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Chapter I

Introduction
1.1 General

In the early 1960s, there were two types of rationally constructed finite
elements in structural and solid mechanics. These may be formulated by using
methods based, respectively, on the principles of stationary potential energy and
complementary energy. The resulting elements are the so-called compatible elements
for which the assumed displacements are compatible both within each element and
along the interelement boundary and the equilibrium elements for which the assumed
stresses are equilibrated within each element and the tractions reciprocated along the
interelement boundary.

Obviously, one of the most popular and efficient methods in finite element
formulation is to employ the Variational Principles. Due to the wide use of the finite
element method along with the elaborate development of the variational principles,
the finite element method can be then formulated by relaxing the continuity
requirements along the interelement boundaries.

The combination of different variational principles and different boundary
continuity conditions yields numerous types of approximate models[1]. Such multifield
variational principles were treated in a text by Washisu[2]. A model in which
compatible displacement functions are assumed along the interelement boundary in
addition to equilibrating stress fields assumed within each element is the Hybrid
Model. However, in later development using Lagrange multipliers[2], compatibility of
displacement functions or equilibrium of the assumed stress fields may not be
satisfied anymore.

In comparing elements, Pian and Tong[1] concluded that the equilibrium and
compatible elements will provide, respectively, the upper and lower bounds for the
strain energy. Also, the assumed stress hybrid element will yield a structure which is
more flexible than the compatible element of the same boundary displacement
approximation and more rigid than the equilibrium element of the same interior stress
approximation. Results have shown that several hybrid elements can provide more
accurate results than both the compatible and equilibrium elements.

The desirable characteristics of an ideal finite element[9] are that it should be
free from zero-energy or kinematic deformation modes, invariant with respect to the
reference coordinates, efficient in computer implementation, not overly rigid, as well
as accurate with regard to stress calculation. The conventional assumed displacement
methods generally satisfy the first three items listed above but usually not the last two.
For hybrid elements several conditions for the assumed stress terms may be
considered in order to meet all or some of the items.

This present study will develop an efficient hybrid finite element satisfying
most of the characteristics of an ideal element. The selection of the assumed
displacement and stress fields will aim at improving the element properties and
avoiding some undesirable locking problems.
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1.2 Literature Review

The term ‘hybrid element’ in this study means a hybrid stress element for
which the displacement and stress fields are assumed independently. Such an element
was first developed by Pian[4]. This element was formulated based on assumed
equilibrating stresses within the element and compatible displacements along the
interelement boundary instead of displacement within the element. It was found that
the results converge more rapidly than using a compatible element. Initially, it was
recognized by its advantage of constructing plate elements because it is not an easy
task to construct, within an element, a compatible displacement field in terms of nodal
displacements while it is simple to express boundary displacements in terms of nodal
displacements. However, there is another version of the hybrid element named the
hybrid displacement element[5]. This element is based on independently assumed
displacements in the interior and along the boundary of the element. It is interesting to
note that only displacement fields are involved in the formulation.

In its formulation the first hybrid element constructed by Pian[4] employs the
complementary energy functional of the form

T T1
C 2 d d

uV S
V SΠ = −∫ ∫σ Sσ T u (1.2-1)

The assumed stress σ  are expressed in the form

=σ Pβ (1.2-2)

where  P  is the stress matrix and β  are stress parameters. The boundary tractions T
are the stresses evaluated along the boundary. The displacements along the boundaary
are

=u Lq (1.2-3)

where L are the interpolation functions along the boundary of an element and q the
nodal displacements.

According to the constraint of the principle of complementary energy, the
stresses in an element must be in equilibrium. Thus

∂ =σ 0 (1.2-4)

where ∂  is a differential operator matrix.

One of the criteria, and only the one at that time, to obtain the assumed
stresses is utilizing the equilibrium constraint shown in Eq. 1.2-4 . The possible stress
matrices the satisfy that constraint are, for example,

1
1

1

y

x

⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

P , 
1

1
1

y x

x y

y x

⋅ ⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ − − 

P , and so on.

(1.2-5)
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Substitution of Eqs. 1.2-2, 1.2-3 into Eq. 1.2-1, yields

T T1
C 2= −H GqΠ β β β (1.2-6)

where
T d

V
V= ∫H P SP , T d

uS
S= ∫G P L (1.2-7)

From variation with respect to β , within the element level,

=Hβ Gq
or 1−=β H Gq (1.2-8)

Thus, the strain energy term of Eq. 1.2-6 becomes

T T 11
2 ( )U −= q G H G q (1.2-9)

We also know that the strain energy in an element is in the form 

T1
2U = q kq (1.2-10)

where  k is the element stiffness matrix. Hence, from Eq. 1.2-9, the element stiffness
matrix obtained from the hybrid approach is

T 1−=k G H G (1.2-11)

Tong and Pian[7] suggested that for better accuracy, the stress and displace-
ment approximations must be improved properly  and simultaneously. Besides, the
total number of stress parameters must be greater than or equal to the total number of
degrees of freedom in order to guarantee the existence of solutions.

Since the development of the various variational principles, several assumed
stress hybrid elements have been constructed by using the Hellinger-Reissner
principle or its derived versions. Equilibrium of the assumed stresses and
compatibility of the assumed displacements are no longer satisfied. Pian and Chen[8,9]

proposed a new  and more general method for formulating the assumed stress hybrid
element. An extended Hellinger-Reissner principle is taken into consideration.

T T T T1
R λ2[ ( ) ( ) ]dqV

VΠ = − − −∫ σ Sσ σ Du D σ u (1.2-12)

The stress equilibrium conditions, the third term on the right-hand side of the above
equation, are then introduced through the application of constraint conditions with
internal displacements as Lagrange multipliers. Therefore, the stresses are not
necessarily equilibrated. Incompatible displacements are used and the internal
displacements are separated into two parts – compatible part qu and additional part λu .

λq= +u u u (1.2-13)



4

This new method opens up the possibility of using natural coordinates for the
assumed stresses. This is because it is impossible to express the assumed stresses in
natural coordinates which exactly satisfy equilibrium conditions pointwise. The
accuracy of such an element will not be affected very much when  the element shape
is distorted from regular geometry.

Similar to the assumed displacement finite element formulation, the
displacements for the hybrid element can be uniquely defined when the nodal
displacements for the element are chosen. But the choice of assumed stresses was left
open in this method. At first, assumed stress hybrid elements evolved under a strict
condition of equilibrium. Later, stress relaxation under certain conditions such as the
satisfaction of equilibrium conditions in a variational or integral sense within each
element was allowed[8]. A suggested scheme[10,11] is based on the initial choice of
stress terms to be unrestrained with complete polynomials expressed in natural
coordinates,

1

9

σ 1 ξ η β
σ 1 ξ η
τ 1 ξ η β

x

y

xy

  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
    = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

(1.2-14)

and on adding internal displacements such that the corresponding strain terms are also
complete and consistent with the assumed stresses,

λq= +u u u (1.2-13)
where

4

1
(1 ξ ξ)(1 η η) i

q i i
i i

u

v=

 
= + +  

 
∑u , 

12 2

λ 2 2

4

λ
1 ξ 1 η

1 ξ 1 η
λ

 
⋅ ⋅ − −  =   ⋅ ⋅ − −   

 

u

(1.2-14)

 The additional displacements are used as Lagrange multipliers to enforce the stress
equilibrium constraint. This scheme utilizes a stress equilibrium constraint of Eq. 1.2-
12 to obtain the stress matrix which condenses out the dependent stress parameters.
The condition in doing this is

T T
λ( ) d

V
I V= ∫ D σ u (1.2-15)

After taking the first variation with respect to iλ , only two independent relations are
obtained. To obtain the other two remaining relations, for the sake of mathematics, a
small perturbation method is used.

Figure 1.2-1 Small perturbation applied to element geometry.
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The stresses after condensation become

2 2
11 3

2 2
1 3

1 1 3 3 5

σ 1 βη ξ
σ 1 η ξ
τ 1 η ξ β

x

y

xy

a a

b b

a b a b

  ⋅ ⋅   
    = ⋅ ⋅    
    ⋅ ⋅    

(1.2-16)

This element has been shown to have desirable properties. By using natural
coordinates, the resulting elements can be made less sensitive to geometrical
distortion and by using complete polynomials for the stress terms, the element can be
made basically invariant.

Because of the complexity in such a scheme with a small perturbation of the
element geometry, Pian and Wu[12] proposed a new concept to determine the
constraint conditions for the assumed stresses in the hybrid formulation.
Consequently, any geometrical perturbation is no longer needed. Internal
incompatible displacements are added within each element in order to maintain
completeness and internal stresses are interpolated in isoparametric coordinates. The
stress distribution is obtained through a so-called optimization condition (OPC),

T T
λd 0

e hv
Sδ

∂
=∫ σ n u (1.2-17)

which requires a vanishing virtual work along the element boundary due to linear and
higher order stress terms and the additional incompatible displacements. It has been
shown that the resulting stress terms based on such a condition will lead to better
element properties. For the 4-node plane problem if the incompatible displacements
are the same as that used by Pian and Sumihara[10], then this would result in the same
element.

Recently, Wu and Cheung[13] classified the method to obtain an optimal hybrid
stress element into two approaches: the pre- and post-treatment . In the pre-treatment
approach, the improvement of the element performance is realized by using the
optimal stress fields that satisfied the optimization conditions (OPC).[12] In the post-
treatment approach, the penalty-equilibrating approach has been suggested, in which
neither the modification of the initial stresses nor the introduction of the additional
displacements is required for the improvement  of many existing hybrid elements.
Ignoring the effect of distributed loads within an element, the equilibrium equation
can be written as

∂ =σ 0 (1.2-4)

The element energy functional R
eΠ  after introducing a penalty-equilibrium becomes

*
T

RR
( , ) ( ) ( )d

e

e e

V
VαΠ = Π − ∂ ∂∫σ u σ σ (1.2-18)

where α  is a penalty factor of large positive number. The equilibrium constraints will
be satisfied when  α →∞
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The Mindlin-Reissner plate theory has been used to develop efficient and
reliable plate bending elements. Only C0-continuity of displacement is required.
However, in developing Mindlin-Reissner plate elements, the well-known shear
locking effect is often encountered. As plate thickness is decreased, the element
overstiffens rapidly.

To demonstrate the shear locking effect[14], for simplicity, the potential energy
functional PΠ of simple beam can be written as

2 2 23 1 1

P 0 0

1 1 d dd d
2 12 d d

Et G L w
x x W

L x E t x

φ β φ
      Π = + + −      

       
∫ ∫ (1.2-19)

The first and second integrals represent the bending and the transverse shear strain
energy, respectively. As the beam becomes thinner, the magnitude of the transverse
shear strain energy is dominant. This in turn causes an overstiff element.

In displacement models, many approaches have been proposed to overcome
shear-locking effects such as using discrete Kirchhoff assumption and uniform or
selective reduced integration. This scheme causes less contribution of the shear strain
energy term in the element stiffness formulation because of using improper
quadrature rules. However, the application of uniform or selective reduced integration
very often results in the development of kinematic deformation modes.

By contrast, hybrid approach appears to be more attractive in developing thin
and moderate thick plate elements without shear locking effects. In the early hybrid
elements[14-16] this was achieved by using appropriate assumed stress fields. Lee and
Pian[14] have shown that hybrid elements are identical to the reduced integration
elements and the results are reliable and not sensitive to thickness reduction. Spilker
and Munir[15] presented a rationale for the selection of assumed stress fields. Such a
rationale was suggested, motivated by the form of the Euler equations in the thin plate
limit, to avoid locking in the thin plate limit and to avoid kinematic deformation
modes. Various 4-node quadrilateral hybrid elements[15] were constructed as well as
8-node hybrid elements.[16] Note that all the hybrid plate elements above require the
stress equilibrium conditions to be satisfied locally at the element level.

The stress equilibrium constraints, however, seem to limit the development of
hybrid or hybrid plate elements. By introducing internal incompatibles and relaxing
the stress equilibrium constraints within the element as well as using natural
coordinates, an efficient hybrid plate element can be formulated[8-10].

Wanji and Cheung[17] proposed a new functional which includes stresses,
strains and displacements. The displacements and stresses were further decoupled into
two parts. This approach could construct not only hybrid elements, but also
displacement-based elements. This reveals the relationship between these two element
types as pointed out by Pian and Tong[18].

Cheung and Wanji[19] applied a new functional[17] to Mindlin-Reissner plate
elements. The locking phenomenon was eliminated by introducing internal
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displacement parameters and by adopting a method for constraining the shear strains.
Invariant elements free from kinemetic deformation modes were obtained.

Dong and his associates[20] utilized a stress optimization condition(OPC)[12] to
develop an efficient and reliable 8-node serendipity Mindlin-Reissner plate element.
The stress optimization condition was used to select the appropriate stress
interpolations. Internal incompatible displacements were used to eliminate shear
locking in the thin plate limit as well. The resulting element was accurate in
displacements and stresses, and insensitive to mesh distortion. A similar scheme was
also used in developing an efficient 4-node quadrilateral Mindlin-Reissner plate
element[21].

