CHAPTER III
SUM AND PRODUCTS

In this chapter, we shall give some definitions and .theorems of sums
and products of skewrings. For example, direct sum, subdirct sum, semi-direct
sum, subdirect product, subdirectly irreducible and subdirectly reducible.
Moreover, we shall generalize the Krull-Schmidt Theorem of group theory to

skewrings.

Definition 31, Let R be a skewring and {Rn/a€l} be a family of normal
ideals of R. Then R is called a direct sum of {Ra/aeI} which is denoted by
R= @ R, if and only if

ael

(1) for every xeR, there exisis x, € R, Where i=1,..,n such that x =

Xg totxg, and

(2) for all afel, if a=p implies Ran( T Rg) = {0}.
A#*a

Remark 3.2. Let a skewring R be a direct sum of Ry,...Rp which are normal
ideals of R. Then for all x,yeR,

(1) x+y = x;+y;+.. Axptyy and

(2) xy =xpyit... vxpyn.

where x =xj+...+xp and y =y;+..+yp. for some xiyj€R; such that ie{l,...n}.

Proof. It is well-known that (1) is true. We will prove (2) by math
induction on n.

Let n=2. Let R=R®R,. Let x,yeR. Then there exist x,,y,€R, and
X,,¥,€R, such that x =x,+x, and y =y,+y,. Thus Xy = (X, +x)(y, ty)) =
X,¥HX,Y,H X Yy tXoy,. Since R,R, are normal ideals, x,y+x,y,€RNR; = {0}

which implies that xy =Xy, +X,¥,.
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Let k>2. Assume that if R=R,®...®R,, then (2) is true. Suppose that
R=R®...8RSR,... Let x,yeR. Then there exist x,y;€R; where ie{l,... k+1}
such that x =x+...+X,,, and y =y +...+y,,. Then
Xy = (Xpte. (Ve i)

= (& X X HO - YY)
= (Xt XYY YK Yis » DY basic step
= (X, Yy e FXY ) Xnr Ve » By induction hypothesis.

By math induction we have (2). #

Remark 3.3. Let R be a skewring which is a direct sum of normal ideals
R;,..Ryp. Then j"or all ijefl,..,n} such that i #j, if a€R; beR; implies at+b =

b+a. .

Definition 3.4. A skewring R is said to be decomposable if and only if R =
H@K where HK are nontrivial normal ideals of R.

A skewring R = {0} is said to be Indecomposable if and only if R =
H@K where HK are normal ideals of R implies H=R or K=R.

Remark 3.5, Let HK be normal ideals of a skewring R such that R = HEK. If

N is a normal ideal of H, then N is a normal ideal of R.

Proof. Suppose N is a normal ideal of H. It is well-known that N is a
normal subgroup of (R,+). Let xeN, reR. Then there exist heH, keK such
that r=h+k. Then mx = (h+k)x = hx+kx. Since HK are normal ideals of R,
r-hx = kxe HAK. Since R=H®K, HNK = {0} and rx=hx. Since N is a
normal ideal of H, hxeN and so rxeN. Similarly, xreN. Hence N is a normal

ideal of R. #
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Definition 3.6. Let R be a skewring.

A decreasing sequence of Ieﬁ[.right. two-sided] normal ideals of R, R =
Ro2R;2... is called a descending chain of lefi[right, two-sidednormal ideal in
R |

R satisfies the descending chain condition (DCC) for lefi[righ,
two-sided] normal ideals if and only if for any decreasing chain of leftright,
two-sided] normal ideals of R, R =Rp2R;2..., there exists a positive integer N
such that Ry =Ry+;= ...

An increasing sequence of lefifright, two-sided] normal ideals of R,
RpsR;S... is called an ascending chaln of lefifright, two-sided] normal ideal
in R

R satisfies the ascending chain condition (ACC) for lefi[right,
two-sided] normal ideals if and only if for any an ascending chain of left
[right, two-sided] normal ideal in R, Ry<R;<... there exists a positive integer

N such that Ry = Ry+1 = ...

Remark 3.7. Every finite skewring satisfies the DCC for lefifright, two-sided]

normal ideals.

Proposition 3.8. Let R be a skewring. Then R satisfies the ACC for lefifright,
two-sided] normal ideals if and only if every nonempty family of left{righ,

two-sided] normal ideals has a maximal element.

Propositin 3.9. Let R be a skewring. Then R satisfies the ACC for lefifright,
two-sided] normal ideals if and only if every left[right, two-sided] normal

ideals is finitely generated.

Remark 3.10. Let H K be normal ideals of a skewring R such that R = HOK.
If R satisfies the ACC[DCC] for normal ideals, then so do H and K.
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Proof. We shall show that if R satisfies the ACC for normal ideals,
then so do H and K. Suppose R satisfies the ACC on normal ideals. Let Hyc
H,c... be an increasing sequence of subskewrings of H such that for each i,
H, is a normal ideal in H. By Remark 3.5, H, is a normal ideal in R for
every i. Then this sequence is an ascending chain in R. Since R satisfies the
ACC for normal ideals, there exists neZ® such that H,=H,,,=.... Hence H is
satisfies the ACC for nomnal ideal. For K is similarly.

If R satisfies the DCC for normal ideals, we can prove similarly.#

Lemma 3.11. For any skewring R ={0} that satisfies the DCC for normal

ideals has an indecomposable nonzero subskewring and R = P&K for some

indecomposable normal ideal P of R and normal ideal K of R.

Proof. If R is indecomposable, then we are done. Otherwise, there exist
R,R’, which are nontrivial normal ideals of R such that R=R,®R’,.

If R, is indecomposable, then we are done. Otherwise, there exist Ry,R,
‘which are nontrivial normal ideals of R, such that R;=R,;®R',. By Remark 3.5,
R,,R’, are normal ideals of R. Then R=R,@R"®R’, and R2R2R,. By
Corollary 2.9 (4), R,®R’, is a normal ideal of R. Continue in this way. Then
we have that R>R,>R,>... such that for each i, R; is a normal ideal in R and
R~=.. @R &R ®.. @R, Since R satisfies the DCC for normal ideals, there
exists meZ* such that R_=R_,,=.... Then R=R, @R/ SR’ ®... BR’, such
that R, is indecomposable. By Remark 3.5, R,,R’; are normal ideals of R for
every ie({l,...,m}. By Corollary 2.9 (4), R',®R’./®...8R’, is a normal ideal of
R. Hence the proof is finished. #

Theorem 3.12, Any nontrivial skewring R that satisfies the DCC for normal
ideals can be expressed as a direct sum of a finite number of indecomposable

normal ideals of R.
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Proof. If R is indecomposable, then we are done. Otherwise, by Lemma
3.11, there exist an indecomposable nonzero normal ideal R, of R and a
proper normal ideal R’ of R such that R=R,®R’;.

