gunsdnponududeuFrutenduifoalassaisuandunesiiadesam

qmuwuﬁmgumuuuwmm?! m:mmwaﬂam]?mmmmmsmmamumummm

mmwmmma‘m@uﬂmm mmmrsﬁiuﬂ@qumm

RTINS AR

Zﬂl@Wﬁﬂﬂ\?@ﬂ’]@\‘iﬂi‘mﬂﬁ’m‘ﬂﬂqﬂﬂ

TOWARDS SOFTWARE COGNITIVE COMPLEXITY MEASURE WITH GRANULAR

STRUCTURES OF UNIFIED FACTORS

ﬁuﬂ‘iﬁﬁnﬂﬂﬂ‘mﬁm

Departmeriof Computer Englneerlng

wwmnmﬁm’nwmaﬂ

Academic Year 2009

Copyright of Chulalongkorn University

Thesis Title TOWARDS SOFTWARE COGNITIVE COMPLEXITY MEASURE

WITH GRANULAR STRUCTURES OF UNIFIED FACTORS

By

Field of Study

Advisor

Fulfiliment of the F

..... .. an of the Faculty of
e T N ty

Engineering

ol ng, Dr.Ing.)

THESIS COMMITTEE

.. Chairman

AU Wﬁﬁﬂ?

weyana eaelsniady : gunrdnanududeuFrutendwrifalanaiunndy

w84}adusqn. (Towards Software Cognitive Complexity Measure with Granular
4 b -y L # - -:

Structures of Unified Factors) aNUFnE N InUEvAn : uA.eg. ru'ﬂﬂ fntly

neod 1103 win.

wnsinanududawniFuinanuaindiedwiuanesymdlunimitaudnls
1aﬂﬁ'mﬁnﬂmﬁum§'nmfﬁy§mmq Cognitive. Informatics Feinmandudenirman
ﬂqi’u#ujw'miﬁﬂﬁuﬁ i Bunm maﬁ}n ua® lanafaassioananiely novds
ﬂnnmtﬂiﬁﬁn_ﬁgﬁ"imu“ﬁoﬂhiﬂv& Functional Size (CFS) 31 MEsava e ey
RFnuaAnulay ‘tﬁFs_-’Hﬁﬂﬁhﬁqwﬂﬂujwﬁnmﬁwﬁwﬂﬂu uA B
mmumn'l.ugﬂiia iﬂéﬁut}érsfun: operators mﬁi’umm*ﬁ wertnuiasssfiunny
fudeusinusedieds udnsulszdfiusandudausinudasiadouananiy Tanl
ﬁﬁﬁqﬁdmmﬂ'uﬁ'ufﬂmkﬁﬁaﬁm;iﬂ!i'ﬁ | Anehiwugtiasiauedsnslmailaein
wANM12aIn Granular. Computing WamnuszgnldusinauernasialmiFonin
Structured Cognitive - Information Measure (SCIM) Feutiaduuncdnlnsairalmily
asmadesfunszusuns Fusssuywe fnasmasesdesdufelsniisiteued
ﬂuﬁqﬁmfﬂmﬁudmmnﬂﬂﬁiﬂ Weyuker ¥ 9 4e Anentiwusta ldaduayuncy
Lﬂuawnﬂﬁuiq@uﬁnlﬂwﬂinm:r Granular Computing _uumjﬂﬂﬁqiﬁﬂmrmuannu
sugiinistlyfaunndessesnnauifions Weyuker unsiinsldiszdiuunsiinmsd

umrdmrududeuFuse it Hewqntey 9aud uszuuImluniRuN

wnimsnasialyl
nedn Gaanssueeniawed aefledendn__ umaws eedmeic
71791 GAanssueeNTAeT muﬂa‘iaa#mﬁnmﬁhmﬁﬂu{uﬁn_,,,,,,ﬁfé{:“

nnsAnwn_ 2552

##5170365021 : MAJOR COMPUTER ENGINEERING

KEYWORDS : COGNITIVE COMPLEXITY MEASURE / GRANULAR STRUCTURE /
INDUCTIVE FRAMEWORK./ UNIFIED AND|STRUCTURED FACTORS / WEYUKER'S
PROPERTIES | 4

BENJAPOL. AUPRASERT : TOWARBS SOFTWARE COGNITIVE

COMPLEXITY MEASURE WllTH GRANULAR STRUCTURES OF UNIFIED

FAE?DRS,_MIS&E ; ASST.PROF YACHAI LIMPIYAKORN, Ph.D, 103 pp.
\

Cugnrwe cmﬁﬁléxiﬂ measures quantify human difficulty in understanding
the suurcgfoda hasgd on cngn#hve informatics foundation. The discipline derives
cognitive ::::mﬁlexuy ona basis of fi.mdamentai software factors i.e. inputs, outputs,
and internal pm@bss[[;g architecture. The inventien of Cognitive Functional Size
(CFS) stands aut asgﬁ;e ‘Emékfﬁfwgh't?-shﬁwa-re complexity measures. Several
subsequent ;éﬁeaﬂihes hwu’u'iwl to enhance CFS to fully consider more factors,
such as infurrnafl';:;n contents in the farm ifidgftﬁiﬁers"hnd operators. However, these
existing approaches quanﬁf_[y, the facmMely without considering the
relationships among them. This thesis pmsents an approach tointegrating Granular
Cﬂmﬁuﬁﬂﬂ-lﬁlﬁﬂiﬁiﬁ'ﬂ'mﬂﬂ[ﬁd.m.gﬁmiw,nﬁrmatiun Measure or
SGlhi; Tﬁe proposed measure unifies and re-organizes cnm&lex‘:w factors analogous
to human cugmu».re process. Empirical studies were cunducwd to evaluate the virtue
of SCIM, 1nclud1ng theoretical validation through nine Weyuker s properties. The
wﬂuersalapphcahuhty of granular wmpuhna cx_ancept&ﬁ alsedemenstrated.
Additionally, the new inductive framework has been propesed to patch the holes of
Wewker's properties, and used in the assessment of the cognitive complexity

measures to analyze and guide directions for future improvement of the measures.

Department : Compilter Engingering. Students Signature, Besjes) Puptmsect,
Field of Study : Computer Engineering ... Advisor's Signature _/ = /Y pia
Academic Year: 2009, e

Vi

Acknowledgements

There are so many people | would like to heartily say thank you for the
ongoing and enthusiastic support throughout this whole experience of thesis writing and
beyond. Completing this thesis is such a moment, and the moment is so much bigger than
me. This is for Asst.Prof Yachai Limpiyakorn, my.advisor, who always believes in me and has
guided me through-this rollercoaster-ride journey, despite . some up and down times, in
pursuing the goals and dreams until we have so far achieved publishing papers in four
international conferences proceedings. It is for Prof Yinxu Wang, who started this whole
cognitive complexity measure idea and organized such grand and ongoing conferences like
ICCls. It is for Prof Mark Burgin, who supported the idea and gave me some good advices at
the CSIE conference. It is for Prof Boonserm Kijsirikul, Asst.Prof Vishnu Kotrajaras, and Ajarn
Paskorn Apirukvorapinit, whose advices, criticisms, and questions during the proposal exam
and beyond got me to re-think and improve the work in this thesis. It is for SIPA, who funded
this Software Quality Research and Development Project. And it is for anyone trying to pursue
some great researches that now the door has opened for you to achieve your dreams if you try

hard enough and believe in what you are doing.

This thesis would not have been a success without the amazing support
structures surrounding me by my family and friends, my father, Suparat Auprasert, and my
mother, Assoc.Prof Kanya Auprasert, who encouraged me to pursue the degree and taught
me to be strong and believe in what | was doing. My friend, Jenjira Wongboonsin, who has
been through this amazing experience like me and helped me all along, my ex-supervisor,
Ekraj Wongkiatkachorn, who made it possible for me to pursue my degree, and all my
colleagues, and the friends | met during the conferences and the trips, all the people are so
wonderful. l-never thought that | would have met people who are so great, cool, and so nice to
me during this whole journey. This thesis is dedicated to all the people who came into my life,
who | cannot say all their names. They all gave me the faith and courage to hew down the
mountain of despair into stepping stones of hope, until | have finally completed this thesis. |
really appreciate them and would like to say thank again for everything they gave to me. This
whole experience, all the people that | met, all the places that | have been through, all the

memories that | have got, will always stay with me. Thank you.

Contents

Page
Abstract (Thai).................. v
Abstract (English) v
Acknowledgementm vi
Contents............ : = 1 s Vii
List of Tables X
List of Figures.....r..v.. A N BRI Xi
Chapter
Chapter 1 Introdchti 1
1.1 Background.............. e 1
1.2 ObJECHVES. csofbe.odiren .o LIy A AN 2
1.3 Scopes and Initi : ‘;:- i 53 S . 2
1.4 Limitations........ .. L Srar . | 3
1.5 Acronyms........... i ». ' | B e e 3
1.6 Exp@j 3 S s e 4
1.7 Research ‘ 4
1.8 Rese§r ublication Progress..........covvvviiiiininin. j 5
Chapter 2 Liteﬁre Reviews M 7
2.1 Classical Sc‘vxnCompIexny Measure 7
RETREINNT
cl xty (8C) ¥ % - w8 8 W 7

2.1.3 Halstead’s Software Me@s ..

2.2 Cognitive Complexity Measures of Software.................ocooociiiiiiiinn,
2.2.1 Cognitive Functional Size (CFS)........cccoiiiiiiiiiiiiiiie e, 12

Chapter

2.2.2 Cognitive Information Complexity Measure (CICM)................oeenee.
2.2.3 Modified Cognitive Complexity Measure (MCCM)........................

2.2.4 Cognitive Program Complexity Measure (CPCM)...............coooeenens

2.3 Other Associated Theories and Researches

2.3.1 Unified Framework of Granular Computing.......cco..covoviiiiiiiinn.,
2.3.2 Combinaigsie®Coupi#Riles. | g, . S,
2.3.3 Weyukep@®®ropaflicg™ A0 4 N S, S S ...

2.3.4 Framewaork for Evaluating MetriCS. ... oo ovie i iie e

Chapter 3 The Structured Cognitive Complexity Measure with Granular

Computing Strategies

3.1 Decomposition of Software into Granular Hierarchical Structure.............

3.2 Derivative of the Total Cognitive Weight and Combinatorial Counting

3.3 The Structured Cognitive Information Measure of Software (SCIM)..........
3.4 The Unit of SCIMI.... #llafsiani A IO ... Y..................ceee
3.5 lllustration of SCIM Computation........cooi i,
3.5.1,S@IM GO L O . . "
3.5.2 CES, CPCM, and MCCM Computation.........coooveiiiinie o

Chapter 4 Validations of the Proposed Measure

4.1 Theoretical Validation through Weyuker's Properties..............cocoooiinnnn.

4.2 The New Inductive Framework for Evaluating Software Cognitive

CapplexXiyy NlcgsUes.. 1. SIF 8. F B SN S SEME B 09 0 ") S

4.2 .1 Evaluation and Comparison of Complexity Measures through'the

INAUCEIVE FrameEeWOrK. i e e e

& 332 e ti ol hil@ Uts hilele raliis v e kel . B E3 0 78 7% 0 . B B 7%

4.4 Comparative Case Studies with Real-World Programs

Chapter 5 Conclusion and Future Direction

D G ONCIUSI ON et

B2 FUIUIE DIreCHION. .o

viii

Page
14

16
16
17
17
18
19
21
24

24

26
28
31
31
32
35
38
38

41

i]
rrrrrrrr

AUINENINYINg

QRIAN TN INAE

List of Tables

Table

AW

ﬂUEJ’JVIEWI‘SWEJ'TIﬂﬁ
wqmnmummmaﬂ

Xi

List of Figures

Figure Page
1 ole BCS'sasinCFS............... 15
2 % in the structure............. 15
3) g&jéonstruction 26
4 ot Structures......... 27
5 Example of L@ Com i tationy. i S, s i i ... oeeneianeen 29
6 Granular Hierarchy of the Example Program.....cc.....ooooiiiiiiiii, 33
7 ICNs used to calculate complexity of the example program............... 34
8 BCS’s structure of the example program......co...cceiiee i, 35
9 : ences in th OGraM .. e 36
10 ifi in the exampl \ N 37
11 , same funct g 42
12 ' ACOM-CF8.il....... W, IO 50
13 c_-@-f;m B N 51
14 LOC-CFS-SCIM-C .,?, B e reeentnsanaanassaanaansain 53

b

AU INENINGIns
ARIAINTAUUNIING IR

Chapter 1

Introduction

1.1 Background

Software complexity measurement has been an age-long problem in
software engineering as the effort used to develop, comprehend, or maintain the
software depends on so many complicated factors. In the past, the measures tended to
consider only some perspectives particular to each research approach. For example,
McCabe’s Cyclomatic Number [1] only considers the control flows of the program, while

Halstead’s Metries [2] only take into account the number of operators and operands.

As the software industry grows more complex, trends in software
engineering are turning from empirical studies towards schema-based studies [3].
Cognitive Informatics [4],[5],[6] is a multidisciplinary study of the internal information
processing mechanisms of the brain and the processes involved in perception and
cognition. With Cognitive Informatics emerging as a promising discipline during the past
few years, cognitive complexity of software has opened up the potential for a new
research area of software metrics. Cognitive complexity measures attempt to quantify
the degree of difficulty or effort spent on comprehending software from all the
perspectives e.g. loops and branches, data objects such as inputs, outputs, and
variables, so that the complexity value more precisely reflects the difficulty for human
brain to process and comprehend the software. The measures can thus be used to
predict quality dimensions such as testability, reliability, and maintainability of software
systems. However, such metrics -are still in '@ very nascent stage, as evaluating
complexity from many factors may not be convincing if the factors are not carefully

thought and organized.

Previously proposed cognitive complexity measures [7],[8],[9],[10],[11],
[12] evaluate the complexity of software based on factors e.g. basic control structures
(BCS’s), inputs/outputs, and information in the form of identifiers and operators,

separately, and then assemble the complexity value by the weights derived from each

factors. This process of calculation overlooked the dependency among factors, while in
fact, these factors have relationships with each other and should not be evaluated
separately. Therefore, we suggest that the factors need be unified and organized into a
structure, and then the complexity of the ‘whole’ software program should be evaluated
by complexity of its ‘parts’ and the interrelationships among ‘parts’ and ‘whole’. This
seems to fit the concept of ‘Granular Structures’ [48] used. in granular computing, which
has recently been suggested as a generic method that can be extended to broad areas

of problem-solving [13].

This research has reviewed and revealed the flaws of existing cognitive
complexity measures. Another approach for cognitive complexity measurement is
proposed by arranging complexity attributes into granular structures analogous to when
human comprehends the software, in order to make the blooming discipline of cognitive

complexity measurement [4],[5],[7] a more mature and sound discipline.

1.2 Objectives

The objective of this thesis is to make the emerging discipline of software

cognitive complexity measurement more mature and justified by:

1) Deriving a new measure that is theoretically not inferior to the existing

ones.

2) Proposing a framework for evaluating and improving the assessment

of cognitive complexitymeasures.

1.3 Scopes. and Initial Agreements

The scopes of this thesis as agreed in the proposal are as follows:

- Derive a new cognitive complexity measure that is not inferior to the

existing ones (i.e. CFS, MCCM, CPCM), at least in terms of Weyuker’s properties.

- Invent a new sound framework for evaluating cognitive complexity
measures, and use it to analyze and find logical strengths and weaknesses of each

measure.

- Empirical study of the proposed cognitive measure is conducted on at

least 5 programs of which the size is not less than 100 lines of code.

1.4 Limitations

- As_current studies in Cognitive Informatics disciplines tend towards
schema-based studies rather than empirical studies, and studies of software cognitive
complexity measurement in Cognitive Informatics are in a nascent stage, this thesis
focuses more on schema-based or theory-based studies, rather than empirical or
practical studies. Therefore the proposal is rather conceptual than implementation-
focused. The validation of the proposed measures in this thesis also focuses more on

theoretical than empirical.

- The measure proposed works better on logical programs, and is not
suitable for evaluating programs with some specific characteristics, e.g. file-processing
programs. This is because some cognitive weights of basic control structures (BCS'’s)
proposed in [7] are still not defined and calibrated well when it comes to BCS’s with

more complex processing.

