
อัลกอริทึมการสอนไขวแบบวนซ้ําสําหรับการจําแนกประเภทเว็บเพจ

นางนวลวรรณ สุนทรภิษัช

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2545

ISBN 974-17-1361-4
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

AN ITERATIVE CROSS-TRAINING ALGORITHM

FOR

WEB PAGE CATEGORIZATION

Ms. Nuanwan Soonthornphisaj

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic year 2002

ISBN 974-17-1361-4

Thesis Title An Iterative Cross-Training Algorithm for Web Page Categorization

By Ms.Nuanwan Soonthornphisaj

Field of Study Computer Engineering

Thesis Advisor Assistant Professor Boonserm Kijsirikul, D.Eng.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor’s Degree

………………………………………….Dean of Faculty of Engineering

(Professor Somsak Punyakeow, D.Eng.)

THESIS COMMITTEE

………………………………….……… Chairman

(Associate Professor Prabhas Chongstitvatana, Ph.D.)

……………………………………….… Thesis Advisor

(Assistant Professor Boonserm Kijsirikul, D.Eng.)

…………………………………….…… Member

(Associate Professor Wanchai Rivepiboon, Ph.D.)

……………………………….…………..Member

(Arthit Thongtak, D.Eng.)

………………………………….………..Member

(Associate Professor Peter Haddawy, Ph.D.)

iv

นวลวรรณ สุนทรภิษัช : อัลกอริทึมการสอนไขวแบบวนซ้ําสําหรับการจําแนกประเภทเว็บเพจ. (AN
ITERATIVE CROSS-TRAINING ALGORITHM FOR WEB PAGE CATEGORIZATION) อ. ที่
ปรึกษา : ผศ.ดร. บุญเสริม กิจศิริกุล 68 หนา. ISBN 974-17-1361-4.

เปาหมายของการจําแนกประเภทเว็บเพจคือการระบุประเภทของเว็บเพจใหอยูในหมวดหมูที่กําหนด
ซึ่งในงานวิจัยกอนหนานี้ไดมีการศึกษาถึงเทคนิคในการจําแนกประเภทเว็บเพจใหมีประสิทธิภาพมากที่สุด หนึ่ง
ในวิธีการดังกลาวคือการใชอัลกอริทึมการเรียนรูแบบ Supervised Learning ซึ่งตองอาศัยขอมูลฝกเปนจํานวน
มาก ปญหาที่เกิดขึ้นคือการสรางชุดขอมูลฝกเหลานี้ตองอาศัยกําลังของผูเชี่ยวชาญเฉพาะดานตางๆเปนจํานวน
มาก อีกทั้งยังตองใชเวลาเปนจํานวนมากในการสรางชุดขอมูลดังกลาว ดังนั้นจึงมีความจําเปนที่จะตองคิดคน
อัลกอริทึมที่สามารถแกปญหาดังกลาวไดโดยที่ยังคงประสิทธิภาพการทํางานใหใกลเคียงกัน ดังนั้นผูวิจัยจึงได
เสนออัลกอริทึมการสอนไขวแบบวนซ้ําสําหรับการจําแนกประเภทเว็บเพจขึ้นเพื่อแกปญหาดังกลาว

ผูวิจัยไดทําการทดสอบอัลกอริทึมการสอนไขวแบบวนซ้ําเพื่อการจําแนกประเภทเว็บเพจกับขอมูลทั้ง
ส้ิน 4 ชุด ประสิทธิภาพการทํางานของอัลกอริทึมไดถูกนําไปวิเคราะหและเปรียบเทียบกับอัลกอริทึมอื่นๆ ไดแก
Supervised Learning, Co-Training และ Expectation Maximization ผลการทดลองพบวาโดยเฉลี่ยแลว
อัลกอริทึมการสอนไขวแบบวนซ้ําเปนอัลกอริทึมที่มีประสิทธิภาพทัดเทียมกับอัลกอริทึมแบบ Supervised
Learning และมีประสิทธิภาพดีกวาอัลกอริทึมแบบ Co-Training และ Expectation Maximization

ผูวิจัยไดศึกษาถึงผลกระทบของขอมูลสัญญาณรบกวน (Noise) ที่มีตอการจําแนกประเภทเว็บเพจ
จากผลการทดลองพบวาในกรณีที่มีการใหความรูที่เกี่ยวกับลักษณะของปญหา (domain knowledge) แก
อัลกอริทึม อัลกอริทึมการสอนไขวแบบวนซ้ําไมสูญเสียประสิทธิภาพการทํางานเมื่อเทียบกับอัลกอริทึมอื่นๆ แต
ในกรณีที่ไมมีการใหความรูที่เกี่ยวกับลักษณะของปญหาแกอัลกอริทึม พบวาอัลกอริทึมการสอนไขวแบบวนซ้ํา
สูญเสียประสิทธิภาพการทํางานนอยกวาวิธีการอื่น

นอกจากนี้ผูวิจัยไดปรับปรุงประสิทธิภาพของอัลกอริทึมโดยการนําวิธีการโปรแกรมตรรกะเชิงอุปนัย
(Inductive Logic Programming) มาประยุกตเพื่อใหอัลกอริทึมการสอนไขวแบบวนซ้ําทํางานไดอยางมีประ
สิทธิภาพมากยิ่งขึ้น ซึ่งผลการทดลองพบวา วิธีการโปรแกรมตรรกะเชิงอุปนัยมีสวนชวยในการทําใหประสิทธิ
ภาพการทํางานโดยรวมของ อัลกอริทึมการสอนไขวแบบวนซ้ําดียิ่งขึ้น

ภาควิชา วิศวกรรมคอมพิวเตอร ลายมือชื่อนิสิต………………………………………………….
สาขาวิชา วิศวกรรมคอมพิวเตอร ลายมือชื่ออาจารยที่ปรึกษา…………………………………….
ปการศึกษา 2545

v

4271806521 : MAJOR COMPUTER ENGINEERING

KEY WORD: MACHINE LEARNING / WEB PAGE CATEGORIZATION

NUANWAN SOONTHORNPHISAJ: AN ITERATIVE CROSS-TRAINING
ALGORITHM FOR WEB PAGE CATEGORIZATION. THESIS ADVISOR :
ASST. PROF. BOONSERM KIJSIRIKUL, D.Eng., 68 pp. ISBN 974-17-1361-4.

The goal of the Web page categorization is to classify Web documents into a certain

number of predefined categories. Previous works in this area employed a large number of

labeled training documents for supervised learning. The problem is that, it is difficult to create

labeled training documents. Though it is difficult to manually categorize unlabeled documents

for creating training data, it is easy to collect unlabeled ones. Therefore, a new machine

learning algorithm is investigated to overcome these difficulties and effectively utilize

unlabeled documents. We propose in this thesis a novel approach called Iterative Cross-

Training (ICT) to solve the Web page categorization problem.

In this thesis, we applied the algorithm to solve the Web page categorization

problems on four data sets. The performance of ICT was evaluated and analyzed with the

supervised learning, Co-Training and Expectation Maximization algorithms. We found that

the ICT algorithm is an effective approach for the Web page categorization task.

We studied the effect of noise on the Web page categorization problem and found

that the ICT algorithm was robust to noise when domain knowledge was given. In case that

no domain knowledge was available, ICT’s performance loss was less than other learning

algorithms.

Furthermore, the enhanced version of ICT was developed. We integrated an Inductive

Logic Programming (ILP) with the ICT algorithm. The experimental results showed that the

ILP system had capability to increase the overall performance of ICT.

Department Computer Engineering Student’s signature …………………………

Field of study Computer Engineering Advisor’s signature …………………………

Academic year 2002

vi

ACKNOWLEDGEMENTS

I owe many thanks to a number of people who have supported, inspired, and

motivated me throughout my graduate study. First, I would like to thank my thesis advisor,

Assistant Professor Boonserm Kijsirikul, who provided me with a great deal of guidance in

the area of machine learning. He always pushes and motivates me throughout this study

period. His valuable suggestions and comments made this work feasible.

I would like to thank my thesis committee members, Associate Professor Prabhas

Chongstitvatana, Associate Professor Wanchai Rivepiboon, Associate Professor Peter

Haddawy and Dr. Arthit Tongtak, who provided valuable comments at the committee

meetings

I would like to thank Dr. Colin Duerkop and Dr. Beatrice Gorawantshy from the

Konrad Adenauer Foundation for the research scholarship in Germany. I would also like to

extend my appreciation to Professor Luc De Raedt from the Machine Learning and Natural

Language Laboratory, University of Freiburg who gave me many valuable suggestions on my

publication.

I especially thank to my big supporter, Chaiyong Soonthonphisaj, who works like my

personal secretary. All of this works would not have been possible without his encouragement

and assistance. Special thank goes to my little boy, Chanon Soonthornphisaj for his patience

during my study.

I also would like to thank a nice guy, Dr. Nuttakorn Thubthong, from the Department

of Physics, Chulalongkorn University, who was a great source of helps and advices. My thank

also goes to Dr. Sukree Sinthupinyo and Ratthachat Chatpatanasiri for their helps and

discussions on my thesis. Most of all, I thank all members of the Machine Intelligence and

Knowledge Discovery Laboratory, including all friends in the doctoral degree program, who

made my time at Chulalongkorn University wonderful and memorable.

My special thanks go to my parents for their supports and encouragements throughout

my graduate study. The success of my study was originated from their visions, which should

never be forgotten.

CONTENTS

ABSTRACT (THAI) iv

ABSTRACT (ENGLISH) v

ACKNOWLEDGEMENTS vi

CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

1 INTRODUCTION 1

1.1 Web Page Categorization 1

1.2 Motivation 2

1.3 Objectives 2

1.4 Scope and Limitation 2

1.5 Contributions 2

1.6 Organization of the Thesis 3

2 BACKGROUND 4

2.1 Machine Learning Techniques 4

2.1.1 Supervised Learning 4

2.1.2 Semi-Supervised Learning 11

2.1.3 Unsupervised Learning 15

2.2 Evaluation of Text Classifier 15

2.2.1 Precision (P) 15

2.2.2 Recall (R) 15

2.2.3 F1-measure 16

3 ITERATIVE CROSS-TRAINING ALGORITHM 17

3.1 Motivation of ICT 17

3.2 Problem Specification 17

3.3 Sub-Classifiers in ICT 20

3.3.1 The Strong Learner 20

3.3.2 The Weak Learner 21

4 THAI WEB PAGE IDENTIFICATION 22

4.1 Word Segmentation Classifier (Classifier1) 22

4.2 Naive Bayes Classifier (Classifier2) 24

viii

CONTENTS (continued)

4.3 The Results on the Thai Web Page Identification 26

4.2.1 Data Set and Experimental Setting 26

4.2.2 Experimental Results 26

4.3 Summary 27

5 WEB PAGE CATEGORIZATION 28

5.1 Feature Set 28

5.1.1 Content 28

5.1.2 Heading 28

5.1.3 Heading and Content 28

5.2 Data Sets 29

5.2.1 WebKb. 29

5.2.2 WebClass 30

5.2.3 DrugUsage 30

5.3 Experimental Setting 30

5.3.1 Stop Word Removal 30

5.3.2 Word Stemming 30

5.4 Experimental Results 31

5.4.1 Experimental Results on the WebKb Data Set 31

5.4.2 Experimental Results on the WebClass Data Set 33

5.4.3 Experimental Results on the DrugUsage Data Set 35

5.5 Summary 37

6 EFFECT OF INITIAL LABELED DATA ON WEB PAGE CATEGORIZATION 38

6.1 The Effect of the Varying Number of Initial Labeled Data 38

6.2 The Effect of Noisy Labeled Data 40

6.3 Summary 43

7 COMBINING INDUCTIVE LOGIC PROGRAMMING WITH ICT 44

7.1 Introduction to ILP 44

7.1.1 The Framework of ILP 44

7.1.2 ILP Systems 44

7.2 Learning the Concept of Web page with ILP 47

7.2.1 Feature Sets 48

7.2.2 Background Knowledge 48

ix

CONTENTS (continued)

7.3 Experimental Results 49

7.3.1 Experimental Results on the WebKb Data Set 49

7.3.2 Experimental Results on the DrugUsage Data Set 50

7.4 Summary 50

8 SUMMARY AND FUTURE WORK 52

8.1 Summary 52

8.2 Future Works 53

8.2.1 The Variant of ICT 53

8.2.2 Theoretical Analysis of ICT 53

8.2.3 The Strong Learner of ICT 53

REFERENCES 55

APPENDICES 60

A. Stop Words List 61

B. List of Background Knowledge 64

C. Publications 67

C.1 National Conference 67

C.2 International Conference 67

C.3 International Journal 67

BIOGRAPHY 68

CHAPTER 1

INTRODUCTION

The availability of large, heterogeneous repositories of Web pages is increasing

rapidly. There are billions Web pages accessible on the Internet with 1.5 million pages being

added daily (Pierre 2000). A user searching for documents within a specific category using a

general purpose search engine might have a difficult time finding valuable documents. Search

engine Web sites, such as Yahoo1 organize their Web resources in category-specific style.

These Web sites currently use human experts to categorize the documents. However, the

number of Web pages nowadays is exponentially increasing. It is difficult to keep updating

and maintaining the index of billions Web pages. To improve category specific search, we

need a well-trained classifier with a high ability to recognize Web pages of a specified

category.

In this chapter, we discuss what we mean by Web page categorization, motivation,

objectives and contributions of the thesis.

1.1 Web Page Categorization

The purpose of Web page categorization is to assign each Web page to an appropriate

category, based on the content of the document. The list of categories is predetermined. A

stream of Web pages must be entered to the classifier, and then the classifier assigns

categories that represent the content of the pages.

The Web page categorization task is typically difficult because the category

assignment is based on the meaning of the content. Therefore, the system should be able to

understand the document correctly.

In this thesis, we develop and investigate a new algorithm called Iterative Cross-

Training (ICT) for automatic Web page categorization using machine learning approach. The

reason that we choose a machine learning technique is that the system itself is capable to

learn how to solve the problem. A learning algorithm needs a set of labeled documents

(documents together with categories). Then the algorithm analyses these examples, extracts

and generalizes the knowledge and keeps this knowledge as an output. This knowledge can

be used to classify new unseen documents.

1 http://www.yahoo.com

2

1.2 Motivation

Due to the huge amount of data rapidly accumulated in the World Wide Web, surfing

the Web to get information becomes problematic. One solution to this problem is to organize

all Web documents into categories. Search engine Web sites employ process known as robots,

spiders or crawlers to recursively traverse the Web space and retrieve Web documents. To

keep updating the index of Web documents and organize them into categories, the search

engines should have an automatic Web page categorization system in order to cope with the

problem.

The goal of Web page categorization is to classify the Web documents into a certain

number of predefined categories. The previous works in this area employed a large number of

labeled training documents for supervised learning. The problem is that it is difficult to create

the labeled training documents. While it is easy to collect the unlabeled documents, it is not

easy to manually categorize them for creating training documents. Therefore, a new machine

learning algorithm should be investigated to overcome these difficulties.

1.3 Objectives

This thesis aims to accomplish the following tasks.

• To develop an algorithm in order to deal with the Web page categorization

problem.