Ever since the development of the assumed stress hybrid model, some
mathematical basis for the stability of the numerical solution of the finite element
model has been established and a number of approaches for obtaining the optimal
stress modes have been proposed. Pian and Tong[1] presented a necessary condition to
avoid kinematic deformation modes,

'm n r≥ − (1.2-20)

in which 'm  is the total number of independent β -stress parameters, n the total
number of nodal displacements, and r the number of rigid-body modes. A rank
deficiency of the element stiffness matrix is a sign of the appearance of a kinematic
deformation mode in the element. Pian and Chen[22] proposed a systematic procedure
for the choice of the necessary assumed stresses such that kinematic deformation
modes will not appear by matching one stress mode individually with one strain
mode. For a 4-node quadrilateral element, the displacements u and v are expressed in
terms of five basic displacement modes

1 3 4

3 2 5

u x y xy

v x y xy

α α α
α α α

= + +
= + +

(1.2-21)

The deformation energy due to the assumed stresses and displacements is given by

1 1

1 1
σ ε d di i iI x y

− −
= ∫ ∫ (1.2-22)

To guarantee that Ii does not vanish, the integrand must produce an even function.
Thus the stress modes corresponding to the displacement modes are shown in Table
1.2-1

Table 1.2-1 Stress parameters and corresponding deformation modes
for 4-node quadrilateral element.

Const. x y

σx
1β

1u xα=
4β

4u xyα=

σ y
2β

2v yα=
5β
5v xyα=

τxy
3β

3 3
2 2,u y v xα α= =
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The stresses in Table 1.2-1 can be written in matrix form as

1

5

σ 1 β
σ 1
τ 1 β

x

y

xy

y

x

  ⋅ ⋅ ⋅   
    = ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅    

(1.2-23)

This procedure does not address the question of good or bad properties of the
resulting element. It just only yields an element that is free from kinematic
deformation modes.

However, even when a necessary condition is satisfied, it does not guarantee
that all kinematic deformation modes will be suppressed. An efficient method which
gives the necessary and sufficient condition for avoiding kinematic deformation
modes was proposed by Feng et. al.[23] In this work, it is assumed that there are m (=n-
r) natural deformation modes for an element which has n degrees of freedom and r
rigid-body modes. For any type of hybrid element, all stress modes in various stress
matrices derived by different methods can be classified into m stress mode groups
corresponding to m natural deformation modes and a zero-energy mode group
corresponding to r rigid-body modes. For a plane stress problem, a 4-node
quadrilateral element gives n=8, r=3 and hence m=5. By applying the procedure
suggested, an initial stress matrix

[ ]

0

1 2 30 4 5 6 7 8 9

1
1

1

x y

x y

x y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

=

P

σ σ σ σ σ σ σ σ σP

(1.2-24)

can be classified into six mode groups shown in Table 1.2-2

 The necessary and sufficient condition for avoiding kinematic deformation modes is
that an assumed stress matrix must contain m stress modes chosen from m different
stress mode groups, except the zero-energy mode group. The reason for the existence
of kinematic deformation modes when the condition (m>n-r) is satisfied is that the
stress modes in the assumed stress matrix are not chosen from m different stress mode
groups corresponding to m natural deformation modes.

 Table 1.2-2 Stress modes after classification into mode groups.

1 1σ
2 2σ
3 3σ
4 5σ , 8σ

Mode group

5 6σ , 9σ
Zero-energy mode group 4σ , 7σ
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Hamhim[24] applied a method of classification of stress modes[23] to obtain a
desirable stress field free from kinematic deformation modes. Some hybrid plate
bending elements were constructed. Most of these elements performed acceptably.

1.3 Objectives of Present Study

1). To study an efficient way for hybrid finite element formulation.
2). To develop some efficient hybrid plate bending elements.
3). To compare the results of such developed hybrid plate bending elements

with existing hybrid elements.

1.4 Scope of Present Study

1). Thickness of the plate is small in comparison with the lateral dimension.
2). Lateral displacement of the plate is considered small compared with the

plate thickness.
3). Neglect the effects of membrane forces.
4). Materials are linearly elastic and isotropic.
5). Only static analysis is considered.



Chapter II

Theoretical Considerations

The pertinent theories presented in this chapter are the basic theory of plate
bending and the variational principles serve as a basis for finite element formulation.
Only the fundamental concepts and equations related to the bending of plates are
reviewed. Also, energy functionals based on several variational principles developed
in the past will be summarized and an element stiffness matrix will be formulated as
an example.

2.1 Bending of Flat Plates

Consider an infinitesimal plate in Cartesian coordinates (x, y, z) subjected to
stresses acting on cross sections as shown in Fig. 2.1-1a. The material is considered to
be linearly elastic and homogeneous. Normal stresses σx  and σ y  vary linearly with z
and are associated with bending moments Mx and My. Shear stress τxy  also varies
linearly with z and is associated with twisting moment Mxy. Normal stress σ z  is
considered negligible in comparison with σx ,σ y , and τxy  by employing the
assumption of small plate thickness t in comparison with the lateral dimension. The
transverse shear stresses τ yz  and τ zx  vary quadratically with z.

The transverse load q includes surface load and body force, both in the z direction. By
disregarding the effects of membrane forces, σ σ τ 0x y xy= = = on the midsurface z =0.

The stresses in Fig. 2.1-1 provide the following moments M and transverse
shear forces Q :

/ 2

/ 2
σ

t

x xt
M zdz

−
= ∫  ,  

/ 2

/ 2
σ

t

y yt
M zdz

−
= ∫  ,  

/ 2

/ 2
τ

t

xy xyt
M zdz

−
= ∫ (2.1-1a)

/ 2

/ 2
τ

t

x zxt
Q dz

−
= ∫    ,  

/ 2

/ 2
τ

t

y yzt
Q dz

−
= ∫ (2.1-1b)

where

Figure 2.1-1 (a) Stresses acting on a differential element of a homogeneous, linearly
elastic plate. The distributed transverse load is q (force per unit area). (b) The same
differential element viewed normal to the plate. Forces and ⊗ act in the positive and
negative z directions, respectively.

⊗

⊗dy

dx

x

y

q

t τ
zx σ

x
τ

xy

σ
y

τ
xy

τ
yz

z

y

x

Qxdy
Mxydy

Mxdy

Qydx

Mxydx

Mydxq dx dy

dy

dx

(b)(a)
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Mx and My are the bending moments per unit length on sections perpendicular
to the x- and y-axe respectively, positive when producing tensile stress on portion of
the positive z direction.

Mxy = -Myx are the twisting moments per unit length on sections perpendicular
to the x- and y-axe respectively, following the positive right-hand rule.

Qx and Qy are the transverse shear forces on sections perpendicular to the x-
and y-axe respectively.

Fig. 2.1-1b shows differential total moments and forces such as Mxdy, Qxdy,
and so on. Stresses σx , σ y , and τxy  are largest at the surfaces z =± t/2, where they
have the magnitudes of 6Mx/t2, 6My/t2, and 6Mxy/t2, respectively. At arbitrary values of
z,

3σ
/12

x
x

M z

t
=  , 3σ

/12
y

y

M z

t
=  , 3τ

/12
xy

xy

M z

t
= (2.1-2)

as may be verified by substituting Eqs. 2.1-2 into Eqs. 2.1-1a. Transverse shear
stresses are usually small in comparison with σx , σ y , and τxy . They have the greatest
magnitude at z = 0, where τ 1.5 /yz yQ t=  and τ 1.5 /zx xQ t= .

Consider the equilibrium of moments and shears acting on a differential
element above. One may prove that the equilibrium of those forces are

xyx
x

xy y
y

yx

MM
Q

x y

M M
Q

x y

QQ
q

x y

∂∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂

∂∂
+ = −

∂ ∂

(2.1-3)

Rewrite into matrix form as

1

1

x

y

xy

x

y

M
x y M

M
y x

Q q
x y Q

  ∂ ∂⋅ − ⋅  ∂ ∂  ⋅       ∂ ∂⋅ ⋅ − = ⋅    ∂ ∂      − ∂ ∂   ⋅ ⋅ ⋅ ∂ ∂     

(2.1-4)

On account of deformations in plate bending there are two theories involved :
Kirchhoff and Mindlin plate theories. Both plate theories depend on the transverse
shear deformation - whether it exists or not. This will cause the deformed shape of the
plate to be different.
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2.1.1 Kirchhoff Plate Theory

Points on the midsurface z = 0 move in only  the z-direction as the plate
deforms in bending. A line straight and normal to the midsurface before loading is
assumed to remain straight and normal  to the midsurface after loading as illustrated
by line OP in Fig. 2.1-2.This assumption is justifiable if the transverse shear
deformation is disregarded. A point not on  the midsurface has displacement
components u and v in , respectively, the x- and y- directions, Fig. 2.1-2, with ,xw  and

,yw  as small angles of rotation.

The displacement components u and v may be related to ,xw and ,yw  as

,xu zw= − (2.1-5)
,yv zw= −

From mechanics of solids, the strains can be obtained as

ε , ,x x xxu zw= = −
ε , ,y y yyv zw= = − (2.1-6)

γ , , 2 ,xy y x xyu v zw= + = −

which may be rewritten in matrix form as

ε ,
ε ,
γ 2 ,

x xx

y yy

xy xy

w

z w

w

   
   = −   
   
   

(2.1-7)

or =-zε κ

where ε  denotes the bending strains and κ  the curvatures.
These are the strain-displacement relations for Kirchhoff plate bending which

is applicable to a thin plate.

Figure 2.1-2. (a) Differential element of a thin plate before loading. (b) After
loading: deformations associated with Kirchhoff plate theory. Point P displaces w
units up and zw,x units leftward because of midsurface displacement w and small
rotation w,x..

P

z,w

x,u

t/2

t/2
O

dx

z

w

x,u
w

w,x

u=-zw,x

w,x

w,x

P

O

z
Midsurface

(b)(a)
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For an isotropic material, with E = elastic modulus and ν  = Poisson’s ratio,
the stress-strain relations are

2

σ 1 ν ε
σ ν 1 ε

1 ν
τ (1 ν) / 2 γ

x x

y y

xy xy

E
   ⋅ 
    = ⋅    −    ⋅ ⋅ −    

(2.1-8)

The moment-curvature relations are obtained by substitution of  Eqs. 2.1-6
into Eqs. 2.1-8 and the result into Eqs. 2.1-1a. This process yields

1 ν ,
ν 1 ,

(1 ν) / 2 2 ,

x xx

y yy

xy xy

M w

M D w

M w

   ⋅ 
    = − ⋅    
    ⋅ ⋅ −    

(2.1-9)

or K= −M D κ

where 
3

212(1 ν )
Et

D =
−

 is known as “flexural rigidity” or “plate rigidity” and is

analogous to bending stiffness EI of a beam. Indeed, if a plate has a unit width and ν
= 0, then D = EI = Et3/12.

2.1.2 Mindlin Plate Theory

A line that is straight and normal to the midsurface before loading is assumed
to remain straight but not necessarily normal to the midsurface after loading. Thus,
transverse shear deformation is allowed. The motion of a point not on the midsurface
is not governed by the slopes ,xw and ,yw  as in the Kirchhoff theory. Rather, the
motion depends on the rotations xθ  and yθ  of lines that were normal to the
midsurface of the undeformed plate shown in Fig. 2.1-3 below

Thus, with xθ  and yθ  as small angles of rotation,

Figure 2.1-3. Differential plate element after
loading, analogous to Fig. 2.1-2b, but with
transverse shear deformation allowed ( ,

x x
w θ≠ ,

so that , 0
zx x x

wγ θ= − ≠ ).

w

x,u
w

w,x

P

O

z Midsurface

xθ
xu zθ= −
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xu zθ= − (2.1-10)

yv zθ= −

and the strain-displacement relations for the Mindlin plate theory are

ε ,x x xzθ= −
ε ,y y yzθ= −

γ ( , , )xy x y y xz θ θ= − + (2.1-11)
γ ,yz y yw θ= −

γ ,zx x xw θ= −

This theory accounts for transverse shear deformation and is therefore
especially suited to the analysis of thick plates and sandwich plates.

By considering uncoupling between shears and moments in an isotropic plate,
yz yzGτ γ=  and zx zxGτ γ=  where / 2(1 ν)G E= +  is the shear modulus, therefore, the

stress-strain relations for the Mindlin plate are

2

σ 1 ν ε
σ ν 1 ε

1 ν
τ (1 ν) / 2 γ

x x

y y

xy xy

E
   ⋅ 
    = ⋅    −    ⋅ ⋅ −    

  (2.1-12)

and
τ γ
τ γ

zx zx

yz yz

G

G

⋅    
=    ⋅    

The moment-curvature relations for the Mindlin plate theory are obtained by
essentially the same procedure used to obtain Eqs. 2.1-9. However, Eqs. 2.1-11 must
be used instead of Eqs. 2.1-6 including the shear stress-strain relations. The resulting
moment-curvature relations are

K

3 3

,
,

, ,
,
,

x x x

y y y

xxy x y y x

x x x

y y y

M

M

M

Q wGt

Q wGt

θ
θ

θ θ
θ
θ

⋅ ⋅    
    ⋅ ⋅       + = − ⋅ ⋅   

    −⋅ ⋅ ⋅ ⋅    
  −⋅ ⋅ ⋅ ⋅       

D
(2.1-13)

or abbreviated as M= −M D κ

where KD  is the same as in Eqs. 2.1-9.

