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CHAPTER I 

INTRODUCTION 

 

Head and neck cancer is the seventh most common cancer worldwide with 

approximately 390,000 new cases annually and squamous cell carcinoma represents 

more than 90 percent of all head and neck cancers. In Thailand, squamous cell 

carcinoma of the head and neck comprises about 11 percent of all malignancies. This 

type of cancer is formed from reserve cells – cells that replaced injured or damaged 

cells in the epithelial cells. Five-year survival rates average about 50 percent. If the 

tumor is treated at an early stage before it has grown or spread significantly, survival 

rates are better – as high as 75 percent. 

The necessity of having an effective therapeutic of cancer is rapidly growing 

alongside the implementation of medical technology. Head and neck squamous cell 

carcinoma can be treated through one or more of the following: surgery, 

chemotherapy, radiation therapy, as well as new investigative treatments such as 

immunotherapy and gene therapy. However, the conventional treatment is not 

sufficient to manage the severity of cancer patients. Finding an appropriate molecular 

target for these new treatments has become increasingly important today's cancer 

research. Recently, a new treatment that uses molecular biology to assist the 

conventional treatment has emerged. Among the molecular targets for developing the 

treatment, transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase-9 

(MMP-9) are very interesting according to their roles in cancer progression. 

Over the last years, the relevance of MMP-9 or TGF-β1 in cancer research has 

grown considerably. MMP-9 was initially associated with the invasive properties of 

tumor cells, owing to its ability to degrade all major protein components of the 
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extracellular matrix (ECM) and basement membranes, while several studies have 

demonstrated the implication of TGF-β1 as a tumor promoter in later steps of tumor 

evolution, such as stimulation of cell migration and invasion which including up-

regulating of MMP-9 expression. Conversely, TGF-β1 can be also activated by 

MMP-9. Thus, both TGF-β1 and MMP-9 may facilitate the cancer progression by this 

interaction. 

 To date, the signaling pathway of how TGF-β1 induces MMP-9 expression is 

still unclear. Therefore, a better understanding of the functional complexity of this 

mechanism will benefit the development of new approach for cancer treatment. For 

this reason, the mechanism of which TGF-β1 could induce MMP-9 expression will be 

necessary to clarify whether they could be targeted for the future therapies against 

cancer. 

In this study, the model of head and neck squamous carcinoma cell lines were 

used to test the effect of TGF-β1 on MMP-9 expression and which mechanism was 

used in these cells by performing several molecular approaches including gelatin 

zymography, RT-PCR, western blotting, ELISA, EMSA and siRNA. The findings 

will be useful for further development of the gene therapy targeting both TGF-β1 and 

MMP-9, which will be an alternative treatment and provide a better outcome for the 

patients. 
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Problems  

1 What is the effect of TGF-β1 on the MMP-9 expression in head and neck 

squamous cell carcinoma? 

2 Which signaling pathway(s) is/are involved of TGF-β 1-induced-MMP-9 

expressions in head and neck squamous cell carcinoma? 

3 Is TGF-β1-induced-MMP-9 expressions in head and neck squamous cell 

carcinoma Smad-dependent?  

 

Hypothesis 

TGF-β1 could induce MMP-9 expression in head and neck squamous cell carcinoma 

and non-Smad signaling pathway(s) may participate in this mechanism.  
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Specific aims 

The specific aims of this present study are 

1. To study the expression pattern of MMP-9 induced by TGF-β in head and 

neck cancer cell line in each level 

 -   transcriptional level 

 -   protein synthesis level 

 -   enzyme activity 

2. To identify the possible non-Smad pathway(s) involved in TGF-β-induced 

MMP-9 expression in head and neck squamous cell carcinoma. 

3. To identify the relevance of non-Smad pathway with Smad pathway, if any. 

4. To clarify the importance of Smad2 and Smad3 in TGF-β-induced MMP-9 

expression in head and neck squamous cell carcinoma. 

5. To study the role of gene regulatory sequence, AP-1, in this mechanism. 

 

Expected benefits 

The findings will give a more understanding in the intracellular signaling of 

MMP-9 expression after TGF-β1 activation, which are the most complex and 

important factors that promote the invasive phenotype of cancer cell. Thus, these 

findings may be small jigsaw pieces that lead to the fulfilment of future treatment 

targeting TGF-β1/MMP-9 and improve the treatment outcome for the cancer patient.  
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CHAPTER II 

REVIEW LITERATURES 

 

Head and neck squamous cell carcinoma (HNSCC) 

 Head and neck cancer is the cancer that arises in the head or neck region, 

which are the nasal cavity, sinuses, lips, oral cavity, salivary glands, throat and larynx. 

Squamous cell carcinoma represents more than 90 percent of all head and neck 

cancers. In the United States, squamous cell carcinoma of the head and neck 

comprises about 4 percent of all malignancies. In Thailand, the estimated percent of 

oral cavity and pharynx cancer is about 6.8 and 4.8 percent of all cancers in male and 

female, respectively. In general, five-year survival rates average about 50 percent. If 

the tumor is treated at an early stage before it has grown or spread significantly, 

survival rates are better – as high as 75 percent (www.nci.go.th, www.cancer.gov). 

 

Figure 2.1. Head and neck squamous cell carcinoma (HNSCC) affected area. 

HNSCCs make up the vast majority of head and neck cancers, and arise from mucosal 

surfaces throughout this anatomic region. These include tumors of the nasal cavities, 

paranasal sinuses, oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. 

(www.cancerhelp.org.uk) 
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Males have this type of cancer about twice as often as females. A Tobacco 

product, especially smokeless tobacco, is a primary cause.  Females are more 

commonly experiencing this type of cancer as they use tobacco products.       This 

type of cancer also is more common   

 

Figure.2.2. Illustraion of oral cancer to represent HNSCC progression. (A) The typical 

clinical presentation of oral cancer. Benign squamous hyperplasia can often appear 

similar to normal mucosa. Novel molecular approaches have yielded considerable 

understanding of the field-cancerization hypothesis originally proposed by Slaughter 

and colleagues in 1953. In most patients, cellular repopulation in geographically 

distinct areas gives rise to multiple clinical lesions. Although these lesions may have 

different histopathological patterns, as shown, they are often clonally related, arising 

from the same cell. The progression from normal-appearing mucosa to invasive 

cancer is depicted in (B). Normal-appearing mucosa already harbors early genetic 

changes (Forastiere et al., 2001). 

 

 



 7 

among individuals in their 50s, 60s and older. Excessive alcohol use is also 

considered a risk factor in the development of squamous cell carcinoma, especially 

when used in conjunction with tobacco product use. In addition, Epstein-Barr virus 

(EBV); human papillomavirus (HPV) infection; gastroesophageal reflux disease 

(GERD); and exposure to paint fumes, plastic by products, wood dust, asbestos and 

gasoline fumes have been considered as possible risk factors. Irritation from poorly 

fitting dentures also has been implicated.  

Early detection and treatment by multiple modalities is important for better 

prognosis in head and neck cancer. For all sites and stages in the head and neck 

region, 5-year survival rate is improved if the patient was early detected and 

underwent treatment before the spreading of cancer to the lymph node. Goals of 

treatment generally consist of removal of cancer load, maintenance of quality of life, 

and prevention of secondary cancer. However, conventional treatments that involved 

surgery usually cause morbidity in patients. The development of new modalities such 

as immune therapy or gene therapy that target molecular proteins may result in 

improved survival and quality of life. 

Matrix metalloproteinases (MMPs)  

1.The MMPs family 

MMPs comprise a family of at least 28 secreted or transmembrane enzymes 

collectively capable of processing and degrading various Extracellular matrix proteins 

(ECM). Of these, at least 22 MMPs have so far been found in human tissues. MMPs 

share high protein sequence homology and have defined domain structures and thus, 

according to their structural properties, MMPs are classified either as secreted MMPs 

or membrane anchored MMPs, which are further divided into eight discrete 
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subgroups that are secreted MMPs include minimal-domain MMPs, simple 

hemopexin domain-containing MMPs, gelatin-binding MMPs, furin-activated 

secreted MMPs and vitronectin-like insert MMPs, while membrane bound MMPs 

include type I transmembrane MMPs, glycosyl-phosphatidyl inositol (GPI)-linked 

MMPs and type II transmembrane MMPs (Egeblad and Werb 2002.)  

All MMPs are synthesized with a predomain containing a leader sequence, 

which targets the protein for secretion (Sternlicht and Werb, 2001). They are secreted 

as latent proforms, with a few exceptions of furin-processed proteinases, such as 

MMP-11 or MMP-28. The prodomain of MMPs has an egg-like shape, and contains a 

well-conserved cysteine switch motif for maintaining the pro-MMP latent (Springman 

et al., 1990, Van Wart and Birkedal-Hansen, 1990). Generally, the structures of all 

MMP catalytic domains are quite similar (Bode et al., 1999). The shape of the 

catalytic domain is spherical with a flat active site cleft, which extends horizontally 

across the domain to bind peptide substrates or inhibitors. The catalytic domain has 

the zinc-binding motif, which coordinates a zinc atom at the active site, and under the 

zinc, an ALMYP methionine-turn (Stöcker et al., 1995). The latency of the zymogen 

is maintained through cysteine-switch motif, in which the cysteine residue acts as a 

fourth zinc-binding ligand to maintain the enzyme inactive. In addition to the catalytic 

zinc, the catalytic domain also contains structural zinc and two to three calcium ions. 

C-terminal hemopexin or vitronectin-like domains affect substrate or inhibitor 

binding, membrane activation and some proteolytic activities. The hemopexin 

domain, very similar in structure among the MMPs, is an ellipsoidal disc, and is 

connected to the catalytic domain by a hinge region. The hinge region is flexible and 

rich in proline residues. It may also influence substrate specificity (Bode et al., 1999, 

Sternlicht and Werb 2001).  
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Figure 2.3. Basic structural domains of the MMPs. The matrilysins contain the 

minimal domain structure onsisting of a signal peptide, a propeptide domain, and a 

catalytic domain with a highly conserved zinc-binding site. A conserved cysteine in 

the propeptide domain coordinates with the zinc in the active site to maintain latency 

of the proMMPs. The collagenases and stromelysins contain in addition to the 

minimal domain structure a hemopexin-like (PEX) domain in a four-bladed propeller-

type structure connected to the catalytic domain via a hinge region. The gelatinases 

have three fibronectin type II repeats within their catalytic domains, which allow 

binding to denatured collagens (gelatin). The MT-MMPs are tethered to the cell 

surface via a transmembrane domain or via a glycosylphosphatidylinositol (GPI) 

membrane anchor. Some of the MMPs contain a furin-cleavage site between their 

propeptide and catalytic domains allowing activation by furin-type convertases 

(Rundhaug et al., 2005). 



