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CHAPTER 1

INTRODUCTION

1.1 Introduction and Problem Review

As a result of the human genome project, many researches aim to extract
knowledge from the nucleotide sequences. Which genes affect a disease is an
interesting question. To answer this problem, association study has been used to
identify disease susceptibility loci associated with a particular disease [1]. Normally,
disease can be categorized into common disease and complex disease. Common
disease is a single gene disorder as the result of gene inheritance. On the other hand,
the complex disease involves more than one genes with complex relationship affecting
to a disease [2, 3]. Although we already knew which gene affects the Thalassemia’s
disease, those genotypes cannot classify the phenotype correctly. Consequently, only
one gene may not be sufficient to categorize the phenotype. For Crohn’s disease, even
though the susceptibility loci-for the causative were report, those known loci do not
completely explain the genetic risk. Therefore, genome-wide association study is a

contribution to‘identify the additional loci [4].

This research aims to discover the significant features at the molecular level
which associate to beta/Hb E Thalassemia's and Crohn's diseases. Association study is
usually investigated by SNPs [5]. Single Nucleotide Polymorphism (SNP), the most
frequent form of genetic variations [6], is a single base substitution from one nucleotide
to another one. For instance, the first DNA sequence is 'AACTGCGTT' and the other is
'AGCTACGAT'. The SNPs are in the second, fifth, and eight loci of the sequences. In
general, SNPs are variation bases from comparing nucleotide sequences at the same
locus. For current estimation, SNPs occur as frequently as every 100-300 bases of a
sequence [7]. 99.9 percent of human genome sequences are identical, while only 0.1

percent difference. In other words, each person has the unique SNPs. Therefore, SNPs



can function as genomic markers for identifying the people. With this assumption, some

SNPs should be the efficient identifier for association study as well.

Due to recent technology, cost and time in finding SNPs are reduced. We can
now genotype a large numbers of SNPs. However, genotyping more SNPs results more
dimensions of data which causes time consuming in extraction of the significant
biomarkers. It is not practical to genotype a large number of SNPs to create a model of
association study. Therefore, feature selection should be considered in this manner.
Feature selection [8] is a technique of selecting subset of relevant features or attributes.
This technique provides more effective in the point of increasing learning accuracy and
helps us to understand the significant of features by removing irreverent or redundant
features. Feature selection has been widely used in almost fields, including
bioinformatics. In general, feature selection can be categorized into three categories -
filter, wrapper, and embedded: depending on whether the classifier is in the model.
Firstly, filter method does only feature selection part without communicating with the
results from the classifier. The advantage of this method is computing speed but it does
not guarantee high classification accuracy. Secondly, wrapper method includes the
classification module into-a model. Due to the feature evaluation, this method is more
effective than filter method. However, wrapper method takes more time than the
previous one because the classifier is performed every time features are selected.
Thirdly, for the embedded method, feature selection search and classification are run

simultaneously.

In another point of view, feature selection technique can be divided into two
groups depending on a technique of selecting variables, univariate and multivariate
paradigm. Univariate paradigm simply selects features depending on their own
property. Feature scores are ranked. according to a criterion from most to least
significance. After that, subset of ranked features was evaluated to discover the most
informative subset [9]. This method is simple and fast. However, it does not concern the
interaction or dependence of variables. Examples for this technique are chi-square and

t-test. On the contrary, because multivariate paradigm considers groups of features



together so it concerns the interaction between features. Examples for this technique are
MDR, PAM, and genetic algorithm. Multivariate is an attractive method because, in the
real world disease, we have a model of incomplete penetrance or interaction. For
example, a feature itself does not have a marginal effect whereas combination of
features gives high effect to a particular disease. Since multivariate paradigm covers
more possible cases than univariate (interaction, in this case), multivariate paradigm
should give more effective results than a univariate paradigm. It has been noted that in
molecular genetics, interaction can be called as epistasis. Epistasis concentrates on
interactions among a group: of features since some subsets of features may be
important than individual .one (marginal effect). Thereby, multiple variable analysis

should be preferred.

Although multivariate paradigm provides an effective result, it is an exhaustive
task if all possible subsets of features are performed. For L features, there are 2
possible cases which exponentially:grows with respect to L. Note that, it depends on the
size of L. If the size is not large, generating all cases to search the best results is

possible. However, searching all of cases is impossible for large L.

Another point of view of association study is the data type, genotype or
haplotype. Although haplotypes have more meaning in biological task than genotypes,
inferring haplotypes from genotypes gives ambiguous output in unphase genotype data
especially in a case-control study. For example, if a person has genotype AT TT CG GA
TC CC, this person may have haplotype one from these groups: ATCGTC/TTGACC,
ATCGCC/ITGATC; ~ATCATC/TTGGCC,; ATCACCMTGGTC ATGGTC/TTCACC,
ATGGCC/TTCATC, ATGATC/TTCGCC, and ATGACC/TICGTC. However, it is not
guarantee which haplotype this person has. Moreover, it takes time to generate all

possible haplotypes.



1.2 Statement of the Problem
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CHAPTER 2

THEORIES AND LITERATURE REVIEWS

This chapter briefly illustrates related concepts applied in this dissertation: the
basic concepts of biological background, genetic algorithms, bootstrap, and support
vector machine. Literature relating to association study of the case/control data is also

reviewed.

