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Chapter 1
Introduction

In many biological systems, ligand-receptor interaction is the heart of
biological responses. Its understanding is fundamental to the study of all life
sciences such as biochemistry, biophysics, and neurobiology. This will help us
explain the nature of the biological signal and the biological outcome. Examples
of ligand-receptor interaction are the detection of pheromones, chemotaxis, the
immune system, and synaptic transmission.

This thesis embodies an analytical treatment of the important biological
interactions using methods from physics and mathematics. The complexity of
biological systems makes analytical modelling difficult, especially in situations
of practical interest. However, physical principles can be applied to model bio-
physical systems if we can approximate them intelligently. This can reduce the
complexity of systems with acceptable losses in accuracy. Our tool is the Feyn-
man path integral [1]. Samathiyakanit [2] has used the Feynman path integration
method to model an electron moving in a completely random system containing
dense and weak scatterers, or equivalently in a Gaussian random potential. In
the mean time, many biophysicists observe the motion of ligands in a completely
random systems which contain a number of receptors in fixed position which is
analogous to Samathiyakanit’s model. Because of this, we apply the Feynman
path integration method to solve the problem of the ligand-receptor interaction.

For the organization of this thesis, we review some important basic ideas
about ligands and receptors in Chapter 2. In Chapter 3, we review Wiegel’s model

[3] which solves the diffusion equation to get the ligand population for ligands



moving in random traps. In Chapter 4, we present the Feynman path integration
method approach to calculate the propagator of a ligand in a random potential
and we use this propagator to calculate the probability of finding ligands. Finally,

the discussion and conclusions are presented in Chapter 5.



Chapter 2

The biological aspects:
ligand and receptor

This chapter provides the introduction about ligand and receptor by giv-
ing their definitions. We have to know what they are before we study them. Next,
we present mostly the interaction which can occur between ligand and receptor.

Finally, we give examples of chemoreception.

2.1 The definition of ligand and receptor

The ligand-receptor interaction is very important in biological system
since it has a crucial role in the function of living organisms and is one method that
the cell uses to interact with a variety of molecules. The function of all proteins
is dependent upon their binding to other molecules. In the case of enzymes, these
molecules, or ligands, are then transformed chemically. Many other proteins bind
ligands in order to regulate gene expression or enzymic activity. To understand
this in more detail, we would like to explain what we call "ligand" and "receptor".
We shall generally define the smaller molecular weight partner in the binding
interaction as "ligand". ‘A ligand can be a nucleic acid, polysaccharide, lipid or
even another protein. See Fig. (2.1)

Ligands bind to specific site on larger molecules, called receptors which
is a protein, or a complex consisting of proteins and other biopolymers. The
receptors are embedded usually in the outer membrane of the cell and they must
interact only with appropriate ligands. Most of the receptors have just one bind-

ing site per polypeptide chain. In some cases, there may be more than one binding
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Figure 2.1: A typical cell contains a number of molecules exposed to the environ-
ment and in communication with it. These molecules act as the eyes, ears and
noses of a cell and we show various kinds of ligands [4].

site on the receptor. Two different ligands or two similar ligands may be able to
bind to the receptor at each binding site, such as hemoglobin binding to oxygen.
Any binding of a ligand to a receptor is reversible and binding interactions show
a high degree of specificity for size, shape, charge, and chemical properties. Fig.
(2.2) illustrates some of these concepts.

After they have bound together, this complex acts usually in such a way
that the ligand is rapidly transported through the membrane, which clears the
receptor’s binding site for its next catch. This process of a highly selective in-
teraction of the cell with specific ligand is called "chemoreception." A key fitting
into a lock is a good analogy for a ligand fitting into its binding site on a receptor.
In addition to a precise fit, many keys will fit into a lock but only a few keys are
capable of unlocking that lock. That is the ability of a ligand to bind to the re-

ceptor with high specificity is not enough, by itself, to produce the desired action.



Figure 2.2: When the numbers on the shapes do not match those on the receptor,
there are shape or chemical compatibility mismatches and the two structures will
not fit together [5].

The ligand also must be capable of stimulating the receptor when it binds with
its receptor. In other words, the ligand must have intrinsic activity. The highly
selective interaction of a cell occurs from noncovalent interactions. The general
principles of ligand-receptor interactions are generally similar to those seen within
the protein. We can classify the interaction as strong (covalent) interaction or
weak (noncovalent) interaction. Noncovalent interaction is of the order of kgT
where Kg is the Boltzmann’s constant and T is the absolute temperature. At our
body temperature (310K), the thermal energy is 2.5 x 1072 eV /particle which
is less than the covalent interaction. The free energy associated with a covalent
interaction is about 100—150 kg T . In general, the common interaction occurring

in the ligand receptor interaction is the noncovalent interaction [6,7].



2.2 Noncovalent interactions

There are many kinds of noncovalent interactions such as electrostatic
interactions, Van der Waals interactions, hydrogen bonds, and hydrophobic in-
teractions. Their names are derived from the condition in which the electrostatic
forces are exerted on the molecules. Noncovalent interactions are important in

the flexibility of macromolecules and they can interact reversibly.

2.2.1 Electrostatic Interactions

Molecules are collections of electrically charged particles. When two
oppositely charged groups come into close proximity, they are attached to one

another through a coulombic attractive force that is described by

0102
F=—-—=
r’D

(2.1)
where (; and @, are electric charges that are separated be the distance r and D is
the dielectric constant of the medium in which the charges are immersed. Since
D appears in the denominator, the attractive force is greatest in low dielectric
solvents. Hence electrostatic forces are stronger in the hydrophobic interior of a
protein than at the solvent-exposed surface. These attractive interactions referred
to as ionic bonds, salt bridges, and ion pairs. If two atoms, oppositely charged

or not, approach each other too closely, a repulsive force between the outer shell

electrons on each atom will come into play.

2.2.2. Van der Waals Forces

The noncovalent associations between electrically neutral molecules are

collectively known as "Van der Waals forces". They occur between ones where
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Figure 2.3: The Van der Waals energy for carbon-carbon interactions calculated
as a Lennard-Jones 6,12 potential. The interaction energy is plotted as a function
of distance between two atom centers. Note that the folding free energy is only
between 15 to 50 kJ/mol for typical proteins - corresponding to a handful of
optimal interactions, or a single close approach to 3 A [§].

one or both molecules do not have a permanent dipole such as dipole-induced
dipole interaction, and induced dipole-induced dipole interaction. A permanent
dipole can be established by the symmetry of the distribution of the electron cloud
around the positively charged nuclei. When atoms are close enough together,
this symmetry of one atom can influence the electron distribution of neighboring
atoms. Van der Waals forces may be attractive or repulsive, depending on the
distance between the atoms involved. The attractive force between electron clouds
increases as the two atoms approach each other but is counterbalanced by a
repulsive force at a critical distance known as the Van der Waals contact distance
Fig. (2.3).

A commonly used analytical form that lumps together all dipole-dipole



Atom | Radius(A)
1.2
2.0
1.5
1.4
1.9
1.9

Hlw»| O 2| Q| T

Table 2.1: Van der Waals radii for atoms in proteins

interactions and includes both the attractive and the repulsive terms is the
Lennard-Jones potential where the repulsive term is approximated as having a

r—}zdependence:

u(r) = Us (5>12 — 2U, (@)6 (2.2)
r r
This form of the potential energy function has a minimum at r = ro with U(rg) =
—Uo.
Van der Waals bonds and surfaces can play an important role in estab-
lishing the specificity of interaction between ligand and receptor because of the

differences in radii and the interplay between repulsive and attractive forces. See

Table 2.1.

2.2.3 Hydrogen bonding

Hydrogen bond (H bond) forms when a hydrogen atom interacts with
two electronegative atoms, called a proton donor group D---H and a proton ac-
ceptor atom A: D-—~H--- A_D---H is strongly polar, which means that electron
density is primarily around the electronegative atom (examples, F---H, O---H,
N---H, S---H in order of decreasing polarity). The acceptor atom A is also

strongly electronegative and sometimes H--- A can be as strong as D---H. The



Bond Type | Typical Length(A)
O---H---0O 2.70
O-—-—-H---O0~ 2.63
O-—-—-H---N 2.88
N-—-H---O 3.04
N*-——-H---0O 2.93
N---H---N 3.10

Table 2.2: Hydrogen bond lengths for H bonds found in proteins

hydrogen bond is strongest when the three atoms D, H, and A have a collinear
geometry.

