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CHAPTER 1

INTRODUCTION

The content of a polynomial with coefficients in Z is defined to be the greatest
common divisor of its coefficients and a polynomial is said to be primitive if and
only if its content is 1. Gauss’ lemma is stated that the product of two primitive
polynomials is again primitive. In [1]; Arturo Magidin and David McKinnon stud-
ied this for polynomials with coefficients in the ring of integers O of a number
field L. Unlike, the ring of integers Z, for any number field L, Oy may not be a
unique factorization domain. Fortunately, in Oy, the factorization of ideals as a
product of prime ideals is unique. The content of a polynomial with coefficients
in Oy is defined to be the ideal generated by its coefficients and a polynomial is
said to be primitive if and only if its content is Q. Gauss’ lemma is also true in
Oy, i.e. the product of two primitive polynomials is primitive.

A function field K over a finite field % is a finite separable field extension over
k(x) where x is a transcendental element. In this research, we study whether these

properties still hold in function fields.



CHAPTER 11

PROPERTIES OF FUNCTION FIELDS

2.1 Function Fields and Integrallity

In this section, we will give the definition of function fields and their properties.
Let k be a finite field of ¢ elements for some prime power q. We introduce function

fields by the following definition.

Definition 2.1.1. Let k be a finite field and z a transcendental element.

A function field K over k is a finite separable field extension over k(x).

From now on, we use K as a function field over k£ together with z a transcen-

dental element.

Definition 2.1.2. Let L be a field extension over k(z). « € L is said to be

integral over k[z] if there exist ag, a1, ...,a, 1 € k[x] such that
Q"+ a, 1@+ -+ aja+ag = 0.

Definition 2.1.3. Let L be a field extension over k(x). The set of all elements
in L that are integral over kfx] forms a subring of L containing k[z]. It is called

the integral closure of k[z] in L, denoted by Op.
For a function field K over k£ we have :

Theorem 2.1.4. Let K be a function field over k. Then K is the field of fractions

Of OK.



Proof. Let a € K. Since K is a finite field extension over k(x), K is a algebraic
extension over k(z). Consequently, « is algebraic over k(z). Then there exist
ag,ay, ..., an_1 € k() such that a" + a, 10" + -+ + aya + ap = 0. Moreover,
there exists 0 # d € k[x] C Ok such that da; € k[x] for all i. By multiplying d"

to both sides of the previous equation, we have
(da)" + dan—1(da)" " + - -+ d" 'ai(da) + d"ag =0

Since da; € k[z] for all i, do is integral over k[z]. Thus do := ( € Ok, so a = g.

Hence K is the field of quotients of Ok as desired. 0

Definition 2.1.5. Let R be an integral domain and F its field of fractions. R is
said to be an integrally closed domain if for every o € F', if « is integral over R,

then o € R.

In order to show that k[z] is an integrally closed domain, we need the following

theorem.

Theorem 2.1.6. If R is a unique factorization domain, then R is an integrally

closed domain.
Proof. See [7]. O

Since k is a field, k[z]| is a Euclidean domain and so a unique factorization

domain. By applying the previous theorem, we have

Corollary 2.1.7. k[x] is an integrally closed domain.



2.2 Dedekind Domains

Definition 2.2.1. An integral domain D is called a Dedekind domain if and only
if

(1) D is integrally closed,

(17) D is Noetherian,

(737) Every nonzero prime ideal of D is a maximal ideal.

The concept of Dedekind domain takes an important role in this thesis because
we can uniquely write a nonzero proper ideal as a product of prime ideals (maximal

ideals) as stated in the next theorem.

Theorem 2.2.2. (Unique Factorization of Ideal)
FEvery nonzero proper ideal in a Dedekind domain D can be written uniquely

as a product of prime ideals (maximal ideals).
Proof. See [2]. O

Next, we will show that k[z] and Ok are Dedekind domains. We have already
known that k[z] is integrally closed, so we have to show that k[z] is Noetherian

and every nongzero prime ideal of klx] is a maximal ideal.
Theorem 2.2.3. Every principal ideal domain-is Noetherian.
Proof.-See [5]. O

Theorem 2.2.4. A nonzero ideal in a principal ideal domain is mazimal if and

only if it is prime.

Proof. See [5]. O



Since k[z] is a principal ideal domain, by Theorem 2.2.3 and Theorem 2.2.4,

k[x] is a Dedekind domain as we desire. Finally, we have the following corollary.
Corollary 2.2.5. k[z] is a Dedekind domain.

Similar to the number field case, O is also a Dedekind domain by the following

theorem.

Theorem 2.2.6. Let D be a Dedekind domain with the field of fractions F', and
let L be a finite field extension of F'. Then the integral closure of D in L s a

Dedekind domain.
Proof. See [3]. O

By Corollary 2.2.5, k[z] is a Dedekind domain with the field of fractions k(x)
and K is a finite separable extension of k(z), so we apply Theorem 2.2.6 to this

fact. Hence Ok is a Dedekind domain as stated in the following corollary.