Note that the transverse shear stresses τ yz  and τ zx  as shown in Fig. 2.1-1 vary
quadratically with z while, in the Mindlin plate, uniform distributions are taken into
account. Therefore, the shear modulus G in Eqs. 2.1-12 may be replaced by G/1.2 to
permit the parabolic distribution of τ yz  and τ zx  to be replaced by uniform
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distributions. To do so the shear strain energy terms due to both distributions must be
equal.

In summary, all relations are tabulated in Table 2.1-1 as follows :

Kirchhoff Plate theory Mindlin Plate theory
Displacements

,xu zw= −
,yv zw= −

xu zθ= −

yv zθ= −

Strain-Displacement Relations

ε , ,x x xxu zw= = −
ε , ,y y yyv zw= = −

γ , , 2 ,xy y x xyu v zw= + = −

ε ,x x xzθ= −
ε ,y y yzθ= −

γ ( , , )xy x y y xz θ θ= − +

γ ,zx x xw θ= −
γ ,yz y yw θ= −

Stress-Strain Relations

2

σ 1 ν ε
σ ν 1 ε

1 ν
τ (1 ν) / 2 γ

x x

y y

xy xy

E
   ⋅ 
    = ⋅    −    ⋅ ⋅ −    

Because of uncoupling between shears
and moments,

2

σ 1 ν ε
σ ν 1 ε

1 ν
τ (1 ν) / 2 γ

x x

y y

xy xy

E
   ⋅ 
    = ⋅    −    ⋅ ⋅ −    

2

τ γ(1 ν) / 2
τ γ(1 ν) / 21 ν

zx zx

yz yz

E − ⋅    
=    ⋅ −−     

where / 2(1 ν)G E= +
Moment-Curvature Relations

1 ,
1 ,

(1 ) / 2 2 ,

x xx

y yy

xy xy

M w

M D w

M w

ν
ν

ν

   ⋅ 
    = − ⋅    
    ⋅ ⋅ −    

K= −M D κ

where 
3
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D
ν

=
−

K
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,
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,
,
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⋅ ⋅    
    ⋅ ⋅       + = − ⋅ ⋅   

    −⋅ ⋅ ⋅ ⋅    
  −⋅ ⋅ ⋅ ⋅       
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−

Equilibrium Equations
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M
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M
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Q q
x y Q

  ∂ ∂⋅ − ⋅  ∂ ∂  ⋅       ∂ ∂⋅ ⋅ − = ⋅    ∂ ∂
     − ∂ ∂   ⋅ ⋅ ⋅ ∂ ∂     

Table 2.1-1 Governing equations used in plate theories : Kirchhoff
and Mindlin Plate theories
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2.2 Multifield Variational Principles

The finite element methods for problems that are governed by self-adjoint
differential equations can be formulated most conveniently by variational methods.
The construction of the conventional finite elements for structural and solid
mechanics is based on the stationary condition of the potential energy functional. The
strain energy is expressed in terms of the strain vector ε , which, in turn, is expressed
in terms of the displacement vector u  through the constraining strain-displacement
relations, ε = Du . This primal variational principle, which contains the displacements
u  as the only field, is,

T T T1
P 2( ) [ ( ) ( ) ]d d

V S
V S

σ

Π = − −∫ ∫u Du C Du F u T u (2.2-1)

where C  is the elastic stiffness matrix, and F and T are , respectively, the prescribed
body force and boundary traction vectors. Note that the potential energy, PΠ , is
subjected to the constrained conditions or subsidiary conditions =u u on uS .
However, finite element methods can be formulated by relaxing the requirement of
constraints within the element and/or along the interelement boundaries.

Generally, the equations governing the mechanics of solids consist of the
equilibrium equations, strain-displacement relations, constitutive relations,
compatibility equations and the boundary conditions. Some or all of these constraint
conditions can be relaxed. One systematic procedure for the derivation of the
multifield variational principles is to impose the constraint conditions through the
application of Lagrange multipliers[2]. By relaxing the strain-displacement relation
and the displacement boundary conditions on PΠ  using the Lagrangian multipliers
which are, physically, the stresses σ  and boundary tractions T , a three-field
variational principle results. It is the following Hu-Washizu variational principle:

T T T T T1
G 2( , , ) [ ( ) ]d d ( )d

uV S S
V S S

σ

Π = − − − − − −∫ ∫ ∫ε σ u ε Cε σ ε Du F u T u T u u ,

(2.2-2)
where T is the boundary traction vector expressed in terms of σ (= νσ ), ν  is the
directional cosines of surface normals, and u  is the vector of prescribed boundary
displacements. The Hu-Washizu variational principle is subjected to independent
variables σ , ε , and u  with no constraint conditions. By eliminating the strain
variables and the stress variables respectively, through the introduction of the
constitutive relations, two 2-field variational principles result:

T T T T T1
R 2( , ) [ ( ) ]d d ( )d

uV S S
V S S

σ

Π = − − − − − −∫ ∫ ∫σ u σ Sσ σ Du F u T u T u u ,

(2.2-3)

T T T T T1
R 2( , ) [ ( ) ]d d ( )d

uV S S
V S S

σ

Π = − − − − − −∫ ∫ ∫ε u ε Cε Cε Du F u T u T u u ,

(2.2-4)
where S  is the compliance matrix. Eq. 2.2-3 is the original Hellinger-Reissner
principle.
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By applying the divergence theorem, Eq. 2.2-3 can be transformed to

T T T T T T1
R 2[ ( ) ]d ( ) d d

uV S S
V S S

σ

Π = − − − − −∫ ∫ ∫σ Sσ D σ u F u T T u T u ,

(2.2-5)
When the equilibrating stress and prescribed tractions along the boundary are

satisfied, Eq. 2.2-5 is reduced to another primal principle, the principle of stationary
complementary  energy, with stresses σ  as the only field variable:

T T1
C 2 d d

uV S
V SΠ = −∫ ∫σ Sσ T u (2.2-6)

For these energy functionals, details of the modification may be found in the
text by Washizu[2]. Table 2.2-1 shows routes in the derivation of multifield variational
principles. Arrows in the diagram show transformation direction from one principle to
another.

Corresponding to the foregoing energy functionals, Eqs. 2.2-1 to 2.2-6,
numerous types of finite element formulations can be obtained[1]. Descriptions of the
features of various formulations are summarized in Table 2.2-2

For the finite element formulation, the entire continuum is discretized into a
number of fictitious elements of finite magnitude, called finite elements, and the
corresponding variational functional is the sum of those for the individual elements.
Such functionals for the individual elements are expressed in the same form as Eqs.
2.2-1 to 2.2-6. The element displacements u , stresses σ , and strains ε  can all be
expressed in terms of internal parameters which are independent from one element to
another. When they are statically condensed in the element level, the strain energy U
can be expressed in terms of the nodal displacements q , and eventually, the element
stiffness matrix can be obtained.

Table 2.2-2 Classification of Finite Element Methods in Solid Mechanics[1]

Model Variational
Principle

Assumed inside
Each element

Along Interelement
Boundary

Unknowns in
Final Equations

Compatible Minimum Potential
Energy

Smooth Displacement
Distribution Continuous Displacement Nodal Displacements

Equilibrium Minimum Complementary
Energy

Smooth and Equilibrating
Stress Distribution

Equilibrium of Boundary
Tractions

(a) Generalized Nodal
Displacements
(b) Stress Function
Parameters

Hybrid Hellinger-Reissner
Variational Principle

Stress & Displacement
Distribution Displacement Nodal Displacements

Mixed Hu-Washizu
Variational Principle

Stress, Displacement and
Strain Distribution Displacement Nodal Displacements
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2.3 Hybrid Finite Element Formulation

One attractive element corresponding to the Hellinger-Reissner principle is
considered. As stated in Section 1.1, hybrid elements are more preferred than either
compatible elements or equilibrium elements because more desirable and accurate
results are obtained. The variational method for the formulation of the original version
of the hybrid stress finite element is based on the complementary energy principle.
But, recently, Pian[27] revealed that the original hybrid stress element is actually
developed based on the Hellinger-Reissner principle and not on the complementary
energy principle as indicated in the earlier paper[4]. This is because when the assumed
stress fields satisfy exactly the homogeneous equilibrium conditions the Hellinger-
Reissner principle become the complementary energy principle.

To derive the element stiffness matrix, it is only necessary to express the
boundary displacements u  in terms of the nodal displacements q  in the form

T1
2U = q kq (2.3-1)

Then k is the element stiffness matrix.

When the displacements u  in an element are not compatible with the
boundary displacements u , the Hellinger-Reissner principle including body forces
and boundary tractions then takes the form

T T T T T1
R 2( , ) [ ( ) ]d d ( )d

V S V
V S S

σ ∂
Π = − − − − − −∫ ∫ ∫σ u σ Sσ σ Du F u T u T u u

(2.3-2)

where σ  = stresses, S  = elastic compliance, T = boundary traction related to σ , V  =
volume of the element, and V∂ = entire boundary of the element, and the strain-
displacement relations are expressed as

=ε Du (2.3-3)

In the finite element formulation we separate element displacements u  into
two parts: the compatible part qu  which is expressed in terms of q  and the additional
part λu  which is expressed in terms of internal displacement parameters λ  that can be
statically condensed at the element level. Here, λu  may be incompatible along the
boundary or it may be bubble functions which are zero along the boundary. If λu  is
incompatible, Eq. 2.3-2 should be used in the formulation.
By realizing that

T T T T
λ λ λ( )d ( ) d d

V V V
V V S

∂
= − +∫ ∫ ∫σ Du D σ u T u

and λ = −u u u  on V∂ , we have the modified Hellinger-Reissner principle

T T T T T T1
mR λ2[ ( ) ( ) ]d d dqV V S

V V S
σ

Π = − + − − −∫ ∫ ∫σ Sσ σ Du D σ u F u T u

(2.3-4)
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We also note that when λu  are bubble functions for which λ 0=u  on V∂ , the
boundary integral term in Eq. 2.3-2 no longer appears, so Eq. 2.3-4 still holds.
Since the equation

T 0=D σ (2.3-5)

represents the stress equilibrium conditions, the last term in the integral in Eq. 2.3-4
actually plays the role of the conditions of constraint with the corresponding
Lagrange multipliers.

In the finite element implementation, we assume

=σ Pβ (2.3-6)
Also

q q=u N q (2.3-7)
and

λ λ=u N λ (2.3-8)
from which

q =Du Bq (2.3-9)
and

T T( )=D σ D P β (2.3-10)

Let
T T Td d

V S
V S

σ

= − −∫ ∫F F u T u (2.3-11)

serve as an equivalent nodal force.
The functional RΠ  thus takes the form

T T T T1
mR 2Π = − + − −β Hβ β Gq β Rλ F q (2.3-12)

where
T d

V
V= ∫H P SP

T d
V

V= ∫G P B (2.3-13)
T T

λ( ) d
V

V= ∫R D P N

From the first variation of mRΠ  with respect to β , λ  and q, we then obtain

− − =Gq Rλ Hβ 0 ,
T− =R β 0 , (2.3-14)

and T =G β F ,
respectively.

By eliminating λ  and substituting β  into mRΠ , the strain energy term of
functional becomes

T1
2U = β Hβ (2.3-15)
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and in view of Eq. 2.3-1, then

T 1 T 1 T 1 1 T 1( )( ) ( )− − − − −= −k G H G G H R R H R R H G (2.3-16)

This element stiffness is thus named the "Hybrid Stress Element"

Instead of evaluating an element stiffness matrix above explicitly by matrix
operation, the method of Gauss elimination technique[28] is preferred. To do this the
stationary conditions of mRΠ  in Eq. 2.3-14 are successively substituted in order to
eliminate unwanted parameters. For systematic elimination, all of stationary
conditions are put together into matrix form. The partitioned matrix containing these
conditions is written as

T

T

     ⋅ ⋅
     
⋅ ⋅ − = ⋅    

    − − ⋅     

G q F
R λ

G R H β
(2.3-17)

Then applying reverse Gauss elimination method, we obtain

T 1 T 1

T 1 T 1

− −

− −

     − ⋅
     
− ⋅ = ⋅    

    − − ⋅     

G H G G H R q F
R H G R H R λ

G R H β
(2.3-18)

and then,

T 1 T 1 T 1 1 T 1

T 1 T 1

( )( ) ( )− − − − −

− −

     − ⋅ ⋅
     

− ⋅ = ⋅    
    − − ⋅     

G H G G H R R H R R H G q F
R H G R H R λ

G R H β

(2.3-19)
Eventually, the first equation is reduced to the form

kq = F (2.3-20)

where k is the element stiffness matrix. Obviously, the element stiffness matrix is the
same as that obtained in Eq. 2.3-16.