In biological systems, ligand and receptor can both be the highly elec-
tronegative nitrogen (N), oxygen (O), or sometimes sulfur (S) atom. Hydrogen
bonds, which have bond energy between 2.5 and 8 kcal/mol, are weaker than
covalent bonds. A distance is normally in the range 2.7 to 3.1 A. See Table
2.2. Clearly, hydrogen bonding (Fig.(2.4))has a major influence on the structures
of proteins and also contributes the binding energy of ligand to active sites on

receptor.

2.2.4 Hydrophobic Interactions

When nonpolar molecules enter a polar solvent such as water, they co-
alesce into droplets in order to decrease their contact with water and prefer to
cluster around each other..: See Fig:(2.5).. Hydrophobic interaction involves a
number of water molecules which is different from other interactions that involve
pairwise interactions between atoms and molecules. This process results from the
solvent properties of water, not from the relatively weak attraction between the
associating nonpolar molecules. Nonpolar molecules, such as hydrocarbons, are

insoluble in water and are not good acceptors of the hydrogen bond. Therefore,
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Figure 2.4: The hydrogen bond is weak attraction between an electronegative
atom in one molecule and a hydrogen atom in other molecule. The hydrogen
bonds between water molecules are represented by short parallel lines[9].
they will disrupt the hydrogen bonding network of water. The water molecules
reorganize around the solute and attempt to form a cagelike structure in order to
gain back the broken hydrogen bonds. This results in a loss in the configurational
entropy of water and an increase in the free energy G. That is why nonpolar mole-
cules try to cluster around each other for larger entropy, leading to a decrease in
the free energy at equilibrium.

Hydrophobic interactions are found in the core of the folded protein mole-
cules, where they are shielded from the polar solvent. Likewise, in the active sites
of receptors, hydrophobic regions of the proteins tend to stabilize the binding of

hydrophobic molecules.
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Figure 2.5: Hydrophobic interactions between water and nonpolar molecules. It
looks like the oil molecules (circle particles), are avoiding the water (arrow) [10].

2.3 Examples of chemoreception

Multicellular organisms, especially the higher animals, are stimulated
by the environment through the sensory system or through chemoreception. In
this section, we will list several examples [1] of chemoreception and follow the

historical development of the various attempts at theoretical modelling

2.3.1 Detecting of pheromones

A pheromone is a substance which is secreted to the environment by an
organism and perceived by a second organism of the same species which changes
its behavior .consequently. - "Bombykol" is a kind of sex attractive pheromone
which is released into the air by the female silkworm moth Bombyx mori. In this
case, Bombykol molecule is the ligand and a sensory cell in the antennae system of
the male of this species detecting this ligand is receptor. This system was modeled
theoretically by Adam and Delbriick[11]. They calculate the number of ligands

which are absorbed by the detecting cell per unit of time. They recognize that
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chemoreception might occur in steps in which geometrical objects of decreasing
dimensionality play a role. Because of roughly cylindical shape of the sensory cell
in Bombyx mori, Murray [12] use a cylindrical geometry rather than the spherical

geometry.

2.3.2 Chemotaxis

Chemotaxis is the phenomenon which most unicellular microorganisms
will move towards certain chemicals and away from others. Chemotaxis has been
studied mostly in the bacteria Escherichia coli and Salmonella typhimurium [13,
14]. These bacteria perform a three-dimensional random walk[15]. Berg and
Purcell [16] developed the theory to describe the rate of capture of ligands by a

large number of receptors which are distributed uniformly over the cell membrane.

2.3.3 The immune system

All organisms are continually subject to attack by other organisms. In
response to predators, animals have developed the variety of defensive strategies.
The important strategy is the immune system. The immune response is triggered
by the presence of foreign macromolecules, virus, cell; tissue, nucleic acid and
carbohydrates, known as "antigens". The receptors are antibody molecules em-
bedded in the outer membrane of certain cells-of the immune system. The total
weight of all the cells which together form the immune system is roughly 5% of
the total weight of body. The immune system is remarkable in many respects.
It can distinguish "itself" from "foreign" with a very high accuracy, memorize
the previous infections, and react more appropriately in the next infections. The
interested reader in the theoretical work is referred to monographs by Delisi [17],

and by Perelson, Delisi and Wiegel [18].
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2.3.4 Synaptic transmission

The nerve cell releases the specific substance known as a neurotransmit-
ter to other cell by passing the junctions, synapses. This process, synaptic trans-
mission, involves four stages. First, the signal travels down to presynaptic axon
and reaches the presynaptic knob. If the threshold action potential is reached,
the neurotransmitter is recreated by the presynaptic cell. Second, the molecules
of neurotransmitter diffuse across the cleft and binds to their corresponding re-
ceptors on the postsynaptic membrane. Third, neurotransmitter binding induces
a change in the biochemical properties of the post synaptic membrane in such a
way that this membrane becomes selectively permeable to certain ions. Last, the
influx of these ions causes a change in the difference of the electrical potential
between the outside and the inside of the postsynaptic neuron. When this differ-
ence exceeds a threshold, a new signal originates in the vicinity of postsynaptic
membrane and travels down to postsynaptic axon. The second step involves the
basis event of chemoreception and ligands are the neurotransmitters. There are

various neurotransmitters such as acetylcholine, glutamic acid and others.

2.3.5 Vision

In the case of vision, the ligand is the photon, a quantum mechanical
particle. Chemoreception for vision can be found in most living organisms such
as vertebrate animals, plants, some algae, some bacteria and also the clusters of
cells found on the surface of worms and molluscs. Some bacteria have a light-
sensitive receptors in their outer membrane which they use to orient themselves
with respect to the sun. It is believed that this sensitivity to light appeared in

the primitive life-forms on Earth about 3.7 x 10° years ago.
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Figure 2.6: The transmission of nerve impluses across a synaptic cleft whose width
mostly is more than 200 A. The neurotransmitter such as Acetylcholine, Ach, is
sequestered in 400 A-diameter synaptic vescicles, which contain ~ 10*molecules
each [9].

These are only some important examples which show the idea how we

can use physics to explain biological systems.



Chapter 3
Ligand with randomly distributed traps

In this chapter, we review Wiegel’s method [3] which is used to explain a
ligand captured by a system of many receptors. His model is a rough calculation
but it provides useful guidelines for the further work. Generally, ligands can
move from a cell to another cell by means of Brownian motion, hydrodynamic
convection, electromagnetic fields, and other processes. These cells have the
properties as in Table (3.1). These cells monitor certain molecules, ligands, which

are in their vicinity and capture them by means of receptors, or traps

3.1 The coarse-grained description of a system
of absorbing traps

In the tissues of a living organism, the cells involved with chemoreception will
occur in great numbers. Therefore, we can consider chemoreception in the way
that it consists of identical receptors. Next, we call receptors as traps. These
traps are distributed in space with number density m (r,t). Wiegel treats this

problem simply by considering the distance between cells which is larger than the

Property Value
1. Shape sphere
2. Radius 5 pm

3. Volume | 5.24 x 10~ m?3
4. Density | 1.03 x 10° kgm—
5. Mass | 5.40 x 107 kg

Table 3.1: Average values of cell properties.
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size of cells. Therefore

mR3 < 1 (3.1)

with spherical cells of radius R. He can set the differential equation by considering

the following equation.

oC —

where C' is the coarse-grained concentration and J is the total ligand current. If

there are the external force F and the fluid flow field, J will be consists of three

terms.
— C
J= —DTvC+f—F+Ov+JN (3.3)
T
where Dy is diffusion coefficient (D = % where kg is Boltzmann’s constant, T’

is the absolute temperature, 7 is viscosity of fluid, and a is the radius of spherical
ligand), fr is the friction coefficient of a ligand, Vv is the velocity of the fluid flow
field and Jy is the ligand current assimilated by the perfectly absorbing cell . For

the case of no external force and fluid flow field, we obtain

—
J==DrvC +In (3.4)
Consider the term of Jy;
80]\[ —

For spherical case, Eq.(3.5) can be rewritten as

9Cy &Cy 1200y
ot ~DT< or? i or (3.6)

Cn _

> 0. Now we have

1d [ ,dCy\
Far ( o ) =0 (3.7)

