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CHAPTER 1

INTRODUCTION

1.1 Introduction

The glue operator is a mathematically operator defined in [6]. C. Ulyyasathain
studies about maximal-clique partitions of different sizes whether or not there
exists a clique-inseparable graph with n maximal-clique partitions of n different
sizes. So she defines the glue operator to solve the problem. The answer is in the
form of glued graphs between the line graphs of complete graphs with n different
orders. It makes us see how useful of the glued graphs are and motivates us to
study properties of glued graphs.

In Section 1.2, we give definitions, examples and also investigate some basic
properties of glued graphs.

In Chapter 2, we analyze the results of the graphs obtaining by gluing graphs of
the same type where the types we interested in are forests, trees, bipartite graphs,
k-partite graphs, chordal graphs and interval graphs. Moreover, we investigate a
condition to obtain a glued graph that is the same type as its original graphs.

The colorability of glued graphs is to be considered in Chapter 3. We find
bounds of the chromatic numbers of glued graphs and also prove their sharpness.

Lastly, we consider the edge-colorability of glued graphs in Chapter 4. Bounds

of the edge-chromatic numbers of glued graphs are proyided.

1.2 Definitions and Basic Properties

In this section, we introduce the graph gluing, and give some properties of glued

graphs.



Definition 1.2.1. Let G; and G5 be any two graphs. Let H; and H, be non-

trivial connected subgraphs of GG; and Gs, respectively, such that H; = Hy with

an isomorphism f, then the glued graph of G; and G5 at H; and H; with
G1<T>Gy

respect to f, denoted by “}} 2 e is the graph that results from combining G4
with G5 by identifying H; and Hy with respect to the isomorphism f between H;
and Hs. Let H be the copy of H; and Hs in the glued graph. We refer H as its
clone and refer G; and (G as its original graphs.

The glued graph between G; and G5 at the clone H, written GI?GQ,
means that there exist subgraph H; of G, and subgraph H; of G5 and isomorphism
f between H; and H, such that G;}ip]?? and H is the copy of H; and Hy in the
resulting graph.

We denote GG1<I=(Gy an arbitrary graph resulting from gluing GG; and G5 at any

isomorphic subgraph Hy = H, with respect to any of their isomorphism.

Example 1.2.2. Let (G; and G, be graphs as shown in Figure 1.2.1.

1

L 1

2 4
3
G1 G
e e Gy 2> G G< G,y
ngfHQ Hl%gHz H12, Ho

Figure 1.2.1: The results of graph gluing in different isomorphisms

Let H; = K3(1,3,4) C Gy and Hy = K3(a,b,c) C Gy. Consider three isomor-
phisms between H; and Hs, f,g and h, as follows:



f() =a,f(3) =0b,f(4) =¢,

g(1) = b,9(3) = ¢, 9(4) = a and

h(1) = ¢, h(3) = a, h(4) = b.

We show glued graphs between (G; and G5 with respect to f, g and h in Figure
1.2.1 O

Example 1.2.2 shows that different isomorphisms can give the different or the
same result. However, in some cases it is possible that all isomorphisms give the

same result as shown in the next example.

Example 1.2.3. Let G; and G35 be graphs as shown in Figure 1.2.2.

d
.
4 a
, [
e
1 f /s |
!
.
3 8
G Gy G, <Gy

Hl%fHQ

Figure 1.2.2: The same resulting graph for any isomorphism

Let Hy = K3(2,3,4) C G, and Hy = K3(a,b,c) € G5. There are six isomor-
phisms between H; and H,, but all of them give the same result as shown in a

Figure 1.2.2 where [ be arbitrary isomorphisin between ‘Hyand Hs. U
We first observe some basic properties of glued graphs in the following remark.
Remark 1.2.4. ° 1. The original graphs are subgraphs of their glued graph.
2. The graph gluing does not create or destroy an edge.

3. A glued graph between disconnected graphs is also disconnected and a glued

graph between connected graphs is also connected.



4. lf u e V(G1\H) and v € V(Go\H) where G; and G, are graphs and H is a
clone of G1<JH>G2, then u and v are not adjacent in G1<]H>G2.

A glued graph could be a simple or not simple graph. Clearly the graph gluing
of G; and G5 is not a simple graph if G; or G4 is not a simple graph. If original
graphs are simple graphs, it is not necessary that their glued graph is a simple

graph. We show in the next example.

Example 1.2.5. Let G; = Cy(uy, uy, us,uy) and Go = Cy(vq, v9, v3,v4) and let
Hy = Py(uy,ug, us, uys) and Hy = Py(vy,vq, U3, vq). Clearly H; C Gy and Hy C Gs.

Define f : Hy — Hjy by f(u;) = v; for all i = 1,2,3,4. Then we have non-simple
GGy

glued graph 3} 2 o as shown in Figure 1.2.3.

G1<T>Gy

1 2 Hy = fH2

Figure 1.2.3: A glued graph between simple graphs which is not a simple gmp}r:|

The following theorem gives a necessary and sufficient condition for glued

graphs of simple graphs to be simple.

Theorem 1.2.6. Let G; and G5 be simple graphs and let H be the clone of a glued
graph Gl‘ﬂH>G2. Then GI?C’E is ‘a simple graph if and only if there are no verices
uw and v in H such that there are edges e; € E(G1\H) and es € E(G2\H) whose

endpoints are u and v.

Proof. Let G; and G, be simple graphs and let H be the clone of a Gl?Gz
Consider G1<]H>G2 a glued graph of G; and G5 at a clone H. Clearly, if there
are verices u and v in H such that there are edges e; € E(G1\H) and ey €
E(G,\H) whose endpoints are u and v, then GI?G2 contains multiple edges

whose endpoints are u and v. Hence GIQ;G2 is not a simple graph. Conversely,



assume that G1<II{>G2 is not a simple graph. So G1<]H>G2 has a loop or multiple
edges. If Gl?G2 has a loop, then that loop must be in G; or G5 and also G or G,
is not a simple graph. This is a contradiction. Hence GIQH>G2 contains multiple
edges, say e; and ey with endpoints u and v. Since the graph gluing does not
create an edge, we have e; € E(G1)U E(G2) and e € E(G1)U E(G5). Because Gy
and Gy are simple, so e; and es are in different graphs. Without loss of generality,
assume e; € F(G1\H) and ey € E(Gy\H). This implies that there are verices u
and v in H such that there are edges ¢, € F(G1\H) and e; € E(G2\H) whose

endpoints are u and v. O

Next, we give the order and size of glued graphs in terms of those of original

graphs.

Proposition 1.2.7. Let Gy and G5 be graphs and let H be a clone of G1<II{>G2.
Then

1. ‘V(Gl‘ﬂ;Gz)

= |V(G1)| + |V(G2)| = |V(H)|, and

2, ‘E(Glﬁ;%)

= |E(G)|+ [E(Gy)| = [E(H)].

Proof. Let G; and G, be graphs and let H be a clone of GI?GZ Because vertices
= [V(G1)|+
= |E(G)| + |E(G2)| — |E(H)|. O

and edges in H are counted twice in the glued graph, so ’V(G1?G2)
[V(Ga)| = [V(H)| and | B C2)

We next give a trivial upper bound of the maximum degree of any glued graph.

Lemma 1.2.8. Let Gy and Gy be graphs and let H be the clone of a glued graph
G1<]H>G2. Then

A(GTE G2y < NG HA(GL) = 0(H)!

Proof. Let GGy and G4 be graphs and let H be the clone of a glued graph Gl?GQ.
For convenience, let G = G1<II{>G2. Let v be a vertex with maximum degree of G.
If v is not in H, then degg(v) =max{A(G1),A(Gq)} < A(Gy) + A(Gy) — 6(H).
Suppose that v is in H. So v is in both G; and 5. Because each edge which is

incident to v in H is counted twice, so



degg(v) =degg, (v)+degq, (v)—degy (v).
Since v € H, we get that degy(v) > §(H). Hence
degg(v) =degg, (v)+degg, (v)—degy (v) < A(Gh) + A(G2) — §(H).
O
A trivial upper bound of the maximum degree of any glued graph in Lemma
1.2.8 is a useful tool to find the chromatic numbers and the edge-chromatic numbers

of glued graphs in Chapter 3 and Chapter 4. In the next chapter, we consider
results of the graph gluing when original graphs are particular types of graphs.



CHAPTER 11

GLUED GRAPHS

Our purpose in this chapter is to study the graph gluing between original graphs
which are such as forests, trees, bipartite graphs, chordal graphs and interval
graphs. We separate this chapter into two sections. The first section contains
the results of a family of bipartite graphs including forests and trees, and k-partite

graphs and the other contains the results of chordal graphs and interval graphs.

2.1 The Graph Gluing of Bipartite Graphs and k-partite
Graphs

First, we recall definitions and some properties of a forest and a tree.

Definition 2.1.1. A graph with no cycle is acyclic. A forest is an acyclic graph.

A tree is a connected acyclic graph.

Ty 15

Figure 2.1.1: Examples of trees

To find a result of the graph gluing between trees, we state a well-known char-
acterization of trees in Theorem 2.1.2. Then we give a result of the graph gluing

between two trees in Theorem 2.1.3.



Theorem 2.1.2 ([3]). For any n-vertex graph G with n > 1, the following are
equivalent to definitions of a tree with n vertices:

A) G is connected and has no cycles.

B) G is connected and has n — 1 edges.

C) G has n — 1 edges and no cycles.

D) For u,v € V(G), G has exactly one u, v-path.

We next show a result of the graph gluing of two trees in Theorem 2.1.3.
Theorem 2.1.3. Let Ty and 15 be graphs.
A glued graph T1<2=Ty is a tree if and only if T and Ty are trees.

Proof. Necessity. By contrapositive, suppose that 77 or 73 is not a tree. Without
loss of generality, we may assume that 7} is not a tree. Then 7} contains a cycle
or T} is disconnected.

Case 1. T} contains a cycle : Because 71} C T)<I>T5, so that cycle is in
T,<=T,. Therefore T)<I=1T, is not a tree.

Case 2. T7 is disconnected: By Remark 1.2.4, T<I>T5 is also disconnected.
Hence T7<T>T5 is not a tree.

Sufficiency. Let T; and 75 be trees and let TI‘GH>T2 be a glue graph between T}
and T, at arbitrary clone H. Since a connected subgraph of a tree is a tree, the

clone H is also a tree. By Proposition 1.2.7, we have

’E(Tl‘(gTQ)

= |E)| + |E(Ty)| = |E(H)|

= V()] -1+ V(T =1 = [V(H)|[+1
= V(T +|V(Ty)| =|V(H)| -1
(

_ Ti<=T5\| _
= ‘V 1H 2) 1.

Since T and 75 is connected, so is T1<£I>T2. By Theorem 2.1.2, T1<]H>T2 isatree. [
Theorem 2.1.3 can be restated for connected graphs GG; and G5 as follows:

A glued graph G1<I>G5 has a cycle if and only if GG; or G has a cycle.



We next consider all cycles in any glued graph. Since GG; and G5 are subgraphs
of G1<I>(G5 where G; and G, are graphs, all cycles in G and G are in G1<I>G,.
However, it is possible that G1<I>G5 contains a new cycle. We illustrate this in

the next example.

Example 2.1.4. Let GG; and G, be graphs in Figure 2.1.2.

b U
1
1 0 c — | A:H/wﬁ
L
3 4 d Uy Ty
GG
Gl G2 _F}lnggz

Figure 2.1.2: Created cycles

Let H1 = P3(1,2,4) Q Gl and HQ = P3((l, C, d) g GQ. Define f . H1 — H2
be defined by f(1) = a, f(2) = ¢ and f(4) = d. Then we get %élig? showed in
Figure 2.1.2 containing Cg(vy,vs, U3, Vg, Us, V) but Cg(vy, va, v3, v4, V5, v6) is not a

cycle in G; and Gs. O]

In Example 2.1.4, we can see that the graph gluing can create a new cycle.
We call such new cycles as created cycles and all cycles in the original graphs
as original cycles. Theorem 2.1.6 shows a necessary condition to guarantee the

existence of created cycles in any glued graph.