Chapter III

Hybrid Plate Elements

In the present study, some hybrid plate bending elements will be constructed.
These elements should be free from kinematic deformation modes, invariant with
respect to the reference coordinates and accurate with regard to stress and
displacement calculation. Four-node quadrilateral elements are considered. With the
aim of obtaining well-behaved elements, at first, the stress matrix P of Eq. 2.3-6
should be chosen so as to avoid all the unwanted kinematic deformation modes and to
make it contain a minimal number of stress parameters. These requirements are
achieved by applying the method of classification of stress modes. After that, the
element stiffness matrix will be formulated. The formulation may take the additional
displacement parameters into consideration. This study also accounts for the
optimization of equilibrium in plate elements. Furthermore, a penalty-equilibrium
matrix is included in the formulation of the element stiffness matrix. Lastly, some
elements are reviewed and used for comparison with the new hybrid elements
proposed in this study.

3.1 Determination of Desirable Stress Matrix

Since the day of the first hybrid finite element constructed, the question on
how to obtain the stress matrix has arisen. The equilibrium equations were first used
as a guideline to obtain the assumed stresses and also the condition to ensure the
existence of solutions in Eq. 1.2-20. The stress matrix must be expressed in Cartesian
coordinates in order to satisfy the equilibrium equations. After the modification of
governing energy functionals in the finite element method, equilibrium of the stress
matrix may be relaxed. This opens the way to express the stress matrix in natural
coordinates so that the element is less sensitive to distortion of geometry.

The method of classification of stress modes is chosen in this study to obtain
the stress matrix. This method is considered to be a reasonable one. All stress modes
are classified into individual mode groups no matter how those stress modes are
obtained. The initial assumed stresses may be complete polynomials of any order. A
postulate in the classification of stress modes is cited in Reference 23 and may be
rewritten as

“There exists and only exists m (=n-r) natural deformation modes in a
hybrid element. All stress modes in the assumed stress matrices can be classified
into m stress mode groups corresponding to m natural deformation modes and a
zero energy mode group corresponding rigid-body modes of the element which
has n degrees of freedom and r rigid-body modes”.

Based on this postulate, a procedure to classify stress modes was proposed.
This procedure is summarized as in the following.

Step 1: Derive an initial stress matrix by whichever methods. One may extract
some stress modes from the existing stress matrices. The important point to note here
is the number of stress modes must not be less than m(=n-r) because there are m mode
groups , excluding the zero-energy mode group, into which these stress modes are
classified. Rearrange the stress modes in ascending order terms.
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Step 2: Pick out the zero-energy stress modes by selecting one stress mode
from the initial stress matrix to form an assumed stress matrix P0. Note that P0
contains only one stress mode. Then, the element stiffness matrix corresponding to a
stress matrix P0 can be formulated by using Eqs. 2.3-13 and 2.3-16. If the element
stiffness gives a non-zero eigenvalue, the selected stress mode is not a zero-energy
mode. Repeat this examination for the next stress mode. After all stress modes in the
initial stress matrix are examined, remove all stress modes that give zero eigenvalues
and put them into a zero-energy stress mode group.

Step 3: Take a non-zero-energy stress mode to form an assumed stress matrix
P1. The first stress mode 1σ  is the representative of a stress mode in stress mode
group 1.

Step 4: Select another stress mode next in order from the initial stress matrix
and add it into the assumed stress matrix P1. Then, a new stress matrix P2 is obtained.

2 1 2[ ]=P σ σ (3.1-1)

Apply eigenvalue examination to the element stiffness matrix corresponding to P2. If
this gives only one non-zero eigenvalue, stress mode 2σ  belongs to the stress mode
group 1. Then, repeat this step by selecting the next stress mode and put it into the
stress matrix P2 in place of stress mode 2σ . Until two non-zero eigenvalues are
obtained from the eigenvalue examination, stress matrix 2σ  is the representative of a
stress mode in group 2 of stress modes.

Step 5: Select another stress mode and append that stress mode to the stress
matrix P2 to form a new stress matrix P3,

3 1 2 3[ ]=P σ σ σ (3.1-2)

If three non-zero eigenvalues are obtained, stress matrix 3σ  is the representative of a
stress mode in group 3 of stress modes, then go to step 6. If only two non-zero
eigenvalues are obtained, stress matrix 3σ  may belong to group 1 or group 2 of stress
modes. To determine which stress mode group to which the new stress mode belongs,
this stress mode is paired with the existing stress modes. The following new stress
matrices are formed:

2 1 3[ ]′ =P σ σ   and 2 2 3[ ]′′ =P σ σ (3.1-3)

So whichever pair gives only one non-zero eigenvalue, all stress modes of that pair
belong to the same stress mode group. For example, if the element stiffness
corresponding to stress matrix 2′P  gives one non-zero eigenvalue, stress mode 3σ  is in
the same stress mode group as stress mode 1σ , that is, stress mode group 1.

Step 6: Add one more stress mode into stress matrix P3, and form a new stress
matrix P4,

4 1 2 3 4[ ]=P σ σ σ σ (3.1-4)

and so on. Repeating the same process until m representatives stress modes that
represent m stress mode groups are obtained. These m stress modes are formed into an
optimal stress matrix Popt.
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Step 7: In this step, there remains stress modes in the initial stress matrix that
have not yet been classified. Any remaining stress mode can be classified by using it
to replace each and every stress mode in the stress matrix Popt in regular order. Once
m eigenvalues are obtained, that representative stress mode which is replaced and the
remaining stress mode which replaces the stress mode in matrix Popt belongs to the
same stress mode group. Repeat the same process until all remaining stress modes are
classified.

Many stress modes derived by different methods can also be classified into m
stress mode groups corresponding to m natural deformation modes and the zero-
energy mode group corresponding rigid-body modes

For a hybrid element to be free from kinematic deformation modes, the
assumed stress matrix should appropriately be constructed by employing the
necessary and sufficient condition[23] stated as follows:

“The number of stress modes in an assumed stress matrix must be equal
to or more than m (=n-r) and at least m stress modes in the stress matrix P
must be chosen from m different stress mode groups corresponding to m natural
deformation modes of an element which has n degrees of freedom and r rigid-
body modes”.

3.2 Optimization with Penalty-Equilibrium Approach

This technique was proposed by Wu and Cheung[13]. The method can be
applied to any assumed stresses to optimize the hybrid element. No modification of
the initially assumed stresses is needed.

By ignoring the effect of distributed loads within element, the equilibrium
equations can be written as

∂ =σ 0  in Ve (1.2-4)

The introduction of a penalty-equilibrium term into the element energy functional will
produce a generalized one of the form

*
T

RR
( , ) ( ) ( )d

e

e e

V
VαΠ = Π − ∂ ∂∫σ u σ σ (1.2-18)

where α  is a penalty factor of large positive number. From the stationary condition
*R

0eδΠ = , when α→∞ , the last term of Eq. 1.2-18 becomes

T( ) ( )d 0
eV

Vδ∂ ∂ =∫ σ σ  or T( ) ( )d
eV

V minimize∂ ∂ =∫ σ σ (3.2-1)

This means that the stress equilibrium constraints are imposed on the element in a
least-square sense. Substituting Eqs. 2.3-6, 2.3-7 and 2.3-9 into the energy functional

*R
eΠ , we obtain

*
T T T1

P2R
αeΠ = − −β Gq β Hβ β H β (3.2-2)
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where G and H are the same as defined in Eq. 2.3-13 and

T
P ( ) ( )d

V
V= ∂ ∂∫H P P (3.2-3)

which is the penalty-equilibrium matrix. By letting α=α/2 , the energy functional *R
eΠ

can be rewritten in the form

*
T T1

P2R
( α )eΠ = − +β Gq β H H β (3.2-4)

Hence, the element stiffness matrix becomes

T 1
P( α )−= +k G H H G (3.2-5)

3.3 Hybrid Plate Elements Considered

All elements in this study are four-node quadrilateral elements. The
displacement field is assumed within an element. Two approaches of formulation are
involved. One is in terms of stresses and strains and the other in terms of moments
and curvatures. Some elements by other researchers are chosen in order to compare
the efficiency among the elements. See Appendix A for more information on element
formulation.

In a four-node quadrilateral element, each node contains 3 degrees of freedom
or in other words 12 degrees of freedom in an element. It can be shown that there are
3 rigid-body displacement modes in a four-node quadrilateral plate element.
Therefore, the minimum number of stress modes to be chosen must not less than 9
(=12-3) in order to guarantee the existence of a solution[1].

The differences among the elements depend on the stress matrix, the reference
coordinates system and the additional displacements used in the element stiffness
formulations.

3.3.1 Spilker Elements

Elements LH3, LH4, LH5 and LH11 proposed by Spilker[15] are the hybrid
elements with the Mindlin-type displacement assumption including all components of
stresses. The assumed stresses for these elements were chosen so as to satisfy the
condition of equilibrium within an element. Only the stress components σx  , σ y  and
τxy  were assumed with completely linear terms and the other components can be
obtained by making all stress components in equilibrium. Only elements LH3 and
LH4 are considered in this study because elements LH5 and LH11 seem to cause an
undesirable element property, that is, shear-locking. The numerical results are shown
in Reference 15.

The initially assumed stresses proposed by Spilker has 13 stress parameters
that may be written in matrix form as in Eq. 2.3-6 where
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21
2

21
2

6x13

1
1

2
1

1 1
1 1

x y xy x

x y xy y

x y xy

y x x

x y y

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −  

P (3.3.1-1)

[ ]1 2 3 4 5 6 7 8 9 10 11 12 13= σ σ σ σ σ σ σ σ σ σ σ σ σ

which can be shown to satisfy the homogeneous equilibrium equations.

Element LH3 is a 9-β  element obtained by setting 10 11 12 13β =β =β =β =0 .Therefore
the stress matrix for LH3 becomes

LH3

6x9

1
1

1
1 1

1 1

x y

x y

x y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

P (3.3.1-2)

[ ]1 2 3 4 5 6 7 8 9= σ σ σ σ σ σ σ σ σ

Element LH4 is a 11-β  element obtained by setting 12 13β =β =0 . The stress
matrix thus becomes

LH4

6x11

1
1

1
1 1

1 1

x y xy

x y xy

x y

y

x

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

P (3.3.1-3)

[ ]1 2 3 4 5 6 7 8 9 10 11= σ σ σ σ σ σ σ σ σ σ σ

By applying the method of stress classification to the stress matrix shown in
Eq. 3.3.1-1, all 13 stress modes can be classified into 9 stress mode groups. The result
of the classification is shown in Table 3.3.1-1
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From  Table 3.3.1-1, it can be seen that  element LH3 contains  stress modes
belonging to only 7 different stress mode groups rather than 9 stress mode groups.
Thus, element LH3 will introduce 2 kinematic deformation modes. However, these
two stress modes are generally eliminated by boundary conditions or constrained by
element assembly.

Element LH4 was chosen from stress modes belonging to 9 different stress
mode groups. Hence, the element stiffness matrix has no spurious kinematic
deformation mode.

3.3.2 Dong Element[21]

Element QHMID: The assumed stresses are

1

2

1 3

1 3 13

1
1

1
1

1

x

y

xy

x

y

M

M

M

Q a a

Q b b

ξ η β
ξ η β

ξ η
η ξ
η ξ β

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅         = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

(3.3.2-1)

And the additional displacements are

2 2
λ 1

2 2
λ

λ 4

λ

λ

x

y

w

θ ξ η
θ ξ η

 ⋅ ⋅   
    = ⋅ ⋅    

    ⋅ ⋅ ⋅ ⋅    

(3.3.2-2)

where 1a , 3a , 1b and 3b  are the same as that in Eq. A1-10 in Appendix A.

 Table 3.3.1-1 Stress mode groups of Spilker’s assumed stresses after
classification.

1 1σ , 12σ , 13σ
2 2σ , 9σ
3 3σ , 8σ
4 4σ
5 5σ
6 6σ
7 7σ
8 10σ

Mode group

9 11σ
Zero-energy mode group -
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3.3.3 Henshell Element

Element QRDH : The assumed stresses are

1

2

11

1
1

1
1 -1

1 1 -1

x

y

xy

x

y

M x y xy

M x y xy

M x y

Q y

Q x

β
β

β

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

(3.3.3-1)

with no additional displacements.

3.3.4 Hamhim Elements

Hamhim[24] proposed many hybrid plate elements, namely, LH-OP, HSC1-OP,
HSC2-OP, QHMID-OP and QRDH-OP. The stress matrices for these elements were
chosen from existing elements by utilizing the method of stress classification. Since
Hamhim’s stress matrices are extracted from the existing elements, no variety of
stress modes are affered by the choices. The QHMID-OP element, modified from
Dong QHMID element and the QRDH-OP element, modified from Henshell QRDH
element were considered to be efficient. Thus, only the QHMID-OP and QRDH-OP
elements are considered in this study.