In stationary state,
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Hence
dC
2 N
— = A
" dr
dCxn A
p— —_— 3-8
dr r2 (3.8)

where A is a constant. We use the fact that the ligand current should be the

same through surface around the cell. Then we get

d
(DT CN) A7r* = Jy (3.9)

dr

Substitute Eq.(3.8) into Eq.(3.9). This give

I
A= 3.10
47TDT ( )
The general solution of Eq.(3.8) at » = R is
.l
Ov(R) = Clo)— A/ ~dp
R P
A
= Cyloo) = 3 (3.11)
Use the condition that s << R where s is the binding site. We have
dC
DTd—]éV = avDrsCy(R)
dC
d—}g = avsCy(R) (3.12)

where « is a constant and v is the number of binding sites per unit area. Substitute
Eq.(3.11) into Eq.(3.12).
aR*usCn(o0)

3.13
1+ aRvs ( )

Therefore

47 DraR?vsChy(00)
1+ aRvs

In =
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Ns
wTR+Ns"

where = Substitute this equation into Eq.(3.4) and use the boundary

condition ¢(R) = 0. We have

where A is the Laplacian operator and 8 depends on the model (5 = 1 for a
perfectly absorbing cell). The diffusion coefficient and R is the radius of receptor.
From Eq.(3.15), the distribution of ligands can be solved under the approximate
initial and boundary condition. Here we consider only one dimension and assume

that m is constant mg through out the tissue.

3.1.1 In the case of stationary state of ligand

Eq.(3.15) becomes
d?C

X

and its solution is
C(x) =C(0)exp (—x\/47rRﬁmo> (3.17)

where C(0) is the concentration of ligands at the position 2 = 0. Then C (z)

is independent on the diffusion coefficient. Ligands penetrate the tissue over a

distance of the order of magnitude (47 RBmg) >.

3.1.2 In the case of uniform ligand

Eq.(3.15) becomes

% = —47 RDrmoC (3.18)
Its solution is
C(t) = C(0) exp (—4mRDrfmot) (3.19)

where C (0) is the concentration of ligands at time ¢t = 0. Eq.(3.19) interprets

that ligands decay on a time scale of the order magnitude (47TRDT6m0)71.
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3.2 Examples of time-dependent problems

The study of ligand populations is popular in biophysical and biochemical ex-
periments. One observes the decay of ligand population captured by a system of

traps in different dimension as the following;:

3.2.1 In one-dimensional system

One observed the time dependence of the number of bound repressor
molecules. A number of repressor diffuses along a single DNA molecule which is

followed by their binding to the corresponding operators.

3.2.2 In two-dimensional system

A population of membrane proteins is captured by a system of traps.
These traps are fixed randomly in the membrane. The membrane protein can

diffuse laterally in this membrane and be captured when it hits the trap.

3.2.3 In three-dimensional system

One observed the population of antigens is reduced by binding to macrophages
a type of white blood cell that ingest and, if possible, destroy a variety of foreign
substances. The examples of antigens are foreign macromolecules, proteins, car-
bohydrates, and nuclei acids. These antigens trigger the immune response which
leads to the destruction of offending cells.
In many experimental aspects, the decay of ligand population is assumed
that the total number N (t) of free ligands will decay as a "pure" exponential

function of the form

N () = Npexp {—il (3.20)

To
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at the long-time behavior of the decay where Ny is a dimensionless constant and
To is a relaxation time. The decay form of Eq.(3.20) is granted by most authors.
But it is argued that it might be another form, stretch exponential form [19,20,21].
Donsker and Varadhan [20] presented the mathematical model of Brownian mo-
tion between random traps. They proved that the exponent is proportional to
t#/(4*2) in d dimensions. Grassberger and Procacica [21] also investigate the long
time behavior of particle moving in the randomly distributed traps. They found
that the particle population decays slower than any exponential. This is the effect
of the existence of large trap-free regions. They also can prove that the ligand

population has the form
N(t).~ exp(—c t¥/@+2) (3.21)

where c is a constant and d is the dimension of system. We will show how they

can get this form in three dimension system.

3.3 Fractional exponential decay

The system consists of M traps in volume V. The traps are assumed to be
perfectly absorbing spheres of radius a and completely random. At the initial
time ¢ = 0, the number of ligands N (0) distributed uniformly throughout V.
There are some regions where have no traps at all, called "holes". These holes
have various shapes and sizes, see Fig.(3.1)

In order to calculate the probability H (s)ds to find a hole in volume V/,
the Boltzmann factor exp (—E/kgT) is used with E the amount of work needed

to create a hole. From thermodynamics,

E =Py (3.22)
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Figure 3.1: A system in volume V" consisting of a number of randomly distributed
traps, radius a, and holes which have an average radius s.

where P = %kBT and v is the volume of spherical hole, 4"'353. Thus the total

number H (s)ds of holes with radius between s and s + ds is

H(s) = Hy (3.23)

dr M 5 . A M 4
S X = S
V S

where the specific value of Hy depends on the precise definition of a hole.

3.3.1 Decay of ligand concentration

For t = 0, the ligand concentration is constant ¢ inside a hole of radius s, and
vanishes outside the hole since ligands are surrounding by traps at density m.
For ¢ > 0, the ligand concentration is denoted by ¢ (r,t) and we use the

spherical coordinates to solve the diffusion equation

% =DrAc forO<r<s (3.24)
Oc
5 = DrAc — 4raDyrme  for r > s (3.25)

where a is SR as defined in the Eq.(3.15)
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The general solution of diffusion equation has the form of an eigenfunction
expansion. If the hole is large enough to be the ground state, the long-time

behavior of solution is

1
c(r,t) = dowg (1) exp (—Aot) for t> " (3.26)

with dp is a constant, 1), denotes the ground state and A is the eigenvalue. Thus,

the ligand population N (s,t) becomes

N (5:8) = No (s) exp [ Ao (5)H] for ¢ > Aio (3.27)

where

No (s) 2~ 4rdp / e (R)r2dr (3.28)

Calculating the ground state eigenvalue by substituting Eq.(3.26) into (3.24) and
(3.25), the result is

& 2d
Dy P o+ Aoty =0 for 0<r<s (3.29)
pr (L 129N amDye = So) i, =0 for 1 > (3.30)
v\ 22T g ) Yo (4mamDr =Xo) o = rr>s :

Note: this problem is similar to the mathematical problem of finite spherical
quantum well.

Now we replace

n o4
o=l 31
Yo p (3.31)
to Eq.(3.29) and Eq.(3.30), gives
d2
dlf—i——@b—() for0<r<s (3.32)
d? A
d_qu — (47mm - D_OT> =0 forr>s (3.33)

with the boundary condition as
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r =0 = ¢/r is required to be finite,

Hence

Y (r) = Asiny/ ﬁr for0 <r<s (3.34)
Dr

r — oo = /r is close to zero

A
—1/4mam — = r] for r > s (3.35)
ey

r=s = ¢ and %y must be continuous
T

Asinﬂg—OTs = Bexp
and
B B A A
A D_OT cos D—oTs = —BMexp (— dram — D_(; : S) (3.37)

dividing Eq.(3.37) by Eq.(3.36) and changing variable /3—$3 to k, we obtain

Hence

¥ (r) = Bexp

These give

)
—\/dram — D—OT : s] (3.36)

kcot k = —vV4mams? — k? (3.38)

Plotting both sides of this equation as the function of k. See Fig. (3.2). We get

the lowest bound state which is

k=r for ‘ams®>> 116 (3.39)

inserting k into

o= 5Dr= Dy (3.40)
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10 ¢

Figure 3.2: Plot f(k) versus k where the solid line is k cot £ and the dashed line

is —vVA4mams? — k2.

Now we consider all ligands being in holes at time £ = 0 with radii

™

= 41
AR 16am (341)
therefore, the ligand population is
4 2Dyt
N (s,t) = gwssco exp [—W 2T } (3.42)
5

and in the holes large enough to have a bound state. This population consists of

ligands
N, (Fy= / N (s,t) H(s) ds (3.43)
50
Replacing Eq.(3.23) into Eq.(3.43), we have
1 1 4 D
Ny, (¢) = 5 (47)3 comHo/35 exp {—gmé — 7T2t—2T ds (3.44)
s

S0

We change the integration variable to

x =15 (3.45)
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then, we get

[e.9]

16
Ny, (t) = szcomHotG/5 / 2° exp [—t3/5f (z)] da (3.46)
sot—1/5
where
Am 3 2 -2
f(x) = —=—ma’®+7°Drx (3.47)

3

For t — 0o, we can approximate Eq.(3.46) by using the steepest descent method.