• To empirically study the performance of the algorithm under different problem

conditions.

• To find appropriate features of Web pages which have a high impact on the

categorization process.

1.4 Scope and Limitation

Data sets concerning our experiments are Web pages (in html format). The feature

sets extracted from the Web pages are text-based features. That means, the images, pluged-in

applications and other non-text media are not taken into account. The outcome of the research

will be a classifier with a learning ability to classify Web pages into predefined categories.

1.5 Contributions

The goal of this thesis is to develop a new learning algorithm, which has an ability to

solve Web page categorization problems. The developed algorithm is empirically studied and

analyzed under different problem conditions.

3

1.6 Organization of the Thesis

In this thesis, we address the problems and the challenges of the automatic Web page

categorization using machine learning techniques. The remainder of the thesis is organized

into eight chapters as follows.

Chapter 2 reviews several topics related to this work. We give the background of

machine learning techniques followed by the description of various algorithms, which were

applied by other researchers in Web page categorization problems.

Chapter 3 introduces our proposed algorithm called Iterative Cross-Training

algorithm (ICT). We start by presenting the motivation and the problem specification of ICT.

Next, we describe the detail of the ICT algorithm.

Chapter 4 investigates the behaviour of ICT concerning the availability of domain

knowledge. We apply the ICT algorithm to solve the Thai/non-Thai Web page identification

problem.

In Chapter 5, we apply the ICT algorithm to solve the Web page categorization

problem on three data sets.

Chapter 6 presents the study of ICT using different numbers of initial labeled data. In

the case that no domain knowledge is available, ICT needs a small amount of initial labeled

data to start up the learning process. We vary different numbers of these labeled data to

observe the performance of our algorithm. Furthermore, we evaluates the performance of ICT

in the presence of noisy labeled data. In reality, this problem is difficult to avoid, and

therefore it is interesting to see how ICT is affected by this problem.

Chapter 7 gives detail about the performance enhancement of ICT using Inductive

Logic Programming (ILP). We encapsulate the background knowledge in the first-order

representation and employ an ILP system to learn to construct the rules, which can

differentiate the class of Web pages.

Chapter 8 summarizes our works and gives directions for future works.

CHAPTER 2

BACKGROUND

In this chapter, we review several topics which are related to our work. We start by

providing the machine learning concept. We then review various traditional machine learning

algorithms such as k-nearest neighbor, decision tree learning, rule set learning, support vector

machines, etc. These algorithms have been applied to the text categorization problem. In the

rest of this chapter, we will describe some of these algorithms and their contributions on the

text categorization problem. In addition, the evaluation criteria of text classifiers are provided

in the last section.

2.1 Machine Learning Techniques

Since the early ’90s, machine learning approach has gained popularity in the text

categorization field. In this approach, a general inductive process (learner) automatically

builds a classifier for a category by observing the characteristics of a set of documents

manually labeled by the experts. This classifier is expected to have an ability to categorize a

new unseen document correctly. There are three common types of learning: supervised, semi-

supervised and unsupervised learning.

2.1.1 Supervised Learning

Learning is supervised when the learner is supplied with the preclassified documents

called labeled data. As shown in Figure 2.1, after the preprocessing is completed, the learner

finds the common properties of these labeled data and constructs a model (knowledge) for

each class. Then the classifier employs the model to predict the class of test data. The test

data is used to evaluate the performance of the classifier on unseen data. One of the problems

of supervised learning is overfitting (Witten and Frank 2000). The classifier works well on

training data but performs poorly on the test data.

The usual way to evaluate an ability of the learner is to do a k-fold cross validation

approach (Mitchell 1997). In k-fold cross validation, the data is divided into k subsets of equal

size. The model is trained k times, each time leaving out one of the subsets for testing.

Several supervised learning algorithms have been employed to solve the text

categorization problem, i.e. k-nearest neighbor, decision tree learning, naive Bayes algorithm,

etc.

5

Figure 2.1: Supervised learning model.

2.1.1.1 K-Nearest Neighbor

K-nearest neighbor (k-NN) classification is an instance-based learning algorithm that

has been applied to text categorization since the early days of the research. In this

classification paradigm, k-nearest neighbors of a test document are computed to predict the

class of the document. Then the similarities, measured based on cosine or Euclidean distance

functions from this document to the k-nearest neighbors, are summarized according to the

class of the neighbors. Then the test document is assigned to the most similar class. A major

drawback of the similarity measurement used in k-NN is that it uses all features equally in

computing similarities. This method leads to the poor similarity measures and classification

errors, when only a small subset of the words is useful for classification. To cope with this

Preprocessing

Teacher Learner

Classifier

representation of
Web pages

Web pages

Web pages and their
categories

knowledge

categories for each Web page

6

problem, a variety of techniques have been developed for adjusting the importance of the

terms in the document, e.g. weighting based on mutual information (Aha 1997). Another

problem is the difficulty in deciding an optimal k value. Normally, the researchers will

conduct a series of experiments using different value of k.

Han et al., proposed a weight adjusted k-nearest neighbor (WAKNN) classification

algorithm to deal with the text categorization problem (Han et al. 2001). Each document is

represented by the vector of words. Initially, each word is assigned a weight according to its

mutual information value. Then the weighted cosine similarity is calculated between each

training document and the test document. The next step is to calculate the goodness of this

initial weight vector using an objective function and update the weight value that gives the

best performance on the objective function. They conducted experiments on four data sets.

The experimental results showed that the algorithm outperformed the traditional k-NN.

Yang investigated the performance of variety classification algorithms on Reuter data

set1 and found that k-NN (k = 30, 45, 65) exhibited the best performance for the text

categorization task. K-NN achieved 82% of correctness and was considered to be a

challenging method (Yang 1998).

2.1.1.2 Decision Tree Learning

Decision tree learning is a well-known approach for the classification problems. The

algorithm classifies an instance by sorting them down the tree from the root to the leaf node,

which provides the classification of the instance. Each node in the tree specifies a test of some

attribute of the instance and each branch descending from that node corresponds to one of the

possible values for this attribute. A new instance is classified by starting at the root node of

the tree, testing the attribute specified by the node, then moving down the tree branch

corresponding to the value of the attribute in the given example (Mitchell 1997). The success

of classification using decision trees depends heavily on the attributes or features, which

represent the concept of category. Therefore, the feature selection process is the most

important part, when we use a decision tree as a classification algorithm. In the text

categorization framework, the first step is to produce a list of attributes from the labeled data

set. These attributes are single words or word phrases. Given an attribute list, labeled

documents can be described in terms of the words or phrases found in the documents. Each

document consists of the values of the attributes, where the values are boolean indicating

whether the attribute appears in the text or not. After the tree construction, the rule induction

1 Reuter collection http://moscow.mt.cs.cmu.edu:8081/reuters_21450/parc/

7

process is started. The objective is to find sets of decision rules that have the ability to

distinguish one category from the others.

Apte et al. applied decision trees to the text categorization. The feature selection is

based on the number of occurrences appeared in the corpus (Apte et al. 1998). They extracted

10,000 most frequent words and pruned down the attribute size using the entropy-based

technique. The result shows that the decision tree gives the accuracy at 67% on Reuter data

set. They proposed to use the rule induction technique called Swap-1 (Weiss and Indurkhya

1993) to extract the rules from the tree and could get the accuracy at 80.5%.

One problem of the decision tree is the overfitting, where the tree is too specialized to

the training data. Researchers have observed that the variance of training data can be reduced

by constructing many decision trees using sampling technique. Breiman proposed to use the

technique called bagging that randomly selects sample sets of size n from the training data to

construct the trees (Breiman 1996). Chen constructed a collection of decision trees called

decision forest (Chen and Kam 2000). The feature selection is based on Document Frequency

threshold. The feature vector was created for each document. Each element in the vector is the

product of term frequency and inverse document frequency of each term. These trees are

constructed by randomly selecting subsets of the components of the feature vector. It has

been demonstrated that this method outperforms single decision tree using all of the available

features.

2.1.1.3 Naive Bayes Algorithm

Naive Bayes is a simple but effective text classification algorithm for learning from

labeled data (Lewis 1999). The algorithm finds the model of the class from the labeled data.

The classification’s criteria is based on two parameters, which are the class prior probabilities

and the posteriori probabilities that are estimated for the class-conditional probabilities for

each word in the vocabulary, V, from labeled training data D. This is done by counting the

frequency that word wt occurs in all word occurrences for documents di in class cj,

supplemented with Laplace smoothing to avoid zero probability.

∑ ∑

∑

= =

=

+

+
=

V
s

D
i ijis

D
i ijit

jt
1 1

1

d|cPd,wNV
d|cPd,wN1

c|wP
)()(

)()(
)(

where N(wt,di) is the count of the number of times word wt occurs in document di.

 P(cj|di) ∈ {0,1} as given by the class label.

(2.1)

8

The prior probability of each class is calculated in a similar fashion, counting over documents

instead of words:

DC
d|cP

cP
D
i ij

j
+

+
=

∑ =1)(1
)(

During the classification time, we use these estimated parameters by applying Bayes’ rule to

calculate the posterior probability of each class label and taking the most probable class as the

prediction. This makes use of the naive Bayes independence assumption, which states that

words occur independently of each other, given the class of the document:

)()()(jijij c|dPcPd|cP ∝

 ∏
=

=
i

i

d

k
jk,dj c|wPcP

1
)()(

The word independence assumption causes naive Bayes to predict extreme (nearly 0 or 1)

posterior class probabilities. However, while these estimates are poor, naive Bayes

classification accuracy is typically high. This can be explained because classification is only a

function of which class has the maximum posterior, and is not concerned with its actual value

(Domingo and Pazzani 1997).

McCallum and Nigam investigated the probabilistic framework of naive Bayes and

applied the algorithm on Web page classification problem (McCallum and Nigam 1998).

They found that, the algorithm could achieve the correctness at 74%.

2.1.1.4 Rule Learning Algorithm

The famous rule learning algorithm called Ripper has been extensively applied to the

text categorization problem. The classifier constructed by Ripper is a set of rules, which is

learned for each category. This set of rules can be interpreted as a disjunction of conjunctions:

for instance, a document d is considered to be in the category music if and only if

(the word song appears in d) OR

(the word singer appears in d AND the word rhythm appears in d) OR

…

(the word song appears in d AND the word rhythm appears in d)

Rule sets enjoy some properties that make them useful in certain contexts. If a rule set

is compact, it is relatively easy for people to understand; this may make it easier for users to

accept a learned classifier as being reasonable. Rule sets can also be easily converted to

(2.2)

(2.3)

9

queries for a boolean search engine (Cohen and Singer 1998). There are a number of

subtleties involved in learning rule sets. Due to the greedy algorithm style in Ripper, the

algorithm tends to give rule sets that have high error rates. Furthermore, many algorithms that

produce rule sets tend to be relatively inefficient for noisy data sets. Because of these

problems, the algorithm used in Ripper is relatively complex.

Ripper consists of two main steps. The first step is a greedy process, which is a set

covering algorithm that constructs an initial rule set. It constructs one rule at a time and

removes all examples covered by a new rule as soon as the rule is constructed. The heuristic

used in construction of a rule is intended to ensure that the rule covers many positive

examples and few negative examples. A rule is extended by repeatedly adding conditions to

the rule to produce a longer and more specialized rule. The condition added is the one that

yields the largest information gain (Quinlan 1990).

After growing the rule, the rule is pruned. The algorithm considers deleting any final

sequence of conditions from the rule and chooses the deletion that maximizes the function

f(ri) = U +i+1 – Ui-1

U+ i+1 + Ui+1

where U+
i+1 and Ui+1 are the numbers of positive examples and negative examples,

respectively, in the pruning set covered by the new rule. After pruning, the pruned rule is

added to the rule set and the examples covered by it are removed.

The second step in Ripper is the rule set optimization process. After Ripper stops

adding rules, the rule set is optimized so as to further reduce its size and improve its accuracy.

Rules are considered in turn in the order in which they were added. For each rule r, two

alternative rules are constructed, the replacement rule and the revision rule. The replacement

for r is formed by growing and then pruning a rule r’, where pruning is guided so as to

minimize error of the entire rule set (with r’ replacing r) on the pruning data. The revision of

r is formed the same way as the replacement rule, except that it is grown by greedily adding

literals to r. Finally a decision is made as to whether the final theory should include the

revised rule, the replacement rule, or the original rule. After the optimization process has

passed, the rule set may cover fewer positive examples; thus the first step is called again on

the uncovered positive examples.

Cohen et al. performed experiments on two text categorization data sets: a corpus of

AP titles and a corpus of news stories. They found that the rule-learning algorithm

outperforms the traditional method (Cohen et al. 1996).

-

- (2.4)

-

10

2.1.1.5 Rocchio’s Algorithm

This algorithm was first introduced by Rocchio in 1971 (Rocchio 1971). It uses the

tfidf weight for each word. The tfidf is one of the most successful weighting schemes in

Information Retrieval (Pazzani 1997). The computation of the weights reflects empirical

observations regarding text. Terms that appear frequently in one document (tf = term-

frequency), but rarely occur in other documents (idf = inverse-document-frequency), are more

likely to be relevant to the topic of the document. Therefore, the tfidf weight of a term in one

document is the product of its term-frequency (tf) and the inverse of its document frequency

(idf). In addition, to prevent longer documents from having a better chance of retrieval, the

weighted term vectors are normalized to unit length.

Many researchers have applied Rocchio’s algorithm to text categorization problem.

Pazzani et al.’s work compared several classification algorithms on Web page identification

problem and found that Rocchio’s algorithm performed well on most domains (Pazzani

1997).

2.1.1.6 Support Vector Machines

Support Vector Machines (SVMs) are based on the Structural Risk Minimization

principle (Vapnik 1995). It was first introduced by Vapnik in 1995. The idea of structural risk

minimization is to find a hypothesis h for which we can guarantee the lowest true error. The

true error of h is the probability that h will make an error on an unseen and randomly selected

test example. An upper bound can be used to connect the true error of a hypothesis h with the

error of h on the training set and the complexity of H (measured by VC-Dimension), the

hypothesis space containing h (Vapnik 1995). One remarkable property of SVMs is that their

ability to learn can be independent of the dimensionality of the feature space. SVMs measure

the complexity of hypotheses based on the margin with which they separate the data, not the

number of features. This means that the algorithm can generalize even in the presence of

many features.

An SVM method has been introduced in text categorization by Joachims (Joachims

1998). He used polynomial and RBF kernels to compare the performance with four

conventional learning methods commonly used for text categorization. These algorithms are

the naive Bayes classifier, the Rocchio algorithm, k-NN and C4.5 decision tree learner. The

experiments were conducted by using the software package called SVM light2 and tested on

the Reuter data set and the Ohsumed collection. He found that SVMs outperformed all

2 SVM light http://www-ai.informatik.uni-dortmund.de/thorsten/svm_light.html

11

conventional methods significantly. Note that, the training time of SVMs is more expensive

than the conventional methods. SVMs offer two important advantages for the text

categorization problem:

- term selection is often not needed, as SVMs tend to be fairly robust to overfitting and

can scale up to considerable dimensionalities;

- no human and machine effort in parameter tuning on a validation set is needed.