If R, is indecomposable, then we are done. Otherwise, by Lemma 3.11,
there exist an indecomposable nonzero normal ideal R, of R'; and proper
normal ideal R’, of R, such that R’, = R;@&R',. By Remark 3.5, R, and R, are
normal ideals in R and we have R =R®R,®R’, such that ROR'DOR’,.
Continue in this way.

If there exists neZ"\{l1} such that R, is indecomposable in R',,, then
R=R®...OR ®R/, such that R,R’, arc normal ideals in R, R, is
indecomposable in R'; for every i€{l,...,n-1}. By Remark 3.5, R,R’; are
indecomposable in R. Otherwise, we have ROR',DR’;o... which is a

contradiction since R satisfies the DCC for normal ideals. #

Definition 3.13. Let R be a skewring and let f be an endomorphism on R.
Then f is a normal ideal endomorphism if and only if for all xye€R, Six+y-x)
=x+f(y)-x, 2f0) =fo) and fy)x =fy%)-

Example 3.14. The zero fuction and the identity function on a skewring R are

normal ideal endomorphisms.

Lemma 3.15. Let f and g be normal ideal endomorphisms of a skewring R.

Then fog is a normal ideal endomorphism.

Lemma 3.16. Let a skewring R = R;® ...®R,, where R; is a normal ideal of R
for every iefl,...n}. For each iefl,..,n}, let mi:R—R, be a projection map and

define @i:R—>R by @i(x) = ni(x) for every xeR. Then the sum @, +..+@, of

any distinct @;,,...,@; where ifserik €1, un}, is a normal ideal

endomorphism on R.
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Proof. First, we shall show that ¢, is a normal ideal endomorphism of
R for every ie{l,...,n}. It is well-known that @, is a normal endomorphism in
(R,+) and clearly, ¢; is an endomorphism on R. Let x,yeR. Then there exist
X,¥;€R where ie{1,...,n} be such thatx =x+..+x, and y =y +...+Y, Let i€
(1,....,n}. Then xQy) = (x,*... tx)n(y) = X, F.. A )0+, A0y 0+, M) = Xy =
n(xy) = @(xy). Similarly, (¢,(x))y = @{(xy). Hence o, is a normal ideal
- endomorphism in R.

Next, we shall show that the sum @+t o of any distinct Q00 Py,
where ij,....ix € {1,...,n}, is a normal ideal endomorphism on R. It is well-
known that @ ety is a normal endomorphism in (R,+). Consider,
O)xy)= @, (xXy) +-.+ 0, (xy) = @, ()@, (N +..+¢; ()9, ()=
Xi Yy, et Yy =00 ot xp) (3 H et Yi)
= (1, () + oo+ 1, (%) )y, (D) + 415, (V)
= (9, () +..+ ¢, )@, N+t 0, (V)) = (@, -+ @, YN+ + 9, )Y)
and X(@; +--+ ¢, )¥) =x(¢, (¥) +--+¢, (¥)) = x@, (¥) +..+x9, (¥) =
9, (XY) +..+ @, (X) = (@, +ot 0, Joy). Simmilarly, (9, + -+, YN =

© (@, o+ 0, Nxy). Hence @ +.. 4@ is a normal ideal endomorphism. #

Lemma 3.17. Let R be a skewring that satisfies the ACC{DCC] for normal
ideals and f is an [nofmal ideal] endomorphism of R. Then f is an

automorphism if and only if f is an epimorphism{monomorphism].

Proof. Stepl. Assume that R satisfies the ACC for normal ideals and f
is an endomorphism. We shall show that f is an automorphism if and only if
f is an epimorphism.

Suppose f is an epimorphism. It is well-known that that for every ne
Z', Ker(f)cKer(f™') where f"=fofc ...of (n terms). By Remark 1.34, {0}<

Ker(N<Ker(f)<... is an ascending chain in R. By assumption, there exists neZ"
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such that Ker(f") =Ker(f*'). Since f is an epimorphism, f* is an epimorphism.
To show that f is a monomorphism. Let xeKer(f). Since f* is an

epimorphism, there exists yeR such that fi(y) =x, that is 0= f{x) =f'(y). Thus

yeKer(f*") = Ker(f®) which implies that x =fi(y) = 0. Thus Ker(f) = {0}. By

Remark 1.33 (1), f is a monomorphism and hence f is an automorphism.

Step2. Assume that R satisfies the DCC for normal ideals and f is a normal
ideal endomorphism. We shall show that f is an automorpism if and only if f
is an monomorphism.

Suppose that f is a monomorphism. Let neZ’. By Lemma 315, fis a
normal ideal endomorphism of R. By definition of normal ideal endomorphism,'
Im(f") is a normal ideal of R. Thus we have R2Im(f)zIm(f)2... is a
descending chain in R. By assumption, there exists ne Z* such that Im(f") =
Im(f*Y) = ....

To show that f is an epimorphism. Let xeR. Then f(x)eIm(f*) = Im(f""")
and there exists yeR such that £'(y) = fi(x). Since f is 2 monomorphism, so
is £ and £'(x) = "'(y) = f(f(y)) implies x = f{y). Therefore f is an epimorphism

and hence f is an automorphism. #
The following Lemma is generalized from Fitting’s Lemma.

Lemma 3.18. Jf R is a skewring that satisfies both the ACC and DCC for
normal ideals and f is ‘a normal ideal endomorphism, then there exists an ne

Z" such that R = Ker(f")@Im({ ™).

Proof. By the proof in Lemma 3.17, we have R2Im(f2Im(f)2... and
{0}<Ker(f)sKer(f)<...are descending and ascending chains respectively. By
assumption, there exists neZ* such that Im(f) = Im(f") and Ker(f) = Ker(f") for
every k=n.

Let acKer(f)NIm(f"). Then there exists beR such that f'(b) =a and
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£2(b) = £(f(b)) = fi(a) = 0. Consequently, beKer(f") =Ker(f’), so that a=f(b) =
0. Hence Ker(f)Im(f") = {0}.

Let ceR. Then f(c)eIm(f’) =Im(f*"). There exists a deR such that
£°(d) = £'(c). Therefore f'(c+f'(-d)) = £(c)+*(-d) = £}(c)-f'(c) =0 and hence
c+f(-d)eKer(f"). Since c = (c+f(-d)}+f*(d), we conclude that R =Ker(f)+Im(f") .
Hence R = Ker(FY®Im(f). # |

Definition 3.19. An endomorphism f of a skewring R is said to be nilpotent if

there exists a positive integer n such that f(x) =0 for every xeR.

