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CHAPTER1

INTRODUCTION

\\W//é

—-,:"'J

1.1 Introduction

Ice factories produce bl r1al applications. Such an ice

i ock® rc1al Qngl
————
factory usually consum am lect icit

been a need to seek an efficigi 3 el ixicity cost. In this thesis, we

du ion process by using dynamic

process. Thus, there has

present an applicatio

programming. Figure 1. a typical ice factory [1].

jenser

: |
‘l | I
i

The main compd nts of an ice factory are as follows.

. ﬂﬂ HINININEINT.-

° Expa n valve controls the supply andsdemand relation between the condenser and eva ora-

ARIAINIUY #IINYINY

of removing heat from refrigerated space.

e Chilling tank contains the coils of evaporator which are equally distributed throughout the

tank and are submerged in brine. The brine in the tank acts as a medium of contact only, the



refrigerant evaporating in the coils absorbs the heat from the brine, which again absorbs the

heat of the water in the moulds.

In this cycle, a circulating refrigerant such as Ammonia or Freon enters the compressor as

a vapor. The vapor is compressed. This uaisgs por s pressure and temperature. Then, the
vapor travels through the condenser if S eat and condensed into liquid. When
liquid refrigerant flows through-the% ) a high-pressure zone to a low-

of liquid and vapor at a lower

and is completely vapori J e heat of the water in the

moulds). The resulting refri 3 e OMaBhe cycle then repeats.

1.2 Literature revie

1.2.1 System identiﬁcati

Constructing models fi Several methodologies

and nomenclatures have b S0 the control area, the tech-
®ion is the art and science

pnput-output data [2—4]. This

niques are known undeg

of building mathematical mg@fels HESS ‘- Yot observed

term has been coined by Zalehii ' _L 2‘-:" del cstimati@p pr@blem of dynamic systems in
the control community. There @ y O :."- sadevel@pment of the theory and method-
ology [4]. The first one is the realieation=aveiwe A from the theory how to realize linear

state space models from impulse rp P 35 :fﬁ and 6] followed by Akaike [7], leading to
so-called subspace mgthod ore in line with sta-
: emes were outlined
/ id [3].

Three types of mo atif']., which have been color-

coded as follows [9]: H| 1 |I

1. White Box models the case when a model rfectly known and it has been possible

HAnENINeIng

eters uam to be determined from observed data. It is useful to consider two sub- cases

qWTaND NNV INYINY

model of given order and structure.
e Semi-physical modeling: Physical insight is used to suggest certain nonlinear combina-

tistical time-seriesjand

in the pioneering pk

tions of measured data signal. These new signais are then subjected to model structures

of black box character.



3. Black Box models: No physical insight is available or used, but the chosen model structure
belongs to families that are known to have good flexibility and have been “successful in the

past”.

One could build a white box model, eyg .

1 for a physical process from the Newton equa-

tions, but in many cases such modelswilllbeiove ( nd possibly even impossible to obtain
in reasonable time due to the complexsnathreiof m ocesses [10]. Therefore, a much
more common approach, blacksboX*magictSure used irf tification algorithms. In this

iden
work, we use both linear angsggl Al ds to construct mathematical

models for block-ice prw %

In mathematics and com i Jicproor g f solving complex prob-
mplicated problem by
fanner. O ot ywas originally used in the
1940s by the mathe . | &llman § ibe/the D ; - g problems where one

needs to find the best deci affc 2 e 2T Tk fig8 p3p8E on dynamic programming

g
Al [ 1ol

.. . . . pj i’ E i L
decisions in a multistage d€cisiQlf proce problent. he prof \

state, and decision, the remainig@ e:. ONS MUSt CC g optilllal sequence of decisions for the

The principle of opti mie. An optimal sequence of

that whatever the initial stage,

remaining problem, with the stage # e first decision considered as initial

conditions [13].

¢ )
VIANTIA R A1) A
igure 1.2: n progrdmming con raretllUstrated by &'si -*

solution (right diagram).

27188

A typical application of dynamic programming is the problem of traveling from point A to

point B in Figure 1.2 (left diagram) [14]. Movement is only allowed from left to right and the cost of



traveling from one point on the grid to the another is given by the number at the edge connecting the
two points. The goal is to find the path from A to B that minimizes the total cost.

The number by each point in the grid in Figure 1.2 (right diagram) is the cost of the lowest-cost
Ob

path from that point to B. These numbers areyobgained recursively by moving backward from B to

sgn Figure 1.2 (right diagram) indicate the
oggfof getting to B. The best path from

e u denotes up to the right and d

A and applying the principle of optimali

direction to be taken from each pqiaL'

1.2.3 Model predicti

Model Predictive Con

the process industries suc afts a Sysinegethe late seventies. MPC is a

that has been in use in

form of control in whi  acHon, is @b ) “SbLyin o8- line, at each sampling

instant, a finite horizon op: al Conteelproblem, using the Silent state of the plant as the

initial state; the optimi; i#lds cont &n ek he Meglicontrol in this sequence

Although the idea; ingghorizoy jﬁ": d u""l gicontrol can be traced back
disto 10 suI yiin the H‘-, Ps after publication of the first
paper on Dynamic Matrix & (HSH ' nsive Xpo I pn of Generalized Predictive
Control. The MPC scheme is , - \

el

industry and has adequately p Oved itdse

he oil Tefining and petrochemical process

1.3 Objectives

The purposes of th&t esisare fourfold

il
1. To obtain suitabléeshathe on p

reaess. There are two kinds
r@rature there is a number

ith each kind of models. This work examines the models for block-ice

of models: lineaﬂl:li d nonlinear models. Tn'the system identificatio
of methods to deal

processin which we pal ntion to usi e blac identification techniques. At first, the
linﬁ re cofist ﬁi onlthe sed nﬁ@rd neural
netWworks arei€on tedfising tll me recréssors! with t line odels. WA fterward,

theseu_lral network models are pruned with Optimal Brain Surgeon (OBS) method [19].