1.5 Acronyms

BCS Basic Control Structure

ee McCabe’s Cyclomatic Number

CFS Cognitive Functional Size

CICM Cognitive Information Complexity Measure

CPCM Cognitive Program Complexity Measure

DF Data Flow Complexity

GUI Graphic User Interface

HE Halstead’s Effort

ICN Informatics Complexity-Number

I(L) Information contained in leaf node granule ‘L’
1/O Input / Output

LOC Line of Codes

MCCM Modified Cognitive Complexity Measure
SCIM Structured Cognitive Information Measure

1.6 Expected Benefits

- The emerging discipline of cognitive complexity measure becomes

more mature and justified.

- The direction of how to evolve the cognitive complexity measures into a

more precise ones become clearer.

1.7 Research Methodology

This research aims to review and point out the flaws of existing cognitive
complexity measures, and then propose a new solution for cognitive complexity
measurement by arranging complexity attributes into granular structures analogous to
when human comprehends the software, in order to make the blooming discipline of

cognitive complexity measurement a more mature and sound discipline.

Instead of evaluating each factors e.g. basic control structures, number
of identifiers/ operators separately, the principle of granular structures for problem-

solving [13],[14],[15],[16] is applied to the domain of software cognitive complexity.

Based on this approach, the newly proposed measure unifies the factors and re-
organizes them into granular hierarchical structures analogous to how human
comprehends the program code. In other words, we unify and group factors by their
relationships and dependencies. instead of grouping them by types (e.g. basic control

structures, identifiers, operators, inputs, or outputs)

The proposed measure solves three major problems of existing cognitive
complexity measures.-One is-the lack of consideration of information content as
regarded as CFS’s drawback. Another is the ignorance of the detailed relationships
between some factors, e.g. the data objects and the basic control structures as
appeared in CICM, MCCM, and CPCM. The other is the irrational use of addition (+) and
multiplication (*) in the computation of We, as rationaled in [17], which also suggested
that this problem leads to the lack of Property 6 ((5 P)(o Q)(- R)((IP|=1Q]) & (|P;R]

FIQ;R|)) of Weyuker's.

The newly proposed cognitive complexity measure is theoretically
evaluated against Weyuker's properties [18], as well as the Framework for Evaluating
Metrics [19]. The new inductive framework for evaluating cognitive complexity measures
is also proposed as guidelines for improving the assessment of the measures. The
proposed measure is also evaluated with this new framework, which focuses on what
happens to complexity values when two programs are concatenated in various
conditions. Finally, the empirical study of the effectiveness of the proposed measure
compared to the selected cognitive complexity measures is conducted on the case

studies.
1.8 Research Publication Progress

Research papers which are parts of this thesis have been published .in
four international conference . proceedings. The details of the papers and the

conferences are as follows:

- The full paper that covers the whole content of the thesis, “Towards
Structured Software Cognitive Complexity Measurement with Granular Computing
Strategies” [20], was presented at the 8th IEEE International Conference on Cognitive
Informatics (ICCI 2009) at Hong Kong Polytechnic University on June 16", 2009, and
was published in the Proceedings of the 8th IEEE International Conference on Cognitive

Informatics (ICCI 2009), Hong Kong, June 15+~ 17,2009, pp 365-370.

- The paper “Representing source code with granular hierarchical
structures” [21], which is part of the thesis, was accepted for the poster track and
published in the Proceedings of the 17th IEEE International Conference on Program

Comprehension (ICPC.2009), Vancouyver, Canada, May 17.- 19,2009, pp 319-320.

- The paper “Structuring Cognitive Information for Software Complexity
Measurement” [22], which is part of the thesis, was presented at the 2009 World
Congress on Computer Science and Information Engineering (CSIE 2009) at Wilshire
Grand Hotel, Los Angeles, on April 2", 2009, and was published in the Proceedings of
2009 World Congress on Computer Science and Information Engineering (CSIE 2009),
IEEE CPS, Los Angeles, USA, March 31 - April 2, 2009, pp 830-834.

- The paper “Underlying Cognitive Complexity Measure with
Combinatorial-Rules” [17], which is part of the thesis, was presented at WCSET 2008:
World Congress.on Science, Engineering and Technology, at Holiday Inn Paris, France,
on November 23° , 2008, and was published in the Proceedings of World Academy of
Science, Engineering.and Technology, Volume 45, November 2008, ISSN: 2070-3740,
pp 432-437.

In addition, the paper “Towards Inductive Framework for Evaluating
Software Cognitive Complexity Measures”, which is part of the thesis, is currently under

the process of submitting to publication.

Chapter 2

Literature Reviews

2.1 Classical Software Complexity Measures

Since the late 1960’s, several complexity metrics have been proposed to
measure the complexity of software. Each of them-dealt with different aspects and
problems in evaluating complexity. Very soon, many metrics were found not useful and
faded from the industry. Still, the metrics that remain widely accepted and used in the
industry, namely LOC.(Lines of Codes), McCabe’s cyclomatic complexity, Halstead’s
metrics, Data flow complexity, and Function Point, are, however, found to be far from
perfection, nor satisfy the needs in the industry to rigorously evaluate and compare the

complexity of the software.

2.1.1 The Physical Size (Lines of Code - LOC)

The physical size, or lines of code (LOC), is the simplest and most-used
software measure. It simply counts the number of lines in the source code. The
recommended counting standard is to count any lines but blank lines, section

separations, and comments [7].

LOC counter is easy to implement. However, it may not reflect the true
complexity, nor indicate the effort used in a software project, as it does not take into
account some complicated details of software, like the difficulty of algorithms and
program structures. ‘It is also dependent on languages and programmers’ skills.

Mareover, it seems to cause inefficient implementation in coding

2.1.2 McCabe’s Cyclomatic Complexity (CC)

In 1976, McCabe [1] developed the cyclomatic complexity that counts
the number of linearly-independent paths through a software component which is
transformed into a connected graph showing the topology of control flow within the

program. The measurement value is calculated from:

Cyclomatic complexity (CC) =E-N+p

where E = the number of edges of the graph, N = the number of nodes of the graph,

and p = the number of connected components.

CC is independent of languages and language format. It provides a
single ordinal number that can be compared to the complexity of other programs.
However, it considers only the loops and branches, without the consideration of other
factors such as the length-of codes or number of statements that could affect the ability

of program comprehension.

2.1.3 Halstead’s Software Metrics

In 1977, Halstead [2] proposed a set of software metrics for measuring

the algorithmic complexity by counting operators and operands from software codes.

Let n, = number of distinct operators

n, = number of distinct operands

N, = total number of operator occurrences

N, = total number of operand occurrences

Halstead’s measures are then defined as shown in Table 1.

Table 1. Definition of the Derived Measures of Halstead’s Software Metrics

Measure Symbol Formula

Program length N N =N;+ N,
Program vocabulary n m=in, -,
Volume V V= N*(log, n)
Estimated abstraction level L L=@2n,)/(n*N,)
Difficulty D D=1/L

Effort E E=V*D
Time T T=E/18
Remaining bugs B B =E"/3000

Halstead’s measures can be considered as an all-in-one tool for
estimating project parameters, as they provide the formulae for many important
attributes of a software project. However, they are language dependent, and they do not
take into account the factors that intensify the complexity of the software, such as loops,
branches, function ealls, interrupts, etc. Moreover, some of the constants, e.g. T = E /
18, B = E°/ 3000, are based.on pure observations and experiments, while lacking the

rational support. The physical meanings of the measures are not clear either.
2.1.4 Qviedo’s data flow complexity measure (DF)

Oveido’s measure [23] is a different approach based on the data flow
characteristics of the program. The measure decomposes a program into a set of
disjoint blocks of ordered statements having the property that the first statement of the
block is the only statement which can be executed directly after the execution of a
statement in another block and whenever it is executed, the other statements in the
block are executed in the given order. In other words, the block is a chunk of code that
is always exeecuted as a unit. The blocks are then used to construct a program flow
graph, a directed graph in which each node corresponds to a block of the program and
there exists the.edge from node i to node j if and only if it'is* possible for control to

transfer directly from block i to block j in the program. DF is defined as followed:
A variable definition takes place when the variable is defined.

A variable reference takes place when the variable is used in the

program.

A locally available variable definition for a program block is a definition of
the variable in the block. A locally exposed variable reference in a block is a reference

to a variable which is not preceded in the block by a definition of that variable.

10

A variable definition in block i is said to reach block j if the definition is
locally available in block i and there is a path from i to j along which the variable is not
locally available in any block on the path, i.e. the variable is not redefined along that

path.

Data flow. complexity (DF) of @ program is defined as the sum of data
flow complexity of all blocks in the program. Data flow complexity of block i (DF)) is
computed from all variable v.-in: the set of variables.whose references are locally

exposed in block i:
DF/=) DEF(v)

where DEF(VJ) is the number of available definition of variables v, in the set of variable

definitions that reach block i .

DF solves the problem of other measures that the relationships between
blocks of software code are not taken into account when computing complexity size.
However, it is still a rough measure based on the assumptions that programmers can
determine the definition-reference relationships within blocks more easily than between
blocks, and number of different variables locally exposed in each block is more
important than the total occurrences of that variable references. Hence, it ignores the
fact that the frequent occurrences of variables can also make the program more
complex. Because it only considers the complexity transferred between blocks, not
considering the complexity within the blocks, it lacks an important fundamental property
of software measure: that the additional code into any program code should not

decrease the complexity of that program code as proved by Weyuker [10].
2.1.5 Function Points (FP)

In 1983, Albrecht. [24] developed the function point metric as a
measurement to express the amount of business functionality that an information system
provides to users. Function points (FPs) can be determined by “a function of the number

of inputs, outputs, data objects, and internal processes.” [7]

11

FP = UFP * TCF

where UFP (Unadjusted function points) is a weighted sum of numbers of function items:

(Note that the average weights are used here.)

UFP = 4(#external inputs) + 5(#external outputs) + 10(#internal logic

files) + 7(#interface files) + 4(#external inquiries)

and TCF (Technical correction factors) is a weighted sum of 14 affective
degrees of GeneralSystem Characteristics (GSKs) including data communications,
distributed data processing, performance, heavily used configuration, transaction rate,
on-line data entry, end -user efficiency, on-line update, complex processing, reusability,

installation ease, operational ease, multiple sites, and modifiability :
TCE= 0.65 +0.01 Z(affective degree of each GSK)

where the affective degree ranges from 0 (none) to 5 (essential). As a result, TCF falls in

the range of 0.65-1.35.

“Function Points” is a measure that takes into account many factors
affecting software complexity, making it a metric that can estimate the effort and
productivity quite accurately. However, due to many factors, Function Points has been
criticized as adding little value relative to the cost and complexity of the effort used to

conduct the measurement. The method also requires subjectively weighing of the GSKs.
2.2 Cognitive Complexity Measures of Software

Cognitive Informatics is the multidisciplinary study of the internal
information processing mechanisms of the brain and the processes involved in
perception. and-cognition-[4]. Main ideas in Cognitive Informatics. Research-that .is

associated with software can be summarized as follows:

12

. Software is a mathematical entity, a coded solution, and a
special type of information at a certain abstract level, i.e. level 3 — special notation

systems or level 4 — mathematics [4],[5],[6].

. Program comprehension is a cognitive process to understand a

software system in terms of architecture, static behaviors and dynamic behaviors [6].

. Cognitive - complexity ~of software is dependent on three

fundamental factors: internal processing and its input and output [5].

. Cognitive informatics process takes into account the information

contained in software [5],[9].

Cognitive complexity -of software is based on these principles. The
research in this field, including this research is based on the fundamental principles that
software is information and cognitive complexity of software is dependent on inputs,

outputs, and internal processing architecture.

2.2.1 Cognitive Functional Size (CFS)

Referring to the Cognitive Informatics. foundation that cognitive
complexity - of software depends on three fundamental factors: inputs, outputs, and
internal processing, Cognitive Functional Size (CFS) [7],[8] was proposed by Wang in
2003 as:

GRS = (N, + N)) * W,

where N, =#inputs, N_'= #outputs, and W_is the total cognitive weight of basic control
structures (BCS’s), representing internal processing, defined as the total sum of
cognitive weights ofits g linear-blocks composed in-individual BCS’s: Since each block

may consist of ‘m’ layers of nesting BCS'’s, and each layerwith ‘n’ linear BCS’s, then

wo=> [[] 2wk

=1 k=1 i=1

13

where weights W_ (j,k,i) of BCS’s were defined as presented in Table 2.

Table 2. Cognitive Weights (W;) of BCS’s

Category BCS A

Sequence Sequence (SEQ) 1
Branch If=Then-Else (ITE) 2
Case (CASE) 3

Iteration For-do (R) 3
Repeat-until (R,) 3

While-do (R)) 3

Embedded Component Function call (FC) 2
Recursion (REC) 3

Concurrency Parallel (PAR) 4
Interrupt (INT) 4

Although CFS

is

easy to implement

and

independent from

implementation technologies, it excludes some details of potential cognitive complexity

factors like information contents in the forms of identifie rs and operators contained in the

internal architecture as suggested by the informatics laws of software [9],[10],[11]. This

drawback of CFS leads to the proposal of many subsequent measures [9],[10],[11],[12]

attempting to solve this problem.

This thesis relies on the CFS’s concept and uses its originally proposal of

the cognitive weights of BCS. CFS is selected to be compared with the proposed

measure in this work.

14

2.2.2 Cognitive Information Complexity Measure (CICM)

Early 2006, Kushwaha and A.K. Misra [9],[10] modified Wang’'s CFS to
measure the information contained in software. They referred to the law of informatics [6]
that software = information, thus the difficulty in understanding software = the difficulty
in understanding information. Moreover, since software is a mathematical entity that
represents computational information, the amount of information contained in software is
a function of identifiers that -hold the information and operators that perform the

operations on the information. Hence:
Information = f (Identifiers, Operators).

The Cognitive Information Complexity Measure (CICM) was then defined

as:
CICM = WICS * W,

where W is defined the same as in CES, and WICS is the weighted information count of

the software derived from:
LOCS
WICS =) {n(k) / (LOCS-k)}
k=1
where n(k) is the number of identifiers and operators in the K™ line.

This thesis exploits-the CICM’s concept that the amount of information
contained in software is the function of identifiers and operators. Although the idea to
count identifiers and operators as the information contained in software, as in CICM, is
reasonable, the weight function is meaningless and requires more rationales. The
weighing technique was just a bogus function to make it conform to the fact that
identifiers and operators become more and more difficult to understand as we advance

into the later lines of the program.

15

Furthermore, for CFS, it is quite acceptable to multiply the number of
inputs and outputs by W_, because inputs can be considered as external objects that
are processed through the whole control architecture that is derived into W, resulting in
outputs from the system, as shown in Figure 1. In contrast, for CICM, identifiers and
operators are not contained in all BCS’s in the architecture, but inside some specific
layers of the BCS, as shown in Figure 2. Therefore, the weighted count of identifiers and
operators should not be simply multiplied by the W_ derived from the whole BCS’s
architecture without considering the specific position of each identifier or operator in the

BCS’s

O O O Control Structure of

the Software
INPUTS >
Q O O BES
A BCS a
BCS
OUTPUTS <]
A A BCS i
=

<L

#{inputstoutputs)

=
W |
Q

Figure 1. Relationships between 1/Os and the whole BCS’s as in CFS

Control Structure of the Software
BCS BCS BCS CAC O Identifier
Fiy BC
fﬁo i Og A Operator
e A
o c2a BCSo @
& 2 |'f|pesoa) [Besto |

Figure 2. Identifiers/operators not affected by all BCS’s in the structure

16

2.2.3 Modified Cognitive Complexity Measure (MCCM)

Later in 2006, S. Misra [11] enhanced CFS into Modified Cognitive

Complexity Measure (MCCM), which was formulated as:

MCCM = (N N * W

c

where N, is the total number of occurrences of operators, N, is the total number of

occurrences of operands, and W is defined the same as:in CES.

MCCM simplifies the complex weighted information count of each line in
CICM by quantifying information contents in terms of number of occurrences of
operators and operands. However, the multiplication of information content with the

weight W, derived from the whole BCS's structure remains the approach’s drawback.

Due to the too complicated calculation of CICM, this thesis considers
MCCM as the measure of the same type as CICM, and uses MCCM as the
representative of both approaches in the comparative case studies, to enable more

practical evaluation.

