,..., U/xiIN = [Ur/xy,..., Ur/xk]((AP.Q)N) which is a
B-redex by Corollary 3.1.5(b). Hence |
[U1/X1,..s Ui/xi]R = ([U1/x 1,005 U/l (AP.Q) | [Ui/x1s..., Ur/xk]A)[Ur/x4,..., U/xk]N

>18 [U1/x1,..., U/xJ(AP.Q) [Uy/xy,..., U/x( N
= [U1/x1,..., Ue/xiJ((AP.Q)N).

Case 2. S = AN,

Suppose [Uy/xy,..., UdxJR %15 [Ui/x1,..., U/Xc]J(AN).

Subcase 2.1. FV(N) = &, so FV([Uy/xy,..., Ux/x¢]N) = &.

Then ([Uy/X1s..., Ux/x J(MP.Q))N ' is a B-redex for some term N’ such that
[U1/X150es Uk/%N >y N' e N g, N'.

By Lemmas 2.1.10(c) and 2.1.16, [U;/x1,..., Us/xJ(AP.Q) = AP'.Q’ for some
term Q'and some pattern P’ such that P’ = [zi/uy,..., /u P for some distinct variables
Zy,..., 2, where FV(P) c {uy,..., ug}, t = 1. Note that [u/z,,..., u:/Zg]P'E P (by
Corollary 2.1.17). |

Since (AP .Q)N" = ([Uy/xi,..., Uu/xiJ(AP.Q))N’ which is a p-redex, by



Lemma 3.1.4 (\P.Q)N' is a B-redex. Since N g, N', R %15 AN, a contradiction.
Subcase 2.2. FV(N) = {y1,..., Ym}-
Subcase 2.2.1. FV([U/xy,..., U/xc]N) = &.

Then ([Uy/x1,..., U/ J(AP.Q))N'is a B-redex for some term N’ such that
[U1/X150.., U/xi]N Bp,N'. | |

By Corollary 2.1.12(b), [Ui/xy,..., U/Xc]N = [Vi/y1,..., Vi/ym]N for some
terms V1,..., Vm. Hence [Vi/yy,..., Va/y]N >g,N'. As in case 2.1, (\P.Q)N'is a

B-redex. Hence R 15 AN, a contradiction.
Subcase 2.2.2. FV([Ui/xy,..., Ue/xcIN) = {uy,..., ur}.

Then ([U/X1,0e0, U/xiJ(AP.Q)N' is a B-redex for some term N’ such that

[Viluy,..., V] [Ui/xys..., U/Xe]N By N’ for some terms Vj,..., V,. By
Corollaries 2.2.8 and 2.1.12(b),
[V]/ll],‘ vey V,/u,] [U]/X],..., Uk/xk]N = [leyx,...,Wm/ym]N for some terms W],. . .,Wm.

So we have [Wi/y1,...,Wn/ym]N Bgy N'. As above, this leads to a contradiction. g

Corollary 3.1.8. Letx,..., X, k > 1, be distinct variables and M, M/, Ui,..., Ux be

terms. -
a. If M >1g M, then [Uy/xy,..., Ue/xkIM bp [Up/xy,.e., Un/xiM'.
b. IfM 15 M, then [Uy/x,;...; U/xi]M 15 [Us/Xy,..., Up/xi] M.

c. IfMpps M', then {U/xy,..., Uk/xk]M >gs [Ui/xy,..., Uk/xk]M'.
d. If R is a contractible redex, then so is [Uy/Xy,..., Ur/xg]R.

Proof. Parts (a) and (b) follow from Lemmas 3.1.6 and 3.1.7 respectively. Part (c)
follows from Parts (a) and (b), and Lemma 2.2.7. Part (d) follows from Lemmas 3.1.6
and 3.1.7. O

Lemma 3.1.9. Let A be an abstraction, and A'and N be terms such that A >1p,15 A If

AN is a contractible redex, then so is A'N.
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Proof. Assume AN is a contractible redex and let R be the occurrence of a potential
redex in A which is contracted when A >1p 15 A, |

Case 1. A=)\P.Q.

Since A >1p,15 A', by Note 2.3.14 A’ = (AP.Q") for some term Q. By
Lemma3.1.4, AN isa B-redex.

Case2. A =(\P.Q|B).

Since A >yp 15 A', by Note 2.3.14 A'= \P.Q’ | B') for some term Q’ and‘some
abstraction B'such that either Q >1p,18 Q;and B=B'orQ=Q'and B >1p,15 B'.

Suppose A'N is not contractible. Then there exists a term N'such that
(AP.Q)N’ is a B-redex and [U,/xy,..., Ui/xg]N gy N’ for some distinct variables
X1,.s Xk, k 2 1, and some terms Uy,..., Uy, By Lemma 3.1.4, (\P.Q)N'is also a
B-redex. Since AN is contractible, we must have that (AP.Q)N is a B-redex. But then

(AP.Q)N is a B-redex. Hence A'N &5 (AP.Q))N, a contradiction. Therefore A'N is

cont;actiblé. ' O

Lemma 3.1.10. Let P be a pattern with FV(P) = {x),..., X}, k2 1, and N, Uy,..., Uy be
terms. If [U1/xy,..., Ue/Xk]P >ps N, then N = [V /x),..., Vi/x]P for some terms Vj,..., Vi
such that U; s V; for all 1 <i <k. |

‘Proof. Assume [Uy/xi,..., Ux/xx]P >g5 N. Induct on P,
i. P=x,.
Let Vi =N, and observe that N = V| = [V/x)]P and U; = [U1/x]P bgsN = V).
ii. P = PP.
By Lemma 3.1.1, substituting into P cannot produce a potential redex. Since
" [Ui/xys...; Un/xc]P1[Ur/x1,..., U/xi]P2 = [Ur/xy,0., Uk/X]P g5 N, by
Corollary 2.3.15(a) N = NiN; for some terms Ny and Ny, where
[Ui/x15e.s U/xi]PiDps N;, 1= 1, 2.
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Since FV(P) = {x1,..., Xk}, FV(Py) = & or FV(P>) # &. Without loss of
generality, assume FV(P;) # &. The proof for the case FV(P;) # @ is similar,

Case 1. FV(P,) = Q.