Corollary 2.2.7. Let K be a function field over k. Then Ok is a Dedekind

domain.

Since the ideals of a Dedekind domain can be uniquely factorized as the prod-
uct of its prime ideals, we can define the divisibility of ideals in a Dedekind domain

as follows:

Definition 2.2.8. Let A and B be ideals in a Dedekind demain D). We say that

A divides B, denoted by A|B, if there exists an ideal C' such that B = AC'

Moreover, we have an easier method to determine the divisibility of ideals in

the following proposition.

Proposition 2.2.9. Let A and B be ideals in a Dedekind domain D. Then A|B

if and only if B C A.



Proof. See [2]. O

Next, we will define the definition of lying over prime ideal and some of its

property which we will use in Lemma 3.2.2.

Definition 2.2.10. Let R and A be rings such that R C A. If ) is a prime ideal
of A, then @ N R is a prime ideal of R. A prime ideal @ of A is said to lie over a

prime ideal P of R in case Q@ N R = P.

Proposition 2.2.11. If A s integral over R, then for each prime ideal P of R,

there exists a prime ideal @ of A which lies over P.

Proof. See [5]. O

2.3 Ideal Class Groups

Definition 2.3.1. Let D be a Dedekind domain and F' its field of fractions. A
fractional ideal of D is the set of the form a/, for some a € F' — {0} and some

ideal I of D.

Note that every ordinary ideal of a Dedekind domain D is a fractional ideal of
D. From now on, we use Dy as the group of all nonzero principal fractional ideals

of Og and Dy as the group of nonzero fractional ideals of O.

Definition 2.3.2. The quotient. group C'(K) =Dy /Dy is.called the class group

of K. The order of Cl(K) is denoted by hx and is called the class number of K.

Next, we will provide the definition of valuations, places, product formula and

global fields.



Definition 2.3.3. Let F be a field. A valuation on F' is a real-valued function
on I | -] satisfying
() |z| > 0, with equality if and only if z = 0,
(id) |z +y| < ||+ lyl,
(iid) |vy| = |z[lyl-
Definition 2.3.4. Two valuations | - |, and | - |2 on a field F' are said to be
equivalent if and only if they give the same topology on F. An equivalence class

of valuations on F' is called a place on F.

Theorem 2.3.5. Let F be a field. Let |- |, and |- |3 be valuations on F. Then
the following conditions are equivalent:
(2) |- |1 is equivalent to |- |2,

)
(i) if |al1 < 1, then|ala < 1 for all a € F,
(9) if |a|ly > 1, then |als > 1 for all a € F,

(iv) |a|1 = |al|g for some positive real v and all a € F.
Proof. See [6]. O

Definition 2.3.6. A set S of places on F' is said to satisfy a product formula if
for any a € F*,|a|p = 1 for almost all P € S and H la|p = 1.

Pes
(Here | - |p is a valuation in a place P.)

Definition 2.3.7. A global field is a field with a set of places satisfying a product

formula.

Let p’ € k[z] be an irreducible polynomial, §,, the degree of p’ and a € k(x) —

{0}. Then we can write a = H p*@ where v,(a) € Z. There are finitely many
P

irreducible polynomials p” € k[z] such that v, (a) # 0. We define the p'-adic

valuation | - |, on k(z) by

|aly = g @ and 0],y = 0.



Moreover, the equivalence class of | - |,; is denoted by P,. In addition, we define

a valuation | - |, on k(x) by

Z dpvp(a)

laloo =q P and 0| = 0.
Similarly, the equivalence class of | - |, is denoted by 0.

Theorem 2.3.8. The set S := {P,|p € klx] is a monic irreducible polynomial} U

{o0} is a set of places on k(x).

Proof. We have to prove that if p/, p” are distinct monic irreducible polynomials,

then | - |, and | - [~ are inequivalent. First, we consider
Py =a % <1 ‘and fplp=q " =¢"=1.
By Theorem 2.3.5, | - |7 is not equivalent to | - |,». On the other hand, we have
Py =¢% <1 and  |pe =¢% > 1.
By Theorem 2.3.5, | - |, is not equivalent to | - |. Hence the set
S :={P,|p € k[z] is a monic irreducible polynomial} U {co}
is a set of places on k(z) as desired. O

Theorem 2.3.9. k(z) is a global field.

Proof.- We claim that k(x) together with the set of places
S :={P,|p € k[z] is a monic irreducible polynomial} U {co}

satisfy a product formula. Let a € k(x) —{0}. Then there are finitely many monic

irreducible polynomials p’ € k[z| such that v, (a) # 0. Hence vy/(a) = 0 and so



la|, = ¢ = ¢° = 1 for almost all monic irreducible polynomials p” € k[z].

Consequently, |a|p =1 for almost all P € S. Moreover

I lale = (I T laly) - lal

pPeS p

- Z dptp(a) Z dpup(a)

=q p .qp

1 Z dpvp(a) + Z dpvp(a)
=q P p

Hence k(x) is a global field. O
Additionally, K is a global field due to the following theorem.