Lemma 3,20. If R #{0} is an indecomposable skewring that satisfies both the
ACC and DCC for normal ideals and f is a normal ideal endomorphism of R,

then either f is a nilpotent endomorphism or f is an automorphism.

Proof. By Lemma 3.18, there exists neZ® such that R = Ker(f)®Im(f").
Since R is indecomposable, Ker(f*)= {0} or Im(f") = {0}. If Im(f") = {0}, then
f(x) =0 for every xeR, so that f is nilpotent. If Ker(f") = {0}, then f is a

monomorphism, since Ker(ficKer(f"). By Lemma 3.17, f is an automorphism. #

Lemma 3.21. Let f and g be normal ideal endomorphisms of a skewring R. If

frg is an endomorphism, then it is a normal ideal endomorphism.

Proof. Suppose that f+g is an endomorphism. It is well-known that f+g
is a normal endomorphism of (R,+). Let x,yeR. Then x(f+g)(y) = x(f(y)+8(y)) =
xf{y)+xg(y) = f(xy)+g(xy) = (Frg)(xy). Similarly, ((f+g)(x))(y) = (f+g)(xy). Hence

f+g is a normal ideal endomorphism. #

Lemma 3.22. Let R # {0} be an indecomposable skewring that satisfies both the
ACC and the DCC for normal ideals.
If f1.f2 are nilpotent normal ideal endomorphisms of R such that fi+f;
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_is an edomorphism, then fi+f; is nilpotent.

‘Proof. Let f,,f, be nilpotent normal ideal endomorphisms of R such that
f+f, is an endomorphism. By Lemma 3.21, fi+f;, is a normal ideal
endomorphism. Suppose f;+f, is not nilpotent. By Lemma 3.20, fi+f;is an
automorphism. Then (f+f,)" is an automorphism. We shail show that )"
is a normal ideal automorphism. By group theory, (fi+f,)" is a normal
automorphism of (R,+). Let x,yeR. Then
EHREAY'Y) = LEEHE) OHHEL) )

7 Xf:(fl"'fz)-l(Y)""‘fz(fi+fz)'l(Y)

= x(EHE)(EH) () = xy.
Then (f,+f,)“(xy)=x(f,+f,)“(y). Similarly, (f,+£)"'(vx) = y(f+£)"'(x). Therefore
(f+£,)" is a normal ideal automorphism,

~ Let g=(fi+f)" and define g, =f,°g, 8 =f,°8 Then g+g, = flog+ feg=

(f+f)og = Idy and for every xeR, -x =Idy(-x) = (8,+82)(-X) = 81(-X) +8x(-X)-
Hence x = -(g,(-x) +8:(-X)) = -Bo(-x)-8,(-%) = £,(x) +&:(x) = (g;+8,)(x) which implies
that g,+g, =Ids. Therefore g,+g, = g,;+g, and g,0(g*8,) = §,°ldg =Idzog, =
(g1+8,)°og, which imply that g og, =g,og,. Thus for each m21, (g+g)" = g™

[;n] g{“"og,+...+[$_l)g,o g,™'+g,". Since f, is a nilpotent normal ideal
endomorphism, by Lemma 3.20, f, is not an automorphism. By Lemma 3.17, f,
is not an epimorphism and not a monomorphism.

Then g, =fog is not an automorphism.  .......... 1))

Since f, and g are normal ideal endomorphisms, by Lemma3.15, g =fog is a
normal ideal endomorphism. ... (ii)

By (),(il) and Lemma 3.20, g, is nilpotent. Similarly, g, is nilpotent. Then

there exist myneZ* such that g™ =0 and g,"=0. Then (g,+g,)™"=g," "+

m+n +
g™ ogit 4 |gog™™+g™"=0. Thus for every xeR,
1 m+n-1

(g,+8,)™"(x) =0 which contradicts g,+g, =Id; and R#{0}. Hence f+f, is
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nilpotent.#
The following theorem is generalized from Krull-Schmidt Theorem.

Theorem 3.23. Let R be a skewring that satisfies both the ACC and DCC for
normal ideals.

If R=R;®...0Rs and R =H;&..GH; for some s,teZ" and R;Hj are
indecomposable normal ideals in R for all ie(l,....s)je(l,...1}. Then after

reindexing R; =H; for everyie(l,...r}and R =R;®...@Ry&Hy+;D... OH,.

Proof. For cach l<r<min{s,t}, let P(r) be the statement: there is a
reindexing of H,,....H, such that R;=H, for every ie{l,...,r} and R=R,®...®
R®H,®...8H, and (or R=R®...@R, if r=t)

We will prove this by induction on r where Osr<min{st).

If r=0, then P(0) is the statement : R =H,®...@H, which is clear.

Let r>0. Assume that P(r-1) is true. Thus after reindexing Rz H; for
every ie{l,...,r-1} and R=R,®...®R, @HS...8H, We shall show that R(r) is
true.

Let m,,...,x[resp. 7'y,...,w'] be the projection determined by R =R,®...@
R, [resp. R=R,®...8R,OH®...OH]. For each ie{l,...;s}, let ¢;R—R be
defined by @(x)=m(x) for every xeR and for each je {1,...,t}, let y;R—R be
defined by w;(x) =n/(x) for every xeR. Then we have @| R, IR @i0®i= @
@0 @;= 0(where ixj), yit...ty;=1dg, Yoy =W, Yoy = 0 (where i=}), Im(p;) =
R, Im(y,) =R, (where i<r) and Im(y;) =H; (where ir)

It follows that @,oy; =0 for every i< (Since for every x€R, y(x)€R;,
@0 W{(X) = @, Idg, o Wi(X) = P2 ;o yi(X) = 0.) The preceding identities show that
P, = @,0Idg = @0 (y,+...4Y¥) = @0y +.. .+, 0y, By Lemma 3.16, o, is a normal
ideal endomorphism of R. By Lemma 3.15 and Lemma 3.16, every sum of

distinct (@,o;)| ., is a normal ideal endomorphism of R.  .......... (i)
VR,
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By Remark 3.10, R, satisfies both the ascending and descending chain

conditions for normal ideals.
Claiml. There exists an j such that r<j<t and (@,oy)| R, is an automorphism
of R,# {0}. Suppose not.
Then for every iefr,....t}, (L RTTA A/ is not an automorphism. .......... (ii)
By (1), for every iefr,....t}, (p.ow)| I/ is 2 normal ideal endomorphism of R..
By (li) and Lemma 3.20, for every i€ {r,...,t}, (@2 W) R, is nilpotent in R..
Since @, = @0+ ...+ 0, by (i) and Lemma 3.22, ¢ R, is nilpotent in R.
Thus ¢/ R, is an automorphism and nilpotent on R, which contradicts Lemma
3.20. Hence we have Claiml.

