CHAPTER Il

THEORY

Multicomponent mixture is composed of more than one chemical species. The
thermodynamic properties of mixtures, particularly liquid mixtures, are usefully
expressed in relation to the properties of the pure constituent chemical spemes These
relations require the definition of thermodymamic properties such as partial molar
property, property changes of mixing and excess property. In a.ddxtlon, the prediction of
tlwrmodynaxmc properties for mixtures can use the most commonly encountered
equations of state such as a modified Redlich-Kwong, Peng-Robinson, Peng-Robmson
Stryjek-Vera and the extended Peng-Robinson-Stryjek-Vera: Peng-Robinson-Stryjek-
Vera2.

3.1 Density

Density is defined as the mass per unit volume and usually is expressed in units of
kilograms per cubic meter in SI, and pounds per cubic foot in the American Engineering
System. The Greek symbol p (tho) is used by engineers to representdens:ty

Thedenmtyofasubstancelsnotconstant;mfact,dens:tyvaneswithboth
temperature and pressure. As a rule, liquid and solid densities do not change'va'y much
as temperature and pressure change. This characteristic is called being a* weak function ’ '
of tempereture and pressure, Although for highly accurate work one may need tabulated |
data for liquids and solids as a function of temperature and pressure (Snider, 1984).

Ghsw, however, are different. Gases show large changes in density as either the
temperature or pressure changes. That is as the temperature increases, the density
decreases, and as the pressure increases, the densuy increases. The density of a mixture of

substances varies with the composition of the mixture.



3.2 Specific Volame and Molar Volume

‘Specific volume is the volume occupied by a unit mass 6f a substance; i.c., volume
per mass, normally given in units of cubic meter per kilograms in' SI and cubic foot per
pound in the American Engincering System. Note that specific volume is simply the
inverse of density: ' |

The tcrm molar volume refers to the volume occupied by a mole of substance, and

is reported in units of cubic meter per mole or cubic foot per mole.

) .
V= ~ (3.1)

From the relation between density (p) and specific volume (V), equation 3.1,

therefore the volume any gas depend on temperature, pressure and composition présent.

If the composition is kept constant, at a specific temperature the volume increases when

thepmmuedecreasesmdataspeciﬁcpressumﬂwvolumeinmseswhenthc

3.3 Partial Molar Properties

In general, any mixture extensive property M, can be expressed as a function of the
two intensive properties temperature and pressure and the number of moles of the

individual components as

M, =M,(T,P,n,,n;,..) | (3.2)
where '

M, =nM (3.3)

For example, M can represent any of the molar properties V, H, U, §, A, or G; it
can also représent such properties as the compressibility factor Z, the thermal
compressibility , the volume expansion coefficient B, and density p.

In view of the functional dependence of M, total differential gives

M M ¢, oM ‘
dM ~_—[_--‘-] dT + [-—‘] dP+y [——'-] dn (3.4)
' ar P, _ o T,n, TP, i ‘

fal i
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The partial molar properties of component “’ in a mixture, partial derivative with

respect to n, at constant P, T, and I, is denoted as follows

e

Mi =[%”:-:—L | | | | : (3.5)

Substitution into equation (3.4) gives an expression for the total differential of any

dM,=[3_M—*]‘ dT+[2—M-‘-] dP +3: Mdn, (3.6)
ar P,n P.n;

i=1
[l ]

extensive function for a homogeneous fiuid.

At constant temperature and pressure, equation (3.6) can be integrated to give

M, =5nM, (3.7)
Upon division by n, this becomes
M=3xM, (398

i=l

As an example of the characteristics ofpa:ﬁalproperﬁes,oonsiderittobethe molar
volume. Then, ‘

. _ (3.9)

whers, by definition of partial molar volume,

= fav : S
Vi =[——'-] 3.10
i | 6.10)

Ihcparﬁalmolar'pmperﬁsarevcryuseﬁﬂ in analyzing the dependence of mixture
properties provides the basis for deriving many useful thermodynamic relations such as
ﬂlcpropertychangwonmixing,theﬂxgacityofacomponentinamixm,theexcm
properties, the solution theories, the Gibbs — Duhem equation, etc.

3.4 Volume Changes of Mixing

For general mixing, the volume of the mixture is not equal to the sum of the

volumes of the components. If the mixture have ‘c’ components that are mixed at
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constant temperature and pressure, volume changes of mixing will be the difference
between the mixture volume and the volume of the components.

