CHAPTER 111

PATH INTEGRALS APPROACH TO THE

FROEHLICH POLARON

This chapter is devoted to the description of the polaron theory by the method
of path integration formulated by Feynman [26] which is also used in this
problem[14]. This chapter is a very important basis for understanding the material in
later chapters. Nevertheless, the author prefers a descriptive way rather detailed
calculation since there are many good reviews available [27]. The advantage of
Feynman’s theory is that it is applicable for all value of the coupling constant with
smooth interpolation of the energies and effective mass between weak, intermediate
.and strong couplings. Altogether we will include review of the method of Krivoglaz
and Pekar [22] since it gives the same expression of ground state energy as those of
Feynman. Mqreover, we will show in the later chapter that the effective mass of the
polaroﬁ defined by Krivoglaz and Pekar can be deﬁved from the full density matrix

(or the propagator )of the polaron.
3.1 Statement of the Problem

In the Froehlich model, the clectron was supposed to move through the
continuous field of polarization which has a constant frequency. Feynman has used his

path integration method to eliminate the field coordinates and left only the electron
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coordinate and gave the two-time (or non-local) action. Since the path integral of this
action cannot be evaluated exactly, the variational principle will then be applied. That
is a trial action chosen to be a representative of the polaron system and the ground
state energy could be estimated from this action with an extremization condition
called the Feynman-Jansen Inequality [28). In the paper “Slow Electron in a Polar

Crystal”, Feynman started with the Froehlich Lagrangian
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where the polarization vector was decomposed into standing waves with real
amplitudes. It is obvious that the terms in square bracket of equation (3.1) is the
Lagrangian of the forced harmonic oscillators and we can find the path integral of this
Lagrangian easily [9]. The phonon coordinates can be integrated out as an average
and left out only a functional of the electron coordinates. Then the density matrix can

be written as
p = I Dx(1) exp[S] (3.2)
where

e ir-dl

(-3 o

1 8 9. bload BB
S = -—J'dr *(7) +—;”dm’a

2% 2% %
and o is the coupling constant defined in previous chapter. The action in equation
(3.3) is really an effective one since all the effect of the phonon has been averaged out

into this effective action. The second term in this action leads us to interpretation that
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when an electron is moving in polar crystal at one time it produces a field that acts
back to it at a later time. Due to the fact that this action is a Coulomb type and cannot
be evaluated exactly, the variational method may be used to find the ground state

encrgy of the polaron.
3.2 Variational Approach

By constructing an appropriate action with some variational parameters, we
can use the path integral of this action to estimate the upper bound of the ground state
energy. To be more clearly, consider the density matrix in the form of the sum over

energy eigenstates

P(iz ’fﬁﬁ) 7 Z‘Pn .(iz )‘P,, (fl)e"p[_ E_ﬁ]. | - (3.4)
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As the imaginary time goes to infinity i.e. temperature goes to zero, the higher
order terms of the summation decays more rapidly than the first leading term or the

term involving the ground state energy. So we can write

p —5=— exp{-E.B). (3.5)

Whenever we choose any trial action namely S, ( where we can find its

density matrix exactly ), we can write the path integral

p= I Dx{z) es = I Dx{t) e(s's']es’

= (e} o x(2), | (3.6)

HOTUANAN JoMTuTneinTg

. o - -
PHIAGDIH IV




22

where we average with weighting factor ¢™ defined by

J-Dx(t) " F

(F)=W. (3.7

In order to evaluate the energy as in equation (3.5), we must write the density

matrix in the exponential form. To do this we apply the in equality
{eF) 2 exp(F) (3.8)

called the Feynman-Jansen inequality. Then the density matrix in equation (3.5) can

be approximated as
p 2 exp{S-5, )JDx(t) e, (3.9)

Remember that the path integral of S, gives the ground state energy as

o~ expl-EB) @.10)

Then the equatioh (3.9) can be written as

exp(— E,ﬁ) > 5558

E <E- 5

(3.11)

3.3 The Trial Action
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The next problem is to determine the form of the trial action, S,. Feynman has

used the free particle action which yields the same result as the perturbation method
when apply to the weak coupling limit [4,5). If one use the Coulomb potential the
result is the same as the strong coupling theory of the polaron [1). However the good
‘theory should cover all range of the coupling' constant. The best choice would be the |

action of a particle bound by a potential of the form
V= kz-3), (.12)

where ¥ is the coordinate of a fictitious particle. This coordinate can be eliminated out

in the same way as the polaron action leaving only the coordinate ¥ of electron. That

is
S, = -% [#ar -% | [ dt dx(e) - x(s)] e (3.13)

where C and w are the variational parameter chosen to minimize the ground state

energy.
3.4 Evaluation of the Energy

Consider the last term of the right hand side of the equation (3.11)