Element QHMID-OP : The assumed stresses are

1

2

1 3

1 3 9

1
1

1
1

1

x

y

xy

x

y

M

M

M

Q a a

Q b b

ξ β
ξ β

η
η ξ
η ξ β

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅         = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

(3.3.4-1)

where 1a , 3a , 1b and 3b  are the same as that in Eq. A1-10 on Appendix A.
This element contains one kinematic deformation mode because the fourth

stress mode is in a zero-energy mode group when the element shape is irregular.

Element QRDH-OP : The assumed stresses are

1

2

9

1
1

1
1

1 1

x

y

xy

x

y

M x y xy

M x y xy

M

Q y

Q x

β
β

β

⋅ ⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅ ⋅        = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

(3.3.4-2)
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3.3.5 Proposed Elements

In present study, the stress matrix is assumed initially as being complete
polynomials. All stress components are uncoupled. The initial 50- β  stress matrix
complete to third-order polynomials is

1
1

1
1

1

x y

x y

x y

x y

x y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

P

2 2

2 2

2 2

2 2

2 2

x xy y

x xy y

x xy y

x xy y

x xy y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3 2 2 3

3 2 2 3

3 2 2 3

x x y x y y

x x y xy y

x x y xy y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3 2 2 3

3 2 2 3
6 x 50

x x y x y y

x x y x y y

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅


⋅ ⋅ ⋅ ⋅ 

(3.3.5-1)

All 50-stress modes can be classified into 9 stress mode groups plus an additional
zero-energy mode group. The classification is tabulated in Table 3.3.5-1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50
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From the necessary and sufficient conditions given in Sec. 3.1, the stress matrix,
which is free from kinematic deformation modes, can be obtained as

6x9

1
1

1
1

1

y

x

y

x

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

P (3.3.5-1)

[ ]1 4 7 10 13 3 5 12 14= σ σ σ σ σ σ σ σ σ

After some observations on the results using well-behaved hybrid plate elements, the
stress matrix in Eq. 3.3.5-1 may be expressed in natural reference coordinates with
some constants accounting for distortion of element geometry. Eventually, the
element HBP1 is proposed. The stress matrix for this element is

1 3

1 3

HBP1
1 3

1 3

1 3 6x9

1 η ξ
1 η ξ

1 η ξ
1 η ξ

1 η ξ

a a

b b

b a

a a

b b

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

P (3.3.5-2)

where 1a , 3a , 1b and 3b  are the same as that in Eq. A1-10 on Appendix A.

 Table 3.3.5-1 Stress mode groups of proposed assumed stresses after
classification.

1 1σ , 11σ , 16σ , 18σ , 43σ , 45σ
2 3σ , 8σ , 26σ , 32σ , 34σ , 39σ , 41σ
3 4σ , 15σ , 19σ , 21σ , 48σ , 50σ
4 5σ , 9σ , 29σ , 35σ , 37σ , 40σ , 42σ
5 7σ , 22σ , 24σ
6 10σ , 25σ , 27σ
7 12σ , 44σ , 46σ
8 13σ , 28σ , 30σ

Mode group

9 14σ , 47σ , 49σ

Zero-energy mode
group

2σ , 6σ , 17σ , 20σ , 23σ , 31σ , 33σ ,
36σ , 38σ
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Note that when the element is rectangular in shape, 3a and 1b vanish. Thus, the stress
matrix in Eq. 3.3.5-2 is the same as that in Eq. 3.3.5-1.

The additional displacements are taken into consideration to construct element
HBP2. The element has the same stress matrix as the element HBP1. From Eq. A.1-19
in Appendix A, the additional displacements are added to the lateral displacements
only. The other two rotational degrees of freedom obviously have no effects on the
formulation. Hence, the additional displacements for element HBP2 are

λ
2 2ξ η

⋅ ⋅ 
 = ⋅ ⋅ 
  

N (3.3.5-3)

3.4 Evaluation of Element Stiffness Matrix

After obtaining the stress matrix and the additional displacements, the element
stiffness matrix can be formulated. At first the matrices

T d
V

V= ∫H P SP
T d

V
V= ∫G P B (2.3-13)

T T
λ( ) d

V
V= ∫R D P N

are evaluated by employing the stress matrix and the additional displacements
obtained previously. After this all matrices in Eq.2.3-13 are put together into the
partitioned matrix

T

T

 ⋅ ⋅
 
⋅ ⋅ − 

 − − 

G
R

G R H

Applying reverse Gauss elimination to the first partition, we obtain
T 1 T 1 T 1 1 T 1

T 1 T 1

( )( ) ( )− − − − −

− −

 − ⋅ ⋅
 

− ⋅ 
 − − 

G H G G H R R H R R H G
R H G R H R

G R H

Therefore, the topleftmost partition after elimination is the element stiffness matrix.

After analysis, the nodal displacements in each element are required to
compute the stress parameters from the relation

( )-1 -1 T -1 -1 T -1β = H G - H R(R H R) (R H G) q (3.4-1)

In practice, the stress parameters can be evaluated by forward substitution instead of
explicit multiplication and inversion. Finally, all stress components in each element
are calculated from

=σ Pβ (2.3-6)

by specifying the coordinates to the stress matrix.



Chapter IV

Efficiency of Hybrid Plate Elements

All hybrid plate elements considered were tested and compared with respect to
accuracy of displacement and force. Mesh refinement was performed to test for
convergence of results. Shear-locking effects were tested by varying the plate
thickness. Locking occurred when plate thickness becomes small. The sensitivity of
element properties with regard to the aspect ratio was also examined. In addition,
invariance property of all elements was tested.

The method of optimization employed in the present study to improve the
results has some shortcomings and limitations. The proof of this is shown in the next
section. However, this method is still applicable if some conditions are imposed.

In all tests, the results are normalized by using analytical solutions from thin-
plate theory [31].

4.1 Shortcomings and Limitations of Optimization Method

The optimization used in this study was carried out through the penalty-
equilibrium matrix, HP. Instead of obtaining better results, this method tends to cause
unstable element stiffness matrix in some elements. For the sake of simplicity, the
proof is shown for a plane stress problem.

The homogeneous equilibrium equations can be expressed as

∂ =σ 0  (1.2-4)
or, in matrix form,

σ
σ
τ

x

y

xy

x y

y x

 ∂ ∂ ⋅∂ ∂    =  ∂ ∂⋅   ∂ ∂   

0 (4.1-1)

From the relation σ = Pβ , Eq. 1.2-4 becomes

( )∂ =P β 0

Let

11 12 1 1

21 22 2 2

31 32 3 3 3 x 

i

i

i

P P P P

P P P P

P P P P

β

β

β β

 
 =  
  

P  (4.1-2)

where β is the number of stress parameters or stress modes.

Performing matrix multiplication of ∂P explicitly, we obtain
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11 12 1 1

21 22 2 2

31 32 3 3 3 x 

i

i

i

P P P P
x y

P P P P

P P P Py x

β

β

β β

 ∂ ∂ ⋅∂ ∂   ∂ =   ∂ ∂⋅   ∂ ∂   

P

1 311 31 12 32 1 3

2 321 31 22 32 2 3

2 x 

i i

i i

P PP P P P P P

x y x y x y x y

P PP P P P P P

y x y x y x y x

β β

β β

β

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ =

 ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
+ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

If stress mode i does not satisfy Eq. 1.2-4, all entries of ∂P vanish except that on
column i. The matrix ∂P then becomes

1 3

2 3

2 x 

i i

i i

P P

x y

P P

y x β

∂ ∂ ⋅ ⋅ + ⋅ ∂ ∂ =
∂ ∂ ⋅ ⋅ + ⋅ ∂ ∂ 

For this step, the penalty-equilibrium matrix is

T
P ( ) ( )d

V
V= ∂ ∂∫H P P (4.1-3)

2 2

1 3 2 3

 x 

di i i i

V

P P P P
V

x y y x

β β

⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 
 
 

=     ∂ ∂ ∂ ∂
⋅ ⋅ ⋅ + + + ⋅ ⋅    ∂ ∂ ∂ ∂    
 
 
⋅ ⋅ ⋅ ⋅  

∫

Obviously, only matrix entry (i,i) does not vanish. If this entry vanishes through the
integration, it is worthless to employ this optimization method.

Let us take a look at the matrix multiplication for matrix H in Eq. 2.3-13,

T d
V

V= ∫H P SP

We then obtain

Col. i

Row i

Col. i
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(4.1-4)
Note that stress mode i contributes to only row i and column i of matrix H.

From Eq. 4.1-3 and 4.1-4, let α→∞ , then

P

 x β β

α

⊕ ⊕ ⊕ ⊕ 
 ⊕ ⊕ ⊕ ⊕ 
 
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H H

And the inversion of above matrix gives

( ) 1
P

 x 

0
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0 0 0 0

0 β β

α −
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 ⊗ ⊗ ⊗ 
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+ =  
 
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⊗ ⊗ ⊗  

H H (4.1-5)

where ⊕ and ⊗ are generally non-zero values.
Note: Stress mode i does not make a contribution in matrix ( ) 1

Pα −+H H .
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Now take a look at the matrix multiplication for matrix G in Eq. 2.3-13,
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(4.1-6)

where q is the number of degrees of freedom in the element.

It can be seen that stress mode i contributes to only row i of matrix G.

From Eqs. 4.1-5 and 4.1-6, the element stiffness matrix can be obtained from

T 1
P( α )−= +k G H H G (3.2-5)

Row i

Row i
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where and  are generally non-zero values.

The formulation of the example element stiffness matrix so far shows that
stress mode i which does not satisfy the equilibrium equations gives no contribution
to the element stiffness matrix. The stress matrix in Eq. 4.1-2 is likely to have less
stress modes than an ordinary one. Consequently, when the stress matrix consists of
insufficient stress modes, this method opens up an opportunity to cause undesirable
spurious kinematic deformation modes in the element and may cause failure in the
solutions.

To illustrate how the optimization method works, some assumed stress
matrices, namely, OPT9EQ, OPT13-1, OPT13-2 and OPT15 are proposed. All of
these stress matrices have different stress modes except that only the first 9 stress
modes are the same and in equilibrium.
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P (4.1-8)
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(4.1-11)

Tests showed that all stress matrices above yield the same results no matter what the
second partitioned part of P is, if that part does not satisfy the equilibrium conditions.
This implies that the optimization by the penalty-equilibrium matrix just simply
eliminates those stress modes that are not in equilibrium from the formulation of
the element stiffness matrix.

Nevertheless, this optimization method is still applicable but one should pay
attention in choosing the stress matrix. The stress matrix should contain at least m
stress modes that satisfy equilibrium equations to guarantee sufficiency of stress
modes. See Sec.3.1 for the method of choosing appropriate stress modes.

4.2 Test for Convergence

4.2.1 Rectangular Plate

For the purpose of checking solution convergence, the mesh refinement used
was gradually refined. A square plate 2L on each side and total thickness t or 2h was
tested. Only a quadrant of the plate was analyzed due to symmetry of the plate. A
quadrant is subdivided into a uniform Nel by Nel mesh as illustrated in Fig.4.2.1-1.
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Figure 4.2.1-1 A square plate for convergent tests.

The number of subdivisions Nel used in each direction is 2, 4, 6, 8 and 10. Two
types of support conditions were considered. The simply supported boundary
conditions are denoted by SS1 or SS2 and the clamped boundary conditions are
denoted by C. The displacement boundary conditions are tabulated in Table 4.2.1-1.

In addition, two types of loading were applied to the plate. UL denotes the
uniformly distributed loads with density q and CL denotes a concentrated load P
applied at the center of the plate.

Several cases were tested under various combinations of boundary conditions
and loads, namely, SS2-UL, SS2-CL, C-UL and C-CL. For displacement, the analysis
results are illustrated in Fig. 4.2.1-2 through Fig. 4.2.1-5. Only the boundary
conditions SS2-UL and C-UL were examined for moments and the results are
illustrated in Fig.4.2.1-6 and Fig. 4.2.1-7.

Table 4.2.1-1 Corresponding constraints of forces and displacements with
respect to various edge conditions

Edge Conditions Boundary conditions
on displacements

Free (F) -

Soft-Simply Supported (SS1) 0w =

Hard-Simply Supported (SS2) 0tw θ= =

Clamped (C) 0t nw θ θ= = =

C

CL

CL

B

D

A
L L

L

L

Nel

Nel

E = 106

L = 10
ν = 0.3
t = 0.1

Symmetry:

x 0θ =

y

x Symmetry:

y 0θ =
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Figure 4.2.1-2 Convergence of central deflections of square plate with SS2-UL.

Figure 4.2.1-3 Convergence of central deflections of square plate with SS2-CL.