SVMs were subsequently used in (Drucker et al. 1999; Dumais et al. 1998; Dumais and Chen

2000; Klinkenberg and Joachims 2000; Taira and Haruno 1999; Yang and Liu 1999).

2.1.2 Semi-Supervised Learning

In many learning tasks, there is a large supply of unlabeled data but insufficient

labeled data since it can be expensive to generate. Semi-supervised learning combines labeled

and unlabeled data during the training process to improve performance. In supervised

classification, there is a known, fixed set of categories and category-labeled training data is

used to induce a classification function. In semi-supervised classification, training also

exploits additional unlabeled data, frequently resulting in a more accurate classification

function.

Semi-supervised or boosting algorithm was first introduced by Freund and Schapire

(Freund and Schapire 1996). The algorithm requires only a small amount of labeled data as a

seed information. It is believed that unlabeled data can be used in some settings to improve

classification, although it is exponentially less valuable than labeled data. Anyway, we can

not learn to classify unseen data based on only unlabeled data. Therefore, unlabeled data must

be coupled with at least some information about the target function for the learning task.

The algorithm called bootstrapping was investigated in the domain of text learning by

Jones et al. (Jones et al. 1999). This algorithm needs knowledge about the classes of

documents, which is provided in the form of a few keywords per class and a class hierarchy.

2.1.2.1 Co-Training Algorithm

The Co-Training algorithm was first introduced by Blum and Mitchell in 1998 (Blum

and Mitchell 1998). The concept of the algorithm is based on the boosting technique. That

means, the algorithm learns from a small number of initial labeled data, and then it will

incrementally classify unlabeled data into categories. The basic assumption of Co-Training is

that the instance distribution is compatible with the target function. It requires that, for most

examples, the target functions over each feature set predict the same label. For example, in

the Web page domain, the class of the instance should be identifiable using either the text

appearing on the hyperlink or the text appearing in the page content.

12

Table 2.1 : The Co-Training algorithm.

Given:

• a set LE of labeled training examples

• a set UE of unlabeled examples

Create a pool UE’ of examples by choosing u examples at random from UE.

Loop until no examples left in UE:

− Use LE to estimate the parameter set θ1 of Classifier1.

− Use LE to estimate the parameter set θ2 of Classifier2.

− Allow Classifier1 with θ1 to label p positive and n negative examples from UE’.

− Allow Classifier2 with θ2 to label p positive and n negative examples from UE’.

− Add these self-labeled examples to LE.

− Randomly choose 2p+2n examples from UE to replenish UE’.

The second assumption is that the features in one set of an instance are conditionally

independent of the features in the second set, given the class of the instance. This assumes

that the words on a Web page are not related to the words on its incoming hyperlinks. The

Co-Training algorithm is shown in Table 2.1.

From the table, there are two classifiers, Classifier1 and Classifier2, each of which

learns from a set of labeled training examples, LE. The learning process starts by randomly

selecting u examples from a set of unlabeled examples and adding these examples into a pool

UE’. These u examples will be labeled by Classifier1 and Classifier2. These two classifiers

select p positive and n negative examples to be added into the labeled data, LE. Then the

algorithm refills a set of UE’ by randomly choosing 2p+2n examples from UE. The learning

process is continued until all of unlabeled examples are labeled.

2.1.2.2 Expectation-Maximization

Another boosting style algorithm is Expectation-Maximization (EM). This algorithm

was first introduced by Dempster et al. (Dempster et al. 1977). It is an iterative algorithm for

maximum likelihood estimation in problems with incomplete data. Given a model of data

13

Table 2.2: The training algorithm for the naive Bayes classifier using the EM algorithm.

Given:
• a set UE of unlabeled examples

Initialize the parameter set of Classifier1 to θ10 to label UE.

 θ1 → θ10

Use the labeled examples in UE to estimate the parameter Pr(ci|lj) and Pr(lj) of the Classifier2

with Pr(lj|d) ∈ {0,1}.

Loop until the parameters of Classifier2 do not change or the number of iterations exceeds a

predefined value:

- (E-step) Estimate the probabilistically-weighted class labels, Pr(lj|d), for every

document using Equation 2.7.

- (M-step) Use the estimated class labels, Pr(lj|d), to calculate new parameters using all

documents, by Equation 2.5 and 2.6.

generation, and data with some missing values, EM iteratively uses the current model to

estimate the missing values, and then uses the missing value estimates to improve the model.

Using all of the available data, EM will locally maximize the likelihood of the parameters and

give estimates for the missing values. Therefore, the class labels of the unlabeled data are

treated as the missing values. EM has two steps, which are the E-step and M-step,

respectively. The E-step calculates probabilistically weighted class labels for every document

using the classifier. For the M-step, it estimates new classifier parameters using all

documents. In Nigam, et al.’s work (Nigam et al. 1999), they combined EM with a naive

Bayes classifier to solve the text classification problem. The algorithm has shown to be able

to significantly increase text classification accuracy when given limited amounts of labeled

data and large amounts of unlabeled data.

As shown in Table 2.2, the first step starts with the parameter estimation of the naive

Bayes classifier which learns from initial labeled data, and then the classifier assigns the

weighted class label to all unlabeled data. The training process is iterated with the E-step and

M-step until the algorithm is converged.

To represent the content of a Web page, we use different representations to solve the

problem of Thai Web page identification and Web page categorization. We employ bag-of-

characters representation in the problem of Thai Web page identification in Chapter 4,

14

whereas for Web page categorization in Chapter 5 we use bag-of-words representation. We

first describe EM for Thai Web page identification as follows.

Let L = {l1 , l2 , … , lm} be a set of class labels, d be a document of n characters

(c1 , c2 , …, cn) from a data set D, Pr(lj|d) ∈ {0, 1} be the class label of the document d, the

estimate of the probability of character ci in class label lj is:

W

t

2

W

G

e

b

N

b

t

D

f

C

c

s

p

E

∑ ∑
∑

= ∈

∈
+
+

= T
k Dd jk

Dd ji
ji d|lPrd,cNT

d|Prd,cN|Pr llc
1)()(

)()(1)(
(2.5)
here T is the total number of unique characters in the training set, N (ci,d) is the number of

imes character ci occurs in document. The probability of a class label is given by Equation

.6.

DL

d|lPr
Pr jDd

jl +

+
=

∑ ∈)(1
)(

here |L|, |D| are the number of class labels and the number of documents in the training set.

iven an unlabeled document d, of n character (c1 , c2 , …, cn), the naive Bayes classifier

stimates the probability that the document belongs to class label lj by using Equation 2.7

elow.

∏∑

∏

==

=

==
n
i ki

|L|
k k

n
i jijjj

j l|cPrlPr
l|cPrlPr

dPr
l|dPrlPr

d|lPr
11

1

)()(
)()(

)(
)()(

)(

ote that now Pr(lj|d) is a probabilistically-weighted value; each document d is considered to

e of class label lj with probability equal to the estimate Pr(lj|d).

This kind of algorithm was also applied by Brin (Brin 1998) in order to extract book

itles and author names from the World Wide Web. From a small set of seeded books, his

IPRE algorithm searches the Web for known pairs and learns new patterns that are common

or these pairs. Then, these new patterns are used to identify new books.

McCallum et al. (McCallum et al. 1998) proposed to use a method called Query-by-

ommittee (QBC) in combination with EM to solve the text classification problem. The

oncept of active learning aims to select the most informative examples. The committee is the

et of classifiers, which are created by sampling according to the distribution of classifier

arameters specified by the training data. The experimental results show that the QBC with

M outperforms the baseline algorithm (EM) with 64% of correctness.

(2.6)

(2.7)

15

2.1.2 Unsupervised Learning

In unsupervised learning, an unlabeled data set is partitioned into groups of similar

examples, typically by optimizing an objective function that characterizes good partitions. In

this paradigm, the system does not need a predefined category for documents. The algorithm

tries to produce clusters of documents, which have common characteristics. Therefore, this

learning method is known as a clustering algorithm. There are several clustering algorithms

applied in Information Retrieval (IR) field. Agglomerative hierarchical clustering and

k-Means are two clustering techniques that are commonly used for document clustering. A

widely known study, discussed in (Dubs and Jain 1998), indicated that agglomerative

hierarchical clustering is superior to k-Means.

Document clustering has been investigated as a means of improving the performance

of search engines by pre-clustering the entire corpus (van Rijsbergen 1979). A novel approach

called Suffix Tree Clustering (STC) has been proposed in (Zamir and Etzioni 1998). They

applied STC to a Web document clustering problem using only snippets and found that STC is

faster and more effective than a standard clustering method.

2.2 Evaluation of Text Classifiers

The experimental evaluation of a classifier usually measures its effectiveness, which

is an ability to take the right classification decisions. Classification effectiveness is normally

measured in terms of the classic IR known as precision, recall and F1.

2.2.1 Precision (P)

Precision is defined as the number of relevant documents retrieved divided by the

total number of documents retrieved. For the classification problem, the classifier’s task is to

assign or predict the class for each example. Considering a given class as a positive class, the

precision can be defined as in Equation 2.8.

 Precision = no. of correctly predicted positive examples (2.8)
 no. of predicted positive examples

2.2.2 Recall (R)

Another standard measure in the IR field, recall, is defined as the number of relevant

documents retrieved divided by the total number of relevant documents in the collection.

Therefore, the recall can be defined as in Equation 2.9.

16

 Recall = no. of correctly predicted positive examples (2.9)
 no. of all positive examples

2.2.3 F1-measure

The F1-measure was introduced by (van Rijsbergen 1979). It combines precision and

recall with equal importance into a single parameter for optimization and is defined as in

Equation 2.10.

 F1 = 2PR (2.10)
 P+R

In this chapter, related works in the text categorization problem were presented. We

found that the text categorization is now a major research area. One of the reasons why the

effectiveness of a text classifier has been improved, is the arrival of machine learning

paradigm that provides more challenges to researchers in this field.

CHAPTER 3

ITERATIVE CROSS-TRAINING ALGORITHM

This chapter concentrates in details about our proposed method, which is Iterative

Cross-Training (ICT). We first start with the motivation of ICT followed by the problem

specification. Then we go through the description of the algorithm.

3.1 Motivation of ICT

The motivation of ICT algorithm is to utilize unlabeled examples during the learning

process in order to enhance the classifier’s performance. Given a set of labeled examples LE,

a set of unlabeled examples UE and a hypothesis language L, the learning algorithm tries to

find a hypothesis H within L that correctly classifies the examples in

LE ∪ UE. The expressiveness of the language and the used attributes will strongly influence

the efficiency and effectiveness of the algorithm. This is the problem of learning from

labeled and unlabeled data.

Consider the task of Thai Web page identification. We could either perform an

expensive word segmentation algorithm before classifying the documents or alternatively

perform a simple naive Bayes approach in order to classify the documents. The first approach

allows identification of the words in the documents using the domain knowledge in the form

of dictionary. The second employs bag-of-characters representation. Therefore hypotheses

working within the first representation language promise to be more efficient than those

working with the second one. On the other hand, those working within the second

representation language are likely to be less accurate because they have no domain

knowledge. Therefore we propose in this thesis a novel approach that combines these two

representations.

3.2 Problem Specification

The idea of ICT is to learn simultaneously from two sets of hypotheses, one in each

language. The problem specification of ICT can be formalized as follows:

Given:

• a set of labeled examples LE,

• a set of unlabeled examples, UE,

• two description languages of the examples L1 and L2,

• two learning algorithms A1 and A2; algorithm Ai works within hypothesis language Li,

Find: hypotheses H1 and H2 (within L1 and L2) that correctly label the examples.

18

TrainingData1 TrainingData2

Classifier 1

Learn

Learn

 C

las
sif

y

Classifier 2

 C

las
sif

y

Figure 3.1: The Iterative Cross-Training algorithm

The idea is that the examples will be described in both description languages and that

each of the algorithms (A1 and A2) will induce a hypothesis using the labeled examples only.

The induced hypothesis is then employed to predict some of the labels of the unlabeled

examples provided to the other learning algorithm. These examples are then used as an

extended training set by the other learning algorithm. The induced hypothesis (H1) predicts

the labels of unlabeled examples and supplies these new labeled examples to A2. The

algorithm A2 uses the extended training set to induce a new hypothesis and predicts the labels

of the unlabeled examples and supplies these to the algorithm A1. This learning process is

repeatedly done in crossing style.

Figure 3.1 illustrates our learning algorithm, Iterative Cross-Training (ICT). The

learning process of ICT starts with the parameter estimation of both classifiers. First we

initialize the parameter sets of Classifier1 and Classifier2. This is done by training the

classifiers with a small set of labeled examples if they are available. If no labeled examples

are provided to the system, the values of the parameters can be predefined or randomly

chosen ones.

19

Given:

• two sets TrainingData1 and TrainingData2 of unlabeled training examples.

Initialize the parameter set of Classifier1 to θ10

 θ1 ←θ10

Initialize the parameter set of Classifier2 to θ20

 θ2 ←θ20

Loop until θ1 does not change or the number of iterations exceeds a predefined value:

• Use Classifier1 with the current parameter set θ1 to label all data in TrainingData2 as

either positive examples or negative examples.

- If no domain knowledge is given,

 check consistency of the classification with Classifier2.

• Train Classifier2 by using labeled examples in TrainingData2 to estimate the

parameter set θ2 of Classifier2.

• Use Classifier2 with the current parameter set θ2 to label all data in TrainingData1 as

either positive examples or negative examples.

- If no domain knowledge is given,

 check consistency of the classification with Classifier1.

• Train Classifier1 with the labeled examples in TrainingData1 to estimate the parameter

set θ1 of Classifier1.

Table 3.1: The training algorithm of Iterative Cross-Training.

When an active classifier labels data, it can ask for the confirmation from the other

classifier to make decision about which class the example should be. If both classifiers agree

with the same classifying result, that example will be labeled. Otherwise, the active classifier

will consider which classifier has more confidence in labeling this data item. If the active

classifier has more confidence, it will label the example. In the case that the other classifier

has more confidence than the active classifier, the example will not be labeled. Note that the

confidence values are calculated based on the naive Bayes concept (see Equation 4.8). The

purpose of the consistency checking is for producing more reliable labeled data, but the

checking will slow down the learning process.

20

3.3 Sub-Classifiers in ICT

As stated in the previous section, ICT consists of two learners, which works together

during the training process. These learners can be categorized into two classes as follows.

3.3.1 The Strong Learner

In this thesis, an algorithm supplied with background knowledge is denoted as a

strong learner. This kind of learner is considered to have high performance due to the

knowledge supplement. The learner usually consumes more computational time than the

weak learner. The strong learners used in this thesis are as follows.

3.3.1.1 Word Segmentation Algorithm

The objective of a word segmentation algorithm is to separate a document’s content

into words. The algorithm is required when we deal with a language that has no word

boundary delimiters, such as Thai language. In our experiment, we employ a word

segmentation program developed by Meknavin et al. (1997). The strategy of this algorithm is

to make use of a Thai dictionary to find the best segmentation. The dictionary is considered as

background knowledge of the algorithm that has high potential in doing word segmentation.

However, the algorithm takes a great deal of computational time during its process. We apply

the word segmentation algorithm to the problem of Thai/non-Thai Web page identification.