Therefore there exists jeZ’ such that r<jst and ((p,owj)lRr is an
automorphism.  .......... (lif)
So that, for each neZ’, (@,oy,)"" is also an automorphism of R. .......... (iv)

By assumption and Remark 3.10, H, satisfies the ACC and DCC for normal
ideals for every je{l,...,t}. By Lemma3.15 and Lemma 3.16,

(y;° )l H; :H—H; is a normal ideal endomorphism of H.
Claim2. (y;°9) Hjis an automorphism of H;, .........(¥)

Suppose not. By Lemma 3.20, (wjo(p,)lﬁ‘ is nilpotent in H;. Then there
J

exists meZ such that ((y;°@n)| ; )" = Oy;. Then Qo)™ = 0o (Wi )" o W; =

9.0 Oy oy, =0y, 50 that (¢,oy)™" is a nilpotent automorphism of R, (by (iv))
which contradicts Lemma 3.20. Hence we have Claim2.

By (iii) and (v), WR, :R,—H; is an isomorphism and so is
.<p,|Hj:HJ-—>R,. Reindexing the H,, so that we may assume j=r and R = H, We
have proved the first half of statement P(r).

Since R=R,®...®R,®H®...®H, by the induction hypothesis, the

subskewring R,+...+R, +H_ +...+H, is the direct sum of R®...®R, ®H,, ®...®
H, Observe that for every i<r, y,[R]=wy.ocy{R]= {0} and for every i>r,
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WIH] = oW {R] = {0} S0 w[R;+.. 4R, HH .. +H] = {0}. Let xeRN

R+.. AR HH, +. AHY. Since yIR+.. AR HH . AH] = {0}, wd(x) = {0}.
Since vy R, is an isomorphism, x =0. Therefore RN(R,+...+R ,+H +...+H) =
{0}. It follows that the skewring R* =R,+...+R+H+...+H, is the direct sum.
Hence R* =R,®... R ®H,,,®...PH,.

Define O:R-R es follows :

By the induction hypothesis, we have that R =R;®...®R,,©H®...®H.
Then every element xeR may be written in the form x =x,+...+Xx,,h+...+h,
with x,eR; and heH;. Let 8(x) = x+...4+x,+¢,(h)th.,+...+h,. Since ¢/ " :H R,
is an isomorphism, Im(0)=R* and 0 is a monomorphism.

Claim3. 0 is a normal ideal endomorphism., _

It is weil-known that 8 is a normal endomorphism of (R,+). Let x,yeR.
Then there exist x,y€R;, hk,eH; where ie{l,...,r-1} and je{r,....t} such that
X =x;+...tx th+...+h, and y =y +...+y, tkt+...+k. Then
x0(y) = (vt X thet ARt YRR k)

= XYt o Y e et thik

= XYt XYt bk hy K+ Hhik = B(xy).
Similarly, 0(x)y =0(xy). Hence O is a normal ideal endomorphism. So we have
Claim3,

Since 0 is a monomorphism, by Lemma3.17, 0 is an automorphism. So
that R=Im(@)=R*=R,®...8RSH,, ®...®H, This proves the second part of
P(r) and complete the induction argument. Therefore, after reindexing we have
that R, = H;, for every 1<i<min{s,t}. If min{s,t} =s, then R/®...8R,=R =
R ®...8R®H,, ®...DH, and if min{s,t} =t, then R,®...®R, =R =R D.. &R,

Since R;# {0} and H;# {0} for all ij, we must have s=t in either case. #

Definition 3.24. Let R be a skewring, S be a subskewring of R and I be a
normal ideal of R. Then R is called a semi-direct sum of S and I if and only

if R =S8+ and SNI = {0}. We denote this by R = S&I.
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Definition 3.25. Let R be a skewring. For any additive endomorphism f of R

is called left[right] translation if and only if fixy) = fx)y{fixy) = xf(y)] for all
x,yeR and we denote the set of all leftfright] translations by LT(R)[RT(R}].

Definition 3.26. Let R,S be skewrings, f:R—>S. Then f is called an additive
antl-homomorphism if and only if fix+y) =f(y)+(x) for all xyeR and f is
called a multiplicative anti-homomorphism if and only if fixy) = f(y)f(x) for all
x.y €R.

Theorem 3.27. Let 0—> R——+S—E 3> T— 0 be an exact sequence of

skewrings. If there exists a homomorphism h:T—S such that goh = IdT, then §
=f[R] & h{T]. '

Proof. By definition of exact sequcnce, f[R]=Im(f)=Ker(g) which is a
normmal ideal in S. Suppose that there exists a homomorphism h:T—S such that
geh= Id;. Then h is injective. Moreover, T =h[T] which is a subskewring of
S, by Proposition 1.36 (1). We shall show that S = f[R)® h[T).

Claiml. f[R}nh[T]= {0}.

Let xef[R]~h{T]. Since xef[R])=Ker(g), g(x) =0. Since xeh[T], there
exists yeT such that h(y) =x. Therefore 0= g(x)}=g(h(y)) =Id(y)=y. Since h
is a homomorphism, 0= h(y) =x. Hence f[R]~h{T]= {0} and we have Claiml.
Claim2. S = f[R]+h{T).

Clearly, fJR]+h[T] is contained in S. Conversely, iet xeS. Then g(x)eT,
so that h(g(x))eh{T]. We have that x = x-h(g(x))+h(g(x)). We shall show that
x-h(g(x))e f[R] (= Ker(g)), consider g(x-h(g(x))) = g(x)-g(h(g(x))) = g(x)-Id:(g(x)) =
g(x)-g(x) =0. Thus x-h(g(x))eKer(g) = f[R] which implies that x = x-h(g(x))+
h(g(x))ef[R]+h[T]. So S < fIR}+h[T]. Hence S =f[R]+h[T] and we have
Claim2. By Claiml and Claim2, .S = f[R]® h[T]. #
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Theorem 3.28. Let S and I be skewrings. Then there exist a:S—>GAut(l}
(= {f:I-I/f is an additive automorphism.}) which is an additive
anti-homomorphism, I:S—»LT(I)' which is a homomorphism, and r:S—RT(I)
which is a multiplicative anti-homomorphism and additive homomorphism which |
have the following proper;ies for all 53,532,538, ipizizel,
(1) r(s;)olsz) = l(s2)or(sy) and [r(s)](i))*[U(s2)](i2) = [I(s2](i2)*[r(s1)] (1),
(2) [r(s )]G+ iaig = izis+[r(s)](i}) and [Is)](i))+ izis = izizg+[l(s1)](i1),
(3) [afs1s2)]igiz =ipiz, [(sis2)]° [I52)] () = [(63)](y) and
[afs 2] o [r(s3)] (1) = [r(s3)] (1),
(4) iifafs))](id) =ijiz and [afs)](ip)iz = i2[e(s)](i)) = iz,
(5) [i(s1)] e [afs2)](i1) = [i(s )]G} and [r(s)]e[a(sD)](is) = [r(s))](i)) and
(6) irlls)](i) = [r(s )] (31)iz |
if and only if there exists a skewring R such that § is isomorphic to some
subskewring S’ of R, I is isomorphic to some normal ideal I’ of R and R =
S‘®I' (ie. R is a semi-direct sum of §" and I')