Theorem 2.3.10. Any separable extension of a global field is again a global field.

Proof. See [6]. O

Corollary 2.3.11. K is a global field.

Finally, the class number of K is finite as the consequence of the following

theorem.
Theorem 2.3.12. The ideal class group of any global field is finite.

Proof. See [6]. O



CHAPTER III

GAUSS’ LEMMA FOR FUNCTION FIELDS

3.1 Differences between Z and Og

In this section, we would like to find out the difference between Z and Og.
By the fundamental theorem of arithmetic Z is a unique factorization domain.
Unfortunately O may not be a unique factorization domain. First, we need to

show five theorems in order to give an example that Ox may not be a UFD.

Theorem 3.1.1. Let f(y) be a monic polynomial in k[z|[y]. Suppose that

fy) = g(y)h(y) where g(y) and h(y) are monic polynomials in k(z)[y]. Then

9(y), h(y) € klz][y].

Proof. Let f(y) be a monic polynomial in k[z|[y]. Suppose that f(y) = g(y)h(y)
where g(y) and h(y) are monic polynomials in k(x)[y]. Let m,n be monic poly-
nomials in k[z] of smallest degree such that mg(y),nh(y) € k[z]ly]. Thus the
greatest common divisor of coefficients of mg(y) and nh(y) are in k[z]. Next,
we claim that mn € k= {0}. Assume that mn ¢ k — {0}. Then mn = 0 or
deg(mmn) > 1. Since kfz] is an integral domain and m,n # 0, mn # 0 and so
deg(mn) > 1. Let r be an irreducible polynomial in k[z] such that r|mn. Since
r is irreducible, k[z]/(r(x)) is an integral domain, and so is (k[z]/(r(z)))[y]. By

considering the equation

(mg(y))(nh(y)) = mnf(y)
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in (k[x]/(r(x)))[y), we have

(mg(y))(nh(y)) = mnf(y) = 0.

Because (k[x]/(r(x)))[y] is an integral domain, mg(y) = 0 or nh(y) = 0. Without
loss of generality, suppose that mg(y) = 0. Then r divides the greatest common

divisor of coefficients of mg(y), a contradiction. Consequently, mn € k — {0} as

we claim. Hence m,n € k — {0}, so g(y), h(y) € k[z]|[y] as desired. O

Theorem 3.1.2. Let ae € k(z) be integral over klxz| and f(y) the monic polynomial

in klx][y] of least degree having e as a root. Then f(y) is irreducible over k(x).

Proof. Let a € k(x) be integral over k[z|] and f(y) the monic polynomial in
k[x]ly] of least degree having @ as a root. Assume that f(y) = g(y)h(y) where
g(y) and h(y) are monic nonconstant polynomials in k(z)[y]. By Theorem 3.1.1,
9(y), h(y) € klz]ly]. Since 0 = f(a) = g(a)h(a), g(a) = 0 or h(a) = 0. Fur-
thermore, deg(g(y)), deg(h(y)) < deg(f(y)), this contradicts to the minimality of

deg(f(y)). Hence f(y) is irreducible over k(x). O

Theorem 3.1.3. Let k be a finite field of characteristic p # 2 and x a tran-
scendental element. Let f(x) € kl[x] be squarefree. Then K = k(z,\/f(z)) is a

function field over k.- Moreover Og = klz,y/ f(z)]

Proof. Let k be a finite field of characteristic p # 2'and z a transcendental element.
Let f(z) € k[z] be squarefrée and K = k(z, \/f(z)). Initially, we will show that
K is a function field over k. It is obvious that K is a finite extension of k(x),
and so an algebraic extension of k(z). Since char(k) = p # 2,1/f(x) # —/f(2).
So the minimal polynomial of y/f(x) over k(z) is y* — f() and has two distinct
roots. Hence K is a separable extension of k(z). Eventually, K is a function field

over k.
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In addition, we claim that Ox = k[z,\/ f(z)]. First, we will show that Ox D

klx,+/f(z)]. Let a € k[x,+/f(z)]. Thus a = a(x)+b(z)+/ f(z) where a(z),b(x) €
k[z]. If b(z) = 0, then a = a(z) € k[z] C Ok. Assume that b(z) # 0. Then

9(y) = [y — (a(2) + b(2)v/[(@))]ly — (a(z) — b(z)V/f(2))]
= [y = a(x)) = ba)/f(2))][(y = a(z)) + b(z)/ f(2))]
= (y — a(2))* = V() f(2)
=" =2a(2)y + [o*(z) — (@) f(a)].
Therefore g(y) € k[z|[y] is @ monic polynomial having « as a root. Hence o € O.

Next, we will show that O C k[z,\/f(2)]. Let 3 € Ox C K. Then § =

c(x) +d(x)/ f(x) where ¢(x),d(v) € k(x). If d(x) =0, then § = ¢(z) € k(z) and
B € Og. Since k[z] is an integrally closed domain, 8 € k[z] C k[x, \/ f(x)].

