

การจําลอง L-SYSTEMS แบบเฟนสุมชนดิขนานของการเติบโตของลําตนและกิ่งตนไม

นางสาวสุภาพร คํากลัด

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคณนา ภาควิชาคณิตศาสตร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลยั
ปการศึกษา 2545

ISBN 974-17-3319-4
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

PARALLELIZING STOCHASTIC L-SYSTEMS SIMULATION

OF PLANT STEM AND BRANCH GROWTH

Miss Supaporn Kamklad

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computational Science

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2002

ISBN 974-17-3319-4

Thesis Title PARALLELIZING STOCHASTIC L-SYSTEMS
SIMULATION OF PLANT STEM AND BRANCH
GROWTH

By Miss Supaporn Kamklad

Field of Study Computational Science

Thesis Advisor Professor Chidchanok Lursinsap, Ph.D.

Thesis Co-advisor Associate Professor Suchada Siripant

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

Chairman

(Assistant Professor Peraphon Sophatsathit , Ph.D.)

Thesis Advisor

(Professor Chidchanok Lursinsap, Ph.D.)

Thesis Co-advisor

(Associate Professor Suchada Siripant)

Member

(Associate Professor Jack Asavanant, Ph.D.)

 iv

สุภาพร คํากลัด: การจําลอง L-SYSTEMS แบบเฟนสุมชนิดขนานของการเติบโตของลําตนและ
กิ่งตนไม. (PARALLELIZING STOCHASTIC L-SYSTEMS SIMULATION OF PLANT
STEM AND BRANCH GROWTH) อ. ที่ปรึกษา: ศาสตราจารย ดร.ชิดชนก เหลือสินทรัพย,
อ.ที่ปรึกษารวม: รองศาสตราจารย สุชาดา ศิริพันธุ จํานวนหนา 69 หนา. ISBN 974-17-
3319-4.

ระบบวิธีของ Lindenmayer หรือ L-system นัน้เปนที่รูจักกันมานานแลวในฐานะทฤษฎีทาง
คณิตศาสตรที่ใชในการอธิบายรูปแบบการเจริญเติบโตของตนไมตางๆ โดยหลักการสําคัญของระบบวิธี
นี้ก็คือการสรางสวนตางๆของตนไมดวยการนําชิ้นสวนใหมเขาแทนทีช้ิ่นสวนเดิมตามกฏเกณฑที่ได
กําหนดไว และเนื่องจากการแทนที่ชิ้นสวนนี้สามารถทําไดโดยลําพังและไมกระทบถึงสวนอื่นๆของ
ตนไมนั้น จึงเห็นไดวา อาจจะนํางานทั้งหมดมาแบงออกเปนสวนยอยๆ แลวสงใหเครื่องคอมพิวเตอร
หลายๆ เครื่องจัดการพรอมๆกันได โดยใชอัลกอริทึมในการประมวลผลแบบขนาน ซ่ึงโปรแกรมที่ใชใน
งานวิจยัคร้ังนี้เขียนขึ้นดวยภาษาซี ประกอบกับชุดโปรแกรม Message-Passing Interface ซ่ึงชวยใหกลุม
เครื่องคอมพิวเตอรสามารถทํางานไดแบบขนาน และจากการวิเคราะหหาความเปนไปไดในการเพิ่ม
ประสิทธิภาพการทํางานของ Stochastic L-system นี ้ปรากฏวา คา speedup factor มีคาคอนขางต่ําเมื่อ
จํานวนรอบในการแทนคานอย แตเมื่อจาํนวนรอบในการแทนคามากกวา 7 พบวา speedup factor นั้น
กลับมีคาที่นาพอใจ โดยคาสูงสุดของ speedup factor ในงานวจิัยคร้ังนี้มีคาประมาณ 19.6 เมื่อจํานวนรอบ
ในการแทนคาเทากับ 9 และใชการประมวลผล 9 กระบวนพรอมกัน.

ภาควิชา คณิตศาสตร ลายมือช่ือนิสิต
สาขาวิชา วิทยาการคณนา ลายมือช่ืออาจารยที่ปรึกษา
ปการศึกษา 2545 ลายมือช่ืออาจารยที่ปรึกษารวม

 v

4272449323 : MAJOR COMPUTATIONAL SCIENCE

KEY WORD: L-SYSTEM / PARALLEL COMPUTING / MPI / STOCHASTIC / PLANT

SUPAPORN KAMKLAD: PARALLELIZING STOCHASTIC L-SYSTEMS

SIMULATION OF PLANT STEM AND BRANCH GROWTH. THESIS

ADVISOR: PROFESSOR CHIDCHANOK LURSINSAP, Ph.D., THESIS

COADVISOR: ASSOCIATE PROFESSOR SUCHADA SIRIPANT, 69 pp. ISBN

974-17-3319-4.

Lindenmayer system or L-system has been recognized for a long time as a

mathematical theory of plant development. The principle of system is based on a rewriting

language in which each part of plant is produced by substituting along with production rules.

Since substituting on each part of the plant can be performed simultaneously and

independently without interfering to each other parts it is clearly seen that the whole job can

be separated and performed by group of computers. In this research, a parallel algorithm for

stochastic L-system has been developed and examined. The program was implemented in C

programming and Message-Passing Interface package to enable the system running on virtual

parallel machines. The result was investigated for feasibility to improve operating time of

stochastic L-system. The speedup factor is poor for lower derivation length, but it become

pretty good at derivation length greater than 7. Maximum value of speedup factor for this

research is approximately 19.6 at derivation length of 9 with 9 processes operated

simultaneously.

Department Mathematics Student’s signature

Field of study Computational Science Advisor’s signature

Academic year 2002 Co-advisor’s signature

Acknowledgements

I would like to express my deeply gratitude feeling to numerous people
who have directly and indirectly contributed to this research. I am thankful to all of
them for their encouragement and support. Especially Professor Dr. Chidchanok
Lursinsap and Associated Professor Suchada Siripant at The Advanced Virtual and
Intelligent Computing (AVIC) Research Center, who always guided, helped and took
great care of me all the time, that helped me complete this research.

I would like to thank the thesis committee, Assistant Professor
Dr. Peraphon Sophatsathit and Associate Professor Dr. Jack Asavanant for their
valuable advice.

I would also like to thank Mr. Nitass Sutaveepramochanon for making
cluster, Mr. Paisan Tooprakai and Mr. Kasemsant Kuphanumat for solving problem
on LINUX, and my friends, Miss Kingkarn Sookhanaphibarn, Mr. Maytee
Bamrungrajhirun, Miss Kodchakorn Na Nakornphanom and others dear friends for
their helps.

Finally, I would like to thank my parents and Dr. Wiwat Sidhisoradej for
their love, care, encouragement and being with me through all the obstacles.

Table of Contents

Thai Abstacrt.. iv

English Abstract...v

Acknowledgements .. vi

List of Tables .. ix

List of Figures...x

Chapter 1 Introduction..1
1.1 Problem Identification ...1
1.2 Background..1
1.3 Objective of the Research ..5

Chapter 2 Lindenmayer Systems ...6
2.1 Rewriting systems: concepts and history...6
2.2 Deterministic and Context-Free of L-systems ...7
2.3 Turtle interpretation of strings ...9
2.4 Branching structures ..11
2.5 Axial tree..11
2.6 Bracketed OL-systems ...11
2.7 Stochastic L-systems..13

Chapter 3 Parallel Computing..14
3.1 Parallel Programming Paradigm..14
3.2 Networks ..14
3.3 Search Algorithm for Discrete Optimization Problems.................................17
3.4 Message-Passing Interface (MPI) ..18
3.5 MPICH...20

Chapter 4 Method of Experiments...21
4.1 Mathematical Model ..21
4.2 Main Program Algorithm...22
4.3 Visualize Program Algorithm..23

Chapter 5 Experimental Result ..24
5.1 Sequential execution ..24
5.2 Parallel execution on SGI cluster...25
5.3 Parallel execution on HP workstation cluster ..26
5.4 Additional Outcomes ...30

 viii

Chapter 6 Conclusion ..33

References...34

Appendix A Program Listing..37

Appendix B Tree Generated of stochastic L-system...48

Appendix C The Growth of Functions...48

Vitae ..54

List of Tables

Table 2.1 Two-dimensional Turtle interpretations ...9

Table 2.2 Two-dimensional Turtle interpretations (extension)11

Table 4.1 Two-dimensional interpretations of L-system symbols in
visualization. ...21

Table 5.1 Numerical values of averaged time spent and averaged
length of result string in the sequential method......................................25

Table 5.2 Averaged time spent for derivation lengths from parallel
program executing on SGI cluster. ...26

Table 5.3 Averaged time-used for derivation lengths from parallel
program, executing on HP workstation cluster, with
MAXSTRING = 180,000. ..27

Table 5.4 Averaged time-used for derivation lengths from parallel
program, executing on HP workstation cluster, with
MAXSTRING = 290,000. ..28

Table 5.5 Averaged time-used on each process for derivation
lengths of 8 from parallel program, executing on HP
workstation cluster, with MAXSTRING = 120,000...............................28

List of Figures

Figure 2.1 Construction of the Snowflake curve..6

Figure 2.2 Elementary example in Deterministic and Context-Free
L-system..7

Figure 2.3 Development of a filament (Anabaena catenula)
simulated using a DOL-system...8

Figure 2.4 The Turtle Interpretation, in case of step size d is one
unit, and angle increment δ is 90° ..10

Figure 2.5 Generating a quadratic Koch Island...10

Figure 2.6 Bracketed string representation of an axial tree......................................11

Figure 2.7 Examples of plant-like structures generated by bracketed
OL-systems. ..12

Figure 2.8 Stochastic branching structures ..13

Figure 3.1 There are P⋅(P-1) links, where P is a number of
processes. It make connecting all processors together
becomes seriously expensive. ...14

Figure 3.2 Linear topology...15
Figure 3.3 Ring Topology.

Figure 3.4 (a) No wrap-around connections, (b) Wrap around
connections ...15

Figure 3.5 (a).Static binary tree interconnection network with 7
processors, (b) Dynamics binary tree interconnection
network with 4 processors and 3 switches..16

Figure 5.1 Averaged time spent for each derivation length in
executing of sequential style program. ...24

Figure 5.2 Averaged length of result string for derivation lengths
generated from L-system program..25

Figure 5.3 Averaged time spent for derivation lengths from parallel
program executing on SGI cluster. ...26

Figure 5.4 Averaged time spent for derivation lengths from parallel
program executing on HP workstation cluster, with
MAXSTRING = 180,000. ..27

Figure 5.5 Averaged time spent for derivation lengths from parallel
program executing on HP workstation cluster, with
MAXSTRING = 180,000. ..28

Figure 5.6 Speedup Factor from parallel program executing on HP
workstation cluster, with MAXSTRING = 180,000...............................29

 xi

Figure 5.7 Speedup Factor from parallel program executing on HP
workstation cluster, with MAXSTRING = 290,000...............................29

Figure 5.8 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 2 and MAXSTRING = 180,000 ...30

Figure 5.9 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 2 and MAXSTRING = 290,000 ...30

Figure 5.10 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 5 and MAXSTRING = 180,000 ...30

Figure 5.11 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 5 and MAXSTRING = 290,000 ...31

Figure 5.12 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 8 and MAXSTRING = 180,000 ...31

Figure 5.13 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 8 and MAXSTRING = 290,000 ...31

Figure 5.14 The relation of execution time and number of process
performed on HP workstation cluster, with derivation
length = 9 and MAXSTRING = 290,000 ...32

Figure B.1 Stochastic tree structure with derivation length of 1.48

Figure B.2 Stochastic tree structure with derivation length of 248

Figure B.3 Stochastic tree structure with derivation length of 349

Figure B.4 Stochastic tree structure with derivation length of 449

Figure B.5 Stochastic tree structure with derivation length of 549
Figure B.6 Stochastic tree structure with derivation length of 650

Figure B.7 Stochastic tree structure with derivation length of 750

Figure B.8 Stochastic tree structure with derivation length of 850

Figure B.9 Stochastic tree structure with derivation length of 950

Figure B.10 String, consist of 4,157 charters, generated by Stochastic
L-System with derivation length of 6 and their graphic
visualization..51

Figure B.11 Stochastic tree structure generated by 4 processes
(1 parent and 3 children) with derivation length of 9.
Each color represents string generated by each process.52

 xii

Figure B.12 Stochastic tree structure generated by 5 processes
(1 parent and 4 children) with derivation length of 9.
Each color represents string generated by each process.52

Figure B.13 Stochastic tree structure generated by 6 processes
(1 parent and 5 children) with derivation length of 9.
Each color represents string generated by each process.53

Figure B.14 Stochastic tree structure generated by 7 processes
(1 parent and 6 children) with derivation length of 9.
Each color represents string generated by each process.53

Figure B.15 Stochastic tree structure generated by 8 processes
(1 parent and 7 children) with derivation length of 9.
Each color represents string generated by each process.54

Figure B.16 Stochastic tree structure generated by 9 processes
(1 parent and 8 children) with derivation length of 9.
Each color represents string generated by each process.54

Figure B.11 Stochastic tree structure generated by 4 processes
(1 parent and 3 children) with derivation length of 9.
Each color represents string generated by each process.52

Chapter 1

Introduction

The study of plant morphology and plant growth has interested
researchers, not only for survival reasons, but also because of the desire to understand
nature and to appreciate the beauty we perceive in natural forms.