2.1 Biological Background

The overview of human genetic is demonstrated in Figure 2.1. Cell is the
smallest living unit of all living organisms. A nucleus of each cell contains the set of
chromosomes, where each chromosome is composed of sequences of the DNA
(deoxyribonucleic acid). DNA has four chemical bases: Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). Two bases are paired via hydrogen bonds, where

adenine is paired with thymine and cytosine is paired with guanine.

nucleus

Figure 2.1 The overview of genetic.

Association study is a study aiming to discover an association between genetic

polymorphisms and phenotype [11]. Genetic polymorphisms of the association study



may be in a form of genotype or haplotype. In diploid organisms such as human, each
chromosome has two homologous copies. Sequence of nucleotides in the same
chromosome is called haplotype whereas the nucleotide at the same locus of those two
copies of each chromosome is called genotype. For example, the haplotypes of the first
DNA sequence are AACCTAGCAC and TTGGATCGTG. The haplotypes of the second
DNA sequence are AACTTAGCAC and TTGAATCGIG. On the other hand, the
genotypes of these sequences are AA, AA, CC, CT, TT, AA, GG, CC, AA, and CC,
ordered from left to right respectively. It has been noted that, there is the difference

between two chromasomes in the fourth locus. This locus is the position of the SNP.

2.2 Genetic Algorithms

A genetic algorithm is a search technique which applies from the principle of
genetic. The genetic algorithm maps the real world problem into a into a chromosome-
like data structure. In general, a framework of genetic algorithm can be demonstrated in
Figure 2.2. A searching problem is an input of the genetic algorithm. To begin with,
encoding is required for translating the real world problem into a chromosome-like
structure. Then, generate an initial population of a generation. It has been noted that,
each chromosome corresponds to candidate solution and the population consists of a
set of chromosomes. After that, all chromosomes in this generation are evaluated; the
good chromosome, which represents a good solution to a target, is obtained to use in
the next processes. Then the chromosome is iteratively applied by recombination,
crossing over, mutation to create the next population. Therefore, good .chromosome has

more chance to re-produce in the next population.
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2.2.3 Evaluation

The chromosome is the candidate solution of searching problem. An evaluation
is the process of measure fitness of each individual chromosome. A fitness function
returns the fitness value determining how close the chromosome and the solution. For
example, suppose that the searching problem is finding features used for a

classification problem. The fitness function may be the number of miss-classification.

2.2.4 Selection

Selection is a process of selecting good parents into a mating pool to
re-produce offspring of the next generation. Selection is a first step in generating a next
generation. It uses a principle of survival, better fithess score means more chance to
survive in a next generation. Each individual chromosome was selected based on its
fitness score into a mating pool, which there are several algorithms such as roulette

wheel, tournament, rank, steady-state, and elitism.

2.2.5 Cross-Over

An idea-of crossing over in a GA is like cross-over in biology genetic. Parents will
be random selected from a mating pool. Then, chromosomes from parent produce new
offspring’s chromosomes. for a next generation via a cross-over process. A basic idea of
cross-over is swapping chromosome values between two. parents from a cross-over
pointto the end of a chromosome or to the next cross-over point. For example, in binary
encoding, parent, has a chromosame 101 * 00 while parent, has 110 * 11 where *

represents a cross-over point. Then, offspring chromosomes are 10111 and 11000.
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2.2.6 Mutation

A mutation is changing value of a specified locus. This specified locus is called
a mutation point. Again, an idea of mutation in'a GA is like mutation in biology genetic.
DNA bases can be changed into other baseswhen mutation occurs. Like mutation in the
genetic algorithms, it changes the value of the specified locus to other values. For
instance, a chromoseme is encoded into a binary as 10111 and the mutation point

occurs at the first position, then this chromosome is changed to 00111.

2.2.7 Termination

After a next generation is generated, the process of calculation of a fithess score
is then executed. These processes are recursively done until a terminal condition is met.
The termination condition can be ‘a number of generation, a time limitation, a number of

the same consecutive results, ete.

2.3 Bootstrap

A concept of bootstrap is estimating parameters by re-sampling from the original

data. This is an-attractive technique when only few data are available and inapplicable

to sample more data. Figure 2.4 is a diagram of bootstrap method. Let GZS(X) be an
interested parameter‘with an unspecified distribution F. Let x = {x,, x,, ..., X} is a
collection of n individual real-world random sampling data. Each x; € X where/ = 1, 2,

..., nis independent and identically distributed sample from F. In the bootstrap world,

0'= s(x*j) be an interested parameter of bootstrap jth with an empirical distributionF .

Noted that, jth is a running number from 1 to the number of bootstrap sample, B. A

bootstrap sample X = {xﬂw,xﬂé, x*j”} is generated by randomly sampling n times with

replacement from the original real-world sampling x.
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Figure 2.4 The Bootstrap diagram.

2.4 Support Vector Machine

The SVM[13] is a widely used learning machine for a two-group classification

problem. SVM classifier classifies its data set into only two classes by using a

hyperplane without adjusting weights as other models such as RBF network and

multilayer perceptron network with backpropagation learning.

