CHAPTER 1

- INTRODUCTION

The problem of an electron moving in ionic crystal has been studied for a long
time. Originally, Landau[l] was the first who proposed that it was possible for an
electron to be trapped by its distortion of the polar crystal. Later, Pekar {2], who gave
the name Polaron, has made the picture of an electron in the conduction band of an
ionic crystal polarizing the lattice surrounding it to such an extend as to influence its
physical properties such as self energy, effective mass or mobility. But the first
quantitative description of the polaron is due to Froehlich [3] who make some
simplified assumptions to write down the Hamiltonian of the polaron explicitly. This
is called the Froeblich Hamiltonain which is a classic theory followed by many

authors after then.

In general, the polaron is an electron moving in polar crystal and dragging the
ion cores along by a Coulomb interaction. This means that the electron distort the
lattice to ‘deform. This deformation causes the jon cores vibrate about their
equilibrium position and gives rise to phonon excitation. The phonon that arise from
electron distortion together with that from thermal excitation will effect back to the
electron.When an electron moves it will carry the distortion along and we regard it as

a quasiparticle named the polaron.



There are many types of polaron depending on the condition imposed such as
the large polaron, the small polaron, bipolaron etc. But the most fundamental one is
the model proposed by Froehlich corresponding to the large polaron type. This model
is based on the assumption that the electron has De Broglie wave length very much
larger than the lattice spacing so that the discrete lattice can be replaced by the
continuous one. We will present the review of this matter for more details in chapter 1.
Furthermore, the large polaron has two types, one is the electron interacting with the
acoustic branch of the phonons so that the frequency of the normal modes of vibration
- vary with wave vector. The other is the optical polaron of which the frequency of
phonon is in the range of visible light and has been assumed to be constant. The

Froelich model belongs to this type.

Another class of the polaron is the small polaron which take the lattice spacing
into account. In the other words, the distortion of the electron to the lattice was
restricted to the vicinity of the electron so that the continuous approximation is not

valid. HoWever, this is beyond the scope of this dissertatioh.

It is quite natural to investigate on how one can approach the polaron problem
technically. Since this is the first model in condense rﬁatter physics that provides a
simple form of a particle interacting with a quantum field. The Froehlich Hamiltonian
can be divided into three parts which are the electron, phonon and the interaction
between electron and phonon. In the early time, the Froehlich model can be solved
perturbatively only in the weak coupling regime. Field theoretical approaches have
been used in this problem. For instance, Lee, Low and Pines[4], Lee and Pines[5]

used the technique invented by Tomonaga in ciuantum field theory applying to this



problem. Besides this, a variational method is applied for the intermediate coupling
(Lee and Pines[5], Gurari [6], Tiablikov[7]) and the strong coupling (Pekar[2],
Allcock[8]). However, these methods are illegible to solve the problem only in some

certain range of the coupling constant.

Apart from the approaches in the aforementioned, Feynman’s path integration
formulation of quantum mechanics [9] considered to be one of the very powerful
technique in physics. Regarding to the polaron problem, Feynman calculated the upper
bound of the ground state energy and the effective mass of the polaron [14]. The
results from this approach are sensible for the entire range of coupling constants. So to
speak, Feynman’s path integration approach can be apﬁlied from the ranges of weak
coupling limit to the strong coupling limit. However, the drawback of this approach is

that it give the less accurate results when compared to other techniques results.

Other aspects of the polaron theory, for example, the polaron in magnetic

field, the bound polaron, the small polaron, the bipolaron etc. can be followed in the

reviews of Mitra et al.[10], Appel[11], or in many conference proceeding such as

DeVreese and Papadopoulos [12], Lakhnof13].

So far we have mentioned briefly about the basic notions of the polaron. The
main theme of this thesis is to investigate the definition of the effective mass of the
polaron . The concept of the effective mass of the virtual particle ( or quasi-particle )
~ is that we replace the system of a particle interacting with its surrounding by regarding
this system as a free particle with finite ground state energy and mass. The quasi-

particle (or the effective mass ) can be defined from the kinetic energy of the extended



state. The polaron is therefore, the region of distortion together with the electron can
be thought as a free particle with finite effective mass ( where we assume that this
electron is an electron in the conduction band of an ideal polar crystal or Bloch

electron).