In 1960s, a biologist, Aristid Lindenmayer, presented a first model for
cellular growth using string-rewriting mechanisms. This formalism, known as
Lindenmayer-System or L-System, makes use of parallel replacements. It focused on
the topological relationships of single cells and larger plant parts. Visualization
methods for precise geometric descriptions were formulated later. One of these
methods is inspired by the cursor movement commands provided by the LOGO
programming language, that make the visualization of state changes easy. The
popularity of this approach is derived from its lucid presentation in the
groundbreaking work published in 1990 by Prusinkiewicz and Lindenmayer [1].

1.1 Problem Identification
The inspiration of this research comes from the paper entitled Animating

Plant Growth in L-system by Parametric Function Symbol [2]. It revealed some
difficulty in a rewriting language in which each part of plant was produced by
substituting along with production rules. Just after a few iterative substitutions, there
are too many symbols being substituted, and it consumed very long time to keep on
proceeding.

In fact, the production of L-system can be cut to pieces, and each can be
performed simultaneously and independently without interfering to one another. It is
clearly seen that the whole job can be separated and performed by each one of group
of computers. It is worthy constructing a parallel algorithm for a stochastic L-system.
Exploration on the result could confirm the hypothesis which state time consumed
should be improved if appropriated load balancing scheme for multiprocessor is
applied. The program is developed and implemented using C programming language,
associated with Message-Passing Interface package. The system is based on virtual
parallel machine.

What here it is worth or not to employ a parallel computing to L-system
calculation. The primary objective of this research is to determine the feasibility of
applying parallel computing and MPI to stochastic L-system calculation and
improving the executing time.

1.2 Background

1.2.1. L-systems

In 1968, Aristid Lindenmayer introduced L-systems, which provided a
mathematical formalism for parallel grammars well adapted to the modeling of
growth phenomena [1]. In 1984, Alvy Ray Smith, a computer graphics researcher

 2

showed how L-systems could be used to synthesize realistic images. He also pointed
out the relationship between the concept of Fractals and L-systems [3]. L-systems
used to generate plants with or without inflorescence, cell growth and geometric
patterns such as Indian kolams or mathematical ‘monsters’ such as the Von Koch or
Hilbert curves. Many geometric patterns and tilling can be generated using L-systems.
The problem of describing patterns and tilling using L-systems is largely unexplored.

Hammel and Prusinkeiwicz [4] extended the notation of L-systems with
turtle interpretation to facilitate the construction of such objects. The extension was
based on the interpretation of the entire derivation graph generated by L-systems, as
opposed to the interpretation of individual words. The illustration of the proposed
method by applying it to visualize the development of compound leaves, a seashell
wins a pigmentation pattern, and a filamentous bacterium expanded the horizon of the
application of L-system.

Samal, Peterson, and Holliday [5] recognized the naturally occurring
objects that had been a difficult task in computer vision. One of the keys to recognize
objects was the development of a suitable model. One type of model, the fractal, had
been used successfully to model complex natural objects. A class of fractals, the L-
system, had not only been used to model natural plants, but had also aided in their
recognition. They extended the work in plant recognition using L-systems in two
ways. Stochastic L-systems were used to model and generate more realistic plants.
Furthermore, to handle the complexity of recognition, a learning system was used that
automatically generated a decision tree for classification. Results indicated that the
approach used here has great potential as a method for recognition of natural objects.

Chua mei Chen and Hsu Wen Jing [6] presented a type of formal language
called L-system which was developed by Lindenmayer (1968). Similar to formal
languages, L-systems defined a method by which a string of symbols could be
rewritten or parsed into another string using a set of rewrite rules. X-machines were
generalized state automata. They took another look at this way of generating plants
and provided a convenient way of taking component L-systems that exhibited some
properties and combining them using a x-machine so that each L-system contributed
its properties or behavior. The result was a plant, which had some characteristics of
each of its components.

Stefanovski, Loskovska and Mihajlov [7] introduced a model for
implementing recursive objects, defined by L-systems, in a ray tracing based system
for realistic visualization. The model was based on constructive solid geometry
(CSG). Recurrent CSG-graphs were used for internal representation of recursive
objects. The graphs allowed one to build up the scene during visualization, i.e.
generating only those primitive objects which might be affected by the ray. The
reduction of objects minimized the necessary memory space. For better performance,
an efficiency scheme with super-bounding volumes was used.

Schaefer, Jr. [8] described the genetic programming paradigm using
Lindenmayer system re-writing grammars which was proposed as a means of
specifying robot behaviors for autonomous navigation of mobile robots in uncertain
environments. The concise nature of these algorithms and their inherent expansion
capabilities held promises as a method of overcoming communication bandwidth and
time-of-flight limitations in the transmission of navigation, guidance, and control
algorithms of planetary rovers. The results of this early research showed much

 3

promise as a viable programming technique for evolutionary robotics and embedded
systems.

1.2.2. Plant Model

Lintermann and Deussen [9] presented a rule-based approach combined
with traditional geometric modeling techniques that allowed easy generation of many
branching objects including flowers, bushes, trees, and even nonbotanical objects. A
set of components describing structural and geometrical elements of plants mapped to
a graph that formed the description of a specific plant and generated the geometry.
Users got immediate feedback on what they had created-geometrical parameters,
tropisms, and free-form deformations could control the overall shape of a plant. They
demonstrated that their method handled the complexity of most real plants.

Fracchia and Ashton [10] described that the investigation of mechanisms
responsible for the morphogenesis of complex biological organisms was an important
area in biology. P. Patens was an especially suitable plant for this research because it
was a rather simple organism, facilitating its observation, yet it possessed
developmental phenomena analogous to those which occurred in higher plants,
allowing the extrapolation of hypotheses to more complex organisms. The
visualization consisted of three components: biological data collection, computer
modeling (using L-systems), and model verification. The simulated developmental
process was quite realistic and provides an excellent means for verifying the
underlying hypotheses of morphogenesis.

Yi-Cheng Lin and Sarabandi [11] investigated a coherent scattering model
for tree canopies based on a Monte Carlo simulation of fractal generated trees. In
contrast to the incoherent models based on the radiative transfer theory, the present
model was capable of preserving the relative phase of individual scatterer which gave
rise to the coherent effects and predicting the absolute phase of the backscattered field
or equivalently the scattering phase center. In the procedure for Monte Carlo
simulation, the first tandem generation of tree architectures was implemented by
employing the Lindenmayer systems (L-systems), a convenient tool for creating
fractal patterns of botanical structures. Since the generating code of tree structures
was faithful in preserving the fine features of the simulated tree types, this study
provided an efficient approach to examine the effects of tree structures on the radar
backscatter. After generating a tree structure, the electromagnetic scattering problem
was then treated by considering the tree structure as a cluster of scatterers comprised
of cylinders (trunks and branches) and disks (leaves) with specified position,
orientation, and size. The scattering solution was obtained by invoking the single
scattering theory for a uniform plane wave illumination. In this solution scattering
from individual tree components when illuminated by the mean field was computed
and then added coherently. The mean field at a given point within the tree structure
included the attenuation and phase change due to the scattering and absorption losses
of vegetation particles. Finally, the backscattering coefficients were simulated at
different frequencies based on the results of the Monte Carlo simulations obtained
from a large number of independent trees.

Mock [12] presented the Wildwood project in which a genetic algorithm
was applied to a simplified L-system representation in order to generate artificial-life
style plants for virtual worlds. Acting as a virtual gardener, a human selected which
plants to breed, producing a unique new generation of plants. An experiment

 4

involving a simulation-style fitness function was also performed, and the virtual
plants were adapted to maximize the fitness function.

Chuai-aree, S., Siripant, S. and Lursinsap,C. [13] animated the plant
growth by using the iteration of L-system, but at each time step of development the
plant model was not smooth and continuous. They proposed an animating plant
growth in L-system by parametric functional symbols to the length, size and position
of each component of the plant. The developments of plant growth seemed to be
smoother and more naturals as well as realistic. This prototype could be used to
generate the realistic model of any plant based or bracketed L-system.

1.2.3. Parallel Computing

Poovarawan, Y. and Uthayopas, P. [14] presented the overview of High
Performance Computing, the required components, and its applications. Current state
of the HPC researches and facilities in Thailand had also been reviewed along with
the HPC related research conducted in Kasetsart University. In summary, HPC was a
technology that had an impact on Thailand competitiveness. Yet, much more qualified
manpower and broader recognition of the field were seriously needed. Afterwards,
when more understanding were obtained via an analysis and visualization, the
experiments could be conducted to verify the simulation results or collect more
information to fine-tune the model. The clear advantages of this second approach
were faster turn-around time and much less cost. However, the computing power
needed to solve these kinds of problems was enormous. This was the rational for
recent emerging of Computational Science, which was the study of techniques and
tools to tackle compute-intensive applications.

Uthayopas, P., Angskun, T. and Maneesilp, J. [15] introduced their
experiences in constructing a parallel computer from cluster of cheap PCs. This
parallel computer could be programmed using PVM and MPI standard message
passing interface. Applications developed on this machine were portable to most
commercial supercomputer such as IBM SP System, SGI Power Challenge. The steps
of system integration and the application of this system were presented. They found
that key factor in building this kind of system was the integration of suitable hardware
and software systems. This technology was important in providing affordable
supercomputing power for research and academic communities in Thailand.

Lin, Hsu and Lee [16] introduced the single-step-searching problem,
which was defined as follows. They were given a graph where each vertex was
associated with a weight. Assume that every edge of graph was of equal length. A
fugitive might be hidden in any edge. They were asked to assign searchers to vertices
to search the entire graph in one step such that no fugitive could escape. The cost of a
searching plan was related to the weights of the vertices in which the searchers were
initially located. Their goal was to minimize the cost of the searching plan. A parallel
algorithm based upon The EREW model was proposed to solve this problem. Their
algorithm applied the tree contraction technique. The critical point was that they had
to transform a general tree into a binary tree, including pseudo-nodes, in order to
apply this tree contraction technique. A new algorithm was devised to solve the
problem on the transformed binary tree. It could be proved that this new algorithm
was correct, as it produced a correct solution for the original tree. Their algorithm had
an optimal speed-up.

 5

1.3 Objective of the Research
Due to parallel algorithm and implementation of the algorithm under MPI

environment is capable to reduce time for production rules substitution under
stochastic L-system in plant stem and branch growth. The primary aim of this study is
to obtain a parallel technique to cut down time for the production rules substitution.
Anyway, most of operation in L-system calculating is string substitution, which is
very fast action for any computer. It is very important to decide it is worth or not to
involve parallel computing to L-system calculation. This question is primary objective
of this research, it is to determine feasibility of applying parallel computing and MPI
to stochastic L-system calculation and improving the executing time.

 7

a formal definition of the programming language. Their accomplishments have had
various applications in computer science.

In 1968, Aristid Lindenmayer, a biologist, introduced a new type of string
rewriting mechanism, called L-systems [19]. There is an essential difference to
Chomsky grammars in the method of applying productions. In Chomsky grammars
productions are applied sequentially, whereas in L-systems they are applied in parallel
and simultaneously replace every letters in a given string. This difference exhibits the
biological motivation of L-systems. Productions are proposed to capture cell divisions
in which numerous divisions occur at the same time. Parallel production application
has a fundamental impact on the formal properties of rewriting systems.

2.2 Deterministic and Context-Free of L-systems
Deterministic and context-free of L-systems, commonly called DOL-

systems, is an elementary class of L-systems. It can be comfortably illustrated as an
example that introduces the main concept in intuitive terms.

Firstly, let’s consider strings compose of two symbols a and b, which is
possible occur many times in a string. Each symbol is associated with a rewriting
rule. The rule a → ab means that any letter a in a string is to be substituted by the
string ab, and the rule b → a means that the any letter b is to be substituted by a. The
rewriting proceeding begin from a string called axiom.

Next, assume that the string is composed of only one letter b. In the
beginning step, the axiom b is substituted by a, using rewriting rule b → a. Then, in
the second step, the letter a is substituted by ab, using production a → ab. The word
ab are simultaneously rewritten in the next step. Thus, a is substituted by ab, b is
substituted by a, and the result is string aba. Similarly, the string aba produce string
abaab which in turn outgrows to string abaababa, then abaababaabaab, and so on as
illustrated in Figure 2.2

b

a

a b

a b a

a b a a b

a b a a b a b a

Figure 2.2 Elementary example in Deterministic and Context-Free
L-system

Mathematical definitions describing DOL-systems and their operation are
given below [1]. Let V denote an alphabet, V* the set of all words over V. A string
OL-system is an ordered triplet G = <V, ω, P> where V is the alphabet of the system,
ω ∈ V+ is a nonempty word called the axiom and P ⊂ V × V* is a finite set of
productions. A production (a, χ) ∈ P is written as a → χ. The letter a and the word χ

 8

are called the predecessor and the successor of this productions, respectively. It is
assumed that for any letter a ∈ V, there is at least one word χ ∈ V* such that a → χ. If
no production is explicitly specified for a given predecessor a ∈ V, the identity
production a → a is assumed to belong to the set of productions P. An OL-system is
deterministic (noted DOL-system) if and only if for each a ∈ V there is exactly one
χ ∈ V* such that a → χ.