2.2.4 Cognitive Program Complexity Measure (CPCM)

In 2007, S. Misra proposed the Cognitive Program Complexity Measure
(CPCM) [12] based on the arguments that the occurrences of inputs and outputs in the
program directly affect the internal architecture and they can be considered as the
forms of information: contents. He also criticized the computation of CFS that the
multiplication of distinct number of inputs and outputs with the total cognitive weights
was ‘not justified as there was no reason why using multiplication. Furthermore, he
claimed that operators are run time attributes and cannot be regarded as information
containedin the software as proposed by CICM. Based on these arguments, CPCM was

thus defined as

CPCM =S, + W,

17

where S, is the total occurrences of input and output variables, and W_ is defined as in

CFS.

In CPCM, the assumption that operators should not be considered as
information contained in software is reasonable, as operators only perform operations on
information stored in identifiers such as variables. However, similar to CICM and MCCM,
CPCM does not consider dependencies between variables and their positions in the
BCS'’s architecture. Additionally-the use of addition (+)instead of multiplication (*) is not

fully justified, as it implies that S, and W, are distinct factors of complexity.

This thesis applies CPCM ideas that operators are disregarded as
information contained in software. CPCM is selected to be compared with the proposed

measure in this work.

2.3 Other Associated Theories and Researches

2.3.1 Unified Framework of Granular Computing

Granular computing is an interdisciplinary study of human-inspired
computing [13]. Recently, studies.in granular computing previously dominated by set-
theoretic models have been re-casted in a wider context outside data mining, which is
their original domain. Studies in granular computing include studying: the contexts of
structured writing, structured proof, structured programming, or information processing
[13],[16]. The unified framework of granular computing [13] extracts high-level common
principles from a wide range of scientific disciplines involving human problem solving
methodologies, and ‘studies them in a uniform way [13],[14],[15], by partitioning the
universe into multilevel and multi-view granules (class or group that contains common
features) to allow solving the problem at appropriate level of granularity by ignoring

unimportant and irrelevant details.

A primitive notion of granular computing is a granule representing part
of a whole. A granule may be an element of another granule and is considered to be a

part forming the other granule. It may also consist of a family of granules and is

18

considered to be a whole. Granular computing paradigm explores the composition of
parts, their interrelationships, and connections to the whole. Though real-world problems
may consist of a web of interacting and interrelated parts, granular computing exploits
structures in terms of granules, levels, and hierarchies based on multilevel and multi-
view representations, as hierarchical structures make a complex problem more easily

understandable, leading to efficient approximate solutions [13],[14],[15],[16].

This thesis applies basic ideas, principles, and strategies of granular
computing into the software complexity evaluation, in order to present the measure that
more thoughtfully considers the complexity factors by structuring or grouping them, so
that the complexity calculation process can be made analogous to when human

comprehends the software.

2.3.2 Combinatorial Counting Rules

In Combinatorics [25],[26],[27],[28], there are two basic counting rules:
the rule of sum, and the rule of product. Counting rules are the foundation of problems

involving counting.

The rule of product [25] states that “the number of ways to do a
procedure that consists of two subtasks is the product of the number of ways to do the
first task and. the number of ways to do the second task after the first has been

completed”.

This rule indicates that “multiplication” is used when the two sets we are
counting, are dependent on each other. Applying this rule to counting the cognitive
complexity implies that the total cognitive complexity of two blocks of software code
should be calculated from the product of the amount of the cognitive complexity of each
block if ‘and only if the understanding of a particular block of code requires the

preceding comprehension of the other block.

19

The rule of sum [25] states that “the number of ways to do a task in one
of the two ways is the sum of the number of ways to do these tasks if they can not be

done simultaneously”.

This rule reflects a fact about set theory. It states that “addition” is used
when the two sets we are counting, are disjoint. Applying this rule to counting the
cognitive complexity implies that the total cognitive complexity of two blocks of software
code should be computed from the sum of the amount of the cognitive complexity of
each block if and only if to comprehend each block does not require the understanding

of the other block at all.

As the computation of total cognitive weights of basic control structures
resembles the.counting rules [17], this thesis uses counting rules to derive the
combinatorial meanings of the calculation, in order to find the weaknesses and the

direction for improvement.
2.3.3 Weyuker’s Properties

Weyuker's properties [18] consist of nine properties of syntactic software
complexity measures widely used as criteria for evaluating software measures.
However, many classical complexity measures, such as LOC, ‘McCabe Cyclomatic
number, Halstead’s effort, fail to satisfy some of these properties-as shown in Table 3

[18],[29],[30].

As having been proved in [29],[30], and shown in TABLE 3, the

Cognitive Functional Size (CFS) mostly satisfies eight of totally 9 properties, that are:
Let P and Q be a program body.
Property 1. (3 P) (3 Q) (Pl #1Q))

Property 2. Let ¢ be a non negative number, then there are only finitely

many programs of complexity c.

20

Property 3. There are distinct program P and Q such that |P| = |Q]
Property 4. (A P) (@ (PEQ & P # Q)
Property 5. (V P).(V @) (P|.< |P:Ql & Q] < |P;Q))

Property 7. There are some brog_ram bodies P and Q such that Q is

formed by permuting the order of statements of P, and- |P = Q|

Property8. 'If__P—'is renaming of Q, then [P|'= |Q]

Property 9:(3 P) (3 @) IPI+ Q1) <iP:Q1)
Ho_we';/er_., CFS fails to satisfy Property 6, which states that:
Property 6a. (1 P)(= @(F RI((PI=1Q).& (PRI #IQR)

Property 60 (1 P)(F (RN (PI=IQ) & (IR:PI ZRQ))

Table 3. Evaluation of Comp.lexity Measures against Weyuker’s Properties

Property |[LOC | McCabe’s |Halstead’s| Dataflow |CFS
Cyclomatic | Effort |Complexity

This thesis uses Weyuker's properties as the evaluation criteria for

comparing the proposed measure with the selected measures. However, as we found

21

that the true intent behind Weyuker’s Properties is to check whether complexity value of
a program is suitable with complexity values of its parts, but the nature of the definitions
leaves some rooms for improvement to make it complies with its true intent, we also
propose a new inductive framework for evaluating cognitive complexity measures to

patch the holes in Weyuker's properties.

2.3.4 Framework for Evaluating Metrics

Kaner and-Bond’s framework for evaluating metrics [19] is a series of
questions for evaluating the meaningful measures based on how much they could
capture the essence of what they are supposed to measure. The main purpose of the
framework is to help answer the question “How do you know that you are measuring

what you think you are measuring?”.

Kaner and Bonds defined measurement as “the empirical, objective
assignment of numbers, according to a rule derived from a model or theory, to attributes
of objects or events with the intent of describing them. [19]” The framework’s key issues

of practical measurement can be summarized as follows:

“1) What is the purpose of this measure? Examples of purposes include:

« facilitating private self-assessment and improvement.

 evaluating project status (to facilitate management of the

project or related projects)

* evaluating staff performance

2) What is the scope of this measure? A few examples of scope:

* a single method from one person

* one project done by one workgroup

* a year's work from that workgroup

22

3) What attribute are we trying to measure?

4) What is the natural scale of the attribute we are trying to measure?

5) What is the natural variability: of the attribute? What are the inherent

sources and degrees of variation of the attribute we are trying to measure?

6) What is the metric (the function that assigns a value to the attribute)?
What measuring instrument do-we use to perform the measurement? For the attribute
length, we can use a‘ruler (the.instrument) and read the number from it. Here are a few

other examples of instruments:

+ Counting (by-a human or by a machine). For example, count

bugs, reported hours, branches, and lines of code.

» Matching (by a human, an algorithm or some other device). For
example, a person might estimate the difficulty or complexity of a product by matching it
to one of several products already completed. ("ln my judgment, this one is just like that

one.")

» Comparing (by a human, an algorithm or some other device).
For example, a person might say that one specification item is more clearly written than

another.

« Timing (by computer, by stopwatch, or by some external
automated device, or by calculating a difference between two timestamps). For
example, measure the time until a specified event (time to first failure), time between

events; or time required to complete a task.

7) What is the natural scale for this metric?

8) Whatis the natural variability of readings from this instrument?

9) What is the relationship of the attribute to the metric value? What

model relates the value of the attribute to the value of the metric?

23

10) What are the natural and foreseeable side effects of using this

instrument?” [19]

This thesis uses Kan | Bond’s framework to evaluate the proposed
measure to confirm that itis\ I%}//as'ure.

AUt InenineIng
RIAINTUNRIINYIAE

Chapter 3

The Structured Cognitive Complexity Measure with Granular Computing

Strategies
3.1 Decomposition of Software into Granular Hierarchical Structure

According to Laue [31], “When the code grows beyond a subroutine or
module, its complexity to the-programmer is better assessed by measuring constructs
other then the number of lines of code. The reason for this is that a program is
understood by a programmer in small pieces, not as a whole." Representing software
with proper and efficient representations is essential to unproblematic source code
analysis. Control flow graph (CFG), or flowchart, is a technique commonly used to
represent program algorithms or procedures. The representation can be used for
various purposes, e.g. McCabe [1] used control flow graphs for computing the
complexity of software. However, flowcharts only capture the ‘control flow’ aspect,
whereas complexity depends on many other factors, such as size of software, numbers
of objects or operators. Besides, the ‘web’ structure of the graph could cause difficulty
in analysis. Therefore, representing source code with ‘tree’ structure rather than ‘web’
may be an .interesting solution for easier understanding and analysis of software

complexity.

Granular computing, as explained in chapter 2.3.1, is a branch of study
in cognitive informatics which has been recently suggested as a universal problem-
solving paradigm analogous to human cognitive process. The discipline addresses the
approach to representing the universe of problems with multiple partial-order trees
called “granular structures” instead of web in order to make complex problems more
easily understandable, leading to efficient and approximate solutions. We therefore
apply basic ideas, principles, and strategies of granular computing, described in
chapter 2.3.1, into the software complexity evaluation, in order to present the measure

that more thoughtfully considers the complexity factors by structuring or grouping them

25

so that the complexity calculation process can be made analogous to when human

understands the software.

The philosophy of granular computing implies two dependent tasks of
structured problem solving: constructing a hierarchical view and working with
associated hierarchy [15]. To apply granular computing strategies to cognitive

complexity measurement, first we decompose software into a hierarchy of granules.

When we ecomprehend the software, a basic control structure (BCS) can
be seen as a eomprehension unit of which we need to understand functionalities and
inputs/outputs before understanding interaction between BCS units and the whole
program. Therefore, in the context of cognitive complexity measurement, we view a
granule as a basic control structure (BCS), which may contain nested inner BCS’s and

information content.

The decomposition methodology of the program can be explained as

followed:

1) At the top level of the hierarchy, the whole program or function is

partitioned into granules of BCS’s in linear structure.

2) Each granule whose corresponding BCS contains nested BCS'’s
inside, is further partitioned generating next level of hierarchy. The partitioning stops

when corresponding BCS to the granule is a linear BCS.

In brief, each level of the hierarchy consists of BCS’s in linear structure to
one another, and because a BCS that contains no nested BCS’s inside can be said to
contain a single linear BCS, leaf nodes of the decomposed hierarchy are the linear
BCS’s. An-example construction of the hierarehy. from a program from-[32] can be

demonstrated as in Figure 3.

26

public =tatic void main(Scraing(] args) |

int[] nuvbersa:; // An array for atoring the input valuen, @ﬂ
int nuwrount: // The nurber of numbers aaved an the arvay.
AN num; // One of che nwrbers input by tche uaer.

nuybera = nev¥ int[100]: /4 SPoce foX¥ WO gnca,
nwrCount = 0O: JOWoingderal haye geen saved vet.,

" enper 0 o end ™)

i
unhile [[tzue) ¢ £ Ger V@&}ﬁ]—y: and pue*thex dmerfic array. @2

TexeIO.put{"? ™)
num = TextIO.getlnlnt();

if | [nuwm <= 0)
break; @M
numbers[nuxCount]) = a
numCount++; W
) \
Text 10, put ln (V¥ Yous é.l.ﬁbﬁf@ ',"‘Ver."‘m . |.I

for |(int 1 = num@Ount = L& 4> 0% 1=-)'W
TextIO.putdn(numbers(1] |:

Figure 3. Demonstration of granular hierarchical structure construction

3.2 Derivative of the Total Cognitive Weight and Combinatorial Counting Rules

The computation of the total cognitive weight of basic control structures
(W.) used 'in" previously proposed cognitive complexity measures resembles the

counting rules in Combinatorics, which are the foundation of any matters involved

counting, as described in chapter 2.3.2.

As the cognitive weight of BCS is defined as “the extent of relative effort
spent ‘on comprehending the function and semantics of BCS” [8], the use of
‘multiplication” with the weights of nested BCS’s implies that to understand the function
of the whole nested BCS’s architecture, it is required to fully understand the whaole
contents in the inner BCS’s first, then understand the outer ones surrounding it, layer by
layer from inside out. This seems reasonable compared to the use of ‘addition’ with

linear BCS’s, which implies that the cognition of these BCS’s are completely disjoint. In

27

other words, the functionalities of BCS’s in linear structure can be understood separately
and their complexities are completely disjoint. Because of this flaw, applying Algebra’s

Distributive Property, i.e. “a (b + c) = ab + ac” to the formulation of W_ defined in
chapter 2.2.1 can result in an altemative method to calculate W_ i.e. W_ can be
computed by finding the basic control structures within which do not contain any basic
control structures, multiplying their weights by the weights of all their outer BCS'’s, then
summing them altogether. This flaw causes the equivalence of the two structures
derived from combinatorial'meanings of two calculation methods of W as shown in

Figure 4. In Figure 4, the right structure is derived from combinatorial meanings of the

alternative method to caleulate W_of the left structure.

JhQU ENCE SEQUENCE
IF-E13E IF-ELSE
WHILE

I FOR l WHILE
SEQUENCE . s F S WHILE
Wits [r-rrse
WHILE
SEQUENCE L—
IF- ELSE

Figure 4. Algebraically Equivalence of Wcs of the two Program Structures.

The algebraically equivalence in Figure 4 only happened by chance
because the definition of W_ is based on the assumption that the complexity inside one
block cannot be transferred to another block in linear structure, as analyzed from
combinatorial reasoning in [17]. This reveals the major weakness of the total cognitive
weights of software that it does not consider the possible data flow from one BCS block
to another. Moreover, the existing formula to compute W_ assigns the same complexity

weight to each BCS of the same kind. For example, the “while” blocks are always

28

considered as equally difficult to understand no matter how many different numbers of

variables contained within as long as they do not contain any nested BCS’s inside.

It is obvious that the BCS blocks are not independent from each other,
even though they are posed in linear structure. This is because the variables can carry
the complexity from one block to another. Therefore, the complexity when trying to
understand the linear BCS chunks cannot be evaluated separately as implied by the

calculation of the total cognitive weights.

3.3 The Structured Cognitive Information Measure of Software (SCIM)

To work with the hierarchy obtained from the definition in chapter 3.1 to
calculate the complexity value, we follow the principle of focused effort in Granular
Computing [15], which states that “at a given stage, effort is to be concentrated on a
particular granule, relatively independent of other granules”. By focusing on a leaf-node

granule, we evaluate its complexity from the amount of information it contains.

In order to measure the amount of information contained in the linear
BCS, we agree with Kushwaha and A.K. Misra [9] that “the amount of information
contained in software is a function of identifiers that hold the information and operators
that perform the operations on the information.” However, S. Misra’s argument [12] was
also true that “operators are run time attributes and cannot be regarded as information
contained in the software.” Therefore in our approach, identifiers in the form of variables
are viewed as the major objects that contain the information in the ‘software. However,
operators'cannot-be completely disregarded like in'[12], as'they perform operations on

the information, therefore increase the complexity of the information.

Furthermore, to solve the problem analyzed in chapter 3.2, which
prevent other cognitive complexity measures from satisfying Weyuker’'s property 6, we
observe that a variable accumulates the complexity from its preceding occurrences

where it was assigned the value, as its value depends on those preceding

29

appearances. Since we have to focus on particular granule when evaluating its
complexity, we include the complexity from the variable’s occurrences in preceding
granules into the variable itself, so that we can focus on its current occurrence in the

granule that are being evaluating. Our strategies can be defined as followed:

Definition 1. At the beginning.of the program or function, the Informatics
Complexity Number (ICN) of every variable is zero. When a variable is assigned the
value in the program or function, its' ICN increases by 1, and if that assignment
Statement contains operators, ICN of the variable that is assigned the value also

further increases by the number of operators in that statement.

