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CHAPTER I

INTRODUCTION

1.1 Introduction

The glue operator is a mathematically operator defined in [6]. C. Uiyyasathain

studies about maximal-clique partitions of different sizes whether or not there

exists a clique-inseparable graph with n maximal-clique partitions of n different

sizes. So she defines the glue operator to solve the problem. The answer is in the

form of glued graphs between the line graphs of complete graphs with n different

orders. It makes us see how useful of the glued graphs are and motivates us to

study properties of glued graphs.

In Section 1.2, we give definitions, examples and also investigate some basic

properties of glued graphs.

In Chapter 2, we analyze the results of the graphs obtaining by gluing graphs of

the same type where the types we interested in are forests, trees, bipartite graphs,

k-partite graphs, chordal graphs and interval graphs. Moreover, we investigate a

condition to obtain a glued graph that is the same type as its original graphs.

The colorability of glued graphs is to be considered in Chapter 3. We find

bounds of the chromatic numbers of glued graphs and also prove their sharpness.

Lastly, we consider the edge-colorability of glued graphs in Chapter 4. Bounds

of the edge-chromatic numbers of glued graphs are provided.

1.2 Definitions and Basic Properties

In this section, we introduce the graph gluing, and give some properties of glued

graphs.
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Definition 1.2.1. Let G1 and G2 be any two graphs. Let H1 and H2 be non-

trivial connected subgraphs of G1 and G2, respectively, such that H1
∼= H2 with

an isomorphism f , then the glued graph of G1 and G2 at H1 and H2 with

respect to f , denoted by G1 G2
H1

∼=f H2

, is the graph that results from combining G1

with G2 by identifying H1 and H2 with respect to the isomorphism f between H1

and H2. Let H be the copy of H1 and H2 in the glued graph. We refer H as its

clone and refer G1 and G2 as its original graphs.

The glued graph between G1 and G2 at the clone H, written G1 G2
H

,

means that there exist subgraph H1 of G1 and subgraph H2 of G2 and isomorphism

f between H1 and H2 such that G1 G2
H1

∼=f H2

and H is the copy of H1 and H2 in the

resulting graph.

We denote G1 G2 an arbitrary graph resulting from gluing G1 and G2 at any

isomorphic subgraph H1
∼= H2 with respect to any of their isomorphism.

Example 1.2.2. Let G1 and G2 be graphs as shown in Figure 1.2.1.

G1 G2

u

u

u

uu u

u

u

u

uu

u

u

u

u

uu

u

G1 G2
H1

∼=f H2

G1 G2
H1

∼=gH2

G1 G2
H1

∼=hH2

Figure 1.2.1: The results of graph gluing in different isomorphisms

Let H1 = K3(1, 3, 4) ⊆ G1 and H2 = K3(a, b, c) ⊆ G2. Consider three isomor-

phisms between H1 and H2, f, g and h, as follows:
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f(1) = a, f(3) = b, f(4) = c,

g(1) = b, g(3) = c, g(4) = a and

h(1) = c, h(3) = a, h(4) = b.

We show glued graphs between G1 and G2 with respect to f, g and h in Figure

1.2.1

Example 1.2.2 shows that different isomorphisms can give the different or the

same result. However, in some cases it is possible that all isomorphisms give the

same result as shown in the next example.

Example 1.2.3. Let G1 and G2 be graphs as shown in Figure 1.2.2.

u

u

u

uu

u

u

G1 G2
G1 G2
H1

∼=f H2

Figure 1.2.2: The same resulting graph for any isomorphism

Let H1 = K3(2, 3, 4) ⊆ G1 and H2 = K3(a, b, c) ⊆ G2. There are six isomor-

phisms between H1 and H2, but all of them give the same result as shown in a

Figure 1.2.2 where f be arbitrary isomorphism between H1 and H2.

We first observe some basic properties of glued graphs in the following remark.

Remark 1.2.4. 1. The original graphs are subgraphs of their glued graph.

2. The graph gluing does not create or destroy an edge.

3. A glued graph between disconnected graphs is also disconnected and a glued

graph between connected graphs is also connected.
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4. If u ∈ V (G1\H) and v ∈ V (G2\H) where G1 and G2 are graphs and H is a

clone of G1 G2
H

, then u and v are not adjacent in G1 G2
H

.

A glued graph could be a simple or not simple graph. Clearly the graph gluing

of G1 and G2 is not a simple graph if G1 or G2 is not a simple graph. If original

graphs are simple graphs, it is not necessary that their glued graph is a simple

graph. We show in the next example.

Example 1.2.5. Let G1 = C4(u1, u2, u3, u4) and G2 = C4(v1, v2, v3, v4) and let

H1 = P4(u1, u2, u3, u4) and H2 = P4(v1, v2, v3, v4). Clearly H1 ⊆ G1 and H2 ⊆ G2.

Define f : H1 → H2 by f(ui) = vi for all i = 1, 2, 3, 4. Then we have non-simple

glued graph G1 G2
H1

∼=f H2

as shown in Figure 1.2.3.

u u

uu

u1 u2

u3u4

u u

uu

v1 v2

v3v4

G1 G2
G1 G2
H1

∼=f H2

Figure 1.2.3: A glued graph between simple graphs which is not a simple graph

The following theorem gives a necessary and sufficient condition for glued

graphs of simple graphs to be simple.

Theorem 1.2.6. Let G1 and G2 be simple graphs and let H be the clone of a glued

graph G1 G2
H

. Then G1 G2
H

is a simple graph if and only if there are no verices

u and v in H such that there are edges e1 ∈ E(G1\H) and e2 ∈ E(G2\H) whose

endpoints are u and v.

Proof. Let G1 and G2 be simple graphs and let H be the clone of a G1 G2
H

.

Consider G1 G2
H

a glued graph of G1 and G2 at a clone H. Clearly, if there

are verices u and v in H such that there are edges e1 ∈ E(G1\H) and e2 ∈
E(G2\H) whose endpoints are u and v, then G1 G2

H
contains multiple edges

whose endpoints are u and v. Hence G1 G2
H

is not a simple graph. Conversely,
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assume that G1 G2
H

is not a simple graph. So G1 G2
H

has a loop or multiple

edges. If G1 G2
H

has a loop, then that loop must be in G1 or G2 and also G1 or G2

is not a simple graph. This is a contradiction. Hence G1 G2
H

contains multiple

edges, say e1 and e2 with endpoints u and v. Since the graph gluing does not

create an edge, we have e1 ∈ E(G1)∪E(G2) and e2 ∈ E(G1)∪E(G2). Because G1

and G2 are simple, so e1 and e2 are in different graphs. Without loss of generality,

assume e1 ∈ E(G1\H) and e2 ∈ E(G2\H). This implies that there are verices u

and v in H such that there are edges e1 ∈ E(G1\H) and e2 ∈ E(G2\H) whose

endpoints are u and v.

Next, we give the order and size of glued graphs in terms of those of original

graphs.

Proposition 1.2.7. Let G1 and G2 be graphs and let H be a clone of G1 G2
H

.

Then

1.
∣

∣

∣
V (G1 G2

H
)
∣

∣

∣
= |V (G1)| + |V (G2)| − |V (H)|, and

2.
∣

∣

∣
E(G1 G2

H
)
∣

∣

∣
= |E(G1)| + |E(G2)| − |E(H)|.

Proof. Let G1 and G2 be graphs and let H be a clone of G1 G2
H

. Because vertices

and edges in H are counted twice in the glued graph, so
∣

∣

∣
V (G1 G2

H
)
∣

∣

∣
= |V (G1)|+

|V (G2)| − |V (H)| and
∣

∣

∣
E(G1 G2

H
)
∣

∣

∣
= |E(G1)| + |E(G2)| − |E(H)|.

We next give a trivial upper bound of the maximum degree of any glued graph.

Lemma 1.2.8. Let G1 and G2 be graphs and let H be the clone of a glued graph

G1 G2
H

. Then

∆(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H).

Proof. Let G1 and G2 be graphs and let H be the clone of a glued graph G1 G2
H

.

For convenience, let G = G1 G2
H

. Let v be a vertex with maximum degree of G.

If v is not in H, then degG(v) =max{∆(G1), ∆(G2)} ≤ ∆(G1) + ∆(G2) − δ(H).

Suppose that v is in H. So v is in both G1 and G2. Because each edge which is

incident to v in H is counted twice, so
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degG(v) =degG1
(v)+degG2

(v)−degH(v).

Since v ∈ H, we get that degH(v) ≥ δ(H). Hence

degG(v) =degG1
(v)+degG2

(v)−degH(v) ≤ ∆(G1) + ∆(G2) − δ(H).

A trivial upper bound of the maximum degree of any glued graph in Lemma

1.2.8 is a useful tool to find the chromatic numbers and the edge-chromatic numbers

of glued graphs in Chapter 3 and Chapter 4. In the next chapter, we consider

results of the graph gluing when original graphs are particular types of graphs.



CHAPTER II

GLUED GRAPHS

Our purpose in this chapter is to study the graph gluing between original graphs

which are such as forests, trees, bipartite graphs, chordal graphs and interval

graphs. We separate this chapter into two sections. The first section contains

the results of a family of bipartite graphs including forests and trees, and k-partite

graphs and the other contains the results of chordal graphs and interval graphs.

2.1 The Graph Gluing of Bipartite Graphs and k-partite

Graphs

First, we recall definitions and some properties of a forest and a tree.

Definition 2.1.1. A graph with no cycle is acyclic. A forest is an acyclic graph.

A tree is a connected acyclic graph.

uu

u

u

u

u

u u

uu

u

u

T1 T2

Figure 2.1.1: Examples of trees

To find a result of the graph gluing between trees, we state a well-known char-

acterization of trees in Theorem 2.1.2. Then we give a result of the graph gluing

between two trees in Theorem 2.1.3.
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Theorem 2.1.2 ([3]). For any n-vertex graph G with n ≥ 1, the following are

equivalent to definitions of a tree with n vertices:

A) G is connected and has no cycles.

B) G is connected and has n − 1 edges.

C) G has n − 1 edges and no cycles.

D) For u, v ∈ V (G), G has exactly one u, v-path.

We next show a result of the graph gluing of two trees in Theorem 2.1.3.

Theorem 2.1.3. Let T1 and T2 be graphs.

A glued graph T1 T2 is a tree if and only if T1 and T2 are trees.

Proof. Necessity. By contrapositive, suppose that T1 or T2 is not a tree. Without

loss of generality, we may assume that T1 is not a tree. Then T1 contains a cycle

or T1 is disconnected.

Case 1. T1 contains a cycle : Because T1 ⊆ T1 T2, so that cycle is in

T1 T2. Therefore T1 T2 is not a tree.

Case 2. T1 is disconnected: By Remark 1.2.4, T1 T2 is also disconnected.

Hence T1 T2 is not a tree.

Sufficiency. Let T1 and T2 be trees and let T1 T2
H

be a glue graph between T1

and T2 at arbitrary clone H. Since a connected subgraph of a tree is a tree, the

clone H is also a tree. By Proposition 1.2.7, we have

∣

∣

∣
E(T1 T2

H
)
∣

∣

∣
= |E(T1)| + |E(T2)| − |E(H)|

= |V (T1)| − 1 + |V (T2)| − 1 − |V (H)| + 1

= |V (T1)| + |V (T2)| − |V (H)| − 1

=
∣

∣

∣
V (T1 T2

H
)
∣

∣

∣
− 1.

Since T1 and T2 is connected, so is T1 T2
H

. By Theorem 2.1.2, T1 T2
H

is a tree.

Theorem 2.1.3 can be restated for connected graphs G1 and G2 as follows:

A glued graph G1 G2 has a cycle if and only if G1 or G2 has a cycle.
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We next consider all cycles in any glued graph. Since G1 and G2 are subgraphs

of G1 G2 where G1 and G2 are graphs, all cycles in G1 and G2 are in G1 G2.

However, it is possible that G1 G2 contains a new cycle. We illustrate this in

the next example.

Example 2.1.4. Let G1 and G2 be graphs in Figure 2.1.2.

u u

u u

1 2

3 4

G1 G2
G1 G2
H1

∼=f H2

Figure 2.1.2: Created cycles

Let H1 = P3(1, 2, 4) ⊆ G1 and H2 = P3(a, c, d) ⊆ G2. Define f : H1 → H2

be defined by f(1) = a, f(2) = c and f(4) = d. Then we get G1 G2
H1

∼=f H2

showed in

Figure 2.1.2 containing C6(v1, v2, v3, v4, v5, v6) but C6(v1, v2, v3, v4, v5, v6) is not a

cycle in G1 and G2.

In Example 2.1.4, we can see that the graph gluing can create a new cycle.

We call such new cycles as created cycles and all cycles in the original graphs

as original cycles. Theorem 2.1.6 shows a necessary condition to guarantee the

existence of created cycles in any glued graph.

Remark 2.1.5. Let C be a created cycle of G1 G2
H

where G1 and G2 are graphs

and H is a clone of G1 G2
H

. There exist non-trivial paths P and P ′ which are

subgraphs of C such that P ⊆ G1\H and P ′ ⊆ G2\H.

Theorem 2.1.6. Let G1 and G2 be graphs. If G1 G2 contains a created cycle,

then both G1 and G2 are not acyclic.