Proof. Let R =S8xI and define the binary operations +,- on R as follows
: For all (5,,1)),(s5i)€R, (s,,1)H(85,0;) = (8,5, [e(s;)](1,)+1;) and
(511 )(52512) = (5152, [r(82)11)+[I(s )] () i),
Stepl. We shall show that R is a skewring.
Ciearly, (R,#) and (R, are closed. Let (s;,i;),(5212):(s;,1;)€R. Then
(sui)H (Sl Hnin)] = (s1i)+(s,78, [0(5:)](1) 1)
= (s;+(s;+s5) , [als; +5)] (1) [a(sy)] (D))
= ((s,+sss , [afs;)] o [alsy)) i)+ [o(s:) (i) +iy)
= ((sy+s)+sy , [a(s,)}([(5,)] ) +iy)Hy)
= (815, 5 [0(s))(1,)+H,)H(s3005)
= [(51)H(52,i)]H(S3,13)
Therefore the associative law is true for (R,+). Since (s,,i,)+(0,0) =

(5,40 , [a(0)](i)+0) = (s, , Id|(1,)) = (ssi,). Therefore (0,0) is a right identity of
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(R,+). Since (8,i) (s, -[a(-s)]({))} = (5,-8,, [o(-8)](k)H(-[oe(-8,}1(i1))} = (0,0),

(-8, , -[a(-8))](i,)) is a right inverse of (s,,i;). Hence (R,+) is a group. Consider

(S1)[(821)(85:15)] = (81,1;)(58s,, [1(:)](1i) + [s2)1(hs) + Lsdy)

= (51(8,5y) » [1(8;89)1(1p) * [H(s))([x(8:)] (1) +{I(s) () Hiahs) +
1({r(s,)] () H{1(s2)](0s) + 13iy))

= (8,823, [1(55)] o [r(s)] () + [1sy)] @ [1(8,)) (i) + [1(s)] @ [(s2)1(is) + [1(s,)1Cias) +
i) [r(s9))(1) + 1;[1(8,)) (1) + 1, (113)) .

= (81583 [1(s3)] ° [x(s](iy) + [r(s5)] o [U(s:1)](Gz) + [1(5:8)1(s) + [1(8))(0)i; +
[x(s3)](ia) + [r(s))(E)is+ (igiy)is)

= ((8:52)8s» [r(85)] @ [x(s) )L + [r(s9)] @ [Hs)1(x) + [r(82)I(Hi) + [1(s:8,))(0y) +
[r(s))(1)is+ [1(s)]()is + (iia)is) |

= ((5:5,)83 » [0(s)([r(s )]s )N (i)Hiia)) + [1s:5))(Hs) + [r(s;)) )i+ [1(:)1(ix s
+ (i,i))i,)

= (8,8, [H(8)J()H1I() ()t i) (5hs).

Therefore (R,") is a semigroup.

(511828 H(53515)] = (51,11 (8,785, [01(5,)] (1) His)

= (8,(8;+53) , [1(8,+8,))(1)) + [Is)J([(8)]i)His) + iy ([x(s)] (i) Hy))

= (3,8,+5,8, , [1(8,)+0(8)]i;) + [Us;)] @ fels5)) (i) + [s)](hs) + 1,[@x(8,)](B) +1ihs)

= (8,8,%5,8y , [1(8)]() + [r(,)]G0y) + [1(s)](0) + [1(s)](is) + 14k + i)

= (5,5,%8,8; , [1(8)](01) + [Ws)I(ip) + iy + [1(s5)) ) + [1(,))(0y) + i)

= (8,5,+8,5; , [0(8,8:)] @ [1(s,)](1,) + [(5,8,)] o [1(s)](in) + [ee(s,8)](1ri) + [x(s;)](hy) +
[1(s1)] (i) +ids)

= (8,8,15,8; 5 [01(8,8)]([r(s:)] (i) HI(s)1 () +idp) + [r(8)) () + [1(8:)](Es) + dis)

= (8,8;, [(8)] () FII(s 1) 1ip) + (8485, [1(s:)] (1) {15 )] (i) 1)

= (8,,1,)(8,,1;) + (8),1,)(55,i;) and

[(5151:)+(52i))(5551) = (51753, [@(52)] (1) Hi)(830i5)

= ((s,+s2)s,, [1(59)1([0x(s2)](11)+1;) + [1s,+8)](a) + ([eu(8)](1)Hi)is)

= (8,8:+8,8; , [1(5;)] © [a(s)]Gy) + [r(s)](0r) + [Us)H(S,)IGs) + [o(s)IEis + i)

= (8,8y+5,5,, [1(85)J(1,) + [1(s3)]G) + [1s)] (1) + [1(8,))(0y) + 1,8y + i)

= (8,85+5,5, [r(s)](1x) + [65))](is) + iy + [1(8:)]Gz) + [1(s2)](s) + Lads)
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= (8,85+883, [01(8;83)] © [1(8)](iy) + [(885)] © [1(51)](ha) + [0x(s,8,)) iy} + [1(s)](3z) +
[1(s,)1(3y) + i;1,)

= (818578835 [0(8:8,))([r{(8:)](iy) + [(s)1hy) + i) + [1(8)](iz) + [1(s;)) i) + 1as)

= (5,83, [1(s3)]AHIE)I(E)H 1y5) + (5585, [1(83)](0) + [1(5,)] (1) + o)

= (8,1, }(83y13) + (5351,)(83,1,)-

Therefore the distributive law is true for (R,+,) and hence R is a skewring.

Step2. We shall show that S isomorphic to some subskewring of R and I
isomorphic to some normal ideal of R.

Let 8" = {(s,0)/seS} and let (s,,0).(s;,0)eS". Then (s,,0)-(s,,0) =
(s,-8,, [0(-5,)1(0)-0) = (5,-5;, 0)€S’ and (5,,0)(s,,0) = (515, [r(s)](O)H{}(s))(0)+ 0) =
(s,5,,0)€8’. Therefore S' is a subskewring of R and hence S = Sx{0}.