For d(z) # 0, we have
h(y) = ly — (c(z) +dlz)V/ f@)lly — (c(z) — d(z)/ f(2))]
=[(y = e(z)) = d(z)/ f @)y = e(z)) + d(z) v/ f(z))]
=y — c())* — &*(2) f(z)
=y = 2c(2)y + [*(2) — d*(2) f (2)]
€k(a)[y]

Therefore h(y) is the minimal polynomial of /G over k(z). Consequently, the

conjugates 3 of f = c(x) +d(x)x/f(z) are 3 itself and B = c(z) = d(x)\/f(z).
Thus

Tr(B) =8+ 8 = (c(z) + d(z)y/ f(z)) + (c(z) — d(z)V/ f(z)) = 2c(x) € K[a].

Since the characteristic p # 2, ¢(x) € k[x]. Moreover,

N(B) = 85 = (c(z) +d(2)y/ f(2))(c(z) — d(z)\/ f(x)) = ¢*(2) — d*(2) f () € K[z].
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Since c(x) € k[z], *(z) € klz]. Therefore I(z) := d*(z)f(x) € k[z]. We claim

that d(x) € k[z]. Since d(x) € k(z), we can write

d(z) = —= where 7r(z),s(x) € klz],s(z) #0 and gcd(r(z),s(z)) = 1.

Thus s*(x)|r?(z) f(x), Beeause ged(r(z),s(x)) = 1, s*(x)|f(x). Since f(z) is

squarefree, s(x) must be a unit of k[z], so s(z) € k — {0}. Consequently, d(x) =

ZEQ € klz]. Therefore f = c(z) +d(z)\/f(z) € k[z,+/f(z)]. Hence Ox =

klz,\/f(x)] as desired. O

Theorem 3.1.4. Let K be a function field over k. Then u € Ok is a unit if and

only if N(u) € k —{0}.

Proof. Let K be a function field over k. Initially, we will prove the sufficient
condition. Let u € Ok be a unit. Then there exists v € Ok such that uv = 1,
so N(u)N(v) = N(uv) = 1. Since u,v € Ok, N(u), N(v) € k[z], so are units
in k[x]. Therefore N(u), N(v) € k —{0}. To prove the necessary condition, let
u € O be such that N(u) € k — {0}. Then (N(u))~" € £ — {0} is integral over
k[z] Because u € Ox € K, u ' € K. Let u = uy,us;. .., u, be all conjugates
of u for some n € N. Since u € Og, us,...,u, are also integral over k[z]. Thus
-1

uw ™t =uy...u,(N(u))"! is integral over k[x]. Therefore u™' € Ok. Hence u is a

unit in Og. ]
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Theorem 3.1.5. Let K be a function field over k and a,b € O — {0}. Then
(2) if alb in Ok, then N(a)|N(b) in k[x],
(1) if N(a) is irreducible in k[z], then a is irreducible in Ok,

(17i) if a and b are associate, then N(a) = ¢N(b) where ¢ € k — {0}.

Proof. Let K be a function field over k and a,b € Ox —{0}. To prove (i), suppose
that a|b in Og. Then there exists ¢ € O such that b = ac, so N(b) = N(a)N(c).
Since a,b,¢ € Ok, N(a),N(b), N(c) € klz] Thus N(a)|N(b) in k[z]. In order
to prove (i7), assume that N(a) is irreducible in k[z]. Suppose that a = be for
some b,c € Og. Then N(a) = N(b)N(c) and N(a), N(b), N(c) € k[z] because
a,b,c € Ok. Since N(a) is irreducible in k[z], N(b) or N(c) is a unit in k[x].
Without loss of generality, suppose that N(b) is a unit in k[x], so N(b) € k—{0}.
By Theorem 3.1.4, b is a unit in Og. Hence a is irreducible in Og. Finally, to
prove (iii), assume that a and b are associate. Then there exists a unit v € Ok
such that a = bu, so N(a) = N(b)N(u). By Theorem 3.1.4, ¢ := N(u) € k — {0}.

Therefore N(a) = ¢N(b) where ¢ € k — {0}. O

In the next example, we will illustrate that Ox may not be a unique factor-

ization domain.

Example 3:1.6: Let. K = Fs(z; v223 + .+ 1)and f(z) = 22> + 2 + 1. Then
f(0) = f(1) = f(2) = 1, so f(z) is irreducible and squarefree. By Theorem
3.1.3; K is a function field and Ox = Fslz, v223 + o +1]. "Let o € O =
Fa[z, V223 + x + 1]. Thus @ = a(z) + b(r)v/223 + z + 1 where a(z), b(x) € Fsz].
Therefore the conjugates of a = a(z) + b(z)v223 + 2z + 1 is «a itself and & =

a(zr) —b(z)vV223 + x4+ 1. Let A :=TFs[z,v22% + x + 1] — F3[z] and § € A. Then
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B = c(z) + d(x)v2x? + x + 1 where c¢(z),d(z) € F3[z] and d(z) # 0. Therefore

