CHAPTERIV
THEOREMS FROM RING THEORY

In this chapter, we. generalize theorems from ring theory to skewring
theory. This is not easy because we must find theore:ﬁs which do not assume
the existence of a multiplicative identity or which do not use concepts from
module theory.

In Chapter I, we gave the definitions of nilpotent elements, nilpotent
normal ideals and normal nilideals. For this chapter, we shall generalize some
. theorems of ring theory to skewrings.

We first introduce the nilradicals of a skewring, among which there are
the noether radical and the prime radical. Then we will consider the Jacobson

radical of a skewring.

Theorem 4.1 (1) Every nilpotent normal ideal is a normal nilideal.
(2) If IJ are normal nilideals of a skewring R, then I+J is a
normal nilideal in R.
If IJ are nilpotent lefifright, two-sided] normal ideals of a

skewring R, then the same is true for I+J.

Proof (1) Obvious.
(2) Let I,J be normal nilideals of a skewring R. then every
element of I and J is nilpotent. By Corollary 2.9 (4), I+J is a normal ideal of

R. By Fourth Isomorphism Theorem, I+ J% E% AT Let f: (I+ J% - % AT

be an isomorphism. Let xeI+J. Then there exists i€l, jel] such that x =i+j.
Then f(x+]) = f(i+j+J) = f{i+J) =i+In]. Since i€l, i is nilpotent. There is neZ’
such that i"=0. Thus f{(x+])") = (fx+N)" = ({HN)" =i"+InT =1n]. Since f is a
monomorphism, (x"+J) = (x+J)"=J. Thus x"e€J which is a normal nilideal. Then
x" is nilpotent, so there is an meZ* such that x"=(x")"=0. Thus x is a

nilpotent. Hence I+J is a normal nilideal.
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Let I} be nilpotent normal ideals of a skewring R. By Corollary 1.13
(4), I+J is a normmal ideal in R, Then there exist mneZ" such that ["=J"=
{0}. We shall show that (I+J)™" = {0}. Since LJ are ideals, for each keZ",
x;€l, y;eJ (where ie(1,....k}), (X, tyy)...(Xty) =22,...2, for some z,elul]. By
Proposition 1.23, (I+1)™" = {{(X, Y. (Xupn TYmen)/Xi€LY,€J where i€ {1,.,m+n}}),.
Then (I+)™" < ({Xz,...Zm / Z€lLUJ where i€ (1,.,m+n}}),. Suppose that m2n.
Let z,,...,Zg,€IV). If there exist zj ,...,z; €l then z,...z ., is of the form
(a,zj, )---(8nz;, )r for some a,reRU{1} for all je{l,...,m}. Since I is an ideal,
(a,-zij)el for all je{l,...,m}. Since I"= {0}, (a,z; )...(auz;,) =0 and hence
Z,...Zne, = 0, (otherwise, there exist z; ,...,z; €J and similary, z,...Zp., = 0.)
Therefore ('I+J)“‘+I1 = {0}. Hence I+J is a nilpotent normal ideal of R.

If IJ are nilpotent left normal ideals, by the proof of Corollary 2.9 (4),
I+J is a normal subgroup of (R,+). Clearly, I+J is a left normal ideal of R.
Similarly, I+J is a nilpotent left normal ideal. For right normal ideals, we can

prove the theorem in the same way. #

Corollary 4.2. Let {I,/acA} be a family of nilpotent left{right] normal ideals
of a skewring R. Then T [, is a lefi[right] normal nilideal

aeAd

Theorem 4.3. Let {I;/acA} be the family of all nilpotent right normal ideals
in a skewring R, {Js/BeB} the family of all nilpotent left normal ideals in R,
and {K,/yeC} the family of all nilpotent normal ideals in R.

Let Wp= 21a, Wi= 2 Jp and W=} Ky. Then W=W, =W,
a€A BeB yeC

Proof. Let I be a nilpotent left normal ideal. Then there exists an neZ'
such that I"= {0}.
Claiml. I+IR is a normal ideal in R.

Clearly, [+IR is a left normal ideal in R. Let xel, yeIR,reR. Then
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there exist meZ", y,z€R , x,€l, ,eRUZ where ie{l,...,m} such that

y= )IE (z#rxy-z). Clearly, rxel, yreR for every ie{l,...,m} which implies

i=1

that (x+y)r= xr+yr=xr+)nf rxyrelRcI+IR. Hence we have Claiml.
i=1

Claim2. (IR)"= {0}. 7

By Proposition 1.23, (IR)" = ({x,(r,x;)...(r,.Xx)r,/ X;€l ,r;eR for every
ie{l,...n} ) S{y,Ys... Vb / vi€l, reR for every ie{l,...,n}}), (since [ is an left
ideal.) = {0}(since I"= {0}.) Hence we have Claim2, so IR is nilpotent.