Then FV(P)) = {X1,..., X¢}. Since [Uy/Xy,..., Ux/x]P1 >ps Ny, by induction
N1 = [Vi/x1,..., Vi'xk )Py for some terms Vy,..., Vi, where Ujp>pgs Viforall 1 <i<k.
Since [Ui/x1,..., Uk/x]P2 >ps Np and FV(P2) = &, P, >ps Ny, 50 in fact P2= Ny, since
P, contains no bound variables. Hence

N = NN, = ([Vi/x1,..., Vi/X]P1)P2
= [V1/X1y000s Vil Xk P1 [V /%15, Vi Xk ] P2
= [Vi/X 1,00, VidXi ] (P1P2)
= [V /X100, Vi/Xk]P.

Case 2. FV(P2) = {Xj;5--., Xj, }.

Since FV(P) = {X1,..., Xx} and no variable occurs in both P{ and P,,
FV(P1) = {Xij,..., Xi__}, Where {i1,..., im} U 1., Ja} = {1,..., k} and
{ityeees im} O {15000, 0} = 2.

By Corollary 2.1.10(b), [U1/X1..., U/xu]Pi = [Uj /Xiy,..., Ui /x; 1P1 and
[Ui/X1,m.., Uk/Xi]P2 = [Uj /%j, o5 Uj /%, 1P2. By induction, Ny = [Vi /xi,..., Vi /xi ]Py
and Na = [Vj /xj,,...,Vj /x; P2 for some terms Vi ,....Vi , Vj ...,V , where Ur>gs V. for
all 1 £r<k. Hence 7 |

N =NN; = [V, /Xi ..., Vi /xi 1P1[Vj/xj,5..0.V; /%5, [P2
2 [V1/X15000s Vil Xk IP1 [ VX 15100, Vil Xk ] P2
= [Vi/Xiyn. Vil P. 0

Lemma 3.1.11. If we replace >ps in Lemma 3.1.10 by =, then the lemma remains

true.

Proof. This can be proved in the same way as Lemma 3.1.10. a
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Lemma 3.1.12. Let A be an abstraction, and N and N’ be terms such that N >ps N'. If

AN is a contractible redex, then so is AN’

Proof. Assume AN is a contractible redex.
Case 1. A=AP.Q.
Subcase 1.1. FV(P) = &.

Since AN is a B-redex, P=N, so P =N pbp;s N'. This implies P = N’ since P

contains no bound variables. Thus (\P.Q)N’ is a B-redex. That is, AN’ is a

contractible redex.

Subcase 1.2. FV(P) = {xi,..., X}.
Then [Ny/xy,..., Ni/x¢]P = N for some terms Njy,..., Ni. Since N >ps N, by
Lemma 3.1.10 N' = [Nj'/xy,..., N /xJP for some terms Ny',..., Ny. Hence (AP.Q)N'is

a B-redex, so AN'is contractible.

Case 2. A = (AP.Q|B).

Suppose AN’ is not contractible. Then there exists a term N* such that
(AP.Q)N" is a B-redex and [Uy/y,,..., Um/ym]N'1>By N* for some distinct variables
Y15...Ym, m 2 1, and some terms Uj,..., Up. Since N >gs N, by Corollary 3.1.8(c)
[U1¥1,.0s Un/Ym]N g5 [U/Y1se.., Un/¥m]N'. By Note 2.3.8(b),

[01/¥1,0rr Un/¥mIN By [Uify1,., Us/ys]N' . By the transitivity of the relation bp,,
[Ui/y1,ees Un/Ym]N Dy N*. Since AN is contractible and (AP.Q)N" is a B-redex, this
implies (AP.Q)N is a B-redex. By Case 1, (AP.Q)Nisa B-redex. Hence

AN’ > 5 (AP.Q)N’, a contradiction. Thus AN’ is contractible. 0

Lemma 3.1.13. Let R be a contractible redex, and R'and S be terms such that R =R.
IfR 15 S (respectively R 5 S), then R’ >1p S’ (respectively R’ > S") for some term

S', where S’ =, S.
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Proof. First, assume R = (AP.Q)N >3 S.
Case .FV(P)= 2.

Since R is a p-redex, P=Nand S =Q. Since R =, R, R'= (\P. Q)N for some
terms Q'and N', where Q' =, Q and N' =, N. Since N = P, N contains no bound
variables. This implies N' = N = P. Hence R'=(A\P.Q)N' >3 Q'and Q' =, Q.

Case 2. FV(P) = {xy,..., Xk}.