N(B) = B8 =(c(z) + d(z)V22 + z + 1)(c(x) — d(x)V22* + z + 1)
=c*(x) — d*(z)(22° + 2 + 1)
=c*(x) + 2d*(2)(22° + v + 1)

=c*(z) + d*(z)(2® 4 2z + 2)

Thus ¢?(z) = 0 or deg(c?(x)) = 2deg(c(x)) is even. On the other hand, deg(d?(z)(z3+
2z +2)) = 2deg(d(z)) +3 > 3 is odd. Thus deg(c?(z)) #deg(d*(z)(z3 + 2z + 2)).
Consequently, deg(N(f3)) =deg(c*(z) + d*(x)(2* + 22 + 2)) cannot be reduced by
the characteristic 3 of Fs and deg(N(3)) > 3. Additionally, if we let 6 € Fs[z],
then § = h(z) € Fslz] and N () = h(x).

To show that Ok is not a unique factorization domain, we choose

v=(z+2)++v223 +x +1. Then

vy=N() = [(z+2)+ V23 +a + 1][(z +2) — V22® + z + 1]
= (p 4 2)2 + 2222 RN
= (2% + 4z +4) + (2° + 2z + 2)
= 2% + 22

=g -2 (D)

Thus N(v)=N(3) = 2* + 2%, N(z) =2 and N(z +1) = (z +1)?>. By Theorem
3.1.5 (7i7), 7 is not associate to either x or x + 1. Similarly, 4 is not associate to
either z or x + 1.

Next, we will illustrate that x,z + 1,y and 7 are irreducible in Og. First, it is
obvious that there is no element in F3[z] has norm either x or z+1. Moreover, there
is no element in A has norm either = or x + 1 since deg(x) =deg(z +1) =1 < 3.

By Theorem 3.1.4 and Theorem 3.1.5 (i), z and x+ 1 are irreducible in Og. For v
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and 7, similar to the previous case, there is no element in O has norm z(x + 1).
In addition, there is no element in A has norm z? since deg(z?) = 2 < 3. It is
easy to see that the elements in Ok of norm z? must be z and 2z. With out
loss of generality, suppose that x divides 7. Then there exists A € Ok such that
v = ). Since A € Ok = F3[z],we can write A as r(z) + s(2)v/223 + z + 1 where

r(z), s(z) € F3[x]. Furthermore,

(z+2) +V2r3 F o+ 1=y
—z)
—x(r(x) + s(x) V223 + z + 1)
—zr(x) + zs(x)V22® + x + 1.

Therefore zs(xz) = 1, but deg(zs(x)) =deg(x)+deg(s(x)) > 1 and deg(1) = 0,
a contradiction. Consequently, 2 does not divide v and so x does not divide 7.
Hence there is no element in O of norm 2,z + 1, z(x + 1). Moreover, x and 2x
which are the elements in Og of norm 22 do not divide either v or 4. By Theorem
3.1.4 and Theorem 3.1.5 (i), v and ¥ are irreducible in O. Finally, O is not a

unique factorization domain.

3.2 Gauss’ Lemma

We have already known that the content of-a polynomial in Z[y| is the great
common divisor of its coefficients. Initially, we would like to define the content of
a polynomial in Oklyl], but Ox may not be a unique factorization domain as we
illustrate in the previous section. Therefore the great common divisor of elements

in Ok may not exist. Eventually, we will give the definition of content as follows:

Definition 3.2.1. For a polynomial f(y) € Okly], the content of f(y) in K,

denoted by contk(f), is the ideal of Ok generated by the coefficients of f(y). The
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polynomial f(y) is primitive in K if contx(f) = Ok.

As we see in the previous definition, if we replace Ok by Z and K by Q, the
content of a polynomial in Z[y] is the ideal of Z generated by its coefficients. In
the different point of view, it is the ideal of Z generated by the great common
divisor of its coefficients because 7Z is a principal ideal domain. On the other
hand, a polynomial in Z[y| is primitive if its content is Z ,which is the ideal of Z
generated by 1. Hence the Definition 3.2.1 is a generalization of the definition of
content.

The content of a polynomial clearly depends on K because it is an ideal of
Og. By applying Theorem 2.2.2 to O which is a Dedekind domain, it is shown

that the property of being primitive does not depend on specific K.

Lemma 3.2.2. (Independence of Primitivity)
Let K and K' be function fields over the same finite field k. Let f(y) €

Oxlyl, Ok [y]. Then f(y) is primitive in K if and only if it is primitive in K'.

Proof. Let K and K’ be function fields over k. Let L be the smallest field con-
taining both K and K’. Then f(y) € Ogly]. Without loss of generality, we
consider the field X' C L. Claim that f(y) is primitive in K if and only if
it is primitive in L. In order-to prove the necessary condition, suppose that
fy) := apy™ + -+ + a1y + ag is not primitive in K. Then contx(f) # Ok. By
Theorem 2.2.2, contg(f) =P Ps... P, where m € N and P; are prime ideals of
Ok for all j. Thus a; € conti(f) = PiPs... P, C P, forall i. Let @; be a prime
ideal in Oy, lying over P;. Hence Q1 N O = P, so a; € ) for all i. Therefore
contr(f) C Q1 C Op. Finally, f(y) is not primitive in L.