ARIFIIUURIIABIFY

q daily-based models for the demand prediction.
3. To develop an optimal control design for block-ice production process by using dynamic pro-

gramming. The main objective is to minimize the electricity cost which incurs from the usage

of electrical energy of compressors. The optimal control strategy is obtained by employing



dynamic programming in solving the optimization problem. In addition, numerous factors in

the design procedure will be analyzed with respect to the electricity cost.

4. To develop a MPC strategy for block-ice production process in which the set of future control

signals is calculated by minimizing t yfost at every time step over a finite look-ahead

time. The first actions of this s

step. 2\
1.4 Scope of thesis ——m—
ﬁ"
The scope of this thesis is speci 0
o

S

1. To construct mathemati neural network models for

block-ice product

2. To build a demand of dictg® of ] e series model for an ice

factory. 4

3. To design an opti' alf congolleff for bleg] ,'1.  Pidkes$By using dynamic program-

ming. Moreover, iumerghs faftors ink si ocd U@ wWilllbe arfalyzed with respect to the
;. i 3 - |l '

electricity cost. J

4. To develop a MPC strateg locket ce-prod

1.5 Organization of the thesis_ s
A ﬂ: ) ::ly—,..

L2

The thesis is orga (zaa N éc iques for block-ice
production process;s_showisii=Seciion-li=Section-lil-is-devoied-to-iie -p“w control design for

_pledictive control for such

own in :ﬁtion V.
AUINENINYINS
ARIAINTUNRINYINY

block-ice productio¥-ptdces
e

an ice factory. Finally,ﬁ cluding



CHAPTER 1I

SYSTEM IIiEI?FIFICATION
2.1 The black-box para&tmn//ér
The black-box 1dent1ﬁcat10 errm inputs and outputs of a sys-

tem based on experlm tical modeling when no
physical insight is available g cnyth ' ce hy Sieal insight contains a number
of unknown parameters. tur g thal'Can be used in the black-
box identification: non- i ara ic T SSxampleSaf non-parametric models

are step response, impulse re g e ¢yt POk 310 TN thils,work Only parametric models

Let v and y besfic inpuf ang 0 ' bt of § ;’i ste il respedt Th&black-box identification

through parametric method¥' is pace of the output. This

mapping has the generaltructylf [3
y 9 A 2.1)

where 6 is the parameter vectope ho casug@iments of the system available at
time? — 1 : -

Zt—l _ (’U,t_l,r

al

—1),y(t —1)). (2.2)

The function gn 0 ings: one that takes

7L R TR S R

the past observations. “and-maps-them- into-a vector »(#)-of-fixed-dimension, and one that takes this

vector to the space k A [

- -~ 2.3)
III ]
where "
(2t 1 (2.4)
egressor—
output pag s
t&@ )t =1,. (2 5)

qw*smmmmm"ﬂ B8

e close to the true values y(¢). A leading guideline for estimating # will be to minimize the error

between the output of the model and the measured output [9]

Vn (0, ZN) = ZHy — ()2 (2.6)



The parameters are found as

~

0 = arg nbin Vn(0,2N). (2.7)

Finally, the derived model is validate

h_ et of data called validation data set. To know

how well the result is, the fit is intro

(2.8)
where
(2.9)
2.2 Linear identificat
In this work linear ARX m e following equation [20]
(2.10)
where y is the output o . 1 ie :-;s ' 4 .I % .‘ i pance or noise, ¢! is the
shift operator, ny is the dead
e l“"\ @.11)

q- 1
where n, is equal to the number of poleszrz ber of zeros.
In this case, the Least Squafg ed to estimate the parameters. The
estimation of the pakamete M is s gblepf s how to choose the

optimal structure of-the model. A simple approach is to consider various str s, use the estimation

data set to estimate ‘g fit when it is applied

to the validation data s;ﬁﬁ

2.3 Neural network 1rn cation

e fo} AU % NERTHHRT

number of yed inputs and outputs glve a good initial guess how the structure should be chosen

for the more complex NNARX model. In a t10n many nonhne tems can be descrlbe(ul

PRIRINIUHNRTINYT e

The NNARX models are built using a Multi-Layer Perceptron network with a single hidden
layer. The choice of this network is based on the previous experience [22] for its ability to model
simple and complex functional relationships. Moreover, only hidden neurons with hyperbolic tangent

function have been considered.