The counting of ICN can be illustrated as presented in Figure 5. The
figure shows that occurrences of the variable in the left-hand-side of the assignment
statements increase its ICN, while occurrences in the right-hand-side of the statements

do not.

public static void wain(Strinogl[]l args) {

int userlnput: ————— @
Hnt=Scmhares? E
1 e ——
| _\

wgerinput = TextIQ,getlnt ()’
——square = yserlnnut * ugserlnput:
\

—

= X is ICN of the variahle at the specific positionin the
s prograra. ICN of the varishle increases from its previ-
‘ous occunrence by {1+ #operators) whenever the var- |
‘ghle is in the left-hand-side of the assinment staterment.!

Figure 5. Example of ICN Computation

The purpose of this cumulative variable complexity counting scheme is

to enable focusing on particular granule without losing the sense of interrelationships

30

between granules. It is arguable that the definition is based on the assumption that
programs are read linearly, however, most of the times, programs are actually read
linearly, therefore the definition is sensible as an approximate solution conforming to the
principle that “in forming a granule, subtle differences between its elements and

between their individual connections to others can be ignored or approximated. [15]"

Definition 2. For variable V' appearing in leaf node granule ‘L’

ICN__ (V,L) is the highest' ICN of \/'s occurrences in L.

max

Definition 3. Information contained in leaf node granule ‘L’ (I(L)) is

defined as the sum of ICN__(V,L) of every variable V' exists in L.

max

After obtaining the complexity of leaf granules, we evaluate the
complexity of other granules up the hierarchy by the product of weight of the
corresponding BCS to the granule and the sum of complexity values of their children
granules. The use of ‘sum’ and ‘product’ resembles the counting rules in Combinatorics,
which suggest that ‘sum’ is used when two sets are completely independent and
‘product’ is used when two things being counted depend on each other. We can say
that complexities of granules in linear structures are independent because we already
approximated the complexity transferred between granules by the cumulative variable
complexity counting scheme. Therefore we use ‘sum’ with complexity values of granules
in linear structures. On the other hand, to comprehend the functionality of the BCS, the
processing characteristic of the BCS needs be understood and related to
comprehension of the information inside. Therefore we use ‘product’ with Wc and the
summed complexity of children granules. As a result, SCIM formula can be summarized

as in definition 4.

Definition 4. SCIM is defined as the total sum of the products of
corresponding coghitive weights and information contained in leaf node granule (/(L)).
Since software may consist of q linear blocks composed in individual BCS’s, and each
block may consist of ‘m’ layers of nesting BCS’s, and each layer with ‘n’ linear BCS’s,

then

31

sciM =) [] LWk D Gk
=1 k=1 =1

where weights W_ (j,k) of BCS'’s are cognitive-weights.of BCS’s presented in table 2, and

I(j,k,i) are information contained in a leaf BCS granule as defined in Definition 3.

From the definition, we can say that SCIM evaluates the complexity by
taking into account the dependencies of variables and their position in the BCS’s
structure as suggested by Figures 1 and 2. Number of inputs/outputs can now be
disregarded as |/Os variables have already been included as the information contained

in the program.
3.4 The Unit of SCIM

In SCIM, the simplest software component with only one variable
assignment, no operators, and a linear sequential BCS structure, is defined as the

Structured Cognitive Information-unit (SCIU), computing SCIM can be formulated as:
SCIM=1*1=1][SCIU]

The value in SSCU of a software system indicates its cognitive

complexity relative to that of the defined simplest software component, or

SCIU = cognitive complexity of the system / cognitive complexity of the

defined simplest software component.
3.5 lllustration of SCIM Computation

In this section, we illustrate the computation of SCIM value of the below
example java program from [32], which are also used in our comparative case studies in

chapter 4.4. We also demonstrate the calculation of CFS, CPCM, and MCCM.

32

publicclass ReverselInputNumbers {

{

publicstaticvoid main(Stringllargs)

#/An array for storing the input values.
ers saved in the array.

t by the user.

intnumbers;

int numCount; #The numbe

int num;
numbers = i .
numCount ! __—_@' been saved yet.

TextIO.pW' 100 :Lw enter oto end.™

array.

Tex
num
if(um <=

fordnt i

}

}vend main () ;

} 7end class ReverseInpUtNumbe:

Th@(’f&complexﬂy value of tPWove example java program from [32]

ﬂ’ﬂﬁﬂﬂ WL

into granular hierarchy. Frm the definition in chapter 3.1, we obt

funct

Qﬁﬂaﬂﬂimﬂﬁﬂﬂmﬂﬂ

33

public =tatic void main([Scraing(] args} {

intf{] anuwbersa:; // An array for storing the input valuea, @ﬂ
int numCount; S/ The number of numbers =saved an the arroy-
int num; // Ome of the pugbera input by the user.

nuxbers = new int[100]:; ' Ty Spare tar I_le Ints.

nuwCount = 0; JA Ko I rg¥ have been saved yet.
TextIO.putln("¥nree Bn =5 3010 ;'.r.mr'ur'Mrr-: enter O o enad. ™)
|
uhile | (true) { Li-Get-the nubers and.pus.thew 1n the array. @2
TextIO.puc | s - @ ’ﬂ
num = TexgolO. grtmznt,t-l'; [@9 D
lrllnum <~ D) ¥ @
Dreakis : M)
numncr-’[nuw:ouht] - aums
numCouns +hal | @m

)

TextI0.putln (@ nvglr fudbcrssamPevorgn prder moe:in") :

for [[int 4 = nudCoufit & 4: 1/>= 0: im-) [@!

TextIo. pugi'n (aumt_atrrs'[1])2

]

) // end maind) i @
3

B2 PR
@ﬁ] wm@m @%z or (64

Figure 6. Granular Hierarchy of the Example Program

Referring to definition’ 1:in chapter 3.3, numbers shown in Figure 7 are
ICNs of the variables at each position. Numbers in red are the increased/ICNs at the
assignment statements. Circled variables are the variables whose ICNs are used to

calculate I(L) for-the leaf node granules.they reside.

34

public =tatic void main|String[) args} {

ant(] numbera; // An array for storaing the input values, @(ﬂ
int nuwrCount; // The anumber of numbers saved in the array.
int “0 // One o2 the nurbers input by the user.

B~ new int[100) 3% % /8 Spece’ 2gr 100 :inca.

R - O A/ INa glag¥oy’ hove been saved yer.

TextlO. putln(™®n a0 po® f!k Yera: enter 0 to end. ")
i
oh:le]lttun)ng' Z/.Get Eac n@kbera_pngd pus » 1n the array. @2
TextIO.put("? "2 . @E&ﬁ]»
= ToxsioTgetindntd).:;

. e | OZ%)
T e
b Al o Bl%%)

W I

]

TextI0. put in ™, nvghr ,i'nd‘nr:r.d LHE P RBA0k OTHeY @ie s\ n')

for |1m:,2!"‘-= ' 1: f:ﬁ"ﬂ?“] (%
TextI0. put 318

) /7 end maing)

Figure 7. ICNs used to calculate complexity of the example program

Leaf node granule G1 contains 3 variables — num, numbers, and
numCount. Their highest ICNs in granule G1 are 0,1, and 1 respectively. Therefore, I(L)

of G1is 0+1+1= 2.

Leaf node granule G(2,1) contains 1 variables — num. Its highest ICNs in

granule G(2,1) is 1. Therefore, I(L) of G(2,1) is 1.

Leaf node granule G(2,2) contains 1 variables — num. lts highest ICNs in
granule G(2,2) is1. Therefore, I(L)of G(2,2) is 1. The granule is surrounded by BCS ‘if,

whose cognitive weight is 2, therefore the complexity of “if(G(2,2))” is 2x1 =2.

Leaf node granule G(2,3) contains 3 variables — numbers, numCount,
and num. Their highest ICNs in granule G(2,3) are 2,3, and 1 respectively. Therefore,

I(L) of G(2,3) is 2+3+1 =6

35

Leaf node granule G3 does not contain any variables, therefore its I(L) is

Leaf node granule G4 contains 3 variables — i, numCount, and numbers.
Their highest ICNs in granule G4 are 4, 3, and 2 respectively. Therefore, I(L) of G4 is
4+3+2 = 9. The granule is surrounded by BCS ‘for’, whose cognitive weight is 3,

therefore the complexity of “for(G(4))” is 3x9 =27

Granule G2 consists of granule G(2,1), if(G2,2), G(2,3) in linear structure.
Therefore (L) of G2 = 442+6 = 9. The granule is surrounded by BCS ‘while’, whose

cognitive weight is'3, therefore the complexity of “while(G(2))” is 3x9 =27

The whole function consists of granule G1, while(G2), G3, for(G4) in

linear structure. Therefore SCIM = 2+27+0+27 = 56.

3.5.2 CFS, CPCM, and MCCM Computation

From the same example function, we can draw the structure of the BCS’s
as demonstrated in Figure 8. Thus, the total cognitive weight of the program, as defined

inchapter2.2.1,is 1+[3*(1+2+1)]+1+3=17

Lo indtiringl) argw) | Pehile FERCIC VOId WALRITEEIT () e o)
i N T Mmaring the input velseas,

» mhars paved 1IN L ATTWY.
* vy the wser,

TextY T ut
52 b= 0
B ear

i owa | ¥
ol unt o8g

nx =80, Pt In SEQUENCE

FOR

g El
g
K
!
£
H)
L]

Figure 8. BCS’s structure of the example program

36

The program has 1 input (num) and 1 output (numbers). Thus,

CFS = (1+1) * 17 =34.

a the array.
the 'user.
e geen saved yet.
.
e§gEs; enter 0 to end.");

S0 the array.

} /f en‘ : u';:
1 F bk -
" T

I M
Figure 9. Inputs/outputs occurrences in the example program

AueAneninens
QRIRITEUUTIY Ty

Therefore MCCM =22 * 17 = 374.

37

public static void main(String[] args) {

int[] numbers;, // An array for storing the input wvalues.
int n v // The nunber of nunbers saved in the array.

intw // One of the numbers input by the user.

nurbers & new int [100] r F
n t ; a: No numbers have heen saved yet.

;".-_-'5 -
while (true) f ffiGet the

‘nberm in the array.

y // end wain():

Uy

Figure 10. Identifiers/of re i ‘aple program
L Rl

o

AU INENINGINS
ARIANTAUUNIINYIAY

Chapter 4

Validations of the Proposed Measure
4.1 Theoretical Validation through Weyuker's Properties

The proposed SCIM can be proved to satisfy all nine Weyuker's
properties [18] stated in chapter 2.3.3. The properties are often used to evaluate and

compare complexity measures [11],[12],[29],[30].
Let P and Q be program body.
Property 1. (AP (3 Q) Pl #]Ql)

This property states that the measures should not rank all the programs

as equally complex. Therefore, SCIM obviously satisfies this property.

Property 2. Let ¢ be a nonnegative number, then there are only finitely

many programs of complexity c.

Since all programming languages can have only finite number of BCS'’s,
variable assignments, and operators, it is assumed that some largest numbers can be
used as an upper bound on the numbers of BCS'’s, variable assignments and operators.
Therefore, for these numbers, there are finite many programs having that much number
of BCS'’s, variable assignment, and operators. Consequently, for any given value of

SCIU, there exists finitely large number of programs, and SCIM satisfies this property.
Property 3. There are distinct program P and Q such that |P| = Q|

SCIM clearly satisfies this property as at least for any program containing
operator ‘+’, replacing ‘+ with '-* will result in a different program with_the same SCIM

complexity.

Property 4. (3 P) (FQ (PEQ & |P| #1Q)

39

This property states that there exist two programs equivalent to each
other (i.e. for all inputs given to the program, they halt on the same values of outputs.)
with different complexity. Clearly, the program computing 1+2+3+...+n can be
implemented with while loop, or simply sequence structure with formula n(n+1)/2. The

values of SCIM from these two implementations are different. Hence, SCIM satisfies this

property.
Property'5. (V.-P)(V Q) (P| S |P:Q| & 101 < P;Q))

SCIM obviously satisfies the property because adding any program
body whether to the end or before the beginning of a program body can only increase

or hold the SCIM complexity.
Property 6a. (1 P)(3 Q)(D RX(PI=(Q)) & (P;R| 7 |Q:R))

Given program P and Q with same value in SCIU, and program R
contains some variables that are assigned values in P but no variables that are assigned
values in Q, |P;R| is clearly more than |Q;R| because ICNs of those variables in R of P;R

are higher than those of the same variables in R of Q;R. Therefore, SCIM satisfies this

property.
Property 6b. (= P)(3 Q)(I R)((PIFIQ) & (RiP| 7 [R:Q))
In the same way as in property 6a, SCIM satisfies this property.

The satisfaction of property. 6 indicates one strength of SCIM over other
cognitive complexity measures that when different programs with the same complexity
value are extended with the same program part, other measures view the extended
programs as having the same complexity no matter what. This is because they do not
consider possible complexity transferred between BCS in linear structures, or view linear
BCS’s as completely separately comprehensible, while SCIM estimates the complexity
transferred between blocks of BCS by the cumulative variable complexity counting

scheme and does not overlook interrelationships among granules.

40

Property 7. There are some program bodies P and Q such that Q is

formed by permuting the order of statements of P, and |P| * Q|

SCIM satisfies this property because the permutation of statements can

result in different ICNs, hence making the SCIM value different.
Property.8. If P is renaming of Q,-then |R|.=1Q)]

SCIM clearly satisfies this property as it does not take into account the

names.
Property9. (A P) (I Q) (1P| + Q1)< P:Ql)

SCIM satisfies this property because if some variables assigned values
in P occur in Q, the complexity of Q in P;Q will'increase from Q alone because the ICNs

of those variable will increase, hence making |P;Q| higher than |P| + |Q).

Table 4. Comparison of Conformance of Complexity Measures to Weyuker's

Properties
Property |LOC | McCabe’s |Halstead’s | Dataflow |CFS [MCCM |CPCM | SCIM
Cyclomatic | Effort | Complexity
1 i ! ! ! ! F f !
2 / i / /
3 "7/ / / / ! A / !
4 / ! ! / i / !
5 f ! / f f !
6 / ! /
7 f / f
8 ! ! ! / / / / !
9 ! ! / f / !

Satisfying all nine Weyuker's properties is one of the main obvious leaps
forward of SCIM from previous cognitive complexity measures and classical complexity

measures, as Weyuker's properties are considered as “necessary but not sufficient

41

characteristics of ideal complexity measures [22],[30],[33].” Classical measures, e.g.
LOC, McCabe’s, Halstead’s, and Dataflow Complexity, each failed to satisfy some
different properties. Existing cognitive complexity measures made some progress but
still failed to satisfy property 6. SCIM satisfies all the properties, as compared in table 4
[111,[12],[18],[20],[30].

4.2 The New Inductive Framework for Evaluating Software Cognitive Complexity

Measures

Over the past three decades, numbers of software complexity measures
have been proposed to better predict quality dimensions such as testability, reliability,
and maintainability of software systems. However, the evaluation basis for validating the
measures is still not well-established. Weyuker's. properties were proposed and
generally-used as. basic necessary criteria for comprehensive software measure.
However, the properties are still far from theoretical perfection [33], leading to many

attempts to modify [33],[34],[35].

The intent behind Weyuker's Properties is to check whether complexity
value of a program is suitable with complexity values of its parts. However, the
definitions of.the properties leave some room for some measures to slip through. For
example, the meaning of Property 6, (3 P)(= Q)(I R)(PIEIQ]) & (P;R| 7 |Q;R), is
that when two different programs with the same complexity are concatenated with the
same program, the two programs resulting from the concatenation may not have the
same complexity. Logical explanation to this property is that if part P or Q have some
effect on the execution of part R, the complexity in understanding of ‘part R when
concatenated torpart P or'Q, should increase from the complexity of part R alone,
causing the complexity of P;R and Q;R to be different. On the other hand,.if the
calculation of part R has nothing to do with part P or:Q, or in other words, part R is
completely comprehensible separately from parts P and' Q ,the complexity of P;R and
Q;R should be the same. This is because P and Q are as complex and R in both P;R
and Q;R are as complex. However, from the way the property is defined using logical

predicate, CICM happens to satisfy Property 6 because its weighing of information

42

content is so random that there exist programs P, Q, R that |P|=]Q| but |P;R] + |Q;R].
Even though sometimes, if R is completely independent of P and Q, |P;R| should actually

be the same as |Q;R].