Find the minimum point

d
i) d(tx) = dmmal — 22 Drag® = 0 (3.48)
)
7TDT
D148
= |—= 3.50
o= 5] (3.50)
We expand f () in Taylor’s series by keeping only up to second term and f’ (x) =
0
" (20) (z — m0)°
f ()= o) 4 LG 2 = 70 (351)
where f (x9) = %)Wm (%)3/5
2
@ f () = 8&mmx + 672 Dy
dx?
d>f () D2
= —X .52
el 207m { =1 (3.52)
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Substituting Eq.(3.51) into Eq.(3.46)
16 D 10 Drr\¥®
Ny, (t) Eﬂzcom[{ote’/5 (WQ—mT> /exp {—t3/5 lgﬂm (%)
0
Do\ /5
+107mm (LW) (x — a:o)2] } dx
2m
16 10 Drr\¥?
= —chomHot6/57rDT exp 35 | =rm —rr
3 3 2m

> fr 1/5 ,
x/exp —3/°10mm (—) (x — x0)7| dx
2m
0

I

= a’coHom’Z/sD%/lotg/lo exp [—B’mZ/SD%/StWS} (3.53)

where
o = g @5 E LRy (3.54)
A< %0 i923/57B/° (3.55)

Since
Ny, (t) & Not”*®exp (—%/°) (3.56)

for a three dimensional system. The ligand population decays slower than the

pure exponential function. See Fig. (3.3)
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Figure 3.3: Plot of the ligand population as function exp(—t") versus the time ¢
for ligands moving in the randomly distribution traps.



Chapter 4
Path Integral Representation

The path integral method of Feynman [22] provides us an approach to
solve quantum mechanical problem . The Feynman method is based on the
Lagrangian which gives us easy generalization from non-relativistic to relativistic
problem. The main concept of Feynman path integral is the propagator which
contains all the informations about system. The propagator, G (x2,t2 : x1,¢1),
représen‘ts the quantum mechanical transition amplitude for a particle to be found
at position x; at time fs by the particle was at position x; at an earlier time £;.
For more detail in the concept of Feynman path integral, the interested reader is
referred to see the book of Feynman and Hibbs {1].

Because of the advantages of propagator, it is used to solve the problem
about the motion of particles in & random environment, where path integral give
an accurate answer. Edward [23] studied the dlectron moving in a completely
random system containing dense and weak scatterer, or equivalently an electron
in a Gaussian random potential. In addition to Samathiyakanit’s trizl action
[2], we can apply both of them to describe the system of a ligand moving in
the randomtly distributed receptors. This trial action is non-local harmonic trial
action which has the term of the memory effects fqr the system in the interaction
with a larger system. Path integration of this action involves only Gaussian

integrals and can be performed exactly [24].
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Figure 4.1: Ligand at position x moves in the system which consists of traps
randomly distributed in position B;, ., and so on.

4.1 The analogy of diffusion equation and Schrédinger
equation

In order to apply the path integral techniques for heavily doped semiconductor
to diffusion equation, we would like to present our model. See Fig. (4.1)

We can write the diffusion equation for this system as

Tt — D) - Zv(x R)CGY  (4i)

where C(x,t) is the concentration of ligands, Dr is the diffusion coefficient de-
pending on temperature 7', and v {x — R;) is the interaction between ligand and

traps. We assume that v (x — R;) is the Gaussian interaction.
v (x = Re) =u(nl®) ¥ exp(lx — Ril /1) (4.2)

where { is the correlation length. We can rewrite the Eq. (4.1) as

- OC(x,t)

= =10t (4.3)

. N
where L ,the operator ,is DrV? — 3 v (x — R)).
i=1
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Now let consider the schrodinger equation in heavily doped semiconductor

ov h?

N
ihse ===V +) w(x~R)T (4.4)

i=1

We will change parameters in Eq. (4.4) to the following diagram.
t = —is
5?;; = DT
N
Sux-R) /A= Ve
=1 -
U(x,t) = C(x,1)

Now we obtain

oC(x,t)
8s

DrV?C{x,t) — V.C(x,1) (4.5)
From this analogy, we apply the path integral techniques to solve this problem.

4.2 Edward’s model

We consider & ligand moving in the presence of a set of N receptors, confined
within a volume V, and having a deusity p = f‘}i. Let v{x — R;) is the ligand-
receptor interaction, where x and R; are the position of receptors on cell and a
ligand respectively. Then the one ligand Hamiltonian is

h2
H=——
2m

P |
V+ > v(x-Ry) ( (4.6)

i=1
where m is the ligand mass. This Hamiltonian obviously depends on the position
of the stationary receptors. Therefore we will consider the simplest model! of dis-
ordered system to eliminate the need for extraneous mathematical approximation

by letting the scattering centers are taken distributed randomly. The probability
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distribution of the scattering potential is

PRjd(R]) = TRy (47)

'_I‘his is satisfactory in the analogous consideration of heavily doped semi-
conductors with short-range electron scatterer interaction where the correlation
scatterers can be ignored ‘sa.feiy. [24]. Here, we neglect the ligand-ligand inter-
action for simplified model that is why we can use the analogy with the one
electron approximation instead of the many-body one. For a given configuration .
of the receptors, the propagator g (X, x; ¢, [v]) of thié system satisfies the ﬁsual
equation .

[in5: ~# () it ) = 5= (RN 0 (45)

which can expressed in the path integral representation as

g (xz, %1 £, [o]) = [ Dx () exp {% f & {%ﬁ L o(x— [R])]} (4.9)

where Dx (t) denotes the path integral to be carried out with the boundary

conditions x (0) = x; and x (£} = x; and

v(x—[R]) =} v(x—R) | (4.10)

Now we consider the properties of the identically prepared system. There-

fore, the measured properties are averaged over all configurations of expression
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(4.9) and it can be perform exactly by Edwards and Gulyaev [25).
Glaxit) = [ PRIGR) (e i, b)
- ]Dx(t)exp{%[tdr [?xz]}
YL {_,.;;ljfdr E}; (x- Ri)} }
- [Dx(t)e@{%lidr [%XQ]} |
{gaifonn)y

G (%2, X1; t) describes the motion of an average ligand which moves in the average

system. Next, we consider only the term by assuming ¢ << V and using the

identity
alN

i+ }N = exp[7] (4.12)

then we have

N

<( [ dr v{x ~
L Jo

B oxp |-
- (4B i e )
AR

Then expanding the exponential exponent in Taylor series and considering

L——o——mﬁm‘

]I
gh

::rrl e,

V

the system in the limits of receptor concentration is very large {p — oo) and the
ligand-receptor interaction is weak (v — 0) so that pv? is finite. Since pt? >> pva
, we truncate the expansion after quadratic term in v (x — R). In this limit, it
allows us completely to describe the system by the ﬁrs_t and second moments of

the potential. The distribution can be the Gaussian distribution which means
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that a system of a ligand moving in weak and dense receptors is equivalent to

moving in the Gaussian random potential. See Fig. (4.2). We obtain

i

| {’“‘xvf\ 1
1 S e ‘i.- Jo N L
AR {

Figure 4.2: Sketch of the random potential (the solid line). The dashed line
denotes the average potential of the system, Fy.

o 4 .2
o) = i fas gt famox-Ry
G (x2,%1;) ]Dx(t)e@{ﬁ. { +§%££7£fiofmg(x(f)-—R)’U(X{U)"R) ]}
(4.14)

Here we have taken the average potential energy to be
Ey— jf iR (x—Ry) (4.15)
and the auto-correlation function define as
W &) =% (o) = f dRy (x (1}~ R)v(x (6} = R) (4.16)

The auto-correlation function tells us the effect of 4 potential at one point on a
potential t¢ another point. By using these two functions, the average propagator

can be written as

G (%a, %138) = J/' DX(T)GXP{%S[X(T)}} | (4.17)
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where S [x (7)] is defined by

Slx(r)] = j dr {%Exz-nEg+——~ jf doW (x (1) — x(a))] (4.18)

In the form of S[x(7)], it seems that the system can be viewed as a ligand moving
in the average potential with a “memory effect”. In our case, fve use the Gaussian

potential

v(x(7) = R) = u(@l*) "> exp (i_’iﬂiﬁﬁ) {4.19)

where u is 8 parameter to take care the dimension of system. An a.nalytiéa!

expression

W(x(r) — x(0)) = v*(wL*)"* exp (MT) szw)gz) {4.20)

is obtained {see appendix A}, where L is the new Gaussian correlation length of

the random system, L? = 2{%. We substitute Eq. {4.20) into Eq. (4.18), then we

have
" € [ ) = x(o)P
G{xXs. X1 tl = (t) ji —i—;n} ,;6_ [ g @ ;{iix(T" 4
G {X2.%y: 1) ji Dx(t)exp 7 _ E nEG-l-QhJG d xp T2
: (4.21)

where £ = (5%;)%5 has the dimension of E2.