The mechanism of this algorithm is described completely in the next chapter.

3.3.1.2 Inductive Learning Algorithm

Among machine learning techniques, an Inductive Logic Programming framework

(ILP) is one of the most effective approaches. In the ILP framework, the main idea is to

obtain a set of generalized clauses that is general enough to cover the majority of the positive

examples and sufficiently specific to rightly correspond to the concept we want to learn and to

cover no (or a few – some noise can be allowed) negative examples (Sebillot et al. 2000). ILP

is applied to many problem domains such as biology, biochemistry, Web mining, etc. (Finn

et al. 1998; King and Sternberg 1990; Srinivasan and King 1999; Srinivasan et al. 1996;

Craven et al. 1998). There are various ILP systems available such as Golem, Foil, Progol, etc.

The detail of these systems will be given in Chapter 7. We apply a system called Progol1, as a

strong learner, to the Web page categorization problem.

1 http://www.doc.ic.ac.uk/~shm/Software/

21

3.3.2 The Weak Learner

In this thesis, a weak learner means a learning algorithm, without a supplement of

background knowledge, on the other hand supplied with only a small initial amount of labeled

training data. The weak learner usually has less potential than a strong learner because it has

no background knowledge and consumes fewer labeled examples compared to a supervised

learning algorithm. We employ a naive Bayes algorithm to be the weak learner of our system.

The naive Bayes has an advantage that its training process spends much less computation

time. The detail of naive Bayes algorithm will be clearly explained in the next chapter.

CHAPTER 4

THAI WEB PAGE IDENTIFICATION

In the problem of classification of Thai/non-Thai Web pages, our goal is to classify

Web pages into Thai and non-Thai pages. This problem is of our interest because we want to

build a Web robot that efficiently crawls the Web and retrieves only Thai pages for building a

Thai search engine.

In this chapter, we first give the details of a word segmentation classifier followed by

the naive Bayes classifier. We consider the word segmentation algorithm as a strong learner

whereas the naive Bayes is a weak learner. Due to the fact that the word segmentation precess

takes much more computational time than a simple naive Bayes approach, it is inefficient to

use the word segmentation classifier in the real world application. Therefore, we employ ICT

in order to have the word segmentation classifier boost the performance of the naive Bayes

classifier.

4.1 Word Segmentation Classifier (Classifier1)

One straightforward way to determine whether a Web page is in a specific language

is to check the words in the page with a dictionary. If many words appear in the dictionary, it

is likely that the page is in that language. We cannot expect that all words in the page appear

in dictionary as the Web page usually contains names of persons, organizations, etc. not

occurring in the dictionary and may contain words written in foreign languages. Therefore, it

is necessary to determine how many words should be contained. This task is more difficult

when dealing with a language that has no word boundary delimiters, such as Thai and

Japanese (Meknavin et al. 1997).

Note that a string of Thai characters can usually be segmented in many possible ways

as shown in Figure 4.1. Due to the fact that a word might be a substring of a longer word, and

there is no a word delimiter in Thai, it is difficult to find which segmentation is correct.

Below we describe the method for word segmentation. Given a Thai dictionary and a

document d of n characters (c1,c2,…,cn), the word segmentation classifier generates all

possible segmentations and finds the best segmentation (w1,w2,…,wm) that minimizes the cost

function in Equation 4.1.
 argmin Σ cost (wi) (4.1)
 w1,…,wm

where cost(wi) = η1 if wi is a word in the dictionary

 = η2 if wi is a string not in the dictionary

 m

 i=1

23

In the following experiments, η1 and η2 are set to 1 and 2, respectively. As

generating all possible segmentations and calculating their costs is very expensive, we employ

dynamic programming technique to implement this calculation. Note that any sequence of

characters, ci,…,cj, found in the dictionary must be considered as a word, and must not be

grouped with nearby characters to form a long unknown string.

After the best segmentation is determined, the document is composed of (1) words

appeared in the dictionary, and (2) unknown strings not found in the dictionary. A Thai Web

page should be the page that contains many words and few unknown strings. We then define

WordRatio of a page as:

 WordRatio = the number of characters in all words (4.2)
 the number of all characters in the document

The process of ICT applied to Thai Web page identification can be clearly explained as

follows. Given sets of positive and negative examples, the classifier finds the threshold of

WordRatio that maximizes the number of correctly classified positive and negative examples.

If the WordRatio of a page is greater than the threshold, we will classify it as positive (a Thai

page). Otherwise, we will classify it as negative (a non-Thai page). For simplicity, let us use

only the threshold of WordRatio as the parameter of the word segmentation classifier.

Having only the threshold of WordRatio as the parameter of classifier1 in Table 3.1,

we can find a new WordRatio that produces more true positive and true negative examples for

TrainingData2. As described above, most Thai Web pages should have a high value of

WordRatio, whereas non-Thai Web pages should have a low value. If the number of Thai and

non-Thai pages in TrainingData2 are the same, it is easy to see that any value of WordRatio

will give more correctly classified pages than incorrectly ones (except for WordRatio = 0.0 or

WordRatio = 1.0, that gives the same number of correctly and incorrectly classified pages). In

the case that the number of Thai pages is lower than the number of non-Thai pages, a high

value of WordRatio, (e.g. 0.7, 0.8, 0.9) will produce more correctly classified pages. This is

the case that is likely to be encountered in the real world. A low value of θ10 is for the case

that the number of Thai pages is larger than that of non-Thai pages.

 Figure 4.1: All possible word segmentations of a Thai sentence.

a

นกัวชิาการแสดงความคดิเหน็ขดัแยงกับภาคเอกชน
b c d e f g h i j k l m

ab
abc

cd ef
fg hi

lm
klm

24

A new WordRatio can be estimated, after the naive Bayes classifier (Classifier2) labels data

in TrainingData1. Let SP be the smallest value of WordRatio’s from all labeled positive

examples, and LN be the largest value from all labeled negative examples. In the case of

SP≥LN, the new WordRatio (θ1) is estimated as:

 θ1 = SP+LN (4.3)
 2

Now, consider the case of SP<LN. Let V1=SP, Vn=LN, and V2,…,Vn-1 be the values between

V1 and Vn (V1≤V2≤⋅⋅⋅≤Vn-1≤Vn). The new θ1 is estimated as:

 θ1 = Vi* + Vi*+1 (4.4)
 2
 Vi* = argmin (no. of Vj + no. of Vk) (4.5)

 Vi

Where Vk is a value of a labeled positive example, Vj is a value of a labeled negative example,

and V1≤Vk≤Vi, Vi+1≤Vj≤Vn. If SP is greater than LN, θ1 will completely separate the labeled

positive from negative examples. Otherwise, θ1 will give the minimum errors of misclassified

examples.

4.2 Naive Bayes Classifier (Classifier2)

For text classification, naive Bayes is among the most commonly used and the most

effective methods (Mitchell 1997). To represent text, the method usually employs bag-of-

words representation. Instead of bag-of-words, we use the simpler bag-of-characters

representation in the problem of classification of Thai/non-Thai pages. This representation is

suitable for a Web robot to identify Thai Web pages because it requires no word segmentation

and thus is very fast. In spite of its simplicity, the results below show the effectiveness of bag-

of-characters representation in identifying Thai Web pages.

Given a set of class labels L = {l1, l2,…,lm} and a document d of n characters

(c1,c2,…,cn), the most likely class label l* estimated by naive Bayes is the one that maximizes

Pr (lj | c1,…,cn):

 l* = argmax Pr(lj | c1,…,cn) (4.6)

 = argmax Pr(lj)Pr(c1,…,cn |lj) (4.7)
 lj Pr(c1,…,cn)

 = argmax Pr(lj)Pr(c1,…,cn|lj)
lj

lj

25

In this case, L is the set of positive and negative class labels. The term Pr(c1,…,cn) in

Equation 4.7 can be ignored, as we are interested in finding the most likely class label.

As there are usually an extremely large number of possible values for

d = (c1,c2,…,cn), calculating the term Pr(c1,c2,…,cn | lj) requires a huge number of examples to

obtain reliable estimation. Therefore, to reduce the number of required examples and improve

reliability of the estimation, assumptions of naive Bayes are made (Mitchell 1997). These

assumptions are (1) the conditional independent assumption, i.e. the presence of each

character is conditionally independent of all other characters in the document given the class

label, and (2) an assumption that the position of a character is unimportant, e.g. the

significance of encountering the character “a” at the beginning of a document is the same as

encountering it at the end. Clearly, these assumptions are violated in real world data, but

empirically naive Bayes has successfully been applied in various text classification problems

(McCallum and Nigam 1998; Mitchell 1997; Yang and Pederson 1997). Using the above

assumptions, Equation 4.7 can be simplified to Equation 4.8.

This model is also called the unigram model because it is based on statistics about

single character in isolation. The probabilities Pr(lj) and Pr(ci|lj) are used as the parameter

set θ2 of the naive Bayes and are estimated from the training data. The prior probability Pr(lj)

is estimated as the ratio between the number of examples belonging to the class lj and the

number of all examples. The conditional probability Pr(ci|lj), of seeing character ci given

class label lj, is estimated by the following equation:

 Pr(ci|lj) = 1+ N(ci,lj) (4.9)
 T + N(lj)

where N(ci,lj) is the number of times character ci appears in the training set from class label

lj, N(lj) is the total number of characters in the training set for class label lj, and T is the total

number of unique characters in the training set. Equation 4.9 employs Laplace smoothing

(adding one to all the character counts for a class) to avoid assigning probability values of

zero to characters that do not occur in the training data for a particular class.

 l* = argmax Pr(lj) Π Pr(ci | lj,c1,…,ci-1)

 = argmax Pr(lj) Π Pr(ci | lj) (4.8)
 lj

lj

 n

i=1

 n

i=1

26

4.3 The Results on the Thai Web Page Identification

The objective of this experiment is to assess the effectiveness of ICT in the case that

we supply the knowledge (in the form of dictionary) to a classifier (word segmentation

classifier). We evaluate the performance of ICT in comparison with Co-Training, EM and

supervised learning algorithms, respectively.

In the following subsections, we describe the data set and experimental setting for

algorithms and the results.

4.3.1 Data Set & Experimental Setting

We collected the data set starting with four Web pages: a Japanese Web page1, two

Thai Web pages2, and an English web page3. From each of these four pages, a Web robot was

used to recursively follow the links within the page until it retrieved 450 pages. Therefore, we

had approximately 900 Thai pages as Thai pages might link to ones which were in English or

other languages. We also had approximately 450 Japanese and 450 English pages. All of

these pages were divided into three sets, denoted as A, B and C, each of which contained 600

pages (about 300 Thai, 150 Japanese and 150 English pages). Note that HTML mark-up tags

were removed before the training and testing process. We used 3-fold cross validation in all

experiments below for averaging the results.

The settings for the classifiers are as follows.

(1) For ICT, we ran the algorithm without the consistency checking process. No labeled data

was given to ICT. The initial θ10 was set to 0.7.

(2) For Co-Training, the values of the parameters of the classifier (in Table 2.1) were set in a

similar way as in (Blum and Mitchell 1998). As Co-Training requires a small set of

correctly pre-classified training data, we gave the algorithm with 18 hand-labeled pages.

In our experiment, we set the values of |UE|, p, n and u to 1182, 3, 3 and 115,

respectively.

(3) For EM, we supplied the algorithm with 18 initial labeled data and 1182 unlabeled data.

(4) For the supervised naive Bayes classifier, we gave the algorithm 1200 initial labeled data.

4.3.2 Experimental Results

 After the training process of ICT was finished, we evaluated the performance of both

classifiers. The results are shown in Table 4.1. In the table, “Co-Training(Bayes)” and

1 http://www.yahoo.co.jp
2 http://www.sanook.com, http://www.pantip.com

27

Table 4.1: The precision (%), recall (%) and F1-measure of the classifiers for the problem of

Thai Web page identification.

Classifier P (%) R (%) F1

ICT(Word) 100.00 99.00 99.50

S-Bayes 100.00 99.00 99.50

ICT(Bayes) 100.00 98.78 99.39

S-Word 99.08 99.61 99.34

Co-Training(Bayes) 100.00 98.67 99.33

EM 100.00 98.56 99.28

Co-Training(Word) 100.00 98.45 99.22

“Co-Training(Word)” are the results of naive Bayes and word segmentation classifiers of
Co-Training, respectively. “ICT(Bayes)” and “ICT(Word)” are for naive Bayes and word

segmentation classifiers of ICT. As shown in the table, ICT(Word) gave the best performance

according to F1-measure (99.50%), which is equal to S-Bayes. The performance of ICT

(Bayes) was higher than S-Word. It can be seen from the table that the classifiers of ICT

outperformed both classifiers of Co-Training as well as EM.

Compared to supervised learning classifiers, the performance of ICT was comparable to

that of S-Bayes and quite better than that of S-Word. The results demonstrate that our system

can effectively use unlabeled examples and the two modules succeed in training each other.

Though we did not include the details of running time of all classifiers, from the experiments

we found that ICT ran much faster than Co-Training and EM because Co-Training and EM

used incremental labeling style during the training process which gradually added a small

number of labeled data in each round.

4.3 Summary

We have presented a method that effectively uses unlabeled examples to estimate the

parameters of the system for Thai Web page identification. The method is based on two

components, i.e. the word segmentation classifier and the naive Bayes classifier. We found

that ICT is capable to boost the performance of the naive Bayes classifier.

In the following chapter, we will apply ICT to Web page categorization problems in

which no domain knowledge is available.

3 http://www.javasoft.com

CHAPTER 5

WEB PAGE CATEGORIZATION

In this chapter, we discuss the details of how we perform the various experiments and

provide information on the data sets that are used in those experiments. The chapter is

organized into five sections. Section 5.1 is about the feature sets used in our experiments.

Section 5.2 and 5.3 are about data sets and experimental settings. The results are provided in

Section 5.4 and the conclusion is shown in Section 5.5.

5.1 Feature Set

For the classification problem, the classifier’s performance usually depends on the

classification mechanism with the support of the feature set. An appropriate feature set will

help the classifier to increase its classification correctness. Therefore we try to investigate the

possible feature sets to see their contribution on the precision and recall of the classifier.

Feature sets that we study are words appearing in the content of a Web page and words

appearing on the heading of the Web page.

5.1.1 Content

The content of a Web page provides information to the user in detail. As shown in

Figure 5.1, one of the headings is written as “Honors, Awards, and Professional Service”,

whereas the following content is a list of activities in details. We extract all words appearing

in the content to be one of our feature sets.

5.1.2 Heading

Our assumption is that a heading phrase usually represents the main idea of the

following content. Thus we extract words appearing in all headings of the Web page to see

the impact of this feature set.

5.1.3 Heading and Content

After the learning process is completed, the combined classifier predicts the class of

examples based on the output from the heading-based and content-based classifiers. Given a

set of class labels L = {l1, l2,…, lm}, the classifier calculates the posterior probability of each

class label lj using different feature sets as shown in Equation 5.1.

 Pr(lj |di) = Pr(lj |x1) Pr(lj |x2) (5.1)

29

where x1 and x2 are the heading and the content feature sets of document di. Then the classifier

predicts the class label lj based on the maximum posterior probability.