Proof. Let G1 and G2 be graphs. Without loss of generality, we may assume that

G1 and G2 are connected. Assume that G1 G2 contains a created cycle, say C.
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Suppose for a contradiction that G1 is acyclic. So G1 is a tree. If G2 is acyclic,

then G2 is a tree. By Theorem 2.1.3, G1 G2 is a tree which is acyclic. This is

a contradiction. So that G2 contains a cycle. By Remark 2.1.5, There exists a

non-trivial path which is a subgraph of C ∩ (G1\H) where H is arbitrary clone of

G1 G2. We choose u, v-path P such that u 6= v and |E(P )| is the maximum.

Then u and v are vertices in H. Since the clone is connected, there is another

u, v-path P ′ in H. Because P ⊆ G1\H but P ′ ⊆ H, so P ′ 6= P . Then for each

vertex in P ∪P ′ has degree two. So P ∪P ′ contains a cycle. But P ∪P ′ ⊆ G1, so G1

contains a cycle, a contradiction. Therefore both G1 and G2 are not acyclic.

The converse of theorem 2.1.6 does not hold. We show in Example 2.1.7.

Example 2.1.7. Let G1 and G2 be graphs as shown in Figure 2.1.3.

u

u

u

u u

u

u

u

G1 G2
G1 G2
H1

∼=f H2

Figure 2.1.3: The converse of Theorem 2.1.6 does not hold.

We glue G1 and G2 at H1 = P2(4, 5) ⊆ G1 and H2 = P2(a, b) ⊆ G2 by

isomorphism f between H1 and H2 such that f(4) = a and f(5) = b. So we get

G1 G2
H1

∼=f H2

which does not contain any new cycle as shown in Figure 2.1.3.

Now we study a result of the graph gluing between two forests. That result is

showed in Corollary 2.1.8.

Corollary 2.1.8. Let G1 and G2 be graphs.

A glued graph G1 G2 is a forest if and only if G1 and G2 are forests.
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Proof. Let G1 and G2 be graphs. Necessity. By contrapositive, suppose that G1

or G2 is not a forest. Without loss of generality, we may assume that G1 is not

a forest. So G1 contains a cycle. Since G1 ⊆ G1 G2, we have that G1 G2

contains that cycle. Hence G1 G2 is not a forest.

Sufficiency. By contrapositive, suppose G1 G2 is not a forest. So G1 G2

contains a cycle, say C. Then C is an original cycle or a created cycle. If C is an

original cycle, then it is done. Suppose C is a created cycle. So by Theorem 2.1.6,

both G1 and G2 are not acyclic. Hence G1 and G2 are not forests.

Next, we consider created cycles in any glued graph obtained by gluing two

cycles at a path.

Corollary 2.1.9. Let C be a created cycle in a glued graph G1 G2
P

where G1 and

G2 are cycles and P is a clone. Then C is an even cycle if and only if the lengths

of G1 and G2 have the same parity.

Proof. Let G1 and G2 be cycles and let C be a created cycle in G1 G2
P

where P

is a clone. So P is a path because all connected subgraphs of any cycle are paths.

We have that |E(C)| = |E(G1)|+ |E(G2)|− 2 |E(P )|. If |E(G1)| and |E(G2)| have

the same parity, Then |E(C)| is even and also C is an even cycle. Otherwise, the

lengths of G1 and G2 have the different parity, then |E(C)| is odd and also C is

an odd cycle.

The rest of this section, we investigate results of the graph gluing between two

bipartite graphs and k-partite graphs where k is a positive integer such that k > 2.

First, we recall definitions and a property of bipartite graphs.

Definition 2.1.10. A graph G is bipartite if V (G) is the union of two disjoint

non-empty independent sets called partite sets of G.

A bipartition of G is a set of partite sets.

A complete bipartite graph is a simple bipartite graph such that two vertices

are adjacent if and only if they are in different partite sets. When the partite sets

have sizes r and s, the complete bipartite graph is denoted as Kr,s.
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Definition 2.1.11. Let k be an interger such that k ≥ 3. A graph G is k-partite

if V (G) can be expressed as the union of k disjoint non-empty independent sets

called partite sets of G. A k-partition of G is a set of partite sets of G.

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u u

u

u

A bipartite graph A complete bipartite graph A 3-partite graph

Figure 2.1.4: Examples of bipartite graphs, complete bipartite graphs and 3-partite

graphs

Theorem 2.1.12 ([3]). A graph is bipartite if and only if it has no odd cycle.

Theorem 2.1.12 helps us to characterize a result of the graph gluing of bipartite

graphs showed in the next theorem.

Theorem 2.1.13. Let B1 and B2 be graphs.

A glued graph B1 B2 is a bipartite graph if and only if B1 and B2 are bipartite.

Proof. Necessity. By contrapositive, suppose that B1 or B2 is not bipartite. With-

out loss generality, we may assume that B1 is not bipartite. By Theorem 2.1.12,

B1 contains an odd cycle called C. Since B1 ⊆ B1 B2, we obtain that B1 B2

contains C. Hence B1 B2 is not a bipartite graph.

Sufficiency. Assume B1 and B2 are bipartite. Let {Xi, Yi} be a bipartition of

Bi for all i = 1, 2. Consider arbitrary glued graph of B1 and B2 at a clone H,

B1 B2
H

. Because H is a subgraph of bipartite graphs, so H is bipartite. Let

{XH , YH} be a bipartition of H. Without loss of generality, we may assume that

XH is a subset of X1 and X2, and YH is a subset of Y1 and Y2. Let X = X1 ∪ X2

and Y = Y1 ∪ Y2. To show that {X,Y } is a bipartition of B1 B2
H

, let u and v be

vertices in B1 B2
H

such that u is adjacent to v. So both u and v are in B1 or B2.
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We may assume that u and v are in B1. Because B1 is a bipartite graph, so u and

v are not in the same partite set in B1. It means that u ∈ X1 and v ∈ Y1 or u ∈ Y1

and v ∈ X1. Assume that u ∈ X1 and v ∈ Y1. So u ∈ X and v ∈ Y . Clearly,

X ∪ Y = V (B1 B2
H

). Hence X and Y are partite sets of B1 B2
H

. Therefore

B1 B2
H

is a bipartite graph.

In the case of k-partite graphs where k ≥ 3, it is not necessary that the graph

gluing of two k-partite graphs is also k-partite.

Example 2.1.14. Let G1 and G2 be graphs as the following figure.

G1 G2

Figure 2.1.5: A glued graph between k-partite graphs which is not k-partite

Let H1 = P3(1, 3, 4) ⊆ G1 and H2 = P3(a, b, c) ⊆ G2. Define f : H1 → H2

by f(1) = a, f(3) = b and f(4) = c. Clearly, G1 and G2 are 3-partite while

G1 G2
H1

∼=f H2

= K4 which is not 3-partite.

We next give a condition to obtain a glued graph between two k-partite graphs

which is also k-partite.

Theorem 2.1.15. For an integer k ≥ 3, let G1 and G2 be k-partite graphs and

let H be a clone of G1 G2
H

. If H is a k-partite graph, then G1 G2
H

is also a

k-partite graph.

Proof. Let G1 and G2 be k-partite graphs and let {A1, A2 . . . , Ak} and {B1, B2 . . . , Bk}
be partitions of G1 and G2, respectively. let H be a clone of G1 G2

H
. Assume

that H is a k-partite graph. Let {Z1, Z2, . . . , Zk} be a k-partition of H. Be-

cause H is a subgraph of G1 and G2, without loss of generality, Zi is a subset of



14

Ai and Bi for all i ∈ {1, 2, . . . , k}. Let Mi = Ai ∪ Bi for all i ∈ {1, 2, . . . , k}.
Clearly, M1 ∪ M2 ∪ . . . ∪ Mk = V (G1 G2

H
). Next, let i be arbitrary and let

u, v ∈ Mi = Ai ∪ Bi.

Case 1. u ∈ V (G1\H) and v ∈ V (G2\H): Then it is clear that u and v are

not adjacent.

Case 2. u, v ∈ V (G1): Then u, v ∈ Ai. Because Ai is an independent set of

V (G1), so u and v are not adjacent.

Case 3. u, v ∈ V (G2): Similarly to case 2, so u and v are not adjacent.

Hence {M1,M2, . . . ,Mk} is a k-partition of G1 G2
H

and also G1 G2
H

is a

k-partite graph.

Example 2.1.16. To show that the converse of Theorem 2.1.15 does not hold,

let G1 and G2 be two copies of triangles K3. So G1 and G2 are 3-partite. Let

H1 = P2(u1, v1) and H2 = P2(u2, v2) where ui, vi ∈ V (Gi) for all i = 1, 2. We glue

G1 and G2 at H1 and H2. We can see that a clone of glued graph of G1 and G2 is

not a 3-partite graph while G1 G2
H1

∼=H2

is isomorphic to K4\{e} which is 3-partite.

2.2 The Graph Gluing of Chordal Graphs and Interval

Graphs

Unlike the previous section, glued graphs in this section are not necessary to be

the same type as their original graphs. So we investigate conditions to obtain the

property that glued graphs are the same type as their original graphs.

Definition 2.2.1. A chord of a cycle C is an edge not in C whose endpoints lie

in C. A chordless cycle in G is a cycle of length at least 4 in G that has no chord

(that is, the cycle is an induced subgraph). A graph G is chordal if it is simple

and has no chordless cycle.

Example 2.2.2. Trees are chordal, because trees are acyclic. For all n, Kn is

chordal.

Remark 2.2.3. For all induced subgraphs of any chordal graph are chordal.
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Definition 2.2.4. The join of simple graphs G1 and G2, written G1 ∨ G2, is the

graph obtained from the disjoint union between G1 and G2 by adding all edges in

{xy : x ∈ V (G1), y ∈ V (G2)}.

u u

u

u u u u

Figure 2.2.1: K4 ∨ K3

If both original graphs of a glued graph are chordal, it is not necessary that

their glued graph is chordal. We show this in Example 2.2.5.

Example 2.2.5. Let G1 and G2 be graphs as shown in Figure 2.2.2.

u u

u

u

1 2

3

4

u

u

uu

a

b

cd

u u

u

uu

v1 v2

v3

v4v5

G1 G2
G1 G2
H1

∼=f H2

Figure 2.2.2: A glued graph between chordal graphs which is not chordal

Let H1 = P3(1, 3, 4) ⊆ G1 and H2 = P3(a, b, c) ⊆ G2. Define f : H1 → H2 by

f(1) = a, f(3) = b and f(4) = c. So we get G1 G2
H1

∼=f H2

∼= C4 ∨K1. Because G1 G2
H1

∼=f H2

contains C4(v1, v2, v4, v5) as an induced subgraph, so G1 G2
H1

∼=f H2

is not chordal.

We observe that if all cycles in a glued graph of two chordal graphs are original

cycles, then the glued graph is chordal. Then we use Theorem 2.1.6 to get a

condition to guarantee that a glued graph has no created cycles.

Theorem 2.2.6. For any graphs G1 and G2, if G1 is acyclic and G2 is chordal,

then the glued graph G1 G2 is chordal.
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Proof. Let G1 and G2 be graphs. Assume that G1 is acyclic and G2 is chordal. By

Theorem 2.1.6, G1 G2 does not contain a created cycle. So all cycles in G1 G2

are in G2. Thus they are not chordless. Hence G1 G2 is chordal.

In [2], Chartrand and Lesniak give a characterization of chordal graphs. We

restate and prove it in terms of glued graphs in Theorem 2.2.7.

Theorem 2.2.7 ([2]). A graph G is a chordal graph if and only if G is a glued

graph of two chordal graphs at a clone which is a complete graph(can be a vertex).

Proof. Necessity. Let G be a chordal graph. If G is a complete graph, then

G = G G
G∼=IG

where I is the identity isomorphism. Assume that G is a non-complete

chordal graph. Let S be any minimum vertex-cut of G. Let A be the vertex set

of one component of G\S and let B = V (G)\(S ∪ A). Define the subgraphs G1

and G2 of G by G1 = G[A ∪ S] and G2 = G[B ∪ S]. We can see that both G1 and

G2 are induced subgraphs of G. Since G is chordal, both G1 and G2 are chordal

graphs. We can see that G = G1 G2
G[S]∼=IG[S]

. It remains to show that G[S] is a complete

graph. If |S| = 1, then G[S] is a complete graph. So we may assume that |S| ≥ 2.

Since S is minimum, each x ∈ S is adjacent to some vertex of each component of

G\S. Therefore, for each pair x, y ∈ S, there exist paths x, a1, a2, . . . , ar, y and

x, b1, b2, . . . , bt, y where each ai ∈ A and bi ∈ B, such that these paths are chosen

to be of minimum length. Thus, C : x, a1, a2, . . . , ar, y, bt, bt−1, . . . , b1, x is a cycle

of length at least 4, implying that C has a chord. However, aibj 6∈ E(G), since S

is a vertex-cut and aiaj 6∈ E(G) and bibj 6∈ E(G) by the minimality of r and t.

Thus xy ∈ E(G). Therefore G[S] is a complete graph.

Sufficiency. Let G1 and G2 be graphs and let G1 G2
H

be a glued graph between

G1 and G2 at a clone H. Assume that G1 and G2 are chordal and H is a clique.

Let C be a cycle of length at least 4 in G1 G2
H

. If C is an original cycle, it is done.