By definition of volume changes of mixing, AV“
Avm = Vt —vt.m

= ilni(vl - Vi)
=inivi_“inivi (3.11)
i=l =l
Then division by n, we obtained
avessxfi-v) » (.12)

i=l

Volume changes of mixing is functions of temperature, pressure and composition.

3.5 Excess Molar Volame

For a mixture, at constant temperature T and Pressure P, the excess molar volume
V* is defined as the difference between an actual molar volume value V,, and the value
calculated molar volume for an ideal solution V,, as follows:

VE=V, -YxV, (3.13)

=]
3.6 Equations of State

Equations of state are widely used in the prediction of thermodynamic properties of
pure fluid and mixtures. The term equation of state is used to describe an empirically-
derived function which provides a relation between pressure, density, temperature and
(for a mixture) composition; such a relation provides a prescription for the calculation of
all of the configurational and residual thermodynamic properties of the system within
some domain of applicability. Consequently, equation of state' method may be used to
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determine equilibrium conditions as well as other properties. Many equations of state can

represent adequately the properties of the gas phase, some are applied only to the liquid,

but the most important category of equation of state models contains.those that may

applied in the same form to both gaseous and liquid phases. There are no equations of

state applicable simultaneously to solid, liquid and gas.

Equation of state can be used to evaluate many important properties of pure

substances and mixtures, including the following (Stanley, 1985):

1.

A B

Densities of liquid and vapor phases
Vapor pressure

Critical properties of mixtures
Vapor-liquid equilibrium relations '
Deviation of enthalpy from ideality
Deviation of entropy from ideality
Fugacity coefficient

Today the development of equations of state remains an active field of research,

primarily in areas of (Assael et al., 1995):

1.

'Highly-accurate equations, often with many constants, for important pure
substances such as water, ammonia, carbon dioxide etc.

Accurate equation of state models for specific such as those encountered in the
_npatural gas and petroleum industries.

Simple equations of state that combine satisfactory predictive capabilities with the
computational efficiency required for detailed simulations of chemical processing
operations such as multistage separation processes for mixtures.

Models for complex systems such as electrolytes, poljmers, coal liquids, and
highly polar substanoés.
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3.6.1 Cubic Equations of State

Equations of state that arc expliéit in pressure and of the third degrée in volume are
among the most successful of the simpler forms.
The following cubic equations of state will be described further in thls section:
1. A modified Redlich-Kwong equation of state
2. Peng — Robinson equation of state
3. Peng— Robinson-Stryjek-Vera equation of state
4. Peng— Robinson-Stryjek-Vera 2 equation of state

' 3.&1.1mm1wmmnﬁnﬂm

The modification of the Redlich-Kwong equation (MRK. equation) involved o -
fimction which is a monotonic function of T, as well as a lincar function of w. A
simplified verslon of the Fuller equation of state (1976) was chosen as a compromise
after investigating several other possﬂnlmes The form of the equation is presented as |
follows, (Lee et al., 1992):

.5 S mm (3.14)
=Vt Vn(Va+15b) -
or
2 <(1=05B)z* +(A-1.5B{ +B)Z ~AB=0 (3.15)
where
an = ggxixj(l -ky Lﬂaiai iajctj ’ ‘ _ (3.16)
b=3xb, (3.17)
i=l .
and
a, =a,0; , | (3.18)
2
RT ‘
ag=0 431641?) b= 0076355:— (3.19)
1 i
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o =oxplpil-T;) forT,; >1 (3.20)
a =1+Bi(l—JTTi) forT,; <1 G.21)
B, =0.965 +a| 145+ %} | | (3.22)

3.6.1.2 Peng—Robinson (PR} Equation of State

The Peng and Robinson is today probably the most widely used equations of state,
requires only the critical constants and the acentric factor for its application to a pure
fluid, This equation usually permit VLE calculations to be made with acceptable

Single phase properties such as enthalpy and entropy may also be acceptable but
liquid densities are usually rather poor. This poor performance is essentially due to the
fact that the equations are really oversirhpliﬁcations of the P-V-T surface which have
been forces to fit vapor pressure data without any constraints on the densities of the
co-existing phases. These equations perform best for light hydrocarbons and other small
non-polar molecules but reasonable results may be obtained for more complicated
substances including polar molecules. Reliable results should not be expected for systems
with hydrogen bonding or other forms of molecular association (Assael etal, 1995). The

equation is summarized as follows:

RT a0l

P =8 V[V, +D)+b(V, = b) 6.23)
or *
7 -(1-BZ* +(a-3B? - 2Bf - (AB-B?-B')=0 6
where ‘ '
A=Y xx; -k NAA; (3.25)
B=$xB, (3.26)

a0 =iixixj'(l-—-k;‘- Lﬂa@i Xa,ot;) | (.27)

im] ju]

b= i"'b' ) . (3.29)

171

-
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and
A ~0.457240, :—2- B, =o.o77sofi:- (329)
K =o.4s724£5;_f)2 b, xo.o77so%=- (3.30)
;
R T | 631
n, =0.37464 +1.542260, - 0269920 (332)

Peng-Robinson equation of state has been modified by Stryjek and Vera in 1986.
This cubic equation of state calied the Peng-Robinson-Stryjek-Vera (PRSV) equa;tion,
which mproduces; well the vapor pressure data of pure compounds and calculates vapor—
liquid equilibria of systems. In addition, the equation also was used to calculate excess
molar volumes of mixtures ( Djordjevic’ et al.., 1994). A major improvement is obtained
with the following simple expression for x, and x, , equation (3.39) being an adjustable
-parameter characteristic of each pure compound. The equation is summarized as follows

(Stryjek and Vera, 1994):
p__RT a (3.33)
Vb V(v +b)+b{V, -b) |
or ) .
s aP (bR _WP| (bPY (bPY _abP® . (334
2’ +2 (RT 1]+z(——--(RT)] 3(RT] 2RTJ+[EJ +(ET'] R (3:34)
where .
a=iéf;xixj,{(aiaj)(1-k“) - . (335)
il j=
b-—-zl:xibi _ (3.36)
and

. c
1 .
]

RT:) | c
a; = 0.45723{1%}.“ b, =0.077796 RT; (337)
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o <[+ -1 | ‘ (3.38)
K =Kg + Ky (l + T Xo.‘I —T,_i) (3:39)
K, =0.378893 +1.48971530; ~0.17131848n] +0.0196554w] (3.40)

. An extended version of the PRSV equation, called PRSV2, wes proposed by
Stryjek and Vera (1986d) for the reproduction of accurate data of vapor pressure of pure
compounds and may be used for vapor-liquid equ.ilibria calculations over a wide
temperature renge with the aid of simple mixing rules. The equation has three pure
compound adjustable parameters, The equation is presented as follows:

P= RT a (34 1)
V.-b V. (Vg +b)+b{V,-b)
or
‘ ' 2 3 2 2
73 +Z’(.Ell_1)+ .E--J(.PL) _2_.1?.[: +(.b_P..) +(_b£) _.—a_bp—=0 (3.42)
RT ®Ty \RT/ °RT) \RT) \RT, (RT)
where 7
a=y yxxfEapli-ky) ' (.43)
el
b=3:xib, . b4
=l
and .
b/ =o,45723{_(__XRE }, b, =0.077796%=— (3.45)
i ) i
o, =[l+x{ -1 i (3.46)
C K=Ky "'[‘Cli + 'Cz.i('ca.i -T.nxl 'Tfi’ )Il + T:isx(” _Tr.I) ' (3-47)

Ko =0.378893 +1.48971530, — 0.17131848a] +0.0196554w] (3.48)
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3.6.2 Mixing Rules for Cubic Equations of State

' In general, an equation of state is developed first for pure substances, and then
extended to mixtures through the use of nuxmg rules for combining the pure component
parameters. _ | |

The following are the mixing wles, equations (3.49) and (3.50) and the

canventional one binary parameter, equation (3.51) for equations of state:

a= E:lz:lxix,aﬂ . (3°49)
b=$xb (3.50)

i=l . .
2y = (1~ ke \ag) (3.51)
Where a, b are parameters of equation of state and k; is binary interaction parameter of

molecule i and j.
3.63 Binary Interaction Parameter

The binary interaction parameter (k) which appears in equations (3.16), (3.25),
(3.35) and (3 A43) is defined as paramctcr which involve interaction of molecule * i > and

*. The values of parameters are usually obtained from experimental data such as
equilibrimn data on binary mixtures, By assumption, k; are mdependcnt of composition
and by definition, k, =0 ifi=j; otherwise, it is a small quantity, values of which are
found by reduction of experimental data with the equation of state.



	Chapter III Theory
	3.1 Density
	3.2 Specific Volume and Molar Volume
	3.3 Partial Molar Properties
	3.4 Volume Changes of Mixing
	3.5 Excess Molar Volume
	3.6 Equations of State