5.2 Data Sets

In order to evaluate the ICT algorithm, we conduct various experiments on three data

sets. The first data set is the WebKb (WebKb 2000), the second data set is the WebClass

(WebClass 2000) and the last one is the DrugUsage data set (DrugUsage 2001).

5.2.1 WebKb

The WebKb data set contains many Web pages related to the university domain. It

was obtained via ftp from Carnegie Mellon University (WebKB 2000). The data set consists

of 981 Web pages collected from computer science department Web sites of four universities:

Cornell, University of Washington, University of Wisconsin, and University of Texas. These

Web pages are hand-labeled into four categories, which are course homepages, faculty

homepages, project homepages and student homepages. We have 220 course Web pages, 147

faculty Web pages, 81 project Web pages and 533 student Web pages.

In this data set, some categories are actually closely related and this makes the

classification more difficult. A course home page gives information about the subject such as

the course outline, the class schedule, reference books, etc. A faculty homepage is an

instructor homepage, which gives information about the instructor’s research, teaching

course, etc. A project homepage is actually a research homepage. A student homepage is a

personal homepage of a student in one of the universities.

headings
content
Figure 5.1: The headings and content of a Web page.

30

5.2.2 WebClass

The WebClass data set was obtained from a machine learning research group in Italy

(WebClass 2000). This collection of Web pages provides information about the hobbies. It

consists of 192 Web pages corresponding to four categories, which are astronomy, jazz, auto

and motorcycle. Each category has 48 pages. The first two categories are semantically

distant, whereas auto and motorcycle are both concerning about vehicles and are closely

related.

5.2.3 DrugUsage

The DrugUsage data set was obtained from a research group at Sirindhorn

International Institute of Technology. It consists of 353 Web pages corresponding to five

categories in pharmaceutical domain. These categories are named as adverse, clinical

pharmacology, overdose, patient information and warning. An adverse Web page describes

about the side effects of medicines. A clinical pharmacology Web page explains about the use

of medicines. An overdose Web page tells us about the symptoms of a patient when taking the

drug more than usual. A patient information Web page provides information to the patient

about the drug usage. A warning Web page presents the drug notification messages to the

patient.

5.3 Experimental Setting

Before conducting all experiments, each Web page was preprocessed by doing html

tag elimination, stop word removal and word stemming. The details of stop word removal and

word stemming are provided in the following subsections.

5.3.1 Stop Word Removal

Each Web page is filtered to remove words that give no significance in predicting the

class of the page. Words to be eliminated are auxiliary verb, preposition, pronoun, possessive

pronoun, phone number, digit sequence, date and special character (See Appendix A for a list

of stop words).

5.3.2 Word Stemming

Many different words might have a common stem. One can therefore reduce

dimensionality greatly by replacing each word by its stem. The assumption is that the stem

contains the important part of the meaning of the word, so stemming should be done to

enhance the performance of a classifier. For example, the words "teached", "teaching",

"teach", "teaches", and "teacher" all have "teach" as their stem. If we use stemming, then all

31

occurrences of any of these 5 words would be replaced by "teach". Stemming is usually done

using a stemming algorithm and there are a great number of stemming algorithms in use (Hull

1996). In our experiment, we employed a stemming algorithm called Porter Stemming (Porter

1980).

5.4 Experimental Results

After the preprocessing step was completed, we extracted all words appearing in all

headings of each Web page to be the features of the heading-based classifier and extracted all

words appearing in the content to be the features of the content-based classifier. Therefore,

each Web page can be viewed as the set of words appearing in the page’s content and the set

of words appearing in all headings. Note that all experiments were done using bag-of-words

representation.

5.4.1 Experimental Results on the WebKb Data Set

The settings for the classifiers are as follows.

(1) For ICT, we randomly selected 30% of all samples from each category to be initial

labeled data. The training set (unlabeled data) consisted of 30% of all samples, and 40%

of all samples were used as a test set. The first classifier employed the heading feature set,

whereas the second employed the content feature set.

(2) For Co-Training, we used the same set of initial labeled data as ICT. The unlabeled data

and the test set were also the same. The parameters p and n were set to 1 and 3,

respectively.

(3) For the supervised naive Bayes classifier, we supplied the algorithm with 60% of all

examples as labeled data and 40% of all samples were used as a test set.

(4) For the EM classifier, we randomly selected 30% of all examples from each category to

be initial labeled data. The unlabeled data and the test data consist of 30% and 40% of all

examples, respectively.

The experiments were conducted using 5-fold cross-validation in order to give each Web page

a chance to be trained and tested equally. After the training process was finished, we

evaluated classifiers based on three feature sets, which were the heading feature set, the

content feature set and the combined feature set (heading+content).

Table 5.1 shows the results of each classifier using ICT when the learning process is

finished. Table 5.2 shows the result of the supervised naive Bayes classifier. Table 5.3 and 5.4

are the results of Co-Training and EM, respectively.

32

Table 5.1: The performance of classifiers using the ICT algorithm on the WebKb data set.

WebKb Heading-based
Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Course 67.69 100.00 80.73 66.15 97.73 78.90 85.71 95.45 90.32
Faculty 24.79 96.67 39.46 22.39 100.00 36.59 20.98 100.00 34.68
Project 35.00 87.50 50.06 23.26 62.50 33.90 27.03 62.50 37.74
Student 92.45 92.45 92.45 87.00 82.08 84.47 90.10 85.85 87.92
Average 71.85 94.39 78.25 67.23 86.73 71.76 73.39 88.27 76.22

Table 5.2: The performance of classifiers using the supervised naive Bayes algorithm on the
WebKb data set.

WebKb Heading-based
Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Course 69.35 97.73 81.13 88.89 90.91 89.89 86.09 92.27 89.03
Faculty 39.22 68.97 50.00 37.93 75.86 50.57 42.84 75.49 54.58
Project 50.00 62.50 55.56 47.37 56.25 51.43 49.35 55.00 51.33
Student 90.74 91.59 91.16 87.04 87.85 87.44 90.63 86.90 88.63
Average 74.99 87.24 79.91 76.95 84.18 79.60 78.92 83.76 80.46

Table 5.3: The performance of classifiers using the Co-Training algorithm on the WebKb data
set.

WebKb Heading-based
Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Course 68.25 97.73 80.37 89.74 79.55 84.34 85.71 95.45 90.32
Faculty 40.63 86.67 55.32 51.52 56.67 53.97 32.88 80.00 46.60
Project 24.14 87.50 37.84 25.53 75.00 38.09 37.50 18.75 25.06
Student 93.26 78.30 85.13 91.67 51.89 66.27 75.74 96.26 84.77
Average 73.95 84.69 75.64 79.69 60.72 66.14 68.29 87.26 75.30

 Table 5.4: The performance of classifiers using EM algorithm on the WebKb data set.

WebKb Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
 Classifier

Category P R F1 P R F1 P R F1

Course 63.19 98.64 77.00 83.00 80.91 81.33 84.63 80.45 81.68
Faculty 26.51 90.44 40.94 35.09 89.03 48.16 28.10 97.26 42.91
Project 39.22 75.00 51.26 37.38 57.50 41.70 24.41 87.50 37.19
Student 87.23 91.58 89.20 91.95 69.89 77.05 91.68 71.02 77.91
Average 68.62 91.64 75.98 76.78 74.28 70.70 74.87 78.50 70.08

33

Note that we applied the micro average to measure the overall performance of each

classifier. The micro average is normally used when the numbers of test data in each category

are different. Considering the average of F1 measure, we found that the heading-based

classifier of ICT obtained 78.25% correctness, which was higher than those of Co-Training

and EM. The content-based classifier of ICT obtained 71.76% correctness, while Co-training

and EM got 66.14% and 70.70%, respectively. Nevertheless, the performance of classifiers

using ICT was a bit less than those using supervised naive Bayes classifiers. This is because

ICT employed only 50% of the labeled data used by the supervised naive Bayes classifier.

The performances of classifiers using both feature sets of ICT were also higher than EM and

Co-Training. We found that the training time of ICT was much less than Co-Training and

EM. With ICT, it took about 3 minutes for the algorithm to converge, whereas with Co-

Training or EM, it took more than 20 minutes to converge (all of the algorithms were

implemented using JAVA language on Windows platform).

5.4.2 Experimental Results on the WebClass Data Set

The settings for classifiers are as follows.

(1) For ICT, Co-Training and EM, we selected 33% of all examples to be initial labeled data.

The training set consisted of 33% and the remaining 34% was a test set.

(2) For the supervised naive Bayes classifier, we selected 66% of all examples to be labeled

data. The test set was also 34% of all examples.

Table 5.5: The performance of classifiers using the ICT algorithm on the WebClass data set.

WebClass Heading-based
Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Astro 93.33 100.00 96.55 100.00 92.86 96.30 100.00 92.86 96.30
Auto 60.87 100.00 75.68 93.33 100.00 96.55 76.47 92.86 83.87
Jazz 100.00 64.29 78.26 93.33 100.00 96.55 100.00 100.00 100.00

Motorcycle 91.67 78.57 84.62 93.33 100.00 96.55 93.33 100.00 96.55
Average 86.47 85.72 83.78 95.00 98.22 96.49 92.45 96.43 94.18

34

Table 5.6: The performance of classifiers using the supervised naive Bayes algorithm on the
WebClass data set.

WebClass Heading-based
 Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Astro 87.97 83.33 84.08 100.00 92.86 96.20 100.00 95.24 97.53
Auto 74.22 97.62 83.98 93.61 97.62 95.39 95.56 97.62 96.47
Jazz 100.00 66.67 79.34 97.78 100.00 98.85 97.78 100.00 98.85

Motorcycle 75.23 92.86 81.27 81.18 100.00 89.50 82.54 100.00 90.39
Average 84.36 85.12 82.17 93.14 97.62 94.99 93.97 98.21 95.81

Table 5.7: The performance of classifiers using Co-Training algorithm on the WebClass data
set.

WebClass Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Astro 65.00 92.86 76.47 100.00 92.86 96.30 100.00 95.24 97.53
Auto 77.78 100.00 87.50 77.78 100.00 87.50 87.71 97.62 92.32
Jazz 100.00 78.57 88.04 93.33 100.00 96.55 87.78 100.00 92.97

Motorcycle 53.85 100.00 70.04 60.87 100.00 75.68 75.00 95.24 82.91
Average 74.16 92.86 80.51 83.00 98.22 89.01 87.62 97.02 91.43

Table 5.8: The performance of classifiers using EM algorithm on the WebClass data set.

WebClass Heading-based
Classifier

Content-based
Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Astro 83.45 97.62 89.51 100.00 95.24 97.53 100.00 97.62 98.77
Auto 46.13 50.00 47.94 84.26 100.00 91.39 77.31 100.00 86.94
Jazz 62.86 78.57 65.83 91.39 100.00 95.48 95.83 100.00 97.78

Motorcycle 80.00 52.38 52.72 74.73 100.00 84.86 76.11 100.00 85.35
Average 68.11 69.64 64.00 87.60 98.81 92.31 87.31 99.40 92.21

All experiments were conducted using 3-fold cross-validation. The results are shown

in Tables 5.5-5.8 Considering the average performance measured by F1, we found that the

heading-based classifier of ICT obtained 83.78%, which was higher than those of Co-Training

and EM.

The performance of heading-based and content-based classifiers using ICT were

higher than those using S-Bayes. However, the performance deficiency of combined feature

set (heading+content-based classifier) was less than those using S-Bayes. Considering the

35

heading-based classifier, we found that Co-Training and EM lost 2.02% and 22.11%,

respectively.

For the content-based classifier, the classifier of ICT got higher performance than

S-Bayes. Moreover, the classifiers of Co-Training and EM lost 6.30% and 2.81%,

respectively.

5.4.3 Experimental Results on the DrugUsage Data Set

All experiments were conducted using 3-fold cross validation. The settings for

classifiers were as follows.

1) For ICT, Co-Training and EM, we selected 33% from all examples to be initial labeled

data. The training set consisted of 33% and the rest 34% was a test set.

2) For the supervised naive Bayes classifier, we selected 66% from all examples to be labeled

data. The test set was also 34% from all examples.

Table 5.9: The performance of classifiers using the ICT algorithm on the DrugUsage data set.

DrugUsage Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Adverse 72.30 98.55 83.41 57.56 96.71 72.17 69.70 95.83 80.70
Clinical 83.33 50.72 63.06 88.28 85.82 87.03 66.67 91.67 77.20
Overdose 44.86 92.99 60.53 44.10 48.19 46.05 34.62 75.00 47.37
Patient 38.00 69.44 49.12 48.53 29.17 36.44 46.43 54.17 50.00
Warning 64.21 91.61 75.50 47.24 91.61 62.33 54.76 95.83 69.69
Average 60.54 80.66 69.17 57.14 70.30 63.04 54.44 82.50 64.99

Table 5.10: The performance of classifiers using the supervised learning algorithm on the
DrugUsage data set.

DrugUsage Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Adverse 97.10 94.32 95.69 82.70 95.71 88.73 82.14 100.00 90.19
Clinical 80.86 84.42 82.60 91.54 88.71 90.10 90.91 83.33 86.96
Overdose 65.59 95.71 77.84 51.84 88.77 65.45 51.16 91.67 65.67
Patient 64.38 95.83 77.02 67.73 70.83 69.25 75.00 87.50 80.77
Warning 70.76 93.06 80.39 50.24 91.61 64.89 53.66 95.65 68.75
Average 75.74 92.67 83.35 68.81 87.12 76.89 70.57 91.63 78.47

36

Table 5.11: The performance of classifiers using Co-Training algorithm on the DrugUsage
data set.

DrugUsage Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Adverse 78.71 88.71 83.41 59.42 91.36 72.01 67.74 91.30 77.77
Clinical 73.15 59.18 65.43 77.10 83.03 79.95 86.36 79.17 82.61
Overdose 42.40 59.18 49.40 37.00 75.91 49.75 38.89 87.50 53.85
Patient 18.06 12.50 14.77 34.50 43.06 38.30 31.25 41.67 35.72
Warning 65.21 93.06 76.69 44.24 94.44 60.25 38.33 100.00 55.42
Average 55.51 62.52 58.81 50.45 77.56 61.14 52.51 79.93 61.07

Table 5.12: The performance of classifiers using EM algorithm on the DrugUsage data set.

DrugUsage Heading-based
 Classifier

Content-based
 Classifier

Heading+Content-based
Classifier

Category P R F1 P R F1 P R F1

Adverse 88.59 67.75 76.78 69.28 98.55 81.36 70.59 100.00 82.76
Clinical 70.61 33.88 45.79 67.23 83.15 74.35 68.97 83.33 75.47
Overdose 16.40 11.17 13.29 24.11 56.58 33.82 19.35 25.00 21.82
Patient 17.06 31.94 22.25 37.62 48.61 42.42 27.42 70.83 39.53
Warning 72.41 87.50 79.25 32.05 95.83 48.04 33.33 95.83 49.46
Average 53.02 46.45 49.52 46.06 76.55 57.51 43.93 75.00 55.41

Considering the average performance measured by F1 from Table 5.9 to 5.12, we

found that the heading-based classifier of ICT got 69.17% correctness which was higher than

that of Co-Training and EM, which got 58.81% and 49.52%, respectively. Moreover, the

content-based classifier of ICT got 63.04% which was higher than those of Co-Training and

EM which got 61.14%, 57.51%. Supervised naive Bays obtained 83.35% and 76.89%

correctness on heading-based and content-based classifiers. It can be seen that the ICT

performance deficiency compared to supervised naive Bayes was less than those of Co-

Training and EM. The heading-based and content-based classifiers of ICT lost about 17.01%

and 18.01%. Nevertheless, the heading-based and content-based classifiers of Co-Training

lost 29.44% and 20.48%. For the EM algorithm, the lost of performance were 40.59% and

25.20% on the heading-based classifier and the content-based classifier. For the classifiers

using the combined feature set, we found that their level of performance were between the

heading-based and content-based ones in every algorithm.