The hyperplane is used as

a linear decision surface to classify two groups of data. The linear decision surface is

the maximum margin of separation between two classes. Input vectors can be both

linear and non-linear separable. For nonlinear version, a kernel function is required to
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map input vectors into a high-dimension feature space before constructing a linear
decision surface. The separable of SVM is based on the capability of the kernel
mapping function which maps the given data set into another higher dimensional space.
A good kernel function can relocate all data set from different classes in the new

dimension such that there is no overlap of data between classes.

Each training patterns consist of {x,y} where x;is'a i" input data and y.is a target
of input i" such that y, € {1, 1}. The data are linearly separable if there exists a weight

vector w and a scalar bias b such that
v (W X +) 2 1,i=1, .4 ,n (2.1)
The decision function is defined as follows.
Yy, = sign (w' X, + b) (2.2)

However, if the data are non-linearly separable, the transformation from
n-dimensional input vector x into. m-dimensional feature vectors, for n < m, is needed.

Suppose (P(x) denotes a non-linear transformation from an input space into a feature

space. Thus, there exists a weight vector w and a scalar bias b such that
y, (W - Q(x)+b)=1,i=1,...,n (2.3)
The decision function for non-linearly separable data becomes
yp=1signi(w s @(x)+ b) (2.4)

The goal of the SVM is finding a hyperplane with the maximum margin, equation
(2.5), of separation of two classes data points where this-eptimization problem subjects
to equation (2.1) for the linear separable case and subjects to equation (2.3)-for the

non-linear separable case.

1
min—||wl|” (2.5)
2
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The weight vector w is calculated by the Lagragian function equation (2.6) for

linear separable case or equation (2.7) for non-linear separable case.

L(w,b, QL) = lew—ZN:OLi [d ' -x, +b)—1] (2.6)
2 it

L(w,B,0) = lew—ioci [d "z b)—1] (2.7)
2 i =H

The Lagrance function can be translated into a dual problem by maximize the
objective function, L in eguation (2.8) where Ol is called Lagrange multiplier. Then w can

be calculated as equation (2.9).

N

,I N N
L(wjb, 0L) = Z:oci ——ZZociocjdidjxij (2.8)
2

i =1 R 1

N
Subject to zaidi =0and 0= O fori=1,2, ..., N

i =

w = iot'dixi (2.9)

The SVM technique above is called hard margin optimization. The main problem
of the hard margin is that it always produces no training error, as equation (2.1), no data
points falls in the margin of separation. When a model does-not allow some training

error, it is sensitive to.noise. Another technique of SVM is soft margin optimization.

The different margin of separation between hard and soft is a number of data
falls'in the margin of separation. Soft margin optimization allows some data points falls in
the region with a particular number of errors for non-separable data. Equation (2.1) is
rewritten for soft margin to equation (2.10), where % is called a slack variable. The slack
variable represents the deviation of the data point from the correct classification.

y, (W x+0)=1-E,wherej=1,...,nand § >0 (2.10)
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Since some misclassification error are allowed in the soft margin, the goal of the

SVM is changed to finding a maximum separated hyperplane with the minimum

A% (2.14)

LN NJ
- i
The La?ﬁnce function of so argin optimization isﬂabuation (2.12) where O

and B are Lagran? multipliers. The dual objectlve function is equation (2.13). Then w
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2.5 Literature Review

The objective of an association study research is to identify loci for a particular

disease. Previous technique for case-control association studies are discussed below.

2.5.1 Chi-Square

Chi-square test for independence was used to test for association with the
disease trait to identify of susceptibility loci for complex diseases in a case-control
association study using the genetic analysis workshop 14 dataset [14]. The paper used
this technique with disease that does not follow simple Mendelian inheritance. The aim
is to determine the ability of conventional association methods to fine map a locus of
interest. 14 Simulated datasets were taken from the Genetic Analysis Workshop then
were analyzed for association between the disease traits and locus D2. An association
between disease and a locus was test by Pearson’s chi-square tests for independence.
However, this method gives the low significance levels because no association was

detected for SNPs which to be linked to the disease locus.

2.5.2 Classification and Regression Tree

A multigenic approach using a classification and “regression tree (CART)
predicts breast cancer risk was proposed [10]. The aim of this paper is to find the
multigenic significant genes for classifying the breast cancer risk from case and control.
CART is a non-parametric technique using decision tree which can be used for data
mining. The classification tree recursively partitions data into 2 subsets, case and
control. The algorithm starts with searching 1 variable at a time to divide the whole data
into 2 subgroups. The selected variable is the variable that maximize the purify data into
2 groups. Subsequently, it repeats finding another variable for splitting those data into 2

more subgroups. This process iterates until the stopping criteria reaches or data cannot
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be divided into 2 subgroups which is called terminal node. In this paper, trees are
constructed by training data with 10 fold cross validation. For each tree, CART
constructs the maximal tree possible and then prunes some branch of tree which
contributes least to overall accuracy. Only the best tree was selected for further
analysis. However, this method has to consider only 1 feature at a time. What if more
than 1 position is equivalent importance? Moreover, tree can be constructed with an
ambiguous, which.means than there are more than 1 tree that give the same accuracy

of prediction.