Another example that exposes the improper definition of Weyuker's
properties is the two programs in Figure 11. Thetwo programs answer whether or not i’
+ (y!) > k”. The permuting order of x* and (y!) should not affect the cognitive complexity
of program as the ealculation of x* and (yl) canbe perceived as completely

independent of each other.

int fac=1; mtfac=1:
boolean : f(int x, int y. int k). | boolean : f(int X, int y, intk)
I i
v 8
x=x"x for(int =1; ==y; i+H){
fac = fac'i.
for(int 1=1: ==y iHH){ ¥
fac = fac'1
+ X=x"x
if (x+Hac = k) retwn true; if (x+fac > K) return true;
elseretum false; elve refurn false;
¥ b
PROGRAMA PROGRAM B

Figure 11. Two programs with same function

However, CICM, weighing the complexity of identifiers/operators in the
n" line by 1/ (LOC-n), does not give the same complexity for both programs, resulting in

the satisfaction of Property 7, which says “There are some program bodies P and Q

suchthat Q is formed by permuting the order of statements of P, and |P| + 1Ql.”
CICM, = (4/6 + 6/5 + 4/4 + 5/2){4+1+1} = 32.2
CICM; = (6/6 +4/5 + 4/4 + 5/2){4+1+1} = 31.8

For these reasons, we can say that some definitions of Weyuker's
Properties are sometimes too loose to determine if the measures satisfy its true intent.

The measure that truly satisfies the intent of Weyuker's properties should be able to

43

answer, “What would happen to |P;R|] when P and R are in some condition to each
other.” Therefore, we propose an inductive framework for evaluating software cognitive
complexity measures. The purpose of the framework is to assess how well the measure
reflects the cognitive complexity based on granular computing principles that “programs
is understood by programmers by understanding their parts and relationships to the

whole [20],[31].” In our framework, the measures have to answer following questions:

1) How is the unit of the measure defined? This is the basis step of the
framework to make sure that the simplest unit of the measure is related to the measure’s

purpose.

2) Inductive Step: given program parts P and R, what is the relationships

between |P|, IR|,and |P;R| in case:

® 21) P and R are completely independent (The computation of P

and R are not up to each other.)?

® 272) Pand R are dependent (The computation of R can give
different results if the results from the computation of P is

different)?

® 23) P contains similar patterns with R, ‘and P and R are

completely independent?

® 24) P contains similar patterns with R, and P and R are

dependent?

The measures shall be assessed through the framework by giving the
descriptive answers to the questions. This gives flexibility to'the assessment of how well
the measure satisfies its purposes, definitions, meanings, and how well it is related to
cognitive complexity. The descriptive answers can range from very generic, e.g. using

inequalities or ‘for some’ logic, to very specific, e.g. using equalities, up to the measure’s

44

definition and how fine or coarse the measure wants to go. The answers shall show the

strengths and weaknesses, in order to guide where to improve the measure.

4.2.1 Evaluation and Comparison of Complexity Measures through the

Inductive Framework

We have evaluated LOC, DF, CFS, CICM, MCCM, CPCM, and SCIM

though the new inductive framework to. compare and analyze how well the measures

relate to cognitive complexity.

Table 5. Evaluation of Complexity Measures through the Inductive

Framework.
Measure Questions
1 2l 2.2 2.3 2.4
LOC A line of code IPiRI=IPl+ IRl |IB;RI =IP[+ R [IP;RI=1IP|+ Rl [IP;RI=|P+ |R|
cC A linearly-independent path | |P:R| 2 max (|P|, ||P;Rl= max (|P|, ||P;R|= max (|P|, ||P;R|= max (|P],
through a software |R|) and |P;R]| IR|) and |P;R| [R|) and |P;R| IRI') and |P;R|
component can be either >, |can be either >, |can be, either >, |can be either >,
<,or=|P|+ |R|. |<,or=|P|+ |R|. |<,0or=|P|+ |R|. |<,or=|P| + |R|.
Most likely, |P;R| | Most likely, [P;R| | Most likely, |P;R| | Most likely, |P;R|
PP+ R >2 P+ R 22 P+ IR > P+ IR
HE The complexity of the |P;R| can be |P;R| can be |P;R|.can be |P;R| can be
simplest software either >, <,or= |either>, <,or=. |either>, <,or= |either>, < or=
component with one PR . Pl + |R]. Pl + IR]. Pl + IR .
operator occurrence and
one operand occurrence.
DF A variable definition IP;RI'= |P|+|R] IP;R| can'be IP;R| = |P[+|R| |P;R|'ean be

defined outside a block but

is used inside the block.

either >, <, or =

P+ IRI.

either >, <, or =

[P+ IR].

45

CFS The complexity of the max (P, R < |max (P, R) < [max (P|, R < [max (P, R) <
simplest software IP;RI < P+ Rl [IPsRI < |P|+ Rl |IP;RI = [Pl + [R[[IP;RI < [P+ |R|
component with only one
input or output, and a linear
sequential BCS structure

CICM Cannot be defined. |P;R| can be |P;R| can be |P;R| can be |P;R| can be

either >, <, or = |either >, < or = |either>, < or= |either>, <, or=
[Pl + |R|+Most [|P}+ |R|.Most ||P|+ |R|.Most [|P|+ |R].Most
likely, IP;R| 7= |likely, [P;Rl 7 |likely, P;R| = |likely, |P;R| 7

PRI [Pl+ IR [Pl+ IR IPI+ [RI

MCCM The complexity of the max (IR, IR|) =" | max (P}, IR) = [max (P|, [R|) < | max (P, [R]) <
simplest software PRI = [P+ IRl PRI =, P+ IR | IPRF< |P| + Rl [IP;iRI = IP| + IR
component with only single
number of operator and
operand and a linear
structured BCS.

CPCM The cognitive weight of the | max (IPI; [RI) = | max (IPJ, R) < { max (P, IR S [max (P, R[) <
simplest software IP;RES [Pl + R| [IBiRl < [P+ IR |IP;RI < [P|+ R| [IPiRI < P|+ R
component, a linear
structured.

SCIM The complexity of the max (P, [RI) < |max (P, RI)< [max(P|, [R)< |max(P|, |R) <
simplest software PRI = Pl +IR|- PRI = [Pl+ [RI{IPRL.=< |P| + [R| [IP:RI = P| + R

component with only one
variable assignment, no
operators, and a linear

sequential BCS structure

and |P;R| can be
either >, <, or =

P+ IR].

and |P;R| can be
either >, <, or =

[Pl + IRJ.

IP;R| as having no greater complexity than |P| +

From the results in Table 5, LOC, CFS, MCCM, and CPCM all evaluate

IR| no matter what. This shows the

weakness of the measures that they ignore the fact that understanding a program part,

when concatenated to another program, can be more difficult than understanding that

part alone if two parts are dependent.

46

For CC, |P:R| = max(|P| , |R|), and can be either > <, or = |P| + |R], but
most likely, |P;R| >> |P| + |R| no matter P and R are dependent or not. This indicates that

CC value grows too fast and does not handle the dependency between P and R well.

For HE and CICM, which satisfy Weyuker's Property 6, the results from
this inductive framework show that they just happen to satisfy the property because the
relationship between |P;R], |[P|, and |R| derived from these measures are so random that
there easily exists the set of programs that make the measures satisfy the ‘for some”
logic of Weyuker’s, but the satisfaction is just by chance and not associated with relative
cognition difficulty. Moreover, the unit of CICM cannot be defined, thus making it a

bogus measure.

For DF .and SCIM, question 2.1 shows that “|P;R|' < |P|+|R|” when P and R
are completely independent, which makes sense for the difficulty for human brain to
understand the software, as we need to understand P and R separately and need not

comprehend the additional effect of P on R.

For SCIM, question 2.2 shows that |P;R| can be higher than |P|+|R| when
P has some effects on R. This makes sense as to understand P;R, we need to under
stand P, R, and also the relationships between P and R. Moreover, for SCIM, |P;R|
cannot be lessthan max (|P],|R|), but the problem of DF is that -|P;R| can go lower than

max (|P|,|R|), whieh is not reasonable.

However, if we get into more details, questions 2.3 and 2.4 show the
weakness of all the measures, including SCIM, that none of them handle the situation
when two program parts have the same pattern or similar logic, it would be much easier
for programmers to understand the second part as they have already understood and
memorized the first one with similar. pattern. To improve the measures. to better reflect
the difficulty for. human to.comprehend the software, the measures need to take into

account this important fact.

47

4.3 Evaluation through Kaner and Bond’s Framework

We apply Kaner and Bond’s metric evaluation framework [19] to assess
how meaningful and practical our measure can “capture the essence of what they are

supposed to measure.” The framework is based on the following points:

- The purpose of the measure:

The main purposes of SCIM are to facilitate assessment of product
quality, self-assessment and improvement for developer, as well as estimation of effort

needed for support and maintenance of the software.

- Scope of usage:

SCIM is categorized as a technical metric applicable after coding. Its

scope of usage is for software development and maintenance groups.

- Attributes to measure:

SCIM measures the difficulty in comprehending the software from the
structures of basic control structures, variables, and operators. Nested control
structures and frequent occurrences of variables and operators make the program more

difficult to understand, hence, harder for maintenance and less desirable as a product.

- Natural scale of the attributes:

The existence of natural scale of ‘difficulty in comprehending the
software’ requires the development of its commaon and non-subjective view. We have no

knowledge about natural scale of ‘difficulty’.

-Natural variability of the attribute:

Since the attribute is subjective and involves human cognition, its
variation depends on so many complicated factors. The challenge is to develop a sound

approach to handle such attribute with no knowledge about its variability.

48

- Definition of the metric:

The metric has been defined formally in chapter 3.3

- Measuring instruments:

SCIM uses the instrument of counting by either human or automation.
The items to be counted are variable assignments and operators occurrences, matching
to cognitive weights of BCS’s. For automation purpose, a token generator can be

developed to facilitate counting process in the future.

- Natural scale of the metric:

SCIM is on ratio scale according the measurement theory [36].

- Natural variability of readings from the instrument:

Assuming there are no bugs in the automated algorithm, we can expect
no variability on readings from our counting instrument when the measure is strictly

defined, as readings from our counting instrument are not subjective.

- Relationship of the attribute to the metric value:

There is a direct relation between the difficulty in comprehending the
software and SCIM. This is because the as increase in SCIM value means that software
is more difficult to understand and maintain, as it implies that the software contains more

information content and more nested complex control structures.

- Natural and foreseeable side effects of using the instruments:

Once SCIM calculation is automated, it will not require additional human

effort. Automation will be the only cost of the measure.

49

4.4 Comparative Case Studies with Real-World Programs

We have taken different java programs from [32] for analysis of

complexity of the program. We Ca|C\| 7 SCIM for each program and compared to

LOC, CFS, MCCM, and CP /r/ented in Table 6-7 and Figure 12-14.

"4

;

-

;'* .
T

.

A

:.L(

RN

ﬂUEJ’JVIEWI‘iWﬁ’m"a’
ammmmumwmaﬂ

50

25000

OMCCM
m SCIM
@ CFS

ur‘1 nparison of SCIM:MGEM-CFS

Figure 12 sho s that "Z alue usu > between CFS and MCCM

|

because CFS does nP onsider | ---- mal the forms of operators and operands,
:ﬁf 2
while MCCM over welghs t h--—---ﬂfﬂ---'f'-‘ values far too high from others. On

the other hand, SCIM suitat gﬁw Je A

control stru&}

variables andrﬁhe
ﬂ’LIEJ')‘VIEJVI‘SWﬂ’m‘E

ammnmumwmaﬂ

the operands, operators and basic

oré.a)t'on contained in the
—)
j numbers of internal

51

14000

12000 ————————————— :"

10000
8000 + CFS
6000 - - SCIM

4000
2000

FS

Analysis of the gr‘ ;nc':f‘-« cen FS and SCIM can indicate some special
nature of the programs No .,_’ CFS and SCIM are of quite the same
shape. In figure 13, there are y--'----m— v FS values are higher than SCIM, and
one point where SCIM | nts where CFS values are higher
than SCIM indic '---—---------—------------~----I ----------------------------- jg characteristics:

\J

nd outputs but most 1/0s

7} il

l | |

are not proce ' through the whole control structure. In o words, the programs
whose CFS vaIueﬁr@her than SCIM can be seen as having many subroutines that

FUEINRT IR~
Ve L pnitiisatatt]

them as the same variables.

52

- The programs contain many function calls with no parameter passing,
or contain many nested BCS’s that do not contain any information objects, e.g.

containing following BCS inside the nested structure.

if(TextIO.peek () == '\n'){
break; A blank-input. Fine ends#the®whilej doop and the program.

}

CFS may take the weight of BCS 'if to multiply with the weights of nested
BCS'’s, causing the complexity value to be too high. While SCIM eliminates this BCS
(calculates the complexity of this part as 0) since the granule contains no information
object. The part thus becomes like the same granule as linear structures surrounding it.
This fits well with the fact that experienced programmers do not see a block like this as
more complex than just regular command executed in sequence with no additional

complexity. The programs with GUI or File-Reading are likely to have this characteristic.

- The programs contain very few non-l/O variables, and the function

contains many nested BCS’s butthe I/O variables are processed in the outer layer.

In contrast, the point where SCIM value is extra-ordinarily high from CFS

indicates that the program may have following characteristics:

- The program contains static (fixed) functions that do not have any
inputs or outputs, but have many internal variables and nested structures, e.g. the

function to set up the checker board:

void setUpGame () {
fordnt rows= o; ‘row! < 8; lmow++)
for@dnt col = o; col < 8; col++) {

if(row % 2=col % 2){
if@ow <m3)

board[row] [col] = BLACK;
elseif(row > 4

board[row] [col] = RED;
else

board[row] [col] = EMPTY;
}
else {

board[row] [col] = EMPTY;

53

} 7end setUpGame (

- The progra %& | variables, and they are processed
through many parts of & j re-evaluate the values often. Or the
programs contain ma d |nd3<|ng

-—’—ffgj

aI functions tend to fit into this

category.

700
600
500
- LOC
A —~CFS
CPCM

200
100

NO ﬂ—i

n14 LOC-CFS-SCIM-CPCM comparison

ﬂher;ore the r;ﬂts ||n !iguz 1] shlovﬂat’L]Ciandl C;[M values

are qwte similar, while CFS and SCM can indicate the ng efficiency (E wh|Wan

QWﬂﬁ‘*ﬁﬂ‘?ﬂJﬂJﬁﬂ’mﬂ’]ﬁﬂ

The higher coding efficiency indicates the higher-complexity information
packed in the shorter program code, therefore the program is likely to contain more

defects than the program with lower coding efficiency.

54

Table 7. Simplicity Rank Results

Additic y, Table 7 shows 1 rank th‘ complexity/simplicity
of progran‘k_} o i Qg from 1 (relatively
most simple# ‘- "M, and CPCM. The
results show tﬂdt SCIM ranks are qu ame as CFS, MﬁM, and CPCM, i.e. the

variance is W|th|n) +2] ranks, while LOC |ves ranks between [-3.5 , +3.5] ranks

q W"I ANNTUARIINYINY

Chapter 5

Conclusion and Future Direction
5.1 Conclusion

In this thesis, the drawbacks of existing cognitive complexity measures
were analyzed showing that the measures ignored the relationships among factors. We
therefore applied granular computing strategies to present an approach to structuring
the factors before the complexity calculation. We then proposed the cognitive
complexity measure called “Structured Cognitive Information Measure (SCIM)”, making
cognitive complexity metrics more related to human cognitive process and supporting

the suggested universal applicability of granular computing.

Qur proposed measure solves three major problems of existing cognitive
complexity measures we and other researchers analyzed. One is the lack of
consideration of information content in CFS. Another is the ignorance of the detailed
relationships between some factors e.g. the data objects and the basic control
structures. The other is the irrational use of ‘+’ and ' in the formulation of the total
cognitive weights of BCS’s questioned by the Combinatorial Counting Rules. SCIM
advances classical software measures like LOC by measuring the software more
rigorously, as- we take into account more complexity attributes. Halstead’s and
McCabe’s only consider the complexity of software in terms of control flows of the
program, and amount of data objects, respectively, while we take into account both
aspects. Moreover, our Cumulative Variable Complexity Counting Scheme is superior to
Data_Flow Complexity" (DF) because DF only measures the complexity transferred
between blocks in the form of variables, while we cumulate the complexity of variables
transferred between blocks and complexity of their own occurrences within the blocks
as well. Function Point is not cost effective and needs subjective evaluation, while our

measure is more objective and can be automated.