 10 

 

Figure 2.4. General mchanism of MMPs regulation. MMP function can be regulated 

at many levels. In addition to (1) RNA transcription and (2) protein synthesis, MMP 

function can be regulated at the levels of (3) secretion, intracellular trafficking, (4) 

subcellular or extracellular localization, (5) activation of the zymogen form, (6) 

expression of their endogenous protein inhibitors, such as tissue inhibitors of 

metalloproteinases (TIMPs) and α2-macroglobulin, and (7) protease degradation. 

ECM,extracellular matrix; GPI, glycosylphosphatidylinositol. (Page-McCaw et al., 

2007) 
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1.1. The role of MMPs in cancer 

The exact role of each individual MMP in each individual process is far from 

clear. Indirect evidence may support the coexistence of a specific MMP in a specific 

process, but this does not necessarily imply a causal relationship. Indeed, it may be 

that MMPs can replace each other in many processes. This assumption is supported 

by the fact that most MMP knockout mice do not have a sharply defined phenotype, 

and depletion of one specific MMP has not led to the death of an organism. Also, the 

specific substrates for each MMP are not clear. Because there are 100 known 

macromolecular components of the extracellular matrix, it will still take a huge 

amount of research to clarify precisely which component is a substrate for each 

specific MMP (Folgueras et al., 2004).  

The proposed role of MMPs in cancer progression is based on in vitro and in 

vivo preclinical studies of clinical specimens. MMPs degrade the basement membrane 

and extracelllular matrix, thus facilitating the invasion of malignant cells through 

connectiv tissues and blood vessel walls and resulting in the establishment of 

metastases. In knockout mice lacking specific MMPs exhibit reduced tumorigenesis, 

angiogenesis and tumor progression (Wilson et al., 1997; Itoh et al., 1998; Masson et 

al., 1998). MMPs expression, although low or undetectable in most normal tissues, is 

substantially increased in the majority of malignant tumors. Numerous studies 

demonstrate overexpression of MMPs in malignant tissues in comparison to adjacent 

normal tissues (Kugler et al., 1998; Hashimoto et al., 1998; Sutinen et al., 1998). In 

addition, the plasma and urine levels of MMPs are elevated in patients with cancer 

compared with healthy subjects (Zucker et al., 1999). The MMPs in tumor tissues are 

produced not only by malignant tumors but also by stromal firoblast and 

inflammatory cells. These cells may produce cytokines and proteins that induce the 
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MMPs production. MMPs are also participated in the regulation of tumor growth by 

target and activate growth factors whose precursors are anchored to the cell surface or 

sequestered in the peritumor ECM (Yu and Stamenkovic, 2000). The ability of MMPs 

to target substrates that influence the apoptotic process is also relevance for cancer. 

Thus, MMP-3 has pro-apoptotic actions on the neighboring epithelial cells (Witty et 

al., 1995). Also in this regard, it is of interest that mice deficient in MMP-2, MMP-3 

or MMP-9 have lower levels of apoptosis induced by TNF-α (Wielockx et al., 2001). 

MMPs activities have also been traditionally associated with a variety of escaping 

mechanisms that cancer cells develop to avoid host immune response (Coussens and 

Werb, 2002). Some MMPs, such a MMP-9 can suppress the proliferation of T-

lymphocytes through disruption of the IL-2Rα signaling (Sheu et al., 2001). In 

addition, MMPs may modulate antitumor immune reactions through their ability to 

efficiently cleave several chemokines (Van den Steen et al., 2002). The role of MMPs 

in angiogenesis is also dual and complex. The relevance of these enzymes as positive 

regulators of tumor angiogenesis has been largely demonstrated. Thus, several pro-

angiogenic factors such as vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF) or transforming growth factor-β (TGF-β) are induced 

or activated by these enzymes, triggering the angiogenic switch during carcinogenesis 

and facilitating vascular remodeling and neovascularization at distant sites (Belotti et 

al., 2003; Bergers et al., 2000; Sounni et al., 2002; Yu and Stamenkovic, 2000). An 

additional connection between angiogenic factors and MMPs derives from the recent 

finding that MMP-9 is induced in tumor macrophages and endothelial cells and 

promotes lung metastasis (Hiratsuka et al., 2002). Furthermore, host-derived MMP-9 

contributes to the malignant behavior of ovarian carcinomas by promoting 

neovascularization (Huang et al., 2002).  
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Figure 2.5. The functions of MMPs in tumor progression. The opposite effects of 

bioactive molecule processing by MMPs on cancer development are shown 

(Folgueras et a., 2004). 

 

Taken together, these findings illustrate the diversity of MMP functions 

associated with cancer. Hence, it is critical to identify the physiological role of each 

individual MMP and its specific participation in the multiple stages of tumor 

evolution to better develop effective therapeutic interventions. 
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2. Matrix metalloproteinase-9 

MMP-9 is belong to the gelatinases group (MMP-2 and MMP-9) in MMPs 

family, which are the main enzymes able to degrade the basement membrane, play a 

significant role in the ability of cancer to invade and metastasis. Because the 

disruption of basement membrane is a key step in malignant transformation, these 

MMPs are assumpted to play a key role during metastazing process. There were 

differences between MMP-2 and MMP-9. Many different types of tissue express 

continuously MMP-2 normally but MMP-9 only express in some specific tissue. 

Furthermore, MMP-9 is involved in many steps of cancer progression and more 

important for the invasive phenotype of cancer that MMP-2. This study will focus 

only on MMP-9, which is normally express in small number of cell type, but highly 

inducible in specific cells such as in tumor tissue. 

 2.1 Structure and functions of MMP-9 

MMP-9 is another metalloproteinase capable of basement membrane 

degradation in vivo. Unlike MMP-2, which is constitutively expressed by many cells, 

MMP-9 expression normally only occurs in trophoblasts, osteoclasts, and leukocytes 

and their precursors (Borregaard et al., 1995, Harvey et al. 1995, Janowska- 

Wieczorek et al., 1999, Witty et al., 1996). While MMP-2 expression has only slight 

control at the transcriptional level, MMP-9 transcription can be highly induced by a 

wide range of agents. These agents include growth factors, cytokines, cell-to-cell 

adhesion and cell to extracellular matrix (ECM) adhesion molecules, and agents 

altering cell shape. (Dong et al., 2001, Martin et al., 2001) Along with the differences 

between the quantities of MMP-2 and MMP-9 synthesis induction, there also exist 

qualitative differences. For example, TGF-β1 strongly up-regulates MMP-9 mRNA 
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expression while simultaneously down-regulating MMP-2 expression (Thompson et 

al., 2001). These differences suggest that these two enzymes have different biological 

functions. Similarly to MMP-2, MMP-9 is also synthesized as a precursor with a 

molecular mass of 92 kDa, which is bound to TIMP-1 (Murphy et al., 1989; Moll et 

al., 1990). However, in cell cytosol, the enzyme can be stored in either a latent or an 

active form, which is in contrast to MMP-2, which can be stored only in a latent form 

(Nguyen et al., 2001). The activation of proMMP-9 is a complex process, which is 

regulated by interaction with TIMP and other MMPs (Kolkenbrock et al., 1995). 

Numerous enzymes have been suggested to be capable of proMMP-9 activation. 

These include MMP-2, leukocyte elastase, tissue kallikrein (Menashi et al., 1994, 

Ferry et al., 1997), stromelysin, collagenase-1 (Kolkenbrock et al., 1995), and trypsin 

(Bu and Pourmotabbed 1996). MMP-9 has several active metabolites with molecular 

weights of 82, 67, 49, 41.5 and 40 kDa. All TIMPs can inactivate MMP-9, but TIMP-

1 seems to have the highest specific activity (Howard et al., 1991).  

The Zn2+binding domain of MMP-9 contains the conserved sequence 

AHEXGHXXGXXH, in which the three histidines are responsible for the 

coordination of the catalytic Zn2+-binding domain, forms the active site and is 

essential for the enzymatic activity. In the human proenzyme, the fourth ligand of the 

Zn2+is cysteine86 of the conserved sequence PRCGXPD in the prodomain. This 

prodomain is removed by various types of proteolysis or is distorted by substrate 

binding (Bannikov et al., 2002) to yield the active enzyme through the cysteine-

switch mechanism (Van Wart and Birkedal-Hansen, 1990). The function of the 

hemopexin-domain is less clear. It was shown that it is important for the binding of 

the TIMPs. The fibronectin type II repeats in MMP-9 is responsible for binding to 

gelatin, laminin, and collagen type I and type IV. The activation status of MMP-9 is 
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also important, because pro-MMP-9 bind with higher affinity to collagen type I and to 

gelatin, and with lower affinity to collagen type IV compared with active MMP-9 

(Van den Steen et al., 2002). 

 

Figure 2.6.  The protein structure of MMP-9. MMP-9 contain an amino-terminal 

signal sequence (Pre) that directs them to the endoplasmic reticulum, a propeptide 

(Pro) with a zinc-interacting thiol (SH) group that maintains them as inactive 

zymogens and a catalytic domain with a zinc-binding site (Zn). In addition to the 

domains that are found in the minimal domain MMPs, the simple hemopexindomain-

containing MMPs have a hemopexin-like domain —that is connected to the catalytic 

domain by a hinge (H) —which mediates interactions with tissue inhibitors of 

metalloproteinases, cell-surface molecules and proteolytic substrates. The first and 

the last of the four repeats in thehemopexin-like domain are linked by a disulphide 

bond (S–S). The gelatin-binding MMPs contain inserts that resemble collagen-

binding type II repeats of fibronectin (Fi) (Egeblad and Werb, 2002). 

 
The substrate-specificity of MMP-9 depends on the primary sequence of the 

substrate, because, in general, endopeptidases posses a clear preference for peptide 

sequences that can bind in the groove of the catalytic site. However, the three-

dimensional conformation and accessibility of the cleavage site in a substrate is also 

important. There are numerous reports demonstrating the ability of MMP-9 to cleave 

type IV collagen in vitro. The in vivo situation, however, is not equally clear. In 
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addition to type IV collagen, MMP-9 is able to cleave the type V and XI collagens 

(Pourmotabbed et al., 1994). To a lesser degree, it also has activity against aggrecan 

(Fosang et al., 1992) and elastin (Senior et al., 1991), but not against type I collagen 

(Murphy et al., 1982). Physiologically, MMP-9 participates in trophoblast 

implantation, bone development, wound healing, and inflammatory processes, 

probably by enabling inflammatory cells to invade into the inflammatory focus and by 

participating in the regulation of inflammatory responses (Borregaard et al., 1995, 

Harvey et al., 1995, Janowska-Wieczorek et al., 1999, Goetzl et al., 1996,Witty et al., 

1996, Sheu et al., 2001). Although there are physiologically only a few cell types 

expressing MMP-9, there are wide ranges of tumors showing MMP-9 expression 

either in the tumor cells or in the normal cells surrounding the tumor (Pyke et al., 

1992, Canete-Soler et al., 1994, Soini et al., 1994, Ashida et al., 1996, Iwata et al., 

1996).  