37

5.5 Summary

In this chapter, the ICT algorithm was investigated to see its impact on the Web page

categorization problem. We compared ICT with Co-Training, supervised naive Bayes, EM,

and finally found that ICT still outperformed the semi-supervised learning algorithm

(Co-Training and EM). However, the performance of ICT was less than the supervised naive

Bayes classifier on WebKb and DrugUsage data sets, since ICT employed only 50% of initial

labeled data used by the supervised naive Bayes algorithm.

CHAPTER 6

EFFECT OF INITIAL LABELED DATA ON
WEB PAGE CATEGORIZATION

The objectives of this chapter are to study two side effects of the ICT algorithm. The

first issue is the effect of the ICT, when varying numbers of initial labeled data are supplied to

the algorithm. In the Web page categorization problem, each classifier of ICT starts the

learning process by estimating parameters from these initial labeled data. For this reason,

different numbers of initial labeled data may effect the performance of the classifier in some

ways. The second issue is the effect of the ICT algorithm in the presence of the noisy labeled

data.

6.1 The Effect of the Varying Number of Initial Labeled Data

In order to see the effect of the amount of initial labeled data, the 3-fold cross

validation experiments were carried on the WebClass data set. We randomly selected

different proportions of training data to be initial labeled data. The size of initial labeled data

was diverged from 50% to 0%. After the learning process was completed, each classifier was

evaluated.

Figure 6.1-6.3 show the results of the heading-based classifiers, the content-based

classifier and the combined classifiers of the learning algorithms tested in the experiments.

From Figure 6.1, the heading-based classifier’s performance of the ICT algorithm decreased

from 83.78% to 50.00%, when the size of initial labeled data was reduced from 50% to 0%.

The heading-based classifier of Co-Training got worse performance ranging from 82.00% to

47.46%. The performance of the heading-based classifier of the EM algorithm decreased from

81.44% to 37.22%. Considering the content-based features in Figure 6.2, we found that the

content-based classifier’s performance of the ICT algorithm was decreased from 96.49% to

51.07%, whereas those of the Co-training and the EM algorithms were decreased from

93.61% to 36.07% and from 83.80% to 24.63%, respectively.

As shown in Figure 6.3, the combined classifier of ICT obtained worse performance

from 94.18% to 50.84% with the decrease of the number of initial labeled data. The

performance of the other of the Co-training and EM algorithms became worse, as well. Their

performances ranged from 91.49% to 38.33% and 81.13% to 30.43%, respectively. Note that

all experimental results of the other data sets, the WebKb and the DrugUsage, showed similar

results as the WebClass data set. All classifiers’ performance increased, when they obtained

more initial labeled data.

39

Figure 6.1: The performances of heading-based classifiers using varying numbers

of initial labeled data on the WebClass data set.

Figure 6.2: The performances of content-based classifiers using varying numbers

of initial labeled data on the WebClass data set.

0

20

40

60

80

100

01020304050

F1
-m

ea
su

re

no of labeled data(%)

ICT (heading)
CT (heading)
EM (heading)

0

20

40

60

80

100

01020304050

F1
-m

ea
su

re

no of labeled data(%)

ICT (content)
CT (content)
EM (content)

40

Figure 6.3: The performances of heading+content-based classifiers using varying

numbers of initial labeled data on the WebClass data set.

6.2 The Effect of Noisy Labeled Data

In reality, there is a possibility that the initial labeled data are incorrectly labeled due

to human error. Therefore, it is interesting to see how the learning algorithm is affected by

this real world problem.

Figure 6.4: The performance of classifiers on the Thai/non-Thai data set.

95

96

97

98

99

100

0 10 20 30 40 50

F1
-m

ea
su

re

noise(%)

ICT (Word)
ICT (Bayes)
CT (Word)
CT (Bayes)
EM

0

20

40

60

80

100

01020304050

F1
-m

ea
su

re

no of labeled data(%)

ICT (heading+content)
CT (heading+content)
EM (heading+content)

41

Figure 6.5: The performance of classifiers on the WebKb data set.

Since ICT, Co-Training and EM are boosting-style learning algorithms, they need a

small amount of initial labeled. Therefore, we added noise to these labeled data and let the

algorithms start the learning process. The experiments were conducted on three data sets as in

the previous subsections. The varying levels of random class noise, between 10% to 50%

were added to the initial labeled data. The results are shown below.

As shown in Figure 6.4, ICT is robust in the presence of noise as neither classifier’s

performance change. The word segmentation and naive Bayes classifiers of ICT still

preserved their performance at 99.50% and 99.39%, when noise was added up to 50%. This

was because all unlabeled data were relabeled in every iterations by both classifiers. Both

classifiers, CT (Word) and CT (Bayes), of Co-Training algorithm were sensitive to noise as

their performances dropped considerably from 99.22% to 98.50%. and from 99.33% to

95.00%. The reason that Co-Training was more sensitive is that it used an incremental

labeling style. The noisy initial labeled data had very high influence to each classifier of Co-

Training. Since the classifiers learned from the incorrectly labeled data would very likely

assign the new wrong labels incrementally to the unlabeled data. These new mislabeled data

would be accumulated during the training process, which caused the performance degradation

of the Co-Training. The performance of the EM algorithm dropped slightly when noise was

increased to 50%.

The graphs in Figure 6.5 shows the performances of all classifiers on the WebKb data

set. We found that, when noise was added up to 50%, the heading-based and content-based

classifiers of ICT lost about 10.85% and 12.70%, respectively. Both classifiers of Co-

Training lost 14.58% and 16.17% of performance. Considering the EM algorithm, we found

50

55

60

65

70

75

80

85

90

95

100

0 10 20 30 40 50

F1
-m

ea
su

re

noise(%)

ICT (heading)
ICT (content)
CT (heading)
CT (content)

EM (heading)
EM (content)

42

50

55

60

65

70

75

80

85

90

95

100

0 10 20 30 40 50

F1
-m

ea
su

re

noise(%)

ICT (heading)
ICT (content)
CT (heading)
CT (content)

EM (heading)
EM (content)

 Figure 6.6: The performance of classifiers on the WebClass data set.

0

20

40

60

80

100

0 10 20 30 40 50

F1
-m

ea
su

re

noise(%)

ICT (heading)
ICT (content)
CT (heading)
CT (content)

EM (heading)
EM (content)

 Figure 6.7: The performance of classifiers on the DrugUsage data set.

that the loss of performance due to noise labeled data is still acceptable. The heading-based

classifier of EM lost 11.99% of correctness, which was comparable to ICT. The content-based

classifier of EM lost 20.79%.

The performance of all classifiers, when noise was added on the WebClass data set

are shown in Figure 6.6. We found that both classifiers of ICT lost less performance than

those of Co-Training. The performance loss of heading-based and content-based classifiers of

ICT was 20.92% and 24.1%, whereas the heading-based and content-based classifiers of

43

Co-Training lost 31.70% and 31.47%. For the EM algorithm, the heading-based and content-

based classifiers lost 18.75% and 35%, respectively.

Considering the experimental results on the DrugUsage data set (see Figure 6.7), we

found that the loss of both classifiers of ICT’s performance were less than those of Co-

Training. The heading-based and content-based classifiers of ICT lost 15.25% and 19.24% of

F1-measure, whereas those of Co-Training lost 30.78% and 35.62%, respectively. The

content-based and heading-based of EM lost 17.71% and 23.49%.

6.3 Summary

In this chapter, we focused on the behaviors of ICT in two aspects. The first aspect

concerns on the different numbers of initial labeled data. We found that the performance of

ICT was enhanced, when the initial labeled data was enlarged. This is true for all data sets,

which can be seen from the experimental results. The reason that the amount of initial labeled

data plays an important role during the learning process is because in each round of ICT the

active classifier learns from this initial labeled data plus the new label data acquired from the

other classifier. The larger amount of initial labeled data dominates the learner resulting to a

better performance. This can be explained in another viewpoint. Considering the machine

learning paradigm, a supervised learning algorithm usually outperforms a semi-supervised

and unsupervised learning algorithm. Since the supervised learning algorithm obtains all of

labeled training data, whereas the semi-supervised learning receives only a partial amount of

labeled data. The second point considered in this chapter is about the noisy labeled data. We

found that the performance loss of both classifiers in ICT were less than those of EM and Co-

Training.

CHAPTER 7

COMBINING INDUCTIVE LOGIC PROGRAMMING WITH ICT

In this chapter, we present the way how to apply Inductive Logic Programming (ILP)

in ICT. The chapter is organized into four sections. The first section provides an introduction

to ILP. Section 7.2 provides the detail of how to apply ILP to the Web page categorization

problem. Section 7.3 gives detail about the experimental settings and results. Finally, the

summary of applying ILP is given in Section 7.4.

7.1 Introduction to ILP

Inductive Logic Programming (ILP) is a research area formed at the intersection of

Machine Learning and Logic Programming (Muggleton 1991). An ILP system learns a set of

rules to represent the target function. The learned rules can be used to classify examples by

putting them into a logic programming language, such as Prolog. That means ILP employs

techniques from both machine learning and logic programming. ILP systems develop

predicate descriptions from examples and background knowledge. The examples, background

knowledge and final descriptions are all described as logic programs. The learning

mechanism involves a unifying theory of Inductive Logic Programming that is being built up

around lattice-based concepts such as refinement, least general generalization and inverse

resolution in order to produce the disjunctive set of rules.

7.1.1 The Framework of ILP

In this section, we first consider how the ILP system learns a rule set. Then a number

of important Inductive Logic Programming systems are explored, such as GOLEM

(Muggleton and Feng 1990), FOIL (Quinlan 1990) and PROGOL (Muggleton 1995).

The basic algorithm called sequential covering is the most widely used approach to

learn disjunctive set of rules. As shown in Table 7.1, the concept of the sequential covering

algorithm is to sequentially learn a single rule by calling the subroutine, learn-one-rule, and

accumulate the learned rule into the rule set. After the positive examples covered by the

learned rule are removed, the subroutine is called again to produce the next rule from the

remaining examples. The learn-one-rule subroutine accepts a set of positive and negative

training examples as input, then outputs a single rule that covers many of the positive

examples and few of the negative examples. The characteristic of an output rule is that it

should have high accuracy, but not necessarily to have high coverage. One strategy to

implement the learn-one-rule subroutine is to do a general-to-specific search through the

space of possible rules to search for the high accuracy rule.

45

Table 7.1: The sequential covering algorithm.

Sequential-Covering (Target_attribute, Attributes, Examples, Threshold)

• Learned_rules ← {}

• Rule ← Learn-one-rule (Target_attribute, Attributes, Examples)

• while Performance (Rule, Examples) > Threshold, do

- Learned_rules ← Learned_rules + Rule

- Examples ← Examples –{examples correctly classified by Rule}

- Rule ← Learn-one-rule (Target_attribute, Attributes, Examples)

• Learned_rules ← sort Learned_rules according to Performance over Examples

• Return Learned_rules

The search style is a greedy depth-first search with no backtracking. This method can

be improved by performing a beam search to relax the suboptimal problem of depth-first

search. As illustrated in Table 7.2, the algorithm keeps track of k best candidate_hypotheses at

each step. The rule specialization is processed for each candidate.

In Table 7.2, candidate_hypothesis is the conjunction of attribute-values or

predicates. Each of these conjunctive hypotheses is a candidate set of preconditions for the

rule to be learned and is evaluated by the entropy (see Equation 7.1) of the examples it covers.

The search considers increasingly specific candidate hypotheses until it reaches a maximally

specific hypothesis that contains all available attributes. The algorithm outputs the best rule

that has the highest performance.

∑
=

=−
c

i
ii ppSEntropy

1
2log)((7.1)

Where c is the number of distinct classes of examples. Pi is the proportion of examples from S

for which the target function takes on the ith value.

7.1.2 ILP Systems

Many ILP systems have been developed such as GOLEM, FOIL, PROGOL, etc. In

this section, we describe the techniques of these systems.

The GOLEM system was launched in 1990 by Muggleton and Feng (1990). The

system conducts a specific-to-general search. The specific hypothesis is first created by

randomly selecting several positive examples. The process of GOLEM is based on a

technique called inverse resolution, which corresponds to the relative least-general

generalizations, rlgg operator of Plotkin (1971).

46

Table 7.2: The learn-one-rule algorithm.

Learn-one-rule (Target_attribute, Attributes, Examples, k)

• Initialize Best_hypothesis to the most general hypothesis

• Initialize Candidate_hypotheses to the set {Best_hypothesis}

• While Candidate_hypotheses is not empty, Do

1. Generate the next more specific candidate_hypotheses

- All_constraints ← the set of all constraints of the form (a = v), where a is a

member of Attributes, and v is a value of a that occurs in the current set of

Examples

- New_candidate_hypotheses ←

For each h in Candidate_hypotheses,

For each c in All_constraints,

Create a specialization of h by adding the constraint c

- Remove from new_candidate_hypotheses any hypotheses that are

duplicates, in consistent, or not maximally specific

2. Update Best_hypothesis

- For all h in new_candidate_hypotheses do

If (performance (h, Examples, Target_attribute)

> performance(Best_hypothesis, Examples, Target_attribute))

then Best_hypothesis ← h

3. Update Candidate_hypotheses

- Candidate_hypotheses ← the k best member of New_candidate_hypotheses,

according to the performance measure.

• Return a rule

The FOIL system (Quinlan 1990) employs a sequential-covering algorithm. It learns

one rule at a time, removing the positive examples covered by the latest rule before

attempting to learn the next rule (Mitchell 1997). The system searches (using hill-climbing

technique) “general-to-specific”, by starting with the most general hypothesis and adding one

literal at a time to specialize the rule until it avoids all negative examples. During the search,

the system also tries to keep the remaining hypotheses sufficient enough to be the

representative of the positive examples.

The PROGOL system (Muggleton 1995) uses a technique called inverse entailment to

generate the single most specific hypothesis that, together with the background information,

47

entails the observed data (Mitchell 1997). PROGOL uses the sequential covering algorithm to

learn a set of rules from hypothesis space. The system performs general-to-specific search of

the hypothesis space. It employs A* search along the way to find a set of rules that represent

the concept of the class. The detail of PROGOL are described by Muggleton (1995). Many

researchers point out that PROGOL is seen as a standard ILP learner and is often used as a

benchmark when new ILP systems are introduced. He also points to previous successes using

PROGOL of such as protein shape prediction by Muggleton et al. (1992) and Drug Design by

Finn et al. (1998).

