CHAPTER IV

THE POLARON DENSITY MATRIX

In previous chapter, the polaron action has been derived by integrating out the
phonon coordinates. Instead of directly calculating the phonon part, this part is
regarded as a transformation function and is evaluated by using the ground state wave
function and the density matrix of a free harmonic oscillator. In order to find the
action at a finite temperature, we must calculate the path integrals involving the
phonon coordinates which will be shown in section 4.1. Previously, we did not derive
the trial action, so we will present detailed calculations in section 4.2. The generating
functional will be constructed from this trial action since the quantities that have
contributions to the density matrix are easily derived form this functional. This

material will be presented in sections 4.3 and 4.4 ,
4.1 The Finite Temperature Polaron Action

In the original paper of Feynman [5], the polardn action was evaluated in real
time and the phonon coordinates were removed by viewing the phonon parts of the
density matrix as a transformation function (Feynman and Hibbs[9]). This function
can be evaluated by using the ground state wave function of a forced harmonic
oscillator. The result is an action which is a functional of an electron coordinates,

Then the real time was replaced by an imaginary time, 7 =-if§, where the Planck
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constant is set to be unity. In this section we will do a more general case, which we
calculate the phonon part directly in the imaginary time at the first step. If one is

interest in the ground state behavior of the polaron, the imaginary time must be taken

to go to infinity. We can write the polaron density matrix
- IDr(r) exp[-i]dr ’(r)J]’[ Jap exp[40:-0: +7.8.). @D

where the terms involving Q, arc the phonon part, the phonon fregency was set to be

unity and 7, is the force defined by
PR ACLE _ﬂef_;.
ol B | [F(z)-F(o)|

The phonon part can be evaluated easily bjr setting the two end points to be equal, this
corresponds to the partition function of the phonon system. Then the classical action

for each momentum‘ k reads |

Si=-3; = h 5 [2(cosh B -1)Q? - 20, Idr 7,(t)(sinh7 +sihh( B -o))

i,ﬁdomy,(r)y, (1) sinh sinh( B —a)]. (4.2)

Then the density matrix corresponds to above action will be integrated overall

coordinate @, which can be done easily since it is a Gaussian integral.
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Ith Ppn(Qx B30, ’0) =[§1rs’ln—_nh“ﬂ_]z _:[th exP(S;)

1  cosh(B —|1-'—01)] |
(2 sinh /2]e F{ Td‘ud '(1:) - F(O‘)l sinh %_ 4.3)

Adding the exponent to the equation (4.1) gives the finite temperature polaron action

_ 14 a3 a 44 1 cosh(ﬂ-lr-ol)
et Gl Vhe 1} L mer e 0

We can check the correctness of the above expression by taking the imaginary time to

go to infinity, then the hyperbolic term is

cosh( B -|}'-0|) = 1 ) 4.5)

smh?

So the action in equation (4.4) reduce to Feynman action at zero-temperature limit.
4.2 The Finite Temperature Trial Action

In the Feynman original paper [14], he introduced a trial action which has the
physical meaning of the two particles attached together and the potential depends only
on the difference between their coordinates. We will show in this section that the
system of an electron bound by a fictitious particle of mass M and spring constant k

will lead to the Feynman trial action,

As mentioned previously in Chapter Il, the potential should be of the form of

equation (3.12). The Lagrangian reads
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L=2{m#* 0+ 570 - k(F) - 50)'] @)

Where () is the coordinate of a fictitious particle which would be eliminated like

the phonon. We can write above Lagrangian to consisted of free and force harmonic

oscillators.
L=3[m - O] (05~ 52 e 30, @)

The path integrals for this Lagrangian involves two paths for7(f) and 7(z).