The weights in 2.7 are found by an iterative scheme of the following kind [21]

Ali+1) — pl) _ MiRi_Isz‘ (2.12)

where () is the parameter estimate after ¢ iteragops.gi; is step size, V fZ is an estimate of the gradient

nce ;
mean squared €1Tor. —

The minimization of E NiEz” 2. . fone.b ) rlcal search procedure because

there is no analytic sol 0 thi ' ¢ R ay nave several local minima

’

VN(é(i)) , R; is a matrix that modifies . A large number of training algorithms

exist. In this work, the Levenbe because of its rapid convergence

properties and robustness [23]. this algorithm is chosen as the

where local search algori 1ght. ISin I lialiZMgivef the parameters is taken
randomly, it is necessary to i order to obtain acceptable
results ;

In the scheme 2.12, ah Pe ron uptil thered | figr improvement in the perfor-
mance function. It is no me oh, validafion dafé, the validation error first

decreases with the nu d ) ;‘a Sase ithicreasing number of iterations

(although the estimatior} S is phe i"“ neromkis called overtraining [9].
To deal with this phen gurly siopping d J23]% Sigloycl. When the overtraining
happens, the validation err i ; ...mrrf. “ en'the 1" id@fln error increases for a spec-

ified number of iterations, the tr@hing isSIAPpe 2 weigh "\ d biases at the minimum of the
validation error are returned. § 3
The NNARX model obtained

network pruning is used to remoye

845 then pruned using OBS method. The
a trained network. Its goals are to
improve generalizafioh, sin ks, and ber gfaining [19]. Let E and

w be the CITror and .'iii\iﬁiiiivj\iiniiiii;iiiﬁiii ------------------- WOorkrne-run Yt R Taylor Series Of the

error with respect t

Ow + O(H@w[ﬁﬂ (2.13)

where H = 0°E/ 6G2 @b Hessian matrix. Thefilagin idea of OBS method is to set one of

—HUSINENINGINT

order term e task now becomes to solve

aRIasalunIInaaa

d resulting change in error are as follows [19]

e -

" w+§w

1w
2 [Hfl]qq

Wy
[Hfl]qq

Also in [19] the OBS procedure is given

ow = —

H 'ey and L, = (2.15)



1. Train a “reasonably large” network to minimum error.

3. Find the g that gives the smallest L, ~14q)- If this candidate error increase is much
\\1‘] gle gd, and we proceed to step 4; otherwise go

1ghts 5w =3 _1]qq Go to step 2.

j-_="

5. No more weights can out .n‘ e inc

2. Compute H~".

smaller than E , then the ¢*" wei

to step 5.

4. Use the g from step 3

In our study, the NNA : e/biingd 1 B Ssin ompute the inverse Hessian
matrix, find the weig ) lete this weight, update
all weights, and retrain the Spare two weights left (the
minimum of weights)?

In this work, our approac
e Construct the linear A

e Use the regressor om st liloar ARXA d c'C bl tioMof NNARX models based

on feedforward neura

r

e The NNARX models ar'. : ..-."_'.
f f-;f;’zif

e Validate the best NNARX mod f:‘:‘;”_.-iﬁ

L2

2.4 Numerical rf&ult

The case study is

process in Section I, The: ure 2.1.

]iOO

qw aInsalIIINga Y

The avallable data taken from [24] include:

e The electric energy consumption (kWh) of the compressors.

e The average brine temperature (degree Celsius).
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e The number of block-ice are ready for sales (unit).

The electric energy consumption and the average brine temperature are acquired by measure-

ment while the number of block-ice ready for sales is achieved by simulation [24].

We divide the data into two sets, n a get | and data set 2. The data are shown in
Figure 2.2 and 2.3. In each data set, each variable. We divide the data into
two subsets: \

e A training (or est1mat1 om tulst t@
e A test (or Validan{ 16 h to.th
_ "-.

In the linear ARX@entifigafion

\ s, = 1 and use LSM for
estimation parameters. Asg#ffesulifwafobta he i e e lthe models that yield high

fit are shown in Table-2#f.

AR EAEIRRET
From results. F 2 and 2 with n, = 2,
np=2,np =1 becausH| f their simple Stractoresand hye . i |'
The NNARX mo els are then constructed using the same regressors with the linear ARX mod-
els, i.e., the regressmn Ve u(t — 1), u(t uy t —1),y(t —2)) . First, we use 10
neurons i 1Cas odel has
been pro ss et ragu els on ifiilable 2.2.
ARX models with the hlghest fit are Chosen to prune with OBS rnethod In part 1 with

data set 1 and 2 are the models containing ildden neurons (labgi@ymodel 1 and 2, respec

Qﬁﬂﬁ\iﬁﬁiﬁﬁ HIINYIRY

elghts are eliminated. After each weight elimination, the network is retrained. During the pruning
process the test error is also calculated so that it can be subsequently used for pointing out the optimal
network. We will select the network with the smaiiest test error as the final one. The pruning process

for model 1, 2, 3 and 4 are illustrated in Figure 2.4, 2.5, 2.6 and 2.7, respectively.
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Electric energy consumption of compressors (Win)

Celsius
|
—
o

Unit
o
o
o

number of block-ice.

1000

<
=< 500
x~

0t

1Y)

0

N

10

VLR e Lalir)

Celsius

Figure 2.3: Data set 2 including electric energy consumption of compressors, brine temperature, and

number of block-ice.
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Figure 2.7: The error during pruning process of model 4.
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Table 2.2: Performances of the NNARX models.