Suppose that C is a created cycle. By Remark 2.1.5, There exists a non-trivial path

which is a subgraph of C ∩ (G1\H). We choose u, v-path P such that u 6= v and

|E(P )| is the maximum. This implies that u and v are in H. Since H is a clique,

there is an edge e incident to u and v in H. If e is in C, then E(C) = E(P ) ∪ {e}
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and also C is an original cycle, a contradiction. So e /∈ E(C). Hence e is a chord

of C. Therefore G1 G2
H

is a chordal graph.

Theorem 2.2.7 does not mean that if a glued graph is chordal, then its original

graphs are chordal. We illustrate this in the next example.

Example 2.2.8. Let G1 and G2 be graphs as shown in Figure 2.2.3.

u u

u u u

u

u

u7 u5

u1 u2 u3

u6

u4

u

u u u

u

u

uv5

v1 v2 v3

v6

v4

v7

G1 G2

u u u u

u u

u1 u2 u3 u4

u5 u6

u u u u

u u

v1 v2 v3 v4

v5 v6

H1 H2

u

u u u

u

u

u uw2

w3 w4 w5

w6

w8

w7 w1

G1 G2
H1

∼=f H2

Figure 2.2.3: A glued graph between non-chordal graphs which is chordal

We observe that both G1 and G2 are not chordal. Let f : H1 → H2 be the iso-

morphism defined by f(ui) = vi for all i ∈ {1, 2, 3, 4, 5, 6}. Then the graph G1 G2
H1

∼=f H2

is showed in Figure 2.2.3. Clearly, G1 G2
H1

∼=f H2

is chordal. However, since G1 G2
H1

∼=f H2

is chordal, by Theorem 2.2.7, we can find chordal graphs G3 and G4, subgraphs

H3 and H4 of G3 and G4, respectively, which are cliques, and an isomorphism

g : H3 → H4 such that G1 G2
H1

∼=f H2

= G3 G4
H3

∼=gH4

.

For example, G3 = (G1 G2
H1

∼=f H2

)[{w2, w3, w4, w5, w7}] and

G4 = (G1 G2
H1

∼=f H2

)[{w1, w4, w5, w6, w8}], H3 = P2(w4, w5) = H4 with the identity

isomorphism g between H3 and H4.
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We can see in the previous example that the graph gluing of non-chordal graphs

can be chordal. The next lemma gives a condition to make sure that a result of

the graph gluing of non-chordal graphs is not chordal.

Lemma 2.2.9. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. If H is

an induced subgraph of both G1 and G2 and G1 G2
H

is chordal, then G1 and G2

are chordal.

Proof. Let G1 and G2 be graphs. Then G1 G2
H

is a glued graph between G1 and

G2 at a clone H. Assume that H is an induced subgraph of both G1 and G2 and

G1 G2
H

is chordal. Suppose for a contradiction that G1 is not chordal. So G1

contains a chordless cycle C of length at least four . Then C is a cycle in G1 G2
H

.

Because G1 G2
H

is chordal, so C has a chord e which have endpoints u and v.

So u, v ∈ V (G1). Because C is a chordless cycle in G1, so e ∈ E(G2)\E(G1) and

u, v ∈ V (G2). Thus u, v ∈ V (H) but e /∈ E(H). Hence H is not an induced

subgraph, a contradiction. Therefore G1 and G2 are chordal graphs.

The converse of Lemma 2.2.9 is not true illustrated by graphs G1 and G2 in

Example 2.2.5. In the rest of this section, we investigate results of the graph gluing

between two interval graphs.

Definition 2.2.10. An interval representation of a graph is a family of intervals

assigned to the vertices so that vertices are adjacent if and only if the corresponding

intervals intersect. A graph having such a representation is an interval graph.

u u

u u

u

u

a b

c d

e

f

u u

u u

u u

u u
u u

u u a
b
c

d f

e

G The interval representation of G

Figure 2.2.4: An interval graph
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Remark 2.2.11. An induced subgraph of an interval graph is an interval graph.

Lemma 2.2.12 and Theorem 2.2.13 are well-known results about the relation

between interval graphs and chordal graphs.

Lemma 2.2.12. [Folklore] For any integer n such that n ≥ 4, Cn is not an interval

graph.

Proof. Let n be an integer such that n ≥ 4. Suppose that Cn is an interval graph.

Let P = Cn\{v} where v is a vertex in Cn. So P is an induced subgraph of Cn.

Hence P is also an interval graph. Because P is a path, so P has an interval

representation similarly as Figure 2.2.5 where a and b are endpoints of P .

u u

u u
u u

u u

a

b

Figure 2.2.5: The interval representation of a path

To add vertex v, v have to intersect a and b but not intersect the other vertices.

It is impossible. Hence Cn is not an interval graph.

Theorem 2.2.13. [Folklore] Let G be a graph. If G is an interval graph, then G

is a chordal graph.

Proof. Let G be a graph. Suppose that G is not chordal. So G contains a chordless

cycle of length at least four, say C. By Lemma 2.2.12, C is not an interval graph.

Because C is an induced subgraph of G, so G is not an interval graph.

Next, we introduce a definition and some theorems about interval graphs.

Definition 2.2.14. Three vertices u, v, w form an asteroidal-triple if for each

pair of them there is a path connecting that two vertices but not contain a neigh-

borhood of the third vertex. For a graph G, we denote A(G) for the set of all

asteroidal-triples in G.
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Remark 2.2.15. Let u, v, w be vertices of a graph G. If u, v, w form an asteroidal-

triple in G , then any pair of {u, v, w} are not adjacent.

Example 2.2.16. Let G∗

1 and G∗

2 be graphs as shown in Figure 2.2.6.

u

u u

u

u u

u1

u2 u3

u4

u5 u6

u

u u

u

u u

u

v1

v2 v3

v4

v5 v6

v7

G∗

1 G∗

2

Figure 2.2.6: Examples of graphs containing an asteroidal-triple

We can see that u4, u5, u6 is the only asteroidal-triple in G∗

1 and v4, v5, v6 is

the only asteroidal-triple in G∗

2.

Theorem 2.2.17 ([4]). A graph G is an interval graph if and only if it is chordal

and has no asteroidal-triple.

In Example 2.2.16, G1 and G2 are not interval graphs but they are chordal.

A glued graph between two interval graphs may or may not be an interval

graph. We show this in Example 2.2.18 and Example 2.2.19.

Example 2.2.18. Let G1 and G2 be complete graphs and G1 G2 be arbitrary

glued graph between G1 and G2 with at least 3 vertices. We will show that G1 G2

is an interval graph. Clearly, G1 G2 is chordal. It remains to prove that G1 G2

has no asteroidal-triples. Let u, v and w be distinct vertices in G1 G2. By the

pigeonhole principle, there are at least two vertices of {u, v, w} such that are in

the same graph. Without loss of generality, we may assume that u and v are in

G1. Since G1 is a complete graph, vertex u is adjacent to v. By Remark 2.2.15,

u, v, w does not form an asteroidal-triple. Therefore G1 G2 is an interval graph.

Example 2.2.19. Let G1 and G2 be graphs as shown in Figure 2.2.7. We can

see interval representations of G1 and G2 showed in Figure 2.2.7. So G1 and G2

are interval graphs.
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G1 An interval representation of G1

u

u

uu

a

b

cd

u u

u u u u

u u

d

a c

b

G2 An interval representation of G2

Figure 2.2.7: A glued graph of interval graphs which is not an interval graph

As in Example 2.2.5, G1 G2
H

is not chordal. Hence G1 G2
H

is not an interval

graph.

The graph gluing can create an asteroidal-triple or destroy an asteroidal-triple

in the original graphs. We show this in Example 2.2.20 and Example 2.2.21

Example 2.2.20. Let G1 = P5(u1, u2, . . . , u5) and G2 = P5(v1, v2, . . . , v5) and

let H1 = P3(u1, u2, u3) and H2 = P3(v1, v2, v3). We next define f : H1 → H2

by f(ui) = vi for all i = 1, 2, 3. So G1 G2
H1

∼=f H2

is a graph isomorphic to G∗

2 in

Figure 2.2.6. Hence G1 G2
H1

∼=f H2

contains an asteroidal-triple. Thus G1 G2
H1

∼=f H2

is not

an interval graph.

Example 2.2.21. Let G1, G2, H1 and H2 be graphs as shown in Figure 2.2.8.

Note that H1 ⊆ G1 and H2 ⊆ G2. We can see that u3, u14 and u10 form an

asteroidal-triple in G1 and v3, v7 and v10 form an asteroidal-triple in G2. Define

isomorphism f : H1 → H2 by f(ui) = vi for all i = 1, 2, . . . , 14. Then we get

G1 G2
H1≡f H2

as shown in Figure 2.2.8.

We can see that G1 G2
H1≡f H2

does not contain any asteroidal-triple.

Next, we give a condition to show that all asteroidal-triples in original graphs

are still asteroidal-triples in their glued graph.
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Figure 2.2.8: The graph gluing can destroy an asteroidal-triple.
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Lemma 2.2.22. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. If H is

an induced subgraph of G2, then A(G1) ⊆ A(G1 G2
H

).

Proof. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. Assume that

A(G1)\A(G1 G2
H

) 6= φ. Let T be an asteroidal triple formed by vertices u, v, w in

A(G1)\A(G1 G2
H

). Because T /∈ A(G1 G2
H

), there are two vertices in {u, v, w}
such that any path connecting that two vertices in G1 G2

H
contains a neighbor-

hood of the third vertex. Without loss of generality, we may assume that such

two vertices are u and v. Since T ∈ A(G1), there is a u, v-path P = Pn(a1 =

u, a2, . . . , an = v) in G1 that avoids the neighborhood of w. So P is a path in

G1 G2
H

. Then there exists i ∈ {1, 2, . . . , n} such that ai is adjacent to w by

edge e in G1 G2
H

. Hence e ∈ E(G2)\E(G1) and also ai, w ∈ V (G2). Since

ai, w ∈ V (G1), we can conclude that ai, w ∈ V (H). Since e 6∈ E(G1), we have that

e 6∈ E(H). Hence H is not an induced subgraph of G2.

By applying Lemma 2.2.22, we have a condition to make sure that a result of

the graph gluing between non-interval graphs is not an interval graph.

Theorem 2.2.23. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. If H

is an induced subgraph of both G1 and G2 and G1 G2
H

is an interval graph, then

G1 and G2 are interval graphs.

Proof. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. Assume that H is

an induced subgraph of both G1 and G2 and G1 G2
H

is an interval graph. Suppose

for a contradiction that G1 is not an interval graph. By Theorem 2.2.17, G1 is not

chordal or A(G1) 6= φ.

Case 1. G1 is not chordal; By Lemma 2.2.9, we get that G1 G2
H

is not

chordal. By Lemma 2.2.13, G1 G2
H

is not an interval graph.

Case 2. A(G1) 6= φ; By Lemma 2.2.22, we have that φ 6= A(G1) ⊆ A(G1 G2
H

).

So G1 G2
H

contains an asteroidal-triple.

By two cases, we have G1 G2
H

is not an interval graph, a contradiction. Hence

G1 and G2 are interval graphs.

Example 2.2.19 shows that the converse of Theorem 2.2.23 is not true.
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Example 2.2.24. Let T1 and T2 be trees. Because a connected subgraph of any

tree is an induced subgraph, by Theorem 2.2.23, we have that if T1 or T2 is not an

interval graph, then T1 T2 is not an interval graph.

We have seen that the glued graphs of chordal graphs, interval graphs and k-

partite graphs where k ≥ 3 do not necessary remain the same type as their original

graphs. We find conditions to obtain that the glued graphs of chordal graphs are

chordal and find a condition to get that the glued graphs between k-partite graphs

are also k-partite graphs where k ≥ 3. It remains an open problem to find other

conditions to obtain such property. In the next chapter we consider the colorability

of glued graphs.



CHAPTER III

COLORABILITY OF GLUED GRAPHS

In this chapter, we find bounds of the chromatic numbers of glued graphs and

show their sharpness. A graph gluing could sometime give a resulting graph with

multiple edges. As we focus on graph colorings, we will consider multiple edges as

a single edge of any glued graph in this chapter.

3.1 Background

First of all, we recall the definition of the chromatic number of any graph.

Definition 3.1.1. A k-coloring of a graph G is a labeling f : V (G) → S, where

|S| = k. The labels are colors; the vertices of one color form a color class. A k-

coloring is proper if adjacent vertices have different labels. A graph is k-colorable

if it has a proper k-coloring. The chromatic number of graph G, χ(G), is the

least k such that G is k-colorable.

Example 3.1.2. Let G be a nontrivial bipartite graph with a bipartition {X,Y }.
Since G is nontrivial, χ(G) ≥ 2. Define γ : V (G) → {1, 2} by

γ(v) =











1 if v ∈ X,

2 if v ∈ Y.

Since X and Y are independent sets, we have that γ is proper. So χ(G) ≤ 2.

Hence χ(G) = 2.

Conversely, Let G be a graph such that χ(G) = 2. Let γ : V (G) → {1, 2} be a

proper 2-coloring of G. Define sets X,Y ⊆ V (G) by

X = {v ∈ V (G)|γ(v) = 1} and Y = {v ∈ V (G)|γ(v) = 2}.
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Then X ∩ Y = φ and X ∪ Y = V (G). If u and v are in X, then γ(u) = 1 = γ(v).