ECM Other proteins  

 

 

 

MMP-9 

substrates 

Agrecan 

Collagen IV, V, Xi, XIV 

Decorin 

Elastin 

Fibrillin 

Gelatin 

Laminin 

Link protein 

Osteonectin 

Vitronectin 

α2M 

α1PI 

Casein 

C1q 

Fibrin, Fibrinogen, Plasminogen 

IL-1β  

Pro-TGF-β  

TNF-α 

Substance-P 

 

Table 2.1. List of MMP-9 substrates. 
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Figure 2.7. MMP-9 functions. (a) Cleavage component of ECM. (b) Alternatively, 

MMP-9 proteolysis can generate specific cleavage product that then signal in an 

autocrine or paracrine manner. (c) Regulate tissue architecture by cleavage 

intercellular junction or basement membrane. (d) Activate or modify latent signaling 

molecules (modified from Page-McCaw et al., 2007).  
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2.2 The regulation of MMP-9 activity 

 In general, MMP-9 is low in expression, but highly inducible by several 

cytokines, growth factors and oncogenes such as interleukin-1 (IL-1), tumor necrosis 

factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) (Björklund M and 

Koivunen, 2005).  The regulation of MMP-9 is proven to be complex and 

controversial because multiple pathways are involved.  Unlike the oncogenes, most 

MMPs are not up-regulated by gene amplification or activating mutation, therefore, 

the increased of MMP-9 expression is probably due to transcriptional changes rather 

than genetic alterations (Egeblad and Werb, 2002).  Previous studies concluded that 

the regulation of MMP-9 could be at the transcriptional level, post-transcriptional 

level, secretion, zymogen activation and inhibition of proteolytic activity by its 

inhibitors such as TIMP-1 (Chakraborti et al., 2003). 

 

Figure 2.8. Regulation of MMP-9 activity. Like other MMPs, MMP-9 can be 

regulated at transcriptional level, protein synthesis level, secretion, activation and 

inhibition. 
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The MMP-9 gene (chromosome 20q13.2) is transcribed into a 2.5 kb mRNA 

species (Huhtala et al., 1991). Several binding sites for transcription factors have been 

described. At position -29 a TATA motif-like sequence is located and a consensus 

sequence for nuclear stimulating protein-1 (Sp-1), also named GC box is present at -

563 bp relative to the transcriptional start site. More proximally, at position -54 bp, a 

retinoblastoma binding element (RBE) or GT box is located and is also recognized by 

Sp-1. A consensus of TGF-β-inhibitory element (TIE) is located at -472 bp. 

Furthermore, the promoter contains at least four 12-O- tetradecanoyl-phorbol-13-

acetate (TPA)-responsive elements (TRE) or activating protein-1 (AP-1) binding 

sites. Several sequences with homology to the polyomavirus enhancer A-binding 

protein-3 (PEA-3), which are recognized by Ets-1 and Ets-2 proto-oncogenes also 

found in MMP-9 promoter. Moreover, the MMP-9 promoter also contains a nuclear 

factor-kappa B (NF-κB) motifs and a microsatellite segment of alternating CA 

residues (Sato and Seiki, 1993; Himelstein et al., 1997; Gum et al., 1997; Huhtala et 

al., 1991; Van den Steen et al., 2002). 

 

Figure 2.9. Diagrammatic representation of the transcription factor binding sites in 

the MMP-9 promoter. Transcription factor binding sites are represented as boxed 

areas (Sato and Seiki, 1993; Himelstein et al., 1997; Gum et al., 1997; Huhtala et al., 

1991; Van den Steen et al., 2002).  
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The 5’ flanking region of the gene contains binding sites for AP-1, NF-κ B, 

and Sp1, which synergistically mediate the induction of MMP-9 gene expression by 

TPA or TNF-α, and TGF-β inhibitor element (TIE) (Huhtala et al., 1991, Sato & Seiki 

1993). The GT box located downstream of the AP-1 site is essential for the induction 

of gene transcription by v-Src, which is also able to mediate promoter activation via 

the AP-1 site (Sato et al., 1993). Ets and Sp-1 are essential for activation of MMP-9 

gene expression in fibroblasts (Himelstein et al., 1998). NF-κ B is necessary for the 

upregulation of MMP-9 gene by inflammatory cytokines, IL-1α or TNF-a, but not by 

bFGF or PDGF. AP-1 slightly mediates the gene transcription by bFGF, PDGF, IL-1α 

or TNF-α (Bond et al., 1998). Functional polymorphism in the promoter of the MMP-

9 gene results in variation in its expression at the transcriptional level (Peters et al., 

1999). However, the expressions of mechanism of MMP-9 regulated by these 

mediators are still not clear and may depend on the context of the cell type and 

staging. The intracellular signaling pathways that contribute to MMP-9 gene 

transcription is vary depend on the cell-type and the inducers. These well-documented 

signaling pathways are MAPK, STAT, PI3K/Akt, Smad and PKC (Van den Steen et 

al., 2002).  

2.3 The role of MMP-9 in cancer 

 As mentioned earlier, MMP-9 is involved in many steps of cancer progression, 

which are regulation of tumor growth, tumor metastasis, tumor neovascularization 

and suppression of the host immune response to tumor. In head and neck cancer, 

numerous studies indicated the important roles of MMP-9 in both in vitro and in vivo. 

MMP-9 participates in the invasion of cells through matrix barriers and collagenolysis 

during invasion and tumor progression by degrading the matrix macromolecules. 
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Many animal studies suggest that MMP-9 (along with MMP-2) has a critical role in 

tumor invasion (Sier et al., 1996). For example, the human osteosarcoma cell line up-

regulates MMP-9 expression in response to TNF-α and becomes more invasive in 

vitro. Treatment of these cells with TNF-α prior to injection into nude mice results in 

an increased number of lung metastases in a dose-dependent manner (Kawashima et 

al., 1994). In ICAM-deficient nude mice, lymphomas are not able to disseminate 

before they attain the capability of continuous MMP-9 expression (Lalancette et al., 

2000). In vivo study showed the loss of ability to metastasis and reduced angiogenesis 

in the Mmp-9 null mice (Itoh et al., 1998, 1999).  Hence, studies of the mechanisms 

that regulate expression of MMP-9 are important for understanding the process of 

cancer progression. 

MMP-9 is expressed in head and neck carcinoma cells and may take part in 

the progression and invasion of tumors (O-Charoenrat et al., 2000).  An association 

between MMP-9 mRNA, protein or enzyme activity to invasion or to lymph node 

metastasis in head and neck cancers had been suggested (de Vincente et al., 2005).  

Overexpression of MMP-9 mRNA was found associated with progression of oral 

dysplasia to cancer (Jordan et al., 2004).  In addition, highly expression of MMP-9 

was reported to be associated with survival rate of head and neck squamous cell 

carcinoma patients (Ruokolainen et al., 2004).   

 

Transforming growth factor-beta1 (TGF-β1) 

1. The TGF-β family 

The transforming growth factor-β family comprises a large number of 

structurally related polypeptide growth factors, each capable of regulating a 

fascinating array of cellular processes including cell proliferation, lineage 
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determination, differentiation, motility, adhesion, and death. Expressed in complex 

temporal and tissue-specific patterns, TGF-β and related factors play a prominent 

role in the development, homeostasis and repair of virtually all tissues in organisms. 

Collectively, these factors account for a substantial portion in the intracellular signals 

governing cell fate (Derynck et al., 1998). 

TGF-β and related factors are multifunctional agonists whose effects depend 

on the state of responsiveness of the target cell as much as on the factors themselves. 

To date, there are about 9 subfamilies in TGF-β family which are Bone morphogenic 

protein 2 (BMP-2) subfamily, BMP-5 subfamily, Growth and differentiation factor 5 

(GDF-5) subfamily, Vg1 subfamily, BMP-3 subfamily, Activin subfamily, TGF-β 

subfamily, Intermediate members such as Nodal and several distantly related 

members.  TGF-β is the prototype of this family and three subfamiles are well 

characterized in vertebrate as listed in Table 2.2. 
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TGF-β family members, their receptors and signaling molecules (Heldin et al., 1997) 

Subfamily TGF-β Activin BMP 

 

Ligands 

TGF-β1 

TGF-β2 

TGF-β3 

Activin A BMP-2 

BMP-4 

BMP-7 

 

Type II receptor 

TβRII ActRII 

ActRIIB 

BMPRII 

ActRII 

ActRIIB 

 

Type I receptors 

TβRI ActRI 

ActRIB 

BMPRIA 

BMPRIB 

ActRI 

 

Pathway-restricted 

Smads 

Smad2 

Smad3 

Smad2 

Smad3 

Smad1 

Smad5 

Smad9 

Common-partner Smad Smad4 Smad4 Smad4 

 

Inhibitory Smads 

Smad6 

Smad7 

Smad6 

Smad7 

Smad6 

Smad7 

 

 

 

Responses 

Regulation of 

mitogenicity 

Induction of ECM 

Induction of dorsal 

mesoderm 

Induction of erythroid 

differentiation 

Induction of follicle-

stimulating hormone 

release 

Induction of ventral 

mesoderm 

Induction of cartilage 

and bone 

Induction of apoptosis 

  

Table 2.2. TGF-β family member, their receptors and signaling molecules (Heldin et 

al., 1997) 
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2. The TGF-β1 protein 

Transforming growth factor beta (TGF-β) is a protein that comes in three 

isoforms called TGF-β1, TGF-β2 and TGF-β3. Recently, two more isoforms have 

been discovered, TGF-β4(Tabibzadeh et al., 1998) and TGF-β5(Chimal-Monroy and 

Diaz de Leon, 1999).Their amino acid sequences display   homologies on the order of 

70-80 %. TGF-β1 is the prevalent form and is found almost ubiquitously while the 

other isoforms are expressed in a more limited spectrum of cells and   tissues. The 

biologically active forms of all isoforms are disulfide-linked homodimers. Disulfide-

linked heterodimers of TGF isoforms have been reported also. The heat- and acid-

stable monomeric subunits have a length of 112 amino acids. TGF-β4 contains two 

additional amino acids in the vicinity of the aminoterminal end. The isoforms of TGF-

β arise by proteolytic cleavage of longer precursors (TGF-β1: 390 amino acids, TGF-

β2 : 412 amino acids, TGF-β3 : 412 amino acids, TGF-β4 : 304 amino acids, TGF-β5 

: 382 amino acids). The isoforms are derived from the carboxyterminal ends of these 

precursors.It was also the original name for TGF-β1, which was the founding member 

of this family. Many cells synthesize TGF-β1 and almost all of them have specific 

receptors for this peptide. TGF-β1 controls proliferation, cellular differentiation, and 

other functions in most cell types. It can also act as a negative autocrine growth 

factor.  