Remark 2.1.5. Let C' be a created cycle of Gl?G2 where (G; and G4 are graphs
and H is a clone of Gl?GQ. There exist non-trivial paths P and P’ which are
subgraphs of C' such that P C/G1\H and P’ C Go\H.

Theorem 2.1.6. Let Gy and Gy be graphs. If G1<I>G4y contains a created cycle,
then both G1 and G5 are not acyclic.

Proof. Let G7 and G4 be graphs. Without loss of generality, we may assume that

G and G, are connected. Assume that G1<I>G5 contains a created cycle, say C.



10

Suppose for a contradiction that G is acyclic. So Gy is a tree. If G4 is acyclic,
then G is a tree. By Theorem 2.1.3, G1<I>(G5 is a tree which is acyclic. This is
a contradiction. So that G contains a cycle. By Remark 2.1.5, There exists a
non-trivial path which is a subgraph of C'N (G1\H) where H is arbitrary clone of
G1<I>G5. We choose u,v-path P such that u # v and |E(P)]| is the maximum.
Then u and v are vertices in H. Since the clone is connected, there is another
u,v-path P" in H. Because P C G1\H but P’ C H, so P’ # P. Then for each
vertex in PUP’ has degree two. So PU P’ contains a cycle. But PUP' C Gy, so Gy

contains a cycle, a contradiction. Therefore both Gy and G5 are not acyclic. [
The converse of theorem 2.1.6 does not hold. We show in Example 2.1.7.

Example 2.1.7. Let G; and G5 be graphs as shown in Figure 2.1.3.

1
C
2
3 e

el Gy G1<T>Gy

ngfH2

Figure 2.1.3: The converse of Theorem 2.1.6 does not hold.

We glue G; and Gy at Hy = P3(4,5) € Gy and Hy = Ps(a,b) C Gy by
isomorphism f-between H; and Hy such that f(4) = a-and f(5) = b. So we get

Ci}lgg 2 which does not contain any new cycle as shown in Figure 2.1.3. U

Now we study a result, of the graph gluing between two forests. That result is

showed in Corollary 2.1.8.
Corollary 2.1.8. Let Gy and Gy be graphs.

A glued graph G1<T>G5 is a forest if and only if G1 and G5 are forests.
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Proof. Let GG; and G5 be graphs. Necessity. By contrapositive, suppose that G,
or (G5 is not a forest. Without loss of generality, we may assume that G is not
a forest. So (G contains a cycle. Since Gy C G1<I>G,y, we have that G1<T=G,
contains that cycle. Hence G1<I>G5 is not a forest.

Sufficiency. By contrapositive, suppose G1<I>(G5 is not a forest. So G1<I>Gy
contains a cycle, say C'. Then C' is an original cycle or a created cycle. If C' is an
original cycle, then it is done. Suppose C' is a created cycle. So by Theorem 2.1.6,

both G; and G5 are not acyclic. Hence GGy and G5 are not forests. O

Next, we consider created cycles in any glued graph obtained by gluing two

cycles at a path.

Corollary 2.1.9. Let C' be a created cycle in a glued graph GI?G2 where Gy and
Gy are cycles and P is a clone. Then C' is an even cycle if and only if the lengths

of G1 and G5 have the same parity.

Proof. Let G7 and G4 be cycles and let C' be a created cycle in GI?GE where P
is a clone. So P is a path because all connected subgraphs of any cycle are paths.
We have that |E(C)| = |E(G1)| + |E(Gy)| =2 |E(P)|. If |[E(G;)| and |E(G3)| have
the same parity, Then |E(C)| is even and also €' is an even cycle. Otherwise, the
lengths of G; and G5 have the different parity, then |E(C)| is odd and also C' is
an odd cycle. O

The rest of this section, we investigate results of the graph gluing between two
bipartite graphs and k-partite graphs where £ is a positive integer such that & > 2.

First, we recall definitions and a property of bipartite graphs.

Definition 2.1.10. A graph G is bipartite if V(G) is the union of two disjoint
non-empty independent sets called partite sets of G.

A bipartition of G is a set of partite sets.

A complete bipartite graph is a simple bipartite graph such that two vertices
are adjacent if and only if they are in different partite sets. When the partite sets

have sizes r and s, the complete bipartite graph is denoted as K, ;.
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Definition 2.1.11. Let k be an interger such that k£ > 3. A graph G is k-partite
if V(G) can be expressed as the union of k£ disjoint non-empty independent sets

called partite sets of G. A k-partition of G is a set of partite sets of G.

A bipartite graph A complete bipartite graph A 3-partite graph

Figure 2.1.4: Examples of bipartite graphs, complete bipartite graphs and 3-partite
graphs

Theorem 2.1.12 ([3]). A graph is bipartite if and only if it has no odd cycle.

Theorem 2.1.12 helps us to characterize a result of the graph gluing of bipartite

graphs showed in the next theorem.
Theorem 2.1.13. Let By and By be graphs.
A glued graph B1<¥= By is a bipartite graph if and only if B1 and By are bipartite.

Proof. Necessity. By contrapositive, suppose that B, or B5 is not bipartite. With-
out loss generality, we may assume that B; is not bipartite. By Theorem 2.1.12,
By contains an_odd cycle called C'. Since By C By<I> B, we obtain that B;<t> By
contains C'. Hence B;<I> By is not a bipartite graph.

Sufficiency.. Assume B; and B, are bipartite. ‘Let {X;,Y;} be a bipartition of
B; for all ¢+ = 1,2. Consider arbitrary glued graph of By and By at a clone H,
Bl<]H>B2. Because H is a subgraph of bipartite graphs, so H is bipartite. Let
{Xy,Yy} be a bipartition of H. Without loss of generality, we may assume that
Xy is a subset of X; and X5, and Yy is a subset of Y7 and Y5, Let X = X; U X,
and Y =Y; UY5. To show that {X,Y} is a bipartition of Bl<]H>B2, let w and v be

vertices in Bl?BQ such that u is adjacent to v. So both v and v are in By or Bs.
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We may assume that v and v are in By. Because B is a bipartite graph, so v and
v are not in the same partite set in By. It means that u € X; andv € Y oru € V)
and v € X;. Assume that v € X; and v € Y;. Sou € X and v € Y. Clearly,
XUY = V(BIQ;BZ). Hence X and Y are partite sets of BI?BZ Therefore
31?32 is a bipartite graph. O

In the case of k-partite graphs where k > 3, it is not necessary that the graph
gluing of two k-partite graphs is also k-partite.

Example 2.1.14. Let G; and G5 be graphs as the following figure.

G1 GQ

Figure 2.1.5: A glued graph between k-partite graphs which is not k-partite

Let Hl = P3(1,3,4) - G1 and HQ = Pg(a,b,C) S GQ. Define f : H1 — H2

by f(1) = a, f(3) = b and f(4) = c¢. Clearly, G; and G, are 3-partite while

Ci}lgg 2 = K, which is not 3-partite. O
We next give a condition to obtain a glued graph between two k-partite graphs

which is also k-partite:

Theorem 2.1.15. For an integer k. > 3, let G and Gy be k-partite graphs and
let H be a clone of GI?GZ If H is a k-partite graph, then GI?G2 s also a
k-partite graph.

Proof. Let G; and G5 be k-partite graphs and let {A;, As..., Ay} and {By, By ..., By}
be partitions of GG; and G, respectively. let H be a clone of GI?GZ Assume
that H is a k-partite graph. Let {Z;, Zs,...,Zx} be a k-partition of H. Be-

cause H is a subgraph of GG; and G5, without loss of generality, Z; is a subset of
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A; and B; for all @ € {1,2,...,k}. Let M; = A;UB; for all i € {1,2,...,k}.
Clearly, M7 U My U ... U M, = V(G1<]H>G2). Next, let ¢ be arbitrary and let
u,v € M; = A; U B,;.

Case 1. u € V(G1\H) and v € V(G3\H): Then it is clear that u and v are
not adjacent.

Case 2. u,v € V(Gy): Then u,v € A;. Because A; is an independent set of
V(G1), so u and v are not adjacent.

Case 3. u,v € V(G9): Similarly to case 2, so v and v are not adjacent.

Hence {M;, M,, ..., My} is a k-partition of G1<JH>G2 and also G1<]H>G2 is a

k-partite graph. O

Example 2.1.16. To show that the converse of Theorem 2.1.15 does not hold,
let G; and G5 be two copies of triangles K3. So Gy and Go are 3-partite. Let
Hy = Py(uy,v1) and Hy = Ps(us, v9) where w;,v; € V(G;) for all i = 1,2. We glue
G and Gs at H; and Hs. We can see that a clone of glued graph of G; and G is
not a 3-partite graph while GI}:J;H?? is isomorphic to K4\ {e} which is 3-partite.d

2.2 The Graph Gluing of Chordal Graphs and Interval
Graphs

Unlike the previous section, glued graphs in this section are not necessary to be
the same type as their original graphs. So we investigate conditions to obtain the

property that glued graphs are the same type as their original graphs.

Definition 2.2.1. A chord of a cycle C'is an edge not in ¢! whose endpoints lie
in C'. A chordless cycle in G is a cycle of length atleast 4 in G that has no chord
(that is, the ¢ycle is an induced subgraph). A graph G is chordal if it is simple

and has no chordless cycle.

Example 2.2.2. Trees are chordal, because trees are acyclic. For all n, K, is

chordal. O

Remark 2.2.3. For all induced subgraphs of any chordal graph are chordal.
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Definition 2.2.4. The join of simple graphs G; and G,, written G V Ga, is the
graph obtained from the disjoint union between G; and G5 by adding all edges in
{zy:2 € V(Gy),y € V(Ga)}.

Figure 2.2.1: K, V K3

If both original graphs of a glued graph are chordal, it is not necessary that
their glued graph is chordal. We show this in Example 2.2.5.

Example 2.2.5. Let (G; and G, be graphs as shown in Figure 2.2.2.

SER T

G1<T>Go

1 2 H1=fHo

Figure 2.2.2: A glued graph between chordal graphs which is not chordal

Let H1 = P3(1,3,4) Q G1 and H2 Fa Pg(a b C) C GQ. Define f . H1 — H2 by
f(1)=a, f(3) =band f(4) = c. So we get C}:}I‘ﬂ?}g? = (4 V K. Because Ci}lq?g?
containg Uy (vy, va, vg,v5) as an-induced subgraph, so Ci}f]?}? 2 i3 not chordal.

We observe that if all cycles in a glued graph of two chordal graphs are original
cycles, then the glued graph is chordal. Then we use Theorem 2.1.6 to get a

condition to guarantee that a glued graph has no created cycles.

Theorem 2.2.6. For any graphs G1 and Gs, if Gy is acyclic and G5 is chordal,
then the glued graph G1<T>Gq is chordal.
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Proof. Let GG; and G5 be graphs. Assume that GGy is acyclic and G5 is chordal. By
Theorem 2.1.6, G1<I>(G5 does not contain a created cycle. So all cycles in G1<I>Gy
are in Go. Thus they are not chordless. Hence G1<I>G5 is chordal. ]

In [2], Chartrand and Lesniak give a characterization of chordal graphs. We

restate and prove it in terms of glued graphs in Theorem 2.2.7.

Theorem 2.2.7 ([2]). A graph G is a chordal graph if and only if G is a glued

graph of two chordal graphs at a clone which is a complete graph(can be a vertex).

Proof. Necessity. Let G be a chordal graph. If G is a complete graph, then
G = %‘ngG where [ is the identity isomorphism. Assume that G is a non-complete
chordal graph. Let S be any minimum vertex-cut of G. Let A be the vertex set
of one component of G\ 9 and let B = V(G)\(S U A). Define the subgraphs G
and Go of G by G; = G[AU S] and G5 = G[BU S|. We can see that both G and

(G5 are induced subgraphs of G. Since G is chordal, both GG; and G5 are chordal

G1Q>G2
G[5]=1G[S]

graph. If |S| = 1, then G|[S] is a complete graph. So we may assume that |S| > 2.

graphs. We can see that G' = . It remains to show that G[9] is a complete
Since S is minimum, each x € S is adjacent to some vertex of each component of
G\S. Therefore, for each pair x,y € S, there exist paths x,a;,as,...,a,,y and
x,by, by, ..., b,y where each a; € A and b; € B, such that these paths are chosen
to be of minimum length. Thus, C': z,ay,as,...,a.,4.b;,b;_1,...,b1,x is a cycle
of length at least 4, implying that C' has a chord. However, a;b; ¢ E(G), since S
is a vertex-cut and a;a; ¢ -E(G) and b;b; ¢ E(G) by the minimality of  and ¢.
Thus zy € E(G). Therefore G[S] is a complete graph.