Work in this thesis tends to study in terms of conceptual or schema-
based rather than empirical or practical studies. Proposed SCIM was proven by

satisfying Weyuker's properties. The inductive framework for evaluating software

56

complexity measure was also proposed to patch some holes in Weyuker's properties
and guide the direction for improving the cognitive complexity measures. Practical
evaluation through comparative case studies also showed that SCIM better considers
details of comparative complexity, therefore can help establish cognitive complexity
metrics as a more mature and sound discipline, as well as contribute to product quality

assessment and improvement for the software development and support groups.

5.2 Future Direction

The work-in this thesis shall be further developed in the following

directions:

- Cognitive ' weights of BCS’s shall be further experimented and re-

adjusted to make them truly reflect the cognitive complexity of the structure.

- SCIM and other cognitive complexity measures shall be fully
automated, in order to implement the experimental evaluation in the software industry.
The implementation for each programming language may require some degrees of

interpretation.

- Cognitive complexity measures shall be made to consider human
ability to recognize the repeated pattern in the software, which highly influences the
difficulty for human to comprehend the software, yet no measures have taken into

account this aspect, as suggested by the proposed inductive framework.

- The proposed inductive framework shall be extended with more
conditions to the inductive questions, iin order to make it more rigorously defines the

characteristics of desired cognitive complexity measures.

As complex as human brain is, there are still many miles to go, many
challenges to tackle, many mysteries to explore in the study of software cognitive
complexity. We hope this thesis brings some kinds of light to the starting of the journey

into the wonder of software and human cognition, and is able to guide some degrees of

57

directions towards the search of the ideal software cognitive complexity measure that

can efficiently reflect human’s effort to comprehend the software.

AuEInEningng
QIR TN ING 1Y

58

References

[1] Thomas J. McCabe. A Complexity Measure. Proceedings of the 2" international

conference on Software engineering June 1976 : pp. 407.

[2] Maurice H. Halstead. Elements of Software Science (Operating and programming

systems series). New York : Elsevier Science Inc., 1977.

[3] Mark Burgin. From Craft to Engineering:Software Development and Schema Theory.

Proceedings of the 1% “WRI'World Congress on Computer Science and

Information Engineering (CSIE 2009) March 2009 : pp. 787.

[4] Yinxu Wang. On Cognitive Informatics, Brain-and Mind: A Transdisciplinary Journal

of Neuroscience and Neurophilosophy. vol. 4, no.2, 2003 : pp.151.

[5] Yinxu Wang. On the Cognitive Informatics Foundations of Software Engineering.

Proceedings of the 3" IEEE International Conference on Cognitive Informatics

2004 : pp. 22.

[6] Yinxu Wang. On the informatics laws of software. Proceedings of the 1° IEEE
g

International Conference on Cognitive Informatics 2002 : pp 132.

[7] Yinxu Wang and Jinggiu Shao,. Measurement of the Cognitive Functional Complexity

of Software. Proceedings of the 2" |EEE International Conference on Cognitive

Informatics August 2003 pp. 67.
[8] Yingxu Wang. Cognitive Complexity of Software and its Measurement. Proceedings

of the 5" IEEE International Conference on Cognitive Informatics July 2006 : pp.

2206.
[9] D.S Kushwaha and A. K. Misra. A modified cognitive information complexity measure

of software. ACM SIGSOFT Software Engineering Notes v.31 n.1, January 2006 :

Ria. g

[10] D.S Kushwaha and A. K. Misra. Improved cognitive information complexity

measure: a metric that establishes program comprehension effort. ACM

SIGSOFT Software Engineering Notes v.31 n.5, September 2006 : pp. 1.

[11] S. Misra. Modified Cognitive Complexity Measure. Computer and Information

Sciences — ISCIS 2006, pp. 1050-1059. Springer Berlin / Heidelberg, October

2006.

[12] S. Misra. Cognitive Program Complexity Measure. Proceedings of the 6" IEEE

59

International Conference on Cognitive Informatics (ICCI'07) August 2007 : pp.

120.

[13] Yiyu Yao. The Art of Granular Computing. Proceedings of the International

Conference on Rough Sets and Emerging Intelligent Systems Paradigms, LNAI

4585 2007 : pp. 101.

[14] Yiyu Yao. Granular Computing: Past, Present& Future. Proceedings of IEEE

International Conference on Granular Computing 2008 : pp. 80.

[15] Yiyu Yao. A Unified Framework of Granular Computing. Handbook of Granular

Computing, pp. 401-410. Wiley, 2008.
[16] Yiyu Yao. Structuredwriting with granular computing strategies. Proceedings of

IEEE International Conference on Granular Computing 2007 : pp. 72.

[17] Benjapol Auprasert and Yachai Limpiyakorn. Underlying Cognitive Complexity

Measure with Combinatorial Rules. Proceedings of World Academy of Science,

Engineering and Technology Volume 45, November 2008, ISSN: 2070-3740 : pp

432-437.

[18] E. J. Weyuker. Evaluating Software Complexity Measures. |EEE Transactions on

Software Engineering v.14 n.9, September 1988 : pp.1357.

[19] C. Kaner and W. Bond. Software Engineering Metrics: What do they Measure and

how do we know?. Proceedings of the 10" International Software Metrics

Symposium, Metrics 2004 2004.

[20] Benjapol Auprasert and Yachai Limpiyakorn. Towards Structured Software
Cognitive Complexity Measurement with Granular Computing Strategies.

Proceedings of the 8" IEEE International Conference on Cognitive Informatics

(ICCI1.2009) June 2009 pp 365-370.
[21] Benjapol Auprasert and Yachai Limpiyakorn. Representing source code.with

granular hierarchical structures. Proceedings of the 17" IEEE International

Conference on Program Comprehension (ICPC 2009) May 2009 : pp 319-320.

[22] Benjapol Auprasert and Yachai Limpiyakorn. Structuring Cognitive Information for

Software Complexity Measurement. Proceedings of the 1* WRI World Congress

on Computer Science and Information Engineering (CSIE 2009) March 2009 :

pp. 830-834.

60

[23] E. I. Oviedo. Control flow, data flow, and program complexity. Proceedings of
COMPSAC 1980 : pp.146.
[24] Albrecht, A.J Gaffney, and J.E., Jr. Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation. |IEEE Transactions

on Software Engineering Volume SE-9 Issue 6, Nov. 1983.

[25] Joe Sacada, “The Basic of Counting”, Lecture Notes: CIS 2910: Discrete Structures

in Computer Science I, University of Guelph.

[26] A.T. Benjamin, J.J. Quinn. Proofs that Really Count: The Art of Combinatorial Proof,

Washington, DC: Mathematical Association of America, 2003.

[27] Aigner, Martin, Ziegler, and Giinter. Proofs from THE BOOK. Berlin; New York:

Springer, 2003.
[28] M. H. A. Newman. On Theories with a Combinatorial Definition of "Equivalence". The

Annals of Mathematics Second Series, Vol. 43, No. 2, Apr. 1942 : pp. 223-243.

[29] S. Misra and A. K. Misra. Evaluation and comparison of cognitive complexity

measure. ACM SIGSOFT Software Engineering Notes v.32 n.2, Mar. 2007.
[30] S. Misra and A.K. Misra. Evaluating cognitive complexity measure with Weyuker

properties. Proceedings of the 3" |EEE International Conference on Cognitive

Informatics August 2004,
[31] Ralf Laue. Experiments for Measuring Cognitive Weights for Software Control

Structures. Proceedings of the 6" IEEE International Conference on Cognitive

Informatics 2007 : pp 116.

[32] David J. Eck. Introduction to Programming Using Java. Fifth Edition Version 5.02,

November 2007.
[33] John C. Cherniavsky, Carl-H. Smith. On Weyuker's Axioms for Software Complexity

Measures. |IEEE Transactions on Software Engineering Vol. 17, Issue 6, June

1991.

[34] Sanjay Misra. Modified Set of Weyuker's Properties. Proceedings of the 5" |EEE

International Conference on Cognitive Infarmatics 2006 : pp 242.

[35] Sanjay Misra and A.K. Misra. A proposed additional property to the Weyuker's

existing properties. International Journal of Information Technology and

Management Vol. 5, No.1, 2006 : pp. 66.

61

[36] Yingxu Wang. The Measurement Theory for Software Engineering. Proceedings of

Canadian Conference on Electrical and Computer Engineering IEEE CCECE

2003 May 2003 : pp.4.

ﬂﬂ&l’mﬂﬂﬁwmﬂ‘i
QW’]Mﬂ‘iﬁMﬂWﬂﬂﬂ’mﬂ

ﬂuﬂqmawswﬂwnﬁ
ARIAINTUUMINGINY

ﬂUH?ﬂﬂﬂ§W81ﬂi
AN TUAM TN

64
Interest

Jox

*This class implements a simple program that
*will compute the amount of interest that is
*earned on $17,00invested at an interest
*rate of o07for one year. The interest and

*the value of the invest ‘ ne year are
*printed to standard o '\ ‘ //
*/ \ i /

publicclass Inte& —/;‘

A — e =
publicstaticvoi i

#Declare the v

interest ineij ate Com the interest.

principa
/Compute value 5 = :_year, with interest.
/MNote: The new

#Output the resultss: ﬁ'.;.;l_"
g . ",,-.l"l ;oo ..1..

System.oﬁz}; Q
Systemout«println (interest); =35
_G_qu year is $");

il
TNYINT

alue' of principal.)

Systemout .p

4]

Systemout.pni

publicclass PrintSquare {

publicstaticvoid main (Stringllargs) {

65

int userInput; /#The number input by the user.
int square; /The userInput, multiplied by itself.

Systemout.print ("Please type a number: ");
userInput = TextIO.getInt();
square = userlInput * userInput

Systemout.print ("The square number is ");
Systemout.println (squa
}vend of main(/

} rend of class P

'--!--—-J

Interest2

S

publicstaticvoid mai

double principal; /T investment.

double rate;

double @r

Tex

pri) =
— e
TextIO“. t ("Enter the erest rate ik%cimal, not
percentage!) T ",

rate = T‘t&getlnDouble

AU TRY NI NINS

TextIO put ("The value c‘ the lnvestmen ter one year is

q EINTNANIAINENAY

}nend of class Interest2

CreateProfile

66

publicclass CreateProfile {
publicstaticvoid main (Stringpargs) {

String name; /The user's name.
String email; /The user's email address.
double salary; /the

salary.
String favColor; #The color.

TextIO.putln ('C ’u;.f_b d 4 rogram will create");
TextIO.putln ("our P - will just answer");
TextIO.putl i '
TextIO

. pUE——
#Gather reslx(" .

#Write the ‘user i ' tion he fi amed profile.txt. */

TextIO.wri i el i H ubsequent output goes to
the file . ' '
TextIO. \F :) ame

TextIO. email) ;
TextIO.putln (‘FAVOELLE: 1 favColor) ;
TextIO. =Y)

salary) ;
ﬁTbizgkﬂ rézjrn
A Print *
| s

=
TextIOh te t
TextIQ.putln ('Thank you. Your profile has n written to

profile.txt. H

ﬂ“ﬂ')ﬂﬂﬂﬁﬂiﬂﬂ‘i
M0 NI NAIINYIAY

This class implements a simple program that will compute the
amount of

interest that is earned on an investment over a period of s
years. The

67

initial amount of the investment and the interest rate are

input by the

user. The value of the investment at the end of each year is

output.
*/
publicstaticvoid main (Stringplargs) {

double principal; /#Th
double rate; 1

#Get the initial. ;

TextIO. put(Ent
princi

TextIO.

d

B

) :"y;
A LY, t\"\
A R

ini al

TextIO.
rate

int years;

years
while(years <

;_‘.;_!ﬁ from the user.

*/

H /Add it to principal.

years = years + ip—— 1 the current year.
Systemout.print (' _--’r?'w th ment after ");
System S
System%

System
}rend of w

We 1o

}vend of maln()

ﬂﬁﬂ?ﬂﬂﬂ?“ﬂﬂ’m‘i

eAverage

QAR SEAARENG

*time. The user must enter a oto mark the end of the
*data. (The zero is not counted as part of the data to
*be averaged.) The program does not check whether the
*user's input is positive, so it will actually work for
*both positive and negative input values.

68

*/
publicclass ComputeAverage {
publicstaticvoid main(Stringllargs) {

int inputNumber; /One of

tegers input by the user.

int sum; poesitive integers.
i 1ve integers.
31t1ve integers.

int count; /"
double average;

r#Initialize the%

A—

SUM = 0; ey

count =

/#Read and

‘)y adding 1to count.
TextlO. ‘ OUY né . E - or oto end: ");

#Display the re

if(count == o {
TextIO. putlp P

P igxe integers.");
|
average) ;

} V . L. p

} 7end main (

ﬂw@%mwu Iik

Coun ivisors

R ATUHMITNYIN Y

*then it prints the result.
*/

publicclass CountDivisors {

publicstaticvoid main (Stringllargs) {

int N; /A positive integer entered by the user.
/Divisors of this number will be counted.

int testDivisor; /A number between 1and N that is a
/possible divisor of N

int divisorCount;

int numberTested;
nof N have

A — e °
/reaches W, i
g —
/the va u
#Get a posi

while(true) {

if® > o
break;
Please try

again.";

}
#Count the divifsor Bete 5 10! o A 1000000 tests. */

divisorCoun
numberTeste

for(testDivisor tDivisor++) {

if(N % testDi L\
J1LL - .J)
if(numbl: -\.J

ﬂﬂﬂﬂﬂﬂﬂﬁwﬂs

TextIO putln’The number of divisors of "+N
"is "+divisorCount) ; ‘

class CountDivisors

N: IRINIUURIINYIAY

ListLetters

e

69

W

*This program reads a line of text entered by the user.

*It prints a list of the letters that occur in the text,

*and it reports how many different letters were found.

*/

publicclass ListLetters {

publicstaticvoid main (S

String str;
int count;

char letter; /A £
—

TextIO. o

TextIO
str =

int 1i;
for(i = o; .
if(letter

break;

Te <t
Tex
Text

} 7end main(m_

} 7end class L1?Leiters

user.

ound in str.

letters:");

ﬂngumwﬂmwmm

*wins the e user ma

Jaor
+*This program lets the user one or mor ssing games.
ang
SS g
game. t

*loses the game. The computer
*high or low. After each game,
*the user wants to play again.
*/

es six incorrect guesses, the user
tells the user whether his guess is
the computer askes the user whether

70

71

publicclass GuessingGame {

publicstaticvoid main(Stringnargs) {
TextIO.putln ("Let's play a game. I'll pick a number between");
TextIO.putln("1and 100, and you try to guess it.");
boolean playAgain;
do {

playGame ()
TextIO.put ("W

to play one game

"

ay again?

TextIO.put
while(true) {
usersGuess - ppSErirOrTererte) : Get the user's guess.
guessCount+

if(use@e ;S
+"g
break;
}
if(guessC t == 6{
T tI0.putln ("You didn't get the number in sguesses.");

utln ("You lose number was "+

ﬁw“’iwﬂmwmm

we get to this point, the game continues.
ﬁTell the user if the gue was too high o too low.

R AETENNIN §1a Y

TextIO.put ("That's too high. Try again: ");

}
TextIO.putln () ;

}rend of playGame ()

q

publicclass ngm—l ‘

be™);

the™;

72

}vend of class GuessingGame

HighLow

Jx

*This program lets the user pla ighLow, a simple card game

*that is described in th ’ tadtements at the beginning of
*the main () routine.] s several games,

*the user's average - 7

*/

-

publicstaticvpi

Systemout.

Systemout.pri =%in the game is

Systemout.prin s you make before");

Y e i
(r . & fC

i

int sumOfScores 0; =

g
/ all the games..pl S J
double average ~ JAvere edﬁy dividing

System.out.prin
Systemout.printl

int gamesPlayed' s user has played.

the scores from

[/

boolean jn user 1is
-.

int scoreThl‘; /IScore f ne game.

3 uﬁ”l W%WISWYH na

xtIO.put ("Play again
playAgain = TextIO. tlnBoolean
}whlle(playAgaln ;

TR iﬂa}sﬁd%’]'} Y186 8

Systemout.println ()
Systemout.prlntln(You played "+gamesPlayed + "games.');
Systemout.printf ("Your average score was %13f.\n", averageScore) ;

} vend main ()

73
Jx

*Lets the user play one game of HighLow,

and returns the
*user's score on that game.

The score is the number of
*correct guesses that the user makes.