Let µ = a1…am be an arbitrary word over V. The word ν = χ1…χm ∈ V* is
directly generated by µ, noted µ → ν, if and only if ai → χ1 for all i = 1, …, m. A
word ν is generated by G in a derivation of length n if there exists a developmental
sequence of words µ0, µ1, …, µn such that µ0 = ω, µn = ν and µ0 → µ1 → …→ µn.

Another commendable example illustrating the operation of DOL-systems
is the formalism of simulating the development of a fragment of a multicellular
filament. This system can be found in the blue-green bacteria Anabaena catenula and
various algae [1]. The symbols a and b represent cytological states of the cells (their
size and readiness to divide). The subscripts l and r indicate cell polarity, specifying
the positions in which daughter cells of type a and b will be produced. The
development is described by the following L-system:

 n = 4
 w : ar
 p1 : ar → al br
 p2 : al → bl ar
 p3 : br → ar
 p4 : bl → al

Beginning from only one cell ar (the axiom), the following succession of
string is generated:

 ar
 al br
 bl ar ar
 al al br al br
 bl ar bl ar ar bl ar ar
 …

ar

br

al

bl

Figure 2.3 Development of a filament (Anabaena catenula)
simulated using a DOL-system.

 9

Under a microscope, the filaments appear as a sequence of cylinders of
various lengths, with a-type cells longer than b-type cells. The corresponding
schematic image of filament development is shown in Figure 2.3. Note that due to the
discrete nature of L-systems, this model does not capture the continuous expansion of
cells between subdivisions.

2.3 Turtle interpretation of strings
In place of illustration of more complex plants, more sophisticated

graphical explanation of L-systems in needed. Frijters and Lindenmayer [20], and
Hogeweg and Hesper [21] published the first available figures of this direction in
1974. In both cases, L-systems were used essentially to determine the branching
topology of the modeled plants. The geometric aspects, such as the lengths of line
segments and the angle values, were added in a post-processing phase. Smith [22],
who established the capacity of L-systems for realistic image synthesis, subsequently
extended the results of Hogeweg and Hesper.

The basic idea of turtle interpretation is given as follows. A status of the
turtle is defined as a triplet (x,y,α), where the (x,y) represent the turtle’s position in
Cartesian coordinates, and the angle α represents the direction in which the turtle is
facing. Given the step size d and the angle increment δ, the turtle can respond to
commands represented by the following symbols in Table 2.1.

Table 2.1 Two-dimensional Turtle interpretations.

Symbols Turtle Response

F Moves forward one step with distance d. The turtle status
shift from (x,y,α) to (x′,y′,α) by transformation equation
x′ = x + d⋅cosα and y′ = y + d⋅sinα, with a line drawing
from (x,y) to (x′,y′).

f Moves forward one step with distance d. The turtle status
shift from (x,y,α) to (x′,y′,α) by transformation equation
x′ = x + d⋅cosα and y′ = y + d⋅sinα, without any line
drawing.

+ Rotate counterclockwise by angle δ. The new turtle status
is (x,y,α+δ).

- Rotate clockwise by angle δ. The new turtle status is
(x,y,α-δ).

One of commendable examples for illustrating the application of turtle is
quadratic Koch Island. The representation of the system is given by string ν, the
initial state of the turtle is (x0,y0,α0) and fixed parameters d and δ. The turtle
interpretation of ν is the figure (set of lines) drawn by the turtle in response to the
string ν in Figure 2.4 b. Precisely, this method can be applied to illustrate the strings
which are generated by L-systems. For example, Figure 2.5 presents four

 11

2.4 Branching structures
The turtle interpretation of string as a sequence of line segments has

worthy capability to result various type of drawing in L-system, but it is not more
than just a single line. Nevertheless, most of the plant in the nature is branch structure.
Thus, a mathematical description of tree-like shapes and the methods for generating
are needed.

2.5 Axial tree
A rooted tree is defined as a set of edges that are labeled and directed. The

edge sequences form paths from a distinguished node, called root, to the terminal
nodes. One of subtypes of rooted tree is an axial tree. Each node of an axial tree has
at most one outgoing straight-distinguished segment. Where other remaining edges
are called lateral segment.

2.6 Bracketed OL-systems
The definition of a tree in L-systems does not particularize the data

structure for representing an axial tree. One possibility is to use a list representation
with a tree topology. Alternatively, the axial tree can be represented using strings
with bracket [1]. An extension of turtle interpretation is required for strings with
brackets and the operation of bracketed L-systems. Two more symbols are introduced
to delimit a branch. The turtle interpretation is described in Table 2.2.

Table 2.2 Two-dimensional Turtle interpretations (extension).

Symbols Turtle Response

[Push the current status, position and orientation, of the
turtle onto a pushdown stack. The other attributes such as
the color, width and style of lines might be saved to stack
as well.

] Pull a status from the stack and assign it as the current
status of the turtle. No other action to perform.

An example of an axial tree and its string representation are shown in
Figure 2.6. Derivations in bracketed OL-systems proceed as in OL-systems with out
brackets. The brackets replace themselves. Some examples of two-dimensional
branching structures generated by bracketed OL-systems are shown in Figure 2.7.

 12

Start

δ = 45°

F[+F][-F[-F]F]F[+F][-F]F

Figure 2.6 Bracketed string representation of an axial tree.

(a)

n = 5, δ = 25.7°
axiom: F
rule: F→F[+F]F[-F]+F

(b)
n = 5, δ = 20°
axiom: F
rule: F→F[+F]F[-F][F]

(c)
n = 4, δ = 22.5°
axiom: F
rule: F→ FF-[-

F+F+F]+[+F-F-F]

(d)

n = 7, δ = 20°
axiom: X
rules: F→ FF
 X→ F[+X]F[-X]+X

(e)
n = 7, δ = 25.7°
axiom: X
rules: F→ FF
 X→ F[+X][-X]FX

(f)
n = 5, δ = 22.5°
axiom: X
rules: F→ FF
 X→ F-[[X+X]+F

[+FX]-X

Figure 2.7 Examples of plant-like structures generated by bracketed
OL-systems.

 13

2.7 Stochastic L-systems
It can be seen that all plants generated by the same deterministic L-system

have to be exactly alike. An attempt to pose them in the same picture would produce a
remarkable uniformity. In order to prevent this effect, it is necessary to introduce
specimen-to-specimen variations that will preserve the general aspects of a plant but
will modify its details.

The principle of Stochastic L-systems is variation achieved by
randomizing the turtle interpretation, the L-system, or both. Anyway, randomization
of the interpretation alone has a limited effect. Due to the modification of geometric
aspects of a plant, such as the stem lengths and branching angles, is unable to change
underlying topology. On the other hand, stochastic application of productions may
affect both the topology and the geometry of the plant.

A stochastic OL-system is an ordered quadruplet Gπ = <V,ω,P,π>. The
alphabet V, the axiom ω and the set of productions P are defined as in an OL-system.
Function π : P → (0,1], called the probability distribution, maps the set of
productions into the set of production probabilities. It is assumed that for any letter a
∈ V, the sum of probabilities of all productions with the predecessor an is equal to 1.

The derivation µ ⇒ ν is called a stochastic derivation in Gπ if for each
occurrence of the letter a in the word µ the probability of applying production p with
predecessor a is equal to π(p). Thus, different productions with the same predecessor
can be applied to various occurrences of the same letter in one derivation step.

A simple example of a stochastic L-system is given as following.

 ω : F
 p1 : F ⎯⎯→⎯0.33 F[+F]F[-F]F
 p2 : F ⎯⎯→⎯0.33 F[+F]F
 p3 : F ⎯⎯→⎯0.34 F[-F]F

The production probabilities are listed above the derivation symbol →.
Each production can be selected with approximately the same probability of 1/3.
Examples of branching structures generated by this L-system with derivations step of
5 are shown in figure 2.8. Note that the results generated through Stochastic L-
Systems are different for every derivation process. It makes these structures look like
different specimens of the same plant species.

Figure 2.8 Stochastic branching structures

Chapter 3

Parallel Computing

3.1 Parallel Programming Paradigm
Even though, in present, a personal computer has become more and more

powerful, but many of scientific fields still require much more computing power than
can be achieved by a single personal computer. A supercomputer might be a reliable
solution. However, it might be too expensive for some research group. Fortunately,
cluster computing is another alternative potential solution that provides high
computing power with an acceptable price.

A cluster composes of a group of personal computers connected through a
high-speed network. It differs from a typical computer network in that each node in
the cluster collaborates with each other to solve a problem. The cluster is capable of
providing an equal computing power to a supercomputer, but it is possible to increase
the probability of a node failure.

High performance computing with cluster requires a special application
designed. This application must be able to divide tasks and provide these divided
tasks to each node in cluster. The development of such an application requires
communication library that helps developer to send and receive data between each
node. In order to make application portable and independent from any specific
communication library, a standard library of internode communication is required.
Message-Passing Interface or MPI is one of the most considered standard libraries in
cluster computing applications.

3.2 Networks
In parallel computing, a network refers to the connection of processors and

memories together in a parallel architecture. Ideally, one wants each processor to be
connected to any other processor, but it becomes uneconomical when the number of
processors is large (Figure 3.1), and many solutions have been established. There are
various applicable network topologies. A brief summary of each topology is given in
the following sections.

P1

P2

P3

P4

P5

P6P7

Figure 3.1 There are ()
2

1PP −⋅ links, where P is a number of

processes. It make connecting all processors together
becomes seriously expensive.

 15

3.2.1. Linear topology

In Linear topology, processors are organized in an ascending order from 0
to P-1. Excluded the first and the last processors, each processor has two neighbors,
its predecessor and its successor. Although the topology is simple, the data must pass
through a number of processors in order to reach the destination. This results in long
communication delays, especially between the first and the last processors.

P1 P2 P3 P4 P5

Figure 3.2 Linear topology.

3.2.2. Ring Topology

A ring topology can be obtained by connecting the first and the last
processors of Linear topology to each other. A ring can be uni-directional (the
communication is established in only one direction, clockwise or counter-clockwise)
or bi-directional (the communication is established in both directions). The ring
structure can still cause long communication delays between components.

P1

P2
P3

P4

P5

P6P7

Figure 3.3 Ring Topology.

3.2.3. Two-Dimensional Mesh

In two-Dimensional Mesh topology, the processors are arranged in a two-
dimensional matrix. Each processor is connected to four neighbors (top, down, left
and right). There are two sub-types of this topology. One is the mesh with wrap-
around connections between processors in the same row or column. The other is the
mesh without such wrap-around connections. The mesh topology can be generalized
to more than one dimension. In an n-dimensional mesh, each processor is connected
to two neighbors in each direction.

 (a) (b)

Figure 3.4 (a) No wrap-around connections, (b) Wrap-around
connections

 16

3.2.4. Binary Tree

1. Static tree network composed of processors connected resembling a
complete binary tree. Each processor is connected to one parent in previous level and
two children in succeeding level. An exception is root processor has no parent
connection, and leaf nodes have no any children (Figure 3.5 a).

2. Dynamic tree network has the binary tree structure similar to static
tree network. However, nodes at intermediate levels and root are switching elements,
and just only leaf nodes are processors (Figure 3.5 b).

To communicate among processors, a message is sent from processor up
the tree until it reaches the processor or the switch at the root of the smallest subtree
containing both the sources and destination processors. Then the message is sent
down the tree toward the destination processor.

P1

P2

P3

P4

P5

P6

P7 P1 P2 P3 P4

S1

S2 S3

= Processor

= Switch

(a) (b)

Figure 3.5 (a). Static binary tree interconnection network with 7
processors, (b) Dynamics binary tree interconnection
network with 4 processors and 3 switches.

3.2.5. Star

A star-connection network, one processor acts as the central processor.
Every other processor has a communication link connecting it to this processor. The
star-connected network is similar to bus-based networks. Communication between
any pair of processor is routed through the central processor, just as the shared bus
forms the medium for all communication in bus-based network. The central processor
is the bottleneck in the star topology.

P1

P2

P3

P4

P5
P6

P7

Figure 3.1 A star connected network of seven processors.

 17

3.3 Search Algorithm for Discrete Optimization Problems

3.3.1. Discrete optimization problems

Discrete optimization problems (DOPs) is normally formulated in terms of
finding a (minimum cost) solution path in a graph from an initial node to a goal node
and solved by graph/tree search. It can be formally stated as: Given a finite discrete
set S and a function f(x) defined on the elements of S, find an optimal element xopt
such that f(xopt) = min{f(x)|x∈S}. In most problems, the set S is quite large.
Consequently, it is very laborious to enumerate the elements in S for determining xopt .
The parallel processing is perhaps the way to obtain acceptable performance, and
increase possibility to solve the problems.