Since γ is proper, u and v are not adjacent. If u and v are in Y , similarly u and v

are not adjacent. So X and Y are independent sets. Hence G is a bipartite graph.

Definition 3.1.3. The clique number of a graph G, written ω(G), is the max-

imum size of a set of pairwise adjacent vertices(clique) in G.

Remark 3.1.4. For any graph G, we have χ(G) ≥ ω(G), because vertices of a

clique require distinct colors.

Next we state theorems about the chromatic number of any graph that we use

to find bounds of the chromatic numbers of glued graphs. Proposition 3.1.5 reveals

that the chromatic numbers of graphs are at most their maximum degree plus one

and Brooks proved that there are only complete graphs and odd cycles whose

chromatic numbers are exactly one more than their maximum degrees showed in

Theorem 3.1.6.

Proposition 3.1.5 ([3]). Let G be a graph. χ(G) ≤ ∆(G) + 1.

Theorem 3.1.6 ([3]). (Brooks[1941]) If G is a connected graph other than a

complete graph or an odd cycle, then χ(G) ≤ ∆(G).

3.2 Bounds of the Chromatic Numbers of Glued Graphs

In this section, we investigate bounds of the chromatic numbers of glued graphs

and also show their sharpness. First, we give a trivial lower bound of the chromatic

numbers of glued graphs.

Remark 3.2.1. Because G1 and G2 are subgraphs of G1 G2, we have χ(G1) ≤
χ(G1 G2) and χ(G2) ≤ χ(G1 G2). Hence we get a lower bound of the chro-

matic number of G1 G2 that

χ(G1 G2) ≥max{χ(G1),χ(G2)}.
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We apply Theorem 2.1.12 and Example 3.1.2 to prove the next proposition.

Proposition 3.2.2. Let G1 and G2 be nontrivial graphs. Then χ(G1 G2) ≥ 3 if

and only if χ(G1) ≥ 3 or χ(G2) ≥ 3.

Proof. Let G1 and G2 be nontrivial graphs. By contrapositive, the statement in

the proposition is equivalent to χ(G1 G2) ≤ 2 if and only if χ(G1) ≤ 2 and

χ(G2) ≤ 2. Because the chromatic number of any nontrivial graph is at least two,

we can prove this proposition by proving the statement χ(G1) = 2 = χ(G2) if and

only if χ(G1 G2) = 2 instead.

Necessity. Assume that χ(G1) = 2 = χ(G2). By example 3.1.2, G1 and G2 are

bipartite. So G1 G2 is also bipartite by Theorem 2.1.12. Hence χ(G1 G2) = 2.

Sufficiency. Assume that χ(G1 G2) = 2. By example 3.1.2, G1 G2 is

bipartite. So G1 and G2 are bipartite by Theorem 2.1.12. Hence χ(G1) = 2 =

χ(G2).

Applying Proposition 3.2.2, we get a necessary condition to have that the chro-

matic numbers of glued graphs are equal to three. This necessary condition is

showed in Proposition 3.2.3.

Proposition 3.2.3. Let G1 and G2 be nontrivial graphs. If χ(G1 G2) = 3, then

max{χ(G1), χ(G2)} = 3.

Proof. Let G1 and G2 be nontrivial graphs. Assume that χ(G1 G2) = 3. By

Lemma 3.2.2, we have χ(G1) ≥ 3 or χ(G2) ≥ 3. Let max{χ(G1), χ(G2)} = χ(G1).

Then χ(G1) ≥ 3. Because G1 ⊆ G1 G2, so 3 ≤ χ(G1) ≤ χ(G1 G2) = 3. Hence

max{χ(G1), χ(G2)} = χ(G1) = 3.

The converse of the proposition 3.2.3 is not true. We show this in Example

2.1.14, which contains χ(G1) = 3 = χ(G2) but χ(G1 G2
H1

∼=f H2

) = 4.

Remark 3.2.4. By Proposition 3.2.2 and Proposition 3.2.3, we get that

if χ(G1 G2) ≤ 3, than χ(G1 G2) =max{χ(G1), χ(G2)}.
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Because ∆(G1 G2
H

) ≤ ∆(G1)+∆(G2)−δ(H)(in Theorem 1.2.8) where G1 and

G2 are graphs and H is the clone of a glued graph G1 G2
H

, so an upper bound in

Theorem 3.2.5 follows immediately by using Proposition 3.1.5 and Theorem 3.1.6.

Theorem 3.2.5. Let G1 and G2 be nontrivial connected graphs and let H be a

clone of G1 G2
H

. Then

χ(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H) + 1.

Furthermore, if G1 G2
H

is not a complete graph or an odd cycle, then

χ(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H).

Proof. Let G1 and G2 be nontrivial connected graphs and let H be a clone of

G1 G2
H

. If G1 G2
H

is a complete graph or an odd cycle, by Proposition 3.1.5,

χ(G1 G2
H

) ≤ ∆(G1 G2
H

)+1 ≤ ∆(G1)+∆(G2)−δ(H)+1. Otherwise, by Brooks’

theorem(Theorem 3.1.6), χ(G1 G2
H

) ≤ ∆(G1 G2
H

) ≤ ∆(G1)+∆(G2)−δ(H).

Example 3.2.6. To show the sharpness of theorem 3.2.5, let G1 and G2 be graphs

as shown in Figure 3.2.1.

u

u

u

1

2

3

u

u

u

a

b

c

G1 G2

Figure 3.2.1: The sharpness of Theorem 3.2.5.

We glue G1 and G2 at H1 = P2(1, 2) ⊆ G1 and H2 = P2(a, b) ⊆ G2. So G1 G2
H1

∼=H2

is isomorphic to K4\{e} where e ∈ E(K4) which is not a complete graph or an

odd cycle. Consider χ(G1 G2
H1

∼=H2

) = 3 = 2 + 2 − 1 = ∆(G1) + ∆(G2) − δ(H) where

H ∼= H1
∼= H2.

This upper bound is too large for some graphs as shown in example 3.2.7.
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Example 3.2.7. Let n be a positive integer. Define graphs G1 and G2 be two

copies of Kn,1. So ∆(G1) = n = ∆(G2). Let u1, u2 ∈ V (G1) and v1, v2 ∈ V (G2) be

such that u1 and v1 are vertices with maximum degree of G1 and G2, respectively.

We glue G1 and G2 at H1 = P2(u1, u2) and H2 = P2(v1, v2) with isomorphism

f defined by f(u1) = v1 and f(u2) = v2. So by Theorem 3.2.5, χ(G1 G2
H1

∼=f H2

) ≤
n + n− 1 = 2n− 1. We know that G1 and G2 are trees. So G1 G2

H1
∼=f H2

is also a tree

and χ(G1 G2
H1

∼=f H2

) = 2. If n → ∞, this bound is too large.

Theorem 3.2.5 shows an upper bound of the chromatic numbers of glued graphs

in terms of the maximum degrees of its original graphs. In the next theorem, we

introduce another upper bound of the chromatic numbers of glued graphs which

is in terms of the chromatic numbers of its original graphs.

Theorem 3.2.8. Let G1 and G2 be graphs. Then

χ(G1 G2) ≤ χ(G1)χ(G2).

Proof. Let G1 and G2 be graphs and let G1 G2
H

be a glued graph of G1 and G2

at an arbitrary clone H. Assume χ(G1) = p and χ(G2) = q. Let γ1 : V (G1) →
{1, 2, . . . , p} and γ2 : V (G2) → {1, 2, . . . , q} be proper colorings of G1 and G2,

respectively. Define β : V (G1) ∪ V (G2) → {1, 2, . . . , p} × {1, 2, . . . , q} by for all

vi ∈ V (G1) ∪ V (G2),

β(vi) =























(γ1(vi), 1) if vi ∈ V (G1\H),

(γ1(vi), γ2(vi)) if vi ∈ V (H),

(1, γ2(vi)) if vi ∈ V (G2\H).

To show that β is proper, let vi and vj be vertices in G1 G2
H

such that β(vi) =

β(vj). We will show that vi and vj are not adjacent.

Case 1. vi ∈ V (G1\H) and vj ∈ V (G2\H): Then clearly, vi and vj are not

adjacent in G1 G2
H

.

Case 2. Both vi and vj are in V (G1\H)(or V (G2\H)): So β(vi) =

(γ1(vi), 1) = (γ1(vj), 1) = β(vj) and then γ1(vi) = γ1(vj). Hence vi and vj are

not adjacent in G1 G2
H

because γ1 is proper.
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Case 3 vi is in V (H) but vj is in V (G1\H)(or V (G2\H)): So β(vi) =

(γ1(vi), γ2(vi)) = (γ1(vj), 1) = β(vj)(or β(vi) = (γ1(vi), γ2(vi)) = (1, γ2(vj)) =

β(vj)). Then γ1(vi) = γ1(vj)(or γ2(vi) = γ2(vj)). Because both γ1 and γ2 are

proper, So vi and vj are not adjacent in G1 G2
H

.

Therefore β is proper and hence χ(G1 G2
H

) ≤ χ(G1)χ(G2).

We show the sharpness of Theorem 3.2.8 by proving the next theorem.

Theorem 3.2.9. Let p and q be integers such that p, q ≥ 2 but pq 6= 4. Then

there exist G1 and G2 with a glue graph G1 G2
H

where H is a clone such that

χ(G1) = p, χ(G2) = q and χ(G1 G2
H

) = pq = χ(G1)χ(G2).

Proof. Let p and q be integers such that p, q ≥ 2 but pq 6= 4.

Case 1. p = q: Let G1 be a graph such that V (G1) = {u1, u2, . . . , upq} and ui

and uj are adjacent if and only if i 6≡ j (mod p). Any i ∈ {1, 2, 3, . . . , pq}, there are

q numbers which are equivalent to i mod p. So there are pq − q vertices which are

adjacent to vi. Hence G1 is (pq−q)-regular. Next, let γ1 : V (G1) → {1, 2, 3, . . . , p}
be a coloring of G1 defined by for all ui ∈ V (G1)

γ1(ui) = l where l ≡ i (mod p) and l ∈ {1, 2, . . . , p}.

To show γ1 is proper, let ui and uj be vertices in G1 such that ui and uj are

adjacent. Then i 6≡ j (mod p). Assume i ≡ l (mod p) and j ≡ k (mod p) where

l, k ∈ {1, 2, . . . , p}. So γ1(ui) = l ≡ i 6≡ j ≡ k = γ1(uj). Hence γ1 is proper and

also χ(G1) ≤ p. We can see that the set of vertex {u1, u2, . . . , up} forms a p-clique.

So χ(G1) ≥ p. Hence χ(G1) = p.

We next define graph G2 by V (G2) = {v1, v2, . . . , vpq} and vi and vj are adjacent

if and only if i = j + 1 or i ≡ j (mod p). Any i ∈ {1, 2, 3, . . . , pq}, there are q − 1

numbers in {1, 2, 3, . . . , i−1, i+1, . . . , pq} which are equivalent to i mod p. So there

are at least q− 1 vertices which are adjacent to vi. Since vertices vi−1 and vi+1 are

adjacent to vi, we obtain that deg(vi) = q− 1+2 = q +1. Hence ∆(G2) = (q +1).

Let γ2 : V (G2) → {1, 2, 3, . . . , q} be a coloring of G2. For each i ∈ {1, 2, . . . , pq},
we write i = ap + b where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p, defined γ2(vi) by

γ2(vi) = l where l ≡ a + b (mod q) and l ∈ {1, 2, . . . , q}.
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To show that γ2 is proper, let vi, vj ∈ V (G2) be such that vi and vj are adjacent.

Then i = j + 1 or i ≡ j (mod p). Let j = ap + b where a, b ∈ Z, a ≥ 0 and

0 < b ≤ p. So γ2(vj) ≡ a + b (mod q).

Case 1.1. i = j + 1 = ap + b + 1: If b < p, then b + 1 ≤ p, consequently,

γ2(vi) ≡ a + b + 1 (mod q) 6≡ a + b (mod q) ≡ γ2(vj). Assume that b = p, then

i = ap + p + 1 = p(a + 1) + 1 and γ2(vi) ≡ a + 2 (mod q). Because pq 6= 4, so

p 6= 2. Hence γ2(vi) ≡ a + 2 (mod q) 6≡ a + p (mod q) ≡ γ2(vj).

Case 1.2. i ≡ j (mod p): Without loss of generality, we assume i > j. Then

i = j + np = ap + b + np = p(a + n) + b where n ∈ N. Since 1 ≤ i ≤ pq, we get

that 1 ≤ n ≤ q − 1. Hence γ2(vi) ≡ a + n + b (mod q) 6≡ a + b (mod q) ≡ γ2(vj).

Therefore, by both cases, we have γ2(vi) 6= γ2(vj). So γ2 is proper and hence

χ(G2) ≤ q. Since the set of vertex {v1, v1+p, v1+2p, . . . , v1+(q−1)p} forms a q-clique,

we have χ(G2) ≥ q. Hence χ(G2) = q.