Then [Ny/xy,..., Ni/x¢]JP =N and S = [Ny/xy,..., Ni/x]Q for some terms

Ni,..., Ny Since R =, R/, by Lemmas 2.2.4 and 3.1.2 R'= (\P".Q")N’ for some pattern
P'and some terms Q'and N'such that N' =, N, P'= [yi/xi,..., yi/xx]P and
Q' =o [Y1/X15..., Yi/Xk]Q, for some distinct variables yy,..., Yk, where
{Y120 Y} NFV(AP.Q) = @. Since N'=q N = [Ny/xy,..., Ni/xi]P, by Lemma 3.1.11
N'= [N]'/x;,..., Nk'/xk]P for some terms Ny ,..., N such that Ni'=, N forall 1 i<k
So we have N'= [Nl'/xl,..., Nk'/xk]P
= [Ny /1,00, Nic Yi[51/X 15105 Vil Xi]P (by Corollary 2.1.17)
= [N /¥y N 7yi]P'.
Hence R’ >1p [Nl'/yl,..., Nk /%]Q’, and we have
Nt 15y N 90 Q =0 IN1/Y15-ees NIV 1/ X1, V%] Q (by Lemma 2.2.7)
=4 [N1/X1,..., Ni/xx]Q. (by Corollary 2.2.8)

Now, assume R = (AP.Q | A)N b5S. |

Sinée R =, R', by Lgmma 224 R = ().P'.Q' |A')N' for some abstractions
AP'.Q'and A" and some term N', where AP".Q" =, AP.Q, A’ =, A, and N’ =, N. |

Case 1. S = (AP.Q)N.

Then (AP.Q)N is a B-redex. Since AP'.Q’ =, AP.Q, by Corollary 3.1.5(a)
(AP".Q")N is a p-redex. Since N' =, N, by Lemma 3.1.12 (AP’.Q')N’ is a B-redex.
Hence R'>15(\P'.Q")N’, where (\P'.Q")N' =, (AP.Q)N.

Case 2. S = AN.

Suppose R %15 A'N’. Then there exists a term N* such that AP .Q)N"isa
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B-redex and [Uy/xy,..., Uk/xk]N' >py N* for some distinct variables X1, X, K2 1, and
some terms Uy,..., Uy. Since N =, N/, by Lemma 2.2.7

| [UV/x1,..., Ue/xiIN = [Uy/x1,..., Ur/x]N'. Hence [Uy/xi, ..., U/x¢IN gy N*. Since
AP.Q =, AP".Q" and (AP'.Q")N" is a p-redex, by Corollary 3.1.5(a) (AP.Q)N* is also a
B-redex. Hence RI¥ 15 AN, a contradiction. Thus R'>;5 A'N', where A'N' =, AN, [

Corollary 3.1.14.
a, Let M, M, and N be terms such that M =,M.IfM >1p N (respectively
M b5 N), then M’ >1p N'(respectively M’ b5 N') for some term N', where N' =, N.
b. If R is a contractible redex and R'is a term such that R =, R', then R is also
a contractible redex. |
¢. Let R be a potential redex and S be a term such that R >gs S by a sequence

of terms R =Ry, Ry,..., Ry =8, n 2 1, where for each 1 <i <n, R; is not the potential

redex which is contracted. If R is a contractible redex, then so is S.

Proof. Parts (a) and (b) follow from Lemma 3.1.13, while Part (c) follows from
Lemmas 3.1.9, 3.1.12 and Part (b). - 0

Lemma 3.1.15. For any $8-normal form M and any term N, if M >gs N, then M =, N.

Proof. Let M be a P8-normal form and N be a term such that M >ps N. Then there
exists a sequence of terms M = My,..., My = N, n > 1, such that for each 1 <i<n,
M; = Mi+; or M; >yp 15 Mis1. Induct on n.

- Ifn=1,thenM=N.

Now, suppose n > 1. By induction, M =, M,.;. Suppose M., containé a
contractible redex R. Since M =, M,..;, M contains a potential redex Ry such that
Ro =4 R. By Corollary 3.1.14, Ry is also a contractible redex, so M contains a
contractible redex, which is a contradiction. Hence M| contains no contractible

_ redexes and so My.1 % 15,15 N. Therefore M. =¢ N. Thus M =, N, d
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3.2 Residuals and Minimal Complete Developments

To prove the Church-Rosser theorem, we need to look at a restricted set of
p&-reductions, called minimal complete developments (MCD’s). In this section we
will define this type of reduction and prove those basic properties concerning it which

are needed for proving the Church-Rosser theorem.

Definition 3.2.1. Let R and S be occurrences of contractible redexes in a term M.

When R is cbntracted, let M change to M.

The residuals of S with respect to R are occurrences of potential redexes in
M), defined as follows. |
Case 1. R and S are non-overlapping parts of M.

Then contracting R leaves S unchanged. This unchanged S in M is the
residual of S.
Case2.R=S.

Then contracting R is the same as contracting S. We say S has no residuals in

Case 3. Rispartof SandR # S.

SinceSisa potehtial redex, S = AN for some abstraction A,‘and some term N,
So R is either in A or in N. Then contracting R changes S to S, where S’ = A'N' for
some abstraction A'and some term N' such that either A 1515 A" and N =N’ or
A=A"and N jp 5N, This S"is the residual of S.

Case 4. S is part of R and S# R.

There are cases and subcases as follows.

@.1)R=(AP.QN.

4.1.1)FV(P)=2.

Since R is a f-redex, P =N and R >3 Q. Since S is a potential redex in R, S is
in Q. Since R b1 Q, contracting R leaves S unchanged in M'; this is the residual of S.

(4.1.2) FV(P) = {x1,..., Xk}, k2 1.
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Then [Ny/Xi,..., Ni/x]P = N for some terms Ny,..., Ny and
R >y [N1/x1,..., Ni/xk]Q.

(4.1.2.1)Sisin Q.

Then S changes to S', where S’ is either S or some substitution of S. This S is
the residual of S.

(4.1.2.2) SisinN.

Then S is in [N1/X1,..., Ni/xk]P. By Lemma 3.1.1, S is in N; for some
1 <t <k, Hence there is an occurrence of S in each N substitutéd for an occurrence of
Xy in Q. Th;sse are the residuals of S. (Note that S may have many or no residuals.)