 TGF- β is stored in the ECM as a large latent complex composed of 

TGF-β, its propeptide TGF-β latency-associated protein (LAP), and a latent TGF-β-

binding protein (LTBP) (Taipale et al., 1994). However, different inactive TGF-β 

forms may exist, since osteoblast-like cells produce small latent TGF-β complex 

lacking the LTBP (Dallas et al., 1994). The matrix association and release of TGF-β 

form a finely regulated network for the maintenance of ECM. The mechanisms of 
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TGF-β activation are not known in detail. The main fraction of the factor in the serum 

is covalently attached to one of the Acute phase proteins, Alpha-2-Macroglobulin 

(α2M) the synthesis of which is known to be induced several hundred-fold by IL-6. 

α2M/TGF-β complexes are believed to represent TGF-β molecules released by 

platelets after tissue injuries and destined to degradation. Multiple proteases such as 

serine proteases or MMPs are able to release TGF-β from ECM, and further 

proteolytic activation of the inactive TGF-β by MMPs or by acid treatment, enable its 

signalling through type I and type II serine/threonine kinase receptors (Taipale et al., 

1992, Wrana et al., 1994, Yu and Stamenkovic 2000, Maeda et al., 2002). 

                

                    (a)                                                                  (b) 

Figure 2.10. Sructure of TGF-β1. (a) TGF-β latency complex.The structure of the 

inactive TGF-β complex is shown with the TGF-β dimer interacting with the latency 

associated peptide (LAP) and the latent TGF-β binding protein (LTBP). Arrow 

indicates cleavage site. (b) Structure of TGF-β. The crystal structure of TGF-β is 

shown. Amino acids important in regulating binding of TGF-β to receptors and 

binding proteins have been highlighted (www.wikipedia.org).  
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3. Smad proteins and TGF- β1 signaling 

Members of the TGF-β family exert their effect by binding to heteromeric 

complexes of two different kinds of serine/threonine kinase receptors denoted type I 

and type II (Massagué et al., 1998; Heldin et al., 1997). Seven different type I 

receptors (activin receptor-like kinase (ALK)-1 to 7) (ten Dijke et al., 1994) and four 

different type II receptors have been identified to date. The ligand specificity of these 

receptors has been determined primarily by their ability to bind a given ligand and 

activate specific downstream genes. After ligand stimulation, the activated type I 

receptor transduces the signal by phosphorylating a member of a family of proteins 

known as Smads. Eight Smad proteins have been identified in mammals so far and 

have been divided into three classes based on their structure and function: receptor-

regulated Smads (R-Smads), common-partner Smads (co-Smads) and inhibitory 

Smads (I-Smads).  These Smad proteins play a significant role in TGF-β signaling 

pathway. 

The Smad proteins, consisting of about 400-500 amino acids each, have 

conservative N-terminal (40-94% sequence identity) and C-terminal (38-90% 

sequence identity) domains known as MH1 and MH2 domains (Mad homology 

domains) linked by a proline-rich linker region differing in sequence and length.  

The R-Smads can be further divided in 2 subtypes: those activated by TGF-β 

and activin receptors (Smad2, Smad3), and those activated by BMP receptors 

(Smad1, Smad5 and Smad8), although data is accumulating which suggests that 

Smad1, 5, 8 might also act promiscuously with TGF-β receptors (Macias-Silva et al., 

1998; Lux et al., 1999). One co-Smad (Smad4) has been described so far in mammals, 

but others might exist; two co-Smads were found in Xenopus laevis (Howell et al., 

1999; Masuyama et al., 1999). 
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Figure 2.11. Structural organization and role of the domains of Smads, and candidate 

target sites for kinase pathways. Such pathways include Erk MAPK and JNK, as well 

as CamKII and PKC. The significance of candidate MAPK phosphorylation sites in 

Smad4 and Smad6/Smad7 is not known (www.nature.com). 

 

The R-Smads and Smad4 are expressed in most, if not all, cell types. The Co-

Smad, Smad-4, forms hetero-oligomers with the pathway-restricted Smads and is a 

common mediator of TGF-β, activin and BMP signaling (Lagna et al., 1996; Zhang et 

al., 1997). Although ubiquitously involved in Smad-mediated transcription, Smad4 is 

not essential for TGF-β response because some TGF-β responses occur in the absence 

of Smad4 and some Smad4-deficient cell lines have limited responsiveness to TGF-β 

(Sirard et al., 2000).  

To date, two I-Smads have been identified in mammals, Smad-6 and Smad-7 

(Imamura et al., 1997; Nakao et al., 1997; Topper et al., 1997). These Smads have 
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been identified as inhibitors of TGF-β, activin and BMP signalling and might function 

in negative feedback loops since TGF-β, activin and BMPs are all able to induce their 

expression.  

Upon ligand binding, the constitutively phosphorylated type II receptor kinase 

trans-phosphorylates and activates the type I receptor to initiates downstream 

signaling (Wrana et al., 1994). The first intracellular step in the TGF-β/Smad 

pathway, the recruitment of Smad2 and Smad3 to the TGF-β receptor complex, is 

controlled by amembrane-associated FYVE-domain-containing protein, termed Smad 

anchor for receptor activation (SARA)(Tsukazaki et al., 1998). R-Smads interact 

directly with activated type I receptor and the receptors will then internalized in 

endosomes. Upon phosphorylation of Smad2 and Smad3 by activated type I receptors, 

R-Smads and SARA dissociate from the TGF-β receptor complex. Phosphorylation of 

R-Smads relieves the auto-inhibitory MH1-MH2 interaction and allows R-Smads to 

form complexes with Smad4 through their MH2 domains and translocation into 

nucleus and regulate transcription of the target genes. The released SARA is capable 

of recruiting other non-activated Smad2 or Smad3 for receptor presentation (ten Dijke 

et al., 2000). 

In a non-activated state, R-Smads exist as monomers and upon receptor-

mediated phosphorylation, they form homo-dimers and hetero-dimers with each other, 

as well as hetero-dimers or hetero-trimers with Smad4 (Kawabata et al., 1998; Wu et 

al., 2001). Without ligand stimulation, R-Smads localize in the cytoplasm, whereas 

Smad4 is distributed in the nucleus and the cytoplasm (Inman and Hill, 2002). 

I-Smads interact stably with activated type I receptors and prevent 

phosphorylation of the R-Smad by these receptors. Smad-7 interacts with all activated 

type I receptors (Souchelnytskyi et al., 1998) and is a general inhibitor of TGF-β 
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superfamily induced responses, whereas Smad6 is thought to inhibit preferentially the 

phosphorylation of BMP Smads (Itoh et al., 1998) although this is controversial 

(Imamura et al., 1997). While Smad-7 mRNA expression is rapidly upregulated by R-

Smads, Smad-6 mRNA is induced after several hours and is maintained for 48 hours 

or more (Miyazono et al., 1999). This again suggests different mechanisms for the 

action of the two I-Smads. 

Ubiquitin-proteasome-mediated degradation controls the levels of Smds post-

transcriptionally. The HECT (homologous to the E6-AP carboxy terminus) family E3 

ubiquitin ligases, Smurf1 (Smad-ubiquitin-regulatory factor 1) and Smurf 2, 

antogonize TGF-β family signaling by interacting with R-Smads and target them for 

degradation (Derynck and Zhang, 2003). Proteasome degradation also regulates the 

R-Smad levels after translocation into the nucleus. However, only a small fraction of 

Smad2 and Smad3, in the absence or presence of TGF-β, is ubiquitinated, and, upon 

TGF-β signaling, phosphorylated Smad2 or Smad3 is not target for degradation, but 

dephosphorylated and relocated to the cytoplasm (Inman and Hill, 2002). 

In contrast, Smad4 is not subjected to ubiquitin-mediated degradation. Instead, 

sumoylation of Smad4 enhances its stability (Lee et al., 2003). However, some tumor-

associated mutations allow ubiquitination and/or decrease the stability of Smad4 (Xu 

et al., 2000). 

 



 31 

 

Figure 2.12. General mechanism of TGF-β receptor and Smad activation.   At the cell 

surface, the ligand binds a complex of receptor types I and II. The consequently 

activated type I receptors phosphorylate selected receptor-activated Smads (R-

Smads) and then form a complex with a common Smad4. Activated Smad complexes 

translocate into the nucleus, where they regulate transcription of target genes, 

through physical interaction and functional cooperation with DNA binding 

transcription factors (X) and CBP or p300 coactivators. Activation of R-Smads by 

type I receptor kinases is inhibited by Smad6 or Smad7. R-Smads and Smad4 shuttle 

between nucleus and cytoplasm. The E3 ubiquitin ligases Smurf1 and Smurf2 mediate 

ubiquitination and consequent degradation of R-Smads and type I 

receptor(www.nture.com). 
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After the nuclear localization of Smad-4 complex, they bind to DNA and 

affect gene transcription. TGF-β may induce c-Fos and c-Jun proto-oncogenes, which 

heterodimerize to form an AP-1 complex (Risse et al., 1989, Subramaniam et al., 

1995). For many TGF-β regulated genes, Smads co-operate with the AP-1 complex at 

the AP-1 binding site, although Smads may also independently bind to AP-1 

sequence, to regulate transcription of genes such as MMP-1 or MMP-13 (Zhang et al., 

1998, Yuan & Varga 2001, Tardif et al., 2001). Inhibitory Smads act as negative 

regulators of signaling by the TGF-β s or BMPs (Nakao et al., 1997a, Imamura et al., 

1997).  

 

 

 

 

 

 

 

 



 33 

 

Figure 2.13. The R-Smad–Smad4 complex cooperates with sequence-specific 

transcription factors (X). The complex bind with high affinity to a cognate DNA 

sequence (XBE), yet also binds with lower affinity to a Smad-binding DNA element 

(SBE). R-Smads interact directly with the essential CBP or p300 coactivator, and 

Smad4 serves as coactivator for R-Smads by stabilizing the R-Smad interaction with 

CBP/p300. Other Smad-interacting coactivators further define the level of Smad-

mediated transcription activation Smad interacting co-repressors downregulate 

Smad-mediated transactivation. Several of these are proto-oncogenes, for example, c-

Ski and the related SnoN, c-Myc99, 100 and Evi1—linking malignant transformation 

to repression of TGF-β /Smad-induced transcription. Other Smad co-repressors, for 

example, the homeodomain proteins TGIF (TGF-β-induced factor) and SNIP1 (Smad 

nuclear interacting protein) repress not only TGF-β/Smad-mediated transcriptional 

activation, but also Smad-independent transcription. Interaction of Tob with BMP-

activated Smads represses BMP-activated gene expression, whereas its interaction 

with Smad2 represses interleukin-2 expression in T cells (www.nature.com). 
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3.1. The possible networks of signaling induced by TGF-β  

   TGF-β response are not solely the result of the activation of Smad cascade, 

but are highly cell-type specific and dependent upon interactions of Smad signaling 

with a variety of other intracellular signaling mechanism initiated or not by TGF-β 

that may either potentiated, synergize or antagonize the linear TGF-β pathway. 

Nowadays, many studies showed the possibilities of network of crosstalks with other 

signaling pathways including the mitogen-activated protein kinase (MAPK), the NF-

kB or phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway, that largely contribute 

to modify the Smad signals and allow the pleiotropic activities of TGF-β and these 

pathways may be called as the Smad-4 independent pathway. 