Nel

0 2 4 6 8 10 12

N
or

m
al

iz
ed

 d
ef

el
ct

io
ns

 a
t c

en
te

r 
(w

/w
,e

xa
ct

)

.9800

.9900

1.0000

1.0100

1.0200

1.0300

LH3 
LH4 
QHMID 
QHMID-OP 
QRDH 
QRDH-OP 
HBP1 
HBP2 

Nel

0 2 4 6 8 10 12

N
or

m
al

iz
ed

 d
ef

el
ct

io
ns

 a
t c

en
te

r 
(w

/w
,e

xa
ct

)

.9900

1.0000

1.0100

1.0200

1.0300

1.0400

1.0500

LH3 
LH4 
QHMID 
QHMID-OP 
QRDH 
QRDH-OP 
HBP1 
HBP2 



40

Figure 4.2.1-4 Convergence of central deflections of square plate with C-UL.

Figure 4.2.1-5 Convergence of central deflections of square plate with C-CL.
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Figure 4.2.1-6 Convergence of central moments of square plate with SS2-UL.

Figure 4.2.1-7 Convergence of central moments of square plate with C-UL.
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Tests showed that, unlike the displacement model, hybrid plate elements yield
non-monotonic convergence. The element LH4 is the stiffer element than element
LH3 in all cases because of the higher number of stress modes used.  Most hybrid
elements give more than 95 percent accuracy of displacement and moment for

el 4N ≥ . Elements QHMID, QHMID-OP, HBP1 and HBP2 show best convergence of
displacement. For Nel = 4, the deviation of displacement from the exact value is less
than 1 percent except in the C-CL case where it is about 3 percent. The element
QHMID-OP gives less accuracy on moment than others, particularly in the C-UL
case. The results for elements HBP1 and HBP2 differ only slightly. The additional
displacements do not affect the element results for this test.

4.2.2 Circular Plate

Convergence study was extended to the circular plate as well. The plate is
subjected to either a uniformly distributed load (UL) or a central concentrated load
(CL) with two types of boundary conditions, SS1 and C. Due to symmetry of the
plate, only a quadrant of the plate was considered. Three different meshes used for the
plate are shown in Fig. 4.2.2-1. The analysis results are illustrated in Fig. 4.2.2-2 to
Fig. 4.2.2-7.

Figure 4.2.2-1 Three meshes for quadrant of a circular plate.

From the results, the elements QHMID, LH3 and HBP2 are considered to be
the best elements. It should be noted that elements HBP1 and HBP2 yield different
results. Element HBP2 can achieve more accurate results for irregular element
geometry than element HBP1.

Almost all elements give the same convergence of moment except element
LH4.

E = 106

R = 5
ν = 0.3
t = 0.1

CL

R

C

Nel = 3
C

Nel = 12
C

Nel = 48

CL CL
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Figure 4.2.2-2 Convergence of central deflections of circular plate with SS1-UL.

Figure 4.2.2-3 Convergence of central deflections of circular plate with SS1-CL.
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Figure 4.2.2-4 Convergence of central deflections of circular plate with C-UL.

Figure 4.2.2-5 Convergence of central deflections of circular plate with C-CL.
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Figure 4.2.2-6 Convergence of central moments of circular plate with SS1-UL.

Figure 4.2.2-7 Convergence of central moments of circular plate with C-CL.
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4.2.3 Thin Rhombic Plate

A simply supported thin rhombic plate subjected to uniform loading was also
analyzed. The mesh, material and geometric constants are given in Fig 4.2.3-1.

Figure 4.2.3-1 Simply supported thin rhombic plate.

Only the boundary condition SS1 was considered. The normalized deflections
and moments at the center of the plate are illustrated in Fig. 4.2.3-2 and Fig. 4.2.3-3,
respectively.

For el 4N ≥ , element QHMID-OP and HBP2 yield stable and accurate
displacements.  Most elements show the same convergence and accuracy on moment
at the center of the plate.

Figure 4.2.3-2 Convergence of central deflections of rhombic plate with SS1-UL.
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Figure 4.2.3-3 Convergence of central moments of rhombic plate with SS1-UL.

4.2.4 Cantilever Plate

The last test on convergence was conducted on a cantilever plate. The plate
dimensions and material properties are given in Fig. 4.2.4-1. This plate is subdivided
into Nel equal-sided elements. Tip point load and moment are applied to the plate as
indicated.

Figure 4.2.4-1 Cantilever plate (beam) subjected to (a) Moment (b) Tip load.

This test concentrates on the convergence of the tip deflection due to the
different types of load. The results are illustrated in Fig 4.2.4-2 and Fig 4.2.4-3. All
elements give the same behavior in both cases. Among the compared elements, the
element QRDH-OP yields the most accuracy for point load at the tip.
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Figure 4.2.4-2 Convergence of tip deflection of cantilever plate subjected to point load.

Figure 4.2.4-3 Convergence of tip deflection of cantilever plate subjected to end moment.
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4.3 Test for Shear-Locking Effect

This test investigates the effect of plate thickness on the normalized
displacement at the plate center. The test employs the same square plate shown in
Fig.4.2.1-1 as an example with Nel = 4. The circular plate shown in Fig.4.2.2-1 with
Nel = 48 was also studied. Plate thickness varies such that L/t ratio is 10, 102, 103, 104,
105 and 106 for the square plate while 2R/t ratio is 10, 102, 103, 104 and 105 for the
circular plate. The results of this test are illustrated in Fig. 4.3-1 to Fig. 4.3-8.

Shear-locking is a serious problem for not only the hybrid element but also the
displacement element. A good element must not suffer from this effect. From the
results, it can be seen that elements QHMID-OP, HBP1 and HBP2 are the elements
that do not suffer from shear-locking in all cases of the square plate. For the circular
plate, the element QHMID-OP, on the other hand, fails this test. The elements HBP1
and HBP2, however, are still well-behaved.

Figure 4.3-1 Effect of plate thickness on center deflection of square plate with SS2-UL (Nel = 4).
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Figure 4.3-2 Effect of plate thickness on center deflection of square plate with SS2-CL (Nel = 4).
.

Figure 4.3-3 Effect of plate thickness on center deflection of square plate with C-UL (Nel = 4).
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.

Figure 4.3-4 Effect of plate thickness on center deflection of square plate with C-CL (Nel = 4).

Figure 4.3-5 Effect of plate thickness on center deflection of circular plate with SS1-UL (Nel = 48).
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Figure 4.3-6 Effect of plate thickness on center deflection of circular plate with SS1-CL (Nel = 48).

Figure 4.3-7 Effect of plate thickness on center deflection of circular plate with C-UL (Nel = 48).
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Figure 4.3-8 Effect of plate thickness on center deflection of circular plate with C-CL (Nel = 48).

4.4 Test on Element Aspect Ratio

The simply supported square plate with Nel = 4 is employed. The results are
illustrated in Fig.4.4-2 and Fig.4.4-3. For SS2-UL, all elements are not much sensitive
to the aspect ratio. Deviation from the exact solution is within 1 percent. Only element
QRDH-OP suffers from this test for SS2-CL.

Figure 4.4-1 Square plate for testing on element aspect ratio (Nel = 4).
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Figure 4.4-2 Effect of aspect ratio on center deflection of square plate with SS2-UL (Nel = 4).

Figure 4.4-3 Effect of aspect ratio on center deflection of square plate with SS2-CL (Nel = 4).
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4.5 Test for Invariance

Figure 4.5-1 Mesh for testing invariance of plate with SS2-UL element.

To illustrate the effect of element orientation, the square plate was rotated by
an angle θ . The rotations considered were 0, 30, 45, 60, and 90 degrees. Fig.4.5-2
illustrates the percent error of central deflection due to plate orientation. All elements
yield an error within 6 percent.

Figure 4.5-2 Effect on mesh orientation with SS1-UL.
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Chapter V

Conclusions

In the present study, two hybrid plate elements, namely, HBP1 and HBP2
were constructed by employing the stress classification method as an initial
procedure. Then, the proposed elements were expressed in natural reference
coordinate system and improved with regard to distortion of element geometry.
Eventually, the elements obtained proved to be versatile and fairly robust. Many
existing hybrid plate elements as well as the proposed elements were tested and
compared. Various tests were conducted so as to verify the performance of each
hybrid element.

Based on the results of this study, the following conclusions can be drawn:

1. The optimization method through the penalty-equilibrium matrix has some
shortcomings and limitations and should be used with care. This method opens up the
possibility of causing undesirable kinematic deformation modes in the element. Proof
of the method showed that a penalty constant tends to eliminate the stress modes
which do not satisfy the equilibrium equations from the element stiffness formulation,
as if those stress modes are not present in the stress matrix. Therefore, the necessary
and sufficient conditions for choosing the stress matrix are not satisfied.
Consequently, spurious kinematic deformation modes will occur.

2. Some elements having spurious kinematic deformation modes may,
nevertheless, give good results. However, these elements are considerably unstable
and may cause failure in some element assemblies. The element LH3 is an example of
this failure cited in Reference 15.

3. Higher number of stress parameters tend to make an element stiffer,
whereas the additional displacement parameters tend to soften the element. However,
due to non-monotonic convergence of the general hybrid element, the change in
stiffness either way may yet improve the element properties.

4. The stress classification method is considered to be an efficient and
systematic procedure as a guideline for obtaining the stress matrix. The necessary and
sufficient conditions for choosing the stress matrix can be explained through this
method. The stress matrix which is free from kinematic deformation modes in the
resulting element stiffness can easily be obtained.

5. Test for accuracy of displacement showed that, for regular element
geometry, most of the elements particularly elements QHMID, QHMID-OP, HBP1
and HBP2, give approximately more than 95 percent accuracy for moderate mesh
refinement. But among the elements considered superior in convergence when
element geometry is irregular, elements QHMID-OP and QHMID give less accuracy
than others, as evidenced by the circular plate and rhombic plate examples.

For moment, again, all elements give more than 95 percent accuracy for
elements with regular geometry but the accuracy will slightly be lost if distortion of
element geometry takes place. Even so, the accuracy on moment is still not less than
90 percent.
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6. Shear-locking effect is noticeable when L/t ratio is increase to 102 for most
elements. For the QHMID element, however, locking does not become apparent until
L/t is 103 in the square plate or when the ratio 2R/t is about 102 in the circular plate.
For the square plate, elements QHMID, QHMID-OP, HBP1 and HBP2 obviously are
the best elements that can overcome severe locking. They give more than 99 percent
accuracy on displacement for the SS2-UL, SS2-CL and C-UL cases and more than 96
percent for the C-CL case after locking occurs. For the circular plate, element
QHMID-OP seriously fails the test. For all other better elements, the accuracy of
displacement averages more than 95 percent.

7. All elements are not much sensitive to element aspect ratio. The
discrepancy of displacement from the exact value is within 1 percent for the SS2-UL
case and within 3 percent for the SS2-CL case when the aspect ratio is 3.

8. All elements are not invariant. The maximum error takes place when the
mesh rotates to an angle of 45 degrees. The results from elements QHMID, QHMID-
OP, HBP1 and HBP2 approximately are within 2 percent of those using zero-degree
orientation for the mesh.

Comparison of the overall performance of the hybrid elements studied
indicates that elements HBP1 and HBP2 are the most efficient among the competing
elements. These elements perform very well in all tests especially the shear-locking
test.
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Appendix A

Details of Element Stiffness Formulation

A.1 Stress-Strain Approach
(Convention follows Reference 15)

The generalized forces are expressed in terms of 6 stress components varying 
through a plate of thickness 2h. By invoking the three-dimensional equilibrium 
equations, all stress components are
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So that the stresses may be assumed as
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element.



63

21
1 2 3 10 132

21
4 5 6 11 132

7 8 9 12

2 9 12 13 10

6 8 11 12 13

12

σ β β β β β

σ β β β β β

τ β β β β
τ (β β ) (β β ) β
τ (β β ) β (β -β )
σ 2β

x

y

xy

xz

yz

z

x y xy x

x y xy y

x y xy

x y

x y

= + + + +

= + + + −

= + + +

= + + + +
= + + +

=

or expressed in matrix form as

21
12

21
22

3

13

σ β1
σ β1
σ β2
τ 1
τ 1 1
τ β1 1

x

y

z

xy

xz

yz

x y xy x

x y xy y

x y xy

y x x

x y y

   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   =     

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
    
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −        

(A.1-2)

σ = Pβ

Element LH3 is obtained by setting 10 11 12 13β =β =β =β =0  whereas 12 13β =β =0  is set to obtain
element LH4.