3.3.2. Sequential Depth-First Search (DFS)

The search begins by expanding the initial node by generating its
successors. Then, one of the most recently generated nodes is expanded in the similar
way as its parent. If this node does not have any successors then backtracking is done,
and a remaining node is selected for expansion. Three search methods that use the
depth-first search strategy are the following.

1. Simple Backtracking is a method that terminates on finding the first
solution. This solution is obviously not guaranteed to be the minimum cost solution.

2. Depth-First Branch-and-Bound (DFBB) is an algorithm which
searches continue even after finding the solution. Whenever a new solution is found,
the current best solution is updated.

3. Iterative Deepening A* keeps on expanding nodes in a depth-first
fashion until the total cost of the selected node reaches a given threshold (which is
increased in each iteration). The algorithm continues until a goal node is selected for
expansion. It might appear that IDA* performs a lot of redundancies. But in practice,
the redundancy is minimal and the algorithm finds an optimal solution.

3.3.3. Sequential Best-First Search.

Best-first search technique uses heuristics to direct a search through the
spaces that is more likely to yield solutions. A* algorithm is a commonly used best-
first search technique. A* makes use of a heuristic evaluation function, f, defined over
the nodes of the search space. For each node x, f(x) gives an estimate of the cost of
the optimal solution path passing through node x.

A* maintains a list of nodes called OPEN which holds the nodes which
have been generated but not expanded. This list is sorted on the basis of the f values
of the nodes. The nodes with the lowest f values are expanded first. The main
drawback of this scheme is that it runs out of memory very fast since its memory
requirement is linear in the size of the search space explored.

3.3.4. Parallel Depth-First-Search Algorithms

A general procedure for parallel DFS is as follows. Each processor
searches a disjoint part of the search space in a depth-first way. When any one
finishes searching its part, it tries to get an unsearched part from the other processors.
When a goal is found, all of them quit. If the solution does not exist, then all the
processors would run out of work, and then terminate. [23]

Since searching is in a depth-first manner, the state space can be
represented by a stack. The depth of stack is the depth of the node being explored

 18

currently. Each processor maintains its own local stack. When the local stack is
empty, it takes some of the untried alternatives of the stack of another processor. This
process continues until all processors go idle or a solution is found.

3.3.5. Parallel Best-First Search

Parallel DFBB is similar to those of parallel DFS. Only little modification is
keeping all the processors informed of the current best solution path. Whenever a
processor finds a solution path better than the current best known, it broadcasts the
solution to all the other processors to update their current best solution path. Parallel
formulations of DFBB have been shown to yield linearly increasing speedups for
many problems and architectures [24, 25].

3.3.6. Load-Balancing Schemes

In parallel DFS and DFBB, the selection of a target processor for a work
request can be done in a number ways. This section reviews three dynamic load-
balancing schemes: asynchronous round robin, global round robin, and random
polling.

1. Asynchronous round robin: Each processor maintains its own pointer
that determines the target processor of a work request. Every time a work request is
made, the pointer is read and incremented (modulo the number of processors).
Nevertheless, it is possible for two or more processors to request work from the same
target processor nearly at the same time.

2. Global round robin: A global pointer is maintained at a designated
processor. This pointer determines the target of a work request. Every time a work
request is made, the pointer is read and incremented (modulo the number of
processors). Though the global round robin scheme minimizes the total number of
work requests for a wide class of problems, accessing the global pointer might forms
a bottleneck. It is possible to degrade the performance.

3. Random polling: A processor is selected at random and the work
request is targeted to this processor. It makes random polling does not suffer from
such a drawback. However, in special case, on machines that have hardware support
for concurrent access to a global pointer, the performance of the global round robin
scheme would be better than random polling.

3.4 Message-Passing Interface (MPI)

3.4.1. Narrative

Message passing is a programming paradigm used widely on parallel
computing, especially on networks of personal computers. Although there are many
variations, the basic concept of processes communicating through messages is
successful acceptable. Over the past decades, a worthy development has been made in
casting significant applications into this paradigm. Vendors have implemented their
own variance. However, the message-passing system can show it is efficient and
portable. It is a good occasion to introduce the standard for both the syntax and
semantics of routine library that will be practicable to a wide range of users and
efficiently implementable on any plate forms. This attempt has been accomplished by

the Message Passing Interface Forum, a group of more than 80 people from 40
organizations, representing vendors of parallel systems, industrial users, industrial and
national research laboratories, and universities.

 19

3.4.2. Basic concept

There are two simple reasons in practicing message passing: (1) To
exchange data between the parallel processes, and (2) to synchronize the processes.
In view of human’s communication, usually message passing, it is very easy to accept
this idea.

One of the remarkable concepts of MPI is the degree of portability across
different machines. This means that the same message-passing source code can be
executed on any machines as long as the MPI library is available. It can run on a
network of computers as a set of processes running on a single computer.

Another benefit offered by MPI is the ability to run transparently on
cluster of computers with distinct architectures. It is possible for an MPI
implementation to span on virtual computing model that hides many architectural
differences. The user needs not to worry whether the code is running on the group of
machines of the identical type or not. The MPI implementation will automatically do
any necessary data conversion and utilize the correct communications protocol.
Anyway, MPI does allow implementations that are targeted to a single system.

An MPI programming consists of autonomous processes, executing their
own code (need not be identical for each process). Normally, each process executes in
its own memory space, although shared-memory is possible. The processes can be
sequential, or multi-threaded, with threads possibly executing concurrently. The
processes communicate via calls to MPI communication standard subroutines. The
definition of a message passing standard provides vendors with a clearly defined base
set of subroutines that they can implement efficiently hardware supports.

3.4.3. Processes communication

The fundamental communication mechanism among processes of MPI is
the data transmission between a pair of processes, or point to point communication.
Most of MPI coding is built around the point to point approach.

Another choice of communication is collective communications. The data
are transmitted among all processes in a group specified by an intracommunicator
object defining the group of participating processes and providing a communication
domain for the operation.

3.4.4. Processes Topologies

A topology is an optional attribute that one can give to an communicator.
It is possible to assist the runtime system in mapping the processes onto hardware.
Normally, each process in the group is assigned a rank between 0 and n-1. However,
in many parallel applications, a linear ranking of processes does not adequately reflect
the logical communication pattern of the processes. It might be more practicable
arranging processes in topological patterns such as two-dimensional grids.
Commonly, the logical process arrangement is described as the virtual topology.

The virtual topology is at liberty to be accomplished in the same way as
physical processors, if this helps to improve the communication performance on a
system.

The communication pattern of processes can be represented by a graph.
The nodes stand for the processes, and the edges connect processes that communicate
with each other. Since communication is most often symmetric, the graphs are
assumed to be undirected graphs.

 20

3.5 MPICH
MPICH is a portable implementation of the full MPI specification for a

wide variety of parallel computing environments, including workstation clusters and
massively parallel processors (MPPs). MPICH contains, along with the MPI library
itself, a programming environment for working with MPI programs. The
programming environment includes a portable startup mechanism, several profiling
libraries for studying the performance of MPI programs, and an X interface to all of
the tools. The document describes how to compile, test, and install MPICH and its
related tools, the portable implementation of the MPI Message-Passing Standard
Details using the MPICH implementation are presented in a User's Guide for MPICH
[26].

3.5.1. Downloading MPICH

The easiest way to get MPICH is downloading via the web page
www.mcs.anl.gov/mpi/mpich/download.html. For alternatively way, file named
mpich.tar.gz is available for anonymous ftp on ftp.mcs.anl.gov in directory pub/mpi.
To unpack the mpich.tar.gz file, move it into a build directory, assume the directory
name is /tmp. Make sure that enough available space is enough (larger than 100MB is
advisable). Then, apply following command.

% cd /tmp
% tar zxovf mpich.tar.gz

However, if tar program on the system does not accept the z option, use
% cd /tmp
% gunzip -c mpich.tar.gz | tar zxovf -

Finally, It is necessary to check the web page www.mcs.anl.gov/mpi/mpich/buglist-
tbl.html for any patches that might be needed. The patch page has instructions on
applying the patches.

Chapter 4

Method of Experiments

4.1 Mathematical Model
A stochastic L-system examined in this experiment is based on bracketed

L-system, it given as:

 Axiom:
 ω : F
 Rules:
 p1 : F ⎯⎯→⎯0.33 F[+F]F[-F]F
 p2 : F ⎯⎯→⎯0.33 F[+F]F
 p3 : F ⎯⎯→⎯0.34 F[-F]F

Where the quantities revealed over the arrows represent the production
probabilities for each rule. The symbols utilized to represent plant structure are
described in Table 4.1.

Table 4.1 Two-dimensional interpretations of L-system symbols
in visualization.

Symbols Interpretation

F Moves forward with distance d. The status is changed from (x,
y, α) to (x′, y′, α) by equation x′ = x + d⋅cosα and
y′ = y + d⋅sinα. Draws a line from (x, y) to (x′, y′).

+ Rotate counter clockwise by angle δ. The status is changed
from (x, y, α) to (x, y, α+δ)

- Rotate clockwise by angle δ. The status is changed from (x, y,
α) to (x, y, α-δ)

[Push the current status onto a stack.

] Pull status from the stack and then assign to current status.

The experimental program was built using C-programming language, and
parallel components in program were implemented utilizing Message-Passing
Interface (MPI). The program was performed on two sets of computer clusters. The
first cluster composed of 3 computers include of two Silicon Graphics O2 computer
and one Silicon Graphics OCTANE2, working with IRIX operation system Release
6.5. The second cluster composed of four HP Workstations x2000, each of them was
installed with Mandrake Linux Release 9.0.

 22

The program was performed for various derivation lengths (1-9), and
different amount of process numbers (2-11). A program written in familiar manner –
sequential method – is performed for comparison. Time spent in each executing were
recorded and interpreted.

The load balancing technique in this program was developed by means of
Round Robin load balancing method. Instead of idle process look around for some
undone job obtainable from active processes, an active process is looking for idle
processes and sends divided job to them. The hypothesis is this dynamic technique
might yield an improved performance due to number of processing units.

4.2 Main Program Algorithm
The main program can be described in two sections. First section is the

code performing as master process, and the second one is the code performing as
slave or child process. In fact, all programs on each machine are identical. Just during
the starting execution, the program evaluates its own rank. Only a process of zero
rank works as a master process and the others work as slaves or child processes.

An algorithm for master process can be briefly described. It initiates
system by sending the axiom and all rules to the child process. Then, it calls one of
child processes to perform the job, and waits the response from the child processes, if
some asks for an idle process. Finally, when all child processes finish their jobs, the
master receives all the results, sorts the jobs and then finishes the process.

In child process, it waits for a string sent from the other processes. The
string is generated accordingly to the specified stochastic L-system grammar. If the
generated string becomes too long, the child process is authorized to request from the
master process for another idle process. If idle process presents, the job is divided and
second half is sent to the idle process. If none exists, the process resumes its job.

The whole detail of algorithm for both sections is as follows:

4.2.1. Master Process
1: GET rules, axiom, and desired derivation length
2: SEND rules to all child processes
3: SEND axiom and derivation length to the first child processes
4: WHILE (job not finished) DO
5: WAIT & RECEIVE status from child process
6: IF child process asks for idle process THEN
7: SEEK for idle process from idle table
8: IF found an idle process THEN
9: SEND back rank of idle process

10: ELSE
11: SEND message UNKNOW to tell no any idle process exists
12: ENDIF
13: ENDIF
14: IF child process requests to send back result THEN
15: RECEIVE result string
16: APPEND result_string into result_list
17: ENDIF
18: ENDWHILE
19: SEND process_control=NO_MORE_JOB to all child processes
20: SORT result_list on their label
21: WRITE down final result string

 23

4.2.2. Child Process
1: WHILE control declares don’t terminate DO
2: RECEIVE control
3: IF control state next message is “rules” THEN RECEIVE rules
4: IF control state next message is “job” THEN
5: RECEIVE job
6: WHILE job is not finished yet DO
7: PERFORM job
8: IF job is too much THEN
9: ASK for an idle process

10: IF there are some idle processes THEN
11: DIVIDE job into two parts
12: SEND the second part to the idle process
13: ENDIF
14: ENDIF
15: ENDWHILE
16: SEND result to the master process
17: ENDIF
18: ENDWHILE

4.3 Visualize Program Algorithm
The result coming out from main program is string of characters. To

present it graphically, we need a program to interpret the string. The following
algorithm is used for transforming result string from main program to set of xy-
coordinate, which finally to be plotted by program GNUPLOT.