Now consider H1 = Ppq(u1, u2, . . . , upq) ⊆ G1 and H2 = Ppq(v1, v2, . . . , vpq) ⊆
G2. We next define f : H1 → H2 by f(ui) = vi for all i ∈ {1, 2, 3, . . . , pq}.
Then we obtain the glued graph of G1 and G2 at H1 and H2 with respect to f,

written as G1 G2
H1

∼=f H2

. Let G = G1 G2
H1

∼=f H2

and V (G) = {wi : i = 1, 2, . . . , pq where

wi corresponds to ui and vi}. Let wi, wj ∈ V (G). If i ≡ j (mod p), then wi and

wj are adjacent in G2. Otherwise, wi and wj are adjacent in G1. It follows that

wi and wj are adjacent in G because G1, G2 ⊆ G. Therefore G = Kpq and also

χ(G) = χ(G1 G2
H1

∼=f H2

) = pq = χ(G1)χ(G2).

Case 2. p < q: Define G1, G2 and γ1 similarly as case 1. Then χ(G1) = p. We

next define γ2 : V (G2) → {1, 2, . . . , q} as follows: For each by for i ∈ {1, 2, . . . , pq},
we write i = ap + b where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p,

γ2(vi) = l where l ≡ 2 + a − b (mod q) and l ∈ {1, 2, . . . , q}.

To show that γ2 is proper, let vi, vj ∈ V (G2) be such that vi and vj are adjacent.

Then i = j + 1 or i ≡ j (mod p). Let j = ap + b where a, b ∈ Z, a ≥ 0 and

0 < b ≤ p. So γ2(vj) ≡ 2 + a − b (mod q).

Case 2.1. i = j + 1 = ap + b + 1: If b < p, then b + 1 ≤ p and also

γ2(vi) ≡ 2 + a − b − 1 (mod q) 6≡ 2 + a − b (mod q) ≡ γ2(vj). If b = p, i =
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ap + p + 1 = p(a + 1) + 1 and γ2(vi) ≡ 2 + a (mod q). Because p < q, so

γ2(vi) ≡ 2 + a (mod q) 6≡ 2 + a − p (mod q) ≡ γ2(vj).

Case 2.2. i ≡ j (mod p): We assume i > j. So i = j + np = ap + b + np =

p(a + n) + b where n ∈ N. Since 1 ≤ i ≤ pq, we get that 1 ≤ n ≤ q − 1. So

γ2(vi) ≡ 2 + a + n − b (mod q) 6≡ 2 + a − b (mod q) ≡ γ2(vj).

Hence, by both cases, γ2 is proper and also χ(G2) ≤ q. We can see that the

set of vertex {v1, v1+p, v1+2p, . . . , v1+(q−1)p} forms a q-clique. So χ(G2) ≥ q. Hence

χ(G2) = q.

We define H1, H2 and f similarly to case 1. So G1 G2
H1

∼=f H2

= Kpq and hence

χ(G1 G2
H1

∼=f H2

) = pq.

Example 3.2.10. An example of graphs constracted in the Theorem 3.2.9 is

illustrated here. For n = 9 and p = 3 = q, we have that G1 and G2 are graphs in

Figure 3.2.2
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Figure 3.2.2: Graphs with their glued graphs isomorphic to K9 and K12.
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We glue G1 and G2 at the clones H1 = P9(u1, u2, . . . , u9) and H2 = P9(v1, v2, . . . , v9)

with the isomorphism f : H1 → H2 defined by f(ui) = vi for all i = 1, 2, . . . , 9.

Then G1 G2
H1

∼=f H2

= K9. So χ(G1 G2
H1

∼=f H2

) = χ(K9) = 9 = 3 × 3 = χ(G1)χ(G2).

For p = 3 and q = 4, we have that G3 and G4 are graphs in Figure 3.2.2.

Let H3 = P12(u1, u2, . . . , u12) and H4 = P12(v1, v2, . . . , v12). Define g : H3 → H4

by g(ui) = vi for all i = 1, 2, . . . , 12. Then G3 G4
H3

∼=gH4

= K12. So χ(G3 G4
H3

∼=gH4

) =

χ(K12) = 12 = 3 × 4 = χ(G3)χ(G4).

The chromatic numbers of graphs defined in Theorem 3.2.9 also satisfy the

condition in Theorem 3.2.5 namely χ(G1 G2
H

) = χ(Kpq) = pq = pq − q + q + 1−
2 + 1 = ∆(G1) + ∆(G2) − δ(H) + 1 where H ∼= H1

∼= H2 is a clone of G1 G2
H

.

Graphs G1 and G2 in Theorem 3.2.9 such that G1 G2
H

= Kn satisfy n =

χ(G1)χ(G2). Does there exist graphs G1 and G2 such that G1 G2
H

= Kn but

n 6= χ(G1)χ(G2)? Lemma 3.2.11 and Lemma 3.2.12 answer this question.

Lemma 3.2.11. Let G1 and G2 be graphs such that χ(G1) = p and χ(G2) = q. If

G1 G2
H

= Kn at some clone H, then pq ≥ n.

Proof. Let G1 and G2 be graphs such that χ(G1) = p and χ(G2) = q. Assume that

G1 G2
H

= Kn at a clone H. If there are u ∈ V (G1\H) and v ∈ V (G2\H), then

u and v are not adjacent in G1 G2
H

= Kn, a contradiction. So V (G1) = V (H) or

V (G2) = V (H). Without loss of generality, we may assume that V (G1) = V (H).

So V (G1 G2
H

) = V (G2) and also n =
∣

∣

∣
V (G1 G2

H
)
∣

∣

∣
= |V (G2)|. Let

⌈

n
q

⌉

= d.

Since χ(G2) = q, by the pigeonhole principle, there exist at least
⌈

n
q

⌉

= d vertices

in G2 which are labeled as the same color, say v1, v2, . . . vd. So edge vivj /∈ E(G2)

for all i, j = 1, 2, . . . , d. Then vivj ∈ E(G1) for all i, j = 1, 2, . . . , d. So G1 contains

Kd and also p = χ(G1) ≥ d =
⌈

n
q

⌉

≥ n
q
. Hence pq ≥ n.

Lemma 3.2.12. Let n ∈ N be such that n ≥ 5. For any integer p and q such that

p, q ≤ n and pq ≥ n, there exist graphs G1 and G2 such that χ(G1) = p, χ(G2) = q

and G1 G2
H

= Kn at some clone H. Moreover, for any two graph A1 and A2 , if

A1 A2
B

= Kn where B is a clone, then max{χ(A1), χ(A2)} ≥ d√ne.
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Proof. Let n ∈ N be such that n ≥ 5 and let p and q be integers such that

p, q ≤ n and pq ≥ n. If pq = n, by Theorem 3.2.9, we get G1 and G2 such that

G1 G2
H

= Kpq = Kn at some clone H, χ(G1) = p and χ(G2) = q. It is done.

Suppose that pq > n. Assume that p ≤ q. By Theorem 3.2.9, we get G1 and G2

such that G1 G2
H

= Kpq where H is a clone, χ(G1) = p and χ(G2) = q with

proper colorings γ1 and γ2 of G1 and G2, respectively. Below are properties of G1

and G2 defined in Theorem 3.2.9.

V (G1) = {u1, u2, . . . , upq}, ui is adjacent to uj if and only if i 6≡ j (mod p),

γ1(ui) = l where l ≡ i (mod p) and l ∈ {1, 2, . . . , p} and V (G2) = {v1, v2, . . . , vpq},
vi and vj are adjacent if and only if i = j + 1 or i ≡ j (mod p). If p < q, then

for each i = ap + b ∈ {1, 2, . . . , pq} where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p, define

γ2(vi) = l where l ≡ 2+a− b (mod q) and l ∈ {1, 2, . . . , q}. If p = q, then for each

i = ap + b ∈ {1, 2, . . . , pq} where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p, define γ2(vi) = l

where l ≡ a + b (mod q) and l ∈ {1, 2, . . . , q}.
Then we constuct G∗

1 and G∗

2 as follows: Construct G∗

1 by deleting vertices

un+1, un+2, . . . , upq in G1. Since G∗

1 is an induced subgraph of G1, we get χ(G∗

1) ≤ p.

Because p ≤ n, so G∗

1 contains a p-clique which is Kp(u1, u2, . . . , up). So χ(G∗

1) ≥ p.

Hence χ(G∗

1) = p.

We next construct G∗

2 by deleting vertices vn+1, vn+2, . . . , vpq in G2. Since G∗

2

is an induced subgraph of G2, we get χ(G∗

2) ≤ q. If n ≥ 1 + (q − 1)p, then

Kq(v1, v1+p, . . . , v1+(q−1)p) is in G∗

2 and also χ(G∗

2) ≥ q. Hence χ(G∗

2) = q and γ2

is still a proper coloring of G∗

2. If n < 1 + (q − 1)p, we will construct a q-clique.

Since χ(G∗

2) ≤ q ≤ n, there exists a proper q-coloring f : V (G∗

2) → {1, 2, . . . , q}
of G∗

2 such that for any j ∈ {1, 2, . . . , q}, there is v ∈ V (G∗

2) such that f(v) = j.

Without loss of generality, we may assume that f(vi) = i for all i ∈ {1, 2, . . . , q}.
Let G∗∗

2 be graph constructed from G∗

2 by adding edges between vi and vj where

i, j ∈ {1, 2, . . . , q} and i 6= j. Let E = {vivj for all i, j = 1, 2, . . . , q and i 6= j}.
Hence G∗∗

2 contains a q-clique Kq(v1, v2, . . . , vq) and then χ(G∗∗

2 ) ≥ q. It is easy to

see that f is still proper in G∗∗

2 . Then χ(G∗∗

2 ) ≤ q. Hence χ(G∗∗

2 ) = q.

Let H1 = Pn(u1, u2, . . . , un) ⊆ G∗

1 and H2 = Pn(v1, v2, . . . , vn) ⊆ G∗

2. Define

g : H1 → H2 by g(ui) = vi for all i ∈ {1, 2, 3, . . . , n}. We obtain the glued graph
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of G∗

1 and G∗

2 at H1 and H2 with respect to g, denoted by G∗

1 G∗

2
H1

∼=gH2

. Let wi,

wj ∈ V (G
∗

1 G∗

2
H1

∼=gH2

). If i ≡ j (mod p), then edge wiwj ∈ E(G∗

2) ⊆ E(G
∗

1 G∗

2
H1

∼=gH2

).

Otherwise, edge wiwj ∈ E(G∗

1) ⊆ G∗

1 G∗

2
H1

∼=gH2

. So wiwj ∈ E(G
∗

1 G∗

2
H1

∼=gH2

). Hence

G∗

1 G∗

2
H1

∼=gH2

= Kn. In the case of G∗∗

2 , we know that E ⊆ E(G∗

1). Let H∗

1 and H∗

2

be graphs such that V (H∗

i ) = V (Hi) and E(H∗

i ) = E(Hi) ∪ E for all i = 1, 2

where H1 = Pn(u1, u2, . . . , un) and H2 = Pn(v1, v2, . . . , vn). Clearly, H∗

1 ⊆ G∗

1 and

H∗

2 ⊆ G∗∗

2 . Hence G∗

1 G∗∗

2
H∗

1
∼=gH∗

2

= Kn.

To prove the last statement, let A1 and A2 be graphs such that A1 A2
B

= Kn

where B is a clone. Assume that χ(A1) ≥ χ(A2). By Lemma 3.2.11, we get that

χ(A1)χ(A2) ≥ n. Then χ(A1)
2 ≥ χ(A1)χ(A2) ≥ n. So max{χ(A1), χ(A2)} =

χ(A1) ≥ d√ne.

Graphs G1 and G2 in theorem 3.2.9 have a property that χ(G1 G2
H

) =

χ(G1)χ(G2) = ω(G1 G2
H

). Do there exist graphs G1 and G2 such that χ(G1)χ(G2)

= χ(G1 G2
H

) 6= ω(G1 G2
H

) ? Since the chromatic number of a graph is always

at least the clique number of such graph, we look for G1, G2 and H such that

χ(G1)χ(G2) = χ(G1 G2
H

) > ω(G1 G2
H

). Before we answer such question, we

next provide a graph with the property that its chromatic number is strictly more

than its clique number. Such graph is constructed by joining two specified graphs.

Recall that the join of simple graphs G1 and G2, G1 ∨ G2, is the graph that

V (G1 ∨ G2) = V (G1) ∪ V (G2) and

E(G1 ∨G2) = E(G1)∪E(G2)∪ {xy : x ∈ V (G1), y ∈ V (G2)}.

Theorem 3.2.13. Let G1 and G2 be graphs. Then χ(G1 ∨ G2) = χ(G1) + χ(G2).

Proof. Let G1 and G2 be graphs. Let f and g be proper colorings of G1 and G2,

respectively. Define α : V (G1) ∪ V (G2) → {1, 2 . . . , χ(G1) + χ(G2)} by for all

v ∈ V (G1) ∪ V (G2)

α(v) =











f(v) if v ∈ V (G1),

χ(G1) + g(v) if v ∈ V (G2).

It is easy to see that α is proper. So χ(G1 ∨ G2) ≤ χ(G1) + χ(G2). Suppose for

a contradiction that χ(G1 ∨ G2) < χ(G1) + χ(G2). There exist u ∈ V (G1) and
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v ∈ V (G2) such that α(u) = α(v). So u and v are not adjacent in G1 ∨ G2. This

contradicts to the definition of the join graphs. Hence χ(G1 ∨ G2) = χ(G1) +

χ(G2).