2.5.3 Multifactor-Dimensionality Reduction

A multifactor-dimensionality reduction (MDR) [15] is the dimension reduction
method for multifocus. The objectives of MDR are (1) to reduce the dimensionality of
multilocus information and (2) to. identify the combination of polymorphism which
associates with disease risk. The MDR technique is nonparametric and model free; so, it
neither estimates any parameters nor assumes any particular genetic model. With MDR,
multilocus genotypes are pooled into high-risk and low-risk groups so dimensions were
reduced from n dimensions to 1 dimension. In n factors, MDR counts the number of all
possible combining genotypes for case and control then fills into n dimensional space.
For example, for 2 loci (A/a and B/b), there are 3 possible genotypes each i.e., x, = {AA,

Aa, aa}, y, = {BB, Bb, bb}. Therefore, there are 9 combinations of 2 locus genotype i.e.,

X, y, such that 1 < || S=a)

In the space, each cell is classified into high-risk or low-risk by comparing the
ratio of case and control with some threshold. 10-fold cross-validation was used to find
the average prediction error of each model. Then the model with minimum error was
chosen. However, this approach uses all combination of genotypes, which they may

exceeds computational feasibility when they are huge number of features.
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2.5.4 Optimum Random Forest

An Optimum Random Forest (ORF) [16] was proposed to predict the genetic
susceptibility of complex diseases. Let M be a number of all features and m be a
number of selected features defined by user. The ORF algorithm starts with randomly
generating a set of MSC, the set of the position of selection feature. The length of each
MSC. is m as well. Eaeh'MSC, must contains the position of feature i". Therefore, the size
of MSC equals M. After the MSC set is randomly generated, each MSC, is used in
generating p classification trees by permuting the MSC 's order and the training set. The
value of p is defined by user. Test set is run down to the classification tree to get the
accuracy rate. Therefore, each MSC, has p accuracy values and p classification trees.
The algorithm chooses the best tree for each MSC, by selecting the tree with the highest
accuracy of the test set. To find the important feature, all accuracy value of the same
feature of the MSC is sum up. The highest score means the most important feature. The

final m selected features (MDMSC) are selected from this important score.

To predict the test set, the MDMSC value is re-ordering and then, re-generating
a tree T, for a particular number of re-ordering. For each 7, the ORF algorithm generates
b bootstrapped samples and generates b classification trees from T, where b is defined
by user. The final tree for predicting the output of the test set is the tree with the highest

average accuracy from b bootstrap samples.



CHAPTER 3

PROPOSED METHOD

In this section, we introduce a hew encoding method called Integer encoding of
the Feature selection in-the Genetic Algorithm (IFGA). A summary of the IFGA method is
demonstrated in Figure 3.1. The input data is a case-control data obtained in this study

are in forms of sequences of genotypes of SNPs.

The first population, a set of chromosomes, is initiated by the integer encoding
approach. The data in the chromosome represents a set of selected features. After the
population is generated, each chromasome in this population is evaluated by the fithess
score. This score is calculated from the BoostMode-SVM approach. Then, the IFGA
re-generates the next population by IFGA selection, IFGA cross-over, and IFGA mutation
until a termination criterion is met. The result from this approach is the selected features
which have the highest accuracy in classification. The details about the IFGA encoding,
IFGA generating the population, BoostMode-SVM, IFGA selection, IFGA cross-over,

IFGA mutation, and termination are described in the following sections.

3.1 Integer Encoding Method

Dealing-the genetic algorithm with feature selection method is usually encoded
by binary encoding [17]. In binary encoding for feature selection, 1 represents selected
feature and O represents unselected feature. The length of a chromosome equals a
number of all features. Thereby, for a large number of features, a chromosome size is
also large. With a large number of features, encoding by binary method uses a large
number of bits. This is an important problem because of two reasons. First, the running
time highly depends on the length of chromosome. Therefore, a long chromosome takes
a long time to compute. Second, a general binary encoding does not fix a number of
selected features. It fixes only the length of the chromosome. For example, encoding

with binary method of the chromosome length 10, the first chromosome may be
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0110101010, where 1 represents the selected feature. So, the selected features from the
left side of the first chromosome are features 2™, 3, 5", 7", and 9". Therefore, the first
chromosome selects 5 features whereas the second chromosome may be 0001010000
whose only 2 features are selected (feature 4" and feature 6th). It can be seen that a
number of selected features varies from 1 to a‘number of all features, 10 in this case.

Hence, it takes a lot of times to find an optimum features.

Input

A
Integer
Encoding

Generating
a Population

h 4
Evaluation by
a BoostMode-SVM

h 4

IFGA
Selection

IFGA
Cross-Over

A4

IFGA
Mutation

erminate the
Program?

Figure 3.1: The overall IFGA flow chart.
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The IFGA is proposed for solving those problems. A case-control data obtained
in this study are in forms of N genotype sequences. Each chromosome’s length must be
less than or equal to M, where M is a number of user defined features. Our IFGA does
not set every chromosome size equal the number of feature, |N| like the binary encoding
approach. Only few chromosome sizes are selected from the position of M in the
algorithm. First, the length of a chromosome to be processed in the genetic algorithm
must be defined. Let'Q, be the i ehromosome processed in the algorithm. The length of
Q, denoted by |QJ,is set to'a constant less than orequal to M, i.e. |Q|, < M. Then, a set
of |Q| random numbers whose values are less than or equal to M are generated. These
random numbers are used as the locations to select the corresponding genotypes from
a given feature sequence. During the genetic algorithm, the length of each chromosome
is not necessarily equal. For example, suppose the following sequences as shown in
Figure 3.2 are given. The following number of locations is selected from each given
sequence: 3 for the first sequence, 5 for the second sequence, and 1 for the third

sequence.