The definition of the effective mass can be determined by various ways. The
most common approach is to first looking at the following equation,
P!

E=E +—,
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here E, is the ground state energy. The way we define the effective mass of

polaron is also used in a standard perturbation or variational methods [3,4,5,6,7.8).
Alternatively, due to Feynman [14] the mass of the polaron can be determine by the
off-diagonal part of the density matrix. Next is to express the density matrix in the

form of a free particle as

|R'2—R',|
exp(~E,f-m, -—-5-5— .

Note that Feynman did not define exactly like this (we will show it with more
details in Chaptér Il ) since he used an ad hoc assumption in order to avoid solving
the integro-differential equation directly, Later many authors proposed a closed form
of the polaron density matrix by various method. These can be found in Osaka [15],
Sa-yakanit {16], Khandekar et al.[17], Castrigiani et al.[18], Ventri_glia et al.[19],

Gerlach et al.[20]. By considering this matrix at absolute zero temperature one can



recover the effective mass of the polaron by above definition and the result is exactly
the same as that of Feynman. However, there is another definition of the effective
mass in path integration formulation given by Saitoh[21] in which an external force
had been inéluded. The effective mass was defined from the coefficient of the
exponent that is proportional to the external force like
1\
This effective mass then has the meaning of an inertial mass against the force.
The different point from th#t of Feynman is that Feynman theory has translational
invariance but Saitoh theory has a broken translational symmetry due to inclusion of
external force. So we can justify that these two definitions are irrelevant. There is also
another definition due to Krivoglaz and Pekar [22] in which the partition function of
the polaron had been calculated by the technique, so called order operator calculus
[23].._Howcver, the effective mass from this approach [22] gave numerical values
greater than that of Feynman in the strong coupling limit but in agreement with each
other in the weak coupling limit. Up to now, Feynman definition is the most

commonly acceptable, because of its advantage in validity to all coupling and smooth

interpolation between different regime of the coupling constant.

In the original work of Feynman, all the properties of the polaron had been
calculated by assuming zero temperature at the first step. So there is a question that, if

we start from a finite temperature theory, can we obtain the same expression for
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energy and effective mass of Feynman? One of the work that can answer this question

is the work of Sa-yakanit[16].

By constructing the density matrix of the polaron at a finite tcmﬁerature and
consider it at Zero temperature limit, the Feynman effective mass and the ground state
energy haci been recovened from the off-diagoha] element of the deftsity matrix, At the
ame time, if \;vc consider the diagonal part which proportional to the partition function
of the polaron, we will find that we can make an alternative definition of the effective
mass. In the other words, this definition can be taken from the prefactor of the density
matrix and the expression is exactly the same as the effective mass calculated by
Krivoglaz and Pekar[22]. This made us to the question that can we define a new
definition wih the condition that these two mass should be the same? (although their
numerical values are different). One reason for asking like this is that, in finding the
effective mass, the variational parameters, which are obtained from minimizing the
ground state energy, are substituted into the expression for the effective mass with no

variation condition to base on. We may quoté Feynman own words [14):

“Since there is an operator analogous to the momentum which commutes with
the Hamiltonian, it would be expected that there is a variational principle which
minimizes the energy for each momentum. That is, we ought to be able to extend our
method to yield an upper limit to the energy for each value of momentum, but we

have not found the expected extension “.

From these words, we can see that the Feynman’s effective mass was not

correctly defined. With this reason, we may seek for a new definition of the polaron



effective mass by demanding that the Feynman’s mass and the Krivoglaz and Pekar
mass are the same. And then use this condition to re-minimize the ground state

energy. This has been presented in Chapter VL

It is worth mentioning that there are many attempts to. improve the Feynman
ﬁlcthod by various ways such as Abe and 0kam6to[24] use the trial action with more
variational parameters corresponding to the electron bounded by more fictitious
particles . Another way is to calculate the more correction terms, i.c. adding the
second cumulant expansion (Lu and Rosenfelder [25]). But they have found that the

improvement is not significantly better. So Feynman’s method is quite adequate.

In the next chapter, the Froehlich model will be reviewed then the Feynman ‘s
method will be presented in chapter HI. Chapter IV and V concerning about finding
the finite temperature density matrix and considering the wave function of the polaron
at at zero temperature limit. And the result w-ill be presented and discussed in the last

chapter.
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