7.2 Learning the Concept of Web Pages with ILP

Since ICT consists of two learners, a strong and a weak learner, we embed an ILP

system to be the strong learner and the naive Bayes to be a weak learner (as shown in Figure

7.1). In this section, we present our ILP framework in order to solve the Web page

categorization problem. We employ PROGOL as the strong learner and make use of the

induced rules to classify training examples (TrainingData2).

Figure 7.1 Combining an ILP system with ICT.

As shown in Figure 7.1, the ILP system is supplied with two set of examples, i.e., a

small amount of initial labeled data and unlabeled data. The ILP system makes use of

background knowledge about the categories of Web pages together with a set of initial

labeled data to induce a set of rules. Then the system classifies unlabeled examples using the

rule set and feeds the newly labeled examples to the naive Bayes (Classifier2) to learn and

classify TrainingData1 into categories. The ILP system then uses the background knowledge

TrainingData1 TrainingData2

Classifier1

Learn

Learn

 C

las
sif

y

Classifier 2

 Classify

ILP System

Background
Knowledge

+
a small amont of

 initial labeled data

48

and TrainingData1 as labeled examples to induce a new rule set. This process is repeated

until the system is converged.

7.2.1 Feature Sets

After the preprocessing step (stop word removal and word stemming) is

accomplished, the feature extraction process is started. For the ILP system, the feature sets of

each Web page are constructed in predicate forms. We extract three feature sets from each

Web page as follows.

• A title predicate, has_title(p,word), is created using words appearing in the title of the

Web page, p.

• A heading predicate, has_head(p,word), is created using words appearing in all

headings of the Web page, p.

• A hyperlink predicate, has_link(p,word), is created using words appearing in all

hyperlinks of the Web page, p.

7.2.2 Background Knowledge

The domain knowledge is an important part of an ILP system. The use of domain

knowledge is essential for achieving the intelligent behavior. We supply the ILP system with

background knowledge for each Web page category. This knowledge is written in predicate

forms. Below is an example list of background knowledge of a course homepage, and the

complete list of background knowledge used in the following experiment is given in

Appendix B.

classMaterial(textbook).

classMaterial(slide).

classMaterial(syllabus).

assignment(project).

assignment(homework).

After the learning process is completed, one possible induced rule is as follows.

coursehomepage(A) :- has_link(A,B) , assignment(B).

It means, a Web page, A, which can be classified as a course homepage must have word B

which is defined by predicate assignment in the background knowledge. The explicit

explanation is that the Web page must have the word “project” or “homework” appeared in its

hyperlinks.

49

7.3 Experimental Results

We embed the ILP system (PROGOL) in our ICT algorithm in order to see the

performance enhancement of the Web page categorization problem, since the previous

experimental results (using naive Bayes in both learners) were still not high, due to the fact

that the naive Bayes learners are not strong enough to produce the satisfactory performance.

In this section, the experimental results on the WebKb and the DrugUsage data sets are

reported.

7.3.1 Experimental Results on the WebKb Data Set

For ICT, Co-Training and EM, we randomly selected 30% of all examples from each

category to be initial labeled data. The unlabeled training data consisted of 30% of all

examples, and 40% of all examples were used as a test set. The experiments were conducted

using 5-fold cross-validation. Table 7.3 shows the results of all experiments conducted on the

WebKb data set. In the table, ICT-ILP stands for the performance of ICT which combines the

ILP system in one of the classifiers. ICT-NB is ICT which combines two naive Bayes

classifers, each of which learns from different feature sets. Co-Training stands for the Co-

Training algorithm, S-Bayes stands for the supervised naive Bayes algorithm. Note that the

Classifier1 of ICT-ILP is the Progol system. For other algorithms, Classifier1 means the

heading-based classifier. The Classifier2 is the content-based classifier for all of the

algorithms.

Considering the two versions of ICT (ICT-ILP and ICT-NB) in Table 7.3, we found

that ICT-ILP’s performance measured by F1 was increased from 78.25% to 80.90% on

Classifier1. Moreover, Classifier1 was able to boost the performance of Classifier2. The

Classifier2’s performance was enhanced from 71.76% to 84.44%. Compared to the

supervised naive Bayes algorithm, ICT-ILP outperformed S-Bayes on Classifier1. The reason

that ICT-ILP got the highest performance came from the contribution of the strong learner

(the Progol system).

The learning process of ICT-ILP took more time than the ICT-NB, since the strong

learner, Progol, needed a long time to do a general-to-specific search to get the optimum set

of rules. In each iteration of ICT, the Progol took about 1 hour to generate the rules, therefore

it took 3 hours for ICT-ILP to converge.

50

Table7.3: The average performance of classifiers on the WebKb data set.

Classifier1 Classifier2
Algorithm P R F1 P R F1

ICT-ILP 80.00 81.82 80.90 82.61 86.36 84.44

ICT-NB 71.85 94.39 78.25 67.23 86.73 71.76
Co-Training 73.95 84.69 75.64 79.69 60.72 66.14
S-Bayes 74.99 87.24 79.91 76.95 84.18 79.60
EM 68.62 91.64 75.98 76.78 74.28 70.70

Table 7.4: The average performance of classifiers on the DrugUsage data set.

Classifier1 Classifier2

Algorithm P R F1 P R F1

ICT-ILP 82.37 98.32 89.90 56.03 88.20 65.39

ICT-NB 60.54 80.66 69.17 57.14 70.30 63.04

Co-Training 55.51 62.52 58.81 50.45 77.56 61.14

S-Bayes 75.74 92.67 83.35 68.81 87.12 76.89

EM 72.41 87.50 79.25 33.33 95.83 49.46

7.3.2 Experimental Results on the DrugUsage Data Set

For ICT, Co-Training and EM, we selected 33% of all examples to be initial labeled

data. The training set consisted of 33% and the remaining 34% was a test set. For the

supervised naive Bayes classifier, we selected 66% of all examples to be labeled data. The

test set consisted of 34% of all examples. All experiments were conducted using 3-fold cross

validation.

For the performance of Classifier1 (as shown in Table 7.4), ICT-ILP got the highest

F1. ICT-NB’s performance was increased from 69.17% to 89.90%. This means that the ILP

system had contributed 30% of performance enhancement to ICT-NB. For Classifier2, ICT-

ILP got 65.39% measured by F1, which was higher than that of ICT-NB. The overall learning

process of ICT-ILP took 1 hour to converge.

7.4 Summary

In this chapter, we have presented the enhancement version of ICT using the ILP

system. We found that the induced rules have more efficiency in classify unlabeled examples.

This evidence can be seen from all experimental results. The benefit of the ILP system can be

seen clearly when all categories in the data set are closely related. The reason is that most of

the words in the closely related categories are likely to be equally distributed. Thus using the

51

statistical approach like a naive Bayes learner might not perform well enough to distinguish

the difference between categories. The representation of the rule sets, on the other hand, can

point out the specific location in each Web page that can be used as a standard prototype of

the categories.

CHAPTER 8

SUMMARY AND FUTURE WORKS

8.1 Summary

The amount of available information on the Web is increasing rapidly. Users tend to

rely on search engines to find the information they are looking for. However, finding relevant

information using the search engines often provides unsatisfactory results. One approach to

solve this problem is to manage all Web pages into categories, which is our main concern in

this thesis. The motivation of this research was to develop an algorithm that has an ability to

categorize Web pages.

In this thesis, we have presented a novel Web page categorization algorithm called

Iterative Cross-Training (ICT). ICT consists of two learners, the strong and the weak learners,

each of which learns from different feature sets of training data and uses its knowledge to

classify the training data of the other learner into categories. The learning process is done in

crossing style.

Several characteristics make ICT a promising algorithm for the Web page

categorization. First, it is collaborated, employing two learners to help each other in acquiring

the knowledge. Second, it is semi-supervised. It requires only a small amount of initial

labeled data but can provide an acceptable performance.

We have evaluated the ICT algorithm and compared it to other learning algorithms.

We used four data collections in our experiment: Thai/non-Thai data set for the Thai Web

page identification problem; and WebKb, WebClass and DrugUsage for the Web page

categorization problem. Our experiments demonstrated that the ICT algorithm produced the

high quality of results.

We have proceeded to investigate the behavior of ICT, when different numbers of

initial labeled data were supplied to the algorithm. We found that ICT’s performance was

increased as the numbers of initial labeled data were increased. Furthermore, the performance

of ICT in the presence of noisy labeled data was analyzed. We found that the ICT algorithm

was robust to noise when domain knowledge was available to the algorithm (in the problem

of Thai Web page identification when we supplied ICT with the knowledge in the form of

Thai dictionary). In the case that no domain knowledge are available (in the problem of Web

page categorization), the performance loss of ICT was less than the other algorithms.

After evaluating the ICT algorithm, we turned our attention to the study how to

enhance the performance of the ICT. An Inductive Logic Programming paradigm was

introduced to the ICT. We employed the Progol system to be the strong learner of ICT. The

experimental results showed that the ICT’s performance was improved. Our results shows

53

that the ICT algorithm is a high potential algorithm. Its performance can be boosted by the

strong learner. The weak learner becomes stronger and can be applied in the real world

applications, since its computational time is cheaper and more practical.

From the real-time applications point of view, the weak learner seems to be more

suitable than the strong learner. The strong learner, on the other hand, can be applied in the

applications that have no time constraint, since the strong learner takes more computational

time than the weak one. Furthermore, the ICT algorithm can be used in the applications but its

computational time is more than each separated learner.

8.2 Future Works

In this section, we present some directions for the future work.

8.2.1 The Variant of ICT

As stated previously that the ICT algorithm is a collaborated algorithm, therefore it is

interesting to study the performance when ICT consists of different numbers of learners. In

which way should these learners cooperate each other during the learning process is another

question that is of our interest.

8.2.2 Theoretical Analysis of ICT

 In this thesis, we conducted various experiments to convince that ICT was a

promising algorithm. Nevertheless, the theoretical analysis should be done to fulfill the proof

of the ICT algorithm.

8.2.3 The Strong Learner of ICT

After investigation the performance of the ICT algorithm, we found that the strong

learner plays an important role on the performance of the ICT algorithm. Therefore, we

introduced to the ICT algorithm, the ILP system, which is considered to be stronger than the

naive Bayes learner. The capability of the ILP system can be enhanced by two factors as

follows:

1) The inductive bias

There are two types of inductive bias (Lavrac 1994) : syntactic bias and semantic

bias. The syntactic bias relates to the declarative language of the rules. The

Progol system constructs the rules in if-then format. The system would be more

powerful, if it can learn to construct the rules in various formats. The semantic

bias concerns on the heuristic approach, the search strategy and the stopping

criteria. The study on these issues should be able to enhance the performance of

the ILP system.

54

2) The background knowledge

Since the quality of learned rules in the ILP is influenced by the background

knowledge provided by the user. Therefore, a suitable set of background

knowledge should be studied prior to provide to the system. We believe that the

appropriate background knowledge will provide the ICT with the high potential

result.

REFERENCES

Aha, D.W. 1997. Feature weighting for lazy learning algorithms. AI Review Vol. 11,

pp. 1-20.

Apte, A.; Damerau, F.; and Weiss, S. 1998. Text mining with decision rule and decision

Trees. In Proc. Conf. Automated Learning and Discovery, workshop, pp. 487-499.

Blum, A. and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In

Proc. of the 11th Annual Conf. Computational Learning Theory.

Breiman, L. 1996. Bagging predictors. Machine Learning 24: 123-140.

Brin, S. 1998. Extracting patterns and relations from the World Wide Web. In Proc. of the

WebDB Workshop at EDBT.

Chen, H. and Kam, H. T. 2000. Evaluation of decision forests on text categorization, In Proc.

of the 7th Conf. Document Recognition and Retrieval, pp. 191-199.

Cohen, W. 1996. Learning with set-valued features. In Proc. of the 13th National Conf.

Artificial Intelligence, Portland, Oregon.

Cohen, W. and Singer, Y. 1998. Context-sensitive learning methods for text categorization.

ACM Transactions on Information System 17(2): 141-173.

Craven M.; Slattery, S.; and Nigam, K. 1998. First-order learning for Web mining. In Proc. of

the 10th European Conf. Machine Learning, pp. 250-255.

Dempster, A.P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society Series B 39:1-38.

Domingos, P. and Pazzani, M. 1997. On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning 29:103.

Drucker, H.; Vapnik, V.; and Wu, D. 1999. Automatic text categorization and its applications

to text retrieval. IEEE Transactions on Neural Networks 10(5): 1048-1054.

DrugUsage Data set [Online]. Available from: http://www.kindcu.siit.ac.th [2001, June 21]

Dubes, R. and Jain, A. 1988. Algorithms for clustering data. Prentice Hall.

http://www.kindcu.siit.ac.th/

56

Dumais, S. T. and Chen, H. 2000. Hierarchical classification of Web content. In Proc.of the

23rd ACM Int. Conf. on Research and Development in Information Retrieval, pp. 256-

263.

Dumais, S. T.; Platt, J.; Heckerman, D.; and Sahami, M. 1998. Inductive learning algorithms

and representations for text categorization. In Proc. of the 7th ACM Int. Conf. on

Information and Knowledge Management, pp. 148-155.

Finn, P.; Muggleton, S.; Page, D.; and Srinivasan, A. 1998. Pharmacophore discovery using

the Inductive Logic Programming system Progol. Machine Learning 30: 241-270.

Freund, Y. and Schapire, R. 1996. Experiments with a new boosting algorithm. In Proc. of the

Int. Machine Learning Conf., pp. 148-156.

Han, Eui-Hong; Karypis, G.; and Kumar, V. 2001. Text categorization using weight adjusted

k-Nearest Neighbor classification. In Proc. of the Pacific-Asia Conf. Knowledge

Discovery and Data Mining, pp. 53-65.

Hull, D. 1996. Stemming algorithms: a case study for detailed evaluation, Journal of the

American Society for Information Science 47(1): 70-84.

Joachims, T. 1998. Text categorization with Support Vector Machines: learning with many

relevant features, In Proc. of the European Conference on Machine Learning.

Jones, R.; McCallum, A.; Nigam, K.; and Riloff, E. 1999. Bootstrapping for text learning

tasks. IJCAI-99 Workshop on Text Mining: Foundations, Techniques and Applications,

pp. 52-63.

King R. and Sternberg, M.J.E. 1990. A machine learning approach for the prediction of

protein secondary structure. Journal of Molecular Biology 216:441-457.

Klinkenberg, R. and Joachims, T. 2000. Detecting concept drift with Support Vector

machines. In Proc. ICML-00, 17th Int. Conf. on Machine Learning, pp. 487-494.

Lavrac, N. and Dzeroski, S. 1994. Inductive Logic Programming: Techniques and

Applications. Ellis Horwood, New York.

Lewis, D.D. 1999. Naive (Bays) at forty: The independence assumption in information

retrieval, In Proc. of Int. Conf. Machine Learning.

57

McCallum, A. and Nigam, K. 1998. Employing EM and pool-based active learning for text

classification. In Proc. of 15th Int. Conf. Machine Learning, pp. 350-358.