The identification of Smad dependent and independent genes causally 

involved in these TGF-β-mediated tumor promoting effects requires further research. 

Of note, Hocevar et al., recently reported c-Jun N-terminal kinase (JNK) dependent 

TGF-β-induced fibronectin expression in cell lines lacking the Smad4. The Smad-4 

independent pathways, especially MAPK pathways, that can be activated by TGF-β 

have been described in many studies, but their biological significance remain largely 

unknown in carcinogenesis. Ras signaling has been proposed to inhibit TGF-β 

signaling via the ERK pathway by blocking the nuclear translocation of Smad1, 2, 

and 3 (Kretzschmar et al., 1999) that may explain why some cells with hyperactive 

Ras signaling do not respond to TGF-β ( Calonge and Massague, 1999 ; Kretzschmar 

et al.,1999 )   While  the activation  of  MAPK  pathway may  have  positive or  

negative  regulatory  effects  on  R-Smads depending on the nature of MAPK 

activation. These could be concluded that   there is a particularly complicated and 

intimate inter-relationship between the TGF-β system and Ras / MAPK pathway in   
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carcinogenesis. The AP-1 transcriptional complex is a primary target of a number of 

MAPK pathways and it has been shown that AP-1 components can interact directly 

with Smad3 (Zhang et al., 1998; Peron et al., 2001; Verrecchia et al., 2001) 

suggesting that AP-1 may be central to cross-talk between Smad and MAPK 

pathways. 

Recent studies identified NF-kB transcription factor as another key modulator 

of TGF-β-induced epithelial-mesenchymal transition (EMT) in mammary epithelial 

cells overexpressing Ras oncogene (Huber et al., 2004). Inhibition of NF-kB blocked 

EMT in these cells, while its ectopic activation induced mesenchymal phenotypes 

independently of TGF-β and its inhibition in mesenchymal cells restored the epithelial 

phenotype. Thus, a cooperation of TGF-β, Ras and NF-kB is critical for epithelial 

plasticity manifested by EMT (Zhou et al., 2004; Bachelder et al., 2005).  

TGF-β activates PI3K in a RhoA-dependent manner, and PI3K/Akt signaling 

is required for migration of breast cancer cells (Bakin et al., 2000). Interestingly, 

some of the features of malignancy tumors such as cell motility may overlap with 

PI3K-dependent cell scattering induced by HGF (Royal and Park, 1995; Day et al., 

1999).  

In prostate cancer cell line, Murine myeloma cell line, M1, and the human 

hepatoma cell line, Hep3B, the activation of p38 and JNK contribute in the TGF-β-

induced apoptosis (Edlund et al., 2003; Sanchez-Capelo et al., 2005) and it has been 

proposed that delayed p38 activation by TGF-β rather than rapid Smad-independent 

p38 activation, participates in the induction of apoptosis by TGF-β (Yoo et al., 2003). 

Moreover, a number of studies have shown an involvement of p38 kinase 

activity in TGF-β induce several MMPs biosynthesis in fibroblast, breast epithelial 

cell or in transformed keratinocytes (Ravanti et al., 1999; Johansson et al., 2000; Kim 
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et al., 2002, 2003). Overexpression of endogenous TGF-β in Smad-4 deficiency 

human oral keratinocytes lead to growth inhibition in vivo and tumor suppression in 

vitro by mechanism that are independent of Smad-4 expression and TGF-β induced 

G1 arrest, a particularly intriguing finding because loss of Smad-4 thought to be a key 

factor in driving tumor progression. (Paterson et al., 2002). 

Furthermore, the fact that replacement of Smad-4 restores TGF-β 

responsiveness in Smad-4 defective cells (De Winter et al., 1997) is compelling 

evidence that Smad-4 has the capacity to act as a tumor suppressor. More recently, 

however, alternative pathways have been identified and it is now known that TGF-β1 

can activate fibronectin (Hocevar et al., 1999), the 3TP-Lux reporter (Fink et al., 

2001) and PAI-1 (Sirard et al., 2000) in Smad-4 deficient cells. These studies 

demonstrate that TGF-β1 can elicit transcriptional responses in the absence of Smad-4 

but they do not explore the functional significance of Smad-4-independent pathways. 

 TGF-β also induces activation of Ras, RhoB and RhoA, as well as of TAK1 

and protein phosphatase 2A, which leads to the activation of several MAP kinase 

pathways and the downregulation of S6 kinase activity. The mechanisms of activation 

of these non-Smad signaling events and how they connect to the heteromeric TGF-β 

receptor complex remain to be characterized. 
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Figure 2.14. TGF-β-induced signaling through Smads, and several non-Smad 

signaling mechanisms. Several other signaling pathways also regulate both signaling 

by Smads and Smad-mediated gene expression, as exemplified here by the activation 

of JNK and p38 MAP kinase signaling in response to various stress signals, and β-

catenin signaling in response to Wnt proteins (www.ucsf.edu/derynck). 

 

4. The role of TGF-β1 in cancer 

In carcinogenesis, changes in the response to growth factors such as TGF-β 

are likely to be critical steps to successful metastasis. TGF-β is believed to participate 

in the acquisition of invasion/metastasis abilities of cancer cells (Sehgal et al., 1996). 
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In mammal cells, there are three well-documented TGF-βs, TGF-β1, TGF-β2 and 

TGFβ-3, which are encoded by different genes and which all function through the 

same receptor system. Of these, TGF-β1 is most frequently upregulated in tumor cells 

and is the focus of most studies on the role of TGF-β1 in carcinogenesis. In the mouse 

multistage model of skin carcinogenesis, for example, TGF-β1 is not detectable in 

chemically-induced papillomas with a high frequency of malignant progression (Glick 

et al., 1993), loss of autocrine production of TGF-β1 facilitates tumor progression in 

keratinocytes with a targeted deletion of the TGF-β1 gene and in p53 null mice (Cui 

et al., 1994; Glick et al., 1994) and targeted expression of a dominant negative type II 

TGF-β receptor (DN-TβR-II) in mouse skin leads to an increase in carcinoma 

incidence and a decrease in tumor latency (Amendt et al., 1998).  

TGF-β1 plays a dual role in carcinogenesis. In early stage, this cytokine 

display tumor suppressor activities by its anti-proliferative activity, its ability to 

induce apoptosis and to promote genomic stability, while in advance stage TGF-β acts 

as a promoter of tumor metastasis, stimulating the EMT, angiogenesis and also MMPs 

expression especially MMP-2 and MMP-9 (Javelaud and Mauviel, 2005). The 

observation that TGF-β1 signaling is rarely completely lost in tumors led to the 

suggestion that retention of some TGF-β1 responses may actually be advantageous 

for tumor cells. The biologic activities of TGF-β1 that could promote tumor 

progression include its ability to enhance tumor cell invasiveness and migration, and 

to inhibit immune surveillance. 

As with a variety of other cancers, Smad-4 genes (Kim et al., 1996) have been 

reported in human head and neck cancer and current thinking suggests that such 

anomalies provide tumor cells with a selective growth advantage. Defects of Smad-2 

are uncommon and abnormalities of Smad-3 have not been reported in human tumors. 
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The functional significance of defects in Smad gene expression is under intense 

scrutiny at the present time. To date, studies have focused on the role of Smad-4 in 

neoplasia not least because mutations of Smad-4 genes are common in pancreatic and 

colorectal cancers (Hahn et al., 1996; Schutte et al., 1996; Riggins et al., 1997), 

haploid insufficiency of Smad-4 is considered to be sufficient for tumor initiation 

(Takaku et al., 1999; Xu et al., 2000) and bi-allelic loss of Smad-4 is thought to play a 

key role in tumor progression (Kinzler and Vogelstein, 1997). 

 

The involvement of MMP-9 and TGF-β1 

Regulation of MMPs by TGF-β1 has been reported in many studies. TGF-β1   

display the roles in regulation many MMPs such as MMP-1, MMP-2, MMP-3, MMP-

8 and MMP-9. TGF-β1 up-regulates MMP-9 expression in odontoblasts, osteoblasts, 

normal equine chondrocytes and oral mucosal keratinocytes (Salo et al., 1991, 

Tjäderhane et al., 1998, Festuccia et al., 2000, Thompson et al., 2001) but not 

significantly in gingival fibroblasts (Salo et al. 1991). There is also evidence that 

TGF-β increases MT-MMP-1 and MMP-9 expression in metastatic melanoma (Janji 

et al., 1999). On the other hand, TGF-β1 suppresses TNF-α induced MMP-9 secretion 

in monocytes (Vaday et al., 2001).  

  In cancer cells, TGF-β1 seems to activate the expression of MMP-9.  In a 

study using oral squamous carcinoma cells found TGF-β1 co-operated together with 

Integrin αVβ6 to relay the signal intracellularly and then up-regulated the expression 

of pro-MMP-9 (Thomas et al., 2002).  Co-stimulation of prostate cancer cell line with 

TGF-β1 together with Actinomycin-D, the mRNA synthesis inhibitor, indicated that 

TGF-β1 does not stimulate transcription of MMP-9 but appear to induce through 

increased mRNA stability, while cycloheximide could inhibit the production of 
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MMP-9 by TGF-β1 observed by Northern blot suggested the newly synthesized 

protein are required for TGF-β1 stimulation of MMP-9 mRNA (Sehgal and 

Thompson, 1999) which contrast to the stimulation of MMP-9 by TNF-α, oncogene 

ras, jun, v-src and phorbol ester that increased transcription of  MMP-9 (Gum et 

al.,1996) . Moreover, TGF-β1 found to upregulate MMP-9 in invasive type of mouse 

prostate cancer cells but not in non-invasive type.  (Sehgal et al., 1996), thus indicates 

the different signaling pathway might use in response to TGF-β1. 
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CHAPTER III 

MATERIALS AND METHODS 

 

1.  Cell culture 

HSC-5 was a gift from Professor Teruo Amagasa, Tokyo Medical and Dental 

University, Tokyo, Japan, and WSU-HN-22 and WSU-HN-31 were a gift from 

Professor Silvio J. Gutkind, NIDCR, National Institute of Health; NIH). Cells were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum, 2mM L-glutamine and 100 U/ml penicillin, 100 ug/ml 

streptomycin and 5 ug/ml amphotericin B, all reagents were purchased from Gibco-

BRL (Carlsbad, CA, USA) and cells were grown at 37oC in humidified atmosphere of 

95%, 5%CO2.  Cells were grown until 70-80% confluent before starting any 

treatment. 