Seq. No. Locations

1 CT CC GG TA TG AT AA
2 CC CA GT TIT TTI AA AC
3 =F BAL GF AANTIEe TT B GC

Figure 3.2: An.example of three given genotype sequences and

locations.
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Seq. No. Selected Locations Chromosome in GA
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2
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3.2 Generating a Population

There are two kinds of population, initial population and the population of the

next generation, called next population.

To generate the initialized population with P _chromosomes, where P is
user-defined number-of chromosome in the population, there is no element in the
population set. Then, repeatedly generates the chromosome and add it into the set of
population until the number of the chromosome in the population set equals to P. The
processes of generating the chromosome are the processes of the integer encoding of
the chromosome, which previously described. After the chromosome Q is generated,

this chromosome is added into the population set.

On the other hand, the population in a next generation consists of

® the best fitness score, b, from a current generation that survives in

the next generation.
® ¢ groups-of features from evolution, cross-over and mutation.

® groups of features from new re-selected features.

After-b and e are added to the next generation, those chromosomes are
checked for redundancy. Each chromosome must be identical in the next generation.
Other duplicated chromosomes will be removed. If a number of chromosomes in the
next generation is less.than a number of chromosomes in current generation then new

subsets of features, r, will be randomly created and added to the next generation.

3.3 IFGA Selection

There are three steps of apopulation evaluation: selection, cross-over, and
mutation. Selection uses a principle of survival. A good fithess score means more
chances to survive in a next generation. Each individual chromosome is selected

based on its fitness score into a mating pool by a stochastic universal sampling method
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(SUS) [18]. It also guarantees that the best chromosome in a current generation will be a

chromosome in a next generation by an elitism technique.

The elitism method is a process that takes the best chromosome or some of the
best chromosomes to the next generation. These best chromosomes will not be done in

a cross-over and mutation processes [19]. Here, the technique of SUS is adapted.

Let P be a set of considered chromosomes and T a set of chromosomes
selected from P. Generally, the size of T is less than the size of P. Let U be a set of
pointers such that |U| = |7]. Consider the example in Figure 3.4. Suppose there are six
survived chromosomes (|7] = 6) from eight chromosomes |P| = 8. The numbers 1 to 8 in
Figure 3.4 are the echromesome number. SUS randomly selects a starting point, U,, in a

1
range of O,H [20]. Note that U, is the first element added into the set U. From this
example, the starting point (U,)is 0.16. The next (U), 2 < i < |U|, elements will be

1
added into set U. Their values.are calculated from U,_, + — . Therefore, the set of U
7l

becomes {0.16, 0.327, 0.494,.0.661, 0.828, 0.995}. The FNS is a set of scores for each
chromosome P, where j = 1,..,,|P|. This score is caleulated from equation (3.1). Each
FNS, value is-used for setting the size of each chromosome .block in the figure.
Therefore, FINS/'={0.24, 0.45, 0.61, 0.74, 0.84, 0.92, 0.97, 1}. Note that the fitness_score,

is calculated by the BoostMode-SVM approach.

Where F, = fitness_score,

The pointers U, 1 <'i X |1 points at the survived chromosomes. Since
U =1{0.16, 0.327, 0.494, 0.661, 0.828, 0.995} point to the chromosome numbers 1, 2, 3,

4, 5, and 7, respectively, the chromosomes 1, 2, 3, 4, 5, and 7 are the survived
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chromosomes to be added into a mating pool to generate the next generation

chromosomes.
| u | | 0.16 | : \m ‘ "m |n.tu 0.985
I 1 — P = s 6 | 7 |8

s | || o] (] (ol
7 ‘..\\
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where

1. t, u are lengths of chromosomes x and y, respectively.

es to obtain the following

o X Vergr - Ypand

From the ?gorlthm suppose that the cross-over pomt c) is 2 and two

Loghd *mzmz%f YT

resp |ver

A R SSTT RN (b7 MT R

For example, chromosome [73, 6, 25] is equivalent to chromosome [6, 25, 73] because

both chromosomes contain the same set of genes or features.
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3.5 IFGA Mutation

Mutation is a process of changing the value of a specified locus. It hardly occurs
when compared with the cross-over process. In a binary encoding, if the chromosome is
01100, after the mutation occurs at the fifth position, this chromosome values is
changed to 01101.-However, mutation of a chromosome obtained by binary encoding
cannot be applied to our integer encoding scheme. Suppose the defined number of
selected feature is M. This implies that there are M positions in the sequence. Let a
considered chromesome to be mutated have the following content [73, 6, 96, 36, 82]. If
position 5 in this chromosome is selected as a mutation position then the number 82 at
position 5 must be replaced by another number. This new number is randomly selected
from the interval [1, M]. In this example, assume that the randomly selected number

from [1, M] is number 3. Then, the mutated chromosome becomes [73, 6, 96, 36, 3].