On the other hand, suppose that f(y) := a,y" + - -+ a1y + ao is not primitive
in L. Then contr(f) # Op. Similar to the necessary condition, there exists a

prime ideal Q)5 of O such that a; € Qs for all 7. Let P, := Q3 N O. Therefore
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P, is a prime ideal of Ok Since f(y) € Okly], a; € Ok for all i, so a; € P for all
i. Thus contk(f) € Py C Ok. Hence f(y) is not primitive in K.

Therefore f(y) is primitive in K if and only if it is primitive in L. Similarly,
we have f(y) is primitive in K’ if and only if it is primitive in L. Hence f(y) is

primitive in K if and only if it is primitive in K’ as desired. O

Gauss’ lemma is stated that the product of two primitive polynomials is also
primitive. This lemma remains true by the definition of content in Definition

3.2.1. Hence we acquire the next important theorem, Gauss’ lemma for function

fields.

Theorem 3.2.3. (Gauss’ Lemma for Function Fields)

The product of two primitive polynomaials is primitive.

Proof. Let K be a function field over &, f(y),g(y) € Ok|y] be primitive polyno-

mials. Write

m

fly) = Z ay', gly) = Z by and  fy)g() = h(y) ==Y ay'

Let P be a prime ideal in Og. If a; € P for all i, then contx (f) C P C O, so f(y)
is not primitive, a contradiction. Then there exists the smallest i € {0,1,...,n}

such that a;; ¢ P and the smallest jo € {0,1,: ., m} such that b;, ¢ P. Consider

Cigtjo = @0bigtjo T+ 0 + Gig—1bj11
+ aiobjo
+ aio+1bj0—1 +eeet aio-i-jobo'
Since ag, . . ., @iy—1 € P, apbiy1j,+- - -+ ai,—1bjo41 € P. And because by, ..., bj,_1 €

P, ajy41bjo—1+4- - -+ ai,1j,bo € P. Assume that a; b, € P. Since P is a prime ideal,

a;, € P or b;, € P, a contradiction. Thus a;,b;, ¢ P, so c;,+j, ¢ P. Therefore we
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have for every prime ideal P of Ok, there exists a coefficient c¢p of h(y) such that

cp ¢ P. Because P is arbitrary, contx(h) = O. Hence h(y) is primitive. O

3.3 Complete Factorization

In section 3.1, we have already shown that Ok may not be a unique factor-
ization domain. Therefore Ox may not be a principal ideal domain since every
principal ideal domain is a unique factorization domain. Let A be an ideal in Og.
Although A may not be principal, there exists a finite extension L of K such that

AQy, is principal by using Theorem 2.3.12 to obtain the following lemma.

Lemma 3.3.1. (Extending to a Principal Ideal)
Let K be a function field over k, and A be an ideal of Og. Then there exists
r € N such that A" 1s principal. In particular, there exists a finite extension L of

K such that AOy, is prineipal.

Proof. By Theorem 2.3.12, the ideal class number of K is finite, says r € N. Then
A" € Dy, so A" = (a) for some a € K. Take L = K(a*/") where a!/" is a fixed r*

root of a. Therefore
(@*")" = (a) = A"O =(AOL)".

Moreover, it is clear that L is a finite extension of K. Since K isa finite extension
of k(z), L is also a finite extension of k(z). By Corollary 2.2.6, Oy, is a Dedekind

domain. Hence, by Theorem 2.2.2, AOy, = (a'/"). O

There is a theorem stated that every nonzero polynomial f(y) € Q[y| can be
written in the form f(y) = ¢y f*(y) where ¢; € Q and f*(y) € Z[y] is primitive.
Furthermore ¢; and f*(y) are unique up to multiplication by units in Z. We would

like to apply this theorem to K. Unfortunately it does not work in the function
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field case because Ok may not be a principal ideal domain. Hence we have to

apply Lemma 3.3.1 in order to obtain the next theorem.

Theorem 3.3.2. (Factoring Out the Content in Function Fields)
Let K be a function field over k, and f(y) € Kly]. Then there ezists a finite

extension L of K such that
f) = e f*(y)

where ¢y € L and f*(y) € Orly] is a primitive polynomial. Moreover ¢y and f*(y)

are unique up to multiplication by units in Oy.

Proof. Let K be a function field over k, and f(y) € K[y|. Then f(y) := a,y" +
-+ a1y + ag for some n € N and a; € K for all 7. By Theorem 2.1.4, for each 1,
a; = % where b;,¢; € Og. Thus f(y) = lc’—:y” +--- 4 %y + ’;—(0’

By multiplying ¢, ... c¢icy to both sides of the previous equation, we have

g(y) == (cn...c1c0)f(y) = (poi - c1¢0)bay" + ... (Cp - .. C2c0) b1y + (Cpy - . . CoC1)by.