Sufficiency. Let G and G5 be graphs and let G1<}{>G2 be a glued graph between
G1 and G5 at a clone H. Assume that GG; and G5 are chordal and H is a clique.
Let C' be a cycle of length at least 4 in GI?GZ If C'is an original cycle, it is done.
Suppose that C'is a created cycle. By Remark 2.1.5, There exists a non-trivial path
which is a subgraph of C'N (G1\H). We choose u,v-path P such that u # v and
|E(P)| is the maximum. This implies that v and v are in H. Since H is a clique,

there is an edge e incident to v and v in H. If e is in C, then E(C) = E(P) U {e}
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and also C' is an original cycle, a contradiction. So e ¢ E(C). Hence e is a chord

of C'. Therefore G1‘<JH>G2 is a chordal graph. O

Theorem 2.2.7 does not mean that if a glued graph is chordal, then its original

graphs are chordal. We illustrate this in the next example.

Example 2.2.8. Let G; and G5 be graphs as shown in Figure 2.2.3.

IU7 Ius I\K /IU5 IUG IU7
(5] U2 U3 Uy U1 U2 U3 V4
G

1 G2
IU5 IUG Iv5 IUG
.U,1 (ID) Uus .U4 .Ul U2 U3 .U4
Hy H,
w7I71w2 wﬁmwl
w3 Wy Wy ws
GGy
Hy Esz

Figure 2.2.3: A glued graph between non-chordal graphs which is chordal

We observe that both GG; and G5 are not chordal. Let f : H; — Hj be the iso-

morphism defined by f(u;) = v; for alli € {1,2,3,4,5,6}. Then the graph GGy

ngfHQ
GG,y G1<T-Gy
ngfHQ

is showed in Figure 2.2.3. Clearly, e Hy
is chordal, by Theorem 2.2.7, we can find chordal graphs G3 and G4, subgraphs

is chordal.” However, since

Hj; and Hy of G3 and Gy, respectively, which are cliques, and an isomorphism
) GGy - GG
g : Hy — H, such that I}lng22 = et

For example, G3 = (ci}lgg 2
G4 — (Gl@GQ

Hl%fHQ

)[{w27w37w47w57w7}] and
)[{w17w47w57w6’w8}]7 Hs = P2(w47w5) = H, with the identity

isomorphism g between Hz and Hy. O
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We can see in the previous example that the graph gluing of non-chordal graphs
can be chordal. The next lemma gives a condition to make sure that a result of

the graph gluing of non-chordal graphs is not chordal.

Lemma 2.2.9. Let Gy and Gy be graphs and H be a clone of Gl‘ﬂ;GZ If H is
an induced subgraph of both G1 and G5 and G1<JH>G2 18 chordal, then Gy and G,

are chordal.

Proof. Let Gy and G5 be graphs. Then G1<]H>G2 is a glued graph between G; and
G5 at a clone H. Assume that H is an induced subgraph of both G; and G5 and
G14;G2 is chordal. Suppose for a contradiction that G; is not chordal. So G;
contains a chordless cycle C of length at least four . Then C is a cycle in Gl?Gl
Because GI?G2 is chordal, so €' has a chord e which have endpoints v and v.
So u,v € V(Gy). Because C'is a chordless cycle in Gy, so e € E(Gy)\F(G) and
u,v € V(Gg). Thus u,v € V(H) but e ¢ E(H). Hence H is not an induced
subgraph, a contradiction. Therefore Gy and G5 are chordal graphs. O]

The converse of Lemma 2.2.9 is not true illustrated by graphs G; and G in
Example 2.2.5. In the rest of this section, we investigate results of the graph gluing

between two interval graphs.

Definition 2.2.10. An interval representation of a graph is a family of intervals
assigned to the vertices so that vertices are adjacent if and only if the corresponding

intervals intersect. A graph having such a representation is an interval graph.

7 b 1L Ll
. qba
o——oF
[ .d
- - o e
G The interval representation of G

Figure 2.2.4: An interval graph

f
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Remark 2.2.11. An induced subgraph of an interval graph is an interval graph.

Lemma 2.2.12 and Theorem 2.2.13 are well-known results about the relation

between interval graphs and chordal graphs.

Lemma 2.2.12. [Folklore| For any integer n such thatn > 4, C,, is not an interval

graph.

Proof. Let n be an integer such that n > 4. Suppose that C,, is an interval graph.
Let P = C,\{v} where v is a vertex in C,,. So P is an induced subgraph of C,,.
Hence P is also an interval graph. Because P is a path, so P has an interval

representation similarly as Figure 2.2.5 where a and b are endpoints of P.

a ® °

@  J
o —0 )

Figure 2.2.5: The interval representation of a path

To add vertex v, v have to intersect a and b but not intersect the other vertices.

It is impossible. Hence C, is not an interval graph. O]

Theorem 2.2.13. [Folklore| Let G be a graph. If G is -an interval graph, then G
18 a chordal graph.

Proof. Let G be a graph. Suppose that G is not chordal. So GG contains a chordless
cycle of length at-least four, say C'. By Lemma 2.2.12, C'is not an interval graph.

Because C' is an induced subgraph of G, so GG is not an interval graph. O
Next, we introduce a definition and some theorems about interval graphs.

Definition 2.2.14. Three vertices u,v,w form an asteroidal-triple if for each
pair of them there is a path connecting that two vertices but not contain a neigh-
borhood of the third vertex. For a graph G, we denote A(G) for the set of all

asteroidal-triples in G.
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Remark 2.2.15. Let u, v, w be vertices of a graph G. If u, v, w form an asteroidal-

triple in G , then any pair of {u,v,w} are not adjacent.

Example 2.2.16. Let G} and G be graphs as shown in Figure 2.2.6.

Uy V4
U U1
U7
(75) Uus V2 U3
Us Ug Us Ve
* *
Gl G

Figure 2.2.6: Examples of graphs containing an asteroidal-triple

We can see that wy, us, ug is the only asteroidal-triple in G} and vy, vs, vg is

the only asteroidal-triple in G3. =

Theorem 2.2.17 ([4]). A graph G is an interval graph if and only if it is chordal

and has no asteroidal-triple.

In Example 2.2.16, G; and G5 are not interval graphs but they are chordal.
A glued graph between two interval graphs may or may not be an interval

graph. We show this in Example 2.2.18 and Example 2.2.19.

Example 2.2.18. Let GG; and G5 be complete graphs and G1<I>G5 be arbitrary
glued graph between GG; and G5 with at least 3 vertices. We will show that G1<I>Gs
is an interval graph. Clearly, G1<I>(, is chordal. Tt remains to prove that G;<I>Gy
has no asteroidal-triples. Let u;v and w be distinet vertices in G1<I>G5. By the
pigeonhole principle, there are at least two vertices of {u,v,w} such that are in
the same graph. Without loss of generality, we may assume that « and v are in
(G,. Since (G is a complete graph, vertex u is adjacent to v. By Remark 2.2.15,
u, v, w does not form an asteroidal-triple. Therefore G;<I>G5 is an interval grapE
Example 2.2.19. Let GG; and G5 be graphs as shown in Figure 2.2.7. We can
see interval representations of (G; and G5 showed in Figure 2.2.7. So G; and G,

are interval graphs.
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1 2 2 o —0
3 l o odg o
4 3 o —

An interval representation of G

o—0

o—oc.—.

-— —e
Gy An interval representation of Gs

Figure 2.2.7: A glued graph of interval graphs which is not an interval graph

As in Example 2.2.5, GI?G2 is not chordal. Hence G1<JH>G2 is not an interval
graph. -

The graph gluing can create an asteroidal-triple or destroy an asteroidal-triple

in the original graphs. We show this in Example 2.2.20 and Example 2.2.21

Example 2.2.20. Let Gy = Ps(uy, ug, ... ,us5) and Gy = Ps(vy,v9,...,05) and
let Hy = Ps(uy,ug,ug) and Hy = Ps(vq,v9,v3). We next define f : Hi — Hy

by f(u;) = v; forall i = 1,2,3. So GGy g g graph isomorphic to G% in

H{ = H2
G1<t>G,

e, H contains an asteroidal-triple. Thus GGy g ot

Figure 2.2.6. Hence Hy22; Hy
O

an interval graph.

Example 2.2.21. Let Gy, G5, H; and Hs be graphs as shown in Figure 2.2.8.
Note that H; € G; and Hy C G5..-We can see that ug, uyy and u;g form an
asteroidal-triple in G and vs, v7 and vy form an asteroidal-triple in GG5. Define

isomorphism f : Hy — Hy by f(u;) = v; for all ¢ = 1,2,...,14. Then we get
G1<=Gy

=y 2 shown in Figure 2.2.8.

. GG

th= Ha does not contain any asteroidal-triple. -

We can see tha

Next, we give a condition to show that all asteroidal-triples in original graphs

are still asteroidal-triples in their glued graph.



Uy

Us
Ue

us
Uy

Us

Ug

Uy
U14
U13
Uy2
Uy
Ujo
Sty
Gy
U
U4
Uu13
U2
Uy
U0
8" U9
H,

U3
(%

Us

Ve

U7

22

Go
U1
V14
V13
V12
V11
V10
8" Vg
H,

Figure 2.2.8: The graph gluing can destroy an asteroidal-triple.
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Lemma 2.2.22. Let G and G5 be graphs and H be a clone of G1<II{>G2. If H s
an induced subgraph of Gg, then A(Gy) C A(G1<JH>G2).

Proof. Let G; and G5 be graphs and H be a clone of G1<1H>G2. Assume that
A(Gl)\A(GliI;GE) # ¢. Let T be an asteroidal triple formed by vertices u, v, w in
A(Gl)\A(G1?G2). Because T ¢ A(GI?G@, there are two vertices in {u, v, w}
such that any path connecting that two vertices in G1<II{>G2 contains a neighbor-
hood of the third vertex. Without loss of generality, we may assume that such
two vertices are u and v. Since T" € A(G,), there is a u,v-path P = P,(a; =
u,as,...,a, = v) in Gy that avoids the neighborhood of w. So P is a path in
Gl?GZ Then there exists i € {1,2,...,n} such that a; is adjacent to w by
edge e in Gl%GZ. Hence e € E(Gy)\E(G;) and also a;,w € V(Gg). Since
a;,w € V(G1), we can conclude that a;,w € V(H). Since e € E(G;), we have that
e & F(H). Hence H is not an induced subgraph of Gs. O

By applying Lemma 2.2.22. we have a condition to make sure that a result of

the graph gluing between non-interval graphs is not an interval graph.

Theorem 2.2.23. Let G and G5 be graphs and H be a clone of G1<]H>G2. If H
is an induced subgraph of both Gy and Gy and G1<]H>G2 s an interval graph, then

G and Gy are interval graphs.

Proof. Let Gy and G5 be graphs and H be a clone of G1<]H>G2. Assume that H is
an induced subgraph of both G; and G5 and Gl‘ﬂ;G2 is an interval graph. Suppose
for a contradiction that GGy is not an interval graph. By Theorem 2.2.17, Gy is not
chordal or A(Gy) # ¢.

Case 1. G is not chordal; By Lemma 2.2.9, we get that GI?G2 is not
chordal. By Lemma 2:2.13, Gl‘ﬂ;G2 is not an interval graph.

Case 2. A(G)) # ¢; By Lemma 2.2.22, we have that ¢ # A(G;) C A(Gl‘ﬂH>GY2).
So GI?G2 contains an asteroidal-triple.

