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CHAPTER I

INTRODUCTION

Since the histories of human beings, voice is mainly used for human
communication until now. Since, speaking is very convenient and natural ways for
human communication. Nowadays, the machines have become more and more
essential components in human society. However, almost the communication of
human to machine is still based on touching method such as switch control, keyboard,
mouse and etc; that method will disturb user, when his/her hand is busy. This has
motivated many researchers to develop machines that can accept the human speech
and respond properly. Spoken language processing research intends to develop and
implement algorithms for a machine to be able to generate, recognize, and understand
a spoken language. In order to implement such a machine, speech analysis, speech
synthesis, speech recognition, natural language processing, and human interface
technology are incorporated in spoken language processing system. The spoken
language systems have been developed for a wide variety of applications, ranging
from a small set of vocabulary to a large set of vocabulary. Applications of human-
machine interaction involve in many tasks for example, voice dialing in mobile
phones, aviation information retrieval, weather information retrieval, automated

reservation, dictation and editing, transcription of broadcast data, etc.

Pattern Word

Speech Speech
—> Processing # Recognition q

Figure 1.1 Speech recognition process



1.1 Literature reviews

The research of speech recognition has been continuously developed for the
last half century. A number of significant advances in the past including signal
processing, computational architectures, computer hardware, and programming
techniques have contributed to rapid development of speech technology. Development
of speech recognition system requires not only knowledge from the computer field,
but also from other related fields. Multidisciplinary approaches have been applied in
speech recognition research to make the system works effectively, such as: signal
processing, linguistics, acoustic physics, physiology, pattern recognition, computer
science, and communication and information technology, (Rabiner and Juang, 1993).
Speech recognition system is a system, which can recognize the variety of utterance
and phrase. Speech recognition can be separated in several different classes by
describing what type of utterance, they have the ability to recognize and depend upon
which mode is used, such as: Isolated Word, Connected Word, Continuous Speech,
Spontaneous Speech, Voice Verification/ldentification, and etc. The isolated word
recognizer usually require each utterance to have quiet (Silence) on both sides of the
sample. It doesn't mean that it accepts single words, but does require a single
utterance at a time. Often, these systems have silence or none-silence states, where
they require the speaker to wait between utterances (usually doing processing during
the pauses), this method is suitable for a small vocabulary speech recognition
application. Since the continuous speech recognition is a high flexible system,
continuous speech recognizers allow users to speak almost naturally. Recognizers
with continuous speech capabilities are some of the most difficult to create because
they must utilize special methods to ‘determine utterance boundaries. The comparison
of continuous speech recognition (CSR) and isolated word recognition (IWR) are also
indicated in the Table 1.1.

In isolated word recognition system, word boundaries are not affected by any
adjacent words, and therefore the utterance can be segmented into words with a short
period of silence between words. Then each word is compared with the reference
templates to produce isolated word recognition. One of the stochastic processes,
Hidden Markov Model (HMM), has been widely employed in the speech recognition
system (Lee and Hon, 1989; Young, 1992; Ganpathiraju, et al,. 2001; Lee, 1997). This

process estimates the parameters of a probabilistic model of the data to produce the



representation of speech, which is robust to the variation in natural speech. Each
acoustic model can be concatenated in a series to generate a composite model of a
continuous speech. However, other recognizer algorithms of speech recognition such
as, Dynamic Time Warping (DTW), Artificial Neural Network (ANN), Hybrid System
(NN-HMM), and etc; will not be considered on this thesis.

Table 1.1 Comparison of continuous speech recognition (CSR) and isolated word
recognition (IWR)

IWR CSR

Complexity Low High

Flexibility Low High
Vocabulary Very Small Very Large

Generalization No Yes

Trainability Poor Good

Accuracy e Good

Vocabulary

Initially, speech recognition system utilized a simple pattern matching
technique, to recognize word where the reference templates are created based upon
the word model. Word recognition systems have reached their limitations on the
number of words in the vocabulary to be modeled individually, which training data
could not be shared between words (Huang, et al., 2001). Speech recognition system
using word-based approach is not productive because it is impossible to implement
such a recognizer that covers the whole language.