4.3.1. Visualize Program
1: GET L-system string
2: Prepare status-stack
3: SET turtle current-status (position x, y and angle α) to zero
4: SET turtle next-status (position x, y and angle α) to zero
5: FOR each character from the string
6: IF character is ‘[‘ THEN push current-status into status-stack
7: IF character is ‘]‘ THEN pull status-stack into current-status
8: IF character is ‘-’ THEN COMPUTE next-status α’ = α - δ
9: IF character is ‘+’ THEN COMPUTE next-status α’ = α + δ

10: IF character is ‘F’ THEN
11: COMPUTE next-status x’ = x - d⋅sin(α) and y’ = y + d⋅sin(α)
12: DRAW line from (x, y) to (x’, y’)
13: SET current-status = next-status
14: ENDIF
15: NEXT character

Chapter 5

Experimental Result

5.1 Sequential execution
The experimental programs, for generating an L-system tree string, are

firstly performed in sequential manner on a single processor. It was executed on
HP workstations X2000 for approximately 100 times for each derivation length
of 2, 3, 4, 5, 6, 7, 8 and 9 respectively. The averaged time spent for each derivation
length are calculated and plotted against the length as shown in Figure 5.1. Since the
result of L-system algorithm used is in order of Ο(mn+1) [see Appendix C], it will be
helpful to plot the relation in semi-log graph. Another excellent demonstration for the
Ο(mn+1) relationship is correlation between derivation length with length of result
string generated from L-system program (shown in Figure 5.2).

It should be noticed that in Figure 5.2, the relationship is very precisely
resembled to an exponential curve (appearance as a straight line in semi-log graph).
However, the curve in Figure 5.1 turns to a straight line after the derivation length of
five. The numerical values of time spent and the averaged result string length in the
sequential method are shown in Table 5.1.

sequential program

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

0 2 4 6 8 10

derivation length

time (sec)

Figure 5.1 Averaged time spent for each derivation length in

 25

Table 5.1 Numerical values of averaged time spent and averaged
length of result string in the sequential method

Derivation Length Averaged Time
Spent(second)

Average String
Length(character)

2 0.0000634 30
3 0.0000767 124
4 0.0001204 446
5 0.0004374 1,545
6 0.0047668 6,352
7 0.0446541 20,464
8 0.8367362 80,971
9 9.4074299 292,193

1

10

100

1000

10000

100000

1000000

0 2 4 6 8 10

derivation length

string length

Figure 5.2 Averaged length of result string for derivation lengths
generated from L-system program.

5.2 Parallel execution on SGI cluster
On SGI cluster – include of SGI O2 and SGI OCTANE2 – the parallel

version of program is performed for 1, 2, 3 and 4 processes. They yield unexpected
result. The time spent was supposed to be decreased during number of process
increase. But on contrary, for every length of derivation, the time spent dropped at
process number of 2, and rapidly increased for more number of processes (figure 5.3
and table 5.2).

The appropriate explanation for the time increasing might be the network
connection among SGI system is linked with the Internet, which is possible that the
information sent among SGI machines have to reroute to somewhere outside before
arrives destination. Moreover, due to the program need very large space for result
string, the very limited swap space of SGI machines might extend the executing time,
and it is too difficult to rearrange this swap space.

Due to it was obviously seen the purposeless to perform more
experimental, the experiment for more number of processes had not been longer
perform.

 26

1
2 3

4
1

2
3

4
5

6
7

8

1

10

100

1000
time (sec)

number of process

derivation length

Figure 5.3 Averaged time spent for derivation lengths from parallel
program executing on SGI cluster.

Table 5.2 Averaged time spent for derivation lengths from
parallel program executing on SGI cluster.

Number of Process Derivation
Length 2 3 4 5 6 7 8 9

2 2.2676 2.3308 2.3086 2.4466 2.3508 2.5565 3.531 6.6724
3 1.3147 1.2943 1.2907 1.2702 1.30633 1.1425 1.7483 5.9937
4 3.7294 3.3248 2.919 30.422 61.5402 73.9475 54.0233 57.1711
5 3.6858 4.6652 4.584 40.3185 126.2795 172.3375 170.7212 135.7317

5.3 Parallel execution on HP workstation cluster
Executing of the program on four HP workstations X2000 cluster were

performed approximately 100 times for each of derivation length of two to nine and
process numbers of 2 to 11. The system yielded more appropriate results. However,
the experiments show that the size of string sent among processes yield significant
effect on performance. In the parallel version program, the constant named
MAXSTRING defined maximum length of string transferred among processes. If it
was defined to be 180,000, the program is capable to execute faster, but was unable to
calculate in case derivation length larger than eight. The result is demonstrated
graphically in Figure 5.4 and in Table 5.3. It can be seen that the result revealed what
has been supposed to be. Increasing of number of processes made averaged time spent
in calculation decreased for length of derivation larger than seven.

 27

1 2 3 4 5 6 7 8 9
10

2

4

6

8

0.0010

0.0100

0.1000

1.0000
time spent (sec)

numbers of process
derivation length

Figure 5.4 Averaged time spent for derivation lengths from parallel
program executing on HP workstation cluster, with
MAXSTRING = 180,000.

Table 5.3 Averaged time-used for derivation lengths from
parallel program, executing on HP workstation cluster, with
MAXSTRING = 180,000.

Number of Process Derivation
Length 2 3 4 5 6 7 8

2 0.0057 0.0056 0.0058 0.0332 0.0377 0.0831 0.3497
3 0.0068 0.0068 0.0113 0.0642 0.0649 0.0831 0.2352
4 0.0084 0.0083 0.0095 0.0777 0.0937 0.1012 0.2052
5 0.0086 0.0081 0.0137 0.0982 0.1112 0.1166 0.1625
6 0.0092 0.0092 0.0105 0.1042 0.1271 0.1233 0.1795
7 0.0112 0.0106 0.0146 0.0993 0.1329 0.1488 0.1960
8 0.0114 0.0124 0.0505 0.0970 0.1543 0.1670 0.2047
9 0.0120 0.0129 0.0561 0.0960 0.1362 0.1673 0.1912
10 0.0130 0.0128 0.0573 0.1033 0.1572 0.1765 0.2095
11 0.0238 0.0177 0.0593 0.1022 0.1565 0.1930 0.2249

In case the maximum length of string sent among processes was defined to
be 290,000, the program is able to calculate up to derivation length of nine. However,
speedup factor was a little bit slowed down. The result is shown graphically in
Figure 5.5 and in Table 5.4.

In addition, averaged executing time-used on each process for derivation
lengths of 8, with maximum length of string sent among processes of 120,000, is
shown in Table 5.5.

 28

1 2 3 4 5 6 7 8 9 10

2

4

6

8

0.01

0.1

1

10

time spent (sec)

numbers of process

de
riv

at
ion

 le
ng

th

Figure 5.5 Averaged time spent for derivation lengths from parallel

program executing on HP workstation cluster, with
MAXSTRING = 290,000.

Table 5.4 Averaged time-used for derivation lengths from
parallel program, executing on HP workstation cluster, with
MAXSTRING = 290,000.

Number of Process Derivation
Length 2 3 4 5 6 7 8 9

2 0.0306 0.0307 0.0364 0.0313 0.0390 0.0798 0.6345 9.6150
3 0.0314 0.0316 0.0590 0.0619 0.0663 0.0773 0.2138 2.2977
4 0.0325 0.0326 0.0620 0.0837 0.0977 0.1046 0.2443 2.3639
5 0.0325 0.0327 0.0596 0.0936 0.1157 0.1202 0.1689 0.7015
6 0.0339 0.0336 0.0613 0.0968 0.1277 0.1399 0.1879 0.7220
7 0.0346 0.0347 0.0667 0.0990 0.1389 0.1614 0.2043 0.7281
8 0.0356 0.0357 0.0684 0.0959 0.1519 0.1789 0.2304 0.7386
9 0.0356 0.0357 0.0670 0.0974 0.1509 0.1800 0.2135 0.4805
10 0.0367 0.0366 0.0665 0.0978 0.1538 0.1923 0.2318 0.5075
11 0.0377 0.0376 0.0675 0.1033 0.1514 0.2075 0.2522 0.5330

Table 5.5 Averaged time-used on each process for derivation
lengths of 8 from parallel program, executing on HP
workstation cluster, with MAXSTRING = 120,000.

Averaged Executing Time on Each Process (second) Numbers of
Process

Total Time
(second) P1 P2 P3 P4 P5 P6 P7 P8

2 0.6996 0.6958
3 0.2382 0.2133 0.2053
4 0.2701 0.1263 0.2430 0.1982
5 0.1891 0.1535 0.1424 0.1280 0.1302
6 0.2190 0.1524 0.1587 0.1433 0.1360 0.1244
7 0.2331 0.1482 0.1456 0.1486 0.1430 0.1309 0.1380
8 0.2460 0.1482 0.1435 0.1421 0.1470 0.1351 0.1398 0.1480
9 0.2178 0.1334 0.1217 0.1100 0.1007 0.1009 0.1114 0.1237 0.1143

 29

In comparison of parallel computation with a sequential computation, it is
helpful to be established as speedup factor, ratio of execution time using one
processor with execution time using multiprocessor. The speedup factor for execution
on HP workstation cluster are calculated and sketched as shown in Figure 5.6 and
Figure 5.7.

1 2
3

4
5

6
7

8
9

102
3

4
5

6
7

8

0.001

0.01

0.1

1

10
speedup factor

numbers of process
deriva

tion length

Figure 5.6 Speedup Factor from parallel program executing on HP
workstation cluster, with MAXSTRING = 180,000.

1 2 3 4 5 6 7 8 9
102

3
4

5
6

7
8

90.001

0.01

0.1

1

10

100

speedup factor

numbers of process deriva
tion length

Figure 5.7 Speedup Factor from parallel program executing on HP
workstation cluster, with MAXSTRING = 290,000

 30

5.4 Additional Outcomes
Due to the previous graphics on the relation between execution time, the

number of processes and the derivation length are plotted in a semi-log graph. But for
some instance, it might be more certain if the relation is shown in a normal graph.
Some of the interesting relations are demonstrated in following Figures:

derivation length = 2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 1 2 3 4 5 6 7 8 9 10 11 12

number of process

time (sec)

Figure 5.8 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 2 and MAXSTRING = 180,000

derivation length = 2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 1 2 3 4 5 6 7 8 9 10 11 12

number of process

time (sec)

Figure 5.9 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 2 and MAXSTRING = 290,000

 31

derivation length = 5

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 2 4 6 8 10 12

number of process

time (sec)

Figure 5.10 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 5 and MAXSTRING = 180,000

derivation length = 5

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 2 4 6 8 10 12

number of process

time (sec)

Figure 5.11 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 5 and MAXSTRING = 290,000

derivation length = 8

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 2 4 6 8 10 12

number of process

time (sec)

Figure 5.12 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 8 and MAXSTRING = 180,000

 32

derivation length = 8

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 2 4 6 8 10 12

number of process

time (sec)

Figure 5.13 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 8 and MAXSTRING = 290,000

derivation length = 9

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0 1 2 3 4 5 6 7 8 9 10 11 12number of process

time (sec)

Figure 5.14 The relation of execution time and number of process

performed on HP workstation cluster, with derivation
length = 9 and MAXSTRING = 290,000

Chapter 6

Conclusion

The overhead of MPI in this experiment is mainly affected by information
transferring among processes. Comparisons between the sequential and parallel
programs (Table 5.1, 5.3 and 5.4) show very large difference of executing times for
derivation length of two. It revealed MPI overhead is very large. In addition, Figure
5.8 and 5.9, the derivation length of two, shows the linearly dependent of executing
time with amount of process involved in calculation. They both increase in the same
way. It is definitely seen that executing time is longer in case of larger MAXSTRING,
the constants defining maximum length of string transferred among processes.
Comparison of Figure 5.8 and 5.9 could be applied major effect of MAXSTRING as
well.

On the other hand, in region which derivation length is larger than seven,
result string size becomes very large, and the main job is much extensive. It is clearly
seen that executing time was significantly effected by number of process. The Charts
in Figures 5.12, 5.13 and 5.14 revealed that the executing time is largely decreased
with respect to the added number of processes.

It can be seen from the result that the parallel computing with MPI
assistance yields very good efficiency if workload of MPI overhead is insignificant
when compared to the main tasks. The speedup factor is notable worthy if the
derivation length is greater than seven. The maximum value of speedup factor for this
research is approximately 19.6 at derivation length of nine with nine processes
operated simultaneously.

The expectation that computation speed could be improved along with
high number of processors has been accomplished. However, because of extensive
duration of bi-directional communication among processes, it is worth to applying
parallel computing technique if the overhead of parallel method is minor for whole
system.

References

1. Prusinkiewicz, P., Lindenmayer, A. The Algorithmic Beauty of Plants. Springer-
Verlag, New York: 1990.

2. Chuai-aree, S., Siripant, S., and Lursinsap, C. Animating Plant Growth in L-
System by Parametric Function Symbols. Proceeding of International
Conference on Intelligent Technology 2000 (December 2000): 135-143.

3. Smith, A.R. Plants, fractals, and formal languages, ACM SIGGRAPH vol. 18,
no.3 (1984): 1-10.

4. Hammel, M. S., and Prusinkiewicz, P. Visualization of developmental
processesby extrusion in space-time. Proceedings of Graphics Interface ’96
(May 1996): 246-258.