Example 3.2.14. Let W = C5 ∨ K1. So χ(W ) = χ(C5) + χ(K1) = 3 + 1 = 4

and also χ(W ∨ Kn) = 4 + n for all n ∈ N. Because ω(W ) = 3, so ω(W ∨ Kn) =

n + 3 < n + 4 = χ(W ∨ Kn).

Now, we give graphs G1 and G2 with the property χ(G1)χ(G2) = χ(G1 G2
H

) >

ω(G1 G2
H

) where H is a clone in the next theorem.

Theorem 3.2.15. For all p, q ≥ 3, there exist graphs G1, G2 and G1 G2
H

at some

clone H such that χ(G1) = p, χ(G2) = q and pq = χ(G1)χ(G2) = χ(G1 G2
H

) >

ω(G1 G2
H

).

Proof. Let p and q be integers such that p, q ≥ 3.

Case 1. p = q: By Lemma 3.2.12, we have graphs G1 and G2 such that

G1 G2
H

= Kpq−1 at some clone H and χ(G1) = p = q = χ(G2). Following from

the proof of Lemma 3.2.12, since pq − 1 > 1 + (q − 1)p, we obtain that γ1 and γ2

are proper colorings of G1 and G2, respectively. Below are properties of G1 and

G2 defined in Lemma 3.2.12.

V (G1) = {u1, u2, . . . , upq−1}, ui is adjacent to uj if and only if i 6≡ j (mod p),

γ1(ui) = l where l ≡ i (mod p) and l ∈ {1, 2, . . . , p} and V (G2) = {v1, v2, . . . , vpq−1},
vi and vj are adjacent if and only if i = j + 1 or i ≡ j (mod p). For each

i = ap + b ∈ {1, 2, . . . , pq − 1} where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p, define

γ2(vi) = l where l ≡ a + b (mod q) and l ∈ {1, 2, . . . , q}.
Let G∗

1 be a graph such that V (G∗

1) = V (G1) ∪ {upq, upq+1, upq+2} and

E(G∗

1) = E(G1)∪{upqui, upq+1ui where i = 3, 4, 5, . . . , pq−2 and i 6≡ 0 (mod p)}∪
{upq+2ui where i = 3, 4, 5, . . . , pq − 2 and i 6≡ p− 1 (mod p)} ∪ {upqu1, upqupq−1} ∪
{upq+1u1, upq+1u2} ∪ {upq+2ui where i = 1, pq, pq + 1}.

Clearly, G1 ⊆ G∗

1. So χ(G∗

1) ≥ χ(G1) = p. Define f1 : V (G∗

1) → {1, 2, . . . , p}
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by for all ui ∈ V (G∗

1)

f1(ui) =























γ1(ui) if i = 1, 2, . . . , pq − 1,

p if i = pq, pq + 1,

p − 1 if i = pq + 2.

It is easy to check that f1 is proper. So χ(G∗

1) ≤ p. Hence χ(G∗

1) = p.

Next, let G∗

2 be a graph such that V (G∗

2) = V (G2) ∪ {vpq, vpq+1, vpq+2} and

E(G∗

2) = E(G2)∪{vpqvi, vpq+1vi where i = 3, 4, 5, . . . , pq− 2 and i ≡ 0 (mod p)}∪
{vpq+2vi where i = 3, 4, 5, . . . , pq − 2 and i ≡ p − 1 (mod p)} ∪ {vpqv1} ∪ {vpq+2vi

where i = pq, pq + 1}.
Clearly, G2 ⊆ G∗

2. So χ(G∗

2) ≥ q. Define f2 : V (G∗

2) → {1, 2, . . . , q} by for all

vi ∈ V (G∗

2)

f2(vi) =























γ2(vi) if i = 1, 2, . . . , pq − 1,

q − 1 if i = pq, pq + 1,

q − 2 if i = pq + 2.

To show that f2 is proper, it suffices to show that for all s ∈ {3, 4, . . . , pq − 2} and

t ∈ {pq, pq+2}, if vs is adjacent to vt, then f2(vs) 6= f2(vt). Let s ∈ {3, 4, . . . , pq−2}
and t ∈ {pq, pq + 2} such that vs is adjacent to vt.

Case 1.1. t = pq + 2: So s ≡ p − 1 (mod p). Then s ≥ p − 1 and also

1 ≤ s = kp + (p − 1) ≤ pq − 2 for some k ∈ N ∪ {0}. Then 0 ≤ k ≤ q − 2. So

−2 < −1 ≤ k − 1 ≤ q − 3 < q − 2. Hence f2(vs) ≡ k + p − 1 (mod q) ≡ k + q − 1

(mod q) ≡ k−1 (mod q) 6≡ q−2 (mod q) = q−2 = f2(vpq+2) = f2(vt). Therefore

f2(vs) 6= f2(vt).

Case 1.2. t = pq: We get that s ≡ 0 (mod p). So s = kp = (k−1)p+p ≤ pq−2

for some k ∈ N. Then 1 ≤ k ≤ q − 1. So −1 < 0 ≤ k − 1 ≤ q − 2 < q − 1. Hence

f2(vs) ≡ k − 1 + p (mod q) ≡ k − 1 + q (mod q) ≡ k − 1 (mod q) 6≡ q − 1

(mod q) = q − 1 = f2(vpq) = f2(vt). Therefore f2(vs) 6= f2(vt).

By both cases, we can conclude that f2 is proper. So χ(G∗

2) ≤ q. Hence

χ(G∗

2) = q.
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Let H1 = Ppq+2(upq+1, upq+2, upq, u1, u2, . . . , upq−1) and H2 = Ppq+2(vpq+1, vpq+2

, vpq, v1, v2, . . . , vpq−1). Clearly, H1 ⊆ G∗

1 and H2 ⊆ G∗

2. Define f : H1 → H2

by f(ui) = vi for all i ∈ {1, 2, 3, . . . , pq + 2}. We obtain a glued graph of G∗

1

and G∗

2 at H1 and H2 with respect to f, denoted by G∗

1 G∗

2
H1

∼=f H2

. Let V (G
∗

1 G∗

2
H1

∼=f H2

) =

{wi : i = 1, 2, . . . , pq+2 where wi corresponds to ui and vi}. It is easy to check that

G∗

1 G∗

2
H1

∼=f H2

= W∨Kpq−4(w3, w4, . . . , wpq−2) where W = C5(w2, wpq+1, wpq+2, wpq, wpq−1)∨
K1(w1). By Example 3.2.14, we obtain that χ(G

∗

1 G∗

2
H1

∼=f H2

) = 4 + pq − 4 = pq >

pq − 1 = 3 + pq − 4 = ω(G
∗

1 G∗

2
H1

∼=f H2

).

Case 2. p < q: By Lemma 3.2.12, we get graphs G1 and G2 such that G1 G2 =

Kpq−1 and χ(G1) = p = χ(G2). Following from the proof of Lemma 3.2.12, since

pq − 1 > 1 + (q − 1)p, we have that γ1 and γ2 are proper colorings of G1 and G2,

respectively. Below are properties of G1 and G2.

V (G1) = {u1, u2, . . . , upq−1}, ui is adjacent to uj if and only if i 6≡ j (mod p),

γ1(ui) = l where l ≡ i (mod p) and l ∈ {1, 2, . . . , p} and V (G2) = {v1, v2, . . . , vpq−1},
vi and vj are adjacent if and only if i = j + 1 or i ≡ j (mod p). For each

i = ap + b ∈ {1, 2, . . . , pq − 1} where a, b ∈ Z, a ≥ 0 and 0 < b ≤ p, define

γ2(vi) = l where l ≡ 2 + a − b (mod q) and l ∈ {1, 2, . . . , q}.
Define G∗

1, G∗

2 and f1 similarly to case 1. So χ(G∗

1) = p. Next, let f2 be a

coloring of G∗

2 defined by

f2(vi) =























γ2(vi) if i = 1, 2, . . . , pq − 1,

q − p + 1 if i = pq, pq + 1,

q − p + 2 if i = pq + 2.

Note that f2(v1) ≡ 2 + 0 − 1 (mod q) = 1 6= q − p + 1 = f2(vpq) because 1 =

0(p) + 1 and p 6= q. To show that f2 is proper, it suffice to prove that for all

s ∈ {3, 4, . . . , pq − 2} and t ∈ {pq, pq + 2}, if vs and vt are adjacent, then f2(vs) 6=
f2(vt). Let s ∈ {3, 4, . . . , pq − 2} and t ∈ {pq, pq + 2}. Assume that vs and vt are

adjacent.

Case 2.1. t = pq: So s ≡ 0 (mod p) and hence s = kp = (k − 1)p + p

for some k ∈ N. Since s ≤ pq − 2, we obtain that 1 ≤ k ≤ q − 1. Because

1−p < 2−p ≤ 2+(k−1)−p = 1+k−p ≤ q−p < q−p+1, so f2(vs) ≡ 2+(k−1)−p
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(mod q) = 1 + k − p 6≡ q − p + 1 (mod q) = q − p + 1 = f2(vpq) = f2(vt). Hence

f2(vs) 6= f2(vt).

Case 2.2. t = pq + 2: Then s ≡ p − 1 (mod p). So s ≥ p − 1 and then

s = kp + p − 1 for some k ∈ N
0. Since s ≤ pq − 2, we obtain that 0 ≤ k ≤ q − 2.

Because 2 − p < 3 − p ≤ 2 + k − p + 1 = 3 + k − p ≤ q − p + 1 < q − p + 2, so

f2(vs) ≡ 2 + k − p + 1 (mod q) = 3 + k − p 6≡ q − p + 2 (mod q) = q − p + 2 =

f2(vpq+2) = f2(vt). Hence f2(vs) 6= f2(vt).

By both cases, we can conclude that f2 is proper and also χ(G∗

2) ≤ q. Because

G2 is a subgraph of G∗

2, so χ(G∗

2 ≥ χ(G2) = q. Hence χ(G∗

2) = q.

We define graphs H1, H2 and the isomorphism f similarly to case 1. So we have

G∗

1 G∗

2
H1

∼=f H2

= W∨Kpq−4(w3, w4, . . . , wpq−2) where W = C5(w2, wpq+1, wpq+2, wpq, wpq−1)∨
K1(w1). and also χ(G

∗

1 G∗

2
H1

∼=f H2

) = 4 + pq − 4 = pq > pq − 1 = 3 + pq − 4 =

ω(G
∗

1 G∗

2
H1

∼=f H2

).

In the next example, we illustrate an example of graphs in Theorem 3.2.15.

We construct graphs G∗

1 and G∗

2 such that 9 = χ(G∗

1)χ(G∗

2) = χ(G
∗

1 G∗

2
H

) >

ω(G
∗

1 G∗

2
H

) = 8 where H is the clone of a glued graph between G∗

1 and G∗

2.

Example 3.2.16. We illustrate an example of graphs in Theorem 3.2.15 here. Let

p = 3 = q. First, we construct graphs G1 and G2 such that their glued graph at

some clone H is isomorphic to K8 by using Lemma 3.2.12. That graphs G1 and

G2 are showed in Figure 3.2.3.

u

u

u

u

u

u

u

u

u1

u2

u3

u4

u5

u6

u7

u8

u

u

u

u

u

u

u

u

v1

v2

v3

v4

v5

v6

v7

v8

G1 G2

Figure 3.2.3: Graphs with their glued graph isomorphic to K8.
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Moreover, we obtain proper colorings, γ1 and γ2, of G1 and G2, respectively,

defined by

γ1(vi) =























1 if i = 1, 4, 7,

2 if i = 2, 5, 8,

3 if i = 3, 6.

γ2(vi) =























1 if i = 1, 6, 8,

2 if i = 2, 4,

3 if i = 3, 5, 7.

Next, we add vertices {u9, u10, u11} into V (G1) and edges {u9ui, u10ui, u11uj

where i, j = 3, 4, 5, . . . , 7 and i 6≡ 0 (mod 3) and j 6≡ 2 (mod 3)}∪{u9u1, u9u8, u10u1,

u10u2, u11u1, u11u9, u11u10} into E(G1) to obtain G∗

1. We also add vertices {v9, v10, v11}
into V (G2) and edges {v9vk, v10vk, v11vl where k, l = 3, 4, 5, . . . , 7, k ≡ 0 (mod 3)

and l ≡ 2 (mod 3)} ∪ {v9v1, v11v9, v11v10} into E(G2) to obtain G∗

2. Figure 3.2.4

shows G∗

1 and G∗

2.

We next define proper colorings f1 : V (G∗

1) → {1, 2, 3} and f2 : V (G∗

2) →
{1, 2, 3} of G∗

1 and G∗

2, respectively, by for all ui ∈ V (G∗

1) and for all vi ∈ V (G∗

2).

f1(ui) =























γ(vi) if i = 1, 2, . . . , 8,

3 if i = 9, 10,

2 if i = 11.

f2(vi) =























γ(vi) if i = 1, 2, . . . , 8,

2 if i = 9, 10,

1 if i = 11.