Let I'= {(0,i) /ieI} and let (0,i,),(0,i,)el’, (s,i)eR. Then (0,i))-(0,i,) =
(0, [a(-0)1G,),) » (0:)(0,15) = (0, [r(O)]Gy) + [HOIG)* ipiy) » (5,i)O001) =
(0, [1(0)G) + ()G, )+ i), (O )s,) = (0, [r(s)]G)) + [1(0))(i)+ isi)el’ and
(8,0)H0,i,)-(s,1) = [(5,0)+(0,i)]-(s,1) = (s, [a(O)]()+1,)-(s,1) = (5, i+1,)-(s,)) =
(0, [ou(-s)](i+i,)-i)l'. Therefore I' is a normal ideal of R hence 1= {0}xI and
clearly, R=S'®I'. Hence we have the first statement,

Conversely, suppose there exists a skewring R such that S is isomorphic
to some subskewring S’ of R, and I is isomorphic to some normal ideal I' of
R and R=S8'QI'. Let ¢:S—8' and y:I>I' be such that ¢ and y are
isomorphisms. For any s'eS', define gg:I'2I' by g () =-s'+'+s', Iy: [T
by 14(')=s1" and rg I'oI by rg (i) =i's’ for every i'el'. Then we have
y'o gy oweGAUL(T), y'o g oyweLT(), y'o ry oweRT(I) for everys'eS'.
Define a:S—GAut(I) by a(s) =y o g © W, ESLT() by 1(s) =y o 1o oW
and r:S—RT() by r(s)=y'o ro(s) °V for every seS. Hence we have the

converse, #
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Corollary 3.29. Let S and I be rings. Suppose that there exist maps I:S—>LT{1)

which is a ring homomorphism and a multiplicative anti-homomorphism
r:S—RT(I) which is also an additive homomorphism which satisfy

(1) Hs)ol(sy) = s or(sy) and (2) isflfs)] (D = [r(s1)](i1)iz for all s;52€8,
isioel. Then there exists a ring R such that S is isomorphic to some subring
S’ of R, I is isomorphic t.o an ideal I’ of R and R is the semi-direct sum of

S’ and I’

Theorem 3.30. Let S and I be skewrings. Suppose that there. exist
o, a":S—>GAut(l) which are additive anti-homomorphisms, 1,1:S—LI(I) which are
homomorphisms, and r,r:S—RI(I) which are multiplicative anti-homomorphisms
and additive homomorphisms which satisfy the same properties as those in
Theorem 3.28. By Theoem 3.28, we get skewrings Rq ]y and Ry .. Let
@:S—S and y:I-I be isomorphisms. If the following conditions hold :
For every seS, () afs) = w~loalps))o v, '

@) =ylel(p(s)e y and

(B)r(s) =y-lor(ps)oy.

then @xW:Rq]pr—>Ro iy IS an isomorphism where @xyix,y) = (p(x), ¥(y)) for
all (xy)eRalr.

Proof. Assume the conditions. Let (s,,i,),(s:,1;)€R,,,. Then

PxY((s1,1)H(S212) = @xy((5)+8;, [a(s;))(,)H,)

= (p(s,+s) , W([os,))(i o))

= (@(s)+o(sy) , w(la(s)](in) + w(iy)

= (@(s:)+o(s2) , W((w™ e o'(9(s)) o W)(i) + w(iz)

= (p(s)+9(sy) » (' (9(57)) o W)(iy) + w(i))

=(0(s))+o(sy) , [0 (@(s))](w(i)) + wli)

= (p(s),w(i)) + (¢(s)w(ir))

= oxy((sp,ip) + Pxy((spiy)) and
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exy((s,i)(52,12)) = PxW((8,8,, [1(s)] (I8N iiy)
= (p(s,8,) , W([r(sp)1p 18 (M)+ sd))
= (9(s)(s) , we [r(s)](y) + weo [H(s)I()+ wiiin)
= (@(s.)0(s2) » W((W ' o (0(52)) ° W) + Wy o (@(s)) o Wi+ win)w(ia))
= (0(s)9(52) , (' (9(s2)) ° WHip) + (1'(@(s1)) o Wi+ wiIW(o))
= (@(s))9(sy) » [r' (@(s)(w(i)) + [V (@8I (i) W(i)W(i))
= (@(8:),w(i))(¢(s,),w(i2))
= xy((s,,1))xW((52:12))-
Therefore @xy is a homomorphism. Since ¢ and y are isomorphisms, @xy is

an isomorphism. #

Corollary 3.31. Let S and I be rings. Suppose that there exist 11°S—LT{(1)
which are homomorphisms, and r,r:S—RI(I) which are multiplicative
anti-homomorphisms and additive homomorphisms which satisfy the same

properties as those in Corollary 3.29. By Corollary 3.29, we get rings R|, and
Ry - Let @:SS and w.I—>I be isomorphisms. If the following conditions
hold : For every s€S, (1) I(s) = wiol{e(s))° w and (2) r(s) = w-lor{p(s))° v
Then @xy:R]r— Ry, is an isomorphism where pxyx.y) = (p(x), y(y)) for all

(xr}’)ERl,r.-

Definition 3.32. Let R be a skewring and {R./aeA} be a family of skewrings.
Then R is said to be a subdirect sum of {R,/acA} if and only if there

exists a monomorphism f:R— TIR, such that for each aecA, mzof:R—R4 is an
acd

epimorphism where n, is the projection map,

Definition 3.33. Let R be a subsMring of a direct product of family of
skewrings {Ro/ a€A}. R is said to be subdirect product of {R./ acAd} if and

only if for every acA, n{R) =R, where &, is the projection map.
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Definition 3.34. Let {R./ acA} be a family of skewrings, and R a skewring. A
representation of R as a subdirect product of {R./ a€A} is a homomorphism

g8:R—> TIR, such that for each a€A, naog:R—>R, is an epimorphism where 7,
aed

is a projection map. Then Im(g) is a subdirect product of {Ra/ acA}.

Definition 3.35. Let R be a skewring. Then R is said to be a subdirectly
irreducible if and only if for every family of skewrings {R./ acAd} and for

every monomorphism representation g:R—» [] Ry there exists ffeA such
aed

7g0o8:R—>Rp is an isomorphism where 7z is the projection map.
If R is not a subdirectly irreducible, we shall call R a subdirectly

reducible skewring.