4.3 The approximate propagator

In general, a lot of path integrals can not be integrated out and our problem is
one of them. Therefore an approximation method is needed. In our problem, we
use the variational method which we can adjust the appropriate trial action with
parameter. In this investigation, we follow the method given in Samathiyakanit

[2], which is similar to Feynman [26] used in the polaron problem by introducing
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a non-local harmonic trial action
£ m .5 w2 i 2
So(w) = fdr | 73(r) — o [ do |x(7) - x(0)] (4.22)
- 0 2 2t 0 -
where w is an unknown parameter to be determined. Sy(w) is chosen to be

translationally invariant since we are not considering the localized states. The

average propagator is written as

Giteaxit) = Gotraisted) (o (=8| ) 29

where nonlocal harmonic oscillator propagator

Go(xz, x13t,w) = [ D(x(r)}.exp (%Sg [X(T}]) (4.2.4)
and the average { )g,(,y is defined as

_ I D(x(r))0 e (£50 (x(r)])
So{w) F Dx(r))exp (35 {X(T)D

where O denotes a function to be averaged. Consequently, we approximate Eq.

(O)

(4.25)

(4.23) by using the first order cumulant expansion [27].

1 : ) '
(exp ) = 2 |0} + 546 = (o)) ~..| (4.26)
and we keep only the first order.
i ,
Gi(xg,x1;t,w) = Go(Xg,Xy; t,w) exp {E {§ — SG(W»_So(w}] (4.27)

where the index 1 denotes the first order approximation. To obtain Gy (xa, X;; t;w)
we have to find Go(xz, x1; £, w) and (S — So{w)) 5,y Which is defined as (S’ — Sp{w)) s ()
since their kinetic term are identical and always cancel each other. The prime
symbol in both actions means excluding the kinetic énergy term. Fortunately,

Go{x2,%1; ,w) has been already carried out by Samathiyakanit [2].

L t \°
Go{x1, %93 t,w) = (2—:;%)3/2 (—) . (4.28)

2o Wi
2sin %
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From
| (§"— S (w))So(w) = (S’)So(w) - {Sq (w)>Sg(u) {4.29)
Therefore, we can rewrite - | |
, Lo /
Gi(x1, %2; t,w) = Go(x1,Xa; ¢, w) exp [E((S ) Souy ~ (So)sg(w))} ' (4.30)

we will consider {S')g, ., by substitute S from Eq.(4.18)

(87 sty = —nEot + é%pj; dei do (W {x(7} = x(¢))) 5,0 (4.31)

where W (x(z) — x(o)) is given by Eq.(4.20) for Gaussian potentials. This average

is difficult so that we use its Fourier transform.

W (x(a) ~ (o) = [ @?é‘)—gw W eplik: (xr)—x()]  (432)

where

r 2
W (k) = 4® exp l—%—kﬂ {4.33)

{See appendix B) and u is the parameter introduced in order to the teke care of

dimension of the system (see appendix A we can remite {5} So(w) S
Sy = —nEot+ ﬁp f iz / e f g ke - (x(r) — x(0) sy
= —nkot+ ﬁp j: dr ]2 de f o (4.34)
Using cumulant expansions.
a1 = ik« (x(7) = %(0)) 5,1 (4.35)

=5 [ () - 50Ny — e sl (630

where 2{7)—z{0) = z.(7)—z{0) = z,(7)—z,(0) = z,(r)—z.(c).See appendix C
for more detail. Inserting W (k) into Eq. {4.34) and performing the k-integration,



3

we obtain

. i ¢ £ 1 3/2 372 B2
(S 5oy = —nEot + T4 5 dr ; do y A~ exp A (4.37)

where

A= %L'z + % E; ((x(r) - xi(g ))2>s°(u) — {z(1) ~ x(a))go(w):! (438)
and
= (x(7) = x{¢)} 5w | (4.39)

Next we consider the average of the trial action (Sj(w})s,(,, Which is written as

D= —2e [ o [@((GD=xoW)g,, @00
Eq. (4.37) and Eq. (4.40) can be expressed in terms of the following averages

(x(T)) go(y2nd {{x(1) — %(0)) 55(.)- Such averages can be obtained from a char-
acteristic functional of (exp(% fdre(r)- X(T))>S :

4.4 Detailed calculations

Tl F T

a4 TTS
Egxeittl LU

Tibbs{l], we can rewrite the characteristic functional as

<exp G{ f; gt (r)-x (T)) >SM = exp (% [sg, 1- so,d]) (4.41)

where S({ s 50,0 are the forced classical trial action and classical trial action re-
spectively and we have derived from appendix D, by defining

= Ss+ j:: " drf (r) -5 (7) (4.42)

Both Sg'd and Sy o are Gaussian. To obtain the forced classical action S({ o We
need to find the classical path which can be obtained by making a variation on
- S{(w). | -
s = '/(; t drL(%,x,t) + j: t drf (7) - x (1) © 0 (4.43)
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From Eq. (4.41), we differentiate it with respect to f{7). The result is

<x(1') exp[ JEC) x(T)dTD gf("‘:)‘{ exp {" € dusg,_d)” (4.44)

therefore, by evaluating both sides at £f{7) = 0, we obtain

853
(e(r)) = == (‘“; (4.45)
£(7)=0
and continue differentiating Eq. (4.41) to get the second derivative as
R &S5, 68§, 4Si,
elm) - x(eh = {? () 8£(@) * of(r) SE@)|| . (4.46)

Using Eq.(4.34), (4.38),(4.39),(4.45) ,(4.46)and (C.10). The first and second func-

tional derivatives can be evaluated and we can get A, and B for 7 > 0.

857
&N sy = 5f€,’,)%

£{r)=0
L mw 22 (sinwr —2sin L sin¥ (¢ — 7)sin)
"~ 2sinwt -i-%j (s'mw {t—7)—2sinY sinw(—‘%’i2 sin %)
- (4.47)
and
&8I
(7)) 5oy = 3E() - t(0)
_ 38 sinw (¢t — 7)sinwo 1.48)
imuw sinwt 4sm-—smw§~—~l sin 2T sme‘M—T—l ;

substituting Eq.(4.47) and (4.48) into (4.38) and (4.39)

. A(tr i) = (1;,:+;Zsin§(7—ff):;1;f}_(t—(r—0))) (4.49)

and

sin¥ (7 — o)cos ¥ (t — ( + o)) (x9-%;) (4.50)

B =B(x; — x1;5;7,0,w) = —
: sin >
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Using Eq.(4.40), (4.47), and {4.48), we get

. _ 3wt wi miwt  wi  fwt o wi 2 %2 — 3]
| (4.51)
substituting FEq.(4.37),(4.38),(4.39), and (4.51) into (4.30),we get
mo.3 wt 1
Cilrn, %zt w) = (27riht)2 (28111%)
exp l' %(% cot % — 1)~ o [w‘*?i cot & + (%’t CSC%E)Q] e : }
. 3

P 2¥2 ot t 32, ~RB?
5 (2) [far flae () 470 (1 — i) exp [ 2]
: h {4.52)

where A and B are Eq. (4.49) and Eq. {4.30) respectively.

This is the average propagator in the first order cumulant expansion. It
describes the motion of single electron in randomly distributed scatterers. The
propagator is defined as

Gi(x1, Xa;t,w) = 9 ¢, ()l (1 )¢~ Bnlta—t) (4.53)

n=1

The electron moves frorm & point x; o the point %, with the time ¢35 —{; == £ where
ta > t;. This is the probability amplitude which sums over all contribution. Now
we use the analogy of Eq(44) and Eq.(4.5) and convert ¢t = —is and Z» = A,
We obtain v
o0
Pl %p; 8,0} = D 6, (o) 5 ocp e nlermen) (459)
n=1

and consic}er x; = X3 = X. We can interpret P(x,x;s,w) as the probability of
ligands at location % and consider the asymptotic behavior of the probability
at large time. After we set x; = Xy = X, this propagator is determined as the
returning probability amplitude. We will use G1(x, x;¢,w) to find P(x,x;s,w).