We glue G∗

1 and G∗

2 at H1 = P11(u10, u11, u9, u1, u2, . . . , u8) ⊆ G∗

1 and H2 =

P11(v10, v11, v9, v1, v2, . . . , v8) ⊆ G∗

2 by isomorphism g defined by g(ui) = vi for all

i = 1, 2, . . . , 11. Then we obtain that G∗

1 G∗

2
H1

∼=gH2

as shown in Figure 3.2.4. We observe

that G∗

1 G∗

2
H1

∼=gH2

= K5(w3, w4, . . . , w7) ∨ W where W = C5(w2, w8, w9, w11, w10) ∨
K1(w1). So χ(G

∗

1 G∗

2
H1

∼=gH2

) = 5 + 4 = 9 = χ(G∗

1)χ(G∗

2). Moreover, χ(G∗

1)χ(G∗

2) = 9 >

5 + 3 = 8 = ω(G
∗

1 G∗

2
H1

∼=gH2

).

Though the upper bound in Theorem 3.2.8 is sharp, under a specified circum-

stance we can reduce it down.

Theorem 3.2.17. Let G1 and G2 be graphs and H be the clone of a glued graph

G1 G2
H

. If H is an induced subgraph of both G1 and G2, then χ(G1 G2
H

) ≤
χ(G1) + χ(G2).
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Figure 3.2.4: A glued graph whose chromatic number is larger than its clique

number
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Proof. Let G1 and G2 be graphs and H be a clone of G1 G2
H

. Assume H is an

induced subgraph of both G1 and G2. There are proper colorings f : V (G1) → S1

and g : V (G2) → S2 of G1 and G2, respectively where S1 and S2 are sets such that

|S1| = χ′(G1), |S2| = χ′(G2) and S1 ∩ S2 = φ.

Define α : V (G1 G2
H

) → S1 ∪ S2 by for each u ∈ V (G1 G2
H

),

α(u) =











f(u) if u ∈ V (G1),

g(u) if v ∈ V (G2\H).

To show that α is proper, let u and v be vertices in G1 G2
H

such that u and

v are adjacent by an edge e in G1 G2
H

.

Case 1. u ∈ V (G1) and v ∈ V (G2\H): So α(u) = f(u) 6= g(u) = α(v) because

S1 ∩ S2 = φ.

Case 2. u and v are in G1: If u is not adjacent to v in G1, then e ∈
E(G2)\E(G1) and also u, v ∈ V (G2). Hence u, v ∈ V (H) but e /∈ E(H). Therefore

H is not an induced subgraph, a contradiction. So u is adjacent to v in G1 and

α(u) = f(u) 6= f(v) = α(v).

Case 3. u and v are in G2\H: Similarly to case 1, u is adjacent to v in G2

and α(u) = g(u) 6= g(v) = α(v).

By all cases, we can conclude that α is proper. Hence χ(G1 G2
H

) ≤ χ(G1) +

χ(G2).

Example 2.1.14 reveals that the converse of Theorem 3.2.17 is not true.

We investigate the chromatic numbers of glued graphs and obtain two upper

bounds along with their sharpness. In next chapter, we consider the edge-chromatic

numbers of glued graphs.



CHAPTER IV

EDGE-COLORABILITY OF GLUED GRAPHS

Similarly to the previous chapter, we find bounds of the edge-chromatic numbers

of glued graphs. Graphs in this chapter are not necessary simple. We separate

this chapter into two sections. In the first section, we give background of the edge-

chromatic numbers of any graphs. We next find bounds of the edge-chromatic

numbers of glued graphs in the other section.

4.1 Background

First, we recall the definition and some bounds of the edge-chromatic number of

any graph.

Definition 4.1.1. A k-edge-coloring of a graph G is a labeling f : E(G) → S,

where |S| = k. The labels are colors; the edges of one color form a color class.

A k-edge-coloring is proper if incident edges have different labels; that is, if each

color class is a matching. A graph is k-edge-colorable if it has a proper k-edge-

coloring. The edge-chromatic number χ′(G) of a loopless graph G is the least

k such that G is k-edge-colorable.

Remark 4.1.2. Let G be a graph. Clearly, χ′(G) ≥ ∆(G). Because no edge in G

is incident to more than 2∆(G) − 1 other edges, so 2∆(G) − 1 ≥ χ′(G) ≥ ∆(G).

In [1], there is a theorem showing the edge-chromatic number of complete

graphs. We state such theorem without prove here.

Theorem 4.1.3. The edge-chromatic number of a complete graph Kn is

χ′(Kn) =











n − 1 if n is even,

n if n is odd.
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Vizing and Gupta([3]) can prove that ∆(G)+1 colors suffice when G is a simple

graph. We show that in the next theorem.

Theorem 4.1.4 ([3]). (Vizing [1964, 1965], Gupta [1966])

If G is a simple graph, then χ′(G) ≤ ∆(G) + 1.

By Theorem 4.1.4 and Remark 4.1.2, we can conclude that for a simple graph

G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. We can see the sharpness of that bounds in

Theorem 4.1.3. In non-simple graphs, their edge-chromatic numbers can be more

than their maximum degrees because of their multiple edges. Shannon showed an

upper bound of the edge-chromatic number for any graph in Theorem 4.1.5.

Theorem 4.1.5 ([3]). (Shannon [1949])

If G is a graph, then χ′(G) ≤ 3
2
∆(G).

Example 4.1.6. We introduce a graph G such that χ′(G) = 3
2
∆(G). The fat

triangles, loopless triangles with multiple edges, are graphs similar to Figure

4.1.1.

Figure 4.1.1: A fat triangle

The edges are pairwisely intersecting and hence require distinct colors. Thus

the edge-chromatic number of a fat triangle G is 3
2
∆(G).

4.2 Bounds of the Edge-Chromatic Numbers of Glued Graphs

This section, we investigate bounds of the edge-chromatic numbers of glued graphs

including non-simple glued graphs. We also study the line graphs of glued graphs

in order to obtain a bound of the chromatic number of any glued graph. We begin
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this section by giving a trivial lower bound of the edge-chromatic number of any

glued graph.

Remark 4.2.1. Let G1 and G2 be graphs. Because G1 and G2 are subgraphs of

G1 G2, we have that χ′(G1), χ
′(G2) ≤ χ′(G1 G2). Hence

χ′(G1 G2) ≥max{χ′(G1), χ
′(G2)}.

By applying Theorem 4.1.4, Theorem 4.1.5 and Lemma 1.2.8, we obtain upper

bounds of the edge-chromatic numbers of glued graphs as the following theorem.

Theorem 4.2.2. Let G1 and G2 be graphs and let G1 G2
H

be a glued graph of G1

and G2 at a clone H. Then

χ′(G1 G2
H

) ≤ 3

2
(∆(G1) + ∆(G2) − δ(H)).

In particular, if G1 G2
H

is a simple graph, then

χ′(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H) + 1.

Proof. Let G1 and G2 be graphs and let G1 G2
H

be a glued graph of G1 and

G2 at a clone H. Following from Theorem 4.1.5 and Lemma 1.2.8, we have that

χ′(G1 G2
H

) ≤ 3
2
(∆(G1) + ∆(G2) − δ(H)). If G1 G2

H
is a simple graph, by

Theorem 4.1.4 and Lemma 1.2.8, we have that χ′(G1 G2
H

) ≤ ∆(G1) + ∆(G2) −
δ(H) + 1.

We show the sharpness of Theorem 4.2.2 in Example 4.2.3 and Example 4.2.4.

Example 4.2.3. Let G1 and G2 be graphs in Figure 4.2.1.

Let H1 = C9(u1, u2, . . . , u9) and H2 = C9(v1, v2, . . . , v9). We glue G1 and G2 at

H1 and H2 by isomorphism f defined by f(ui) = vi for all i = 1, 2, . . . , 9. So we

have G1 G2
H1

∼=f H2

which is isomorphic to K9. Hence χ′(G1 G2
H1

∼=f H2

) = 9 = 6+4−2+1 =

∆(G1) + ∆(G2) − δ(H) + 1.

.
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Figure 4.2.1: A simple glued graph showing the sharpness of Theorem 4.2.2

The next example, we reveal the sharpness of Theorem 4.2.2 when the glued

graph is a non-simple graph.

Example 4.2.4. Let G1 and G2 be graphs as shown in Figures 4.2.2.

G1 G2
G1 G2
H1

∼=f H2

Figure 4.2.2: A non-simple glued graph showing the sharpness of Theorem 4.2.2

Clearly, ∆(G1) = 4 = ∆(G2). We glue G1 and G2 at edge sets {a, b, c} and

{1, 2, 3} with isomorphism f such that f(a) = 1, f(b) = 2 and f(c) = 3. Then

we have G1 G2
H1

∼=f H2

as shown in Figure 4.2.2. Because G1 G2
H1

∼=f H2

is a fat triangle, so

χ′(G1 G2
H1

∼=f H2

) =
3

2
(6) = 9. Hence χ′(G1 G2

H1
∼=f H2

) = 9 =
3

2
(4 + 4 − 2) =

3

2
(∆(G1) +

∆(G2) − δ(H)).

For any graphs G1 and G2, we can prove that χ′(G1 G2) ≤ χ′(G1)+χ′(G2) in

Theorem 4.2.5. After that, we show the sharpness of this upper bound in Example

4.2.6.

Theorem 4.2.5. For any graph G1 and G2,

χ′(G1 G2) ≤ χ′(G1) + χ′(G2).
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Proof. Let G1 and G2 be graphs and let G1 G2
H

be a glued graph of G1 and

G2 at arbitrary clone H. There are proper edge-colorings f : E(G1) → S1 and

g : E(G2) → S2 of G1 and G2, respectively, where S1 and S2 are sets such that

|S1| = χ′(G1), |S2| = χ′(G2) and S1 ∩ S2 = φ. Define α : E(G1 G2
H

) → S1 ∪ S2

by for all e ∈ E(G1 G2
H

)

α(e) =











f(e) if e ∈ E(G1),

g(e) if e ∈ E(G2\H).

To prove that α is proper, let e1 and e2 be edges in G1 G2
H

such that e1 and e2

are incident in G1 G2
H

.

Case 1. e1 ∈ E(G1) and e2 ∈ E(G2\H): Because S1∩S2 = φ, so α(e1) 6= α(e2).

Case 2. e1 and e2 are edges in G1: Then e1 and e2 are incident in G1 and also

α(e1) = f(e1) 6= f(e2) = α(e2).

Case 3. e1 and e2 are edges in G2\H: Similarly to case 2., we have α(e1) =

g(e1) 6= g(e2) = α(e2).

By all cases, we have that α is proper and hence χ′(G1 G2) ≤ χ′(G1) +

χ′(G2).

Example 4.2.6. Let G1 and G2 be graphs as shown in Figure 4.2.3.

G1 G2
G1 G2
H1

∼=f H2

Figure 4.2.3: The sharpness of Theorem 4.2.5

Since ∆(G1) = 6, we have that χ(G1) ≥ 6. In Figure 4.2.3, labels are colors.

We can see that the edge-coloring of G1 in Figure 4.2.3 is proper and G1
∼= G2.

So χ(G1), χ(G2) ≤ 6. Hence χ′(G1) = 6 = χ′(G2). We glue G1 and G2 with the
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isomorphism f defined by f(a) = m, f(b) = n, f(c) = o, f(d) = p, f(e) = q

and f(h) = r. So we have G1 G2
H1

∼=f H2

as in Figure 4.2.3. Because a fat triangle

with the maximum degree 8 is subgraph of G1 G2
H1

∼=f H2

, so χ′(G1 G2
H1

∼=f H2

) ≥ 3
2
(8) = 12.

Next, let g be an edge-coloring of G1 G2
H1

∼=f H2

as in Figure 4.2.3. Clearly, g is proper.

So χ′(G1 G2
H1

∼=f H2

) ≤ 12. Hence χ′(G1 G2
H1

∼=f H2

) = 12. Consider χ′(G1 G2
H1

∼=f H2

) = 12 =

6 + 6 = χ′(G1) + χ′(G2). Hence the upper bound of the edge-chromatic number in

Theorem 4.2.5 is sharp.

Because of χ′(G) = χ(L(G))([2]), it is our motivation to study the line graphs

of glued graphs.

Definition 4.2.7. Let G be a connected graph. The line graph L(G) of G

is the graph generated from G by V (L(G)) = E(G) and for any two vertices

e, f ∈ V (L(G)), vertex e and vertex f are adjacent in L(G) if and only if edge e

and edge f share a common vertex in G. If H is the line graph of G, we call G the

root graph of H.
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u

a

b

c d

e

u

u u

u

u

u

u

ab

ac ad

ae

bc

cd

de

G L(G)

Figure 4.2.4: A line graph

Remark 4.2.8. For any subgraph H of a graph G, L(H) ⊆ L(G).

All graphs have their line graphs, but not all graphs are line graphs. For

example, there is no graph G such that L(G) = K1,3. So the K1,3 is not a line

graph. The next two theorems are characterization of the line graphs.

Theorem 4.2.9 ([3]). (Krausz [1943])

For a simple graph G, there is a solution to L(H) = G if and only if G decomposes

into complete subgraphs, with each vertex of G appearing in at most two in the list.
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Theorem 4.2.10 ([3]). (Beineke [1968])

A simple graph G is the line graph of simple graph if and only if G does not have

any of the nine graphs below as an induced subgraph.
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Lemma 4.2.11 shows the relationship between L(G1) L(G2) and L(G1 G2)

where G1 and G2 are graphs. This result helps us to find a condition to obtain a

smaller upper bound of the chromatic numbers of glued graphs showed in Theorem

4.2.12.