IFGA Mutation Algorithm

input: Chromesome x = {,, X,, .., x,} and length of genotype

seqguence.

output: A mutation chromosome.

1. begin

2. randomly select a mutation point, /, 1 <i <n

o randomly select a position number fin the range [7, M].
4. replace x; with f.

5. end
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3.6 Termination

This IFGA algorithm recursive steps of generating the population, evaluation by
a BoostMode-SVM, IFGA selection, IFGA cross-over, and IFGA mutation until the

number of the same best results remains the same to the next 300 iterations.

3.7 BoostMode-SVM

Prior to applying SVM, each number denoting the position of corresponding
genotype in the considered sequence in any chromosome is substituting by its
corresponding genotype. Each genotype is encoded in forms of 3 binary digits based
on types of homozygote, homozygote, and heterozygote. In this paper, a new technique
of oversampling for nominal feature is proposed to improve the performance of the SVM.
The BoostMode-SVM generates 2 SVMs, SVM, -and SVM,. The SVM, is constructed for
generating the score of the training data set. On the other hand, the SVM, is the final
SVM model for classification the test set. First of all, all data are separated into training
set and test set. Only the training set is used to censtruct the SVM,. This training set is
also used to.find the BoostMode value, which is the indicator of data set. After the
BoostMode is ‘discovered, this BoostMode is brought to test with the SVM, model. Two
scoring methods, an Unbiased Scoring (US) and a Bias Scoring (BS), are proposed.
The US method is performed when the SVM correctly classifies the BoostMode data
whereas the BS method is performed when the SVM, incorrectly classifies the
BoostMode data. After scoring values are. computed, a ‘Scoring Qver-Sampling
approach (SOS).is processed to sample the data of the minarity group until the number
of data of both target groups is equal. Since this study classifies data set into 2 groups
(+1and -1), the minority group in this paper means the group of data set which has less
elements. The new SVM, is constructed for the classification by the previous training
data set and a new set of data from the SOS technique. Finally, the test set is run in the

SVM, for the evaluation. The error rate for the test set is the fitness_score value using in
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the IFGA section above. The details about finding the BoostMode value, US, BS, and

SOS approaches will be described in the following subsection.

3.8 Data Encoding

Since the given data are genotype SNPs which are characters but inputs to a
classifier are numeric data, each individual genotype data must be encoded. Genotype
data set is classified as a categorical variable. Each character of genotype is divided
into three categories: major homozygote, minor homozygote, and heterozygote.
Therefore, dummy enceding is applied for a SVM as vectors [1°0.0], [0 1 0], and [0 0 1]
where a genotype is major homozygote, minor homozygote, and heterozygote,

respectively.

Genotype Group Encoded data for the BoostMode-SVM
CC TT AA Case 10 0 0 1 0 0 0 1 +1
CT TG AT Control QSRR 1 0 0 1 -1
T TOo"reEE Case 6 1 0 0 0 11 0 0O +1
CT GG AT Control oo 1t 1 0 0 0 0 1 -1
T TG AA Case O--1. 80 0.0 ..1:80 -27. 0-.+1

Figure 3.5: The encoding technique for BoostMode-SVM.

Figure 3.5 shows an example of how the genotypes are encoded. Underline
genotypes in this figure represent the major homozygote. The major homozygote and
the minor homozygote are genotypes that have the same alleles, e.g. AA, TT, CC, or

GG. The major homozygote is an allele that has more number of alleles than the minor
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homozygote. For instance, if a number of alleles A is 100 and the number of alleles T is
70, allele A is a major homozygote and allele T is a minor homozygote. On the other
hand, the heterozygote is a genotype that has the different alleles such as CT, TG, AT.
The last column of the encoded data is the target, where the case group is set to +1 and

the control group is set to -1.

3.9 Adding Artificial Data to Minority Group

To make the data in both classes balanced, some additional data in minority
group must be-artificially generated. The selected generatng method (either US or BS)
will depend upon. a data called BoostMode data. This BoostMode data is used to test
with the SVM. If it is correctly classified then the US method is used to generate new
data. Otherwise the BS method is used instead. The following procedure describes how
to compute BoostMode value and select a BoostMode data. Let N, be the number of
data in the monority group. Boostrap sampling with replacement is applied on the
minority group to generate t data sets, i.e. {BoostGroup,, ..., BoostGroup,}. Each

BoostGroup, set contains N, data.

Finding-BoostMode Data Algorithm

input: - BoostGroup,, BoostGroup,. ..., BoostGroup,

output: BoostMode data.

1. begin
2. for each BoostGroup,, 1 <i <tdo
& Let 1;(') be the frequency of occurrences of data c/ata.("), for

1.<j X N,,'in BoostGroup,

) 0]
4. Let£." = max(f").
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5. Let data.” be the data whose frequency of occurrences is

.

m frequency of occurrence as

* g
BoostGroup,:
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The Unbiased Scoring Algorithm
input:  Set of N, data from the minority group.

output: Scoring value (scoreVal) of each data in the minority group.