It is easy to see that g(y) € Okly]. Therefore contx(g) is an ideal of Ok. By
Theorem 3.3.1, there exists a finite extension L of K such that conty(g)Op =
conty(g) is principal. Thus conty(g) = (d) for some d € Oy. By considering g(y) €
Okly] € Orlyl, 9(y) = d-g*(y)-where g*(y) € Og[y] is a primitive polynomial, so

we have

Since d € O € L and ¢,,...,c1,¢c0 € O C K C L, d € L. Let ¢ =

Cn...C1CO

¢ and f*(y) = g*(y). Hence f(y) = —%— - g*(y) = c;f*(y) as desired. In

Cn,...C1CQ Cn,...C1CQ

order to prove the uniqueness up to multiplication by units in Oy, assume that

fy) = crf*(y) = cyg*(y) where ¢f,¢, € L and f*(y), g*(y) € Orly] are primitive
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polynomials. Then f*(y) = z—j -g*(y) =: ¢- g*(y) where c = z—j € L. By Theorem
2.14, ¢ = * where u,v € O are relatively prime. Hence v - f*(y) = u - g*(y).
Since f*(y),g*(y) are primitive, (v) = (v)Or = (v)contr(f*) = (u)contr(g*) =
(u)Or, = (u). Therefore v and v are associate, so there exists a unit ¢ € Oy, such

that u = c'v. Consequently, ¢ = *

= ¢ is a unit in Of. Eventually, ¢; = ¢ !¢,
and f*(y) = c-¢g*(y), that is ¢y and f*(y) are unique up to multiplication by units

in OL. L]

For a polynomial f(y) € Z[yl, if f(y) = g(y)h(y) for polynomials g(y), h(y) €
Qly], then f(y) = G(y)H(y) where G(y), H(y) € Z[y]. We also have this theorem

in the function fields version by relying on Theorem 3.2.3 together with Theorem

3.3.2, so we acquire the following theorem as a consequence.

Theorem 3.3.3. (Lifting a Factorization)

Let K be a function field over k and f(y) € Okly]. If

for polynomials g(y), h(y) € Kly|, then there exists a finite extension L of K such

that

where G(y), H(y) € Orly], G(y) and H(y) are L-multiples of g(y) and h(y),

respectively.

Proof. Let K be a function field over k and f(y) € Ogkly|. Suppose that f(y) =
g(y)h(y) for polynomials ¢g(y), h(y) € K[y]. By Theorem 3.3.2, there exist finite

extensions L, and Lj of K such that

g(y) = cog"(y) and h(y) = crh™(y)
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where ¢, € Ly, ¢ € Ly, g*(y) € Og,ly] and h*(y) € Or,ly] are primitive poly-
nomials. Since f(y) € Okly|, contk(f) is an ideal of Og. By Theorem 3.3.1,
there exists a finite extension Ly of K such that contx(f)Or, = conty(f) is
principal. Then there exists ¢; € Op, such that cont (f) = (cy). By consider-
ing f(y) € Okly] € O, [yl f(y) = c;f*(y) where f*(y) € Or,[y] is a primitive
polynomial. Let L be smallest field containing Ly, L, and L. Since Ly, L, and
L, are finite extensions of K, L is also a finite extension of K. Hence we have a

finite extension L of K such that

f)y=cif*(y), 9) =g (y) and h(y) = cph"™(y)

where ¢; € Oy, ¢4, ¢, € Land (), g*(y), h*(y) € Op[y] are primitive polynomi-
als. Thus

crf* W) = Hy) = 9(Wh(y) = (cgen)g™ (y)h* (y)
By Theorem 3.2.3, g*(y)h*(y) is a primitive polynomial. By the uniqueness part
of Theorem 3.3.2, ¢; = ucye, for some unit u € Or. Because u,cy € Oy, c4cp, =
uley € Op. Let G(y) = cyeng™(y) and H(y) = h*(y). Since c,c, € Op and

g*(y),h*(y) € OLlyl; G(y), H(y) € Orly]. In addition,

G(y) = cng(y), H(y) =cn "h(y) and f(y) = G(y)H(y),
that is G(y) is an L-multiple of ¢g(y), and H(y) is an L-multiple of h(y). O

Additionally, we have the Complete Factorization resulting from Theorem 3.3.3

as the next corollary.

Corollary 3.3.4. (Complete Factorization)
Let K be a function field over k and f(y) € Okly]. Then there exists a finite
extension L of K such that f(y) can be factored into a product of (not necessarily

monic) linear factors in Of[y].
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Proof. Let K be a function field over k and f(y) € Ogkly] C KJy]. Let K’ be a
splitting field over K of f(y). Then it is obvious that K’ is a finite extension over
K. Thus f(y) € Okly] € Og/[y] and f(y) splits over K’. By Theorem 3.3.3, there
exists a finite extension L of K’ such that f(y) can be factored into a product
of (not necessarily monic) linear factors in Oply]. Since K’ is a finite extension
over K, L is also a finite extension over K. Consequently, there exists a finite
extension L of K such that f(y) can be factored into a product of (not necessarily

monic) linear factors in Oy [y] as desired. O

Furthermore, we have another corollary by specializing to polynomials which

have coefficients in k.