 

2.  Reagents 

Recombinant human TGF-β1 (rhTGF-β1), ERK inhibitor peptide II (ERKi), 

SB203580 (p38 inhibitor), JNK inhibitor II (JNKi), In solutionTM Rho kinase inhibitor 

, Akt inhibitor and Cytochalasin B were obtained from Calbiochem (EMD Chemicals, 

Inc., Gibbstown, NJ, USA). SB505124, a TβRI inhibitor, and curcumin, an AP-1 

inhibitor, were purchased from Sigma (Sigma-Aldrich Chemical, St.Louis, MO, 

USA). MLCK inhibitor (MLCKi) was from Tocris Bioscience (Bristol, UK). Integrin 

beta-1 blocking antibody was from Chemicon (Chemicon International, Inc., 

Temecula, CA, USA). Antibody against phospho-Smad3 (pSmad3), total Smad2/3, 

phospho-MLC (pMLC), total MLC and MMP-9 were from Cell signaling Technology 

(Beverly, MA, USA). The biotinylated anti-rabbit antibody, biotinylated anti-mouse 
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antibody and streptavidin horseradish peroxidase antibody were from Zymed (Zymed 

laboratories, South Sanfrancisco, CA, USA). The phospho-ERK1/2 (pERK1/2) and 

total-ERK were from R&D systems (R&D, Minnepolis, MN, USA).  

 

3.  Cell proliferation assay 

Cell proliferation was measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] assay is based on the ability of a mitochondrial 

dehydrogenase enzyme from viable cells to cleave the tetrazolium rings of the pale 

yellow MTT and form a dark blue formazan crystals which is largely impermeable to 

cell membranes, thus resulting in its accumulation within healthy cells. Solubilisation 

of the cells by the addition of the detergent solution containing 1:9 of DMSO and 

glycine buffer (0.1M glycine / 0.1M sodium chloride pH10) results in the liberation of 

the crystals which are solubilized. The number of surviving cells is directly 

proportional to the level of the formazan product created. The color can then be 

quantified using a simple colorimetric assay. The results can be measured 

spectromically used the absorbance at 570 nM (Genesys UV scanning, 

Thermospectronic, Roche, NY, USA). All measurements were done in triplicate.  

 

4.  Gelatin zymography 

The presence of MMP-9 in cancer cells and fibroblasts conditioned media was 

analyzed by zymography in 12% polyacrylamide gel containing 1mg/ml gelatin 

(Sigma). Samples were mixed with Laemmli sample buffer without reducing agent or 

heating and were subjected to SDS-PAGE. The gels were incubated for 30 minutes at 

room temperature in renaturing buffer (2.5% TritonX-100), and then incubated in 

developing buffer (50 mM Tris buffer pH 7.5, 200 mM NaCl, 5 mM CaCl2) for 48 
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hours at 37oC. The gels were stained with 0.2% Comassie Blue in a solution of and 

then destained. Individual bands were quantified using Scion Image software (Scion, 

Frederick, Maryland, USA). 

 

5.  Enzyme linked immunosorbent assays (ELISA) 

Cells were cultured and treated as indicated in DMEM without phenol red (Gibco-

BRL, Carlsbad, CA, USA). Supernatants were collected and assayed to quantify 

concentrations of MMP-9 by ELISA kit (R&D, Minnepolis, MN, USA) according to 

the manufacture instruction. This assay employs the quantitative sandwich enzyme 

immunoassay technique. A monoclonal antibody specific for human total MMP-9 has 

been pre-coated onto a microplate. Briefly, supernatants were diluted with the 

calibrator diluent and then the assay diluent of 100 ul was added into the microplate 

followed by adding the samples and cover with the adhesive strip provided. Incubate 

for 2 hours at room temperature on a horizontal orbital microplate shaker set at 500 

rpm. Aspirate each well and wash, repeating the process three times for a total 

of four washes with wash Buffer. After the last wash, add the MMP-9 

conjugate and incubate for 1 hour at room temperature on the shaker. Then, 

repeat the wash as described before. Add the substrate solution to each well 

and incubate at room temperature on the benchtop and protect from light. After 

incubation for 30 minutes, add the stop solution to each well. The color in the wells 

should change from blue to yellow. Determine the optical density by the 

spectrophotometer set to 450 nm within 30 minutes. 

 

6.  RNA isolation and RT-PCR 
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Total RNA from cell cultures were extracted with TRI Reagent (Molecular Research 

Center, Cincinnati, OH, USA) according to munufacturer’s instruction. The 

concentration of puified RNA was determined by measuring the absorption at 

260/280 nm using a spectrophotometer (Genesys UV scanning, Thermospectronic, 

Roche, NY, USA). One microgram of total RNA for each sample was used to 

generate cDNA by using Reverse transcription kit (Promega, Madison, WI, USA). 

Then, a polymerase chain reaction were performed using PCR-kit (Quigen, Hilden, 

Germany) by a thermocycler (Tpersonal, Whatman Biometra, Goettingen, Germany) 

to detect MMP-9 (30 cycles, 60oC). Glyceraldehyde-3-dehydrogenase (GAPDH) was 

used as an internal control (22 cycles, 60oC). The PCR products were analyzed by 

electrophoresis in 2% agarose gel and visualized by Ethidium bromide fluorostaining. 

The band intensity was quantified using Scion Image software (Scion, Frederick, 

Maryland, USA).  

 

7.  Protein extraction and Western blotting 

WSU-HN-31 cultures treated in serum free medium were pretreatment with indicated 

inhibitors in the presence and absence of 1 ng/ml of TGF-ß1. Cold Phosphosafe was 

added into cells and left at room temperature for 5 minutes, then cells were scraped 

and transferred to 1.5 ml microcentrifuge tube and spin at 14,000g, 4oC, for 5 

minutes. Supernatant was transferred into new tubes and assay immediately. The 

concentration of protein was quantified utilizing BCA Protein Assay reagent 

(PIERCE, Rockford, IL, USA) and measured at the absorption of 560 nm. Equivalent 

of protein extracts were mixed with 3X Laemmli buffer (50mM Tris-HCl, pH 6.8, 

100 mM DTT, 10% glycerol) and denatured by boiling for 10 minutes then separated 

by 12.5% SDS-PAGE and transferred to nitrocellulose membrane at 25V for 1h. 
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Membrane were blocked with 5% skim milk in DI water with 0.1% Tween-20 for 1 h 

at room temperature and probed with primary antibody diluted in 5% skim milk in DI 

water with 0.1% Tween-20 overnight at 4oC. The membranes were then washed six 

times for 5 minutes with PBS and incubated with biotin conjugated secondary 

antibody at room temperature for 30 minutes then rewashed six times for 5 minutes 

with PBS. Finally, the membranes were incubated with streptavidin horseradish 

peroxidase-conjugatede antibody for 30 minutes at room temperature and rewashed 

six times for 5 minutes with PBS. Immunoreactive bands were visualized by 

chemiluminescence (PIERCE). 

 

8.  Electromobility shift assay (EMSA) 

To determine the gene regulation and the transcription factor-DNA interaction of 

MMP-9 gene, EMSA was performed. Cells were treated as indicated and collected the 

nuclear protein by the NE-PER® Nuclear and Cytoplasmic Extraction Reagents 

(PIERCE) and assayed with LightShift® Chemiluminescent EMSA Kit (PIERCE). 

Double-stranded oligonucleotides containing consensus recognition sites for AP-1 

and NF-kB transcription factors were labelled with biotin. Oligonucleotide probes 

were: AP-1 5’-CgC TTg ATg AgT CAg CCg gAA-3’; NF-kB 5’-AgT TgA ggg gAC 

TTT CCC Agg C -3’. EMSAs were performed by incubation of nuclear protein 

extracts (10 ug) in EMSA buffer with 20 fmol of labelled or 4 pmol unlabelled 

oligonucleotides for 20 minutes at room temperature. The electrophoresis was 

performed in a pre-run non-denaturing 6% polyacrylamide gel in 10x TBE buffer at 

100 V for 1 h. Gels were transferred to the nylon membrane at 100 V for 30 minutes 

at 4oC. Then, the transferred DNA were crosslinked to the membrane by facing down 

the membrane onto the UV transilluminator for 15 minutes. Detection the biotin-
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labeled DNA by chemilumiscence reaction using the reagents provided in the kit and 

exposed the membrane by placing in the film cassette. 

 

9.  siRNA transfection 

Cells (2x105 cell / well) growing in 6-well plates (70-80% confluent) were added 

with the mixed solution of siRNA oligonucleotides specific to Smad2/3 or Smad4 

(Santa Cruz). Cells were grown for 6 hours before diluted in 2x of supplemented 

growth medium (DMEM) and incubated for another 12 hours before treatment and 

collected the RNA or the protein for assayed. 

 

10. Cell invasion assays (Boyden-chamber assay) 

Cancer cells invasiveness was studied in modified Boyden chambers containing 

chemotaxis membranes of 13 mm diameter with 12 µm pore size (Nucleopore), which 

were coated with 1mg/ml of the reconstituted basement membrane Matrigel (Beckton 

Dickinson), which were kindly provided by Associate Professor Dr. Erik W. 

Thompson (St. Vincent institute of medical research, Melbourn, Australia). Cells 

were detached with 0.5%EDTA/PBS, counted by using hemocytometer, centrifuged 

and then resuspended in serum-free media to the concentration of 106 cells/ml. Then 

cells were added to the upper compartment of Boyden chamber. Serum-free media 

with or without additional factor and chemoattractant (human gingival fibroblast 

conditioned media and/or neutralizing TGF-β antibody) was placed in the lower 

compartment. After incubation at 37°C for 18 hours, filters were fixed and stained 

with H&E dye and the cells attached to the bottom side of the membrane were 

counted visually under microscope. The data are expressed as the total number of 

cells counted per ten microscopic fields. 



 47 

11.  Statistics 

All experiments were performed three times with reproducible results. Data was 

presented by mean ± SD. The statistical significance of data was analyzed using a 

Student’s t-test and a value of P <0.05 was considered significant. 
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CHAPTER IV 

RESULTS 

TGF-β1 DERIVED BY GINGIVAL FIBROBLAST INDUCED 

MMP-9 EXPRESSION IN HNSCC  
: A PILOT STUDY   

 

In this chapter, the study aimed to examine the interaction between stromal 

cell and cancer cell. Since it has been well documented that the cell-cell interaction 

plays a role in cancer metastasis which, the increased of MMP-9 expression is one of 

the consequences of this interaction. Hence, we hypothesized that the stromal cell 

might provide TGF-β1 for cancer cell and then TGF-β1 activates the cancer cell to 

induce MMP-9 expression.  Please note that the study in Chapter IV and Chapter V 

were done in parallel. 

The human gingival tissue taken from patients underwent third molar surgery 

for orthodontic reason, was explanted and the subculture cells were used in this study. 

All patients were informed consent. Gingival fibroblasts at passage3-4 were cultured 

until 80% confluent, then replaced the medium with Serum free medium (SFM) and 

cultured for further 24 h. The gingival fibroblast conditioned medium (GFCM) was 

collected and used immediately or stored in tight sealed tube at -80oc and use within 2 

weeks. GFCM used in the present study was prior assessed for the presence of MMP-

9 by zymography and ELISA to confirm that no detectable level of MMP-9 was 

found in GFCM. 
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Gingival fibroblast conditioned medium (GFCM) induced MMP-9 

expression in HNSCC cell lines. 