Part Data set 1 Data set 2
Hidden neurons | Fit(%) | Hidden neurons | Fit(%)
10 @k ) 4 10 85.68
' 86.65
1 § 85.64 % & 85.45
= | 830 é 86.40
?—"’ 855 84.68
_— BIVH 68.02
) . 83.85 .03
2 3 63
29
| 6| : | 81
Figure 2.4, 2.5, 2.640d 2 #fshgltld be : i ght ta e f e ing error and test error of
each of intermediate network re:fL i r S ures reveal that the minimum
of the test error of the mod 1,-‘;. 3 and 7 IS there ) 5, 2, and 49 weights left in
the network, respectively. Com ing t : ioinal Weichts of the model 1, 2, 3 and 4,
it is seen that after pruning thefmod ‘ and¥the number of weights of model
3 decreases from 37 to 2. The results(fe=the with pruned NNARX models, original
NNARX models and linear AR v et 3
=3 ) 2
" |t
Part ARy Origi)i-ltﬁNNARX TV riginal ]‘\//%WX Pruned NNARX
Fit(%)™ Weights | Fi(%) | Weights Fit(%) | Welghts | Fit(%) | Weights
1 84.94 | 86.32 ‘n 86.32 55 55 86.65 55
2

The m.llts in Table 2.3 show that the performance of both linear and neural network models

are Veri good. In particular, the NNARX md&dels give better resulSlly terms of the fit comp'«uto

PARASNERINEIRY
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Figure 2.9: The measured and predicted output of NNARX model 2.
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Figure 2.11: The measured and predicted output of NNARX model 4.
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2.5 Tce demand predictor

We build an ice demand predictor for an ice factory based on time series models. A time series is
one or more measured output channels with no measured mput [20]. In this work, linear AR model is
used. The AR model is given by the followi

(2.16)
where y is the output of the-dyn o g 1se ¢! is the shift operator,
and

(2.17)

Similar to ARX modg o estimate the parameters
for AR models and the fit is usg ediCtio n gnt. The data used for building

the predictor is shown asd#fSure 2

180

160

140

120

100

2

\I'
Figure 2.12: The demdnd of block-ices in ofen

i
qmmmmummmaﬂ

80

e Wﬂnﬂ‘

60

Number of block-ices (unit)

40

20

. 0 400
L] ! | m( UIS):

kly-based models

The data are divided into four weeks, namely, week 1, 2, 3 and 4 starting from the 15t to the 168"
value, from the 169" to the 336" value, from the 337" to the 504" value, and from 505" to the

672" value, respectively.
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At first, we build the linear AR model then the nonlinear NNAR models are constructed based
on the regression of the best AR model. Using different sets of estimation and validation data, we

have results as shown in Table 2.4. The results indicate that the performance of NNAR models are

much better than the performance of linear ARgnedels in terms of the model fit.
| ’
Table 2.4: 7 : d models.
Estimation data b — NRAR
e — Maliels neurons | Fit(%)
— = —
Week 1 2 27.04
Week2 g f &2\ . 0 26.10
Week 3 . el i \ 19.17
Week 1 + 2 Wi 19.38
Let NNAR1_2,I R2.# I £ 3. A h e s of NNAR models in
which the estimation“data cg 14 é 3 valfflation data are week 2,
week 3, week 4, week 3 e B¢ i G 1 ly. F’ f NN ' n 6 show the measured and
predicted output for th NN _LI s. die =
In Chapter 3 and 4, 3¢ Wilf ust t ¥ odel T ek 1 is estimation data and
week 2 is validation data for opgilihal cogighe eigh this model are shown in Equa-
tion (2.18) and (2.19).
- T 7 286

o) -, (2.18)

Il : Aral
~2.8505 1.8948 —3.3966
1.8025  2.1820 4 55.1001

ﬂum enINeNg

—2. 9785 3.5907 3.6313 3.5788 1.1387] (2 19)

RGN IUARINYAY

ith high fit are shown in Table 2.5. The results show that the NNAR models are far better than linear
AR models.
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Figure 2.14: The measured and predicted output of NNAR2 3.
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Table 2.5: Performances of daily-based models.

Linear AR NNAR
Estimation data Validation data

Fit(%) | Hidden neurons | Fit(%)

Day 17 10 60.43

Day 24 9 50.41

Day 16 + 17 6 38.49

Day 22 + 23 + 24 32.74

2.6 Conclusion

In this chapter, we have a k-ice production process

We construct two p . Linear models

are built with Auto-Regresg _ i Ao S NP ks (hL onlinear models based on

models. Then the OBS metiffd isffise; Srune the he ] ‘ odels. Numerical results show

| 7’ L
that the performance of ingar AR dINNAI ‘-. cWery 3g8d, howerver, the NNARX
models yield slightly better g I he I fifjchamkline@ ARX models. In addition to
constructing models for bl : H‘-, J ice demand predictors based

on time series models.

ﬂﬂﬂ?ﬂ&lﬂﬁﬂﬂ’]ﬂ?
QW’]Mﬂ'ﬁﬂJﬂJ‘m?ﬂmﬂﬂ



CHAPTER III

OPTIMAL CONTROL DESIGN

A previous section has Wt mo&s of u OCK-Tee proguction process.  Experiments
————
with real data indicate t eld réasondh 0 c_ rese erms of the model fit. In

m
e Al/mode Syamical behavior of block-ice
0

this section, we use a lineagy
production process. _ _
both parts, namely, 81.5 85.08"% relyl e S B2, show the measured and
predicted model outplt for thigFmogel. » ‘ ‘

The discrete-time pa®del g 1 k
(3.1

where u (k) is the electric enefy ¢ ), 1 (k) is the average brine

temperature (Celsius), 22 (ks th@numbeg *'r" black unit), and k is time index.
J i ﬁ
The control objective is; ininadZe= ptricity@st which consists of the cost of
peak electrical demand (kW) d J oSt J':. clectrica Wht

Thus, the cost function usmg OUrtaritt is def

T

(3.2)

and the cost functio
(3.3)

AU J3viESNEAng.

charge in p d v, Umax,, 18 peak demand in penod v, N is the time duration, and 7., is the energy

charge in period v.