Corollary 3.3.5. Let f(y) € klz]|[y]. Then there exists a finite extension L of
k(x) such that f(y) can be factored into a product of (not necessarily monic) linear

factors in OL[y].

Proof. Let f(y) € k[z][y]. Then we have a function field L = k(x), O = k[z] and
f(y) € k[z]ly] € Orlyl. By Corollary 3.3.4, there exists a finite extension K of
L such that f(y) can be factored into a product of (not necessarily monic) linear

factors in Ok/y]. O
Finally, we will illustrate an example of Corollary 3.3.5 as follows:

Example 3.3.6. Let x bea transcendental element and

f(y) = 3zy* + zy + (#2 + 1) € F5[z][y]. Then the roots of f are

—z 4 /22 — 4(3z) (22 + 1)
2(3x)
Azt V24 (3z)(22 + 1)

y:

x
Cdx £ 33 + 22+ 3x
T
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Azt (x +1)%(32)
4ot (2 +x1)\/§

dat(z4+1)V3z de—(z4+1)V3z _ dat4(z+1)V3z

. , . — . Consequently,

Therefore we have y =

f(y) =3zy* + 2y + (2* + 1)
y 4z + (:E—i—l)\/@)(y_ 4o + 4(x + 1)V/3x

€T T

dx + 4(x +1)V/3z

=3z (

)

=3z(y + et (x; 1>\/3_°%)(y +4 - )
(gt 3:+4(a:;— 1)@)(@/—1- T+ (x—;l)\/%)

Lot g(y) == y+E2YE and h(y) = gy SHEEVEE Thus £(y) = 3g(y)h(y)
and f splits over K = F5(x,/3x). Since 3z is squarefree, by Theorem 3.1.3, K is

a function field and O = Fs[z, /3z]. Furthermore, we let
g () = xg(y) = zy+r+4(z+1)V3z and H(y) := zh(y) = zy+a+(z+1)V3z.
Thus ¢'(y), M (y) € Fslz, v3z][y] = Ox[y]. Next, we consider

conty (g') = (@yw+4(x+1)v/3z) and contg(h') = (z,z + (z + 1)V3z).
Initially, we have

cont3.(g)=(z, v+ 4(z+ 1)/3z)?
=(2?, 2 + (42 + 42)V3z, (32° + 22° + 37) + (32 + 37)V/37)

—(a? @z + (4 + DV32),2((32% + 22 +3) + (32 + 3)v/32))
Then cont?(g") C (z). Moreover,
(2 4+ 2)V3z = 4[(2® + (42 + 42)V/32) — 2%] € cont(g'),
also

z+ (22 +2)V3z = 2[((32° 4222 43x)+ (322 +32)V3z) =3z (2?) —2(x?)] € cont® ().
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Finally,
v = (z+ (22 + 2)V3zx) — (2> + )V3z) € cont(g").

Hence cont?(¢g') = (x). Next, we have

cont% (') =(x,z + (z + 1)V3x)?
=(2?, 2 + (2% + )3, (32 + 222 + 3x) + (222 + 22)V/32)

=(2?, z(z+ (x + 1)V32), 2((3a® + 2z + 3) + (22 + 2)V/3z))
Thus cont? (k') C (). Furthermore,
(2% + 2)V3z = (2% +(2° + 2)V3x) — 2° € conti (W),
and
Az+(2?+2)V3z = 3[((3° +22° 432+ (22%422)V/3z ) —3x(2%)—2(2?)] € cont’ (1).
Therefore
4r = (4o + (2% + 2)V3z) — ((&° + 2)V/37) € cont’ (),

so x =4 -4z € cont’(h'). Eventually, cont3-(h') = (z).
By the proof of Theorem 3.3.2, the content factored out from g(y) and h(y) is
% = ﬁ and we get L'= F5(2,v3z, ) = sz, /2, V3) = Fs(\/2,V3) a finite

extension of F5(x). Moreover,

w4z + 1)V/3x

9(y) =y + "
_ L x+4(x +1)V/3z
— L (Va4 VE+ 43+ 1),

NG
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and
h(y) =y+x+($l—1)\/§
Z%(ﬁwxﬂa;j;)\/?)_x)
L (Ve v+ VBl ),
Finally,

fy) =3zg(y)h(y)
(= (Vo /4 A3+ D)=

=3(vVzy+ Vot 4B+ 1)y + Va +V3(x +1)).

(Vay + Ve +V3(z + 1))

Additionally, v/ is a root of r(y) = y? + 4z € Fs[z][y] and v/3 is a root of
s(y) = y* + 2 € Fslz][y], so /,v/3 € Op. Hence f(y) can be factored into a

product of linear factors in Og[y].
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