Since I and IR are nilpotent, by Theorem 4.1 (2), I+IR is nilpotent.
Therefore I+IRcW and since ICI+IR, IcW. Thus W,cW. But each normal ideal
is a left normal ideal, so WcW, and hence they are equal. Similarly, W,=W. #
Theorem 4.4. If R satisfies the ACC for lefifright] normal ideals, then W is

nilpotent.

Proof. Let L be the family of all nilpotent left normal ideals of a
skewring R which are contained in W. Since {0}eL, L is not empty. Let
{I,/keZ'} be a nonempty chain in L. Since R satisfies the ACC for left
[right] normal ideals, there exists an NeZ* such that I, =I for all k2N. Then
I, is an upper bound of this chain. By Zorn’s Lemma, L has a maximal
element, say I. If I=W we are finished, so suppose I= W. Let acW\L. Then
there are nilpotent left normal ideals I,,...,I, such that ael+... . Let I'=
I+1,+...+1. By Theorem 4.3, I'cW and by Theorem 4.1 (2), I' is nilpotent,
contradiction the maximal property of I. Hence I=W which implies that W is

nilpotent. #

Theorem 4.5. Let R be a skewring. Then the following statements hold.:
(1) The union of all normal nilideals of R is a normal nilideal and is
denoted by UR(R).

(2) The union of all nilpotent normal ideals of R is a normal nilideal
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and is denoted by NR(R).

(3) NR(R)c UR(R)c N(R) where N(R) is the set of all nilpotent elements
in R.

Proof. (1) Let x,yeUR(R). Then there exist normal nilideals IJ such
that xel and yeJ. Then xyel and x-yel+J which is a normal nilideal, by
Theorem 4.1 (2). Thus UR(R) is an additive subgroup of R. Clearly, it is a
normal nilideal of R.

(2) It follows from (1) and Theorem 4.1 (1).

(3) It follows from (2).#

In the above notation, UR(R) is called the upper nilradical of R and
NR(R) is called the noether radical of R.

Definition 4.6. A normal ideal I of a skewring R is called a nilradical of R if
and only if I is a normal nilideal and the only nilpotent normal ideal of %

is 0.

Remark 4.7. For any skewring R, UR(R) is the largest nilradical and
R =
UR( AR (R ="

Proof. By theorem 4.5 (1), UR(R) is a normal nilideal. Claim that

IyUR(R) has no normal nilideal different from 0. Suppose not. Then there

exists %JR(R) which is 2 normal nilideal of %R(R) such that JzUR(R).
Thus I is a normal nilideal of R, so that ICUR(R) which is a contradiction.

. . R )
Therefore we have the claim. By Theorem 4.1 (1) and the claim, /U'R(R) has

no nilpotent normal ideal different from 0. Therefore UR(R) is a nilradical and
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so UR(R) is the largest nilradical. Since O is the unique normal nilideal of

BR®) R R(R)) =0 #

Definition 4.8. Let S be a nonempty subset of a skewring R.

S is called a semimultiplicative set in a skewring R if and only if a,be
S implies that there exists. xeRUZ such that axbeS.

S is called a multiplicative set if and only if a,beS implies abeS. And
S is generated by a nonempty subset X of R if and only if §={x;..x; /me
Z', x; 1oy, €X)

Remark 4.9. A normal ideal P of a skewring R is a prime normal ideal if

and only if the complement set S of P is a semimultiplicative set.

Proof. Set S =P°, Suppose that S is not a semimultiplicative set. Then
there exist abeS such that arbgS for every reRUZ. Hence arbeP for every
reRUZ. To show that (a)(b),cP. Let xe(a),, ye(b),. Then there exist m,neZ’
, XpY;€R, 1,p;,q;,8€ RUZ , where ie{l,...,m},je{l,....,n}, such that x=
E‘i (x;trapi-x;)) and y =.nzl (y;+q;bs;-y). Then xy = E‘i f:l rapg;bs;eP which
i= j= =l j=
implies that (a),(b),cP. Therefore (a),cP or (b),cP, so aeP or beP which is
a contradiction. Hence S is a semimultiplicative set.

Conversely, suppose that S is a semimultiplicative set. Let [ and J be a
normal ideal of R such that IJIc P. If Iz P and Jz P, let aeI\P and bel\P.
Then a,beS and there exists xeRUZ such that axbeS. On the other hand axb =

(ax)bel)cP which is a contradiction. Hence P is a prime normal ideal of R. #

Definition 4.10. The prime radicai of a skewring R is that intersection of all
prime normal ideals of R, it is denoted by PR(R).
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Remark 4.11. For any skewring %R (R) has no nilpotent normal ideal

different from 0.