Beside, we still have to determine the unknown parameter (w) in Gy (%1, Xa; ¢, w)
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by minimizing the density of states n (£). This process gives us the optimal w
for our system. Before we continue to the next process, we have to prove that the
density of states of the capture rate, n (A), has the same function as the density

of the state.

n(E) =) §(E—E,) (4.55)
n=1
From the definition
2ReG(x. x:t.w) mj[ n(E)e"%EtdE (4.56)
JP _

and convert the variables; t = —is and £ = A. We have to convert n(E) to n(})

by using the following expression.

n(E)dE = n(\)d()) (@57)
n(E) = n(}\)ff% 2] E%) (4.58)
Now we get
9P(x, % 8,0) — fé " al)ed) (4.59)
Therefore,
T — éL{n(A)} (4.60)

where L{n(\)} is the Laplace transform of n(A). Since
TrP(x,x;8,w) = VP(X, %; 5, w) (4.61)

where V is the volume of system and

6-'055

TrP(x,x;5,w) = 5 (4.62)
where « is the gound state energy of decay rate. Then we have
e—(!S
P(x,x;8,w) = (4.63)
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Substitute Eq.(4.63) into Eq.(4.60). We get

e—as

L{n(\)} = 7 | (4.64)
Now we know
n{a) = L‘l{ev } = Z %;6(0 - an) (4.65)

This expression is similar to Eq.(4.55). This show us that we can use the same

method to find the minimizing energy for finding the density of state.

4.5 The density of states

The density of states per unit volume is related to the diagonal part of the average

propagaior as

1 7 ;
n(E)= e dt G (x,x;t) exp {?&Et} (4.66)
where
m_\3/2 e i (1 wt>i
o) = (7im) (amtem) @ {alaecr’s -1) -7

6 L2 3/2 ! !
~53 (—4—) j/d'rjldonﬁl_s/2 (t,7,0;w) (4.67)
0

0

Now we use the property
A, 1,00w)=A{t,t— (1 -0);w) {4.68)

thus the integral in Eq.(4.67) can be reduced to

t

¢t :
/d’rfdaA—m (¢, 1, 07w) = t/dxA"S/z (t, z;w) (4.69)
o o 0

where
L% ik sin{wz/2)sin (w (t — z) /2)

At zw) = Ll o) (@)
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Besides, we consider the system at large times, £ = —is and s — co. We can

make the following approximation:

. . wi . . w(~—is) . 1 ws/2
zlfil; sin - = 8151010 Sin ———" = e (4.71)
) wt ‘ w(—1s) .
thm cot 5 = lim cot =i (4.72)
: . _ | 1 7 PP
lim 510 (wa:/2); sin (w (t — z) /2) NN sinw(—1z )/?smwv( i) (s —x') /2 _ _1_
t—c0 sin (wt/2) §—00 sinw(—17s)/2 2
(4.73)

Therefore, the average propagator can be rewritten as

3/2 - 2 —3/2
hmGl(xxtw) ( i ) (dwt)® exp {—-giwtw@~i<l+ in ) ]

t—00 2miht 7 2h2 2muw L2
(4.74)
putting Eq.(4.74) linto Eq.(4.66), we obtain
. 1 °r m 32 3 3 ZEgt 151
n(E) = s d? (ZWiht) {iwt)” exp {mzzwt - -+ 5 (4.75)

2 —3/2
&, 4
2R\ 2mwl? .

This integration can be integrated by using a formula [28]

Jahren -0 S =375 e [ L]0, (1) 1470

we can get the density of states in the following equation

N 1/2 32 '
= e ——— -3 __.'{E_ _5/2 _ﬁ_
© 3@ Gl @) o
where ¢ = L 3E, + Ey — E), B* = :5¢ (1+4~§~5), Ey = 52, E, = lw and
D, (z) is the parabolic cylinder function. As asymptotic expansions [28]. If
|z| > 1, then

Dy (z) ~ o=/, (1 — E%;—ll + ) | (4.78)



43

Now we will consider the system that the magnitude of the potential fluctuation

£ is close to 0. By using this consideration,

. q .
1 — 4.7
ﬁﬂ(m@)ﬁm) 47
thus
limDj (2) = e7*'/42? (4.80)

Then the density of states becomes

ENY 1 E3b
n(E) = Kf) E-z} 20, %) &xp [———L——Z%l)} (481)
where %
3 3
(Gx+)" (4+x)
¥) = 4.82
é (v, %) <L (4.82)
and
3 27 4N\
b (V, X) = (ZX -+ I/) (1 = '}z‘) (483)
with y = % and v = ,E,%_—;@ 'To determine w, we have to choose x which maximize

the density of states. From {4.81), the exponential term is sensitive to x. We will

maximize this term
ob (v, %)

—_ . | A
5 =0 (4.84)

which satisfies equivalently with the following expression.
X' —x—4r=0 (4.85)

The solution ;)f Eq.(4.85) thus two roots. Since y is the ratio of the energy
associated with the harmonic oscillator and the eﬁergy of fluctuation [29]. We
choose only the positive one, x = (\/1-1;——161/ - 1) /2. We substitute this root to
Eq.(4.82) and Eq.(4.83), so that we have
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a(v) = -2-;;\_1[-2?5 (VI+16w - 1)3/2 (vi+ior+7) e (4.86)

2

: (m - 1)1/2 (Vi+iow+7) K (4.87)

b(i'/):—zﬁ

and the density of states

- (”)} (4.88)

D—

is obtained.

4.6 The probability of finding ligands

Since we have already determine the parameter (w) through the density of states,
we can evaluate the probability amplitude G; (%, x;t) by doing the Fourier trans-

forms of n { &)

Gi (x,x;t) = 7n(E) exp {——%Et] dE (4‘.89)

—0Q - :

Substituting Kq.(4.88) into Eq.(4.89), and setting v = (E; — E) /E;, we get

O

-0

a(v)exp [—E;?; b(y)m%Et} dE | (4.90)

Now letting &) = £/F2 and ¢ = tEp/h. These two parameters are dimensionless.

The propagator can be rewritten as

’ Gy (x,x;t) = —ggfffa(u) exp l——%%% + z'yt’] dv (4.91)

-0

where a (v)and b (v) are Eq.(4.86) and Eq.{4.87) respectively.
Since Eq.(4.91) can not be integrated analytically, we have to approximate

it by using the steepest descent method [17,18].
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4.6.1 The steepest descent method

This method is used to determine such asymptotic behavior when the considered

function can be expressed as an integral of the general form

I(s)= J/ g(z) e'%d: (4.92)
C
where |s| is large compared to 1 and f(z) and ¢(z) are analytic in the contour

C.Redefining f (z), we have

J{2) =ulz.y) + v (z.y) (4.93)

We expect that the exponential will be large at the maximum of u (z,y). Next,
we deform contour which passes through a point z. at which u (z, y) is maximum.

Since the imaginary term v (z,y) rake the contribution of real part small, we

Figure 4.3: The real part and the imaginary part of an analytic function have
not the absoclute maximum and minimum at saddle point, zg.

can have

ou Ov _ df| ,

Z0
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and we can find the saddle point from this equation. This leads to

7(2) =1 () + 5 (= 2 (20) (4.95)

Finally, Eq.(4.92) can be rewritten as

16) = [oew [s{f ) 45w (e} 2

c

exp o (zal) [ 9(2) x|
[

S

il

(z = z0)" f" (20) dz] (4.96)

(%!

we use Fq.(4.96) to approximate our result. Before we continue the approxima-

tion, we have set £; = 1 for caleulating simply. Using these for Eq.(4.81), we

get 4
1 W), .
Gy (x,x; %) ——L—/a v)exp{ +zut]dv (4.97)
0
we rewrite it to
G (%, ;) g—f [ (11“; V) bQ(;) +7;VH dv (4.98)
0

where t'is large since we consider our system in large time. Now we have

flv)= lni,(y) - 52(;) + i (4.99)

Find the first derivation of f (v)

1 da(v) 1db(v)

A ta(v) dv 28 dv (4.100)
Find the second derivation of f (v}
wy 11 da(v) 1 da(v) 1 d%(v)
= ¢ (a(y) 2 a?(v) dv ) 2 di? (4.101)
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Using Eq.(4.98) and replacing Eq.(4.100) and Eq. (4.101) around the saddle point

sing] [ [ Lzl
0

(4.102)

vy, we obtain

G (x,x;t) = :ggexp [h’la(llg)

and we consider only the dominant term at large time which is the exponential

term so that we get

Gy (x,x31) = % exp {Ina {sz) - b(;ﬂ) + ngt’] (4.103)

Now using Eq.(4.94) and Eq.{4.100), we can get iy from the following equation
1 da(v) Ldb{v)

ta(v) dv = 2 dv AN (4.104)
multiplying t' to 1q.(4.104), we have
1 1
Gafy) LW, v g (4.105)

a{v) dv 2 dv
and letting t” = #/, thus

1 da (y) 1dh ('n\

—*E(';)* Iv +2 s — (4.106)

We consider 2% and 2Y by using £q.(4.91) and (4.92)
di du
da(v) 3(VIHi6w—1)"* (74 It i60)"

dv 256mv/2 4 32v

(4.107)

and

b (7)) o T(VTETe = 1) (r T Iee) Y
Codv 64+/1+ 16v
(7+ vI+iow)"?