McCallum, A.; Rosenfeld, R.; Mitchell, T.; and Nigam, A. 1998. Improving text classification

by shrinkage in a hierarchy of classes. In Proc. the 15th Int. Conf. Machine Learning,

pp. 350-358.

Meknavin, S.; Charoenpornsawat, P.; and Kijsirikul, B. 1997. Feature-based Thai word

segmentation. In Proc. Natural Language Processing Pacific Rim Symposium ’97.

Mitchell, T. M. 1997. Machine Learning. 180-184, McGraw-Hill. New York.

Muggleton, S. and Feng, C. 1990. Efficient induction of logic programs. In Proc. of the 1st

Conf. Algorithmic Learning Theory.

Muggleton, S. 1991. Inductive Logic Programming. New Generation Computing

8(4): 295-318.

Muggleton, S.; King, R.; and Sternberg, M. 1992. Protein secondary structure prediction

using logic-based machine learning. Protein Engineering, 5(7).

Muggleton, S. 1995. Inverse entailment and progol. New Generation Computing 13:245-286.

Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T. 1999. Text classification from labeled

and unlabeled documents using EM. Machine Learning 39(2):103-134.

Pazzani, M. 1997. Learning and revising user profiles: the identification of interesting Web

sites. Machine Learning 27(3): 313-331.

Pierre, J.M. 2000. Practical issues for automated categorization of Web sites. In Proc. of

Conf. Sematic Web.

Plotkin, G.D. 1971. Automatic methods of inductive inference. Ph.D. Thesis, Edinburgh
University.

Porter, M.F. 1980. An algorithm for suffix stripping. Program 14(3): 130-137.

Quinlan, J.R. 1990. Learning logical definitions from relations. Machine Learning 5(3):239-

266.

58

Rocchio, J. 1971. Relevance feedback information retrieval. The Smart retrieval system-

experiments in automatic document processing, pp. 313-323. Prentice-Hall.

Sébillot, P.; Bouillon, P.; and Fabre, C. 2000. Inductive Logic Programming for corpus-based

acquisition of semantic lexicon. In Proc. of the 4th Conf. Computational Natural

Language Learning and the Second Learning Language in Logic Workshop, pp. 199-208.

Srinivasan, A. and King, R.D. 1999. Feature construction with Inductive Logic Programming:

a study of quantitative predictions of biological activity aids by structural attributes. Data

Mining and Knowledge Discovery 3(1): 37-57.

Srinivasan, A.; Muggleton, S.; King R.D.; and Sternberg M.J.E. 1996. Theories for

mutagenicity: a study of first-order and feature based induction. Artificial Intelligence

85:277-299.

Taira, H. and Haruno, M. 1999. Feature selection in SVM text categorization. In Proc. of the

16th Conf. of the American Association for Artificial Intelligence, pp. 480-486.

van Rijsbergen, C.J. 1979. Information Retrieval. Butterworths, London.

Vapnik, V.N. 1995. The Nature of Statistical Learning Theory. Springer, New York.

WebClass Data set [Online]. Available from:

http://www.di.uniba.it/~malerba/software/webclass/webclass.html[2000, September 1]

WebKb Data set [Online]. Available from:

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/data/course-

cotrain-data.tar.gz. [2000, June 14]

Weiss, S. and Indurkhya, N. 1993. Optimized rule induction. IEEE EXPERT

8(6):61-69.

Witten, I. and Frank, M. 2000. Data mining: practical machine learning tool and technique

with Java implementation, Morgan Kaufmann, San Francisco, 2000.

Yang, Y. 1998. An evaluation of statistical approaches to text categorization. Journal of

Information Retrieval 1(1): 67-88.

http://www.di.uniba.it/~malerba/software/webclass/webclass.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/data/course-cotrain-data.tar.gz
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/data/course-cotrain-data.tar.gz

59

Yang, Y. and Liu, X. 1999. A re-examinationof text categorization methods. In Proc. of the

22nd ACM Int. Conf. Research and Development in Information Retrieval, pp. 42-49.

Yang, Y. and Pederson, J. 1997. Feature selection in statistical learning of text categorization.

In Proc. of the 14th Int. Conf. Machine Learning, pp. 412-420.

Zamir, O. and Etzioni, O. 1998. Web document clustering: a feasibility demonstration,

Research and Development in Information Retrieval, 46-54.

APPENDICES

APPENDIX A

STOP WORDS LIST

a
about
above
across
after
afterwards
again
against
all
almost
alone
along
already
also
although
always
am
among
amongst
amoungst
amount
an
and
another
any
anyhow
anyone
anything
anyway
anywhere
are
around
as
at
back
be
became
because
become
becomes
becoming
been
before
beforehand
behind
being
below

beside
besides
between
beyond
bill
both
bottom
but
by
call
can
cannot
cant
co
computer
con
could
couldnt
cry
de
describe
detail
do
done
down
due
during
each
eg
eight
either
eleven
else
elsewhere
empty
enough
etc
even
ever
every
everyone
everything
everywhere
except
few
fifteen
fify
fill

find
fire
first
five
for
former
formerly
forty
found
four
from
front
full
further
get
give
go
had
has
hasnt
have
he
hence
her
here
hereafter
hereby
herein
hereupon
hers
herself
him
himself
his
how
however
hundred
i
ii
iii
iv
vi
vii
viii
x
ix
ie
if

in
inc
indeed
interest
into
is
it
its
itself
keep
last
latter
latterly
least
less
like
ltd
made
many
may
me
meanwhile
might
mill
mine
more
moreover
most
mostly
move
much
must
name
namely
neither
never
nevertheless
next
nine
no
nobody
none
noone
nor
not
nothing
now
nowhere

62

of
off
often
on
once
one
only
onto
or
other
others
otherwise
our
ours
ourselves
out
over
own
part
per
perhaps
please
put
rather
re
same
see
seem
seemed
seeming
seems
serious
several
she
should
show
side
since
sincere
six
sixty
so
some
somehow
someone
something
sometime
sometimes
somewhere
still
such
system
take

ten
than
that
the
their
them
themselves
then
thence
there
thereafter
thereby
therefore
therein
thereupon
these
they
thick
thin
third
this
those
though
three
through
throughout
thru
thus
to
together
too
top
toward
towards
twelve
twenty
two
un
use
using
usually
under
until
up
upon
us
very
via
was
we
well
were
what

whatever
when
whence
whenever
where
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
who
whoever
whole
whom
whose
why
will
with
within
without
would
yet
you
your
yours
yourself
yourselves
jan
january
feb
february
mar
march
apr
april
may
jun
june
july
aug
august
sept
september
oct
october
nov
november
dec

december
mon
monday
tue
tuesday
wed
wednesday
thursday
fri
friday
sat
saturday
sun
sunday
home
click
here
next
just
near
far
new
newly
newest
old
see
saw
end
need
move
i
or
ok
it
the
go
went
gone
send
sent
es
do
thank
told
took
tell
take
done
did
get
got
high
low

63

sure
begin
began
begun
were
them
seen
that
let
know
knew
good
bad
big

small
there
here
meet
what
why
where
when
which
who
whom
whose
short
long

up
down
left
right
show
come
came
the
ask
for
from
of
have
had

has
stop
start
want
now
www
homepage
co
http
com
gif
jpeg
late
pm

APPENDIX B

LIST OF BACKGROUND KNOWLEDGE

B 1 Course Homepage

subject(cs)

subject(cse)

subject(ee)

assignment(assign)

assignment(solution)

assignment(homework)

assignment(problem)

assignment(question)

assignment(quiz)

class(class)

class(cours)

class(lectur)

class(lab)

class(prerequisit)

class(teach)

semester(fall)

semester(winter)

semester(spring)

semester(autumn)

material(handout)

material(syllabu)

material(textbook)

material(book)

material(sheet)

material(materi)

exam(midterm)

exam(final)

exam(exam)

exam(grade)

B 2 Student Homepage

sport(soccer)

sport(hockei)

sport(fish)

sport(music)

sport(basebal)

sport(softbal)

sport(golf)

sport(basketball)

sport(ski)

sport(cricket)

sport(bridg)

sport(card)

sport(hike)

sport(bike)

sport(dive)

sport(diver)

sport(camp)

race(itali)

race(polish)

hobby(travel)

hobby(movi)

hobby(game)

hobby(art)

hobby(place)

hobby(cook)

hobby(favorit)

hobby(cat)

hobby(dog)

hobby(trip)

hobby(travel)

hobby(hobbi)

resume(resum)

race(america)

race(american)

entertainment(music)

entertainment(entertainment)

entertainment(amus)

entertainment(pictur)

entertainment(theartr)

entertainment(stuff)

entertainment(album)

entertainment(humor)

entertainment(photo)

relatives(wife)

relatives(friend)

relatives(father)

relatives(daughter)

relatives(famili)

study(advisor)

study(student)

relatives(son)

65

sport(footbal)

race(russian)

race(china)

race(singapor)

race(nederlands)

race(taiwan)

race(franc)

race(francais)

race(japan)

race(japanes)

race(korea)

race(germani)

race(italiano)

resume(cv)

personal(life)

personal(my)

personal(myself)

personal(welcom)

personal(favorit)

personal(bookmark)

personal(galleri)

subjectcode(cs)

subjectcode(cse)

subjectcode(ee)

relatives(mom)

relatives(girlfriend)

relatives(brother)

relatives(sister)

relatives(friendship)

relatives(dad)

relatives(dadi)

entertainment(fun)

entertainment(cool)

entertainment(movi)

weather(weather)

B 3 Faculty Homepage

academic_place(faculti)

academic_place(institut)

academic_place(univers)

academic_place(depart)

teach(cours)

teach(subject)

teach(student)

academic_interest(research)

academic_interest(paper)

academic_interest(public)

academic_interest(subject)

academic_job(lectur)

academic_job(teach)

academic_job(cours)

academic_activity(member)

academic_activity(acm)

academic_activity(ieee)

academic_activity(committee)

academic_activity(confer)

B 4 Project Homepage

project_def(project)

project_def(mission)

project_def(objective)

project_def(propos)

project_group(people)

project_group(group)

project_group(member)

project_group(researcher)

project_group(people)

project_group(manager)

project_group(alumni)

project_place(laboratori)

project_place(lab)

66

B 5 Adverse Homepage

adverse(advers)

adverse(interac)

adverse(reaction)

symtom(sleepi)

symtom(nervou)

symtom(hematolo)

symtom(vascular)

symtom(cardiovascular)

symtom(digest)

symtom(allerg)

symtom(acut)

symtom(liver)

symtom(metabol)

symtom(hepat)

symtom(urinari)

B 6 Overdose Homepage

overdose(overdosag)

overdose(contraind)

effect(fatal)

effect(toxic)

effect(coma)

effect(vomit)

contraindicate(contraind)

contraindicate(hypersensitiviti)

contraindicate(peptic)

contraindicate(ulcer)

contraindicate(hypoclycemia)

contraindicate(heart)

contraindicate(hypertension)

contraindicate(allergic)

contraindicate(hypertrophy)

contraindicate(bleed)

contraindicate(precnancy)

contraindicate(hypotension)

B 7 Warning Homepage

warning(warn)

warning(precaution)

targetpeople(pregnancy)

targetpeople(mother)

targetpeople(nurse)

targetpeople(pediatric)

targetpeople(labor)

targetpeople(dilivery)

targetpeople(maternal)

targetpeople(animal)

B 8 Patient Information Homepage

patientinfo(patient)

information(inform)

information(product)

information(prescription)

physician(physician)

physician(doctor)

patientinfo(take)

usage(temperatur)

usage(room)

usage(shake)

usage(breath)

usage(instruction)

B 9 Clinical Pharmacology Homepage

pharmacology(pharmacologi)

pharmacology(pharmacodynam)

pharmacology(pharmacokinet)

clinical(clinic)

druganalysis(gram)

druganalysis(posit)

druganalysis(neg)

dilution(dilution)

dilution(techniqu)

APPENDIX C

PUBLICATIONS

The ongoing of our research and contributions of this thesis were reported as several

published papers as follows.

C.1 National Conference

1. Soonthornphisaj, N., and Kijsirikul, B. 2000. Web page classification using

Incremental Iterative Cross-Training. In Proc. the 4th National Computer Science and

Engineering Conference, pp. 113-117.

C.2 International Conferences

1. Soonthornphisaj, N., and Kijsirikul, B. 2000. Iterative Cross-Training: An algorithm

for learning from unlabeled Web pages. In Proc. the 1st Int. Conf. Intelligent

Technologies, pp. 55-63.

2. Kijsirikul, B.; Sasipongpairoege, P.; Soonthornphisaj, N.; and Meknavin, S. 2000.

Supervised and unsupervised learning algorithms for Thai Web page identification. In

Proc. Pacific Rim Int. Conf. on Artificial Intelligence, Australia, pp. 690-700.

3. Soonthornphisaj, N., and Kijsirikul, B. 2001. The effects of different feature sets on

Web page categorization. In Proc. the 3rd Int. Conf. Enterprise and Information

System, Portugal, pp. 404-410. (Best Paper)

4. Soonthornphisaj, N., and Kijsirikul, B. 2001. An evaluation of Incremental Iterative

Cross-Training approach on Web page classification. In Proc. the 2nd Int. Conf.

Intelligence Technologies, pp. 260-266. (Best Paper Award)

C.3 Book Chapter

1. Soonthornphisaj, N., and Kijsirikul, B. 2002. The effects of different feature sets on

Web page categorization. Enterprise Information System III, Kluwer press.

C.4 International Journal

1. Soonthornphisaj, N., and Kijsirikul, B. 2003. Iterative Cross-Training: an algorithm

for Web page categorization. Intelligent Data Analysis, to appear.

BIOGRAPHY

Name Nuanwan Soonthornphisaj

Sex Female

Date of Birth October 26, 1970

Marital Status Married

Work Lecturer in Department of Computer Science, Kasetsart University

Work address Department of Computer Science, Faculty of Science,

Kasetsart University, Phaholyothin Road, Bangkok, 10900

Thailand.

Education

1997 M.Sc. in Computer Science, Asian Institute of Technology

1992 B.Sc. in Computer Science, Thammasat University

	ÍÑÅ¡ÍÃÔ·ÖÁ¡ÒÃÊÍ¹ä¢ÇéáººÇ¹«éÓÊÓ�
	¹Ò§¹ÇÅÇÃÃ³ ÊØ¹·ÃÀÔÉÑª
	ÇÔ·ÂÒ¹Ô¾¹¸ì¹Õéà»ç¹ÊèÇ¹Ë¹Öè§¢Í§�
	ÅÔ¢ÊÔ·¸Ôì¢Í§¨ØÌÒÅ§¡Ã³ìÁËÒÇÔ·ÂÒ�
	Committeesignature.pdf
	THESIS COMMITTEE

	CHAPTER 3.pdf
	ITERATIVE CROSS-TRAINING ALGORITHM

	CHAPTER 5.pdf
	CHAPTER 5
	5.3.2Word Stemming
	
	
	WebKb
	WebKb

	Reference.pdf
	REFERENCES

	APPENDIX_B.pdf
	LIST OF BACKGROUND KNOWLEDGE
	B 1Course Homepage
	B 2Student Homepage
	B 3Faculty Homepage
	B 4Project Homepage
	B 7Warning Homepage