‘“42)R=(\P.Q| AN.

(4.2.1) R >15 (AP.Q)N.

If S is in Q or N, then contracting R leaves S unchanged, and this is the
residual of § in M'. If § is in A, then S has no residuals in M.

(42.2) R>15 AN,

If S is in A or N, then this unchanged § in A or N is the residual of S in M. If

S is in Q, then S has no residuals in M.

Notes 3.2.2.

a. Except in case 4.1.2.2, S has at most one residual.

b. Each residual is a contractible redex. (The residual in Case 3 is contractible
by Lemmas 3.i.9 and 3.1.12, and the residual in (4.1.2.1) is contractible by
Corollary 3.1.8(d)).

Definition 3.2.3. If 92 = {R; l1<is< n}, n 20, is a set of occurrences of potential
redexes in a term M, then an R; is called minimal (with respect to 92) if it properly
contains no otherR; € %#.

Let 9% = {R; l1<i< n}, n 20, be a set of occurrences of contractible redexes

in a term M. For any term M, we say M'is obtained from M by a minimal complete



55

development (MCD) of 92, denoted by M bmes M’ (of 92), if M’ is obtained from M
by the following process.

First contract any minimal R;; without loss of generality let i = 1. By
Definition 3.2.1, this leaves n — 1 residuals R,,Rs,...,R, . Contract any minimal R,.
This leaves n — 2 residuals. Repeat this process until no residuals are left. Then make

as many o-steps as you like.

Notes 3.2.4.

a. In any non-empty set of potential redexes, there is always a minimal
member.

b. If n=0, an MCD is just a finite sequence of a-steps.

c. A single B-contraction or a single 8-contraction is an MCD of a one member
set.

d. There exist reductions which are not MCD'’s, for example

(Ax.xy)Az.z) >1p (Az.2)y B1g y.
e. The relation >pcq is not transitive. For example, in (d) there is clearly no

MCD from (Ax.xy)(Az.z) to y.
f.IfM g M and N begN', then MN Beg MN‘and AP.M beg AP.M'.
g. Each MCD is a B&-reduction.
h. For any contractible redex L, if L >,,.s M of 9%, without o.-steps, where

Le @, and M 1,15 N, with M being the potential redex contracted, then

L > Nof 92 U {L}, without a-steps.

Lemma 3.2.5. If we replace >3 in Corollary 2.3.15 by mcq, then the corollary

remains true.

Proof. This is obvious for Part (b), since all potential redexes in AP.Q are in Q.
Part (a) follows from the fact that the sets of potential redexes in M, and M, are
disjoint when M, and M; are non-overlapping. The argument for Part (a) also applies
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to Part (c). : | C

Lemma 3.2.6. If we replace >ps in Lemma 3.1.10 by >mcq, then the lemma remains

true.

Proof. This can be proved in the same way as Lemma 3.1.10. 0

Lemma 3.2.7. For any terms M, N and M, if M B cq N and M =, M’ then M brea N.

Lemma 3.2.8. For any distinct variables Xi,..., Xk, k = 1, and any terms
M, N, Uy,..., U, V1,..., Vi, if M D peaN and U DpedVi forall 1 < i<k, then
[U/X1,...s U/XIM Bmed [V1/X1,..., VixgIN.

Proof of Lemmas 3.2.7 and 3.2.8.
Let Xi,..., Xi, k = 1, be distinct variables and M, N, M', Uy,..., Uy, V..., Vi be

terms such that M e N, M =5 M'and Ui beq Vi for all 1 <i <k, Then N is obtained
from M by the given MCD of a set 2. By Definition 3.2.3 (for Lemma 3.2.7) and

| Lemma 2.2.7 (for Lemma 3.2.8), we may assume that the MCD M >pcq N has no
o.-Steps.

For Lemma 3.2.8, first suppose {X,..., Xk} N FV(M) =2. Then by
Corollary 2.1.12(a) [Ui/x1,..., U/x]M = M. Since M >ea N, we have M >gs N. By
Lemma 2.3.16(a), FV(N) < FV(M). Hence {x1,..., xi} N FV(N) = &. Thus
[Vi/x1,...,Vi/x]N = N. So we have
[U/X1y0ns Ud%IM = M Daca N = [Vi/x1,.... Vidx]N, and we are finished.

Thus for Lemma 3.2.8 we may assume {Xi,..., Xi} N FV(M) # &, and in fact,
by Corollary 2.1.12(b) we may assume that {xy,..., Xk} € FV(M). |

Now we will prove both lemmas simultaneously by induction on M.

i. M is an atom.

Proof of Lemma 3.2.7.
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Since M =, M, in fact M = M'. Since M b N, this implies M'>mea N.

Proof of Lemma 3.2.8.

By our assumption, M = x; and k = 1. Since M >mca N, it must be that N =M.
Hence [U1/x;]M = U} BmeaVi = [Vi/x1IN.

ii. M=AP.Q.

Since M B>mea N, without a-steps, N = AP.Q for some term Qg such that
Q >med Qo. Note that FV(Qg) < FV(Q) (by Lemma 2.3.16(a)).

Proof of Lemma 3.2.7.

Since M = M, by Lemmas 2.2.4 and 3.1.2 M’ is one of the following forms.

1. M = AP.Q’, where Q' =, Q.

By induction Q' >med Qo. Hence M =2 P.Q' D>med AP.Qo=N.

2. M' = Mzi/¥is..., Zn/¥]P.Q', where FV(P) = {y1,..., ym}, m 2 1, Zy,..., Zm
are distinct variables and Q' is a term such that {z,,..., Zn} " FV(AP.Q) = & and
Q' =u[21/¥1,- > Zn/Ym]Q.