5. Samal, A., Peterson, B., and Holliday, D.J. Image Processing, 1994.
Proceedings. ICIP-94., IEEE International Conference, 1 (Nov 1994): 183-
187.

6. Chen, C.M., and Jing, H.W. A Simulation Study of Plant Hybridization Using L+
System [online]. Available from:
http://bashful.ice.ntnu.edu.tw/~jason/summary_index.htm [2003, Jan]

7. Stefanovski, S., Loskovska, S., and Mihajlov, D. Representation and realistic
rendering of objects defined by L-systems. Electrotechnical Conference, 1998.
MELECON 98., 9th Mediterranean , 1 (May 1998): 86-90.

8. Schaefer, C.G., Jr., Morphogenesis of path plan sequences through genetic
synthesis of L-system productions. Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress, 1 (1999): 365.

9. Lintermann, B., and Deussen, O. Interactive modeling of plants. Computer
Graphics and Applications, IEEE, 19 (Jan 1999): 56-65.

10. Fracchia, F.D., and Ashton, N.W. A visualization tool for studying the
development of the moss Physcomitrella patens. Visualization, 1995.
Visualization '95. Proceedings., IEEE Conference, (Oct 1995): 364 -367, 475.

11. Yi-Cheng Lin, and Sarabandi, K. A coherent scattering model for forest canopies
based on Monte Carlo simulation of fractal generated trees. Geoscience and
Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a
Sustainable Future.', International, 2 (May 1996): 1334 –1336.

12. Mock, K.J. Wildwood: the evolution of L-system plants for virtual environments.
Evolutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence, The 1998 IEEE International Conference, (May
1998): 476-480.

13. Chuai-aree, S. An Algorithm for Simulation and Visualization of Plant Shoots
Growth. Master’s Thesis, Department of Mathematics, Faculty of Science,
Chulalongkorn University, 2000.

 35

14. Poovarawan, Y., and Uthayopas, P. High Performance Computing: Needs and
Application for Thailand [online]. 1997. Available from:
http://prg.cpe.ku.ac.th/publications/yuen.pdf [2003, Mar]

15. Uthayopas, P., Angskun, T., and Maneesilp, J. Building a Parallel Computer
from Cheap PCs: SMILE Cluster Experiences [online]. 1998. Available from:
http://prg.cpe.ku.ac.th/publications/anscse2.pdf [2003, Mar]

16. Lin, J.S., Hsu, F.R., and Lee, R.C.T. A parallel algorithm for the single step
searching problem. Parallel Architectures, Algorithms and Networks, 1994.
(ISPAN) International Symposium, (Dec 1994): 278-285.

17. Von Koch, H. Acta Mathematica. 30:145-174, 1905.

18. Salomaa. Formal Languages. Academic Press, New York, 1973.

19. Chomsky., N. Three models for the descriptions of language. IRE Trans. On
Information Theory, 2(3):113-124, 1956.

20. Frijters, D. and Lindenmayer, A. L System. Lecture notes in Computer Science
15. Springer-Verlag, Berlin: 24-52, 1974.

21. Hogeweg, P. and Hesper, B. A model study on biomorphological description.
Pattern Regognition, 6:165-179, 1974.

22. Smith, A. R. Plants, fractals, and formal languages. Computer Graphics, 18, 3
(July 1984), ACM SIG-GRAPH, New York: 1-10, 1984.

23. Hwang., K. Advanced Computer Architecture with Parallel Programming.
McGraw Hill Inc., 1992.

24. Arvindam, S., Kumar, V. and Nageshwara Rao, V. Floorplan optimization on
multiprocessors. Proceedings of the 1989 International Conference on
Computer Design (ICCD-89), 1989.

25. Arvindam, S., Kumar, V., and Nageshwara Rao., V. Efficient parallel algorithms
for search problems: Applications in VLSI cad. Proceedings of the Frontiers
90 Conference on Massively Parallel Computation, October 1990.

26. Gropp, W. and Lusk, E. Installation and User’s Guide to MPICH, a Portable
Implementation of MPI, Argonne National Laboratory, Argonne, IL, 2001.

27. Lindenmayer, A. Journal of Theoretical Biology, 18:280-315, 1968.

Appendices

Appendix A

Program Listing

1: /* modify on 14 MAR 2003 treealfa2.c */
2:
3: #include<stdio.h>
4: #include<stdlib.h>
5: #include<string.h>
6: #include<time.h>
7: #include<sys/types.h>
8: #include<math.h>
9: #include"mpi.h"
10:
11: #define ran() ((double) rand()/RAND_MAX)
12:
13: #define MAXITER 500
14: #define MAXSTRING 200000
15: #define PROCESSMAX 10
16: #define MAXLOAD 100 /* l-string will be seperate if > MAXLOAD */
17: #define MAXLEVEL 10 /* maximum level for job separation */
18: #define MAX_RESULT_LIST 100
19: #define MAX_RULE_CHAR 255
20: #define MAXRULE 20
21:
22: #define TRUE 1
23: #define FALSE 0
24: #define EQUAL 0
25: #define LESSTHAN -1
26: #define GREATERTHAN 1
27: #define IS_GREATER_THAN >0
28: #define IS_EQUAL ==0
29:
30: /******** Constanst for processes status ********/
31:
32: #define START_PROGRAM -1
33: #define UNKNOW -2 /* UNKNOW has to be negative number */
34: #define PROCESS_IDLE 0
35: #define PROCESS_BUSY 1
36: #define ASK_FOR_IDLE_PROCESS 4
37: #define RESULT_READY 8
38:
39: #define STATUS_TAG 501
40: #define IDLE_PROCESS_TAG 502
41: #define L_STRING_TAG 503
42: #define RULE_TAG 504
43:
44: /**/
45:
46: #define ROOT_PROCESS 0
47:
48: /******** Constanst for loop control ************/
49:
50: #define PERFORM_LOOP 1
51: #define TERMINATE_LOOP 0
52:
53: /******** Constanst for process control *********/
54:
55: #define NEW_JOB_COMING 1
56: #define RULE_COMING 2
57: #define NO_MORE_JOB 0
58:
59: #define PROCESS_CONTROL_TAG 504
60:
61: /******** Macro *********************************/
62:
63: #define PP printf ("[P%1d] ", rank)
64: #define PRINT_LABEL_OF(X) for (kr=0;kr<X.index;kr++) printf ("%d ",X.label[kr])
65: int kr ;
66:
67: /*****GLOBAL VARIABLE**************/
68: int rank, process_n;
69: int idle_table[PROCESSMAX];
70:
71: /**/
72:
73: /**********************************/
74: /* Declare MPI derived type */
75: /**********************************/

 38

76:
77: struct L_String
78: {
79: int iter ; /* iteration needed */
80: char label[MAXLEVEL] ; /* label for this string */
81: char str[MAXSTRING] ; /* string to be operated */
82: } ;
83:
84: MPI_Datatype MPI_L_String ;
85:
86: MPI_Datatype typ1[3] = {MPI_INT, MPI_CHAR, MPI_CHAR} ;
87: int len1[3] = {
88: 1,
89: MAXLEVEL,
90: MAXSTRING
91: };
92: MPI_Aint dis1[3] = {
93: 0,
94: sizeof(int),
95: sizeof(int)+MAXLEVEL*sizeof(char)
96: } ;
97:
98: struct Rule
99: {

100: int num_rule ;
101: float prob [MAXRULE] ;
102: float probx [MAXRULE] ;
103: char pred [MAXRULE] [MAX_RULE_CHAR] ;
104: char succ [MAXRULE] [MAX_RULE_CHAR] ;
105: } ;
106:
107: MPI_Datatype MPI_Rule ;
108:
109: MPI_Datatype typ2[5] = {MPI_INT, MPI_FLOAT, MPI_FLOAT, MPI_CHAR, MPI_CHAR} ;
110: int len2[5] = {
111: 1,
112: MAXRULE,
113: MAXRULE ,
114: MAXRULE * MAX_RULE_CHAR ,
115: MAXRULE * MAX_RULE_CHAR
116: } ;
117: MPI_Aint dis2[5] = {
118: 0,
119: sizeof(int),
120: sizeof(int) + MAXRULE*sizeof(float),
121: sizeof(int) + MAXRULE*sizeof(float)
122: + MAXRULE*sizeof(float),
123: sizeof(int) + MAXRULE*sizeof(float)
124: + MAXRULE*sizeof(float)
125: + MAXRULE*MAX_RULE_CHAR*sizeof(char)
126: } ;
127:
128: /********* End Declaration ********/
129:
130: int All_process_idle();
131:
132: void SwapLStr (struct L_String *x, struct L_String *y) ;
133:
134: main(int argc, char *argv[])
135: {
136:
137: time_t t1;
138:
139: int send_iter[]={1,4}; /* iteration that mom send to each son */
140: int i, j, k, count;
141:
142: int idle_processor = UNKNOW ;
143:
144: char send_string[PROCESSMAX][MAXSTRING];
145:
146: char result_string[MAXSTRING];
147: char cut_result_string[MAXSTRING];
148: char temp_result[MAXSTRING];
149: char temp_string[MAXSTRING];
150: char finished_str[MAXSTRING];
151:
152: int cut_num = 0;
153:
154: int loop1_control ;
155: int process_control ;
156:
157: int process_status = UNKNOW ;
158:
159: int swap_occur ;
160:
161: double sttime, entime;
162: double sttime1, entime1;

 39

163:
164: char *Lptr ;
165: char sub_str [MAXSTRING] ;
166: float ran_val ;
167: float upper_bound, lower_bound ;
168:
169: struct L_String sent_message, recv_message ;
170: struct L_String result_list [MAX_RESULT_LIST] ;
171: int result_index = 0 ;
172: struct Rule rule_all;
173:
174: /**********************************/
175: /* Initialize MPI Engine. */
176: /**********************************/
177:
178: MPI_Status status;
179:
180: printf ("[PX] "); printf ("START PROCESS\n") ;
181:
182: MPI_Init(&argc, &argv); /* initial MPI variable */
183: MPI_Comm_rank(MPI_COMM_WORLD, &rank); /* set number for each processor */
184: MPI_Comm_size(MPI_COMM_WORLD, &process_n); /* set total number of processor */
185:
186: /********* End Initialize. ********/
187:
188: /**********************************/
189: /* Commits MPI derived type */
190: /**********************************/
191:
192: MPI_Type_struct (3, len1, dis1, typ1, &MPI_L_String) ;
193: MPI_Type_commit (&MPI_L_String) ;
194:
195: MPI_Type_struct (5, len2, dis2, typ2, &MPI_Rule);
196: MPI_Type_commit (&MPI_Rule);
197:
198: /********* End Declaration *******/
199:
200: /*
201: NOTE:
202: ====
203:
204: parent: rank == 0
205: child: rank != 0
206:
207: Communication: parent --> child
208: 1) PARENT: Send process control. CHILD: Recv process control.
209: 2) PARENT: Send Infomation. CHILD: Perform appropriate action.
210:
211: Communication: child --> parent
212: 1) PARENT: Recv process status. CHILD: Send process status.
213: 2) PARENT: Perform the action. CHILD: Send information.
214:
215: */
216:
217: if (rank == ROOT_PROCESS) {
218:
219: /**/
220: /* */
221: /* P A R E N T P R O C E S S P A R T */
222: /* */
223: /**/
224: sttime1 = MPI_Wtime();
225: sttime = MPI_Wtick();
226: rule_all.num_rule = 3;
227:
228: rule_all.prob[0] = 0.33;
229: strcpy(rule_all.pred[0] ,"F");
230: strcpy(rule_all.succ[0] ,"F[+F]F[-F]F");
231:
232: rule_all.prob[1] = 0.33;
233: strcpy(rule_all.pred[1] ,"F");
234: strcpy(rule_all.succ[1] ,"F[+F]F");
235:
236: rule_all.prob[2] = 0.34;
237: strcpy(rule_all.pred[2] ,"F");
238: strcpy(rule_all.succ[2] ,"F[-F]F");
239:
240: strcpy(send_string[1], "F");
241: strcpy(send_string[2], "");
242:
243: /*===*/
244: /* First Section: */
245: /* Initiate job. Separate job, and send all */
246: /* suparated job to child processes. */
247: /*===*/
248:
249:

 40

250: for(i=1; i<process_n; i++) idle_table [i] = PROCESS_IDLE ;
251:
252: for(i=1; i<process_n; i++)
253: {
254: rule_all.probx[0] = 0.0 ;
255: for(k=1; k<=rule_all.num_rule; k++)
256: {
257: rule_all.probx[k] = rule_all.probx[k-1] + rule_all.prob[k-1] ;
258: }
259:
260: PP; printf ("SEND RULE : ROOT --> CHILD:%d\n",i);
261: for (j=0; j<=rule_all.num_rule; j++)
262: {
263: PP; printf(" : j=%d prob=%f probx=%f pred=%s succ=%s \n",
264: j, rule_all.prob[j], rule_all.probx[j],
265: rule_all.pred[j], rule_all.succ[j]);
266: };
267:
268: process_control = RULE_COMING ;
269: MPI_Send (&process_control, 1, MPI_INT,
270: i, PROCESS_CONTROL_TAG, MPI_COMM_WORLD);
271: MPI_Send (&rule_all, 1, MPI_Rule,
272: i, RULE_TAG , MPI_COMM_WORLD);
273: }
274:
275: /* zone mom send iteration & string to son processor */
276: for(i=1; i<2; i++)
277: {
278: sent_message.iter = send_iter [i-1] ;
279: if (i == 1) strcpy(sent_message.label, "1");
280: if (i == 2) strcpy(sent_message.label, "2");
281: if (i == 3) strcpy(sent_message.label, "3");
282: if (i == 4) strcpy(sent_message.label, "4");
283: if (i == 5) strcpy(sent_message.label, "5");
284:
285: strcpy (sent_message.str, send_string [i]);
286:
287: PP; printf ("SEND MESSAGE : ROOT --> CHILD:%d\n",i);
288: PP; printf (" : iter = %d\n", sent_message.iter);
289: PP; printf (" : label = %s\n", sent_message.label);
290: PP; printf (" : str = %s\n", sent_message.str);
291:
292: idle_table[i] = PROCESS_BUSY;
293:
294: process_control = NEW_JOB_COMING ;
295: MPI_Send (&process_control, 1, MPI_INT,
296: i, PROCESS_CONTROL_TAG, MPI_COMM_WORLD);
297: MPI_Send (&sent_message, 1, MPI_L_String,
298: i, L_STRING_TAG , MPI_COMM_WORLD);
299: }
300:
301: /*===*/
302: /* Second Section: */
303: /* Wait and de periodically read status of */
304: /* child processes. Then perform appropriate */
305: /* action for that status. */
306: /*===*/
307:
308: /* Watching for in case process need some information */
309: /* loop while check that every son processor finished its work? */
310:
311: while (All_process_idle() == FALSE)
312: {
313: for (i = 1; (i < process_n) && (All_process_idle() == FALSE); i++)
314: {
315: /*---
316: | Wait and receive status/request from child process. |
317:
318: ---*/
319: PP; printf ("CHECKING FOR IDLE/BUSY/REQUESTED PROCESS\n") ;
320: PP; printf (" : - before receive status from child process -\n");
321: PP; printf (" : idle_table[1] = %d\n", idle_table[1]);
322: PP; printf (" : idle_table[2] = %d\n", idle_table[2]);
323:
324: if (idle_table[i] != PROCESS_IDLE)
325: {
326: MPI_Recv (&process_status, 1, MPI_INT,
327: i, STATUS_TAG, MPI_COMM_WORLD, &status);
328: }
329: else
330: {
331: process_status = PROCESS_IDLE ;
332: }
333:
334: PP; printf (" : - after receive status from child process -\n");
335: PP; printf (" : from processor = %d\n", i);
336: PP; printf (" : process_status = %d\n", process_status);

 41

337: PP; printf (" : idle_table[1] = %d\n", idle_table[1]);
338: PP; printf (" : idle_table[2] = %d\n", idle_table[2]);
339:
340: /*if son processor has idle_table = PROCESS_IDLE
341: it's mean that son processor has finished his job */
342:
343: /*---
344: | Perform appropriate action for the status/request. |
345: ---*/
346: if (process_status == PROCESS_IDLE) idle_table[i] = PROCESS_IDLE ;
347: if (process_status == PROCESS_BUSY) idle_table[i] = PROCESS_BUSY ;
348:
349: PP; printf (" : -- after CHANGE status table.\n") ;
350: PP; printf (" : idle_table[1] = %d\n", idle_table[1]);
351: PP; printf (" : idle_table[2] = %d\n", idle_table[2]);
352:
353: if (process_status == ASK_FOR_IDLE_PROCESS)
354: {
355: PP; printf ("SEEKING FOR IDLE PROCESS FROM IDLE TABLE.\n") ;
356:
357: idle_processor = UNKNOW ;
358: for (j = 1; (j < process_n) && (idle_processor == UNKNOW); j++)
359: {
360: PP; printf (" : idle_table[%d] = %d\n",
361: j, idle_table[j]);
362:
363: if (idle_table[j] == PROCESS_IDLE)
364: {
365: idle_processor = j;
366: }
367: }
368:
369: PP; printf (" : idle_processor = %d\n", idle_processor);
370:
371: if (idle_processor != UNKNOW)
372: idle_table [idle_processor] = PROCESS_BUSY ;
373:
374: PP; printf ("SEND IDLE PROCESS NUMBER.\n") ;
375: PP; printf (" : to = %d\n", i);
376: PP; printf (" : idle_processor = %d\n", idle_processor);
377:
378: /* send No. of processsor j to processor i */
379: MPI_Send (&idle_processor, 1, MPI_INT,
380: i, IDLE_PROCESS_TAG, MPI_COMM_WORLD);
381: }
382: if (process_status == RESULT_READY)
383: {
384: /*---
385: | Receive Result and collect it to List. |
386: ---*/
387: MPI_Recv (&recv_message, 1, MPI_L_String,
388: MPI_ANY_SOURCE, L_STRING_TAG, MPI_COMM_WORLD, &status);
389:
390: PP; printf ("RECV MESSAGE : CHILD --> ROOT.\n");
391: PP; printf (" : iter = %d\n", recv_message.iter);
392: PP; printf (" : label = %s\n", recv_message.label);
393: PP; printf (" : str = %s\n", recv_message.str);
394:
395: strcpy (result_list[result_index].label, recv_message.label);
396: strcpy (result_list[result_index].str , recv_message.str);
397: result_index ++ ;
398:
399: idle_table[i] = PROCESS_IDLE ;
400: }
401: }
402: }
403:
404: /*===*/
405: /* Last Section : */
406: /* Print all result from list and send */
407: /* HALT control to all child process. */
408: /*===*/
409:
410: /*---
411: | Print result list. |
412: ---*/
413: PP; printf ("RESULT LIST:\n");
414: for (i=0; i<result_index ; i++)
415: {
416: PP;
417: printf (" i=%2d ", i);
418: printf ("label= %s",result_list[i].label);
419:
420: printf (" str=<%s>\n", result_list[i].str);
421: }
422:
423: /*---

 42

424: | Sort result list |
425: ---*/
426: swap_occur = TRUE ;
427: while (swap_occur == TRUE)
428: {
429: swap_occur = FALSE ;
430: for (i=0; i<result_index-1; i++)
431: {
432: if (strcmp(result_list[i].label,result_list[i+1].label)IS_GREATER_THAN)
433: {
434: SwapLStr (&result_list[i], &result_list[i+1]);
435: swap_occur = TRUE ;
436: }
437: }
438: }
439: /*---
440: | Count End Time for Total Process |
441: ---*/
442:
443: entime1 = MPI_Wtime();
444: entime = MPI_Wtick();
445: PP; printf ("TIME THAT COUNT BY MPI_Wtime = %lf\n", entime1 - sttime1);
446: PP; printf ("TIME THAT COUNT BY MPI_Wtick = %lf\n", entime - sttime);
447: PP; printf ("PROCESS TERMINATED\n") ;
448: /*---
449: | Print result list. |
450: ---*/
451: PP; printf ("RESULT LIST: AFTER SORT\n");
452: for (i=0; i<result_index ; i++)
453: {
454: PP;
455: printf (" i=%2d ", i);
456: printf ("label= %s",result_list[i].label);
457: printf (" str=<%s>\n", result_list[i].str);
458: }
459:
460: strcpy (finished_str, "") ;
461: for (i = 0; i < result_index; i++) strcat(finished_str, result_list[i].str) ;
462: count = strlen (finished_str);
463: PP;printf(" FINISHED STRING LENGTH = %d\n",count);
464: PP;printf(" FINISHED STRING = $%s$\n",finished_str);
465:
466:
467: /*---
468: | Do terminate all process. |
469: ---*/
470: for (i = 1; i < process_n; i++)
471: {
472: process_control = NO_MORE_JOB ;
473: MPI_Send (&process_control , 1, MPI_INT,
474: i, PROCESS_CONTROL_TAG, MPI_COMM_WORLD);
475: }
476:
477: /**/
478: /* E N D P A R E N T P R O C E S S */
479: /**/
480: }else{
481: /**/
482: /* */
483: /* C H I L D P R O C E S S P A R T */
484: /* */
485: /**/
486:
487: PP; printf ("JOB START : IN CHILD PROCESS:%d\n", rank) ;
488: PP; printf (" : process_status = %d\n", process_status);
489:
490: loop1_control = PERFORM_LOOP ;
491:
492: while (loop1_control == PERFORM_LOOP)
493: {
494: /*===
495: || Waiting for control from other process. ||
496: || At this point, process is in IDLE state. ||
497: ===*/
498: MPI_Recv (&process_control, 1, MPI_INT,
499: MPI_ANY_SOURCE, PROCESS_CONTROL_TAG, MPI_COMM_WORLD, &status);
500:
501: PP; printf ("WAIT/RECEIVE PROCESS CONTROL : IN CHILD PROCESS\n") ;
502: PP; printf (" : process_control = %d\n", process_control);
503:
504: if (process_control == NO_MORE_JOB)
505: {
506: process_status = PROCESS_IDLE ;
507: MPI_Send (&process_status, 1, MPI_INT,
508: 0, STATUS_TAG, MPI_COMM_WORLD);
509:
510: loop1_control = TERMINATE_LOOP ;

 43

511: }
512:
513: if (process_control == RULE_COMING)
514: {
515: /*---
516: | Receive Rule. |
517: ---*/
518: MPI_Recv (&rule_all, 1, MPI_Rule,
519: MPI_ANY_SOURCE, RULE_TAG, MPI_COMM_WORLD, &status);
520:
521: PP; printf ("RECV RULE : \n");
522: for (i=0; i<=rule_all.num_rule; i++)
523: {
524: PP; printf(" : i=%d prob=%f probx=%f pred=%s succ=%s \n",
525: i, rule_all.prob[i], rule_all.probx[i],
526: rule_all.pred[i], rule_all.succ [i]);
527: };
528:
529: loop1_control = PERFORM_LOOP ;
530: }
531:
532: if (process_control == NEW_JOB_COMING)
533: {
534: /*---
535: | Receive Message. |
536: ---*/
537: MPI_Recv (&recv_message, 1, MPI_L_String,
538: MPI_ANY_SOURCE, L_STRING_TAG, MPI_COMM_WORLD, &status);
539:
540: PP; printf ("RECV MESSAGE : --> CHILD\n");
541: PP; printf (" : iter = %d\n", recv_message.iter);
542: PP; printf (" : label = %s\n", recv_message.label);
543: PP; printf (" : str = %s\n", recv_message.str);
544:
545: process_status = PROCESS_BUSY ;
546: MPI_Send (&process_status, 1, MPI_INT,
547: 0, STATUS_TAG, MPI_COMM_WORLD);
548:
549: /* print for check the receiving */
550:
551: PP; printf ("INFORMATION : IN CHILD PROCESS\n") ;
552: PP; printf (" : recv_message.str = %s\n", recv_message.str);
553: PP; printf (" : process_status = %d\n", process_status);
554:
555: /*---
556: | Perform job. |
557: ---*/
558: strcpy (result_string, recv_message.str) ;
559: count = 0;
560: time(&t1);
561: srand((long)t1); /* put time in second to get seed */
562:
563: for (i = 0; i < recv_message.iter; i++)
564: {
565: /*-
566: | Do string operation |
567: -*/
568:
569: /* PP; printf ("STRING OPERATION.\n"); */
570: PP; printf ("STRING OPERATION.\n");
571:
572: strcpy (result_string , "") ;
573:
574: for (Lptr=recv_message.str; *Lptr != '\0' ; Lptr++)
575: {
576: strncpy (sub_str, Lptr, 1) ;
577: strcat (sub_str, "") ;
578: PP; printf (" : sub string <%s>\n", sub_str);
579: if (strcmp (sub_str,"F") IS_EQUAL)
580: {
581: ran_val = 0.5 ;
582: ran_val = ran() ;
583: PP; printf (" : random = %f\n", ran_val);
584: for (k=0 ; k<rule_all.num_rule; k++)
585: {
586: upper_bound = rule_all.probx[k+1] ;
587: lower_bound = rule_all.probx[k] ;
588: if (ran_val >= lower_bound && ran_val < upper_bound)
589: {
590: strcat (result_string, rule_all.succ[k]) ;
591: PP; printf (" : k=%2d result_string <%s>\n",
592: k, result_string);
593: }
594: }
595: }
596: else
597: {

