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Multilayer feedforward networks for Sjrstem identification, function approximation,
and advanced control are studied in this research. Error backpropagation and Levenberge-
Marquardt algorithms have been employed to train the neural networks.

For system identification, the neural networks are trained with actual plant input-
output data to learn the plant dynamics of an industrial front-end acetylene hydrogenation
system. It can'be seen that the trained neural networks give good prediction results in both
training data set and testing data set with maximum average relative error of 8%.

For function approximation, the neural networks are trained with simulated data of
a Continuous Stirred Tank Reactor (CSTR) in order to approximate a function in the Generic
Model Control {(GMC) algorithm based on the coolant temperature and the reactor temperature.
It can be seen that the incorporation of neural network approximator in the GMC can improve
the GMC control performance under the disturbance rejection and set point tracking tests.in a
nominal condition and the presence of plant-model mismatches.

For advanced control, the neural networks are trained to leamn the forward model
and the inverse model of the CSTR. The first one is used to simulate the process model and the
- other one is used as a controller in the Nonlinear Internal Model Control (NIMC) algorithm., It

can be seen that the neural network controller based on the inverse model can control the reactor
temperature 'at its ‘set point when the system is tested with set point trackmg However, it
produces some offsets when the system is tested with disturbance rejection. Consequently, the
"PI controller. is added into the NIMC control loop in order to get rid of the offsets As the
results, offset-free control pcrfonnances are obtained.
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Subscripts

Greek letters

[

Xviii

Nomenclature

Area

Concentration

Heat capacity

Activation energy

Heat transfer coefficient for CSTR
Heat of reaction .

Integral absolute error

GMC tuning parameters

Arrthenius pre-exponential constant

Flow rate

Gas constant
Sum-squared error
Reactor temperature

Volume

Reactant
Coolant
Feed

Learning rate

Momentum parameter
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