By two cases, we have GI?G2 is not an interval graph, a contradiction. Hence

(G7 and G4 are interval graphs. O

Example 2.2.19 shows that the converse of Theorem 2.2.23 is not true.
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Example 2.2.24. Let 77 and T5 be trees. Because a connected subgraph of any
tree is an induced subgraph, by Theorem 2.2.23, we have that if 77 or T3 is not an
interval graph, then T7<t>T, is not an interval graph. U

We have seen that the glued graphs of chordal graphs, interval graphs and k-
partite graphs where k£ > 3 do not necessary remain the same type as their original
graphs. We find conditions to obtain that the glued graphs of chordal graphs are
chordal and find a condition to get that the glued graphs between k-partite graphs
are also k-partite graphs where k& > 3. It remains an open problem to find other
conditions to obtain such property. In the next chapter we consider the colorability

of glued graphs.



CHAPTER I11

COLORABILITY OF GLUED GRAPHS

In this chapter, we find bounds of the chromatic numbers of glued graphs and
show their sharpness. A graph gluing could sometime give a resulting graph with
multiple edges. As we focus on graph colorings, we will consider multiple edges as

a single edge of any glued graph in this chapter.

3.1 Background

First of all, we recall the definition of the chromatic number of any graph.

Definition 3.1.1. A k-coloring of a graph G is a labeling f : V(G) — S, where
|S| = k. The labels are colors; the vertices of one color form a color class. A k-
coloring is proper if adjacent vertices have different labels. A graph is k-colorable
if it has a proper k-coloring. The chromatic number of graph G, x(G), is the
least k such that G is k-colorable.

Example 3.1.2. Let GG be a nontrivial bipartite graph with a bipartition {X, Y}.
Since G is nontrivial, x(G).> 2. Define v : V(G) — {1,2} by

1" 4f ve X,
Y(v) =
2 if weY.

Since X -and Y are independent sets, we have that 7 is proper. So x(G) < 2.
Hence x(G) = 2.

Conversely, Let G be a graph such that x(G) = 2. Let v : V(G) — {1,2} be a
proper 2-coloring of G. Define sets XY C V(G) by

X ={veV(@)yw) =1} and Y = {v e V(G)|y(v) = 2}.
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Then X NY =¢ and X UY = V(G). If w and v are in X, then vy(u) =1 = v(v).
Since -y is proper, v and v are not adjacent. If v and v are in Y, similarly v and v

are not adjacent. So X and Y are independent sets. Hence G is a bipartite graph.

O

Definition 3.1.3. The clique number of a graph G, written w(G), is the max-

imum size of a set of pairwise adjacent vertices(clique) in G.

Remark 3.1.4. For any graph G, we have x(G) > w(G), because vertices of a

clique require distinct colors.

Next we state theorems about the chromatic number of any graph that we use
to find bounds of the chromatic numbers of glued graphs. Proposition 3.1.5 reveals
that the chromatic numbers of graphs are at most their maximum degree plus one
and Brooks proved that there are only complete graphs and odd cycles whose
chromatic numbers are exactly one more than their maximum degrees showed in

Theorem 3.1.6.
Proposition 3.1.5 ([3]). Let G be a graph. x(G) < A(G) + 1.

Theorem 3.1.6 ([3]). (Brooks[1941]) If G is a connected graph other than a
complete graph or an odd cycle, then x(G) < A(G).

3.2 Bounds of the Chromatic Numbers of Glued Graphs

In this section, we investigate bounds of the chromatic numbers of glued graphs
and also show their sharpness. First, we give a trivial lower bound of the chromatic

numbers of glued graphs.

Remark 3.2.1. Because GG; and G5 are subgraphs of G1<I>Go, we have x(G;) <
X(G1<I>Gy) and x(Gs) < x(G1<t>Gy). Hence we get a lower bound of the chro-
matic number of G;<I>G5 that

X(G1<T>Gy) Zmax{x(G1),x(G2)}
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We apply Theorem 2.1.12 and Example 3.1.2 to prove the next proposition.

Proposition 3.2.2. Let Gy and Gy be nontrivial graphs. Then x(G1<3>G3y) > 3 if
and only if x(G1) > 3 or x(G3) > 3.

Proof. Let GGy and G5 be nontrivial graphs. By contrapositive, the statement in
the proposition is equivalent to x(G;<t>G3) < 2 if and only if x(G;) < 2 and
X(G2) < 2. Because the chromatic number of any nontrivial graph is at least two,
we can prove this proposition by proving the statement x(G1) = 2 = x(G») if and
only if x(G1<I>G2) = 2 instead.

Necessity. Assume that y(G;) = 2 = x(G3). By example 3.1.2, G; and G5 are
bipartite. So G1<I>Gy is also bipartite by Theorem 2.1.12. Hence x(G;1<I>Gs) = 2.

Sufficiency. Assume that y(G;<>Gs) = 2. By example 3.1.2, G;<I>Gy is
bipartite. So G and G are bipartite by Theorem 2.1.12. Hence x(G;) = 2 =
X(G2). O

Applying Proposition 3.2.2, we get a necessary condition to have that the chro-
matic numbers of glued graphs are equal to three. This necessary condition is

showed in Proposition 3.2.3.

Proposition 3.2.3. Let Gy and G5 be nontrivial graphs. If x(G1<t>Gs) = 3, then
maz{x(G1), x(G2)} = 3.

Proof. Let G and Gy be nontrivial graphs. Assume that x(G1<I>G3) = 3. By
Lemma 3.2.2, we have x(Gy)> 3 or x(G2) > 3. Let max{x(G1), x(G2)} = x(G1).
Then x(G1) > 3. Because G; € G1<T>G3, 80 3 < x(Gy) < x(G1<T>Gs) = 3. Hence
max{x(G1), x(Gq)} = x(G1) = 3. O

The converse of the proposition 3.2.3 is not true. We show this in Example

2.1.14, which contains x(G1) = 3 = x(G2) but X(q{llgg% =4

Remark 3.2.4. By Proposition 3.2.2 and Proposition 3.2.3, we get that
if x(G1<T>Go) < 3, than x(G1>Gy) =max{x(G1), x(G2)}-
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Because A(G1<II{>G2) < A(Gh)+A(G2)—0(H)(in Theorem 1.2.8) where Gy and
(G5 are graphs and H is the clone of a glued graph Gl%G% so an upper bound in
Theorem 3.2.5 follows immediately by using Proposition 3.1.5 and Theorem 3.1.6.

Theorem 3.2.5. Let GGy and G5 be nontrivial connected graphs and let H be a
clone of GI?GZ Then

X(C1E G2 < A(Gh) + A(Go) - 6(H) + 1.
Furthermore, if Gl‘ﬂ;(h is mot a complete graph or an odd cycle, then
X(E126G2) < A(Gy) + A(Ga) — 6(H).

Proof. Let G; and G5 be nontrivial connected graphs and let H be a clone of
G1<]H>G2. If GI?G2 is a complete graph or an odd cycle, by Proposition 3.1.5,
X(E12G2) < A(G1Ga) 1 < A(Gh)+A(G,) —6(H)+1. Otherwise, by Brooks’
theorem(Theorem 3.1.6), X(G1<]H>G2) < A(01?G2) < A(G)+A(Ge)—0(H). O

Example 3.2.6. To show the sharpness of theorem 3.2.5, let G; and G5 be graphs

as shown in Figure 3.2.1.

ANy

Gy Go

Figure 3.2.1: The sharpness of Theorem 3.2.5.

We glue G and Gy at Hy = P5(1,2) C G4 and Hy = Py(a,b) C G5, So Gégfgz
is isomorphic to K4\{e} where e € E(K,) which is not a complete graph or an
odd cycle. Consider X(Gég}gﬂ =3=2+2-1=A(Gy) + A(G3) — 6(H) where

H=H = H,. L]

This upper bound is too large for some graphs as shown in example 3.2.7.
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Example 3.2.7. Let n be a positive integer. Define graphs GG; and Gy be two
copies of K, 1. So A(G1) =n = A(G3). Let uy,us € V(G1) and vy, v9 € V(G2) be
such that u; and v, are vertices with maximum degree of GG; and G, respectively.
We glue G1 and Gy at Hy = Py(uy,us) and Hy = Po(vy,v9) with isomorphism
f defined by f(u;) = vy and f(ug) = ve. So by Theorem 3.2.5, X(q}ﬂ}g?) <
n+n—1=2n—1. We know that GG; and G5 are trees. So GG 45 al50 a tree

H1=fH>
and X(G1<I>G2) = 2. If n — oo, this bound is too large. =

Theorem 3.2.5 shows an upper bound of the echromatic numbers of glued graphs
in terms of the maximum degrees of its original graphs. In the next theorem, we
introduce another upper bound of the chromatic numbers of glued graphs which

is in terms of the chromatic numbers of its original graphs.

Theorem 3.2.8. Let Gy and G5 be graphs. Then
X(G1Ga) < X(G1)X(G2).

Proof. Let G and G5 be graphs and let G1<]H>G2 be a glued graph of G; and G5
at an arbitrary clone H. Assume x(Gi) = p and x(G3) = q. Let v : V(G;) —
{1,2,...,p} and v, : V(Gs) — {1,2,...,q9} be proper colorings of G; and G,
respectively. Define 5 : V(G) UV (Gs) — {1,2,...,p} x {1,2,...,q} by for all
v; € V(G1) UV (Ga),

(11(v:), 1) if v € V(GI\H),
Bvi) = § (m(vi),ye(vy) if v € V(H),
(1, 2 (vi)) if v, € V(Gy\H).

To show that 3 is proper, let v; and v; be vertices in G1<]H>G2 such that G(v;) =
B(v;). We will show that v; and v; are not adjacent.

Case 1. v; € V(G;\H) and v; € V(G2\H): Then clearly, v; and v; are not
adjacent in G1<I]{>G2.

Case 2. Both v; and v; are in V(G\H)(or V(G2\H)): So [B(v;) =
(7 (v:), 1) = (11(vy),1) = B(v;) and then v (v;) = 71(v;). Hence v; and v; are

not adjacent in G’1<§>G2 because 7y, is proper.



30

Case 3 v; is in V(H) but v; is in V(G,\H)(or V(G2\H)): So f(v;) =
(m(vi);2(vi)) = (n(v),1) = Blv)(or Bv) = (n(vi),12(v:)) = (1,72(v)) =
B(v;)). Then v (v;) = 71 (v;)(or Ya(v;) = 72(v;)). Because both +; and 7, are
proper, So v; and v; are not adjacent in GI?GZ

Therefore (3 is proper and hence X(G1<II{>G2) < x(G1)x(Ga). O
We show the sharpness of Theorem 3.2.8 by proving the next theorem.

Theorem 3.2.9. Let p and q be integers such that p,q > 2 but pq # 4. Then
there exist G and Go with a glue graph G1<JH>G2 where H 1s a clone such that

X(G1) = p, X(G2) = q andx(C15G2) = pg = x(Ga)x(Go).

Proof. Let p and q be integers such that p, ¢ > 2 but pq # 4.

Case 1. p = ¢q: Let Gy be a graph such that V(Gy) = {u1, us, ..., uy} and u;
and u; are adjacent if and only if i # j (mod p). Any ¢ € {1,2,3,...,pq}, there are
¢ numbers which are equivalent, to ¢ mod p. So there are pg — ¢ vertices which are
adjacent to v;. Hence G is (pg— q)-regular. Next, let v; : V(G1) — {1,2,3,...,p}
be a coloring of G defined by for all u; € V(G1)

v (u;) =1 wherel =7 (mod p)and! € {1,2,...,p}.

To show ~; is proper, let u; and w; be vertices in GG such that u; and u; are
adjacent. Then i # j (mod p). Assume i = (mod p) and j = k (mod p) where
Lke{1,2,...,p}. Sovi(u;)) =1l=1i# j=k=(uj). Hence 7, is proper and
also x(G1) < p. We can see that the set of vertex {uy, us, ..., u,} forms a p-clique.
So x(G1) > p. Hence x(G1)= p.