Proof. Let %R(R) be a niipotent normal ideal of %R(R)' Then

: + I In A n_ n n
there exists neZ" such that AR(R) (%R(R)) 0. Then I"c PR(R), so 1
c P for every prime normal ideal P of R. Thus ICP for every prime normal
ideal P of R, so that IcCPR(R). Hence %R(R)ﬁo' #

Theorem 4.12. If R is any skewring, then the following sets are equal :
(1) PR(R).

(2) The intersection of all normal ideals J of R such that % has no

nilpotent normal ideal except 0.
(3) The set of all elements x€R such that if a semimultiplicative set S

contains x, then it contains 0.

Proof. We denote the sets indicated in (1),(2) and (3), by E,,E;, and E,
respectively. We shall show that E,c E,c E,CE,.
Stepl. We shal show that E,c E,.

Let 3={J/J is a normal ideal of R and has 1% no nilpotent normal

ideal except 0}. Then E; =~3J. By Remark 4.11., PR(R)€3, so_that "3cPR(R).

Step2. We shall show that E,c E,.

Claiml.%_3 has no nonzero nilpotent normal ideal.
2

Suppose there exists a nilpotent normal ideal%z of % . Then there
2 2

is an neZ" such that % = ( E:)n =0, so ' E,. Thus for any normal ideal
2
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J of R such that % has no nonzero nilpotent normal ideal, I"cJ and % is

a nilpotent normal ideal in % Hence Ig J for every such J, and therefore

IcE,. Hence we have Claiml.

Let xeR be such that if S is a semimultiplicative set and xeS, then
OeS.
Claim2. xeE,. |

Suppose not. Then (x),« E,. By Claiml, (x),(x),« E,. We shall show
that there exists yeRUZ such that x, = xyx¢E,. Suppose xyxeE, for every ye
RUZ. A proof similar to the proof of Remark 4.9, (x),(x),< E, gives a
contradiction. Then there exists a yeRUZ such that x, =xyx#E,. By repeating
the argument we obtain a set S = {XX,,...} of elements not in E, (with x,=x)
and so each x;# 0. We shall show that S is a semimultiplicative set. Let x; X
€S. If i=j it is obvious. If i>j, then there exist y,¥;,... €ERUZ such that x,,
= XYXES, Xiz = XiYierXint = X(¥X; YiXi¥)X; €S. Continue in this way, then x;=
x;rx; for some reR and there is a y;eR such that x;,, =x;y;x;eS for some y;e
RUZ. Then x(rxy)x; = (xm%)yX; = X;yjX; = X;, €S. Therefore S is a
semimultiplicative set and xeS, but 0gS which is a contradiction. Thus xe€E,

and hence E,c E,.

Step3. We shall show that E,c E,.

Let xePR(R) and S be a semimultiplicative set such that xeS. To show
that 0eS, suppose not. Let L= {I/I is a normal ideal of R such that INS =
@.}. Since {0}€L, L is not empty. Let C be a nonempty chain in L. Clearly,
WL is an upper bound of C in L. By Zom’s Lemma, there exists a normal
ideal P maximal among those such that PNS =@. Suppose P is not prime.
Then there exist normal ideals I,J of R such that IJcP, but I¢P and J&P.
Then P #I+P and P = J+P. By Corollary 1.13 (4), [+P and J+P are normal ideals
of R. So by the maximality of P, (I+P)nS #@ and (J+P)nS = @. Then there

exist a,beS such that acl+P and beJ+P. Then there are i€l, jeJ ,p,qeP such
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that a=i+p and b=j+q. Since S is a semimultiplicative set, there exists yeR

such that aybeS. Then ayb = (i+p)y(i+q) = (iy+py)(j+q) = iyj+pyj+iyqtpyqelH+Pc
P which contradicts SAP =@, Hence P is prime. But xeS, so xg¢P which is
impossible since xePR(R). Thus 0eS, so thatE,cE,. #

Corollary 4.13. For any skewring R, NR(R) cPR(R), the prime radical is the

smallest nilradical of R, hence PR(R) c UR(R), and PR( %R( R) )=0.