Theorem 3.36. Let R be a skewring, {Ro/acA} be a family of skewrings.
Then R is a subdirect sum of {R./ aeA} if and only if for each BeA, there
exists an epimorphism gp:R—Rg such that (\Ker(g, ) = {0}.

aeAd

Proof. Suppose that R is a subdirect sum of {R,/oe€A}. Then there

exists a monomorphism f:R— [JRqsuch that for each PeA, nyo fLRR; 15 an
aeA

epimorphism. For each PeA, let g=mof. Let re [Ker(g ). Suppose r=0.

aeA

Then f{r) # 0 which implies that there exists o,€A such that 0= n, o f(r) =

B, (r). Therefore reKer( gao), so r¢ (1Ker(g,) which is a contradiction.

aeA

Hence (\Ker(g, ) = {0}.

aEA

Conversely, assume that for each e A, there exists an epimorphism

gs:R—R, such that NKer(g,) = {0}. We define fR—> [Roby flr) = {Ba(D)}aea

aEA xeA

for every reR. From the above, for each PeA, nyof=g, Since g is
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surjective, myof is surjective. Let r,seR. Then f{rs) = {g,(r5)}aes = {Ba(1)8a(8)} en

= {8o(D)} cen{8:(8)} gen = RO)(5) and similarly, fir+s) = f{r)+f(s). Therefore f is a
homomorphism. Let reKer(f). Then 0=f{r) = {g(r)}zea. Then g, (1) =0 for

every a€A. Therefore re Ker(g,) = {0}, so that Ker(f) = {0}. Therefore f is

aeA -

a monomorphism and hence R is a subdirect sum of {R,/aeA}. #

Corollary 3.37. Let R be a skewring and {I,/ a€Ad} be a family of normal
ideals of R. If (\In = {0}, then R is a subdirect sum of the family of skew

a€eAd

rings {% / aed)}.

Proof. For each aeA, let ﬂu:R—bI% be the canonical epimorphism.
a

Since for each PeA, n, is an epimorphism and Ker(zy)= MIg= {0}, by

LEA oeA

Theorem 3.36, R is a subdirect sum of {1% [ aeA}. #
a

Theorem 3.38. Ler R be a subskewring of the Cartesian product [[R, of

acA

skewrings. Then there exists a natural epimorphism 8 from R to a subdirect
product of the family of skewrings {R'a/aeA} where Rig= % RAj [Ra))

and for every a€A, jo:R—> [1R, which is defined by jo (r) = (rglpeq where

acA
0if f=a,
rg= in order that 8 be an isomorphism, it is necessary and
rif f=a
sufficient that ﬂngja[Ra]) = {0}.
ae

Proof. For every reR, we define 0(r) = (r,),.. Where r, =r+(Rj,[R,])
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is the coset of r in %R Ajg[RaD) for every aeA. Then 0 is a

homomorphism and O[R] is a subdirect product of {R’',/xeA}. The Ker(8)=
NRNj,[Re]). If 6 is an isomorphism, then N(R N j,[RoD= {0}. #
A

deEA QE

Theorem 3.39. Let R be a skewring and {R./ aeA} be a family of skewrings.

Let g:R—> TIR, be a representation of R as a subdirect product of
aed

~ R
{Ra/ a€Ad)}. Then Im(g) = (Ker(ry

aeA

og)

Proof. Define @:R—Im(g) by ¢(x)=g(x) for every xeR. Then ¢ is an
epimorphism. We shall show that Ker(g) = (Ker(n,og). Let xeKer(p). Then

oEA
(p(X) = (Oa)u.(m so g(x) r (Ou)alA' For eaCh GEAa Tyo g(X) = Ou.! thcn XEKef(ﬂuo g)
Hence xe NKer(rn,og). Thus Ker(p)c NKer(nyo8).

aeA aeA .

Next, let xe Ker(,°8). Then m,0.g(x)=0, for every aeA which

aeA

implies that g(x)=(0,),es Since @(x)= gx) = (0,)zer» X€Ker(¢p). Hence
NKer(n, o g) cKer(p) and Ker(p) = NKer(nyog). By the First Isomorphism

aeA aeA

Theorem, Im(g) = R NKerlny 68)" #

aeA

Corollary 3.40. Let R be a skewring and {R,/ a€d} be a family of skewrings.

Let g.R— TIR. be a monomorphic representation of R as a subdirect
a€ed

product of {R./ aeA). Then \Ker(z,og)={0}, hence Im(g) =R

aed

Proof. We shall show that Ker(nyog)= {0}, let xe NKer(ny°g).

GEA GeEA

Then m,cg(x) =0, for every aeA. This implies that g(x) =(0y),a. Since g is a
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monomorphism, x =0 and Ker(x,°g) = {0}. By Theorem 3.39, Im(g) =R. #

aeA

Proposition 3.41. Let R be a ;vkewring and L= {I,/ acA} be a family of

nonzero normal ideals of R. Define f:R— [] R T by fix) = (x+1g)aed for
a

aed

every xeR. Then f is a representation of R as a subdirect product of

{y / aeA}. Furthermore, if (I, = {0}, then f is a monomorphic
a

aeA

representation of R.

Proof. Clearly, f is a homomorphism of R. We shall show that Im(f) is

a subdirect product of {% / aeA}. It is clear that for every ae€A,
a

nu(Im(f))g;I'%a. Let aeA, xeR. Then x+Iue% , so f(x)e II

and x+I,
a aEA lo

= m,(fx))em(Im(f)). Hence % cn (Im(f). Therefore mof[R]=m,(Im(f))=

I‘% . Hence f is a representation of R as a subdirect product of { f /aeA}.
a o

Next, assume that ([, = {0}. We shall show that f is a monomorphism.
GEA

Let xeR be such that f{ix)=(I)scs- Then (X[ )uea = Loduers 50 X€l, for all

aeA. By assumption, x =0, Hence f is an injective and is a monomorphism.#

Proposition 3.42. Let R be a skewring and L the set of all normal ideals of R
except {0}). Then R is a subdirectly irreducible if and only if L has a

minimum element.

Proof. Assume that R is a subdirectly irreducible. Suppose L has no

minimum element. Then NL = {0}. By Proposition 3.41, we have that

fR>TIR

I defined by f(x) = (x+),. for every xeR which it is a
IeL
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monomorphic representation of R as a subdirect product of {% /e L}. By

assumption, there exists oL such that n; of is an isomorphism. We shall

show that L= {0}. Let xel,. Then x; ofx) = m; (X +1I)¢L)=x+1,. Since xel,

xeKer(m; of). Since g of is an isomorphism, x =0. So I,= {0} which is

contradiction since {0} = I;,eL. Therefore L. has a minimum element.
Conversely, assume that L has a minimum element say L, Let

{R/aeA} be a family of skewrings and ffR— J]R, a monomorphic

QEA

representation of R as a subdirect product of {R,/aeA}. By Corollary 3.40,
NKer(nyof) = {0}. Suppose that for every acA, Ker(n,of)# 0. Then

aeA

{ Ker(nyof)/ e A}c L. Therefore I g MNKer(ryof) = {0} which is a

aeA

contradiction. Therefore there exists a BeA such that Ker(n,of)=0, so npef

is an isomorphism. Hence R is a subdirectly irreducible. #

Next, we want to show that every skewring is a subdirect product of

subdirectly irreducible skewrings. First we need three Lemmas.