*/

privatestaticint play() " _
Deck deck \ / eck of cards, and
/) store a it /

542 predicts that
/ the nex 1 be higl

: A)]
/ predicts & Nk 01 W i

NA A

correctGuesses
currentCard = de

Textj.p it ntflsd) ;
while(trk - : ‘)
A

&)
#Get the wuser'

Il

Te

1)/

O.put ("Will the next card be higher

A

) or lower (L)?

TextIO.put@?jiFse respond with H or L:
}while(guess != 'H' && guess != 'L');

RN AR ING 1Y

"

TextIO.putln ('"The next card is "+nextCard);

#Check the user's prediction. */

74

if mnextCard.getValue () == currentCard.getValue()) {
TextIO.putln ("The value is the same as the previous
card.");
TextIO.putln ("You lose on ties. Sorry!™;
break; #End the game.
}

elseif (mextCard.getValue {

rentCard.getValue())
if(guess == "H"){

else { /ne
if(guess

}

else {

break;

}
}

the nextCard
urrentCard has to be
> nextCard will be
after the user makes

#To set up for t
becomes the cuer
the card® thaty

set to the néxt

i re

A
}vend of whille

TextI utln () ;
TextIO.p:?ln("The game 1is over.");
TextI ‘ lﬁou made "_+correcusses

AEINENINGINTG

AT NRINEIRY

ReverselnputNumbers

okl

75

*This program reads some positive integers from the user and
*then prints them in reverse order. The numbers are stored
*in an array.

*/

publicclass ReverselInputNumbers {

intgnumbers;
int numCount;

int num;

————

numbers =W‘ //Spgce f 00 :
numCounty“‘ / O nuink r n saved yet.

TextIO.put : £8 16 enter oto end.™)

num
if(um <=
break; 4
numbers
numCou

TextIO.put l¢ S 'S . er are: \n");
for@dnt i = numCo

TextIO.pu

} 7end main (

} nend imw

S

CheckersData - -
m | i

*An object of 1s class holds data about a game of checkers.
nows wha of iece is on e square of the checkerboard.
ves
d be e
s are provided to return lists of available egal moves.
prlvatestatlcclass CheckerJ‘;ta {

q on the board. The constants RED and BLACK also represent

players

in the game. */

static final int
EMPTY = o,

76
RED = 1,

RED KING = 2,
BLACK = 3,
BLACK KING = 4;

intunboard; sboard[r] [c] i‘t} contents of row r, column c.
'

Jx
*Constructor. Cr %/up for a new game.
*/ - j
CheckersDW—ﬁ‘ ! a
board =

S~

setUpGame (

beginning
*of a game.

*that sati
*all such squa
*and all such
*/

>und in squares

fordnt row
for@dnt col
if(row % 2=CO.
if(row < 3

UYANYNINYINT

!Ilurn the contents of the_ square in the specified row and column.

QNIRRT UNINY A Y

/**
*Set the contents of the square in the specified row and column.

*piece must be one of the constants EMPTY, RED, BLACK, RED KING,
*BLACK KING.

*

1

*/
void setPieceAt (int row, int col,
board[row] [col] = piece;

int piece) {

}

Vaid
*Make the specified mowv
*is non-null and tha

mov

i sumed that move
I /sents is legal.
nove.toRow,

int toCol) {

from the board.
g of the jumped piece.
yColumn of the jumped piece.

} i
if (toRow == 0&& boa Lr;
‘ boa

if (toRow - 4

| |

: i l
rray containing all the legal CheckiikMoves
board. If the player

*for the spe@.ﬁlayer on the cur
* Legal, m S, i s r < £ N
1ou I e f ‘ ED @r ndt ,#fFn@l
isflr n 11 h ‘ value is 1, ZItfconsifsits

*qgairely of jump moves or entirely of regular moves, since
*1f the player can jump, o;?y Jjumps are legal moves. U

RIRIDIBARIINGIA

returnnull;
/The constant representing a King belonging to

int playerKing;
player.
iflayer == RED)

78

playerKing = RED KING;
else
playerKing = BLACK KING;

ArrayList<CheckersMove> moves = newArraylList<CheckersMove>(); 7
Moves will be stored in this list.

First,
board.

Look at each square on the

e player's pieces, look at
a possible
from that square. If
there 1is

ArrayList.
*/

fordnt r

for@dnt col =
if board
if(canJump (col+2)

‘ col, rowtz2,
col+2y;
if(canJump col+2y)
col, row-2,
col+2y;

if(canJump (col-2)
! e(row, col, row+2, col-
2));
ol

kersMove (row,

row-2, col-2)
col, row-2, col-
2);

—

s If an&' m u_&lump, so we
don't ot
adw any regular ver, if noiﬁk@s were found,
check for

any i‘gal regualar moves. oo at each square on the

Aund NENINEING

a legal move in thif direction, put it in the moves

aﬁ?;ja;;gnjg;}{ywmmaﬂ

for@dnt col = o; col < 8; col++) {
ifboard[row] [col] == player || board[row] [col] == playerKing) {
if (canMove (player, row,col, row+i, col+1)

79
moves.add (new
CheckersMove (row,col, row+i,col+iy;
if(canMove (player, row,col, row-1,col+1)

moves.add (new CheckersMove (row,col, row-
1,col+);

if (canMove (player, row,col, row+i,col-1)

n;
if (canMove (play l

new CheckersMove (row,col, row+1,col-

0); %
} S S
/

#If no 1
create

Otherwise,

egal moves, copy
the

array, and return

returnnull
else {
Chec
CheckersMove [mo

fordnt 1

*Return player can

*make sta g fr

rﬁ colum . If no such
ossible, null is returned. The logILmis similar

*to the loglc f the getLegalMoves() method.

Augantnineny -

urnnull
playerKlng, /The conﬁ‘ant representln a King belonglng

q RIRBINRINYAE

*jumps ar

playerKing = BLACK_KING;

ArrayList<CheckersMove> moves = newArrayList<CheckersMove>(); 7
The legal jumps will be stored in this list.
if board[row] [col] == player || board[row] [col] == playerKing) {

if(canJump (player, row, col, row+i, col+i, row+2, col+2)

80

moves.add (new CheckersMove (row, col, row+2, col+2);
if(canJump (player, row, col, row-1, col+i, row-2, col+2)

moves.add (new CheckersMove (row, col, row-2, col+2);
if(canJump (player, row, col, row+i, col-i, row+2, col-2)

moves.add (new CheckersMove (row, col, row+t2, col-2);
if(canJump (player, row, col, row-i1, col-i, row-2, col-2)

moves.add ,77/5Move(row, col, row-2, col-2);

(n
} : | :
ifmoves.size() == y
returnnull; ‘ o
,move"rray_i#

else {
m—

CheckersMove [mo
fordnt i

*This is ¢ ; 2) ehleck whether the
B & v~ AN .

*player can le m- - assumed

*that the pl v L e e ‘) hat (r3 c3)is a position

c1) d that

*/
privateboolean c f ri nt cil, int r2, int c2,
int r3, int c3){ '

if@3< o] | r3>= 8] c3< 0 7-

. Sy dad
returnfalse; /(x3 ﬁﬂ;:,

if oa
retur

$3

1f(player RED :
1f(board[h|1 cl]=RED && r3> ri M
return false, /Regular red piece can only move up.

if board[ran ﬁACK && board[ral cz]@ACK KING)

FW?J FREFINEINT

(board[rl[c1 =BLACK && r rl)

QWT” ARSI A Y

return true; jump 1s lega

} rend candump ()

81

okl

*This is called by the getLegalMoves () method to determine whether
*the player can legally move from (ri,cnto
*assumed that

(r2,c2. It is
(r1,r2contains one of the player's pieces and
*that (r2,c2is a neighboring square.

*/

privateboolean canMove (i int ri1, int c1, int r2, int c2{

if@< o] r2>= g8||

return false;

ifplayer ==
if board [

} 7end canMove

} 7end class Chec

Board

S

*This pa ‘fﬁﬁ“ﬁmmm“'

th

*a 2»pixelsblac of the

. -
*canvas 1s to

s class does
*the work ok' etting the use play checkers, and it displays
*the checker oard

A AUV WYINS

P
Mo

“CheckersData board; //The
here.

S RER TR

data for the checkers board is kept

TINYa Y

/Is a game currently in progress?

boolean gameInProgress;

#The next three variables are valid only when the game is in
progress. */

82

int currentPlayer; /Whose turn is it now?

The possible
values

/ are CheckersData.RED and CheckersData.BLACK.

int selectedRow, selectedCol; nIf the current player has selected
a pilece to

/ move, these give row and column

/ containing t I

/I yet select

no piece is

»l/‘_ﬂ is -1
1 ﬁontaining the legal

—

CheckersMove
moves for the =

/ CUT remEspiasreT=

[0)
iy -

Jx

*Construct ens for mouse

*clicks and “~ he board and

_ ,n.ad{'gi.;iw'
1 .
message wJLa :’:.té'i-.
message. : BOLD, 14);
message

board = new Che
o

doNewGame () 7 iif

-

*Respond tfr ser
*/ 4

jfﬁ
publicvoid actionPerformed (ActionEvent evt) {
Object src fv ;
lsei

AUERIININYINT
RAAIATUNRINGAE

/

void doNewGame () {
if(gameInProgress == true){

etSource

/This should not be possible, but it doens't hurt to check.

message.setText ("Finish the current game first!™);

83
return;
}
board.setUpGame () ; /Set up the pieces.

currentPlayer = CheckersData.RED; /RED moves first.

legalMoves = board.getLegalMoves (CheckersData.RED); /Get
RED's legal moves.

selectedRow

has not yet selected a piece to
move.

return;
}

if(currentP

else

/**
*The game ends.
*to the Uger

*can sta 2 C

*ends at‘

*/

isplayed as a message
justed so playes
he game

void gameOver (Stri

1
mesETi;e.setText (str); ‘LIJ‘

newGameButton setEnabled(trueL

re51g .setEnabled (fals
*This is called by mousePr sed when a p r clicks on the

ﬂ ﬂﬁ\?ﬂﬁmﬁ‘iﬁ”ﬁﬁﬁﬁﬁﬂ

void doClickSquare (int row, int col)

#If the player clicked on one of the pieces that the player

can move, mark this row and col as selected and return.
(This

84
might change a previous selection.) Reset the message,
in
case it was previously displaying an error message. */

fordnt 1 = o; 1 < legalMoves.length; i++)
if(legalMoves[i].fromRow == row && legalMoves[i].fromCol == col) {
selectedRow
selectedCol
if(currentPlayer ==

ke your move.");
else

want to move.");

#If the user lected piece can be
' */
for@dnt i = 07
ifdegalMov legalMoves[i] .fromCol
== selectedCol
oW & &
legalMoves|[i].
return;
})
#If we gel and the

square wh = 4! ._
thg. ser 'e,ﬁﬁat piece can be
legally move 1Lh

"
S an error message. */

messa‘“Text "Click the s e you want to move to.

ﬂuwwwﬁwawn‘:

/**

is is called when osen the specif

q WARNTT AN EYa

void doMakeMove (CheckersMove move)
board.makeMove (move) ;

#If the move was a jump, it's possible that the player has another

85

jump. Check for legal jumps starting from the square
that the player

just moved to. If there are any, the player must jump.
The same

player continues moving.

1!
//r toRow, move.toCol) ;

*/

ifmove.isJump ()) {
legalMoves =
board.getLegalJumpsF (
if(dlegalMoves !

if(currentPla
else
jumping.™)

be moved, seléct

#The curren urnds enc 6 changey to the other

player.
he player has no legal

Moves (currentPlayer) ;

MY

m - message.setText ('‘BLACK:

else { ‘
re

AUt i;‘?tﬂﬂiﬁ

eif(legalMoves[o0.isJump
message.setText ("RED: Make yolagmove. You must

ammnmummma

#Set selectedRow = -1to record that the player has not yet
selected

a piece to move. */

86

selectedRow = -1;

#As a courtesy to the user, if all legal moves use the same piece,
then
select that piece automatically so the use won't have to
click on it
to select it.

ifdegalMoves !=
boolean sameSta
fordnt i = 1;..:

o : ie i
*Respond to a user click=on the 1 If no game is in progress,
show

RN

*an error mes
user 4

*clicke

and call doClickSagu le 11
¥

and cfmn that the
\ 1)
AJ

—

*

A
publicvoid_ mouse
if(gameIan_gress

1
L
setText ('Click \'"New Game\"to LJLrt a new game.");

ssage.

else { :

igt col = (g' X () — 27205 u s
' lim: = c < %y IF& wI!i' I I I
: : doClickSqu OOl)y . s ' ’

i
E'Il A
}

publi id seClicke S tleit) } - I I I
publicvoid mouseEntered (MouseEvent evt) {}

publicvoid mouseExited (MouseEvent evt) {}

} 7end class Board

87

TowersOfHanoi

/**

*This program lists the steps in the solution of the TowersOfHanoi
*problem. The number of disk o,be moved is specified by the user.

*Warning: The number of | f ws very quickly with the number of
~disks! » \ | /
publicclass Towers é

r = —_—J

publicstatic vming[]‘gs) ———

int N; /#Th
/ as specifi

TextIO.pu ps in the solution
of"; :

TextIO. : et stof! 5 - ﬂf S You can specify
the™); = : \ .

TextI it for small
numbers");

TextIO.

TextIO - A

TextIO. ; O “disks 4 oved from Stack oto
Stack 1?™); . f i\ 4

TextIO
TextIO

N = TextIO.getInt()s
L]

TextIO.pu : "?;f’?,f= o
Teﬁé:i.s

Jx

*Solve the pr‘lﬁ)f moving the numv of disks specified

AUBINBRINEINS

vailable for use as a spare. Stacks are specified by

*number: o, 1, or 2. ‘ A
14

AT INIAINEIRY

/There is only one disk to be moved. Just move i
Systemout.println ('"Move a disk from stack number "
+from + "to stack number "+to);

}

else {

}

extra

88

/Move all but one disk to the spare stack, then
/move the bottom disk, then put all the other
/disks on top of it.
TowersOfHanoi (disks-1, from, spare, to);
Systemout.println ('"Move a disk from stack number "
+from + "to stack number "+to)'
TowersOfHanoi (dis to, from);

0T by the user.
The program ess A represent the

or i It also uses
uld be used

] <factor>]...

l("

expression> ") "

A number must begin
A line of 1nput

., not a decimal point).
one such expression. If

*aitgjen read, it is
N

ar 3, this program

data iswfo
consider

In ad

defines alset mplementing expression
trees. H', ,r

*/

1R

3

3

ﬁﬁmmi alie il
1A9ATUURIINLE

ree concrete node classes are concrete s classes

Two instance methods are specified, so that they can be used with
any ExpNode. The value() method returns the value of the
expression. The printStackCommands () method prints a list

of commands that could be used to evaluate the expression on

89

*a stack machine (assuming that the value of the expression is
*to be left on the stack).

*/

abstractprivate staticclass ExpNode {

abstract double wvalue();
abstractvoid printStackCommands (

}
*Represents en expr “ﬁ’///ﬁ a number.
ten

prlvatestatlccl s de
double numberiwiThe number . ‘_ ——
ConstNode (do ¢ i

/Construc number.

number =

Jx

*An expression n# F e g)Yy operator,

private staticclass BinOpN e ExpNode {

eft rand.

rand.

assert op = A
assert leﬂ#l.—

thisop = ;

this.left

A Ineaningnns

erands and combining the values with the operator
double x = left.value();

ammruum'mmaﬂ

case '-':return x

= D 1
(=828

case '*': return x * y;
case '/':return x / y;
default: returnDoubleNaN; /Bad operator!

}

}

void printStackCommands () {
/To evalute the expression on a stack machine, first do
/whatever is necessary to evaluate the left operand, leaving
/the answer on the stack. Then do the same thing for the
/second operand. Then apply the operator (which means popping

/the operands, applying th rator,

and pushing the result).

Jx

*/

}
double val

/The value 1
double neg =8
return-neg;

} f",.r'

void printStackComman

e operand.