Presently, most recognition systems -useacoustic -unitscorresponding to
phonemic units, such as, syllable, monophone, Diphone, Triphone, Initials/Finals, and
Onset/Rhyme. Despite of using traditional context-dependent units such as diphone or
triphone employed in the English speech recognizer, initials/finals are utilized as a
fundamental unit in a Mandarin Chinese dictation machine (Lee, et al., 1997), and
onsets/rhymes are utilized as speech unit in a Thai speech recognition (Maneenoi E.,
et al., 2003). Different syllable structures of those languages will result in using

different speech units. The choice of speech unit depends on language structure and



the availability of sufficient training data for constructing effective reference models.
Since each language has its own attribute, choosing suitable speech units leads to
effective utilization of the training data and a good performance of speech recognizer.
Lao syllable structure is similar to some of those, therefore, the studying of those
speech units, such as Thai and Mandarin languages can be adapted to Lao speech
recognition as well.

In addition, Lao is a tonal language, which tones are lexically significant of
word meaning. Therefore, tone information is very essential for speech recognition of
Lao languages. Several researches of tone recognition have been developed for tonal
language such as, Mandarin, Canton, Thai, Japanese and etc. The tone of a syllable is
determined by pitch (Fundamental frequency) contour of the entire syllable, where
pitch information on the main vowel of a syllable is sufficient to determine the tone of
that syllable (Haiping LT et al., 2001). The recognition of Lao tones by using HMM
was presented for isolated-syllable speech recognition, where the features have been
generalized for speaker-independent by using Three-level quantization technique
(Khanthavivone K., et al., 2002). However, there is not any research to present tone
recognition for Lao continuous speech. Although, many tone recognition methods
have done well in isolated-syllable speech recognition. But it has some difficulties in
handling continuous speech. In continuous speech, there are several interacting factors
those affect pitch realization of tones. To prevent those effects, such as, tonal
assimilation and declination effects, which are compensated by the tone information
of neighboring syllables, Context-dependent-Tone model (CD-T) and half-tone model
(H-T), ware proposed for continuous Thai tone recognition (Thubthong N., et al.,
2001).

During 1980s and early 1990s decades, a popular method for recognition of
tonal language was the two-step method (as show in Figure 1.2.(a).). Initially, this
method separately starts to recognize the base syllable by its consonants and vowel.
And, to recognize tone of the syllable by classifying pitch contour of that syllable. At
last, the recognition of tonal syllable is executed in combination of both base syllable
and tone recognitions (Wang H.M., et al., 1994). Later, in 1997, the one-step method
for continuous speech recognition of tonal language was proposed by Chen C.J., et,
al., and again, in 2001 by Haiping Li. (as show in Figure 1.2.(b).). Also, comparison
of three different methods based on hidden Markov model framework for recognition

of tonal syllable of continuous speech, such as, Joint Detection, Sequential Detection,



and Linked Detection (as shows in Figure 1.3), have been presented (Demeechai T., et
al., 2001). The joint detection method is conceptually similar to that of Chen C.J, and
Haiping Li, and the sequential detection method is conceptually similar to that of
Wang H.M. However, linked detection is a new proposed method by Demeechai T.
Although, the computational complexity of sequential detection is higher than that of
both linked detection and joint detection, but it has simple architecture, which is
suitable to implement. The comparison between three conventional techniques of
tonal syllable recognition is shown in Table 1.2. Furthermore, in sequential detection,
specific characteristic of a language model can be applied to detect which is possible
to recognize tones.

Because of those advantages of sequential detection method as shown in Table
1.2., this thesis has coneentrated on improvement of the performance in tonal syllable
recognition for Lao language based on sequential detection method, by proposing an
algorithm to apply specific characteristic of Lao language, and Lao tones chart as the

conditions of recognition process.