Proof. First, we shall show that NR(R) < PR(R). Let I be any nilpotent
normal ideal of R and assume that J is any normal ideal of R such that f%

has no nonzero nilpotent normal ideal. By the Fourth Isomorphism Theorem,

I+3)/ 1 - (LS TN ¢ £8 ) V2SR
/J = %I AT Since I is a nilpotent normal ideal, % is a nilpotent

normal ideal of F/J That is (I+J%=O, so IcJ. By Theorem 4.12, IcE, =

PR(R). Hence NR(R) c PR(R).
Next, we shall show that PR(R) is the smallest nilradical of R. By

' R . . «
Remark 4.11, AR(R) has no nilpotent normal ideal different from 0. To show

that PR(R) is a normal nilideal, let I be any nilradical of R. Then 1% has no

nilpotent normal ideal different from 0. By Theorem 4.12, PR(R) c I. Since I is
a normal nilideal, PR(R) c UR(R). By Theorem 4.5 (1), UR(R) is a normal
nilideal, so is PR(R) and therefore PR(R) is a nilradical. By Theorem 4.12 (2),
PR(R) is the smallest nilradical of R.

Finally, we shall show that PR( %R (R))=0' By Theorem 2.17,
%R(R) is prime in %R(R) if and only if P is prime in R. Then

PR(%R(R))=0{%R(R)/P is a prime normal ideal of R} = I%R(R)

(where K=n{P/P is a prime normal ideal of R})= PR(R%R(R) =0 .#
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By Corollary 4.13, PR(R) is called the lower nilradical of R.

Definition 4.14. The center of .a skewring R which is denoted by C(R), is the

set {xeR/xy =yx for every yeR}.

Theorem 4.15. If every nilpotent element of a skewring R is in the center of
R, then NR(R) = PR(R) = UR(R) = N(R).

Proof. We shall show that N(R) = NR(R). Let x #0 be nilpotent

element. By assumption, xeC(R).

Claim that for every teZ’, ((x))'c ({Ej rx'/neZ', reRUZ where i=1,...,n}),

i=1
for every teZ"\{1}.
We will prove by induction on t. By Propositon 1.23, (x),) =
{X,...X, /x,€(x), for every ie{l,...,t}}. If t=2, let y,ze{x),. Then there exist
m,nleZ‘“, Y4 ER, Pulss;i€RUZ, where ie{l,...,m}, je{l,...,n}, such that y=

m n m n
zi (y#pxqry) and z=Y (ztsxt-z). By Remark 1.5 (2), yz=12. Y (pxqsixt)
= J=l i=l j=I
k
=E i (past)x’ since xeC(R). Then yz=% rx' for some keZ’, r,eRUZ

]
—

[1]
LN

i=l j i=l
where i=1,...,k. Therefore the basic step is true.

Let t>2. Suppose that the claim is true for t, Then

x))'e ({_HZl rx'/neZ’, ;eRUZ where i=1,...,n}),. Similarly, by the basic
1=

step, ((x)n)""_c_({i rx"' /neZ', r;,eRUZ where i=1,...,n}),. By induction, we
i=l

=
have the claim.
Clearly, ({x),)' =({§j rx'/neZ', r,eRUZ where i=1,...,n}), for allteZ".
i=i
Since x is nilpotent, there exists a teZ' such that x'=0. By the claim, (x),)'=

{0}, so (x), is nilpotent and (x),< NR(R). Then xeNR(R) and N(R) c NR(R).
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By Theorem 4.5 (3), NR(R) < UR(R) < N(R). Hence the proof is finished. #

Definition 4.16. For any multiplicative set § of a skewring R, § is called
nilpotent if and only if there exists neZ’ such that a;...an =0 for any

aj, ..., ap €S.

Definition 4.17. The lefi{right] Annihilator of the subset S of a skewring R is
defined as Anni(S) = {reR/rx =0 for every xS} Ann{(S) = {reRixr =0 for
every x&S}]. The Annihilator of S is denoted by Ann(S) and Ann(S) =
Annj(S)nAnny(S). -

Remark 4.18. The lefi[right] Annihilator of the subset S of a skewring R is a
left{right] normal ideal of R.

Proof, If S =, then Ann(S)=R. Suppose S # 2. Since OcAnn(S),
Ann(S)# @. Let x,yeAnn(S), reR, seS. Then (x-y)s =xs-ys =0, (rx)s = r(xs) =
0 and (r+x-r)s=0, so x-y, rx, r+x-re Ann(S). Hence Ann,(S) is a left normal
ideal of R. Similarly, Ann(S) and Ann(s) are right and two-sided normal

ideals respectively.#
The foliowing theorem is generalized from Levitzki Theorem

Theorem 4.19. If a skewring R satisfies the ACC for left normal .ideals, then
every normal nilideal is a nilpotent normal ideal hence UR(R) = NR(R) is the

largest nilpotent normal ideal and NR( %R (R) ) =0

Proof. Let J be a normal nilideal of R. By Proposition3.9, J is a
finitely generated left normal ideal, say by the elements r,,...,r,. Let S denote

the semimultiplicative set generated by {r,,....,}, that is the set of products of
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the element r,,...,r,. Since S gJ which is a normal nilideal, every element of

S is nilpotent.