ARIBININNINYIAY

mt and store block-ices in the tank. Second, the number of block-ices in the tank is limited by
the maximum capacity and there should be enough for sale according to the predicted demand. In
this thesis, we build a block-ice demand predictor based on time series models. The measured and

predicted demand of number of block-ices used in the thesis are shown as Figure 2.13, the model fit is
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Figure 3.2: The measured and predicted model output for part 2.
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f = 27.04%. Third, the control input is limited by the electrical rated power of compressors. Lastly,

compressors are kept working continuously within a period of time. In view of a previous study of

local block-ice factory [24], the constraints are specified as follows.

(3.4)

that minimizes the cost

(3.5)

king process of decision
variables u(1),...,u(N). |
used for this type of probl

programming is commonly

Consider a discrete-timeg@

Th1 = [l ..:,.TE,: L ... N — 1, (3.6)

where the state x} e:én\ § of a space C, the
ey =

disturbance wy, is afrclbmmento

The constraiffti€ 4,
==
We consider the ﬁﬂss of po

™= {/1'01 ,MN_

~AUIINLNINYING...

bance wy a andom variables defined through the system equation

PRIAINTUNRIINYINY

N-1
Jrx(z0) = E {QN(fEN) +> gk(ﬁﬁk,uk(mk)awk)} (3.8)

k=0

where the expectation is taken over the random variables wy, and x.
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An optimal policy 7* is one that minimizes this cost

The most important congg i i g inciple of Optimality [13], is
stated as: Let 7* ” oy, for 1 em. Consider the sub-

problem whereby we are ; i . Wiz ¢ @Ststo-go” from time ¢ to time

N
(3.9)
Then the truncated policy - i’ _ v N S im3 . ishs U by figblem.

In other words, a i 7 ] he.pro ( 'l.l' Ver initial state and initial de-
cision are, the remaining deel S Gitute a nal poli Wich regard to the state resulting
from the first decision ' 7

Also in [13] the dynamic @f ogramimsne-ateors iyen: 'HOF initial state x, the optimal cost
J*(z¢) of the basic problem isequa -‘r Jg i) whid £ backWard in time from period N — 1
to period 0 '

(3.10)
J(zk) = milL Lo A Gl Tt ; (e e 0y S04, .., N —1. 3.1
U EUk(s "

Applying dyna : I‘ [Calating optimal control

inputs is as follows. m : | ll
1. Set the stopping or al conditions Jy(zy) for ates Thereby, the importance of one

LI NONINYINS...

and cﬂrmme the cost of the applied control over next stage

¢

RIAINYLAY

N = fvoi(@v—1,ul_) (3.13)

FRINANAS

becomes

forallm =1,..., M.
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3. If 27} does not assume one of the quantized states, values of minimal cost at state '} are

interpolated by values of minimal cost at quantized states z

JN(.’L‘%) :PZ((L‘%,JN((L‘N)) (3.14)

roblem, linear interpolation P! between

where P" is the interpolation of o Iy

values of J (zy) is consid

4. Calculate the total cos

9

(3.15)

s W+ v (%)} (3.16)

The control input th § gbst yinimalss tho ¢ fin mtrol input in that state-stage
5. Repeat steps 2-4 for offtheffu zed stat b V=N —1land go to step

This procedure is illustratedyls i ' L€ontrol inputs are determined

when starting from one of ‘the q

3.3 Simulation results

Due to large energy-gonsum - “ic6 factofies Eathe Sc le 4: Large General
Service [26]. ta"g‘t‘ mally such an ice factory p i : gj 3 kV. This research
employs the demar& ¢ OD tariff. Table 3.1
and 3.2 show the mon ¥t ta i ﬁectively. State x, state

q The feasible regions for the final condition are as follows.
Casel: —11°C <z <-5.6°C, 650 units < x5 < 2600 units

Case2: —11°C <z <-3.8°C, 325 units < z9 < 2600 units (3.17)
Case3: —11°C<z <-2°C, 0 units < z9 < 2600 units
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Figure 373*The iterative procedure for calculating optimal c&htrol inputs.
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Figures 3.4, 3.5, 3.6 show the optimal control and corresponding state variables for block-
ice production process over a period of two days when the final condition is set to Case 1, 2 and

3, respectively. The simulation results based on the assumptions that the initial condition is 1 =

-4
-6

—10

Degree Celsius

2000
1000

Unit

= —25 35, 50
IrS) Ste : optimal TOU
— — — optimal TOD

3.3.1 Effect of final -

di i
ﬂ'
The effect of final com@ldtion is summarized in Table 3.3. In all cases, fix the initial condition
= —11°C, 22 = 260(‘ time interval At = 2 e cost is assigned zero in the feasible

CAUBIN zrsqw et i

3.3.2 Effe of initial condition

ARIBININUNVINIEY

1n1mum if we start from the smallest value of brine temperature and the largest value of block-ices

1n the storage. When using TOD tariff, the obtained result also possesses the same property.
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Optimal control signal
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Figure 3.6: Optimal control and state variables for block-ice process (Case 3).
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Table 3.3: Effect of final condition to electrical energy and electricity cost using optimal control

design.