The assumed displacements are the same as those for a four-node quadrilateral
element varying linearly within the element,
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where Ni are the bilinear shape functions,

1 (1 ξ ξ)(1 η η)
4i i iN = + + (A.1-4)

and xiθ , yiθ and iw are the degrees of freedom at node i. The coordinate transformation
is
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where (xi,yi) are the coordinates of node i. The displacements can be expressed in
terms of the nodal values as
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or u = Nq
The strain-displacement relations are

ε = Du
= DNq

or = Bq (A.1-7)
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The Jacobian matrix is defined by

( , )
(ξ,η)

yx
x y

x x

ξ ξ

η η

∂ ∂
∂ ∂ ∂ = =  ∂ ∂ ∂ ∂ ∂ 

J

1 2 1 2

3 2 3 2

a a b b

a a b b

η η
ξ ξ

+ + 
=  + + 

(A.1-9)

with
1 1

1 1
2 2

2 2
3 3

3 3
4 4

-1  1  1 -1
1  1 -1  1 -1
4

-1 -1  1  1

x y
a b

x y
a b

x y
a b

x y

 
     
     =     
           

(A.1-10)

From mechanics of materials, the strain-stress relations are

ε = Sσ
where
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1 -ν -ν
-ν 1 -ν
-ν -ν 11

2(1+ν)
2(1+ν)

2(1+ν)

E

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅  

S (A.1-11)

By integration through the thickness, the first term of Eq. 2.3-4, T1
2 d

V
V−∫ σ Sσ ,

becomes

T1
2 d

A
A−∫ σ Sσ (A.1-12)

where

2

2

2 2 4

2

2

21 -ν ν
5

2-ν 1 ν
5

2 2 521 ν ν
5 5 105

2(1+ν)
4 (1+ν)
5

4 (1+ν)
5

h

h

h h h

E

h

h

  
⋅ ⋅ ⋅  

  
   ⋅ ⋅ ⋅   
 
    ⋅ ⋅ ⋅   =      
⋅ ⋅ ⋅ ⋅ ⋅ 

 
 ⋅ ⋅ ⋅ ⋅ ⋅
 
 
 ⋅ ⋅ ⋅ ⋅ ⋅
  

S
(A.1-13)

From Eqs. A.1-2, A.1-7 and A.1-13, we can obtain the matrices shown in Eq. 2.3-13
as

T

T

d

d
A

A

A

A

=

=

∫
∫

H P SP

G P B

or
3 1 1 T

-1 -1

3 1 1 T

-1 -1

2 d d
3

2 d d
3

h

h

ξ η

ξ η

=

=

∫ ∫

∫ ∫

H P SP J

G P B J
(A.1-14)

Note that integration of the above equation is performed over area only.

Then, the element stiffness matrix is

T 1−k = G H G (A.1-15)
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To arrive at this step, the equilibrium differential operators for this approach
are derived. These operators are denoted by TD in Eq.2.3-5 or ∂  in Eq.1.2-4. From
Eq. A.1-1
the assumed stresses are

σ = zσ (A.1-16)

where 3 2 3 2 2 2 21 1 1
6 2 2[ ( 3 2 ) ( ) ( )diag z z z h z h z h z h z= − − − −z

From Eqs. A.1-2 and A.1-16, the homogeneous equilibrium equations become

∂σ = 0
( )∂= zσ
( )∂= zPβ

Let 1z z= ,
2 21

2 2 ( )z h z= − ,
and 3 2 31

3 6 ( 3 2 )z z h z h= − −

Therefore,
( )∂ = ∂P zP

1 11 12 13 1

1 21 22 23 2

3 31 32 33 3

1 41 42 43 4

2 51 52 53 5

2 61 62 63 6

( )
( )
( )
( )
( )
( )

z P P P P

z P P P P
x y z
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y x z z P P P P

z P P P P
z x y
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β

β

β

β

β

β

 
  ∂ ∂ ∂⋅ ⋅ ⋅  ∂ ∂ ∂ 
  ∂ ∂ ∂= ⋅ ⋅ ⋅   ∂ ∂ ∂   

∂ ∂ ∂   ⋅ ⋅ ⋅∂ ∂ ∂    
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P P z P P z
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z P P z P P
P z z P z z
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 ∂ ∂ ∂ ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂
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2 2

P P P P
z P z P
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P P P P
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P P P Ph z h z
P P
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 ∂ ∂ ∂ ∂
+ − + − ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
= + − + − 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂− −
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∂ ∂ ∂ ∂  
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11 41 12 42
51 52

21 41 22 42
61 62

2 2

51 61 52 62
31 322

P P P P
P P

x y x y
z

P P P P
z P P

y x y x
h z

P P P P
P P

x y x y

 ∂ ∂ ∂ ∂
+ − + −   ∂ ∂ ∂ ∂   ⋅ ⋅

   ∂ ∂ ∂ ∂
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Hence,
′∂ = ∂P z P (A.1-17)

where
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 ∂ ∂⋅ ⋅ − ⋅∂ ∂ 
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 

∂ ∂ ⋅ ⋅ − ⋅ ∂ ∂  

Then, by substituting Eq. A.1-17 into Eq. 4.1-3, the penalty-equilibrium matrix in this
approach becomes

T
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V
V= ∂ ∂∫H P P

T T( ) ( )d
A
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−
′ ′= ∂ ∂∫ ∫P z z P

32
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T 32
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54
15
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h A

h

 ⋅ ⋅
 = ∂ ⋅ ⋅ ∂ 
 ⋅ ⋅ 

∫ P P (A.1-18)

Also, from Eq. 2.3-13,
T

λ( ) d
V

V= ∂∫R P N ,

now becomes
T T

λ( ) d
V

V′= ∂∫R P z N

T T
λ( ) ( d ) d

h

A h
z A

−
′= ∂∫ ∫P z N

T
λ

32
3

( ) d
A

A

h

⋅ ⋅ ⋅ 
 = ∂ ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

∫ P N (A.1-19)
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A.2 Moment-Curvature Approach

The assumed moments are

 M = Pβ (A.2-1)

The displacement fields, the interpolation functions and the coordinate transformation
are the same as in Eqs. A.1-3, A.1-4 and A.1-5, respectively.

The strain-displacement relations are

ε = Du
= DNq

or = Bq (A.2-2)
where

1

1

x

y

y x

x

y

∂ ⋅ ⋅∂ 
 ∂⋅ ⋅∂ 
 ∂ ∂ ⋅=  ∂ ∂
 

∂ ⋅ − ∂ 
∂ ⋅ − ∂  

D
(A.2-3)

And the strain-stress relations in this approach are
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1 -ν
12 -ν 1

(1 ν) / 2

11.2
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Et

Gt

 ⋅  
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  ⋅ ⋅ −=   

⋅  
  ⋅  

0
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0

(A.2-4)

where 
2(1 )

E
G

ν
=

+

From Eqs. A.1-2, A.1-7 and A.1-13, we can obtain the matrices shown in Eq. 2.3-13
as
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θ θ
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M

M
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 
  =  
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1 1 T

-1 -1
1 1 T

-1 -1

d d

d d

ξ η

ξ η

=

=

∫ ∫
∫ ∫

H P SP J

G P B J
(A.2-5)

Note that integration of the above equation is performed over area only.

Then, the element stiffness matrix is

T 1−k = G H G (A.2-6)



Appendix B

HybridFE Program

In order to obtain the hybrid finite element results, the program HybridFE,
which is a hybrid finite element computer program for plate bending, was developed.
The program can manipulate any assumed stress matrix. The stress matrix can be
input from scratch, imported from a file or imported from a sub-module named
StressClassification.

The HybridFE program is written such that various element types, element
interpolation functions and analysis options can be easily changed. Not only hybrid
elements but also conventional elements with assumed displacements can be handled.
At this time, five element types, namely, PS, PLATE, PLATE_ALT, PLATE_ACM
and PLATE_BFS are  provided. PS-type denotes the element used in plane stress
problem. PLATE and PLATE_ALT are plate bending elements. The distinction is that
PLATE-type is the element formulated in terms of moments and curvatures whereas
PLATE_ALT is formulated in terms of stresses and strains. The PLATE_ACM and
PLATE_BFS are conventional displacement-based plate elements. The interpolation
functions used are those for the four-node quadrilateral element, denoted as Q4, and
the eight-node quadrilateral element, denoted as Q8.

In addition to the ordinary hybrid element analysis, the additional
displacements and the penalty-equilibrium techniques are optional.

HybridFE incorporates the OFELI library in the program code. Some
extensions to this library have been made in order to embrace the hybrid version.
OFELI is an object-oriented library of C++ class for development of finite element
codes. It is not intended as a finite element code itself but as a toolkit of utility
functions. For more information on the OFELI, vitsit the internet website at

http://wwwlma.univ-bpclermont.fr/~touzani/ofeli.html

B.1 Input File Format

This study utilizes the mesh data file (called MDF file) proposed in OFELI as 
an input file for HybridFE. An example of a quadrant of a simply supported square 
plate with 2 x 2 elements is shown below.

#MESH!
# A quadrant of Square Plate : 2 x 2 elemetns
Dim  2
Node     1         .000          .000  3    0    0    1
Node     2        5.000          .000  3    0    0    1
Node     3       10.000          .000  3    1    0    1
Node     4         .000         5.000  3    0    0    1
Node     5        5.000         5.000  3    0    0    0
Node     6       10.000         5.000  3    1    0    0
Node     7         .000        10.000  3    0    1    1
Node     8        5.000        10.000  3    0    1    0
Node     9       10.000        10.000  3    1    1    0
Element   quad     1   4   1     1         2         5         4
Element   quad     2   4   1     2         3         6         5
Element   quad     3   4   1     4         5         8         7
Element   quad     4   4   1     5         6         9         8
EOF
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The following explanations of this file format are extracted from the document
attached with the library :

The main principle governing the structure of this file is that any information in the
file is contained in a line and is defined by a keyword following the rules :

• Any line beginning with a # sign is interpreted as a comment line.
• The first line begins necessarily (at first column) with the string

#MESH!
• Keyword Dim starts a line that gives the space dimension. An integer number

(between 1 and 3) must follow this keyword.
• Each node must be introduced by a line starting with the keyword Node. This

keyword must be followed by the following data :

Variable Definition Type
label Label of node integer
x[1] First coordinate of node real
... ... ... ...
x[dim] dim–th coordinate of node real
nb_dof Code associated to first d.o.f. integer
code[1] Code associated to first d.o.f. integer
... ... ... ...
code[nb_dof] Code associated to nb_dof–th d.o.f. integer

• Each element must be introduced by a line starting with the keyword Element.
This keyword must be followed by the following data :

Variable Definition Type
shape string defining the element shape integer
label Label of element integer
code Code associated to element integer
node[1] Label of first node of element integer
... ... ... ...
node[nb_node] Label of nb_node–th node of element integer
code[nb_dof] Code associated to nb_dof–th d.o.f. integer

• The last line of the MDF file must contain the keyword EOF (as End Of File).

B.2 Element Stiffness Matrix Subroutine

Following is a general procedure to obtain an element stiffness matrix coded
in C++ computer language.

void CHybridPlateQ4::Stiffness(int Opt)
{
   double c;
   int i, j, k;
   int nPMDim;
   LocalMatrixEx<double> *pP, *pH, *pG, *pB;
   LocalMatrixEx<double> *pdP, *pHp, *pM, *pR;

   pdP = pHp = pM = pR = NULL;

   pP = new LocalMatrixEx<double>(nb_stress_, nb_beta_);
   pH = new LocalMatrixEx<double>(nb_beta_  , nb_beta_);
   pG = new LocalMatrixEx<double>(nb_beta_  , nb_dof_ );
   pB = new LocalMatrixEx<double>(nb_stress_, nb_dof_ );

   //Loop over each Gauss Points
   for (i=1; i<=gauss_.Order(); i++)
      for (j=1; j<=gauss_.Order(); j++) {
         Point<double> g(gauss_.GP(i),gauss_.GP(j));
         quad_->Local(g);
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         Point<double> lp = quad_->LocalPoint();

         //Transform Coordinates system
         if (ePsymb.m_CoordType == XY)
            ePsymb.SetXYValue(lp.x,lp.y);
         else
            ePsymb.SetXYValue(g.x,g.y);

         eP = ePsymb;

         //Evaluate matrix B
         for (int k=1; k<=nb_nodes_; k++) {
            eB(1, 3*k-2 ) =  quad_->DSh(k).x;
            eB(2, 3*k-1 ) =  quad_->DSh(k).y;
            eB(3, 3*k-2 ) =  quad_->DSh(k).y;
            eB(3, 3*k-1 ) =  quad_->DSh(k).x;
            eB(4, 3*k-2 ) =  quad_->Sh(k);
            eB(4, 3*k   ) = -quad_->DSh(k).x;
            eB(5, 3*k-1 ) =  quad_->Sh(k);
            eB(5, 3*k   ) = -quad_->DSh(k).y;
         }
         c = gauss_.W(i)*gauss_.W(j) * quad_->Det();
         //Evaluate matrix H
         eH += eP.Trn()*eS*eP*c;

         //Evaluate matrix G
         eG += eP.Trn()*eB*c;
      }
   nPMDim = nb_dof_+nb_beta_;

   if (Opt)
      pdP = new LocalMatrixEx<double>(3, nb_beta_);

   if (Opt & HB_LAGRANGEMULT) {
      //Evaluate matrix M beware of ambiguity with variable of base class
      //FEEqua<> and then evaluate also matrix R

      pM = new LocalMatrixEx<double>(3, nb_lambda_);
      pR = new LocalMatrixEx<double>(nb_beta_, nb_lambda_);