Consider the fictitious particle first, its path integrals read

IDy(r)exp(- Tdf(M" 1) - Ky +kr(1:)y(1'))] (2:: iah B ),cxp(S) (4.8)

where w= J-}:—} and the classical path is available in many books [9,26]
[3()] = L 2(cosh wph -13,5 —%Tdrf(f)sinh wT
d 2isinhw 172 Mw o

-
--ﬁ—d%kgdﬁ'(r)sinhw(ﬂ

M: Mi? j]dc‘d‘tr(‘t)r(a) sinhw{f ~ )Sinhwa]

4.9

-

This phonon part of the density matrix can be simplified by regarding it as a heat bath
and averaging it out. This can be done by setting the phonon end points .to.be equal

and integrating it overall phonon coordinates.
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The integral involving y is a Gaussian type and can be evaluated easily. Then the trial

action is of the form

zcoshw(—-lf O'I)
s,=-—'2'31 t7(1)-— Tjdod'r (Flr)- r(o)) ) 4.11)

00 Slnh—

4.3 Construction of the Generating Functional

In this section the construction of the generating functional will be reviewed

3

M k
By the definitions C = _4w_ and w? = - the action in equation (4.11) can be written

2 cosha{-——lf ]
S, --——Tdt?’(r)- ﬂdo—dr (F(z)-F(0)) w 4.12)

h——
sin 2
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Since we cannot evaluate the density matrix for this trial action directly so the

varjational principle may be applied. By using the Feynman-Jansen inequality we have
o5.7:8) 2 p. (R 7 Bexp((s - 5.)), 4.13)

We will see that the exponent in equazion(4.i3) contained with the averaging_ over
quantities like {7(7)) or (7(7)7(0)).And these quantities can be extracted from the

generating functional defined as

I DF(r)cx;(S, + Tdrf(r)?(r))
<ex;{jdff(r)F(f)J>= : (4.14)

I D#(z)exp(s.) ’

with end points condition
Fr)=7F, , Flo)=F

-and f(7)is an arbitrary function of imaginary time. By foﬂowing the standard way of

evaluation of the path integration, we substitute 7(7) by
(1) =7 %)+ 5(1),
with - 5(B) = 0= (0).

We know from Feynman and Hibbs [9] that the term linear in 5(z) that appear

together with f (z) will vanish due to above condition. So the remainding terms of
¥(z) of the denominator and numerator should be the same and cancelled out. The

term left vs is the exponential of the two classical action, that is
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(cxp(} dtf(7)F (1'))) = exp(§ )= f) . (4.15)

Hence, we can see that the quantities of interest can be extracted from above formula
by performing the functional differentiation with respect to f(z) and setting it to be
zero. In evaluating of equation (4.15), we encounter the problem of finding the
classical action § /» that is we must evaluate out the classical path. Sincc‘ S,, the
quadratic action which we can obtain the path integral exactly, comes from the two

particle model, we can find the classical path from the Lagrangian (4.6) with external

force

L= O 5 O-REO-FO |+ FOFO). @1

By using the center of mass coordinates

e o - @ omr+My -
X=F-y, R= YRR m=m+M
mM, k , k
E= YT 5 1 TR 4.17)

so the Lagrangian can be written as containing two couple systems of forced harmonic

oscillators

m R f-R'. (4.18)

This Lagrangian will give two differential equations:

113432925
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) -v2(r) = -F(1), 4.19)
R(¢) =—@, (4.20)
m

which can be solved easily by the Green function method. The Green function of

equations (4.19) and (4.20) respectively are

G, (t,s)=- —d — (cothvt —cothvB sinhvs)H(z - 5)
= SR othvB — cothvBsinhvs)H(s 1), @21)
G,lt.5)= (t ;ﬁ )s H(t-s)+%(s— B)H(s-1). (4.22)
With the conditions of the end points
#H0)=%, #Hp)=F = ‘ RO)=R , R(p)=R, @23

where the solution of the differential equation is in the form

B

7(t) =7(B)G (ﬁ £)=7(0)G(0,1) - F(s)G(z,5)at (4.24)

So the classical path can be determined and substituted into the action to give

S, = 2sinhvf

- B
[- (72 + 2 )coshvp +25,5, +2%jdr 7 (£)sinh vt
0
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dodzf(7)f(o)sinhv(B - r)sinh vs

& ey, T

= B 2
+-2-§L'£dtf(t)sinhv(ﬁ—t)+-§,—£

(4.25)
. m(R-R) B-1)
Sp=-g g ;U LR j’dg'(:)ﬂ+xjdgf(:) ;
B -
— [JaasFOF 681 4.26)

The next step is to transform the coordinates R and ¥ back to the original one
so that we can distinguish the coordinate of the fictitious particle and integrate it out.
Again, this can be done by setting the end points of the fictitious particle to be equal.