Final conditions

Electricity cost (Baht)

TOU

Case 1
Case 2
Case 3

TOD

Case 1
Case 2

Demand

Energy

Total

335,591
141,413
129,487

404,715
158,694
146,768

Case 3

Minimum cost (Bath)

2000

296,068

122,457

105,406

422,242
159,514
142,463

R AN RAINYN Y

sigure 3.7: Effect of initial condition to electrical energy and electricity cost using optimal control

design.
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3.3.3 Effect of At

Table 3.4 shows the effect of time interval At. The results are obtained with final condition Case
1 and initial condition ;1 = —11 °C,x9 = 2600 units. First, the backward process in dynamic

programming is executed with time interval, A# The control signal is then calculated from the

by taking the average values of th = 1 in the consecutive 2 and 3
hours, respectively. Using thg-ob Jined:c " i ndition, the state variables of
the system are simulated usifigsthesaao del-of bloc‘ce pradnm It is observed that the total

energy of all cases in Tabl ifference in the off- peak and on-

' ne interval is increased.
Figures 3.8, 3.9 show the . 3 a g production process when
time interval At = alkand state variables are
shown in Figure 3.4.

Table 3.4: Effect of At 48 1, optimal control design.

A fricity cost (Baht)
Off-peak r n-p Ak "f 1;&; ; o o Energy Total
1] 104650 78860 ATEEY - 60 335,591 | 404.715
TOU | 2 | 104.650 | 782600 .:":’5'_ . 124 | 335591 | 404715
3| 91,000 910t — g 356,115 | 416,598
1| 804 107 T 7137100 852 06,068 | 444,294
TOD | 2 | 79,625 120475+ 73.710- 206,068 | 422,242
3 ” 405,091

3.3.4 Effect of brine ter‘e

The brin s changed
each tim nds bing atfire @ppedic first go@str§intiil Equation

(3.4) affect e energy consumptlon and the electr101ty cost. The results in Table 3.5 are obtalned

using the final condition Case 1 and initial c‘ldmon 1 = —11 e = 2600 units. It i 1s

Qﬁﬂﬁﬁﬂiﬂﬂ‘ﬁ%ﬁﬁ ne18 e
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Table 3.5: Effect of brine temperature to electrical energy and electricity cost using optimal control

design.
Ty, (Celsius) Electrical energy (kWh) Electricity cost (Baht)
Lower | Upper | Off-peak “- hi ;: -peaky | Total Demand | Energy Total

11 4 | 116,480 \\"’," 08390 | 60,483 | 386,472 | 446,955
11 2 Ol 8.2 "_ﬂ’ 69,124 | 335,591 | 404,715

TOoU I 0 323,560 | 392,684
-9 2 342,096 | 411,220
13 2 335,591 | 404,715
11 328,620 | 447,444
11 2 296,068 | 422,242

TOD [y 283,667 | 431,893
9 D) 300,718 | 434,243
13 I 296,068 | 400,191

3.4 Conclusion

; J ' 4 5. . . .
We have presented an optig#al c igndot.bloeksice prod "l. ommsgrocess in this chapter. First,

i % .
the problem is formulated in whih thes i pumBel of the constraints on the control

input and state variables such”as b -“rf erature, ber of block-ices in the tank; and the
control objective is to minimize thg ¢ f an ice factory. The procedure based
on dynamic programmmg fQ then proposed. Furthermore, a
number of factors arednalyzed with respect t

seen that the final go ffiect on the electricity

cost.

ﬂﬂﬂ?ﬂ&lﬂﬁﬂﬂ’]ﬂi
QW’]Mﬂ?ﬂJﬂJW]’JVIFJ’]ﬂEJ



CHAPTER IV

MODEL PREDICTIVE CONTROL DESIGN

4.1 Model Predictive Con \\\ é =
In this section basic knowl (09 redlc e Co PESS briefly reviewed.
-__F._,_r

| strategy but a very ample

Figure Z‘ MPC Strategy.

qRIANNSEM UNIANYIAY

are predicted at each instant & using the process model. These predicted outputs ¢(k + i|k) for

k =1,2,...,N, depend on the known values up to instant & (past inputs and outputs) and on
the future control signals u(k +i|k), k = 0, ..., N, — 1, which are those to be sent to the system
and to be calculated.
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2. The set of future control signals is calculated by optimizing the objective function. This objec-
tive function usually takes the form of a quadratic function of the errors between the predicted

output signal and the reference trajectory. The control effort is also included in the objective

function in most cases.
3. The control signal u(k|k) is s ‘}y f ilggthe next control signals calculated are
rejected. &

e ba‘ struc@own in Figure 4.2. A model

based on past-andscurs reniyvalues and on the proposed

In order to 1mplement
is used to predict the fut

optimal future control actions.. ) lig=optimizer taking into account the

ey

cost function as well as

Past inp r

10 LI

P B

i':;ﬁwmﬂmw g1n73

° Pred1 n model

Qﬁﬂﬁﬂﬂ?ﬁﬂ%ﬁ?ﬂmﬂﬂ

1. Prediction model
Practically every possible form of modeling a process appears in MPC. It can be impulse re-

sponse, step response, transfer function, state space, nonlinear models.
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2. Objective function
The general aim is that the future output on the considered horizon should follow a determined

reference signal and, at the same time, the control effort necessary for doing so should be

% ive function if the model is linear
an iterati ‘ﬁlmlzatlon should be used.

e

penalized.

3. Obtaining the control law
An analytical solution can

and there are no consttai

In this section, we use t| ir i ime lelof _ given in Equation (3.1).
The objective function, ity costlover! redi rizon N,. We want to min-
) d the cost of electrical
energy (kWh).
Thus, the cost fu

4.1)
and the cost function using/l
J = T'd,1Umax,1 J9 d,2 ;;;;f'd:i’i'm = By ‘: . Z Te,l/(k)u(k) 4.2)
i# ' # v=0 k=1
where v is equal to 0 for off- peak L doi-on-peak,-ar partial-peak period, r4, is the demand

charge in period v, Ugpax,» 1S pe@ igiion horizon, N, is the prediction
horizon, and r¢ , 1 !