We next define graph G, by V.(G3) = {v1, 02, ..., Upe } and v; and v; are adjacent
if and only if i =7+ 1ori=j (modp). Any i € {1,2,3,...,pq}, there are ¢ — 1
numbers in {1,2,3,...5i—1,i+1,...,pqg} which are equivalent to i mod p. So there
are at least ¢ — 1 vertices which are adjacent to v;. Since vertices v;_; and v;;, are
adjacent to v;, we obtain that deg(v;) = ¢—142 = ¢+ 1. Hence A(G2) = (¢+1).
Let v : V(Gy) — {1,2,3,...,q} be a coloring of G5. For each i € {1,2,...,pq},
we write ¢ = ap + b where a,b € Z, a > 0 and 0 < b < p, defined 72(v;) by

Yo(v;) =1l where l=a+b (mod q) and [ € {1,2,...,q}.
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To show that v, is proper, let v;, v; € V(G2) be such that v; and v; are adjacent.
Then ¢ = j+ 1 or i = j (mod p). Let j = ap + b where a,b € Z,a > 0 and
0<b<p. So(v;) =a+b (mod q).

Case 1.1. i1 =j+1=ap+b+1: If b < p, then b+ 1 < p, consequently,
Y2 (v;) =a+b+1 (mod ¢) # a+b (mod q) = »(v;). Assume that b = p, then
i=ap+p+1=pla+1)+1and (v;) =a+2 (mod q). Because pq # 4, so
p # 2. Hence v (v;) =a+2 (mod ¢q) # a +p (mod q) = 12(v;).

Case 1.2. i = j (mod p): Without loss of generality, we assume i > j. Then
i=j74+np=ap+b+np=pla+n)+0bwhere n € N. Since 1 <i < pq, we get
that 1 <n < ¢—1. Hence y(v;) =a+n+0b (mod q) # a+b (mod q) = v2(v;).

Therefore, by both cases, we have 42(v;) # Ya(vj). So 7, is proper and hence
x(G2) < ¢q. Since the set of vertex {vi,vi4p, Vigop, . ., Vigp(g—1)p} forms a g-clique,
we have x(G3) > ¢. Hence x(Gs5) = q.

Now consider Hy = Byg(u1,us, . .., Upy) € Gy and Hy = P,y(v1,vs,...,0) C
Go. We next define f : Hy — Hy by f(u;)) = v; for all i € {1,2,3,...,pq}.
Then we obtain the glued graph of GGy and G, at H; and Hs with respect to f,
written as q}lg}g? Let G = G;}lg% and V(G) = {w; : 1 = 1,2,...,pq where
w; corresponds to u; and v;}. Let w;, w; € V(G). If i = j (mod p), then w; and
w; are adjacent in Gp. Otherwise, w; and w; are adjacent in G;. It follows that
w; and w; are adjacent in G' because G, Gy € G. Therefore G = K, and also
X(G) = x(GETE2) = pg = X(GX(G):

Case 2. p < ¢: Define Gy, G5 and ~; similarly as case 1. Then x(G;) = p. We
next define v : V(Gy) — {1,2,..., ¢} as follows: For each by for i € {1,2,...,pq},
we write i = ap + b-where a,b € Z, a > 0 and 0. < b < p,

Yo(v) =1 where =24 a~b (mod q) and I €{1,2, ..., ¢}

To show that v, is proper, let v;, v; € V(G3) be such that v; and v; are adjacent.
Then ¢ = j+ 1 or i = j (mod p). Let j = ap + b where a,b € Z,a > 0 and
0<b<p. Soy(vj)=2+a—0b (mod q).

Case 2.1. i =j+1=ap+b+1: If b < p, then b+ 1 < p and also
Yo(v;)) =2+a—b—1 (modq) #2+a—0b (mod q) = 1(v;). Ifb=p, i =
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ap+p+1 =pla+1)+1and y(v;) = 2+ a (mod ¢q). Because p < ¢, so
Y2(v;) =24 a (mod ¢) #2+a —p (mod q) = 1(v;).
Case 2.2. i =j (mod p): We assume i > j. Soi=j+np=ap+b+np=
p(a +n) + b where n € N. Since 1 < i < pq, we get that 1 < n < g—1. So
Yo(vi)) =24+a+n—> (mod q) #2+a—b (mod q) = 72(v;).
Hence, by both cases, v, is proper and also x(Gs2) < q. We can see that the

set of vertex {v1, Vi4p, Vi42p, - - - 7v1+(q—1)p} forms a g-clique. So x(G3) > g. Hence
X(G2) = q.

We define Hy, Hy and f similarly to case 1. So Ci}lgg 2 = K, and hence
X(%ﬁfﬁz) = pg. O

Example 3.2.10. An example of graphs constracted in the Theorem 3.2.9 is
illustrated here. For n = 9 and p = 3 = ¢, we have that GG; and G5 are graphs in
Figure 3.2.2

U1

U3 Ug

(o U7

N

‘Y/I/A\ S
NV AN

<]
ALK <)
W e N 8

Figure 3.2.2: Graphs with their glued graphs isomorphic to K¢ and Kjs.
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We glue G and G, at the clones Hy = Py(uy, ug, ..., ug) and Hy = Py(vy, v, ..., vg)
with the isomorphism f : H; — Hy defined by f(u;) = v; for all i = 1,2,...,9.
Then G1E G2 = K. So x(G1C2) = x(Ko) = 9 = 3 x 3 = x(G1)x(Ga).

For p = 3 and ¢ = 4, we have that G3 and G, are graphs in Figure 3.2.2.
Let Hy = Pio(uy,ug,...,u2) and Hy = Pia(vy,vg,...,v19). Define g : Hy — Hy
by g(u;) = v; for all i = 1,2,...,12. Then %33254 = Kiyz. So X(%ngﬁl) =
X(K12) = 12 = 3 x 4 = x(G3)x(Ga)- =

The chromatic numbers of graphs defined in Theorem 3.2.9 also satisfy the
condition in Theorem 3.2.5 namely X(Gl‘ﬂ;Gﬂ = X(Kp) =pg=pq—q+q+1—
24+1=A(Gy) +A(G2) =6(H)+ 1 where H = Hy = H, is a clone of GI?GZ

Graphs G7 and G5 in Theorem 3.2.9 such that Gl‘ﬂ;G2 = K, satisfy n =
X(G1)x(G2). Does there exist graphs G; and G5 such that Gl‘ﬁH>G2 = K, but
n # x(G1)x(G2)? Lemma 3.2.11 and Lemma 3.2.12 answer this question.

Lemma 3.2.11. Let G| and G5 be graphs such that x(G1) = p and x(Gs) = q. If
G1<JH>G2 = K,, at some clone H, then pqg > n.

Proof. Let G and Gq be graphs such that x(G1) = p and x(G2) = ¢. Assume that
G1<]H>G2 = K, at a clone H. If there are uw € V(G,\H) and v € V(G2\H), then
u and v are not adjacent in Gl?G2 = I, a contradiction. So V(G;) =V (H) or
V(Gs) = V(H). Without loss of generality, we may assume that V(G,) = V(H).
So V(G1<TGa) = V(@) and also n = [V(G1Ga)| = |V(Gy)|. Let m — d.

Since x(G2) = ¢, by the pigeonhole principle, there exist at least [%-‘ = d vertices
in Gy which are labeled as the same color, say vy, v, ... vq. So edge v;v; ¢ E(G2)
foralli,7=1,2,...,d. Then vyu; € E(Gy) for all4,j =1,2,...,d..So G contains
K, and also p = x(Gy) > d = [ﬂ > . Hence pg = n. O

Lemma 3.2.12. Let n € N be such that n > 5. For any integer p and q such that
p,q < n and pq > n, there exist graphs Gy and Go such that x(G1) = p, x(G2) = ¢
and G1<II{>G2 = K,, at some clone H. Moreover, for any two graph Ay and A, , if
AI%A2 = K,, where B is a clone, then max{x(A1), x(A2)} > [v/n].
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Proof. Let n € N be such that n > 5 and let p and ¢ be integers such that
p,q < n and pg > n. If pg = n, by Theorem 3.2.9, we get G; and G5 such that
G1<]H>G2 = K,, = K, at some clone H, x(G1) = p and x(G2) = ¢. It is done.
Suppose that pg > n. Assume that p < g. By Theorem 3.2.9, we get G; and G4
such that Gl‘ﬂ;G2 = K,, where H is a clone, x(G1) = p and x(G2) = ¢ with
proper colorings ; and 7, of GG; and Gs, respectively. Below are properties of G
and Gy defined in Theorem 3.2.9.

V(Gy) = {ur,ug, ..., upt, u; is adjacent to w; if and only if ¢ # j (mod p),
7 (u;) =l where [ =4 (mod p) and ! € {1,2,...,p}and V(Ga2) = {v1,v9,...,Up},
v; and v; are adjacent if and only if i = j4+ 1 or i = j (mod p). If p < ¢, then
for each i = ap+b € {1,2,...,pq} where a,b € Z, a > 0 and 0 < b < p, define
Y2(v;) =l where | = 24 a—b (mod ¢g) and [ € {1,2,...,q}. If p = ¢, then for each
i=ap+be{l,2,...,pq} where a,b € Z, a > 0 and 0 < b < p, define v,(v;) =1
where [ =a+b (mod ¢) and [ € {1,2,...,q}.

Then we constuct G and G35 as follows: Construct G7 by deleting vertices
Un41, Unt2, - - - Upg N G Since G is an induced subgraph of Gy, we get x(G7) < p.
Because p < n, so G} contains a p-clique which is K, (uy, us, ..., u,). So x(G3) > p.
Hence x(G7) = p.

We next construct G% by deleting vertices v,41,Ups2; - .., Vpe in Go. Since G35
is an induced subgraph of Gi, we get x(G5) < ¢. If n > 1+ (¢ — 1)p, then
Ky(v1,V14p, - -, Vig(g-1)p) 15 In G5 and also x(G3) > ¢. Hence x(G3) = ¢ and v,
is still a proper coloring of G5. If n < 14 (¢ — 1)p, we will construct a g-clique.
Since x(G3) < g < m, there exists a proper g-coloring f : V(G5) — {1,2,...,q}
of G5 such that forany j € {1,2,...,q}, there is v € V(G%) such that f(v) = j.
Without loss of generality, we may assume that f(v;) = for all i € {1,2,...,q}.
Let G5* be graph constructed from G5 by adding edges between v; and v; where
i,j €{1,2,...,q} and i # j. Let E = {vv; for all 4,5 = 1,2,...,q and i # j}.
Hence G3* contains a ¢-clique K, (v, va,...,v,) and then x(G5*) > ¢. It is easy to
see that f is still proper in G3*. Then x(G5*) < ¢. Hence x(G3*) = q.

Let Hy = P,(uy,us,...,u,) € G5 and Hy = P,(vy,vs,...,v,) € G5. Define
g: Hy — Hy by g(u;) =v; for all i € {1,2,3,...,n}. We obtain the glued graph
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of G} and G} at Hy; and H, with respect to g, denoted by Cﬁlggz Let w;,
w; € V(GT@G;). If i = j (mod p), then edge w,w; € E(G5) C E(GFDG;)

nggHz . . . ) nggHz
Otherwise, edge wyw; € E(G}) C %12}1%2' So ww; € E(Cilll?gﬂ Hence
-9 -9
GGy — K,. In the case of G5, we know that F C FE(G7). Let Hf and H;
Hy=4Hs

be graphs such that V(H}) = V(H;) and E(H}) = E(H;) UE for all i = 1,2
where Hy = P,(uy,us, ..., u,) and Hy = P,(vy,vs,...,v,). Clearly, Hf C G% and
H; C Gy Hence G176 — i,
1—9%"2
To prove the last statement, let A; and A, be graphs such that AI?AQ =K,
where B is a clone. Assume that y(A;) > x(As). By Lemma 3.2.11, we get that
X(A1)x(A2) > n. Then x(A1)* > x(A1)x(As) = n. So maz{x(A:), x(42)} =

x(A1) = [Vn]. B

Graphs GG; and G, in theorem 3.2.9 have a property that X(GI‘QH}G2) =
X(G1)x(Gy) = w(GI?G2). Do there exist graphs G; and G5 such that x(G1)x(Gs2)
= X(G1<£I>G2) # w(Glﬁ;G?) ? Since the chromatic number of a graph is always
at least the clique number of such graph, we look for G, G5 and H such that
X(G1)x(Gsy) = X(GI?G@ > w(GI?GZ). Before we answer such question, we
next provide a graph with the property that its chromatic number is strictly more
than its clique number. Such graph is constructed by joining two specified graphs.