64+/1+ 16v (V1 + 16w — 1)

(25+8v+ 71+ 160) (-3 +v) (4.108)
2/(2+4v — 2/TF160) (-3 + ) |

1/2




If we insert Eq.(4.107) and Eq.(4.108) into Eq.(4.106), we have

4873 (1 + VT 167)

t” —

. (25 + 8+ TV/1+160) (-3 + 1)
4/ + 4 - 2vTF160) (-3+7)

- Taking the limit of v

Next we take Eq.(4.109) into two limits as the following:a

i) v« 1 Using

Ll 1)
(1+$)”=1—|~n$+ﬂ%_-2x2+...

and keeping only up to the second term. Therefore we have

3(1+4v) (254 8u + T(1+ 8))(—3 + v)

0(1+8)(1+v)  4((2+4r — 201+ 80)) (-3 + 1))

[

This equation can be reduced to

__§_ 32(‘“8) -
2w 4(36v)12

and we rewrite it again

—3 — 8% = 2"y

Let z = v1/2. Now we have

2" + Bz H3 =0

V16 — 68"
T=-20""1k —
. Ztﬂ
For large ¢, we have ' '
M2 g oyl 4 @z’t”“l/z

2

V2+32 (V1 + 160 - 1) (VI+ 160 +7)

— t”
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(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)
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We insert Eq.(4.116) into.E-q.(4.103) , use the limiting values of a(v) = Q%ﬂf

and b(v) = 1601/ 2 and consider only real part of propagator. We obtain

H—2

t
Re Gy (x,%;1") = — exp [12¢7] (4.117)

and we change variable t” back to ¢, t" = it’.

. S —2
Re G (x,x;{') ~ (“;)2 exp [12(2';5’)‘1} | (4.118)

Then the probability is
: o2 -
P(x,%x,8) ~ 5 P [12s77] | (4.119)

This probability decays as the function 52 at large time.

i) v>» 1 Trom 'Eq.(4..109), we obtain

48+/2 - 4v1/? 812
v = - s W - (4.120)
4\/§U1/2 '41/1/2 1 4]/1’2 41/(4y — 81,/1/2)y
‘This equation is reduced to
3
——+v=_{" (4.121)
vV
and we rewrite to
v — vt —3=10 (4.122)

There are two solutions which are

N R GE R NP
yg~{ gt,,_\/m% X (4.123)

Vg~ 3 (4124)

We insert ¥q.(4.124) into Fq.(4.103) and use the limiting values of a(v) = VE;’ &

and b(v) = 1%, then our propagator becomes

a2

-1 t
Gy (x, %) ~ Zé-t”S exp {—-E— — t”z} (4.125)



- and we change variable " back to t', t” = it'.

i3 2
Gy (x,x;t') = it exp {—3(2” }

L2 2

Then the probability is

Plxxis) M oxp [,,_ 3(;)2}
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(4.126)

(4.127)

After we consider the limit of propagator at » << 1 and v >> 1, we have the

probabilities which depend on the exponential function of time, s~ and exp(—s?)

respectively.



Chapter 5
Disscussion and Conclusion

The problem of a particle moving in randomly distributed traps has been
studied in both its theoretical and experimental aspects. Most experimental re-
searchers find the population of substances such as protein and antigen and they
know the behavior of the molecules in the biological system. In the mean time,
the theoretical researchers try to explain these problems by using different mod-
els. Most models come from the diffusion equations which describe the problem
classically. Here we tried to find the probability of finding ligand in the sys-
tem containing randomly distributed traps by using the Feynman path integral
method.

Firstly, we gave an introduction about ligand and receptor. This showed
how to apply our model with a simple system. Secondly, we reviewed one of the
diffusion equation methods (Wiegel’s model) to find the population of ligand at
large times. This model assumes that ligands must be in the hold (the region
without traps) at time ¢ = 0 and then they will diffuse to neighboring regions at
later times. When they collide with the traps, they will be trapped immediately.
From this model, we know that ligands decay according to a fractional exponential
function and this is the result for the existence of a large hole, unlike the system
having regularly distributed traps. The population in the latter system will decay
exponentially. However, many experimental researchers assume that all systems
will behave as the latter system.

Next, we used the analogous relation between Schrodinger equation and

diffusion equation and applied the Feynman Path Integral method to find the
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population of ligands at large times. We assume that the ligands are identical.
Therefore, we can study only one ligand in this simple model. In addition, we use
the Gaussian random potential to model the real interactions of the system. In
addition to Samathiyakanit’s trial action, we obtain the average propagator for
our system. This propagator, G(X1, Xz; t),means the probability amplitude of the
electron moving in randomly distributed traps. In this problem, we have to change
some parameters in the propagator in order to get the probability of finding
ligands at position X, P(X,X;s),for the diffusion equation. These parameters
came from the analogous equations. At limit » << 1, the probability depends
on the function, s=2 and at the limit » >> 1, the probability depends on the
exponential function, exp(—s™) which has the exponent m = 2. The last limit
has the same form of decay as Wiegel [3] but it decays faster than his model. At
limit v << 1, the correlation length, L, is short. This shows that it has the short
range potential. It decreases slower than the case which v >> 1. Therefore we
can describe that ligands moving in the short range random potential have the
probability to avoid capture by the traps more than the case of long correlation

length,r >> 1. It has a longer time to stay in the system without trapping.
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The graph shows the relation between the probability of finding ligand,
P(X,X, s), versus time, s where the solid line is exp(—s?) and the dotted line is
AL
I have suggestion for the future work. This model can be improved later by
changing the interaction to the real one. It depends on the kind of interaction
force. Besides, it might be better if we try to use other trial actions. Then
we may get the full propagator. In fact, this problem involves both quantum

mechanics and statistical mechanics so that it may be explained by using the

quantum-statistical method.
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Appendix A:
Find correlation function

We define the correlation function W (x (1) — X (¢)) as

W (x (1) — X (0)) = /dR v (X (1) — R)v (X () — R) (A1)

where the interaction, v (X (o) — R), is the Gaussian potential of the following

form :

_x(n) -RP

v (X (7) —R) = u (xl?) /% / dR exp : (A.2)

Thus we can write
—x(1) =R’ = [x(0) - R[’
12

—vmfwqu
l2

></dRexp [ZR'X(T)"'ZR'X(U)—ZR-R}

W (x(7) — x(0))

2 (w1?) 7 / dR exp

= u (7rl2)_3 exp

: (A.3)

considering the integral term

2w

/dgzs/desm@ dR R?exp

0
2w

- /dd)/dRRzeXp{ 2 }/ esmeexp{ R |X(T);X(U)|C059]
0

0
). 72 /dR o, ~oR2 exp ZlR”X(sz)ﬂ(a)'}
() +x(0)] Pl —exp ’Z'R”Xl(l)*x(”)'}

dR Rexp {?—Rz + Zl—f X (1) + X(a)\] (A.4)

{ZR x(r) + x(o) - R)}

\X(T)+X(0)\/
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Let
2R?> 2R
y=l—2—l—2\X(T)+X(a)!
4R 2
I? 1
RAR = —dy + = [x (1) + X (0)| dR (A.5)

4 2

Therefore, we obtain

[e.9]

o2
/dRRexp[ ?ZR +2l_§|X(T)+X(O)|}

—00

[e.9]

2 o . 2
= [l o f g k0 +x @l | <5 + 5 x() +x ()
_ [x(1) +x(9)| X (1) +x ()| [nl?
= 2 &P [ o2 ] 2 (A.5)
substituting Eq.(A.6) into Eq. (A.3), then we get
LZ T g 2
W (X (1) —x(0)) = (ﬁgz)s S exp [—’X( )sz( ) ] (A7)

where L2 = 2/?