Lemma 3.43. Let R be a nontivial skewring and xeR\(0}. Then there exists a

maximal normal ideal M of R such that xeM.

Proof. Let L= {I/I is a normal ideal of R and xgI}. Since {O}eL, L
is not empty. Let C be 2 nonempty chain in L. Clearly, UC is a normal ideal
of R and wC is an upper bound of C. By Zom’s Lemma, L has a maximal

element. #

Lemma 3.44. Using the assumptions of Lemma 3.43, let 3= {I/I is a normal

ideal of R such that Mc1I}. Then J has a minimum element.
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Proof. Since Re3J, J is not empty. If there exists I3 and x¢l, then
this contradicts the maximality of M. Therefore for every Ie3, xel. Then we
have that N3 is a normal ideal of R which is the minimum element and

xenJ. Hence NI =M. #

Lemma 3.45. Using the assumptions of Lemma 3.43, %I is a subdirectly

irreducible skewring.

Proof. Let L be the set of normal ideals of % except {M}. By

Corollary 2.15, L is isomorphic to the set of normal ideals of R strictly .

containing M. By Lemma 3.44, L has a minimum element. By Proposition 3.42,

l % is a subdirectly irreducible skewring. #

Theorem 3.46. Let R be a skewring. Then R is a subdirect product of

subdirectly irreducible skewrings.

Proof. By Lemma 3.43, for all xeR\{0}, we have that I, is a maximal

normal ideal of R such that xgl,. By Lemma 3.45, % is subdirectly

X

irreducible. Let L = {I, /xeR\{0}}. Let xenL. Suppose that x # 0. Then xgl,

which is a contradiction since xenL. So NL = {0}. By Proposition 3.41, we

have that iR— [IR

fe

4 is a monomorphic representation of R as a subdirect

product of {% /le L}. Therefore f[R] is a subdirect product of

{% /e L}. Since R =f[R], R is a subdirect product of subdirectly

irreducible skewrings. #
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Definition 3.47. A skewring R is semisimple if and only if it is a direct sum

of simple normal ideals of R.

Remark 3.48. The Cartesian product of finite number of semisimple skewrings

is a semisimple skewring.

Definition 3.49. A normal ideal I of a skewring R is a direct summand of R
if and only if there exists a normal ideal J of R such that R = I&J.

Definition 3.50. A skewring R is completely reducible if and only if every

normal ideal of R is a direct summand of R.

Lemma 3.51. If U is a set of normal ideals of a skewring R and H is a

normal ideal in R, then there exists a subset V of U which is maximal with

respect to the existence of H(®B(K/KeV}).

Proof. Denote the direct sum in the theorem by X(V). Let L be the set
of subsets V of U for which X(V) exists. Since X(®)=H, @eL and L is not
empty. Partially order P by inclusion. Let C be a nonempty chain in L. let W
=C, Then W is a subset of U and is an upper bound of C. We shall show
that WeL, that is we shall show that X(W) exists.

Claim that for all K,K'eW such that K==K', KnK"= {0} and for every KeW
such that K« H, KnH = {0}.

If KX'eW and K =K', then there exists a VeC such that KK'eV.
Since X(V) exists, KNK’' = {0}. If KeW and K=#H, then there exists VeC
such that KeV. Since X(V) exists, HNK = {0}. Therefore the claim is true

Hence X(W) exists. Thus WeL and W is an upper bound of C in L.

By Zom’s Lemma, L has a maximal element. #
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Lemma 3.52. let R be a skewring and 1J be normal ideals of R such that R
=I1@J. If H is a normal ideal of R such that ICHCR, then H = I&(JH).

Proof. Suppose thst H is a normal ideal of R such that ICHCR.
Clearly, I+(JnH)cH. Let heH. Since R =18J, there exist xel and yeJ such
that h=x+y and we have xeH. Since y=h-xeH, h=x+yel+(JnH), so Hcl+
(JnH). Therefore H =I+(JNH). Since R =18J, In(JnH)cInJ = {0} which
implies that H =I1&(JnH).#

Theorem 3.53. A skewring R is completely reducible if and only if it is

semisimple.

Proof. Let R be completely reducible. Let L= {S/S is a set of simple
normal ideals of R such that X(S)=@®{H/HeS} exists}. By Lemma 3.51, there

exists a maxima! set of simple normal ideals S such that X(S)=®{H/HeS}
exists. By completely reducibility, R = X(S)®K for some normal ideal K of R.
If K= {0}, we are done. Suppose that K = {0}.

Claim that K is completely reducible.

Let M be a normal ideal in K. By Remark 3.5 and R =X(S)®K, M is
a normal ideal in R. Since R is a completely reducible, there exists a normal
ideal P of R such that R = M@®P. Since McKcR, by Lemma 3.52, K=
M@(PHK). Hence K is completely reducible and the claim is true.

By the maximal property of S and Remark 3.5, K ‘has no nontrivial
simple normal ideal. Let 0+ xeK and M =(x),. be a normal ideal in K which
is generated by x. Then M is not simple. Since K is completely reducible and
Remark 3.5, there exists a normal ideal P of R such that K=M@P. By
Remark 3.5, every normal ideal of M is a normal ideal of K. Since K has no
nontrivial simple normal ideal, this is true for M. Similarly, by the proof of
the claim, M is completely reducible.

Let x™ be a smallest normal ideal in M which is generated by x.



69

Clearly, M = (x),=x™. Since M is not simple, there exists a nontrivial normal
ideal A, of M. Since M is completely reducible, there exists a nontrivial
normal ideal B, of M such that M = A,®B,. Similarly, B, has no simple
normal ideal and so B, is co:ﬁpletely reducible. By induction, we have M =
A®B, = A/BADB,=A®...0A0B,©... where A;# {0} and B;= {0} for every
ieZ'. Then @A, exists and it is a normal ideal in M. Since M is completely
reducible, there exists a normal ideal D of M such that M =(®A)®D. Let D=
A, M=@A, Then there exist an reZ" and a€A; such that x=a,t+a,+...ta,
Hence xMcA,®...0A,.cM which is a contradiction. Thus K = {0}.

Conversely, let S be the set of simple normal ideals of R such that R
=@{H/HeS} and let M be a normal ideal of R. By Lemma 3.51, there exists
a maximal subset T of S such that X(T)=M®(®{H/HeT}) exists. Suppose
- X(T) is a proper subskewring of R. If for every HeS, X(T)nH=H, then Hc
X(T) for every HeS which implies that X(T) =R which is a contradiction.
Then there exists an HeS such that X(T)nH is a proper normal ideal of H.
Since H is simple, X(T)"H = {0}. Then X(TU{H}) exists which contradicts the
maximal property of T. Therefore X(T)=R. Hence Ris completely reducible. #
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