Recall that the join of simple graphs G and G5, GV G, is the graph that

V(G1V Gy) = V(G1) UV (G3) and
E(G1V Gy) = E(G)UE(Gy)U{zy:z € V(Gy),y € V(Gy)}.

Theorem 3.2.13. Let Gy and G5 be graphs. Then x(G1V Gs) = x(G1) + x(Gs).
Proof. Let Gy and G5 be graphs. Let f and g be proper colorings of Gy and Go,

respectively. ‘Define o : V(Gy) UV(Gs) — {1,2...,x(G1) + x(G2)} by for all
NS V(Gl) U V(Gg)

f(v) if v e V(Gy),
a(v) =
X(G1) +g(v) ifveV(Gy).
It is easy to see that « is proper. So x(G1V G2) < x(G1) + x(G2). Suppose for

a contradiction that x(G; V G2) < x(G1) + x(G2). There exist u € V(G;) and
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v € V(Gy) such that a(u) = a(v). So v and v are not adjacent in Gy V Gy. This
contradicts to the definition of the join graphs. Hence x(G; V Gi) = x(G1) +
X(G2). O

Example 3.2.14. Let W = C5V K;. So x(W) = x(C5) + x(K1) =3+1=4
and also x(W V K,,) = 4+ n for all n € N. Because w(W) =3, so w(W V K,,) =
n+3<n+4=x(WVK,). [

Now, we give graphs G and G with the property x(G1)x(G2) = X(G1<II{>G2) >

w(Gl‘ﬂ;Gﬂ where H is a clone in the next theorem.

Theorem 3.2.15. For allp,q > 3, there exist graphs G, G and G1<]H>G2 at some

clone H such that x(G1) = p. x(G2) = q and pg = x(G1)x(G2) = X(G1<}{>G2) >
CU(qu;G?).

Proof. Let p and ¢ be integers such that p,q > 3.

Case 1. p = ¢: By Lemma 3.2.12, we have graphs G; and G, such that
G1<I]{>G2 = K,,—1 at some clone H and x(G1) = p = ¢ = x(G2). Following from
the proof of Lemma 3.2.12; since pg — 1 > 1 4 (¢ — 1)p, we obtain that 7, and 7,
are proper colorings of G; and G, respectively. Below are properties of GG; and
G5 defined in Lemma 3.2.12.

V(G1) = {u1,ua, ..., Upg—1}, w; is adjacent to u; if and only if i # j (mod p),
71 (u;) =l wherel =i (mod p)andl € {1,2,...,p} and V(Gs) = {v1,v2,...,Upg-1},
v; and v; are adjacent if and only if i = j+ 1 or ¢« = j (mod p). For each
i =ap+0be{l,2,....,pqg — 1} where a,b € Z, a > 0 and 0 < b < p, define
v2(v;) =1 where l =a+b (mod ¢g)and | € {1,2,.:.,q}.

Let G5 be a graph such that V(GY) = V(G1) U{upg, Upgr1, Upg+2 ) and
E(G}) = BE(Gy) U {upguy, Upgr1w; where i = 3,4,5,...,pg—2 and i % 0 (mod p)} U
{tupgrou; where i = 3,4,5,...,p¢g—2and i Zp—1 (mod p)} U {upgu1, Upgipg—1} U
{Upgr1u1, Upgi1ts} U {upgrou; where i = 1,pg, pq + 1}.

Clearly, G; C G7. So x(G3) > x(G1) = p. Define f; : V(G}) — {1,2,...,p}
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by for all u; € V(GY)

’yl(uz) lf’lzl,Q,,pq—l,
filui) =4 p if i = pq,pq+ 1,

p—1 ifi=pg+2.

It is easy to check that f; is proper. So x(G7%) < p. Hence x(G}) = p.

Next, let G5 be a graph such that V(G35) = V(G2) U {vpg, Vpgt1, Upgr2} and
E(G%) = E(G2) U{vpvi, Upg1v; where i =3,4,5,... ,pg—2 and ¢ =0 (mod p)} U
{vpg42v; where i = 3,4,5....,pg —2 and i = p — 1 (mod p)} U {vpgv1} U {vpgrov;
where i = pq,pq + 1}.

Clearly, Go C G3. So x(G5) = q. Define f, : V(G3) — {1,2,...,q} by for all
v; € V(GY)

Yo(v) ifi=1,2...,pg—1,
favi) = §q— 1 ifi=pg,pg+ 1,
q—2 if i =pq+ 2.
To show that fs is proper, it suffices to show that for all s € {3,4,...,pg— 2} and
t € {pq, pq+2}, if v is adjacent to vy, then fo(vs) # fo(vy). Let s € {3,4, ..., pg—2}
and t € {pq, pq + 2} such that v, is adjacent to v;.

Case 1.1. ¢t = pg+2: So s = p—1 (mod p). Then s > p — 1 and also
1<s=kp+(p—1) < pg—2for some k € NU{0}. Then 0 < k <¢g—2. So
—2<—-1<k—-1<qg—3<q—2. Hence fo(vy)=k+p—1 (modq)=k+qg—1
(mod ¢) = k—1 (mod.q) # ¢—2 (mod.q) = q—2= fo(Upgr2) = f2(v;). Therefore
falvs) # falvr).

Case 1.2..t = pg: We get that s =0 (mod p). Sos = kp = (k—1)p+p < pg—2
for some k € N. Then 1 <k <qg=1.50 —1<0<k—-1<¢g—2<qg—1. Hence
fo(vs) = k—1+p (modq) = k—1+4 ¢ (mod q) k—1 (modgq) # q—1
(mod q) = ¢ — 1 = fo(vpy) = fo(vy). Therefore fo(vs) # fa(vy).

By both cases, we can conclude that fy is proper. So x(G3) < ¢. Hence
X(G3) = q.
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Let Hy = Ppyio(Upgi1s Upg2, Upgs Ut, Uz, - - - s Upg—1) and Ho = Ppgyo(Upgr1, Upgra
s Upgs V1, Ve, - .., Upg—1). Clearly, Hy C G} and Hy C G5. Define f : Hi — Hy
by f(u;) = v; for all i € {1,2,3,...,pq + 2}. We obtain a glued graph of G}
and G3 at H; and H, with respect to f, denoted by GH?I?Y? Let V(G <]>G*)
{w; :1=1,2,..., pg+2 where w; corresponds to u; and v;}. It is easy to check that

%1352 = WVEK,y—a(ws,wy, . .., wp,—2) where W = C5(wa, Wpyi1, Wpgt2, Wpgs Wpg—1)V
Ki(wy). By Example 3.2.14, we obtain that X(GH?E ) =44+pg—4=pg >
pg—1=3+pq—4=w(@TG2)

ngfHQ
Case 2. p < ¢: By Lemma 3.2.12, we get graphs G; and G5 such that G1<I>Gy =

K -1 and x(G1) = p = x(Gs). Following from the proof of Lemma 3.2.12, since
pqg— 1> 1+ (¢ — 1)p, we have that v, and 7, are proper colorings of G; and G,
respectively. Below are properties of G; and Gs.

V(G1) = {u1,uz, . .., upg1}, w; is adjacent to u; if and only if ¢ # j (mod p),
71 (u;) =l wherel =4 (mod p) and € {1,2,...,p} and V(Gs) = {v1,v2,...,Upg—1},
v; and v; are adjacent if and only if @ = j+ 1 or ¢ = j (mod p). For each
i=ap+0be{1,2,....,pqg — 1} where a,b € Z, a > 0 and 0 < b < p, define
v2(v;) =1 where [ =2+ a—0b (mod ¢) and [ € {1,2,...,q}.

Define G, G5 and f; similarly to case 1. So x(G5) = p. Next, let fy be a
coloring of G% defined by

Yo (v3) ifi=1,2,...,pq— 1,
folvi) =qqg—p+1 ifi=pgpg+1,

qg—p+2 iti=pg+2.
Note that fo(vy) =2+ 0=1(mod q) =1 #q=p+ 1 ="f(v,,) because 1 =
0(p) + 1 and p # q. To show that" f, is proper, it suffice to prove that for all
se€{3,4,...,pq — 2} and t € {pq,pg+ 2}, if v; and v, are adjacent, then f>(vs) #
fo(vy). Let s € {3,4,...,pqg — 2} and t € {pq, pq + 2}. Assume that v, and v, are
adjacent.

Case 2.1. t = pg: So s = 0 (mod p) and hence s = kp = (k— 1)p + p

for some £ € N. Since s < pg — 2, we obtain that 1 < k£ < ¢ — 1. Because
l-p<2—p<24(k—1)—p=14+4k—p < qg—p < qg—p+1, s0 fo(vs) = 2+(k—1)—
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(modq) =1+k—p#q—p+1 (modq) =q—p+1= fo(vy) = fa(vs). Hence
fovs) # folvr).

Case 2.2. t = pg+ 2: Then s = p—1 (mod p). So s > p— 1 and then
s=kp+p—1for some k € N°. Since s < pqg — 2, we obtain that 0 < k < ¢ — 2.
Because 2 —p <3 —p<2+4k—p+1=3+k—p<qgq—p+1<qg—p+2, so
folvs) =2+k—p+1 (modq) =3+k—p#£qg—p+2 (modqg)=qg—p+2=
fo(Upgi2) = fa(vr). Hence fo(vy) # faluvy).

By both cases, we can conclude that f; is proper and also x(G%) < ¢. Because
G is a subgraph of G3, so x(G5 > x(G2) = ¢. Hence x(G%) = q.

We define graphs Hy, H, and the isomorphism [ similarly to case 1. So we have

%1352 = WVEK,,_s(Ws, ws, . .. ;wp,—2) where W = Cs(w2, W1, Wpgt2, Wpgs Wpg—1)V

Ki(wq). and also X(Ci}lgg?) =4+pg—4=pg >pg—1=3+pg—4 =
GG

w( 1}1ng22>‘ O

In the next example, we illustrate an example of graphs in Theorem 3.2.15.
We construct graphs G5 and G35 such that 9 = y(G7)x(G3) = X(GT?GE) >
w(GT‘ﬂ;GE) = 8 where H is the clone of a glued graph between G and G3.

Example 3.2.16. We illustrate an example of graphs in Theorem 3.2.15 here. Let
p = 3 = q. First, we construct graphs (G; and G5 such that their glued graph at
some clone H is isomorphic to Kg by using Lemma 3.2.12. That graphs G; and
G5 are showed in Figure 3.2.3.

U ug (% Ug

Uus U7 U3 U7

Uy Ug (] Vg
Us Us

G1 G2

Figure 3.2.3: Graphs with their glued graph isomorphic to Ks.
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Moreover, we obtain proper colorings, v; and 7., of G; and Gy, respectively,

defined by
1 ifi=1,4,7, 1 ifi=1,6,8,
n(vi) =92 ifi=25,8, Ya(vi) =2 ifi=24,
3 ifi=3,6. 3 ifi=3,5,T.

Next, we add vertices {ug, u19, w11} into V(G;) and edges {ugu;, uiou;, uiiu;
where i, 7 = 3,4,5,...,7and i # 0 (mod 3)and j # 2 (mod 3)}U{uguy, ugus, uous,
U1, U1 U1, U1 Uy, U Ug ; N8O E(G1) to obtain G5. We also add vertices {vg, v19, v11 }
into V(G5) and edges {wovy, V190, v110; where k1 =3,4,5,...,7, k =0 (mod 3)
and [ = 2 (mod 3)} U {wvguy, 1309, 011050} into E(G3) to obtain G3. Figure 3.2.4
shows G7 and G3.

We next define proper colorings f; : V(G7) — {1,2,3} and f : V(G}) —
{1,2,3} of G7 and G%, respectively, by for all u; € V(G7) and for all v; € V(G5).

’}/(Ul) ZfZ:1727787 ")/('UZ) ZfZ:1,2,78,
filw) =93 ifi= 09,10, L) =<2  ifi=9,10,
2 ifi=11. 1 ifi=11.