The monthl‘
(3.2) and (3.3).

In addition, the iﬂjem is subjec

as in Equation (3.4).

The cost on in Equatlons .1 and 1s different to he cost functlon of a typlc PC which

usually takes e form of a quadratic functlorfAs a result, we use dynamic programmlng for s@lvi g
q eiﬁvq bla ﬁ p Vi qv

4 Simulation results
Similarly to Chapter 3, both TOU tariff and TOD tariff are used in this simulation. State x, state za

'
¢ control ing@nd state variables stated

and control signal « are still quantized by 40, 200, and 8, respectively. Figures 4.4, 4.5 and 4.6 show
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re ,__h bridition J G

ot o at'W@ine L G-

(.T_E Pi(x;‘,"’r;{x;))
K here P is the
N, 11t/ olation of order

2 ¥
M= T O5E-LE

:d.

Il

’ yes
With the ‘tﬂmdmon ¥, we have thwespondmg
& Bl 01 R TS ft_. Fat -!g?' :l

Figure 4.3: The procedure for calculating control inputs in MPC strategy.
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the control signal and corresponding states obtained by MPC for block-ice production process over a
period of 84 hours. Case 1, 2 and 3 represent the MPC at which we update the control signal every one
hour, two hours and three hours, respectively. The simulation results based on the assumptions that the
initial condition is 1 = —7.4 °C, 2 = 2600 ugits, the final conditionis —11°C <z < —6.8°C,
416 units < z9 < 2600 units and the '

using MPC strategy is summariz

tariff is more effective than that

-2
-4
-6
-8

-10

Degree Celsius

. grime (hrs);start onda 00:

2000
1000 - s b

o 10 70 -, 80
@ PC TOU
4 = -{1PC TOD
t il L

- =

Figure 4.4: Coiﬂrjl sign ock—iﬁrocess (Case 1).
L]
of predictio
ﬁn m Htadn @PC Case
( = 2600 units and the fi 11

2 with the i 1 condition 1 = nal condition
—6.8 °C, 4 units < x9 < 2600 units. It 1s¢en that, when usin, th TOU tariff and TOD

TIBINTHIRIINaY

The effect of time interval At is summarized in Table 4.3. In all cases, we fix the initial condition
1 = —7.4°C,xo = 2600 units, the final condition —11°C <z < —6.8 °C, 416 units < x9 <
2600 units and the prediction horizon IV, = 10. When the time interval At = 1,2, and 3, the control

Unit
L™
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Control signal

(2]
>
5 -2
Q 4
O
o -6
© -8
2 -10
a
. 2000
c
> 1000
0" A \ 70
¥ Timje (hrsl__ ay 00:C MPC TOU
'y [ s A %% & —MPCTOD
f Q ,w- A N
e . 5
. Y iy Eeire! n N
Figure 4.5: ControlSignaland stag ' vatiables APC fo \o ce process (Case 2).
600 —
< 400
=
~< 200
[2]
>
® -2
S &
()
o -8

Time (hrs) starting at Monday 00:00

MPC TOU
— — —MPC TOD

Figure 4.6: Control signal and state variables by MPC for block-ice process (Case 3).
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Table 4.1: Electrical energy and electricity cost using model predictive control design.

Electrical energ h) Electricity cost (Baht)
Off-peak | On-peaks \ uﬂ ¥ Demand | Energy Total
Case 1 | 110,240 N\ | 69,123 | 326,135 | 395,258
TOU | case2 | 108,680 } : 87,0008 00,124 | 327,079 | 396,203
Case 3 | 112,320 Ty v oo 83960 0V, 325,810 | 394,934

MPC

Case 1 | 78,000sa=2]s8 ' Q| 14 293,189 | 441,415
TOD | Case2 | 79,0404 80, 294,075 | 442,301

Case 3 | .8 ! 93,189 | 441,415

Table 4.2: Effect of prggicCtio igh1 ‘. 2) ' and Slglricity cost using model
predictive control design. ‘ .- \

4 o i 'I.
MPC ‘ Eléétricity cost (Baht)

-rmr PN

N, =6 | 11£400 g 95,1608 '-‘r" 2095600 M 69.124 | 392,752 | 461,876

TOU | N, =10 | 108,680F| 73920k, ﬁp §OO 469,124 | 327,079 | 396,203
N, =14 | 98800 | 76 $5240 | 69,124 | 323,716 | 392,840

N, = 148,226 | 341,021 | 489,247

TOD | N, 294,075 | 442,301
Ny 93,189 | 441,415

93,1

21,060 72,020 177,320 | 148,226 | 302,047 | 450,273
20,280 74,013 173,680 | 148,226 | 295,847 | 444,073
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signals at each step are calculated by using the optimal control design with the corresponding time
interval (see Section 3.3.3) and we update the control signal every 1, 2, and 3 hours, respectively. The

results suggest that, when using TOU tariff, the cost is increased when the time interval increases.

Figures 4.7, 4.8 show the control signal and riables for block-ice production process when
time interval At = 2, and 3, respectivel i f

/

Degree Celsius
|
(o]

_ 2000 ]
'c
S 1000 -
0 1
10 70 80
MPC TOU
— — — MPC TOD
Figure 4.7:%€ oftiolSighaland-State Vatiabl MPCISEBIoCKEICE Pyodess: At = 2.

= b
!