Stepl. We shall show that S is nilpotent.

Suppose S is not nilpotent. Since r, is a nilpotent element, the
multiplicative set generated by {r,} is nilpotent. Then there exists an integer
m, 1sms<n such that the multiplicative set S_,, generated by {r,,...,I,.,} is
nilpotent, but the multiplicative set S_, generated by {r,,...,r,} is not nilpotent.
Since S, is nilpotent and finitely generated, S, is finite.

Set T := {r,fc# 0/k21,ceS,,}. Since r, is nilpotent and S, is finite, T is a
finite subset of S_. Let 8’ be the semimultiplicative set generated by T.
Claiml. §' is not nilpotent.

Since r,, is nilpotent, there is a smallest integer k such that r*=0....(i)
Since S, is nilpotent, there is a smallest integer / such that c,...c;=0 for any
CloeensCIES 1 crervrnnne (if)

By (i) and (if), any nonzero product of k+/-1 of the element r,,...,r,
contains r_ at least once, and some r(1<i<m-1) at least once. .......... (iii)

Let seZ"\{1}, Since S is not nilpc-atent, there exists a nonzero product
of s(k+l-1) elements in {r,,....r,}. We may write it as a product b,...b, where
b;# 0 is a product of k+/-1 elements in {r,,....I,;}. By (ili}, b; has r, and some

r(1Sj<m-1) as factors. A regrouping by the associative law leads to the fact
that b;...b, may be written as d(; _kic)(; X2c))...(y k1d") where t2s, each ce

Swi 2nd d,d'e €S, U1}, Then (; ki), kzc)...(; K-1c,)#0 which show
that S’ contains nonzero product of s-1 elements in T. Since s is arbitraly, S'
is not nilpotent and hence we have Claiml.

Thus the finitely generated multiplicative set S' is not nilpotent. Since
S'cS,, = S, the elements in S’ are nilpotent. By repeating the same procedure,
we may determine a decreasing chain of finitely generated multiplicative sets
So8'>8">..., each not nilpotent.

Let I= Ann(S), I' = Ann(S’),... be the Annihilators of the subsets S,S’,
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S“,... of the skewring R, hence ICI'Cl”....
Claim2. This sequence is strictly increasing.

By the construction, it is enough to show that IcI'. Since every element
of S’ has the left factor r, and r,*=0, r ~'S’' = {0}, that is r,“"el'. If eI,
then we are done. If r,"'el, then r,“'r,=0 for every i=1,...,m. We shall
show that k>2. Suppose that k=2. Then r, ;=0 for every i=1,...,m. Let
Cs.+sCl.1 €Sy Consider c,...cl, .

Casel. For every i, ¢,€S,,. Then c,...c/,; =0, by (ii).
Case2. There exist ¢;eS,\S,., and c;€S,,. Then r, is some factor of c,

Subecase2.1. i</ Then there exists je{1,...,m} such that r.r; is some
factor of c,...c). Since r.r;=0, ¢,...cj,, =0.

Subcase2.2. i=/+1. Then ¢,,....c/€S,. ;. Then ¢,...c; =0, by (ii), so that
Cev il =0. '

Case3. For every i, ¢;€8,\S,. Then ¢,=r, for every I and so c,...cj, =r =
0, since k=2.

From 3 cases, we get that S is nilpotent which is a contradiction.
Then k>2. Let C be a product of r,,....r, containing at least some factor
r(1si<m) Then (1, *3)(t.C) =t~ 'c=0. By definition of §', r,“’el’. Since r, *’r,
=r.*'#0, we get that r gL Therefore Icl’. Similarly, IcI'cl”... which
contradicts the fact that R satisfies the ACC for left normal ideals. Hence S is

niipotent.