We glue Gf and G3 at Hy = Pii(uq0, U1y, %o, Uy, Us, .. ,ug) C G and Hy =
P11(v10, 011, Vg, V1, Va5 ..., v3) € G by isomorphism ¢ defined by g(u;) = v; for all
1=1,2,...,11. Then we obtain that G;;{l‘ijg; as shown in Figure 3.2.4. We observe
that Cﬁzjg; = Ks(ws,wy, ..., wz) VW where W = Cs(ws, ws, wy, wiy,wig) V
Ky (wq). So X(G;;lkl‘ijlg;) =544 =9 = x(G7)x(G5): Moreover, x(G7)x(G3) =9 >

5+3=8=w@T0). O

Though the upper bound in Theorem 3.2.8 is sharp, under a specified circum-

stance we can reduce it down.

Theorem 3.2.17. Let G and Gy be graphs and H be the clone of a glued graph
G1<]H>G2. If H s an induced subgraph of both G, and Gs, then X(GI?Gz) <
X(G1) + x(Ga).
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Wsg

Wy

We

W10

Wsy

Wy

Figure 3.2.4: A glued graph whose chromatic number is larger than its clique

number
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Proof. Let G; and G5 be graphs and H be a clone of Gl?Gz Assume H is an
induced subgraph of both G; and Gj. There are proper colorings f : V(G1) — S;
and g : V(G2) — Sy of G7 and Gy, respectively where S; and Sy are sets such that
151] = X' (G1), |S2| = X'(G2) and S1 N Sy = ¢.

Define « : V(Gl‘ﬂ;G?) — S1U Sy by for each u € V(G1?G2),

o) = fluw) ituweV(G),
g(u) ifveV(G\H).

To show that « is proper, let « and v be vertices in G1<]H>G2 such that u and
v are adjacent by an edge e in Gl?GZ

Case 1. u € V(G,) and v € V(G2\H): So a(u) = f(u) # g(u) = a(v) because
S1N Sy = .

Case 2. wu and v are in Gy: If u is not adjacent to v in Gy, then e €
E(G3)\E(G,) and also u, v € V(Gy). Hence u,v € V(H) but e ¢ E(H). Therefore
H is not an induced subgraph, a contradiction. So u is adjacent to v in (G; and
a(u) = f(u) # f(v) = a(v).

Case 3. u and v are in Go\H: Similarly to case 1, u is adjacent to v in Gj
and o(u) = g(u) # g(v) = a(v).

By all cases, we can conclude that o is proper. Henece X(G1<JH>G2) < x(Gy) +
X(G2). O

Example 2.1.14 reveals that the converse of Theorem 3.2.17 is not true.
We investigate the chromatic numbers of glued graphs and obtain two upper
bounds along with their sharpness. In next chapter, we consider the edge-chromatic

numbers of glued graphs.



CHAPTER IV

EDGE-COLORABILITY OF GLUED GRAPHS

Similarly to the previous chapter, we find bounds of the edge-chromatic numbers
of glued graphs. Graphs in this chapter are not necessary simple. We separate
this chapter into two sections. In the first section, we give background of the edge-
chromatic numbers of any graphs. We next find bounds of the edge-chromatic

numbers of glued graphs in the other section.

4.1 Background

First, we recall the definition and some bounds of the edge-chromatic number of

any graph.
Definition 4.1.1. A k-edge-coloring of a graph G is a labeling f : E(G) — S,

where |S| = k. The labels are colors; the edges of one color form a color class.
A k-edge-coloring is proper if incident edges have different labels; that is, if each
color class is a matching. A graph is k-edge-colorable if it has a proper k-edge-
coloring. The edge-chromatic number x'(G) of a loopless graph G is the least
k such that G is k-edge-colorable.

Remark 4.1.2. Let G be a graph. Clearly, x/(G) > A(G). Because no edge in G
is incident to more than 2A(G) — 1 other edges, so 2A(G) — 1 > X(G) > A(G).
In [1], there is a theorem showing the edge-chromatic number of complete

graphs. We state such theorem without prove here.

Theorem 4.1.3. The edge-chromatic number of a complete graph K, is

) n—1 ifn is even,
n if n is odd.
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Vizing and Gupta([3]) can prove that A(G)+1 colors suffice when G is a simple
graph. We show that in the next theorem.

Theorem 4.1.4 ([3]). (Vizing [1964, 1965], Gupta [1966])
If G is a simple graph, then x'(G) < A(G) + 1.

By Theorem 4.1.4 and Remark 4.1.2, we can conclude that for a simple graph
G, A(G) < X(G) < A(G) + 1. We can sce the sharpness of that bounds in
Theorem 4.1.3. In non-simple graphs, their edge-chromatic numbers can be more
than their maximum degrees because of their multiple edges. Shannon showed an

upper bound of the edge-chromatic number for any graph in Theorem 4.1.5.

Theorem 4.1.5 ([3]). (Shannon [1949])
If G is a graph, then X'(G) < SA(G).

Example 4.1.6. We infroduce a graph G such that \'(G) = 2A(G). The fat
triangles, loopless triangles with multiple edges, are graphs similar to Figure

4.1.1.

Figure 4.1.1: A fat triangle

The edges are pairwisely intersecting and hence require distinct colors. Thus

the edge-chromatic number of a fat triangle G is $A(G). [

4.2 Bounds of the Edge-Chromatic Numbers of Glued Graphs

This section, we investigate bounds of the edge-chromatic numbers of glued graphs
including non-simple glued graphs. We also study the line graphs of glued graphs

in order to obtain a bound of the chromatic number of any glued graph. We begin
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this section by giving a trivial lower bound of the edge-chromatic number of any

glued graph.

Remark 4.2.1. Let G; and G5 be graphs. Because GG; and G5 are subgraphs of
G1<T>G,, we have that ' (G1), X' (G2) < X'(G1<t>G2). Hence

X' (G1<>Ga) Zmax{x'(G1), X'(Ga)}.

By applying Theorem 4.1.4, Theorem 4.1.5 and Lemma 1.2.8, we obtain upper

bounds of the edge-chromatic numbers of glued graphs as the following theorem.

Theorem 4.2.2. Let Gy and G5 be graphs and let GI?G2 be a glued graph of G
and Gy at a clone H. Then

p 3
X(GuP Gy i< 5(A(G1) + A(Ge) — 0(H)).
In particular, if G1<]H>G2 15 a stmple graph, then
X (C1F Go) < A(GY) + A(Ga) = 6(H) + 1.

Proof. Let Gy and G be graphs and let G15>G2 be a glued graph of G and
G5 at a clone H. Following from Theorem 4.1.5 and Lemma 1.2.8, we have that
X(G12Go) < 3(A(G) + A(Gs) = 6(H)). 1f G1<=G2 s a simple graph, by
Theorem 4.1.4 and Lemma 1.2.8, we have that X’(GI?G@ < A(Gy) + A(Gs) —
0(H)+ 1. O

We show the sharpness of Theorem 4.2.2 in Example 4.2.3 and Example 4.2.4.

Example 4.2.3." Let (G; and G4 be graphs in Figure 4.2.1.

Let H) = Cy(uy, us, ..., ug) and Hy = Co(v1,vs,...,09). We glue Gy and G, at
H; and H,y by isomorphism f defined by f(u;) = v; for all i = 1,2,...,9. So we
%}lggz which is isomorphic to Kgy. Hence X’((i]llggﬂ =9=6+4-2+1=

A(G1) + A(Gy) — 5(H) + 1.

have
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(%) 9
U3 Ug
V4 U7
5 “Ug
G Gs

Figure 4.2.1: A simple glued graph showing the sharpness of Theorem 4.2.2

The next example, we reveal the sharpness of Theorem 4.2.2 when the glued

graph is a non-simple graph.

Example 4.2.4. Let GGy and G5 be graphs as shown in Figures 4.2.2.

G, 5 G1<I=Go

Hl%fHQ

Figure 4.2.2: A non-simple glued graph showing the sharpness of Theorem 4.2.2

Clearly, A(G;) = 4 = A(G3). We glue G and G5 at edge sets {a,b,c} and
{1,2,3} with isomorphism f such that f(a) = 1, f(b) =2 and f(¢) = 3. Then

we have %1;1?1% 2 as shown in Figure 4.2.2. Because %lgjg 2 is a fat triangle, so
3 3 3

V(G5 = 56) = 9. Hence x(GPTE2) = 9 = S(4+4-2) = J(AG) +

A(Gy) —0(H)). =

For any graphs G; and G3, we can'prove that ¥ (G1<3>G3) < x'(G1)+ X' (G3) in
Theorem 4.2.5. After that, we show the sharpness of this upper bound in Example
4.2.6.

Theorem 4.2.5. For any graph G and G,

X' (G1<>Ga) < X'(Gh) + X (Ga).
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Proof. Let GG; and G5 be graphs and let G1<]H>G2 be a glued graph of G; and
Go at arbitrary clone H. There are proper edge-colorings f : E(G;) — S; and
g : E(Gy) — Sy of Gy and Gs, respectively, where S; and Sy are sets such that
S1] = X'(G1), |S2] = X/(G2) and Sy N Sy = ¢. Define a : B(G1<>G2) — 5,0 S,
by for all e € E(Gl‘ﬁ;Gz)

o(e) = f(e) ifee E(Gy),
gle) ifee E(G\H).

To prove that « is proper, let e; and e; be edges in GI?G2 such that e; and eq
are incident in Gl?GQ.

Case 1. ¢; € E(G,) and e5 € E(Gy\H ): Because S1N5; = ¢, so afey) # afez).

Case 2. e; and e; are edges in GG;: Then e; and e, are incident in GG; and also
aler) = f(e1) # f(e2) = alea).

Case 3. ¢; and ey are edges in G5\ H: Similarly to case 2., we have a(e;) =
gler) # glea) = afez).

By all cases, we have that a is proper and hence \'(G1<t>G2) < X' (Gp) +
X' (Ga). Ll

Example 4.2.6. Let Gy and G5 be graphs as shown in Figure 4.2.3.

e @4 G1<T=Go

ngfHQ

Figure 4.2.3: The sharpness of Theorem 4.2.5

Since A(G1) = 6, we have that x(G;) > 6. In Figure 4.2.3, labels are colors.
We can see that the edge-coloring of GGy in Figure 4.2.3 is proper and G; = Gs.
So x(G1), x(G2) < 6. Hence x'(G1) = 6 = X'(G2). We glue G; and G5 with the
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isomorphism f defined by f(a) = m, f(b) = n, f(c) = o, f(d) = p, f(e) = ¢
and f(h) = r. So we have GiPGy ag in Figure 4.2.3. Because a fat triangle

Hl%fHQ
with the maximum degree 8 is subgraph of Ci}éilg?, 50 X (Glng) > 5(8) =12.
Next, let g be an edge-coloring of Cf}?HG 2 as in Figure 4.2.3. Clearly, g is proper.

So x (%?}?2) < 12. Hence y (%?}?2) = 12. Consider y (q}‘ﬂ}HGz) — 19 —

646 = x'(G1) + x'(G2). Hence the upper bound of the edge-chromatic number in

Theorem 4.2.5 is sharp. =

Because of x'(G) = x(L(G))([2]), it is our motivation to study the line graphs
of glued graphs.

Definition 4.2.7. Let G be a connected graph. The line graph L(G) of G
is the graph generated from G by V(L(G)) = E(G) and for any two vertices
e, f € V(L(G)), vertex e and vertex f are adjacent in L(G) if and only if edge e
and edge f share a common vertex in G. If H is the line graph of GG, we call G the
root graph of H.

ab ae

be de

Figure 4.2.4: A line graph

Remark 4.2.8. For any subgraph H of a graph G, L(H) C L(G).

All graphs have their line graphs, but not all graphs are line graphs. For
example; there is no graph G such that L(G) = K;3. So the Kj3 is not a line

graph. The next two theorems are characterization of the line graphs.

Theorem 4.2.9 ([3]). (Krausz [1943])
For a simple graph G, there is a solution to L(H) = G if and only if G decomposes

into complete subgraphs, with each vertex of G appearing in at most two in the list.
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Theorem 4.2.10 ([3]). (Beineke [1968])
A simple graph G is the line graph of simple graph if and only if G does not have

any of the nine graphs below as an induced subgraph.