In this section, we compaj‘tﬂ:ontrol strategies namMPC optimal control and conventional

control. 0 imum ca-
pacity allj§ a ur§fo 9 sfjoys ventional

control str of the local block-ice factory in one week [24]. The electrrc energy consumptron of

=
4.5 Comparison ountrol strategies

compressors and the average brine temperatu‘ are acquired by megSlement whereas the nunffigglo

ARIRINIUUNIINGIAY

hours using both TOU and TOD tariffs are compared to the conventional control strategy. All
strategles start with the same initial condition 1 = —7.4 °C, 22 = 2600 units, and end with nearby
final conditions as in Tabie 4.4.

From Figures 4.10 and 4.11 it is easily seen that the compressors using the optimal control



Degree Celsius
|
(o))

2000
1000

Unit

Figure 4.8: Control# 1g1|1 ind stafy

kWh

ree Celsius

Control signal

80
Z 77/ haf\ |
10 4 2of F Uagd MO\ WeoSh\, 70 80
' TJ' e (hrs..- -:-,1" 00:80 MPC TOU
i 1= ; . L - MPC TOD

4 .[ S " \ !
o WL AN
| \
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Figure 4.9: Conventional control strategy.

IPC fo “\' ock¥jce process: At = 3.
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e

'ﬂ't'r alr 3

2t E S i OF

600 -
400

200

 — |

(hrs) starting at Monday 00:00

MPC TOU
— — — MPC TOD
————— conventional

Figure 4.11: Comparison between MPC and conventional control strategies.

.":’-;E;Lf afid conve "-\.I» ontrol strategies.
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Table 4.4: Final conditions of compared control strategies.

Final condition

Control strategies

degree Celsius) | zo (unit)
440

434

tional control strategy.
y over the conventional
ost. The result reveals
articular, it is calculated

conventional control

g Phucentage will be 37.21 if we

he alidentrélistrategy using TOU.

red cofitigl SH@tegies.

. El Electricity cost (Bath)
Control strategies Jh
Oft-peak “peak== tal | Demand | Energy Total
Optimal TOU 106,600 |« - 69,123 | 306,382 | 375,505
Optimal TO 26 '2]77 ,245 | 425,471
MPC TOU'S 426,135 | 395,258
MPC TOD * 4 o 93,189 | 441,415
. =

Conventional TOU ” 51,420 . 7049 71,9@ 527,058 | 598,075
Conventional TOD' |- 136,640 0 143,410 280,050 | 31,4 477,036 | 508,492

« LB INBNINEINTD

In this chapg we have investigated the MPC‘)plication for blockii‘i production process. Thwc

tr N S ed jm, whi ti c@n T d ework iasCh i
1aﬁat eE/aﬁf) VeI a g\i |@ok+a timg. | Thefifirst dcti opti tr
quence are'exccuted a e Process 1S ted al"thS followirlg tiffle st€p. In"addition, th&efte

the length of the prediction horizon and the time interval were investigated and it was found that

longer horizon and shorter time interval can reduce the cost. Then we compare the MPC, the optimal

control and the conventional control strategies. The result indicates that the optimal control strategy
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CHAPTER V

CONCLUSIONS

An application of optlmw a blog—lce
. . "r"r— . .
First, mathematical mo ocks duction p

techniques. Two parametric g

ss is presented in this thesis.
ing system identification
de §mhave been considered. Non-
linear models based
by the best linear ARX

e fausing the regressors provided
iising OBS method. Com-

paring the results obtained fi fOxfanid VNA BB\ lic 8 it Tishown that the performance of
both linear ARX and N grodgls ; y O 1th " he inec hnodels, we then examine
the suitability of usi #MOU iff) d' @D ta f‘" 1 Afactorys f/c d®¥elop an optimal control

design and a MPC d681gn br bck-#fe prog f q -~"'I.\ ich, Wloys dynamic programming

for solving the optimizatfon pgblel. ; rol s fEdkc Sy Mim S¥p minimize the operating

cost for block-ice process o t,}} -t :1 hO¥IZ0 fr addit H’\ ber of factors are analyzed
to see how they affect the per s obs: hat tl !‘I\ itidl and final conditions would
affect the operating cost the ,' < 7 d MBI strategy are then compared to
the conventional control strategy. It « 3 d optimal controller and MPC strategy
have better performance than the comy in terms of energy consumption and

significantly reduce

the operation cost. Iagparti mal cor anfrn

the operation cost ywitch:.Comparing-to-the-conventiol

{

5.2 Further impr v

==

There are some improvements that can be considered to obtam better mathematical models and an ice

demand predictor for bloc‘@ductlon process.

B ca "the results by chd8sing more

compM€ated regressors in Equatlon (2. % such as

q NasnIBum ANy

2. When doing system identification with neural network models in Section 2.4, we can take

5‘

further improvements by different choices of the estimation and validation sets, by processing

the data more times or by the use of recurrent neural networks.
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5.3 Future works

1. In Section 2.5, we have considered the ice demand predictor using to predict the number of
block-ices for sales in the next hours. To improve the performance of the system, it is possible

to apply Demand Side Management (B J§to the number of block-ices on demand. An-

e dcmiand Meatal demand, we can find a suitable one
which leads to the reductionsii*tlie.6pota ’//
2. In this research, we have '!;E-r:n';.J MPgtrate@production process in which

the model of the pr ¢ 1 e =Rty res@rk could consider the MPC

design with the process m
—

3. Dynamic progr
tation due to the fagy

pility in terms of compu-
, he number of states. This
is called the cifse of difiengfongligl 24 uty 3 WOtk wOill 00k at more details about
this. . &l \ |

AUINENINGINg
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