Since Q >meg Qo, by induction (3.2.8)

[Z1/Y15++» Ze/Ym)Q Pimed [Z1/Y1s--+» Zm/Ym]Qo. Hence, by induction (3.2.7)
Q' Bmed [21/Y11-- ) Zn/Ym]Qo. Hence M’ = Mzi/yi,..., Zm/Ym]P.Q
Bmed MZ1/Y15e s Zm/YmlP-[Z1/Y15- - > Zm/Ym]Qo
=4 AP.Qo=N. (by Lemma 3.1.3)

Proof of Lemma 3.2.8.

By Lemma 2.1.10(b), [U1/x1,..., U/xk]Mis also a simple abstraction. Hence by
Lemmas 2.2.5(b), 2.2.7 and 3.2.7 we may assume that no variable bound in M is free
in x1...xxU1...Ux. So FV(P) " FV (x,...x¢U)...Uyx) = &. By Lemma 2.3.16(a),
FV(V)) ¢ FV(U;) for all 1 <i <k. Hence FV(P) " FV(x;...x(V)... Vi) = &. Thus
[U/xX1,..., U/xIM = AP.[U/xy,..., Up/x]Q (by Corollary 2.1.12(d))

Bmed AP.[V1/X15.s Vid%] Qo (by induction)

= [Vi/X1,..., Vi/XkJ(AP.Qo)
= [V]/X],...,Vk/xk]N.
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iii. M = \P.Q| A).
Since M >pmea N, N = (AP0.Qo | Ap) for some abstractions AP.Qq and Ao such

that AP.Q D>mca AP0.Qo and A meq Ag.
Proof of Lemma 3.2.7.

Since M =, M', we must have that M'= (XP'.Q’ | A') for some abstractions
AP'.Q'and A’ such that AP".Q' =, AP.Q and A’ =, A. By induction, AP".Q" >mea AP0.Qo

and A bmeq Ag. Hence M'= (AP'.Q" | A") Bmea (AP0.Qo | Ag) = N.
Proof of Lemma 3.2.8.
By induction,

[U1/X1,...s U3 M = ([U/X 1000 Ui AP.Q) | [U/X1,0005 Ui/xiJA)
Bmea(TV %150 VidXd (\P0.Qo) | [Vi/%1,..., Vil Ao)
= [V /1,0 Vil (WPo.Qo | Ao)
= [V1/X1,..., Vi'xk N

iv. M= MM,.

Casel.M ¢ #.

This case can be proved in the same way as (iii).

Case2.M e #.

Since M € 9% and M >peq N, without a-steps, by Definition 3.2.3

M Bmes M*M,° for some terms M;%and M, such that My >peq M;%and
Ma bmea Ma’, both without a-steps, and M;My? 15,15 N, with M;°M;? being the
potential redex contracted.

Proof of Lemma 3.2.7.

Since M =, M', we have that M'= M;'M,' for some terms M; 'and M, such that
M;'=, M, i =1, 2. By induction, M >mea M° and My b meq M2". Hence M{»mcd M;*
and My B> med Mz*, both without a-steps, for some terms M,*and Mz*, where
M;*=, M, i=1, 2. Since M;*"M;"=, M;"M,and M;"M;° > 1,15 N, by Lemma 3.1.13
Ml*Mz*blp,la M"* for some term M*, where M*=, N. Hence

M'= M;" My D mea M1 *Ms*> 1,15 M*=, N. Since M =, M, by Corollary 3.1.14(b) M’ is
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Proof of Lemma 3.2.8.
Since M| > med M1° and M, >med Mzo, by induction
[U1/X1501s U/XMi et [V /X100 VidXi M, i = 1, 2. Hence
[Ui/X15ee0y Uk/Xk]Mi Bmecd M;*, without o-steps, for some term M;* such that
M;* = [V1/X1,0.., Vi M2, i = 1, 2. Since MMy 515,15 N, by Lemmas 3.1.6 and 3.1.7
[Vllxl,...,Vk/xk](MloMzo) >1p,15 N*for some term N*, where
N*sa [Vi/X1eer, VidxiIN. Since My *Ms* =4 [Vi/x1,..., Vil (M1 "M2"), by
Lemma 3.1.13 Ml*Mz* 18,15 M”* for some term M"* such that M*EQN*.
Hence [Ui/x1,..., U/x]M = [U1/xy,..., U )M [Uy/xy,..., Ur/xcIM2
Bmed M1 "M
>1pasM*
=, N*
=y [V1/X1,..., Vi/XiIN.
Since M € 92, M is contractible. Hence, by Corollary 3.1.8(d) [U/xy,..., Ur/xc]M is
contractible. Thus, by Note 3.2.4(h) [Ui/xi,..., U/XkIM Bmed [V1/X15000, Vi/XiJN. | O

3.3 The Church-Rosser Theorem for $5-Reduction

Our goal in this section is to prove the Church-Rosser theorem for
B3-reduction. To make the proof easier to follow, we split it into two steps. The

conclusion of the first step is important enough to be called a theorem in its own right.

Theorem 3.3.1 (The Church-Rosser theorem for MCD’s). For any terms L, M and
N, if L >nea M and L >peg N, then there exists a term T such that M bp,4T and
N Dmcd T.

Proof. Let L, M and N be terms such that L >pM and L B peq N,
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Then M (respectively N) is obtained from L by the given MCD of a set %
(respectively 92x). By Lemma 3.2.7, it is sufficient to consider the case in which the
given MCD’s have no a-steps. Induct on L.

i. L is an atom.