 HNSCC cell lines, HSC-5 derived from palate and WSU-HN-22 derived from 

esophagus were used in this study. Cancer cells were treated with mixture of GFCM 

and SFM (1:1) for 24 h., then conditioned medium and RNA were collected and 

measured for MMP-9 expression by gelatin zymography, ELISA and RT-PCR. The 

results of gelatin zymography (Fig4.1a), ELISA (Fig.4.1b) and RT-PCR (Fig.4.1c) 

demonstrated that GFCM could increase the level of MMP-9 in both HNSCC cell 

lines. Therefore, it is possible that GFCM might contain soluble factor(s), which 

could induce MMP-9 expression in HNSCC. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 50 

 

 

Fig.4.1   Induction of MMP-9 expression in cancer cell lines by GFCM.  HSC-5, 

WSU-HN-22 and BT-549 were treated with GFCM. Conditioned medium from 

cultures were analyzed for MMP-9 expression by (a) gelatin zymography, the graph 

represents the intensity band of gelatin zymography analyzed by Scion image 

software. (b) ELISA of total human MMP-9, MMP-9 level in each HNSCC cell in the 

absence of GFCM was use as a control and normalized to 1. All data represented as a 

fold-increased compared to the control. 
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Fig.4.1  (cont.) Induction of MMP-9 expression in HSC-5 and HN-22 by GFCM. (c) 

RT-PCR, showed MMP-9 mRNA level in the absence and presence of GFCM and 

GAPDH was used as an internal control.  
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GFCM induced TGF-β1 expression in HSC-5. 

 In Chapter V, it has demonstrated that TGF-β1 could induce MMP-9 

expression. In this pilot study, from figure 4.1 showed that GFCM could also induce 

MMP-9 expression in HNSCC cells. Thus, we hypothesized that GFCM might 

contain TGF-β1 or induce TGF-β1 expression in HNSCC cells. We investigated the 

effect of GFCM in TGF-β1 expression in HSC-5 by ELISA. The result presented that 

GFCM could also induce TGF-β1 expression in HSC-5 to 2-fold induction (Fig.4.2a). 

To confirm our hypothesis that the induction of MMP-9 belongs to TGF-β1 in 

GFCM, the specific neutralizing antibody to TGF-β1 was used and found that the 

GFCM-induced MMP-9 expression in HSC-5 was markedly inhibited. The induction 

of MMP-9 by GFCM was not influenced by an unspecific antibody used as an isotope 

control (Fig.4.2b). However, ELISA showed a small number of TGF-β1 presented in 

GFCM.  We therefore suggest that administering of GFCM in HSC-5 culture resulted 

in the increased of TGF-β1 expression in our system and it is sufficient for MMP-9 

induction in HSC-5. 
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Fig.4.2. Induction of TGF-β1 by GFCM increased MMP-9 expression in HSC-5. (a) 

HSC-5 was treated with GFCM and analyzed for TGF-β1 concentration by ELISA. 

(b) To determine the effect of TGF-β1 in MMP-9 induction, HSC-5 was treated with 

GFCM in the presence and absence of neutralizing TGF-β1 antibody and then 

quantified the MMP-9 concentration by ELISA. TGF-β1 level in HSC-5 was used as 

a control and normalized to 1.  
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TGF-β1 derived from GFCM may involve in HSC-5 invasion across matrigel-

coated membrane. 

 We used Boyden-chamber assay with matrigel-coated membrane to assess the 

capacity of GFCM to promote HSC-5 invasion through basement membrane (Fig4.3). 

GFCM significantly stimulated HSC-5 to invade across matrigel-coated membrane in 

24 h. compared with HSC-5 in serum-free medium (SFM), which used as a control 

group. Adding the neutralizing TGF-β1 antibody in GFCM markedly inhibited the 

invasion of HSC-5, while adding isotype antibody in GFCM could not inhibit HSC-5 

invasion. The invasive ability of the control group and the group that treated with 

neutralizing TGF-β1 antibody alone showed no difference. This result affirmed us 

that TGF-β1 in GFCM plays an important role in cell migration, which promotes the 

malignant phenotype of HNSCC. 
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Fig.4.3 Stimulation of cancer cell invasion through synthetic basement membrane by 

GFCM. HSC-5 was stimulated by GFCM (50% v/v), neutralizing TGF-β1 antibody 

(10ng/ml) and normal goat IgG (as an isotype control) to invade across matrigel-

coated membrane in boyden-chamber assay for 24 h. The bar represented cell 

invasion (%) compared with HSC-5 in serum-free medium (control group) (n=8 / 

group). 
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Basal levels of TGF-β1 expression in gingival tissues and conditioned medium 

derived from cancer cell-mediated stimulus of TGF-β1 expression in human 

gingival fibroblast (GF) culture.  

To investigate the basal level of TGF-β1 mRNA in normal stromal tissue, we 

used three individual normal human gingival tissues from patients underwent third 

molar surgery for orthodontic reason. RT-PCR was performed and the result showed 

that all of three gingival tissues expressed TGF-β1 (Fig.4.4a). In culture, ELISA 

analysis using conditioned medium derived from human gingival fibroblasts (GFCM) 

revealed a low level of TGF-β1 concentration, but, interestingly, conditioned medium 

derived from HNSCC cell line, HSC-5 (5CM), stimulated a 2 to 4 fold induction of 

TGF-β1 concentration in GF (Fig.4.4b). 
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Fig.4.4. TGF-β1 expression in three difference human gingival tissues and human 

gingival fibroblast cultures (GF1, 2, 3). (a) RT-PCR was performed using samples 

from three individual gingival tissues to investigate the level of TGF-β1 mRNA in 

vivo. (b) Induction of TGF-β1 expression in three individual GFs that treated with 

conditioned medium derived from HSC-5 (5-CM) for 24 h. Conditioned medium 

samples of each culture were analyzed for TGF-β1 concentration by ELISA. Each 

control was normalized to 1. 
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CHAPTER V 

RESULTS 
TGF-β1-INDUCED-MMP-9 EXPRESSION IN HNSCC VIA SMAD AND 

MLCK SIGNALING PATHWAY.  

 
TGF-β1 induced MMP-9 mRNA expression and protein synthesis in HNSCC cell 

lines. 

Three HNSCC cell lines, HSC-5, HN-22 and HN-31, were used to determine 

the effect of TGF-β1 in MMP-9 expression.  Cells were treated with rh-TGF-β1 (0-10 

ng/ml) for 24 h. in a serum-free condition.  The supernatants and RNA were collected 

to determine the level of MMP-9 secretion and mRNA expression, respectively.  

MMP-9 protein and activity were increased dose-dependently in all cell lines 

particularly HN-31 as shown by gelatin zymography (Fig.5.1a) and ELISA (Fig.5.1b).  

However, activated band of MMP-9 was not observed.  Similarly, MMP-9 mRNA of 

these cell lines increased in a dose-dependent manner (Fig.5.1c).  
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Fig.5.1. Determination of MMP-9 level after administering TGF-β1 (0-10 ng/ml) in 

HNSCC cell lines. MMP-9 protein level was determined by gelatin zymography (a) , 

ELISA (b) and RT-PCR (c). Data are mean ± SD from three separate experiments (* 

P< 0.05). MMP-9 mRNA level was shown by RT-PCR and each cell line used 

GAPDH as an internal control.  
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MLCK and Smad pathways were responsible for the TGF-β1 induced MMP-9 

expression. 

To elucidate the signaling pathway responsible for the TGF-β1-induced-

MMP-9 expression in HNSCC, several inhibitors specific to the candidate signaling 

proteins according to previous reports were used.  The result from gelatin 

zymography demonstrated that inhibitors belong MLCK and TβRI/Smad pathway 

could markedly inhibit the inductive effect of TGF-β1 on MMP-9 expression 

(Fig.5.2a, b) whereas inhibitors of ERK partially reduced the effect of TGF-β1 and 

the inhibitors belong to the other pathways had no effect (PI3K/Akt, Integrin beta1, 

Rho kinase, p38/MAPK, JNK/MAPK, NF-κB) (data not shown).  The decrease of 

MMP-9 mRNA was also observed when cells were treated with SB505124, 

concomitant with the result shown by gelatin zymography (Fig.5.3a).  In contrast, 

MLCK inhibitor inhibited MMP-9 expression only in the protein level as 

demonstrated by zymography but not the mRNA (Fig.5.3a).  Furthermore, gelatin 

zymography assay using sample from both supernatant and cell lysates of the 

corresponding experiment was also performed.  The reduction of MMP-9 after treated 

with TGF-β1 was observed in both the supernatant and in the cell lysates (Fig.5.3b). 
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Fig.5.2. Effect of inhibitors of MAPK (ERK/ERKi, p38/SB203580, JNK/JNKi, TβRI 

(SB505124) and MLCK (MLCKi) on TGF-β1-induced MMP-9 expression in HN-31 

cells. (a, b) MMP-9 level determined by gelatin zymography. HN-31 with no 

treatment was used as a control and normalized to 1.   Data from three separate 

experiments were shown by graph as mean ± SD (* P< 0.05) as a fold-induction 

compared to the control.  
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Figure 5.3. (A) RT-PCR analysis of MMP-9 mRNA level. (B) MMP-9 level from 

cells lysate and supernatant analyzed by gelatin zymography. 
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Smad3 and MLCK functioned as a regulator in TGF-β1-induced-MMP-9 

expression. 

Western analysis of active MLC and Smad3 were performed in order to 

examine the molecular pathway of TGF-β1-induced MMP-9 expression.  As 

expected, application of TGF-β1 increased the activation of Smad3 and MLC. To 

confirm the role of Smad2/3 in TGF-β1-induced MMP-9 expression, siRNA of Smad 

2/3 was introduced into HN31.  The results showed that siRNA of Smad2/3 inhibited 

the inductive effect of TGF-β1 on MMP-9 synthesis (Fig5.4b).  The decreased level 

of pMLC was also observed without any effect on total MLC.  
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Fig.5.4. Western blot analysis of the effect of TGF-β1 signaling on Smad and MLCK 

signaling protein in HN-31 cells. (a) the effect of TβRI-inhibitor (SB505124) and 

MLCKi on Smad3 and MLCK activity. (b) The upper panel showed the Western blot 

analysis of Smad2/3, pMLC and MMP-9 exprssion after treatement with TGF-β1 in 
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cells transiently transfected with siRNA Smad2/3.  The lower panel showed the result 

from gelatin zymography of HN-31 after transfected with siRNA Smad2/3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 66 

CHAPTER VI 

DISCUSSION 

 
TGF-β1 is abundantly expressed in various tumor of epithelial origin 

(Derynck et al., 1985; Keski-Oja et al., 1987) and can exacerbate the malignant 

phenotype at later stages of carcinogenesis in which TGF-β1 can suppress immune 

surveillance, foster cancer invasion and promote the development of metastasis 

(Teicher et al., 2007; Biswas et al., 2007; Welch et al., 1990).  In this study, we 

showed that TGF-β1 significantly increased both MMP-9 mRNA and protein 

expressions in HNSCC cell lines, suggesting the potential role of TGF-β1 in 

regulating MMP-9 expression and in cancer progression. 