We obtain
jj 4y, )’np rzv’xv)’z:)’n)‘s (5’.2 "5’..1)'

The generating functional with its exponent can be written as

< fw v wl _p
.S'.,---|:4coth2 2Mﬂ:b r,l

B i i i
- - | @ smhv(ﬂ - 't) smh-%([)' - 1') sinhZ7 #(ﬂ )
+F 'E dtf (1‘)[;[ sinhvp + cosh® Mp

4 sinhve Smh'%(ﬁ—f)sinh'}‘r ut
¥ r,jdrf( {m smhvﬁ cosh% f * MB
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+

© Syt
© ey

dadzjf'(r)f(o)(vs:hvﬂ{sinhv(ﬂ—f)sinhva-4sinha;-(p-f:)sinh§c

xﬁnh%(ﬂ-—a)sinh%o‘.}+%(—€:-;—)o]. - (4.27)

And 5. can be found by setting f(7) to be zero in the equation (4.27) and is

= _ |w VB K _[2
S,-[ 2 2Mﬁ:h -7[. | (4.28)

4.4 The Polaron Density Matrix

From the Feynman-Jansen inequality, we can write the density matrix that

gives the upper bound of the ground state energy of the polaron as equation (4.13)
0l7:B) 2 p.(5Fs Blexpl(s - 5.)),

where p, is in the form

h -
oliri)=(e (2 it‘:.;:é’,’ﬁexp(s»- (129

The average in the exponent of equation (4.13) can be determined from the generating

functional in previous section. Then

(s-5.)=(s)-(s?)" (4.30)
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where S’ and §’, are the last terms of the action of the polaron and the trial action

respectively. The bracket means averaging with respect to the trial action S,.

The next step is to evaluate (S’), writing its form explicitly

n iodr coshw( g /2-Ir -0l

d - ‘
sinhwp /2 I ,k,exp(:k-A—k’B) (4.31)

(s)=

MlulQ

where

(exp(iE-(f; —ﬁ,)))zexp{il-c.-(i’, "'3)‘%(%((?} —Fay)"(;:? _?'1)2]

For the sake of typing convenience, the imaginary times which are the arguments of

the coordinates are given as subscripts. We then obtain
f.o f o Sf=0

= F,[—s-i"a'l_l—;ﬁ—(sinhv(f - B /2) - sinhv(o‘— B /2))+—ﬁ(‘r O')]

"1|: £ Sin;:gg r?/2 (sinhv(r - 6)/2+cosh{ B (7 +0)/2)) - "‘F(T o‘)]

(4.32)

This expression can be simplified by letting 7 > ¢ and becomes




- L . sinhv(z - 0)/2 coshv(f -7-06)2 (r-0) ). _
A=(.-7) =”[ msinhvf /2 T Mp }'_r"l’

(4.33)

and

B =%[((: —F,)’)—A’]. | @.34)

The first term in the square bracket can be expanded and calculated from the

generating functional

(-2 )) =)+ (5 7)-2(n)

_3u( 2sinh}(z-0)sinh}(B-(3-0)) [B~(r-0)fr-0)
T m mysinh¥ B + MB

+y2(smh-"-('r o)cosh(f - (1+a)) (r- o')]l _ l

- msinh% B

(4.35)

Substitute this into (4.34) together with (4.33) then we can find B . From the relation
o
S
(s)=¢ Csolnp. (4.36)

we recali that C = -}(v2 —w?). Equation (4.36) then becomes




4]

w? \vp vB 1{. w'Y 8 v wi W
+(1- v,)2 cc’th2 -3 1- el s coth2 ~ 1- walit 4.37)

Collecting all terms and substituting into the equation (4.13) gives us the full form of

the density matrix which will be presented in the next chapter.
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