Appendix B:
Fourier Transform of W(X(7)-%X(o))

We consider the fourier transform of

3 T) — o 2
W (x(r) — X (o)) = o (n12) "2 exp ('X( ) sz( ) ) (B.1)
and we rewrite it as
o 2
W (r) = u® (rL%) 2 exp (%) (B.2)

where r is (X (1) — X (o)). Hence

21 0
wW(k) = 1 3 uig/ W(r)exp (—ik.r) dr
(2m)2 (wL?)2 oo
2 0 2 T

S 3 / dr r*W (r)exp (—r—2> / df sin 6 exp (—ikr cos 6)

(2n2L?)2 Jo L2) J,
_ 2mu? 7 r? exp (—ikr) — exp (ikr)
 (err2)t /o e <_ﬁ> ( —ik ) (8:3)

Considering the integral term

s 2 ) di ]{ZLZ 2 ]{ZZLZ
/o drr exp (—%—ikr)Z/o dr rexp [—Z (7’+22 ) - ]dr

(B.4)
giving
ikL?\ 1
=d nt = B.5
r= (5T ®:5)
and dr = Ldy. Thus we obtain
T ikL? kL2
Jio[lf qelosm a8 L
R s Vi
K212 [ kL2
= Lexp [— ]/ (Lyeyz—2 ey2> dy
4 0 2
K212 [L?  ikL3\/w
= exp {— 2 }{7— 2 } (B.6)
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and

o r2 _ K212 [L?  ikL3\/7
/0 dr rexp (—ﬁ+zk:7‘) = exp {— 2 } {7+ 2 } (B.7)

If we change variable » to —r, we will get

—o0 7,2 ' 0 7,2 '
/0 dr (—r)exp (—ﬁ - zkzr) = /oo dr rexp (—ﬁ - zkr)

= exp {—szz} [L—z + ZkLzﬁ} (B.8)

2
We combine Eq.(B.6) and Eq. (B.8). Then we have

u2

Wi(k) = = exp {— kZLZ] (B.9)
(27)2 \




Appendix C:
Cumulant Expansion

We approximate (exp [ik- (X (7) — X (0))]) 5., Y Using cumulant expan-
sion,
(exp[a]) = exp [(a) +% ((a®) = (a)?) + % [.]+ } (C.1)

Considering only up to the second order, we therefore have
(exp[ik- (X (1) —x(a))]) = exp [@'k' (X (1) — x(0))) + % {{(ik- (X (1) = x (0)))*)
—((k (X (1) = X (@)N)*}] (C2)

We seperate (C.2) into 3 terms and consider firstly in the first term

ay = (k- (X (7) = x(2))) = ik: (X (1) — x(0))) (C.3)

and

((ik- (X (1) =x(0)))?) = _%2 ((x (1) = x(0))*)
=2kzky (@ (1) = @2 (9)) (2 (1) — 24 (0)))
=2k k. (2, (7) — 24 (0)) (2. (7) — 2. (0)))
—2kyk. ((zy (1) — 2y (0)) (z (1) — 2 (0))) (C.4)
and the last term is
(k- (D) =% @)= =K X (1) —x(0))’

+2k,ky (1, (7) — 2, (0)) (z, () — 2, (0))
+2k k. (x, (7) — 3, (0)) (z. (1) — 2. (0))

+2kyk (1, (1) — 2y (0)) (2. (7) — 2. (0)) (C.5)
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From (C.3) and (C.4), we give

Ox = Xy (T) — Ty (U) (C6)
Cy =y (1) — zy (0) (C.7
CYZ =, (T) — Tz (U) (C8)
Therefore, we have
<(zk (X (1) = X (@)))*) = ((iK- (X (7) = X (0))))?
= - <(X () = x(@))%) + K (2 (7) — 2 (0))* = 2ko iy [(CCy) — (Ci) (Cy)]

2kk[<CC) (Ca) (C2)] = 2ky k- [(CyC2) = (Cy) (C2)]

= __<(x(7) X (0))%) + K2 (x(7) — z (0))? (C.9)

where

(C.Cy) = (CeCl) = (CyC;) =0 (C.10)

See Feynman and Hibbs (p.178)[1]. Hence we have

aies ——k2 <(x (1) — X (0))?) — (2 () — = (0))° (C.11)



Appendix D.
Find trial action

In this appendix, we find S({d and So,; which are used to evaluate (X(7)) g
and (X(7)X(7)) g,y - IN order to obtain S({d and Sp .;, we have to find the classical

path by working a variation on SJ (w)

Sg(w) = /dTL(X(T),X(T),t)-l—/f(T)-X(T)dT

At the extremum point,

t

558 (w) = / AT (7) 6% () 4 £ (7) - 6% ()

/da (X(7) =X (a))-0(X(T) — X (a))] (D.2)

0

mwz

2t

where 6% (1) = 6 [dX(T)] X1 and o (t) = 6% (0) = 0. Thus

t

5 (w) = /dT |:mx( +—/da x(a))—f(r)]-éx(r)o
’ (D.3)

Therefore, we can obtain a classical equation

X, () + w?X, (1) = —/daX (D.4)
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and we can solve Eq.(D.4) by using the Green function

1

w sin wt

g(r,0)=— [sinw (t — 2) sinwo O (T — 0) +sinw (t — o) sinwr O (0 — 7)]
(D.5)
where O is the Heaviside step function and we use the boundary condition x (0) =

x;and X (t) = X,. From Eq.(D.4), we use Eqg.(D.5) and get

X () =%+ [ [“; [ixiiay + fﬁn")] g(r.o)do (D6

0
where Xx;, (1) is the homogenous solution of Eq.(D.4). Integrating both sides of

Eq.(D.6) and adding the same term together, we obtain

]dUXC(T) - — d E]thdwydat/ Tff?;‘) (T,a)] (D.7)

0 —%{dT{dUg(T,(f) 0 o o

B t wt 2 . wo . w(o—T)
= Semi)2 [(Xl—l—xz) sin — > +mw/f (o) (sm 5 sin 5 )da]

and

o f (o) ~ 2 t L wo . w(o—71)
/dO'/dT " (1,0) = m/daf (0) (Sm7 sin T) (D.9)
o o 0

Substituting Eg.(D.8) and Eq.(D.9) into Eqg.(D.6), we have

%, () 1 (x L (t ) = 2 . wT, w(t—71)
. = sin wT sinw (t — 7 sin — sin ——
T sin wt 2 ! sin wt 2 2

t

(2 + x1) Sln— - l/daf (o) (sin%sin M)]

mw 2
0

/ 7) (D.10)
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The forced classical trial action SS d (X2, X1; t,w) is obtained by substituting Eq.(D.10)

into the expression

t
S8 (%o, Xa5t,w) = So (X2, X13t, w) + / dr T (1) X, (7) (D.11)
0
which we have
t t
f ) m 2
So,cz (Xz,Xl,t,w = 5 /drx /d']’/do’|x(7—)_x<0-)|
0 0 0
i
—l—/dT f (1) X (7)
0
t
= % X (7) Xe (1) = X (0) X (0)] + +5 / dr f (1) X, (7)
0
(D.12)
Thus, we get
Sc{cz (X2, X1;t,w) = % Cot — |x2 x1|2

t

2X t
ULz 2/d7’f( )(Sinwr—QSin%Sing(t—T)sin%>

2sinwt | mw
0

t
2 t
xl/drf( )(sinw(t—T)—ZSin%sing(t—T)sin%)

mw

t t

m22w2 /dT/dO’f (1) f (¢){sinw (t — 7)sinwo
o -0
_481115 (t =) SmTSmE (t—o) SlnT}] (D.13)

By means of Eq.(D.11), the classical trial action Sy, can be obtained if we set

f (1) equals zero. Hence, we find

1 t
SO,cl (Xz, X1;t, w) = imw cot % |X2 — X1 2 (D14)
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