Besides the transcriptional regulation, function of MMP-9 can also be 

regulated by its endogenous inhibitor, TIMP-1 or tissue inhibitor of matrix 

metalloproteinase-1 (La Fleur et al., 1996).  The balance between expression of 

MMP-9 and TIMP-1 is important for MMP-9 activity.  In this study, the level of 

TIMP-1, which reversibly inhibits MMP-9 in a 1:1 stoichiometric fashion, was not 

altered in response to TGF-β1 treatment.   

The TGF-β signaling is a linear signaling pathway from the type II to type I 

receptor kinase to Smad activation.  Binding of TGF-β1 to type II receptor dimer 

triggers the phosphorylation of type I receptor, which then activate the R-Smad, 

Smad2 and 3.  Type II receptor signaling in the absence of type I receptor has never 

been reported.  The present study showed that application of TGF-β type I receptor 

(TβRI) inhibitor, SB505124, could significantly reduce the MMP-9 expression 

induced by TGF-β1 indicating the involvement of TβRI-dependent pathway.  In 

addition, increased pSmad3 but not pSmad2 after TGF-β1 treatment was observed 
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corresponded with the report showing that Smad3 and Smad4 mediated most TGF-β-

induced transcription (Inman and Hill, 2002; Yang et al., 2003).  Furthermore, 

application of SB505124 and siRNA of Smad2/3, which inhibit the expression of 

Smad3, could attenuate the inductive effect of activation of TGF-β on MMP-9 

expression.  These findings indicated that the induction might occur via the TβRI-

Smad3 pathway. 

There were studies showing that TGF-β1 could induce MMP-9 through 

MAPK signaling pathway including ERK1/2, p38 and JNK1/2 in a cell-type specific 

manner (Kim et al., 2005, Santibanez et al., 2002; Kim et al., 2004).  Our results 

revealed that ERK inhibitors could slightly reduce TGF-β1 induced MMP-9 

expression, however, p38 and JNK showed no effect in this mechanism.  

 Interestingly, to the best of our knowledge, this is the first study demonstrated 

that TGF-β1 induced MMP-9 through myosin light chain kinase activation (MLCK).  

TGF-β is well described to induce MLCK or MLC in myogenic differentiation 

(Meyer-ter-Vehn et al., 2006). However, there were few studies in cancer cells 

showed the correlation between TGF-β1 and MLCK (Hisataki et al., 2004; 

Yamamoto-Yamaguchi et al., 1996).  MLCK, a Ca2+-calmodulin dependent multi-

functional enzyme, plays a critical role in the regulation of smooth muscle contraction 

and cellular migration.  It regulates the contractile interaction between actin 

microfilaments and myosin by phosphorylating the myosin light chain (MLC) during 

non-muscle cell contraction, cytokinesis, stress fiber formation, and motility 

(Matsumura et al., 2001).  MLCK also play a role in cancer cell migration.  Inhibition 

of MLCK or MLC could reduce cell migration in breast and pancreatic cancer cells as 

well as fibrosarcoma cell line (Betapudi et al., 2006; Niggli et al., 2006; Kaneko et al., 

2002).  Moreover, MLCK could retard the growth of prostate cancer cells and breast 
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cancer cells (Gu et al., 2006).  Clinical study of non-small cell lung cancer patients 

found a significant positive correlation between expression levels of MLCK and 

likelihood of disease recurrence and metastasis (Minamiya et al., 2005).   

In this study, inhibition of MLCK reduced MMP-9 secretion but not the 

transcription after treated with TGF-β.  This result suggests the role of MLCK in post-

transcriptional regulation of MMP-9.  The result from gelatin zymography showed 

that the amount of MMP-9 decreased in the supernatant but not in the cells, 

suggesting the role of MLCK in protein transportation.  Our hypothesis is supported 

by the evidences that myosin can play a role in regulating microtubule dynamics 

(Even-Ram et al., 2007) which participate in the protein transportation.  However, 

application of several inhibitors including neutralizing antibody to integrin-β1, 

cytochalasinB and Rho kinase, which are involved in actin cytoskeletal 

rearrangement, could not inhibit the TGF-β1-induced MMP-9 expression (data not 

shown).  The exact role of cytoskeleton in MMP-9 expression induced by TGF-β 

requires further investigation. 

Application of TβRI inhibitor could inhibit the activation of both Smad3 and 

MLC suggested that signal from TβRI activate both molecules.  However, application 

of MLCK inhibitor could decrease only the activation of MLC but not the 

phosphorylation of smad3 indicated that MLC is the downstream target of Smad3 in 

the regulation of MMP-9. 

In conclusion, our results showed that TGF-β1 induced MMP-9 expression in 

head and neck cancer cell lines through TβRI/Smad3.  The phosphorylated Smad3 

relayed the signals downstream to activate MLCK, which regulated the MMP-9 

protein expression. These suggest the combinatorial interaction of both Smad and 

non-Smad signaling in MMP-9 regulation by TGF-β1.  
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 The source of TGF-β1 in the in vivo conditioned still unclear.  We 

hypothesized that the interaction between HNSCC and stromal cells may participate 

in the induction of TGF-β1.  We used gingival fibroblasts as the representative of 

stromal cells in this study.  The results from the pilot study demonstrated that gingival 

cells stimulate TGF-β1 secretion and enhanced MMP-9 expression in HNSCC cells.  

These results suggest the importance of cell-cell interaction in MMP-9 induction and 

synthesis. 

Over the past decade, it has become increasingly apparent that the complex 

interplay between different cell types, e.g. epithelial cells, and the microenvironment 

are critical for maintaining normal balanced tissue homeostasis.  Comparison of the 

connective tissue of normal organs, which is able to maintain normal tissue 

homeostasis, with the tumor stroma revealed a disrupted balance in the epithelial 

stromal interactions in both composition of the ECM and the functional state of the 

stromal cells (Coussens and Werb, 2001; Tlsty, 2001).  These alterations seem, 

indeed, to be crucial for tumor growth, invasion, and metastasis (Fidler, 1990).  

Growth-promoting effects of activated stromal cells on tumor cells have been reported 

(Gregoire et al., 1995), indicating persistent functional alterations in tumor fibroblasts 

(Turner et al., 1997; Olumi et al., 1999).  

Induction of several growth factors including IL-1, IL-6, IL-8, platelet-derived 

growth factor (PDGF), epidermal growth factor (EGF), TNF-α and TGF-β were also 

reported in tumor-stromal interaction (Zigrino et al., 2005). In this study, the 

application of neutralizing antibody in the GFCM mixture could abolish the MMP-9 

expression in HNSCC cell. This data revealed that the growth factor induced in our 

model is TGF-β1.  

In addition, co-cultivation of the malignant tumor cells with stromal 
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fibroblasts induced the expression of MMP-1 and MMP–9 which did not occur with 

the benign tumor cells (Borchers et al., 1997).  The expression and secretion of 

proMMP-2 and proMMP-9 in fibroblasts have been reported to be increased due to 

cell–cell contact between fibroblast and human ovarian carcinoma cells (Westerlund 

et al., 1997) or metastatic-transformed rat embryonic cells (Himelstein et al., 1998).  

Bair et al. also reported that the expression of proMMP-7 is augmented by the co-

culture of oral squamous cell carcinoma SCC-25 cells and human foreskin fibroblasts.  

Furthermore, previous study demonstrated that human squamous carcinoma A431 

cells augment MT1-MMP on the cell surface of tumor cells by interacting with 

normal human dermal fibroblasts (Sato et al., 1999).  Therefore, the cell–cell contact 

between tumor cells and surrounding normal stromal cells brings about an 

augmentation of tumor invasiveness by increasing MMP-mediated pericellular 

proteolysis.  

The result from the pilot study indicated that TGF-β1 induction by GF 

increased MMP-9 secretion and enhanced the invasion of HSC-5 in the chemotaxis 

assay.  This results support the previous findings that interaction between cancer and 

stromal cells play an important role in cancer metastasis.  Increasing level of TGF-β1 

was found in oral tissue with chronic inflammation.  The increasing of TGF-β1 could 

be one of the etiologies of HNSCC or enhance the invasiveness of HNSCC. All these 

reports stress the importance of the stromal compartment in malignant tumors and 

strongly indicate that continuous interactions between the carcinoma and stromal 

cells.  In vitro models developed so far are not able to faithfully mimic the complex 

interactions that occur between tumor and stromal cells in vivo.  On the other hand, in 

vivo studies on the functional role of the stromal compartment in established 

neoplasms, either autochthonous or transplanted, are often difficult to interpret due to 
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the intermingled close association of carcinoma and stroma elements.  The lack of 

models encompassing different tumor stages, corresponding environmental 

conditions, as well as the dynamic pattern of the carcinoma-stroma interaction are 

further limitations. More understanding of the signaling pathway involved in the 

regulation of TGF-β1 in tumor-stroma interaction may provide the insight of cancer 

prediction, prevention and treatment in the future. 

 

Future studies 

1. Further investigation the role of myosin in MMP-9 transportation and 

MMP-9 secretion. 

2. Further investigation the transcriptional regulation of MMP-9 gene 

expression activated by TGF-β1.  

3. Investigate the underlying mechanism of MMP-9 expression activated by 

GFCM. 
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APPENDICES 

 

 

Figure 1. Gelatin zymography of three additional HNSCC cell lines in response to 

TGF-β1 treatment. 
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Figure 2. The interaction between ERK and Smad/MLCK pathway in TGF-β1-

induced-MMP-9 expression in HN-31 cell. Western blotting showed the level of 

phosphorylated ERK1/2 and total ERK1/2 after application with (a) SB505124 and 

MLCKI, (b) siRNA Smad2/3 and (c) Neutralizing TGF-β1 antibody. 

 The results suggested that ERK might involve in TGF-β1-induced MMP-9 

expression.  Further study is required to clarify this hypothesis. 
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Fig.3. The role of AP-1 in TGF-β1-induced MMP-9 expression in HN-31 cell. (a) 

AP-1 oligonucleotides and nuclear protein interaction from HN-31 was analyzed by 

EMSA. Nuclear protein extracts were prepared as described in materials and methods 

from HN-31 in the presence and absence of TGF-β1 and SB505124. Double-stranded 

oligonucleotides (20 fmol) or a 200-fold excess molar of unlabeled cold probe (4 

pmol) were incubated with nuclear protein extracts (10 µg). (b) Gelatin zymography 

showed that AP-1 inhibitor could inhibit MMP-9 expression in HN-31 cells. 

 The results suggested that TGF-β1-induced MMP-9 expression may involved 

AP-1 regulatory region. 
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