1. begin

2. fori="17to N,

1
3 SgoreVal & ==

N

1

4. end

5. end

3.11 The Bias Scoring Method

The BS technique is run when the SVM, incorrectly classifies by the BoostMode
value. In this technique, each data point has its own probability to be selected for the
sampling with replacement. The probability value is the scoring value which is
calculated by the distance of its point to the decision hyperplane. Suppose group1 is
the minority group. All training data points are classified to find the distance between
itself and the decision hyperplane. This distance value will be applied to find the scoring
value. The distance of each data point is calculated by the equation (3.2) for linear

separability or the equation (3.3) for non-linear separability.
distance, = w - x, +b (3.2)
distance, = w' - P(x,).+ b (3.3)

Since SVM concerns targets of -1 or +1 group, the distance value can be both
positive and negative. In this paper, the target of -1 group is a group of control and the

target of +1 group is a group of case. Assume that positive distance means the target of
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the data point is in group 1 and negative distance means the target of the data point is
in group -1. The data point which is correctly classified has a less chance (less scoring
value) to be selected for the over-sampling than the data point which is wrongly
classified. Although, the data points which are in the same group, all data in the
correctly classified group or incorrectly classified group, these data points also have
different scoring value. The data points.which are near the decision hyperplane will have
more chances (more scoring value) to be selected than the data points which are far
away from the decision hyperplane. Therefore, the more further with incorrect
classification is, the.more chances (more scoring value) to be sampled. The more further
with correct classification the less chance (less scoring value) to be sampled. The

scoring value for the BS method is illustrated by the following algorithm.

The Bias Scoring Value Algorithm

input: -~ distance = {distance,, distance,, ..., distance,,}, of the minority
group.

output: The scoring values (scoreVal) of the minority group.

1. begin
Z minVal = min(distance,, ..., distance,,,)
3. addVal = |minVal| + 1

4. for / = 1.to N7
B scoreVal = distance, + addVal
6. end

/| fori = 1to N1

i

E scoreVan
j=1
N1

E scoreVaIi
=1

8. scoreVali =
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9. end
10. if the minority group is the control group
\\\\ 4//éﬁreVal

After the scoring value is generate Qver-Sampling method (SOS)
maps this gc e into a continuous value called mapped_scoreV by equation (3.4).

Once, the scereVal he following algorithm. Al
= |
data in the miwty group have the

oreVal computed by either Bias Scoring Value
Algorithm or Unblafgormg Value Algorlthmﬁ MD. denote data /, for 1 <i <N in
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10. end



CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Data Sets

Two data sets from Crohn's disease and beta’/Hb E. Thalassemia disease are
tested. Crohn's disease data set for case-control study [21] are sequenced from 616
kilobase at chromesome 5q31. There are 103 genotype SNPs which consist of 243
controls and 114 cases. To compare with an optimum random forest (ORF) [16], missing
data have to inferred by 2SNP phasing method [22]. Beta/Hb E Thalassemia disease
data set are obtained from whole genome of all regions in Thailand. The SNP genotype
data sets were given from Thalassemia Research Center, Mahidol University, Thailand.
There are entire beta’/Hb E Thalassemia patients. These data consist of 198 controls

and 305 cases. Each subject consists of 835 genotype SNPs.

4.2 Parameters Tuning

The parameters were tuned to find the suitable values for the IFGA with
BoostMode-SVM approach. This part represents a pilot study for tuning the number of
replicated bootstrap groups for the BoostMode-SVM technique-and the cross-over and

mutation rates for the IFGA technique.

4.2.1 A Number of Replicated Bootstrap

In the theory of the bootstrap technique, the number of replicated bootstrap
groups has to be defined. The number of bootstrap replications was varied from 1 to
100,000 to find the stable mode value. It can be seen that the mode value of Crohn's

disease (Figure 4.1) does not change in any number of replications whereas the mode
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value of Thalassemia (Figure 4.2) is not stable when the number of replications is less

than 1700.

Rk 7R 10
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4.2.2 A Cross-Over Rate Tuning

0.95 for both Crohn's and Thalassemia's

: BA/\e‘z is set to 0.8 for Crohn's disease
s di ){ - 4.4), respectively, due to the

(@]

0.335 | | | | | | | |
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Cross-Ower Rate

Figure 4.4: Cross-Over Rate of Thalassemia's disease.
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4.2.3 A Mutation Rate Tuning

The following graphs repre a parameter of mutation rate of Chohn
and Thalassemia diseases. The "; f varied from 0.001 to 0.05 for both
Crohn's and Thalassemia's C S Wi lation. The mutation rate is set to

mla s disease (Figure 4.6),

1 1 1
3 0.035 0.04 0.045 0.05
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Table 4.1 and*T ble 4 —‘---f-ﬁé- on of the IFGA-BoostMode-SVM, ORF,

and CART by 10-fold f"?"--:r on assem|a’s and Crohn’'s diseases

respectively. Our IFGA with JE;'Z,@ u .‘;ﬁ." hod performs better classification

than the O@

eificity
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Table 4.2: The experimental results of Crohn's disease.

Algorithm # feature | accuracy | sensitivity | specificity
IFGA-BoostMode-SVM 8 71.06 62.50 76.13
ORF 8 57.88 20.14 80.25
CART 8 63.31 23.61 86.83
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Table 4.3 represents a comparison of the IFGA-BoostMode-SVM from all

features and selected features for Thalassemia’s and Crohn’s diseases. The result

shows that using all features gives less accuracy than using only selected features.