Lemma 4.2.11. Let G1 and G2 be graphs. L(G1) L(G2) ⊆ L(G1 G2).

Proof. Since G1 and G2 are subgraphs of G1 G2, we have that L(G1) and L(G2)

are subgraphs of L(G1 G2). So L(G1) ∪ L(G2) ⊆ L(G1 G2). Because for each

vertex and edge in L(G1) L(G2) are in L(G1) ∪ L(G2) which is a subgraph of

L(G1 G2), so L(G1) L(G2) ⊆ L(G1 G2).

Theorem 3.2.17 gives a condition to reduce an upper bound of the chromatic

numbers of glued graphs into the sum of the chromatic numbers of its original

graphs. This is another condition to get a smaller upper bound of the chromatic

numbers of glued graphs.
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Theorem 4.2.12. Let G1 and G2 be graphs. If G1 and G2 are line graphs, then

χ(G1 G2) ≤ χ(G1) + χ(G2).

Proof. Let G1 and G2 be graphs. Assume that G1 and G2 are line graphs. So there

are graphs G∗

1 and G∗

2 such that L(G∗

1) = G1 and L(G∗

2) = G2. By lemma 4.2.11, we

have that L(G∗

1) L(G∗

2) ⊆ L(G∗

1 G∗

2). So χ(L(G∗

1) L(G∗

2)) ≤ χ(L(G∗

1 G∗

2)).

Hence

χ(G1 G2) = χ(L(G∗

1) L(G∗

2))

≤ χ(L(G∗

1 G∗

2))

= χ′(G∗

1 G∗

2)

≤ χ′(G∗

1) + χ′(G∗

2) by Theorem 4.2.5

= χ(L(G∗

1)) + χ(L(G∗

2))

= χ(G1) + χ(G2).

The next example, we show that the converse of Theorem 4.2.12 does not hold.

Example 4.2.13. Let G1 and G2 be graphs as shown in Figure 4.2.5.
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Figure 4.2.5: The converse of Theorem 4.2.12 does not hold

Because ω(G1) = 2 and ω(G2) = 3 where ω(G) is the maximum size of a clique

of G, so χ(G1) ≥ 2 and χ(G2) ≥ 3. Next define colorings g1 : V (G1) → {1, 2} and

g2 : V (G2) → {1, 2, 3} of G1 and G2, respectively, as follows:
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g1(ui) =











1 if i = 1, 3, 5,

2 if i = 2, 4, 6.
g2(vi) =























1 if i = 1, 4, 6,

2 if i = 2, 5,

3 if i = 3.

We obvious that g1 and g2 are proper. So χ(G1) ≤ 2 and χ(G2) ≤ 3. Hence

χ(G1) = 2 and χ(G2) = 3. We can see that both G1 and G2 contain a copy of

K1,3(vertices u2, u3, u4, u6 in G1 and vertices v2, v3, v4, v6 in G2) which is one of

the nine graphs in Theorem 4.2.10. By Theorem 4.2.10, both G1 and G2 are not

line graphs. Let H1 = P5(u1, u2, . . . , u5) ⊆ G1 and H1 = P5(v1, v2, . . . , v5) ⊆ G2.

Define f : H1 → H2 by f(ui) = vi for all i = 1, 2, . . . , 5. So we have G1 /. G2
H1

∼=f H2
as

shown in Figure 4.2.5. Labels of vertices in Figure 4.2.5 are colors. We can see

that G1 /. G2
H1

∼=f H2
is 5-colorable. So χ(G1 /. G2

H1
∼=f H2

) ≤ 5. Since G1 /. G2
H1

∼=f H2
contains K5, we

have that χ(G1 /. G2
H1

∼=f H2
) ≥ 5. Hence χ(G1 /. G2

H1
∼=f H2

) = 5 = 2 + 3 = χ(G1) + χ(G2).

We have obtained a lower bound and upper bounds of the edge-chromatic

numbers of glued graphs. Together with the result about the line graphs of glued

graphs, we find a condition to get a smaller upper bound of the chromatic numbers

of glued graphs.



CHAPTER V

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

We have introduced the glue operation and investigated properties of glued graphs

emphasizing to their colorability. As follows, there are results in this thesis:

Let G1 and G2 be graphs.

Characterization:

1. A glued graph G1 G2 is a tree if and only if G1 and G2 are trees.

2. A glued graph G1 G2 is a forest if and only G1 and G2 are forests.

3. A glued graph G1 G2 is a bipartite graph if and only if G1 and G2 are

bipartite.

4. Let H be a clone of G1 G2
H

. If G1, G2 and H are k-partite graphs, then

G1 G2
H

is also a k-partite graph.

5. If G1 is acyclic and G2 is chordal, then G1 G2 is chordal.

6. Let H be the clone of a glued graph G1 G2
H

. If H is an induced subgraph of

both G1 and G2 and G1 G2
H

is chordal, then G1 and G2 are chordal graphs.

7. Let H be the clone of a glued graph G1 G2
H

. If H is an induced subgraph

of both G1 and G2 and G1 G2
H

is an interval graph, then G1 and G2 are

interval graphs.

8. L(G1) L(G2) ⊆ L(G1 G2).
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The chromatic numbers of glued graphs:

1. χ(G1 G2) ≥max{χ(G1), χ(G2)}.

2. Let H be the clone of a glued graph G1 G2
H

. Then χ(G1 G2
H

) ≤ ∆(G1) +

∆(G2) − δ(H) + 1. In particular, if G1 G2
H

is not a complete graph or an

odd cycle, then χ(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H).

3. χ(G1 G2) ≤ χ(G1)χ(G2).

4. For all positive integer n which is not prime, Kn is a glued graph such that

the product of the chromatic numbers of the original graphs is n. Hence the

bound χ(G1 G2) ≤ χ(G1)χ(G2) is sharp

5. Let H be a clone of G1 G2
H

. If H is an induced subgraph of both G1 and

G2, then χ(G1 G2
H

) ≤ χ(G1) + χ(G2).

6. If G1 and G2 are line graphs, then χ(G1 G2) ≤ χ(G1) + χ(G2).

The edge-chromatic numbers of glued graphs:

1. χ′(G1 G2) ≥max{χ′(G1), χ
′(G2)}.

2. χ′(G1 G2
H

) ≤ 3
2
(∆(G1) + ∆(G2) − δ(H)). In particular, if G1 G2

H
is a

simple graph, then χ′(G1 G2
H

) ≤ ∆(G1) + ∆(G2) − δ(H) + 1 where H is a

clone of a glued graph between G1 and G2.

3. χ′(G1 G2) ≤ χ′(G1) + χ′(G2).

5.2 Open Problems

This thesis brings some open problems for future work as follows:

1. In Section 2.2, we show that a glued graph between two interval graphs may

not be an interval graph while a glued graph between two non-interval graphs

may be an interval graph. Moreover, we give a condition to make sure that a

glued graph of two non-interval graphs is not an interval graph in Theorem
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2.2.23. An open problem is to investigate conditions to obtain that a glued

graph between two interval graphs is an interval graph.

2. By Theorem 3.2.8, we have that the chromatic number of any glued graph is

at most the product of the chromatic numbers of its original graphs. Since

the chromatic number of any graph is at least its clique number, we get

that ω(G1 G2) ≤ χ(G1 G2) ≤ χ(G1)χ(G2) where G1 and G2 are graphs.

What is a relation of ω(G1)ω(G2) and above parameters? Whether or not

ω(G1 G2) ≥ ω(G1)ω(G2)? Analyze the relation between the clique num-

bers and the chromatic numbers of glued graphs.

We had investigated the following two statements. Let G∗

1 and G∗

2 be

graphs.

• If ω(G∗

1) < χ(G∗

1) and ω(G∗

2) < χ(G∗

2), then ω(G∗

1 G∗

2) < χ(G∗

1 G∗

2).

• If ω(G∗

1) = χ(G∗

1) and ω(G∗

2) = χ(G∗

2), then ω(G∗

1 G∗

2) = χ(G∗

1 G∗

2).

We found that these two statements do not hold showed in the following

example. Let G1, G2, G3 and G4 be graphs as shown in Figure 5.2.1.

We can see that χ(G1) = 4 > 3 = ω(G1). It is easy to see that G1
∼= G2. So

χ(G2) = 4 > 3 = ω(G2), χ(G3) = 3 = ω(G3), and χ(G4) = 3 = ω(G4). Let

H1 ⊆ G1 and H2 ⊆ G2 be as in Figure 5.2.1 and let H3 = P4(a1, a2, a3, a4) ⊆
G3 and H4 = P4(b1, b2, b3, b4) ⊆ G3 Define isomorphism f : H1 → H2 by

f(ui) = vi for all i = 2, 3, 4, 5, 6, 7 and isomorphism g : H3 → H4 by g(ai) = bi

for all i = 1, 2, 3, 4. We get G3 G4
H3

∼=gH4

= G1 and G1 G2
H1

∼=f H2

as in Figure 5.2.1.

Labels of vertices in G1 G2
H1

∼=f H2

are colors. We can see that χ(G1 G2
H1

∼=f H2

) ≤ 4.

But G1 G2
H1

∼=f H2

contains K4, so χ(G1 G2
H1

∼=f H2

) = 4 = ω(G1 G2
H1

∼=f H2

). We observe

that ω(G1) < χ(G1) and ω(G2) < χ(G2) but ω(G1 G2
H1

∼=f H2

) = χ(G1 G2
H1

∼=f H2

)

while ω(G3) = χ(G3) and ω(G4) = χ(G4) but ω(G3 G4
H3

∼=gH4

) < χ(G3 G4
H3

∼=gH4

).

Hence an open problem is to find a condition to make the two statements

hold.

3. The total chromatic number of any graph is introduced in [5]. Let G be any
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G1 G2 G3

G4 H1 H2

u u

u u

u u

u u

1 2

3 4
2 1

3 4

G1 G2
H1

∼=f H2

Figure 5.2.1: An open problem.
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graph. The total chromatic number χ′′(G) is the smallest number of colors

needed to color all the elements of V (G) ∪ E(G) in such a way that no two

adjacent or incident elements receive the same color. Bounds of the total

chromatic number of any graph is showed in [5]. This motivates a future

work to investigate bounds of the total chromatic numbers of glued graphs.
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Definitions and Notations

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and

relations that associates with each edge two vertices(not necessarily distinct) called

its endpoints. A loop is an edge whose endpoints are equal. Multiple edges are

edges having the same pair of endpoints. A simple graph is a graph having no

loops or multiple edges. A non-simple graph is a graph which is not simple. In a

simple graph, when u and v are the end points of an edge e, denoted by e = uv(or

e = vu), they are adjacent and are neighbors. We write u ↔ v for “u is adjacent

to v”. Also we denote u 6↔ v for “u is not adjacent to v”. Let e1 and e2 be edges

of a graph G. We say e1 and e2 are incident if e1 and e2 share a common vertex.

Graph G having at least one edge is called non-trivial. For each vertex v in a

loopless graph G, the degree of vertex v in G, denoted by degG(v), is the number

of incident edges. The maximum degree of a graph G is denoted by ∆(G) while the

minimum degree of graphs G is denoted by δ(G). For a graph G, if ∆(G) = δ(G),

then we call that G is regular. The order of a graph G is the number of vertices

in G. An n-vertex graph is a graph of order n. The size of graph G is the

number of edges in G.

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆
E(G) and the assignment of endpoints to edges in H is the same as in G. We then

write H ⊆ G and say that “G contains H”. Given a subset V ′ ⊆ V (G). We call

V ′ as an induced subgraph of G, denoted by G[V ′], if V ′ is a subgraph in which

vertices of V ′ are adjacent in G[V ′] whenever they are adjacent in G.

For S ⊆ V (G) and M ⊆ E(G), we write G\S for the subgraph of G obtained

by deleting the set of vertices S. We write G\M for the subgraph of G obtained

by deleting the set of edges M . Let H be a subgraph of a graph G. We write G\H
for the subgraph of G obtained by deleting the set of vertices V (H) and the set of

edges E(H).

A path is a simple graph P of the form V (P ) = {x0, x1, . . . , xl}, E(P ) =

{x0x1, x1x2, . . . , xl−1xl} where l is a positive integer. A u, v-path is a path whose

vertices of degree 1 are u and v. We called u and v as its endpoints. A cycle is a
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graph such that two vertices are adjacent if and only if they appear consecutively

along the circle. The length of a cycle or path is its number of edges. An odd

cycle is a cycle of an odd length while an even cycle is a cycle of an even length.

A complete graph or a clique is a graph that every pair of vertices are adjacent.

The unlabeled path, cycle and complete graph with n vertices are denoted as Pn,

Cn and Kn, respectively. The labeled path, cycle and complete graph on the

vertex set {u1, u2, . . . , un} are denoted as Pn(u1, u2, . . . , un), Cn(u1, u2, . . . , un) and

Kn(u1, u2, . . . , un).

A graph G is connected if it has a u, v-path whenever u, v ∈ V (G). Otherwise,

G is disconnected. The components of a graph G are its maximum connected

subgraphs. A vertex-cut of a graph G is a set S ⊆ V (G) such that removing

vertices in S from V (G) increases the number of components.
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