Since L Bmea M and L B peq N, it must be that M = L = N and we are finished.

‘ii. L=AP.Q.

Since L bpeg M and L > g N, both without a-steps, M = A.P.QM andv
N= ?»P.QN for some terms Q™ and QN such that Q >meq QM and Q Pmcd Q N By
induction, there exists a term Q* such that QM D> med Q*and QN D>med Q * Let
T =AP.Q". Then M =AP.Q" g AP.Q*= T and N = AP.Q" bpea AP.Q*=T.

iii. L = (AP.Q| A).

Since L e M and L byeq N, both without a-steps, M = (?\.P.QM | AM) and
N= (kP.QN | AN) for some terms Q¥ and QVand some abstractions AMand AN such
that Q >med QM, QPbmed QN, A Dmcg AMand A Dpeg AN By induction, there exist terms
Q*and A* such that Q¥ >mcs Q*,QN Brca Q, AMbrmea A*, and AN peq A*. By
Lemmas 3.2.5 and 3.1.2, A* is also an abstraction. Let T = (AP.Q* | A*). Then
M = (AP.QY| AM) 5 mea (WP.Q* | A*) = T and, similarly, N 5 peq T.

iv.L=1L,L,.

C.asel.LeQEMandL ¢ 9.

This case can be proved in the same way as (iii).

Case2.L e RyorL e .

Without loss of generality, assume that L € 9%y There are cases and
subcases as follows.

2.1NL;=AP.Q.

Since L € 9%y and (\P.Q)L;, = L >pmeg M, without o-steps, by Definition 3.2.3
L >med (AP.QML,M for some terms QM and LM such that Q bpeq QMand L, s Lo,
and (\P.Q"YL™ 15 M, with (\P.QY)L," being the B-redex contracted.

Q1. L e P |
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Similar to the above, L > g (}.P.QN)LZN for some terms QN and L, such that
Q Pmea QY and Ly Bmea Lo, and (AP.QML,N 145 N, with (AP.QY)L," being the B-redex
contracted. By induction, there exist terms Q*and L,* such that QM D> med Q*,‘
Q' bmea Q%, LM bmeaLa*, and Ly g Lo, |
(2.1.L.1)FV(P)=2.
Since (AP.Q")L,M >13 M and (AP.Q™)Lo™ 515 N, M = Q™ and N = Q. Hence
M= Q b i Q" and N = Q¥>ea Q* so we are finished with T = Q*.
(2.1.1.2) FV(P) = {xi,..., X}
Since (A\P.Q"HL,M >yp M and OP.QYLN by g N, there exist terms
Ul,..., U Vi,..., Vi such that [Uy/x;,..., U/xi]P = LM, [Vi/xy,..., ViexidP = LN,
M = [Uy/xq,..., U JQY, and N = [V /x1,..., Vidxi JQ.
Since Ly™ bmes Ly and Ly bes Ly, by Lemma 3.2.6
Ly*= (U /X1y Ug /P and Ly*= [V X1, Vi /xJP for some terms Uy..., Uy,
V{',..., Vi such that U; > Ui, and Vi bpeaVi forall 1 <i<k. Since
[U' X1y U % ]P = La* = [V f1,0es Vi /], for each 1 <i <k, Uy =V, so let
W;=U;= V. Then Uj bpcq W and V; brcq Wi for all 1 <i <k. Thus, by Lemma 3.2.7
M = [U1/X15e.rs U/%dQY B med [Wi/X1,...; Wik, JQ* and
N = [Vi/X 15000, Vil QN B imed [W1/K1s..., Wi/ ]Q*s0 We are finished with
T = [Wi/xy,..., Wi/xi]Q".
212)L ¢ .
Since (AP.Q)L, = L bpiea N; without a-steps, N = (AP.QML," for some terms
Q" and L, such that Q Bpes Q" and Ly bea L.
By induction, there exist terms Q*and L,* such that QN D med Q* and
LoN bmea 2", both without o-steps, and Q™ bmea Q*and Ly™ b e Lo ™.
Since (AP.QM)L,M is a B-redex and L™ bpmeg L,*, then LM >gs L,*, and by
Lemma 3.1.12 (A\P.Q")L," is a B-redex. Hence (AP.Q")L," is a B-redex by
Lemma 3.1.4. Note that, by Corollary 3.1.14(c) N is contractible since L &meq N and
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L € 9%\ which implies L is contractible.

(.12.1)FV(P) = 2. |

Since (\P.Q")L,M >3 M and (AP.Q")L," is a B-redex, M = QM and
(AP.Q")Ly*>13 Q*. Hence M = Q¥ >1neaQ” and

N = AWP.QM)LN >mea (WP.Q™)Ly" b1 Q*. Thus we are finished with T = Q*.
| 2.122)FV(P) = {x1,0., xi}.

Since (\P.QM)L,M b1 M, there exist terms Uy, ..., Uy such that
[U1/X1,..., U/x]P = LM and M = [Uy/x,,..., U/xi] QM. Since LM bmeaLy”, by
Lemma 3.2.6 Lz* = [Vi/xy,..., Vi/x]P for some terms Vy,...,Vi such that U; > Vi for
all 1 <i <k. Thus

M = [Uy/X 1,0y U] QM Brmca [Vi/X 100, Vil ]Q™ (by Lemma 3.2.8), and

N = (WP.QYLY B g (P.Q*)La*B1p [V /1,0 Vil JQ", 50 we are finished
with T = [V /x1,..., Vi'x Q™.

(2.2) L= (A\P.Q| A).