 44

598: strcat (result_string, sub_str);
599: }
600: }
601:
602: strcpy (recv_message.str, result_string);
603:
604: count = strlen(result_string);
605: PP; printf (" iteration i=%2d count=%2d result_string <%s>\n",
606: i, count, result_string);
607:
608: /*-
609: | If there is to much job, give some to other. |
610: -*/
611: if (count > MAXLOAD && i < recv_message.iter-1)
612: {
613: PP; printf ("REQUEST FROM ROOT FOR OTHER IDLE PROCESS\n");
614: PP; printf (" : process requested = %d\n", rank);
615:
616: /*---
617: | Ask for idle processor from ROOT process. |
618: ---*/
619: process_status = ASK_FOR_IDLE_PROCESS ;
620: MPI_Send (&process_status, 1, MPI_INT,
621: 0, STATUS_TAG, MPI_COMM_WORLD);
622: MPI_Recv (&idle_processor, 1, MPI_INT,
623: 0, IDLE_PROCESS_TAG, MPI_COMM_WORLD, &status);
624: process_status = PROCESS_BUSY ;
625:
626: PP; printf (" --> : idle_processor = %d\n", idle_processor);
627:
628: if (idle_processor != UNKNOW) /* if there are any idle process */
629: {
630: PP; printf ("IDLE PORCESS FOUND, PERFORM SEPARATE JOB\n");
631:
632: /**** Divide string into two part ****/
633: cut_num = count / 2 ;
634:
635: strcpy(temp_string, result_string);
636:
637: PP; printf (" : -- before seperation -- \n");
638: PP; printf (" : temp_string = %s\n", temp_string);
639: PP; printf (" : result_string = %s\n", result_string);
640:
641: strncpy(temp_result, temp_string , cut_num);
642:
643: PP; printf (" : -- after seperation -- \n");
644: PP; printf (" : temp_result = %s\n", temp_result);
645:
646: strcpy(cut_result_string, temp_string + cut_num);
647:
648: strcpy(result_string, temp_result);
649:
650: PP; printf (" : result_string = %s\n", result_string);
651: PP; printf (" : cut_result_string = %s\n",
652: cut_result_string);
653:
654: /*---
655: | Prepare information to be sent. |
656: ---*/
657:
658: sent_message.iter = recv_message.iter - i - 1;
659:
660: strcpy (sent_message.label, recv_message.label);
661: strcat (recv_message.label, "1");
662: strcat (sent_message.label, "2");
663:
664: strcpy (recv_message.str, result_string);
665: strcpy (sent_message.str, cut_result_string);
666:
667: PP; printf ("SEND MESSAGE FROM PROCESS %d --> %d\n",
668: rank, idle_processor);
669: PP; printf (" : iter = %d\n", sent_message.iter);
670: PP; printf (" : label = %s\n", sent_message.label);
671: PP; printf (" : str = %s\n", sent_message.str);
672:
673: process_control = NEW_JOB_COMING ;
674: MPI_Send (&process_control, 1, MPI_INT,
675: idle_processor,PROCESS_CONTROL_TAG,MPI_COMM_WORLD);
676:
677: MPI_Send (&sent_message, 1, MPI_L_String,
678: idle_processor, L_STRING_TAG ,MPI_COMM_WORLD);
679:
680: }else{
681: /*
682: In case idle_processor = UNKNOW, this mean
683: there are no any processor is free. This
684: process has to perform the job by itself

 45

685: for next one iteration step, and back to
686: look for idle process again later.
687: */
688: }/*end if*/
689: }
690: }
691: /*---
692: | Job Finish, send result back to ROOT process. |
693: ---*/
694: sent_message.iter = 0 ;
695: strcpy (sent_message.label, recv_message.label);
696: strcpy (sent_message.str , result_string);
697:
698: PP; printf ("SEND RESULT BACK TO ROOT PROCESS.\n");
699: PP; printf (" : iter = %d\n", sent_message.iter);
700: PP; printf (" : label = %s\n", sent_message.label);
701: PP; printf (" : str = %s\n", sent_message.str);
702:
703: process_status = RESULT_READY ; /* idle_table will be set to IDLE.*/
704: MPI_Send (&process_status, 1, MPI_INT,
705: ROOT_PROCESS, STATUS_TAG, MPI_COMM_WORLD);
706: MPI_Send (&sent_message, 1, MPI_L_String,
707: ROOT_PROCESS, L_STRING_TAG, MPI_COMM_WORLD);
708:
709: loop1_control = PERFORM_LOOP ;
710: }/*end if*/
711: }
712: /**/
713: /* E N D C H I L D P R O C E S S */
714: /**/
715: }
716: MPI_Finalize();/* finished using MPI function */
717: } /* end main */
718:
719:
720: void SwapLStr (struct L_String *x, struct L_String *y)
721: {
722: struct L_String temp ;
723:
724: temp.iter = x->iter ;
725: strcpy (temp.label,x->label);
726: strcpy (temp.str ,x->str);
727:
728: x->iter = y->iter ;
729: strcpy (x->label,y->label);
730: strcpy (x->str ,y->str);
731:
732: y->iter = temp.iter ;
733: strcpy (y->label,temp.label);
734: strcpy (y->str ,temp.str);
735: }
736:
737:
738: int All_process_idle()
739: {
740: int i, check_process_idle;
741:
742: check_process_idle = TRUE;
743:
744: /*
745: PP; printf("CHECK ALL PROCESS IDLE\n");
746: */
747: for(i=1; i<process_n; i++)
748: {
749: /*
750: PP; printf(" : i = %d idle_table = %d \n", i,idle_table[i]);
751: */
752: if(idle_table[i] != PROCESS_IDLE) check_process_idle = FALSE ;
753: }
754: /*
755: PP; printf(" : return = %d \n", check_process_idle);
756: */
757: return check_process_idle;
758: }

 46

Pseudo Code
1: Initialize MPI Engine
2: Declare necessary types and variables
3: IF (rank = 0) THEN
4: GET rule_all, axiom_string and desired derivation_length
5: SEND process_control=RULE_COMING to all child processes
6: SEND rule_all to all child processes
7: SET idle_table=PROCESS_BUSY for 1st child process
8: attach label ‘1’ to axiom_string
9: SEND process_control=NEW_JOB_COMING to 1st child processes

10: SEND derivation_length & axiom_string to 1st child processes
11: WHILE (there are some child process still busy) DO
12: FOR all child process
13: IF (this child process busy) THEN
14: WAIT & RECEIVE process_status
15: IF process_status = ASK_FOR_IDLE_PROCESS THEN
16: look for idle process from idle table
17: IF found an idle process THEN
18: SET idle_table=PROCESS_BUSY for this idle process
19: SEND rank of idle process to process requested for it
20: ELSE
21: SEND message UNKNOW to tell no any idle process
22: ENDIF
23: ENDIF
24: IF process_status = RESULT_READY THEN
25: RECEIVE result_string
26: APPEND result_string into result_list
27: SET idle_table for this process to PROCESS_IDLE
28: ENDIF
29: ENDIF
30: NEXT child process
31: ENDWHILE
32: SNED process_control=NO_MORE_JOB to all child processes
33: sort result_list on their label
34: write down final result string
35: ELSE
36: SET loop_control = PERFORM_LOOP
37: WHILE (loop_control = PERFORM_LOOP) DO
38: WAIT & RECEIVE process_control from another process
39: IF (process_control = NO_MORE_JOB) THEN
40: SEND process_status = PROCESS_IDLE to parent process
41: SET loop_control = TERMINATE_LOOP
42: ENDIF
43: IF process_control = RULE_COMING THEN
44: RECEIVE rule_all
45: SET loop_control = PERFORM_LOOP
46: ENDIF
47: IF process_control = NEW_JOB_COMING THEN
48: RECEIVE derivation_length, initial_string
49: SEND process_status = PROCESS_BUSY to master process
50: FOR all derivation step needed
51: PERFORM substitute character in initial_string by means of rule_all
52: IF result_string is too long THEN
53: SEND process_status=ASK_FOR_IDLE_PROCESS to master process
54: RECEIVE answer from master process
55: IF answer is not UNKNOW THEN

 47

56: devide result_string to two sub-strings
57: APPEND ‘1’ to 1st sub-string label
58: APPEND ‘2’ to 2nd sub-string label
59: SEND process_control=NEW_JOB_COMING to the idle process
60: SEND 2nd sub-string to the idle process
61: COPY 1st sub-string to result_string
62: ENDIF
63: ENDIF
64: COPY result_string to initial_string
65: NEXT derivation step
66: SEND process_status=RESULT_READY to master process
67: SEND result_string to master process
68: SET loop_control = PERFORM_LOOP
69: ENDIF
70: ENDWHILE
71: ENDIF

Appendix B

Tree Generated of stochastic L-system

In this research, a lot of stochastic L-system trees were generated. With
appropriate visualized technique, most of them are look pretty good. Some of them
are shown as following.

Figure B.1 Stochastic tree structure with derivation length of 1.

Figure B.2 Stochastic tree structure with derivation length of 2.

 49

Figure B.3 Stochastic tree structure with derivation length of 3.

Figure B.4 Stochastic tree structure with derivation length of 4.

Figure B.5 Stochastic tree structure with derivation length of 5.

 50

Figure B.6 Stochastic tree structure with derivation length of 6.

Figure B.7 Stochastic tree structure with derivation length of 7.

Figure B.8 Stochastic tree structure with derivation length of 8.

 52

Figure B.11 Stochastic tree structure generated by 4 processes
(1 parent and 3 children) with derivation length of 9.
Each color represents string generated by each process.

Figure B.12 Stochastic tree structure generated by 5 processes
(1 parent and 4 children) with derivation length of 9.
Each color represents string generated by each process.

 53

Figure B.13 Stochastic tree structure generated by 6 processes
(1 parent and 5 children) with derivation length of 9.
Each color represents string generated by each process.

Figure B.14 Stochastic tree structure generated by 7 processes
(1 parent and 6 children) with derivation length of 9.
Each color represents string generated by each process.

 54

Figure B.15 Stochastic tree structure generated by 8 processes
(1 parent and 7 children) with derivation length of 9.
Each color represents string generated by each process.

Figure B.16 Stochastic tree structure generated by 9 processes
(1 parent and 8 children) with derivation length of 9.
Each color represents string generated by each process.

Appendix C

The Growth of Functions

To show that the relationship between derivation length, n, with length of
result string, L(n), generated from L-system program is Ο(mn+1), we need to verify
there are constants C and p such that 1nmCnL +≤)(, whenever pn > . Suppose that

 k represents number of symbols in axiom.

 k1 represents number of symbols in the axiom, which
is not going to be substituted.

 k2 represents number of symbols in the axiom, which
is going to be substituted, due to rewriting rules.

 m represents number of symbols in rewriting rule
which contain largest number of rewriting symbol.

 m1 represents number of symbols in the rewriting rule,
which is not going to be substituted.

 m2 represents number of symbols in the rewriting rule,
which is going to be substituted.

For an axiom:

 n = 0, L(0) = k = k1 + k2

Since only k2 symbols are going to be substituted by a string of m symbols
on the next derivation step. The upper bound of the length of final string can be
calculated as follows.

 n = 1, L(1) = k1 + k2⋅m

 = k1 + k2⋅(m1 + m2)

 = k1 + k2⋅m1 + k2⋅m2

The resulting string contains only k2⋅m2 rewriting symbols. Hence,

 n = 2, L(2) = k1 + k2⋅m1 + (k2⋅m2)⋅m

 = k1 + k2⋅m1 + (k2⋅m2) ⋅(m1+m2)

 = k1 + k2⋅m1 + k2⋅m2⋅m1+ k2⋅m2⋅m2

 n = 3, L(3) = k1 + k2⋅m1 + k2⋅m2⋅m1+ (k2⋅m2⋅m2)⋅m

 = k1 + k2⋅m1 + k2⋅m2⋅m1+ (k2⋅m2⋅m2)⋅(m1+m2)

 = k1 + k2⋅m1 + k2⋅m2⋅m1+ k2⋅m2⋅m2⋅m1+ k2⋅m2⋅m2⋅m2

It can be assumed that

 L(n) = () n
22

1n
2

2
22121 mkmmm1mkk ⋅+++++⋅+ −Κ

 57

Vitae

Supaporn Kamklad was born in 1962. She received a Bachelor Degree in
Mathematics from Department of Mathematics, Chulalongkorn University in 1989. In
1990-1993, she worked for DATAMAT Co. Ltd. as an assistant system analyst. She is
expected to complete Masters degree in Computational Science form Chulalongkorn
University in 2003.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (Englist)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Lindenmayer Systems
	Deterministic and Context-Free of L-systems
	Turtle interpretation of strings
	Branching structures
	Axial tree
	Bracketed OL-systems
	Stochastic L-systems

	Chapter 3 Parallel Computing
	Parallel Programming Paradigm
	Networks
	Search Algorithm for Discrete Optimization Problems
	Message-Passing Interface (MPI)
	MPICH

	Chapter 4 Method of Experiments
	Mathematical Model
	Main Program Algorithm
	Visualize Program Algorithm

	Chapter 5 Experimental Result
	Sequential execution
	Parallel execution on SGI cluster
	Parallel execution on HP workstation cluster
	Additional Outcomes

	Chapter 6 Conclusion
	References
	Appendices
	Vita