      //Loop over each Gauss Points
      for (i=1; i<=gauss_.Order(); i++)
         for (j=1; j<=gauss_.Order(); j++) {
            Point<double> g(gauss_.GP(i),gauss_.GP(j));
            quad_->Local(g);
            Point<double> lp = quad_->LocalPoint();

            //Transform Coordinates system
            if (ePsymb.m_CoordType == XY) {
               ePsymb.SetXYValue(lp.x,lp.y);
               //Differentiate matrix P in XY Coordinates system
               for (k=1; k<=nb_beta_; k++) {
                  edP(1,k) = ePsymb(1,k).dX()+ePsymb(3,k).dY()-ePsymb(4,k);
                  edP(2,k) = ePsymb(2,k).dY()+ePsymb(3,k).dX()-ePsymb(5,k);
                  edP(3,k) = ePsymb(4,k).dX()+ePsymb(5,k).dY();
               }
            }
            else {
               ePsymb.SetXYValue(g.x,g.y);
               //Differentiate matrix P in RS Coordinates system
               double dP1dr, dP1ds, dP2dr, dP2ds;

double dP3dr, dP3ds, dP4dr, dP4ds, dP5dr, dP5ds;
               double dP1dx, dP2dy, dP3dx, dP3dy, dP4dx, dP5dy;
               for (k=1; k<=nb_beta_; k++) {
                  dP1dr = ePsymb(1,k).dX(); dP1ds = ePsymb(1,k).dY();
                  dP2dr = ePsymb(2,k).dX(); dP2ds = ePsymb(2,k).dY();
                  dP3dr = ePsymb(3,k).dX(); dP3ds = ePsymb(3,k).dY();
                  dP4dr = ePsymb(4,k).dX(); dP4ds = ePsymb(4,k).dY();
                  dP5dr = ePsymb(5,k).dX(); dP5ds = ePsymb(5,k).dY();
                  c = 1./quad_->Det();

                  dP1dx = c*( quad_->j[1][1]*dP1dr-quad_->j[0][1]*dP1ds);
                  dP2dy = c*(-quad_->j[1][0]*dP2dr+quad_->j[0][0]*dP2ds);
                  dP3dx = c*( quad_->j[1][1]*dP3dr-quad_->j[0][1]*dP3ds);
                  dP3dy = c*(-quad_->j[1][0]*dP3dr+quad_->j[0][0]*dP3ds);
                  dP4dx = c*( quad_->j[1][1]*dP4dr-quad_->j[0][1]*dP4ds);
                  dP5dy = c*(-quad_->j[1][0]*dP5dr+quad_->j[0][0]*dP5ds);
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                  edP(1,k) = dP1dx + dP3dy - ePsymb(4,k);
                  edP(2,k) = dP2dy + dP3dx - ePsymb(5,k);
                  edP(3,k) = dP4dx + dP5dy;
               }
            }
            if (eMsymb.m_CoordType == XY)
               eMsymb.SetXYValue(lp.x,lp.y);
            else
               eMsymb.SetXYValue(g.x,g.y);

            eM = eMsymb;//eP = ePsymb;

            c = gauss_.W(i)*gauss_.W(j) * quad_->Det();
            //Evaluate matrix R
            eR += edP.Trn()*eM*c;
         }
      nPMDim += nb_lambda_;
   }
   else
      nb_lambda_ = 0;

   if (Opt & HB_PENALTYMTX) {
      //Evaluate matrix Hp beware of ambiguity with var. of base class FEEqua<>
      pHp = new LocalMatrixEx<double>(nb_beta_, nb_beta_);

      //Loop over each Gauss Points
      for (i=1; i<=gauss_.Order(); i++)
         for (j=1; j<=gauss_.Order(); j++) {
            Point<double> g(gauss_.GP(i),gauss_.GP(j));
            quad_->Local(g);
            Point<double> lp = quad_->LocalPoint();

            //Transform Coordinates system
            if (ePsymb.m_CoordType == XY) {
               ePsymb.SetXYValue(lp.x,lp.y);
               //Differentiate matrix P in XY Coordinates system
               for (k=1; k<=nb_beta_; k++) {
                  edP(1,k) = ePsymb(1,k).dX()+ePsymb(3,k).dY()-ePsymb(4,k);
                  edP(2,k) = ePsymb(2,k).dY()+ePsymb(3,k).dX()-ePsymb(5,k);
                  edP(3,k) = ePsymb(4,k).dX()+ePsymb(5,k).dY();
               }
            }
            else {
               ePsymb.SetXYValue(g.x,g.y);
               //Differentiate matrix P in RS Coordinates system
               double dP1dr, dP1ds, dP2dr, dP2ds, dP3dr, dP3ds;

double dP4dr, dP4ds, dP5dr, dP5ds;
               double dP1dx, dP2dy, dP3dx, dP3dy, dP4dx, dP5dy;
               for (k=1; k<=nb_beta_; k++) {
                  dP1dr = ePsymb(1,k).dX(); dP1ds = ePsymb(1,k).dY();
                  dP2dr = ePsymb(2,k).dX(); dP2ds = ePsymb(2,k).dY();
                  dP3dr = ePsymb(3,k).dX(); dP3ds = ePsymb(3,k).dY();
                  dP4dr = ePsymb(4,k).dX(); dP4ds = ePsymb(4,k).dY();
                  dP5dr = ePsymb(5,k).dX(); dP5ds = ePsymb(5,k).dY();
                  c = 1./quad_->Det();

                  dP1dx = c*( quad_->j[1][1]*dP1dr-quad_->j[0][1]*dP1ds);
                  dP2dy = c*(-quad_->j[1][0]*dP2dr+quad_->j[0][0]*dP2ds);
                  dP3dx = c*( quad_->j[1][1]*dP3dr-quad_->j[0][1]*dP3ds);
                  dP3dy = c*(-quad_->j[1][0]*dP3dr+quad_->j[0][0]*dP3ds);
                  dP4dx = c*( quad_->j[1][1]*dP4dr-quad_->j[0][1]*dP4ds);
                  dP5dy = c*(-quad_->j[1][0]*dP5dr+quad_->j[0][0]*dP5ds);

                  edP(1,k) = dP1dx + dP3dy - ePsymb(4,k);
                  edP(2,k) = dP2dy + dP3dx - ePsymb(5,k);
                  edP(3,k) = dP4dx + dP5dy;
               }
            }

            c = gauss_.W(i)*gauss_.W(j) * quad_->Det();

            //Evaluate matrix Hp : Penalty Equilibrium Matrix
            eHp += edP.Trn()*edP*c;
         }
      eHp *= (penalty_const_/E_);
      eH += eHp;
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   }

   if (pP)  { delete pP;  pP  = NULL; }
   if (pB)  { delete pB;  pB  = NULL; }
   if (pHp) { delete pHp; pHp = NULL; }
   if (pM)  { delete pM;  pM  = NULL; }
   if (pdP) { delete pdP; pdP = NULL; }

   //Partitioned Matrix which to be eliminated to obtain matrix K
   LocalMatrixEx<double> PM(nPMDim, nPMDim);

   PM.Copy(eG      ,1,1, nb_dof_+nb_lambda_+1, 1);
   PM.Copy(eG.Trn(),1,1, 1, nb_dof_+nb_lambda_+1);

   if (Opt & HB_LAGRANGEMULT) {
      eR *= -1.0;
      PM.Copy(eR      ,1,1, nb_dof_+nb_lambda_+1, nb_dof_+1);
      PM.Copy(eR.Trn(),1,1, nb_dof_+1, nb_dof_+nb_lambda_+1);
   }

   eH *= -1.0;
   PM.Copy(eH      ,1,1, nb_dof_+nb_lambda_+1, nb_dof_+nb_lambda_+1);

   if (pH)  { delete pH;  pH  = NULL; }
   if (pG)  { delete pG;  pG  = NULL; }
   if (pR)  { delete pR;  pR  = NULL; }

   PM.GEliminate(-nb_dof_);

   // Copy element stiffness to based class variable DMatrix<double> *M
   for (i=1; i<=nb_dof_; i++)
      for (j=1; j<=nb_dof_; j++)
         eMat(i,j) = PM(i,j);

   // Solve for stress recovery matrix by backward substitution
/* K K 0 0 0
   K K 0 0 0
   A A B 0 0   <---- Paradigm of partitioned matrix PM
   A A B B 0
   A A B B B
*/
   //Process backward substitution
   for (j=1; j<=nb_dof_; j++) {
      PM(nb_dof_+1,j) /= -PM(nb_dof_+1,nb_dof_+1);
      for (i=2; i<=nb_lambda_+nb_beta_; i++) {
         PM(nb_dof_+i,j) = -PM(nb_dof_+i,j);
         for (k=1; k<=i-1; k++)
            PM(nb_dof_+i,j) -= PM(nb_dof_+i,nb_dof_+k) * PM(nb_dof_+k,j);
         PM(nb_dof_+i,j) /= PM(nb_dof_+i,nb_dof_+i);
      }
   }

   // *** Store 'SubMtxA' to Recovery Matrix ***
   for (j=1; j<=nb_dof_; j++) {
      for (i=1; i<=nb_lambda_; i++)
         eLambdaRCV(i,j) = PM(nb_dof_+i,j);  // for additional displacement parameters
      for (i=1; i<=nb_beta_; i++)
         eBetaRCV(i,j) = PM(nb_dof_+nb_lambda_+i,j);  // for stress parameters
   }

}
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B.3 Main Fragment of Code in Analysis Task

void CHybridFEDoc::Analysis(void)
{
...
   // Global Stiffness matrix
   SkMatrix<double> a(m_Mesh);

   if (m_pDisplacement) delete m_pDisplacement;
   m_pDisplacement = new Vect<double>(m_Mesh.NbDOF());
   ASSERT(m_pDisplacement);
...
   Element  *el;
   GenericMaterial MyMaterial;
   MyMaterial.Young(m_dYoung);
   MyMaterial.Poisson(m_dPoisson);

   if (m_pMatrixP) m_pMatrixP->m_CoordType = m_CoordType;
   if (m_pMatrixM) m_pMatrixM->m_CoordType = m_CoordType;

// Loop over elements
// ------------------
   Info( _T("Looping over elements ...\r\n") );

   for (m_Mesh.TopElement(); (el=m_Mesh.GetElement());) {
      el->Mat(&MyMaterial);
      el->MatName("MyMaterial");
      el->Thickness(m_dThickness);

      switch (m_ElShape) {
      case Q4 : {
         switch(m_ElType)  {
         case PS : {
            m_nNbDOFperNode = 2;
            m_nNbForces = 3;
            CHybridPSQ4 eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                }
         case PLATE : {
            m_nNbDOFperNode = 3;
            m_nNbForces = 5;
            CHybridPlateQ4 eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                   }
         case PLATE_ALT : {
            m_nNbDOFperNode = 3;
            m_nNbForces = 6;
            CHybridPlateQ4Alt eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                       }
         case PLATE_ACM : {
            m_nNbDOFperNode = 3;
            m_nNbForces = 3;
            CPlateACM eq(el);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness();
            a.Assembly(el,eq.A());
            break;
                   }
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         case PLATE_BFS : {
            m_nNbDOFperNode = 4;
            m_nNbForces = 3;
            CPlateBFS eq(el);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness();
            a.Assembly(el,eq.A());
            break;
                   }
         }
         break;
                }
      case Q8 : {
         switch(m_ElType)  {
         case PS : {
            m_nNbDOFperNode = 2;
            m_nNbForces = 3;
            CHybridPSQ8 eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                }
         case PLATE : {
            m_nNbDOFperNode = 3;
            m_nNbForces = 5;
            CHybridPlateQ8 eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                   }
         case PLATE_ALT : {
            m_nNbDOFperNode = 3;
            m_nNbForces = 6;
            CHybridPlateQ8Alt eq(el, m_pMatrixP,m_pMatrixM);
            eq.PenaltyConst(m_dPenaltyConst);
            eq.GaussOrder(m_iQOrder);
            eq.Stiffness(m_Options);
            a.Assembly(el,eq.A());
            SaveRCVMatrix(stream,eq.BetaRCV());
            break;
                       }
         }
         break;
                }
      } //End switch (m_ElShape)
   } //End Loop over elements

   //Assemble External Applied Loads
   AssemblyLoad();

   Info( _T("Imposing boundary conditions ...\r\n") );
   a.Constraint(m_Mesh /*,RHS,bc*/);

   int ret = a.Factor();
   if ( ret ) {
      CString strErr;
      strErr.Format(_T("Error in matrix factorization : %d-th pivot\r\n is too small =
%f"),ret,a(ret,ret));
      AfxMessageBox(strErr);
      return;
   }
   Info( _T("Solving ... ") );
   a.Solve(RHS);
   Info( _T("done\r\n") );
   // Recovery for stresses

BetaRecovery(stream);
...
   ////////////////////
   // Output Results //
   ////////////////////
}
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