Since L € By and (AP.Q| A)L; = L Bpmea M, without al-steps, by
Definition 3.2.3 L bpea (AP.QM | AM)LzM for some terms QMand L,™, and soine-
abstraction AM such that Q >meq QM, A bmeg AMand L beg LM, and
P.QM| AML,M & 15 M, with (AP.Q™ | AM)L, being the 5-redex contracted.

(2.2.1) Le R

Similar to the above, L bmeg (AP.Q" | AML; for some terms Q" and L,™, and
some abstraction AN such that Q >med QN, Abmea ANand Ly 5meq L,", and
OP.QN[AMLN 15 N, with (AP.Q | AML,N being the 8-redex contracted. By
induction, there exist terms Q*, A*and L,* such that QMbma QF, Q">mea QF,
CAMb gAY AN D gAY LM b Ly, and LN b pea Lo

(22.1.1) AWP.QM | AML M b 15 WP.QMLM.

Then (A\P.Q)L," is a B-redex and M = (AP.Q™)L,™. Since LoM > meg Lo* by
Note 3.2.4(g), Lemmas 3.1.12 and 3.1.4 (AP.QM)L,* isa B—redex. Since
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LoN bmeaLa®, we have that L, s L,", and so LN >p,Ly*. Hence
(P.QV| AML,N 115 ANL,. Since (AP.QN | AML,N b5 N, it must be that
N = .P.QMLN. Thus M = (\P.QLoM bmes (AP.Q*)L,* and
N = (WP.QML,N bmed (WP.Q%)L, " s0 we are finished with T = (AP.Q*)L,".
| (2.2.1.2) OP.Q¥ | AML M5 AMLM.
Suppose (AP.QN)L.N is a B-redex. Since L™ bmes Lo, an argument similar to

the one above shows that (\P.Q")L," is a B-redex. Since LM >meq Lo ", L:Mbg, Lo*.

Hence (AP.QM | AMLM 15 AMLM | a contradiction. Hence (AP.QM)L,N is not a
B-redex. Since (AP.QN| AMLN b5 N, N = ANL,N. Thus M = AML,Mb g A*L,*and
N = AVLyN bmeg A*Ly"s0 we are finished with T = A™L,".

(22.2)L ¢ 9n.

Since (AP.Q | A)L; = L b pyeq N, without a-steps, N = (AP.QN | AML,N for some
terms Q"and L,"and some abstraction AN such that Q > QF, A g AT, and
L2 >aea L. By induction, there exist terms Q*, A*, and L,* such that Q™ bmes Q¥,
ANDpea A*, and LoN bea Ly*, all without o-steps, and QM b ned Q*, AMb g A*, and
LM > red L,". Note that A* is an abstraction by Lemmas 3.2.5 and 3.1.2.

(2.2.2.1) (AP.QY | AMLM b1 AP.QMILM.

Then (A\P.QY)L,™ is a B-redex and M = (\P.QML,M. Since LM b e Ls*, we
have that (\P.Q")L," is a B-redex. So we have M = AP.QMLMb e (MP.Q"L,"* and
N = (AP.QY| AML,N brea (WP.Q* | A*)L,* 15 (AP.Q*)L*and we aré finished with
T =(AP.QYL,".

(2.2.2.2) (\P.QM | AMLM b 15 AMLM,

Suppose (AP.Q" | A*)Lo" ¥ 15 A*L,". Then (AP.Q*)L," is a B-redex for some
term L," such that [Uy/xy,..., U/xJL,* >, Lo* for some distinct variables Xlseers Xk»
k > 1, and some terms Uy,..., Ux. Since Lo bpeg Ly*, we have that LM >ps Ly*. By
Corollary 3.1.8(c), [Ui/x1,..., Uu/xi]Lo™ bgs [Uy/x1,..., Uil Lo, 50

[Us/%1,..., Ui/ La™ gy [Ui/x1,..., UpxidLz*. Since the relation by, is transitive, this
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shows that [Uy/X1,..., UL bpy Lo*. Since (\P.Q*)Ly" is a B-redex, (AP.QY)L," is
also a B-redex. Hence (A.P.QM | AM)L M s AMLM, a contradiction. Thus

(\P.Q* | AML,* 15 A*L,*. Hence M = AML,M b g A*L,* and

N=P.QY| AMLY bmes (AP.Q* | A*)L,* 015 A®L,*s0 we are finished with
T=A"L" 0

Theorem 3.3.2 (The Church-Rosser theorem for §6-reduction). For any terms L,
Mand N, if L >gs M and L >pg N, then there exists a term T such that M >gs T and
N D>ps T.

Proof. Let L, M, and N be terms.
Claim. IfL >me¢ M and L g N, then there exists a term T such that M >ps T and
Noma T
Proof of Claim. Assume L >pea M and L g5 N,
Then there exists a sequence of terms L = Ny, N2,...,Ny,=N,n> 1, asin
Definition 2.3.7. Induct on n.
| Ifn=1, then L=N,soMppgs Mand N =L bpcqg M and we are finished.
Now, assume n > 1, By ihduction, there exists a term Tg such that Np.; >medaTo
and M >ps To. }Since N1 =4 N or N,,.1 >1p,15 N, we have that Ny.; >mcq N. Hence, by
Theorem 3.3.1 there exists a term T such that N >yeq T and To Bmed T, s0 that
To>ps T. Since M >ps To and the relationvl>|35 is transitive, M >gs T. Thus we have
M pps T and N >meq T. So we have the claim.
Now we can prove the theorem.
Assume L >gs M and L >ps N. Then there exists a sequence of terms L = M,
M,,..., M= M as in Definition 2.3.7. Induct on m.
If m=1,thenL=M,soM=LpgsNand N >ps N and we are finished.
Now, suppose m > 1. By induction, there exists a term Ty such that Mp.1>ps To

and N bgs To. Since Munt =a M 0f Min1 13,1 M, We have that My.i>mes M. By the
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claim, there exists a term T such that M >psT and Tg Bmed T, so that Tg >psT. Since

N tpsTo and the relation >ps is transitive, N g5 T. Thus M >gs T and N ogs T. a
Corollary 3.3.3. For any term L, if L has B8-normal forms M and N, then M =, N.