Step2. We shall show that J is nilpotent.
Since S is nilpotent, there exists a teZ’ such that c,...c;=0 for any
¢,eS. We shall show that J'= {0}.
k
Claim3. For any meZ', I"c{{ ¥ Xigy 1 /x,€RUZ ,i=1,...k}),.
=t "
By Proposition 1.23, J™ = {{x,...x,/ x,€J ,i=1,...,m}),. Let x,yeJ. Then

there exist m,neZ’, a,b;eR, x,y;€eRUZ, where ij=1,...,n are such that
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n n n n
x=}'_; (a+xrra) andy=zl (b+yr-b). By Remark 1.5 (2), xy=_§_‘i 21 (xiriyjrj).
1= = 1=l )=

Since J is an ideal and r;eJ for all i=1,...,n, ry;eJ for all i,j=1,...,n. Then

there exist af R, yf¥cRUZ where /=1,...,n such that ry;=% (af"+y/Vrj-a;
=t

@9). By Remark 1.5(2) xy = %lxiyl“"”rlrj. Thus the basic step is true.
iybl=

Regarding the induction step, we can prove it similarly. Then we have Claim3.
Hence J'= {0} which implies J is nilpotent. By Remark 4.5 (2), (3) and
Remark 4.7, UR(R) =NR(R) is the largest nilpoent normal ideal and

NRCAR ) =4

Definition 4.20. Let R be a skewring. The intersection of all the maximal
normal ideal of R is called the Jacobson radical of R and it is denoted by
JR(R).

Hence JR(R) =R exactly when R has no maximal normal ideal. By the

above definition, JR(R) is a normal ideal of R.

Remark 4.21. For any skewring R, JR(R) = nKer(f) where f is any

epimorphism of R to some simple skewring.

Proof. Consider 2 cases.
Casel. R has a maximal normal ideal.
Let xeJR(R). So xeM for every maximal normal ideal M of R. Let

g:R—S be an epimorphism of R to a nonzero simple skewring S. To show
that xeKer(g). By First Isomorphism Theorem, I%{er(g) = §S. Then there exists
a bijection between the set of all normal ideals of S and the set of all normal

ideals of R containing Ker(g). Since S is simple, Ker(g) is a maximal normal

ideal of R. Since S = {0} and g is surjective, Ker(g) # R. Therefore xeKer(g).
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Since g and S are arbitraly, xeKer(f) for every epimorphism of R to some
simple skewring. Hence JR(R) g nKer(f).
Conversely, let xeKer(f) where f is an epimotphism of R to some

simple skewring S. Suppose I is a maximal normal ideal of R. To show that
xel. Let S= l}{ and define g:R—)l}{ to be the canonical epimorphism, Then
Ker(g)=1. By Theorem 2.14, there exist a bijection between the set of all

normal ideals of R containing I and the set of all normal ideals of 1}{ Since

I is maximal, % is simple. Since Ker(g) =1, xel. Hence the converse is true.

Case2. R has no maximal normal ideal.

Then JR(R) =R. Suppose there exists an epimorphism f of R to some
simple skewring. Similarly Casel, Ker(f) is a maximal normal ideal of R
which is a contradiction. Thus the assumption is not true. Then there is no
such f, That is, NKer(f) = R. therefore JR(R) = nKer(f). #

Remark 4.22. If f is a homomorphism of a skewring R to some skewring R’,
then flJR(R)] cJR(R).

Proof. Let g be an epimorphism of R’ to some simple skewring S.
Then gof is an epimorphism of R to S. By Remark 4.21, JR(R) < Ker(ge f).
That is ge f[JR(R)] = {0}. Hence f[JR(R)] = Ker(g) where g is an epimorphism
of R’ to some simple skewring S'. by Remark 4.21, f{JR(R)] ¢ JR(R'). #

Remark 4.23. If I is a normal ideal of a skewring R, then JR(I) cJR(R) and

(JR(R)+1I % QJR(% ). Furthermore, if I cJR(R) then JR(R% =JR(%) '

Proof. Let i:I9R be the inclusion map. By Remark 4.22, JR(I) = i[JR(I)]

c JR(R). Let n:R—)I% be the canonical epimorphism. By Remark 4.22,
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nIR®)] < IR(RA).
Claim that (RR)+D/  riipewy).

Let xe BRI+ D7 Then there exist acIR(R), bel such that x =
(a+b)+] = atle JR(R%w[JR(k)]. Then we have the claim and so
ORE)+T)/ C pR/ ).

Suppose 1< JRR). By Corollary 2.16, "RR)/ = n{IR(R)] = n[ {maximal

normal ideal M of R containing I}] =n(N%)= IR(I%).#

Remark 4.24. For any skewring R, JR( %’R(R)) = (¢ and JR(R) is the smallest

normal ideal of R with this property.