%(s-sl)=jd %a*"*(lz(:)-:x'(s)l")+§((x(r)-x(s))’e"‘*"‘*)] (3.14)

The first term in the integrand may be calculated by expressing the coordinate

term in a Fourier transform
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- - -1 d3 k vy f - -
|#(0)-%(s)" = J mexp(:k (%(r)- x(s))) : (3.15)

Averaging this quantity gives the generating functional that leads to the path integrat

of the action
s, = _% [#ar --g [Jar ds(ze) - #e)) e + [ F0)- 200 (3.16)

where f() =ikd(t—1)=iké(t-0).

We can find its classical action by variation calculation of this action yielding

the integro-diffential equation

2=
%=2Cf (Z(e) = %(s)) e = £ (2), (3.17)

The generating functional can be simplified to
[ o) e =cx;{5_[ F0) x’(r)dt], | (3.18)

where  %'(r) is the classical path. To solve equation (3.17), & new variable is

introduced

Z(t) = -‘2"— ! ™42/ (sMds (3.19)

Then the equation (3.17) reads
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(:) 4Cc
dt

—[#6)-z(0)]- 1) | (3.20)

The solution of above equation is

x'(t)—zf(l-—-)[smhv(t T)H(t - ) = sinhv(t - 6) H(t - )]

-2 = D= 1)- (= (=) 321)

Then the generating functional of equation (3.18) can be written as
P 26K ey _ W s
(exp(:k () - x(c)))) = exp| — —vi—w—(l = g™irat) e lt-6l] (3.22)

4C
where v =w?4—.
w

From equation (3.14) and (3.15), the first term of the right hand side of (3.14) reads

= [ as{|x ()= #(s) ™ Y4 = ﬂjd’r[w’f R )]-xe"' (3.23)
X Jn 0 ’ ' . :

The second term of (3.14)is calculated by using equation (3.22) by expanding the

exponential term of both sides and comparing terms by terms gives

L0 o)) = 21 ) 2ol B2
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The next quantity is the energy corresponds to the trial action S,. Although

we can calculate it by direct path integration but it is more easily to follow Feynman

by differenting with respect to C both sides of the equation
| ,f Dxlt) % = 50, | (3.25)

With some algebra, the energy for S, is

, E, = %(v -w). ' (3.26)

The ground state energy of the polaron is

E, =_3_(v_w)2 _ﬂ_]___ﬂt___ (3.27)
"w 'r+v(1—-v7)(l—e Yy

Then the task left is finding the numerical value of the ground state energy which can

be done by minimizing this equation with respect to the two parameter v and w. -

3.5 The Effective Mass

To find the effective mass, Feynman considered the polaron properties at
ground state near those of the free particle. Then its energy should be of the form
myV?[2 ( V is the group velocity and m, is the effective mass). The next

assumption is that the velocity of the polaron is low enough, that we can use the same .

variational parameter to determine the value of the effective mass.
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At the ground state, the density matrix is proportional to

2
mg (iz - X )
p = exp[— EfB- 25 ] (3.28)
Hence, we can determine the effective mass from the (3:’, - % )2 dependent term.
Since there is some complications in solving the integro-differential equation so the
approximation (f, - .ir’,) =Up will be introduced. This means that the classical path
from equation (3.16) is a straight line, so we can substitute ¥ =Uf and then find the

classical path from equation (3.16). Similar to previous section, we can find the

generating functional as
(exp(iic' (F1) - 5:'(0')))) = exp[— 5’% Flr-ol)+ik - Uz - a)] (3.29)

where

73—
Flg) = wir 4+~ vw (1-e™). (3.30)

Then the energy of the excited state with small velocity (near the ground state) is

U2 3 3 o
E, = 3 +4v(v w) -2§_£d j

a’k

o k’e exp[—-k—F('r)Hk Ur] (3.31)

By expanding the exponential in the last term up to U? we find that

E, =E, +Z8 > /A (3.32)
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where

't 1l

——

=1+ dt . 3.33
AN ~F| [F(o)} G-33)

The numerical value of this effective mass can be calculated by the parameter
that minimizes the ground state energy. This is not a satisfaction assumption since we
have no minimization condition for the effective mass as for the ground state energy

(which has the Feynman-Jansen Inequality).
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