Proof. Let L, M and N be terms such that L >gs M and L &3 N, and M and N are
B&-normal forms.

By Theorem 3.3.2, there exists a term T such that M gz T and N >ps T. By
Lemma 3.1.15,M =, T and N =, T. Hence M =, N. a

3.4 5-Equality

We know that the relation $8-reduction, which is defined in Chapter II, is
transitive and reflexive but is not symmetric. In this section, we will define an

equivalence relation which is closely connected to B8-réduction, called Bé-equality.

Definition 3.4.1 For any terms M and M/, we say M is B5-equal or B3-convertible to
M, denoted by M =ps M, if there exists a sequence of terms

M=M;, M,,..,. M, = M’, n 2 1, such that for each 1 <i<n, M; 1,15 Mi+1,

Mis1 B1p,18 Mi, or M =4 M.

Note 3.4.2. Bd-equality is reflexive, transitive and symmetric.

Theorem 3.4.3 (The Church-Rosser theorem for f8-equality). For any terms M
and N, if M =g N, then there exists a term T such that M > T and N >ps T.

Proof. Let M and N be terms such that M =ps N,

Then there exists a sequence of terms M = M, Ma,...,Mpy=N,n2 1, asin
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Definition 3.4.1. Induct on n.
If n =1, then M = N and we are finished.

Now, suppose n > 1. Since M =gs M., by induction there exists a term T
such that M >ps Tp and My >gs To. Since M1 >1p,18 Mn, Mn B>1p,15 Ma.1, OF
M,.1 =4 My, we have that M. >ps N or N >ps My.1.

Case 1. M, >ps N.

Since M., >ps To, by Theorem 3.3.2 there exists a term T such that N >ps T
‘and Ty >gs T. Since M g5 Tg and the relation >gs is transiﬁvc, Mpgs T.

Case 2. N >ps Mp.1.

Since My.; >ps To, we have that N >p5 To. So we have M >ps Tp and N >gs To.

a

Corollary 3.4.4. For any terms M and N, if M =g5 N and N is in f8-normal form, then
M >ps N.

Proof. Let M and N be terms such that M =ps N and N is in 8-normal form.

By Theorem 3.4.3, there exists a term T such that M >g3 T and N >33 T. Since
N is in pd-normal form, by Lemma 3.1.14 N =, T. Since M >p5 T, we have that
M s N. 0

Corollary 3.4.5. For any terms M and N, if M =5 N, then either M and N do not have

B8-normal forms, or M and N both have the same $3-normal forms.

Proof. Let M and N be terms such that M =p5 N.

Suppose M or N has a p8-normal form. We want to show that M and N both
have the same B&-normal forms. Without loss of generality, assume that M has a
B&-normal form, as the case that N has a B3-normal form can be proved similarly.

Let M’ be a B8-normal form of M. Then M >gs M and M' is a B3-normal

form. Since M =ps N and M bg; M, by Definitions 2.3.7 and 3.4.1 N =p; M'. Since
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M is a B5-normal form, by Corollary 3.4.4 N >gs M. Hence M’ is also a B3-normal
form of N. This implies that N has a B8-normal form and every Bd-normal form of M
is a B3-normal form of N. Similarly, we can prove that every p&-normal form of N is

also a p8-normal form of M. Thus M and N both have the same |38-n6rmal forms. 0O
Corollary 3.4.6. Two p8-equal terms in fd-normal form must be congruent.

Proof. Let M and N be terms in p&-normal form such that M =gs N. Since Nis a
B3-normal form, by Corollary 3.4.4 M s N. Since M is a f3-normal form, by
Lemma 3.1.15 M =, N. ‘ . 0

Corollary 3.4.7. For any term M, if N; and N; are d-normal forms such that
M =ps N1 and M =~ps Nz, then N1 =y Nz.

Proof. Let M be a term, and N1 and N be f8-normal forms such that M =ps N; and
M =5 N,. By Note 3.4.2, N =5 N». Since Njand N, are Bd-normal forms, by
Corollary 3.4.6 N; =, Na. 0

Corollary 3.4.8. Let My, M,..., Mp, Ng, Ny,..., Np, m 21, n > 1, be terms. If
MoM;... M =gs NoNi...Ny, and MgM; and NgN; are not contractible redexes, then

m=nand M; =gz Njforall 1 <i<m,

Proof. Assume MgM;...Mmn =ps NoNi1...Nq, and MoM; and NN, are not contractible

redexes.
By Theorem 3.4.3, there exists a term T such that MgM;... My, >ps T and
NoNj...Ny >gs T. Since MgM, is not a contractible redex, each contractible redex in

MoM;...Mp, must be in an M;. Hence T = ToT)... Ty, for some terms Ty, Ty,..., Tm
such that M; >ps T; for all 1 <i<m. Similarly, T=T, Ty ... T, for some terms

To, Ty';..., Tn such that N; >ps Ti forall 1 <i<n. So we have



ToT1...Tm=To Ty ...Ts . Thus, by Note 2.1.3(b) m=nand T;= T forall 1 <i<m.
Since for each 1 <i <m, M; bps T; and N; bps Tj, by Definitions 2.3.7 and 3.4.1
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M; =5 Ni for all 1 <i<m. o
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