Table 4.3: The experimental results from all features versus selected

features of Thalassemia's and Crohn’s diseases.

Data Set # Feature Accuracy
Thalassemia All 60.64
71.57
Crohn Al 64.60
71.06

Feature selection in the

IFGA "approach "uses the principle of survival.

Chromosome producing more accuracy has more chance for survival and generating

offspring. Table 4.5 and Table 4.6 present best of the best chromosome from all
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generations of Thalassemia’s and Crohn’s diseases by the IFGA with BoostMode-SVM,

respectively. It has been noted that, there is no generation that has the best

chromosome containing only 1 fe lassemia’s disease. For Crohn’s disease,

there is no generation tha\ hr yontaining 1, 3, 4, and features.
Table 4.4: . ntal results Eﬁbest chromosome from all
generations of TW e. ‘ﬁ

Ilu:'b.’;"-;,
\I N
feature = ACCU | \ it cificity
il -
4 ?\ )
2 58.4 0|y 49.49
o o “
) ' 81. 40.91
59 00 48.48
“ -
60.10

:- | =t
}J 7 . .00 | I" 8.08

¢ £ 67.59 1.63.28 74.24

10 d.82 90.164 | 20.71
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Table 4.5: The experimental results of best of the best chromosome from all

generations of Crohn's disease.
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1. the number of chromosomes is set to 1000;

2. the stopping criteria is when the best answer remains the same in the

next 300 generations;
3. the fitness function is an error of classification;

4. the cross-over rate is 0.7 for Thalassemia’s and 0.8 for Crohn’s

diseases, respectively;

5. the mutation rate is 0.035 for Thalassemia’s and 0.001 for Crohn’s

diseases, respectively.

The accuragy, the sensitivity, and the specificity are calculated as following

equations:
TP+ TN
Accuracy = 4.1)
TP+TN+FP+FN
TP
Sensitiil = 57 (4.2)
TP 4FN
TN
Specificity” ===——+—+ (4.3)
TN+FP

If the predicted value is more than the threshold and the desired output class is
case then the prediction is true and true positive (TP) is accounted. On the contrary, if
the prediction value is less than the threshold then the predicted is false and the false
negative (FN) occurs..In case.of true negative (TN), if the predicted.value.is. less than
the threshold and the desired output class is control then the prediction is true.
Conversely, if the prediction value is greater than the threshold then the prediction is
false and the false positive (FP) occurs. Figure 4.7 and Figure 4.8 demonstrate the

fitness score of Chohn’s and Thalassemia’s diseases.



45

0.4

0.38

Fitness Score

900 1000

ed.7:

i
ﬂummmmm
q RARSAIRIMNATINAE

4.10). From both figures, IFGA with the BoostMode-SVM clearly outperforms to the ORF
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classifier. A strange line is the ROC curve of the IFGA with BoostMode-SVM technique
and the dash line is the ROC curve of the ORF technique.
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Figure 4.9: The ROC curve of Crohn's disease.
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Figure 4.10: The ROC curve of Thalassemia's disease.



CHAPTER 5

CONCLUSION

Identifying the susceptibility loci is a method to discover an association of a
particular disease. This dissertation proposes two main algorithms to find the
susceptibility loci of a case-control association: (1) the new genetic algorithm approach
for selecting the informative SNPs (IFGA), and (2) the new. SVM approach for classifying
imbalance data set-(BoostMode-SVYM). The utilization of the proposed IFGA with
BoostMode-SVM is to select features or loci of SNPs that give high accuracy for
classification of ‘the case-control data. The value of each chromosome represents the
positions of genotype sequence. Chromosomes are encoded as an integer with variable
sizes. The length of chromosome does not have equal number of all input features. This
technique reduces running time when only few selected features are chosen from the
huge length of the chromoasome. The original cross-over and mutation techniques have
to be adapted. After the chromosomes are generated, those chromosomes will be

evaluated by the BoostMode-SVM.

The BoostMode-SVM is a new SVM classifier approach. It generates new
artificial data points of the minority group by a scored-over sampling approach called
SOS. The SOS technique over samples the minority group by two scoring approaches:
BS and US. The BoostMode-SVM applied the Bootstrap technique to select the value of
BoostMode. This BoostMode is the indicator to tell the program which bias or unbiased
scoring technique is applied. The BoostMode-SVM constructs two SVM models. The first
madel is used for classifying the BoostMode value. If the BoostMode value correctly
classifies the data, the US approach is processed. On the other hand, if the BoostMode

value incorrectly classifies the data, the BS approach is processed.

The results of two real data sets: Crohn's and Thalassemia's diseases show that
using all features to classification case-control data does not give the highest accuracy.
Feature selection and classification by the IFGA with BoostMode-SVM clearly

outperforms the ORF technique. The IFGA with BoostMode-SVM with 6 loci gave 71.57%



48

correction for Thalassemia's disease with 76.39% sensitivity and 64.14% specificity.
However, the accuracy, sensitivity, and specificity of Crohn's disease with 8 loci are

71.06%, 62.50%, 76.13%, respecti

Finally, based on ULF1 (chromosome 8), unknown

(chromosome 9), fi ;@nknown (chromosome 11),

KIAAO769 (chro “11), ME3 " chro@e the candidates for

Thalassemia's b rker:

AUINENINGINg
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