Lemma 4.2.11 shows the relationship between L(G1)<I>L(G3) and L(G1<>Gs)

where G; and Gy are graphs. This result helps us to find a condition to obtain a

smaller upper bound of the chromatic numbers of glued graphs showed in Theorem

4.2.12.
Lemma 4.2.11. Let Gy and Gy be graphs. L(G1)<t>L(Gs) C L(G1<T>Gy).

Proof. Since G and (G5 are subgraphs of G1<I> Gy, we have that L(G;) and L(G3)
are subgraphs of L(G1<I>Gs). So L(G1) U L(Gy) € L(G1<T-G5). Because for each
vertex and edge in L(G;)<t>L(G5) are in L(G1) U L(G;) which is a subgraph of
L(G1<>Gy), so L(G1)<> L(Gy) C L(G1<t>Gs). O

Theorem 3.2.17 gives a condition to reduce an upper bound of the chromatic
numbers of glued graphs into the sum of the chromatic numbers of its original
graphs. This is another condition to get a smaller upper bound of the chromatic

numbers of glued graphs.
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Theorem 4.2.12. Let G; and Gy be graphs. If G1 and Gy are line graphs, then
X(G1TGa) < x(G1) + x(Ga).

Proof. Let GG; and G4 be graphs. Assume that G and G5 are line graphs. So there
are graphs G and G such that L(G}) = Gy and L(G%) = G3. By lemma 4.2.11, we
have that L(G})<t> L(G3) C L(G1<3>G%). So x(L(GY)<t> L(G3)) < x(L(G1<>G%)).

Hence

X(G1<t>Gs)

X(L(GT) T L(G3))
(LG Gy))

IA

(GIG3)
(G37) +X'(G%) by Theorem 4.2.5

IA

(L(GT) + X (L(G3))

X
X
X
X
X(G1) + x(Ga).

l
The next example, we show that the converse of Theorem 4.2.12 does not hold.

Example 4.2.13. Let G; and G5 be graphs as shown in Figure 4.2.5.

U1 1

Us Us

Ug Ve
Gy Gy G1<I=Go

ngng

Figure 4.2.5: The converse of Theorem 4.2.12 does not hold

Because w(G1) = 2 and w(G2) = 3 where w(G) is the maximum size of a clique
of G, so x(G1) > 2 and x(G2) > 3. Next define colorings ¢; : V(G1) — {1,2} and
g2 : V(Gy) — {1,2,3} of G; and Gs, respectively, as follows:
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1 ifi=1,4,6,
1 ifi=1,35,
g1(u;) = g2(vi) =2 ifi=2,5,
2 ifi1=2,4,6.
3 ifi=3.

We obvious that g; and gy are proper. So x(Gp) < 2 and x(Gs2) < 3. Hence
X(G1) = 2 and x(G3) = 3. We can see that both G; and G5 contain a copy of
K s(vertices ua, us, uq, ug in Gy and vertices vq, v3,vq,v6 in G2) which is one of
the nine graphs in Theorem 4.2.10. By Theorem 4.2.10, both G} and G5 are not
line graphs. Let Hy = Ps(uy,ug,...,us) C Gy and H; = Ps(vy,v2,...,05) C Go.
Define f : Hy — Hs by f(u;) = v; for all i = 1,2,...,5. So we have G}}I,‘ffHGQ as
shown in Figure 4.2.5. Labels of vertices in Figure 4.2.5 are colors. We can see

that G1 & G2 s 5 colorable: So X(Gl = | G2) < 5. Since G1 P Gy contains K5, we

ngfHQ Hl%fHQ Hl%fHQ
have that X(Gl}lii}g?) > 5. Hence X(Gﬁrébf}g% =5=2+3=x(Gy) + x(Gs).

O

We have obtained a lower bound and upper bounds of the edge-chromatic
numbers of glued graphs. Together with the result about the line graphs of glued
graphs, we find a condition to get a smaller upper bound of the chromatic numbers

of glued graphs.



CHAPTER V

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

We have introduced the glue operation and investigated properties of glued graphs
emphasizing to their colorability. As follows, there are results in this thesis:
Let Gy and G5 be graphs.

Characterization:

—_

. A glued graph GG;<#=G5 is a tree if and only if G; and G5 are trees.
2. A glued graph G1<I=G5 is a forest if and only G, and G5 are forests.

3. A glued graph G1<t>G5 is a bipartite graph if and only if G; and G5 are
bipartite.

4. Let H be a clone of G1<]H>G2. If G, G5 and H are k-partite graphs, then
Gl‘ﬂ;G2 is also a k-partite graph.

5. If Gy is acyclic and G5 is chordal, then G1<I>(G is chordal.

6. Let H be the clone of a glued graph Gl?Gz If H is an-induced subgraph of
both G and G5 and Glﬁ;G2 is chordal, then G| and G5 are chordal graphs.

7. Let H be the clone of a glued graph Gl?GZ If H is an induced subgraph
of both G; and G5 and Gl‘ﬂ;GZ is an interval graph, then G; and G are

interval graphs.

8. L(G1)<>L(Gy) C L(G1<T>Gh).



53

The chromatic numbers of glued graphs:

1.

X(G1<T>Ga) Zmax{x(G1), x(G2)}-

Let H be the clone of a glued graph Gl?Gl Then X(GI?G@ < A(Gy) +
A(Gy) —0(H) + 1. In particular, if GI?GQ is not a complete graph or an
odd cycle, then x(G1EG2) < A(Gh) + A(Gy) — 6(H).

X(G1T>Ga) < x(Gr)x(Ga).

For all positive integer n which is not prime, K, is a glued graph such that
the product of the chromatic numbers of the original graphs is n. Hence the

bound x(G1<t>Gs) < x(G1)x(G>) is sharp

Let H be a clone of G1<]H>G2. If H is an induced subgraph of both G; and
G, then X(qu}?Gz) < X(G1) + x(G2).

. If Gy and G; are line graphs, then x(G1<>G5) < x(Gh) + x(G2).

The edge-chromatic numbers of glued graphs:

1.

5.2

X' (G1<t>Go) Zmax{x'(G1), X'(G2) }-

X’(Gl‘ﬂH}Gﬂ < 3(A(Gy) + A(G,) — 6(H)). In particular, if G1<JH>G2 is a
simple graph, then X’(GI?G@ < A(Gy) + A(Gy) = 6(H) + 1 where H is a
clone of a glued graph between G and Gs.

X,<G14>G2> S X,(Gl) =+ X/<G2).

Open Problems

This thesis brings some open problems for future work as follows:

1.

In Section 2.2, we show that a glued graph between two interval graphs may
not be an interval graph while a glued graph between two non-interval graphs
may be an interval graph. Moreover, we give a condition to make sure that a

glued graph of two non-interval graphs is not an interval graph in Theorem
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2.2.23. An open problem is to investigate conditions to obtain that a glued

graph between two interval graphs is an interval graph.

2. By Theorem 3.2.8, we have that the chromatic number of any glued graph is
at most the product of the chromatic numbers of its original graphs. Since
the chromatic number of any graph is at least its clique number, we get
that w(G1<>Gs) < x(G1<I>Gs) < x(G1)x(G2) where G and G, are graphs.
What is a relation of w(G;)w(Gy) and above parameters? Whether or not
w(G1<>Gy) > w(Gh)w(Gs)? Analyze the relation between the clique num-

bers and the chromatic numbers of glued graphs.

We had investigated the following two statements. Let G7 and G5 be

graphs.

o If w(GT) < x(G}) and w(G5) < x(G%), then w(Gi<T>GS) < x(G1<T>G).

o If w(G)) = x(G7) and w(G5) = x(G3), then w(Gi<T>GS) = x(G1<T>G).

We found that these two statements do not hold showed in the following
example. Let Gy, Gy, G3 and G4 be graphs as shown in Figure 5.2.1.

We can see that y(G1) =4 > 3 = w(Gy). It is easy to see that G; = G5. So
X(G2) =4 > 3 = w(Gs), x(G3) =3 = w(Gs), and x(G4) = 3 = w(Gy). Let
H, C G; and Hy C G5 be as in Figure 5.2.1 and let H; = Py(aq, as, as,aq) C
Gs and Hy = Py(by,b,b3,b;) € G5 Define isomorphism f : Hy — Hy by
f(u;) = v; foralli =2,3,4,5,6,7 and isomorphism g : Hy — Hy by g(a;) = b;
for all ¢ =1,2,3,4. We get %fglg‘l = (G4 and GGy g in Figure 5.2.1.

Hi=/H
Labels of vertices in G;}éig 2 are colors. We can sleef tlzqat X(C}Y}lgg% < 4.
But Ci}lgg? contains Ky, 80 X((ifllgng) — 4 = w(%lggz). We observe
that w(G1)! < X(G1) and W(Gx)= X(62) bat WGy <G TG
while w(G3) = x(G3) and w(G4) = x(G4) but w(%’ﬁigg < X<C§’3§fg4>-

Hence an open problem is to find a condition to make the two statements

hold.

3. The total chromatic number of any graph is introduced in [5]. Let G be any
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graph. The total chromatic number x”(G) is the smallest number of colors
needed to color all the elements of V(G) U E(G) in such a way that no two
adjacent or incident elements receive the same color. Bounds of the total
chromatic number of any graph is showed in [5]. This motivates a future

work to investigate bounds of the total chromatic numbers of glued graphs.
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Definitions and Notations

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and
relations that associates with each edge two vertices(not necessarily distinct) called
its endpoints. A loop is an edge whose endpoints are equal. Multiple edges are
edges having the same pair of endpoints. A simple graph is a graph having no
loops or multiple edges. A non-simple graph is a graph which is not simple. In a
simple graph, when u and v are the end points of an edge e, denoted by e = uv(or
e = vu), they are adjacent and are neighbors. We write u < v for “u is adjacent
to v”. Also we denote u ¢ v for “u is not adjacent to v”. Let e; and ey be edges
of a graph G. We say e; and e, are incident if e; and e, share a common vertex.

Graph G having at least one edge is called non-trivial. For each vertex v in a
loopless graph G, the degree of vertex v in G, denoted by degg(v), is the number
of incident edges. The maximum degree of a graph G is denoted by A(G) while the
minimum degree of graphs G is denoted by 6(G). For a graph G, if A(G) = 6(G),
then we call that G is regular. The order of a graph G is the number of vertices
in G. An n-vertex graph is a graph of order n. The size of graph G is the
number of edges in G.

A subgraph H of a graph G is a graph such that V(H) C V(G) and E(H) C
E(G) and the assignment of endpoints to edges in H is the same as in G. We then
write H C G and say that “G' contains H”. Given a subset V' C V(G). We call
V' as an induced subgraph of G, denoted by G[V'], if V' is a subgraph in which
vertices of V' are adjacent in' G[V’]. whenever they are adjacent in G.

For S C V(G) and M C E(G), we write G\S for the subgraph of G obtained
by deleting the set of vertices S. We write G\M for the subgraph of G obtained
by deleting the set of edges M. Let H be a subgraph of a graph G.. We write G\ H
for the subgraph of G obtained by deleting the set of vertices V' (H) and the set of
edges E(H).

A path is a simple graph P of the form V(P) = {x¢,z1,..., 7}, E(P) =
{zox1, 2129, ..., 21_12;} where [ is a positive integer. A u,v-path is a path whose

vertices of degree 1 are u and v. We called u and v as its endpoints. A cycle is a
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graph such that two vertices are adjacent if and only if they appear consecutively
along the circle. The length of a cycle or path is its number of edges. An odd
cycle is a cycle of an odd length while an even cycle is a cycle of an even length.
A complete graph or a clique is a graph that every pair of vertices are adjacent.
The unlabeled path, cycle and complete graph with n vertices are denoted as P,,
C, and K, respectively. The labeled path, cycle and complete graph on the
vertex set {uy, ug, ..., u,} are denoted as P, (uy, us, ..., uy,), Cy(uy, us, ..., u,) and
Kp(up,ug,y ... up).

A graph G is connected if it has a u, v-path whenever u,v € V(G). Otherwise,
G is disconnected. The components of a graph G are its maximum connected
subgraphs. A vertex-cut of a graph G is a set S C V(@) such that removing

vertices in S from V(@) inereases the number of components.
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