/To evaluate this expression or ack machine, first do
) ;Jtyfﬁ' L .
swhatever is necessary.'to operand, leaving the

de‘_ B

/operand, on ‘(which means

// POPP- e 8 g C J result)

ﬂumwamwmm

bject of type ParseError represents a syntax error found in
*the user's input.

q HAGARTRUHNT

upermessage),

}ﬁend nested class ParseError

publicstaticvoid main (Stringpargs) {

90

IMBIAY

qWIlanaE

while (true) {

TextIO.putln ("\n\nEnter an expression, or press return to

end.")
TextIO.put ("\n? ");
TextIO.skipBlanks() ;
if(TextIO.peek () == '\n'
break;
try {

ExpNode
TextIO.ski
if(TextIO.pee () n

thrownew PMtra *ta afbermendmo” cxpression. "
TextIO. :

}

catchPars

r 1Seards ioputh '+TextIO.getln());
} ! \ b

*Reads an expression ne of input and builds

*an expression tree that re expression.

*@return an ExpNode= ?_-‘ he root node of the
* expre

s } ‘
*@throwsi? yntax error is fo d ir Jh.a) input

. . gl %
prlvatesta ;_ : 'Ege rror {

boolean ne ive; #True if there is a leading

negative = false;

if (TextIO. pee‘h -

A UBINENINGINT

ExpNode exp; /The expression tree for the expression.

exp = termTree(); NSt t with the flrst term.
if (negative)

us sign.

/Read the next term and combine it with the
/previous terms into a bigger expression tree.
char op = TextIO.getAnyChar();
ExpNode nextTerm = termTree();
exp = new BinOpNode (op, exp, nextTerm);

e.getMessage ()) ;

91

ISRINNN Y

92
TextIO.skipBlanks () ;
}

return exp;
}7end expressionTree ()

S

*Reads a term from the cur

. A"
*an expression tree that! ke

*@return an ExpNode ‘T_n“ﬂ
* expression tre iy

*@throws ParseE

/line of input and builds
eser expression.
'z /the root node of the

G__.hi/jd in the input

yntas err

% i-----‘ ---Eﬂi;i.’

privatestatic E
TextIO. pBla

ExpNode t enting the term
term =
TextIO.ski

while(TextI

return term;
}7end termValu

%
of input and builds

*an expression tre“-.l_,b pression.

*@return-amn E de of the
* expres%i;f'

*@throws L
*/

TextIO.
char ch = Te

G

kipBlanks (

ﬁmﬁww 419

elseif(ch == "("){
S
A TRIAIUHEANY A Y
getA the
ExpNode exp = expressionTree ()
TextIO.skipBlanks() ;
if(TextIO.peek() = ") ")

thrownew ParseError ("Missing right parenthesis.
TextIO.getAnyChar(); /Read the ")"

"y

return exp;

}

elseif(ch == '"\n")

thrownew ParseError ("End-of-line encountered in the middle of an
expression.");

elseif(ch == ")")
thrownew ParseError ("Extra iy arenthesis.");

elseif(ch == "+' || ch L= k) || ch == "/")
thrownew ParseErroc |
else . ;
thrownew ParseError(iUnex
} vend factorTre
e —
7—"”’#
}vend class SimpleP e v

WordCount

import javatutil.
import java.uti
import java.u
import java

Jx

*and once with the] de ot ‘0of occurrences. The
*user specifies i puttiifile.
*
Java's framework for
* generic programmings ~TreeMdap, /] g, Comparators, etc.
*/ Y

publicclass. Word

* The program demonstg-ﬁﬁi'ii

S

] s
1
about a word: the @d and

*the number of times it has been encountered.

. €
§1

AR ITTENTNY

ﬂWdr ata(String w
I structor for creating a, WordData object when

URNIAINYIA

*A comparator for comparing objects of type WordData according to

*Represents“ e data we nee

/we encounter a new word.

RN

}7end class WordData

ikl

93

94

*their counts. This is used for sorting the list of words by
frequency.
*/
privatestaticclass CountCompare implements Comparator<WordData> {
publicint compare (WordData datai, WordData data2 {
return datazcount - dataicount;

/The return value is posi ff datazcount > dataicount.

#I.E., dataicomes aft ordering if there
of datarword.
[1ng counts.

to select an

/Wwere more OCCUrr
/' The words are

}

}vend class Cou

publicstaticvoid

Systemout.
input file™);
Systemout that occur in
the file");
Systemout.p hat each word
occurs.");
e, first in

ue \k of 'occurrence with
!
L\

Systemout.
the most");

Systemout.pri
the end.")

Systemout.print

d ™he least common at
put "file, the program asks

you to");
If you select a file,

3 @, if you

All words are

Systemout.println (!

the list eﬁin

System.
cancel, t

Systemo
converted td“f
Systemout.pyintln("lower case.\n\n'";

Systemout. prlnt(Press return to begin.™);

TextIO. g ; /Wait for user press return.
ext 0. readUserSelecte:Flle(== false){

temout println ("No 1npir file selected. Ex1t1ng D)
Systemexit (1);

’IQ INIUNMIINYIANY

sdata in the map about the words that are found in the file.

TreeMap<String,WordData> words = newTreeMap<String,WordData> () ;
String word = readNextWord() ;
whileword != null){

95

word = word.toLowerCase(); /convert word to lower case
WordData data = words.get (word);

ifdata == null)
words.put (word, new WordData (word));

else
data.count++;

word = readNextWord
J i'
Systemout.println rds found in file: "
+words. 51ze())

Systemout. prl ’

if words.size Q== 0{ ‘ _;;,
Systemout.print.
Systemout.
Systemexit (0);

B

ArrayList<
Collections.s

r cancels, output

automatically
//goes

TextIO.putln (W

TextIO.putln (iList WO T
) f’M

+"with counts

for(Woih -
e AL LI N LA 1 ‘"+aata.(A [r ")");

te 4 g0 JOf

occurence: \n j

for(WordD%ﬁ data : worc I1
xtIO.putln (" "+data.word + "("+data.c t + 9;

Systemout. pr‘qtln ("\n\nDone. \n\n"),
rEyh i I

emout. prlntln'Error Message "+e. getMessage(
e. prlntStackTrace()

q W’] ﬁN ¥l 33‘%’}% A

*Read the next word from TextIO, if there is one. First, skip past
If an end-of-file is encountered

ords found in file:\n");
phabetical ordexr"

oce®

*any non-letters in the input.

before

96

*a word is found, return null. Otherwise, read and return the
word.
*A word i1s defined as a sequence of letters. Also, a word can

include

*an apostrophe if the apostrophe is surrounded by letters on each
side.

*@return the next word from t O, or null if an end-of-file is
encountered

%/
private static String"

char ch = TextIO. acter in input.

while(ch != TextTO.EQF && ! ch)) {
TextIO-getAnyChar(); —mﬁa’er.
ch =w ;1 Wharacter.
} ,
if(ch == Text

while(true) { | = '
word : yChe ; i\ he. letter onto word.

if(ch == \
/The next i i‘vdf ¢ 2 E and
#1f the id‘both the
Uapostrophﬁ ¢ Tetts nto 'the w and continue

Jreading tk

ter --\-r he apostrophe
z 7 so break out of the loop.
TextIO. . a1 ! he"apostrophe.
ch = TextIO K ok at char that follows
apostrophe. TR

if (Character.i

cn = 1exXxtll.peek(), /I K dTC NeXT

}

else :;
break M M
"
1f('CharacterlsLetter(ch)) |

/If the ne racter is not a word 1is

UHAMENINGING

U‘I]we haven't broken out of the loop, next char is a letter.

eturn word; /Return the rd that has

QW’]Mﬂ‘iﬂJNW]’JVIEHﬂEJ

}rend class WordCount

Simplelnterpreter

il

97

This program can evaluate expressions that can include
numbers, variables, parentheses, and the operators +,
-, *, /, and ©~ (where ~ indicates raising to a power).
A variable name must consist of letters and digits,
beginning with a letter. Names are case-sensitive.
This program accepts commands of two types from the user.
For a command of the form prlnt <expression> , the expression
is evaluated and the va t. For a command of

pu
the form let <varia ion> , the expression is
s the variable.
/ fore it has been

evaluated and th
mber must begin with

If a variable
assigned a valt
a digit (i.e.

n_n

<expression>

<term>]...
<factor>]
1.
" (" <expression>
") "
A line of ‘ command. If extra
data 1is fo j ine « : S on has been read, it is
considered anr ror.: h : and "e" are defined
when the program -fﬁ» S al . o) he "usual mathematical
constants. — -

This program deme

{ashMap as a symbol
table. /

Simpl } iypleParserzjava.
*
il HashMap;

import java:

publicclass Slgnterpreter {

£UED fiENINeNng

prlvatestatlcclass ParseEr extendsExcep

amﬁiﬁmmmwmaﬂ

[

*The symbolTable contains information about the
*values of variables. When a variable is assigned

*a value, it 1is recorded in the symbol table.
*The key i1s the name of the variable, and the
*value is an object of type Double that contains
*the value of the variable. (The wrapper class
*Double is used, since a HashMap cannot contain
*objects belonging to the primitive type double.)

*/
private static HashMap< t%y// olTable,

publicstaticvoid gﬂargs

/Create thewseng sy
symbolTable = AM o

/To start, symbol
/table. constants.
;\ re! urn to end.")

\
b\

\ ,\
\

A I
B'");
"

Ve
ion
<exp

n>";

while (true) {

(PLZ
TextIO.put(“\{E:;:

TextIO.skipBlan
if(TextIO.peek() == "\

break;-}A b put ne e pﬁrd the program.
;mey == 20202020202 95

if (comma

“'_doPrint iﬁh
elseif(c and. equalsIgnoreCase("let"»

mgnineng -

TextIO. putln "\n Error in 1npu "+e.getMessag

QRIS ANETA

TextIO.putln ("\n\nDone."™)

else

ﬂﬁf}ﬂﬁ |

h(ParseError e)

} 7end main ()

99

okl

*Process a command of the form let <variable> = <expression>.

*When this method is called, the word "let" has already
*been read.

*store the
*/

privatestaticvoid doLetCon

Read the variable name and the expression, and
value of the wvariable in the symbol table.

throws ParseError {

(y
f after 'let'.");
ﬁ variable.

——————

thrownew ParseE

String varName eadWord |
TextIO.skipBlanks();

if(TextIO. peem'_f

thrownew P

/** l' - : " '
a&e, 1

calll
|

*Process a command ¢

*When this method

*been read. Eva%

*/

private staticvoid doP

double val = expressio
TextIO. sklpBl.-'

if(TextI k i YA 1
throwngm ("Extra data after end of ex] g)ion.");
Texlﬁ .
}

4 1 |
Jx

*Read an expr sa from the current

;"> h [as already
e thelexpress =Rel 1t the value.

e of input and return its

ﬁ%&ﬂ;@%ﬂﬂ‘iﬂﬂ’mﬁ

an negative; /True if there is a leadlng minus sign.
negative = false;

A UNINYIa Y

double val; #Value of the expression.
val = termValue();
if(negative)

\4

/An expression must start with a term.

val = -val; /Apply the leading minus sign

100

TextIO.skipBlanks () ;

while(TextIO.peek () == "+' || TextIO.peek() == "'-"){
/Read the next term and add it to or subtract it from
/the value of previous terms in the expression.

char op = TextIO.getAnyChar();

double nextVal = termValue()

ifop == "+"

val

else
val
TextIO.
}

return val;

} vend expreSW

*Read a term from 1)N, i, 1 %. return 1its value.
*/ \
private st

TextIO.ski

Tk

ifop ==

else

}

return va

} rend tet?
/** M

*Read a factor from the current line of input and return its value.

(2 ﬁﬂpﬁ?’lﬁ% TWNENT

val = prlmaryValue), /A factor must start with a primary.
TextIO sklpBlanks
ile(TextIO.pe

o W’Tﬂ"ﬂ}jﬂi um'a NYNQ Y

double nextVal = primaryValue ()
val = Mathpow(val,nextVal),

if(Double.isNaN (val))

thrownew ParseError('Illegal values for ~ operator.');
TextIO.skipBlanks() ;

101
}

return val;
} vend termValue ()

S

* Read a primary from the curzre

t,line of input and
* return its value. A prd a number,
*a variable, or an expres //n parentheses.
private staticdouble primar W arseError

*/

if(Character.isDigit. i %
/The fact = hd g%
Jreturn its ‘
return T

}
elseif(Char

/occurs.
/table are
String nam
Double val =
ifwal == nul - ¥
thrownew ParseE '5;*', St 2 oY L + o\,
return val.dou : '

}

elseif(ch ==
/The factor is an ex

/Return_the
o
double wval

if(Text oéﬁ ek

thrownewHF;rseErrO' -ntheSlﬂim,
O.getAnyChar(); /#/Read the ")"

return val; ‘

Ji H?ﬂﬂ%@ﬂﬂ’lﬂ%

el if(ch == ") ")

nJ

|

thrownew ParseError "Extra‘rlght parenthe

| WA T ANEIa

thrownew ParseError ("Unexpected character \m+ch + "\"encountered.");

102

* Reads a word from input. A word is any sequence of
* letters and digits, starting with a letter. When
*this subroutine is called, it should already be

* known that the next character in the input is

*a letter.

*/

private static String readwW
String word = "; /The wc
char ch = TextIO.peek
while(Character.isLk

T.isDigit (ch)) {
word += TextTC ; ; racter to the word.

ﬂuﬂawaw%wﬂwn
qmmnmumwmaﬂ

103

Biography

Benjapol Auprasert is the lone son of Suparat Auprasert and Assoc.Prof
Kanya Auprasert. He is based in Bangkok and currently pursuing a Master Degree in
Computer Engineering at Chulalongkorn University-after receiving the Bachelor Degree from
the same faculty. He previously graduated from Saint Gabriel's College and Triamudomsuksa
School respectively. The wvarious-awards and prizes he has achieved throughout his life
include: Finalist for National Software Competition (NSC 2008) for Project - 'Complex
Document Study Complementer', Bronze Medal in Thailand National Maths Olympiad
Representative Contest 2003, High Distinction Certificate for Australian National Chemistry
Quiz 2003, Gold Medal in Thailand National Secondary School Maths Olympiad 2000, 1%
Runner-up for Mac Scholarships National Academic Competition 1997, 5 Annual Gold Medals
for Top Academic Score of Saint Gabriel's College, and 19 other wins and runner-ups from
inter-school academic. quiz competitions. He also completed specialist trainings and
certification, including SAP HR400 and HR305, CMMI Training, and Sun Certified Java
Programmer. His miscellaneous achievement includes Trinity College of London's Grade 5 in
Solo Piano, The World Tae Kwan Do Federation's 9th Grade (Yellow Il Belt), Marine Life-
Saving Training, winner of Orange Photo World Cool Guys Contest, and semifinalist in Mahidol

Youth Music Contest 2000.

Benjapol's current areas of interests in research topics are Software Metrics,
Complexity Measurement, Cognitive Informatics, and Technological Singularity, which are
driven by the belief that understandings of the mechanisms of natural intelligence and
cognitive processes. of the brain could lead. to a big leap forward in information revolution,
which will ultimately lift up the advancement of mankind to another level beyond imagination.
His researches and scholarships are funded by Software Industry Promotion Agency (SIPA),
Ministry of Information and Communication Technology, in collaborate with Chulalongkorn
University.in the Software Quality Research and Development Project. He has so far published
four papers ‘associated" with- software cognitive complexity measures in four international
conference proceedings during the past eight-month period. The success, he believes, is the
result of working enthusiastically, working his heart out, having fun, and always keeping the

balance between work and life to enable working at the full potential with great attitudes.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Background
	1.2 Objectives
	1.3 Scopes and Initial Agreements
	1.4 Limitations
	1.5 Acronyms
	1.6 Expected Benefits
	1.7 Research Methodology
	1.8 Research Publication Progress

	Chapter II Literature Reviews
	2.1 Classical Software Complexity Measures
	2.2 Cognitive Complexity Measures of Software
	2.3 Other Associated Theories and Researches

	Chapter III The Structured Cognitive Complexity Measure with GranularComputing Strategies
	3.1 Decomposition of Software into Granular Hierarchical Structure
	3.2 Derivative of the Total Cognitive Weight and Combinatorial Counting Rules
	3.3 The Structured Cognitive Information Measure of Software (SCIM)
	3.4 The Unit of SCIM
	3.5 Illustration of SCIM Computation

	Chapter IV Validations of the Proposed Measure
	4.1 Theoretical Validation through Weyuker’s Properties
	4.2 The New Inductive Framework for Evaluating Software Cognitive Complexity Measures
	4.3 Evaluation through Kaner and Bond’s Framework
	4.4 Comparative Case Studies with Real-World Programs

	Chapter V Conclusion and Future Direction
	5.1 Conclusion
	5.2 Future Direction

	References
	Appendix
	Vita