Proof. Since JR(R) c JR(R), by Remark 4.23, 0=IR(R%R(R)=
JR(IyJR(R)). Let I be the normal ideal of R such that J'R(I%)=0. By

Remark 4.23, RR)* D/  i(RAy =0, Then R 1, that is RR) 1. #

Lemma 4.25. If R is a finitely generated skewring, if I is a normal ideal of R
and JR(R)+I=R, then R =1

Proof. By Remark 423, UR(R) +I%c; JR(B/). Since JRRMI=R,

RACIR(RA) which implies that R(R( )= R/ Therefore R/ has no

maximal proper normal ideal. Suppose R# 1. Since R is a finitely generated,
by Remark 1.26, [ is contained in a maximal normal ideal of R which is a

contradiction. Hence R=1. #
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The elements in the skewring R will be characterized as nongenerators
in the following sense : The element x€R is a nongenerator of R when the

following property holds : If BCR and BAx} is a set of generators of R as a

normal ideal of R, then B is also a set of generators of R as a normal ideal.

Theorem 4.26. For any finitely generated skewring R (finitely generated as
normal ideal), JR(R) is the set of nongenerators of R.

Proof. Let xeJR(R) and B c R such that BU{x} is a set of generators
of R and denote by I, the normal ideal of R which is generated by B. Then
R = &)+ c JR(R)+I c R. Therefore JR(R)+I=R. By Lemma 4.25, R=1. Thus
B is a set of generators of R. Hence x is a nongenerator of R.

Conversely, let x be a nongenerator of R. If xgJR(R), then there exists
a maximal normmal ideal I of R such that xgl. Thus I+(x), =R, hence IU{x} is
a system of generators (as normal ideal} of R. Since x is a nbngencrator, 1
generates R and hence I =R which contradicts the fact that I is a maximal

normal ideal of R. This shows that xeJR(R) and the proof is finished. #

A subset M of a skewring R is an m-system (generalized multiplication
system) if c,deM implies that there exists an x€R such that cxdeM. Then the
(Mc Coy) radical of normal ideal I of a skewring R is the set of all elements

reR such that every m-system which contains r contains an element of I, and
is denoted by M(l). The radlcal M(R) of a skewring R is the radical of the
zero normal ideal,

We recall that a prime normal ideal P in a skew ring R is said to be
a minimal prime normal ideal belonging to a normal ideal I of R if Ic P

and there does not exist a prime novmal ideal Q in R such that I cQ <P.

We now connect this concept with that of an m-system.
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Remark 4.27. Every ideal of a skewring R is an m-system.

Lemma 4.28. Let I be a normal ideal in a skewring R and M an m-system

which does not intersect I Then M is contained in an m-system M’ which is

maximal in the class of m-systems which do not intersect I

Proof. Let L= {S cR/S is an m-system such that McS and IS =@.}.
Since MeL, L is not empty. Let C be a nonempty chain in L. Clearly, \JC is
an m-system and hence UC is an upper bound of C in L. By Zom’s Lemma,

L has a maximal element, say M'. #

Lemma 4.29. Let M be an m-system in a skewring R and I a normal ideal of
R which does not intersect M. Then I is contained in a normal ideal P*
which is maximal in the class of normal ideals which do not intersect M. The

normal ideal P* is necessarily a prime normal ideal.

Proof. Let L= {S cR/S is an m-system such that IS and MnS =a.}.
Since IeL, L is not empty. Let C be a nonempty chain in L. Clearly, VC is
an upper bound of C in L. By Zom’s Lemma, L has a maximal element, say
P*.

Next, we shall show that P* is a prime normal ideal. Let A,B be
normal ideals in R such that AB < P* and suppose AgP* ,BgP*. Then the
maximal property of P* implies that P*+A contains an element m,eM and
P*+B contains an element m,eM such that for some a€A, beB, p;,p,eP*, m,
=p,+a and m, =p,+tb. Since M is an m-system, there exists an xeR such that
m,xm,eM. Moreover, m,xm,¢P*. Then (p+a)x(p;+b)= p,x(p,tb)+ax(p,+b) = p;x
(p,+b)+axp,+axbeP*. Since P* is a normal ideal, axbgP*. However, axbeAB

P* which is a contradiction. Hence P* is prime. #
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Lemma 4.30. The complement of a prime normal ideal P in a skewring R is

an m-system.

Proof. Let M be the complement of P. Let c,deM. Then c,deP.
Suppose that for every xeR, cxd¢M which implies that cxdeP. .......... *)
Let xe{c), , ye(d),. Then there exist m,neZ’, x,x;j€R, r,r;s,s'; ERUZ,

where i=1,...,m and j=1,...,n such that x=§ (x;trcs;x;) and y=
i=1

f: (x';+r'ds';-x'). By Remark 1.5 (2), xy=f: f: res; r'/ds’;. Since P is a normal
j= i=l j=t

~ideal and by (*), xyeP. Then (c),(d), = P. Since P is prime, (¢), =P or (d),c
P which contradicts c,de¢P. Then there exists an XxeR such that cxdeM. Hence

M is an m-system. #

Lemma 4.31. Let P be a subset of a skewring R. Then the complement of P
is @ maximal in the class of m-systems which do not intersect a normal ideal

I if and only if P is a minimal prime normal ideal belonging to 1.

Proof. Let P be a subset of R such that M =P° is a maximal m-system
which does not intersect 1. If P* is -the prime normal ideal whose existence is
shown in Lemma4.29, by Lemma 4.30, the complement of P* is an m-system
which contains M and which does not intersect I. The maximality of M
implies that the complement of P* is contained in M and so it is equal to M.
Then P=P*. Thus P is a prime normal ideal containing I. Clearly, there does
not exist a prime normal ideal Q such that Ic Q P since this would imply
that the complement of Q is an m-system which does not intersect I and
which properly contains M. Hence P is a minimal prime normal ideal
belonging to L

Conversely, if P is a minimal prime normal ideal belonging to I, by
Lemma 4.30, the complement M of R is an m-system which does not intersect

I, and Lemma 4.28 shows the existence of a maximal m-system M' which
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contains M and does not intersect 1. Let P’ be the complement of M'. From
above, P’ is 2 minimal prime normal ideal belonging to I. Since M c M, it
follows that P' < P and thus Ic P’ c P. By the minimality of P, P=P' and M
=M'. Thus the complement of P is a maximal m-system which does not

intersect I #

Theorem 4.32. The Mc Coy radical of a normal ideal I in a skewring R is the

intersection of all prime normal ideals belonging to I

Proof. Claim that M(I) is contained in the same prime normal ideals as
I. Let P be the prime normal ideal in R such that [cP. Let re M(I). Suppose
that reP. Then reP® which is an m-system and it does not intersect [, By
definition of M(I), there exists xel such that xeP® which is a contradiction.
Thus we have the claim. :

Then M(I) is contained in the intersection of all the minimal prime
normal ideals belonging to I. Now let acR\M(I). There exists an m-system M
whick contains a but does not intersect I. By Lemma 4.28, M is contained in
amaﬁmal m-system M’ which does not intersect I. By Lemma 4.31, the
complement of M’ is a minimal prime nommal ideal belonging to I and clearly
the complement of M’ does not contain a. Hence a cannot be in the
intersection of all the minimal prime normal ideal belonging to I and the

theorem 1is proved.#

Corollary 4.33, The Mc Coy radical of a skewring R is the intersection of all

minimal prime normal ideals of R.

Theorem 4.34. If M is the Mc Coy radical of a skewring R, then %{ has

zero Mc Coy radical.

Proof. Let ¢t =a+M be an element of the radical of %{ By Corollary
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4.33, o is contained in all prime normal ideals of %{ If a0, agM and
hence a is not contained in some prime normal ideal P belonging to M. By
Theorem 4.32, M P and clearly, %d is prime. Furthermore, %d does not
contain o since a is not in P. This contradiction shows that we must have o =

0. Hence % has zero Mc Coy radical. #

Theorem 4.35. If I is a normal ideal of a skewring R, then the Mc Coy
radical of the skewring I is INM(R). '

Proof. Let M(I) be the radical of a skewring I. Clearly, M(I) c I. Let
reM(l) =M({0}) and M be an m-system in R such that reM. Then rel~M
which is an m-system in 1. Since reM({0})=M(I), GeInM which implies that
reM(R). Therefore M(I) c I"M(R). On the other hand, if beI~M(R), then
every m-systems in R containing b contains 0. In particular, every m-systems
in I containing b which is an m-system in R contains 0. Thus beM(I) and I~
M(R) s M(D). #

Definition 4.36. A skewring R is a p-skewring if and only if {0} is a prime

normal ideal in R.

Theorem 4.37. Let R be a skewring. Then P is a prime normal ideal of R if

and only if % is a p-skewring.

Proof. Clearly, if P is a prime normal ideal then % is a p-skewring.
Conversely, suppose that % is a p-skewring. Let A,B be normal ideals in R
such that AB c P, Then (%)(%)= AB/P =@ which is prime in % Then

%'—"0 or %=0, thatis ACP or B P, Hence P is prime. #
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Theorem 4.38. A skewring R is isomorphic to the subdirect sum of p-skewrings
if M(R) = (0).

Proof. Suppose that M(R) = {0}. Let {P,/acA} be a family of prime
normal ideals of R, By Corollary 4.33, (\P,= {0}. By Corollary 3.37, R is a

GEA

subdirect sum of {% /aeA} which is a set of p-skewrings. #
a
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