Input
Speech
Input
v y Speech
Feature Pitch
Extraction Extraction
A 4 A 4
Feature Pitch
Extraction Extraction
A 4 Y
Base Syllable Tone
Recognition Recognition
v
Pattern
Recognition
» Decode [«
l _ Recognized
Recognized Tonal Syllable
Tonal Syllable
(a). Two-step tonal syllable recognition (b). One-step tonal syllable recognition

Figure 1.2 Tonal syllable recognition methods
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Table 1.2 Comparison of three techniques for tonal syllable recognition

. . Sequential Linked
Joint Detection Detection Detection
Accuracy high high higher
Complexity low high high
Recognition .
Speed high good low
Memory large small small
Vocabulary small large large
Flexibility poor good good
1.2 Objectives
1. To develop the technique in order to recognize tonal syllable sound for Lao
appropriate speech.
2. To study and select a suitable acoustic and language models for Lao
continuous speech recognition.
3. To provide basic acknowledge for Lao continuous speech recognition.

1.3 Scope and Goals of Research

1.

Recognition of Lao voiced with embedded tone based on continuous speech
by using HMM.

The sample data should not be less than 50 speakers (30 speakers for
training and 20 speakers for recognizing).

The proposed method can improve up recognition speed faster than baseline

method, and the recognition rate should be over 80.00%.

1.4 Research Procedure

1.

Study the characteristic of Lao Linguistics, Lao grammar and sound unit of
Lao language.

Study the fundamental of speech recognition and speech signal processing.
Study the Hidden Markov Model algorithms for continuous speech

recognition.



4. Collect the sample data and analysis to select a suitable feature vector for
Lao continuous speech recognition.

5. Find out a suitable system’s structure for tonal syllable recognition system.

6. Develop and modify system’s structure to decreasing system complexity and
increase system accuracy.

7. Summarize and prepare the thesis.

1.5 Research Contribution

1. To improve the research on speech recognition for Lao language approach.
2. Give an understanding on the Lao speech recognition mechanism.
3. It’s expected that the proposed system can be implemented in real-time

application of automatic speech recognition machine.



CHAPTER Il

FUNDAMENTAL TECHNIQUES FOR SPEECH
RECOGNITION

This chapter provides a concise introduction to the theory and application of
fundamental techniques for speech recognition. The mechanism of speech production
is early described in the first part of this chapter. The speech signal processing
algorithms for speech recognition will be described to measure feature parameters of
speech signal, these have used in this thesis. Then, theory of the hidden Markov
model will be elaborated. As last, details of the large vocabulary continuous speech

recognition system will be explained.

2.1. Speech Production

Speech production process begins with a thought which shows the initial
communication message. Following the rules of spoken languages and grammatical
structure, words and phrases are selected and ordered. After the thought constructs
into language, brain sends commands by means of motor nerves to the vocal muscles,
which move the vocal organs to produce sound (Ling F., et al., 2004).

Speech production can be divided into three principal components: excitation

production, vocal tract articulation, and lips and/or nostrils radiation.

2.1.1 Excitation Source Production

Excitation powers the speech production process. It is produced by the airflow
from lungs, and then carried by trachea through the vocal cords as indicated by Figure
2.1. During. inspiration, air is filled into lungs, and during expiration the energy will
be spontaneously released. The trachea conveys the resulting air stream to the larynx.

Larynx refers as an energy provider to serve inputs to the vocal tract, and the
volume of air determines the amplitude of the sound. The vocal cords at the base of
larynx, and glottis triangular-shaped space between the vocal cords are the critical
parts from speech production point of view. They separate the trachea from the base
of vocal tract. The types of sounds are determined by the action of vocal cords, and
we call it excitation. Normally excitations are characterized as phonation, whispering,

friction, compression, vibration, or a combination of these. Speech produced by
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phonated excitation is called voiced, produced by the cooperation between phonation
and frication is called mixed voiced, and produced by other types of excitation is
called unvoiced, (Ling F., et al., 2004).

oral
pharynx

Eolobris laryngeal
pharynx
esophagus
larynx
vocal folds/ivocal cords
ttachea

Figure 2.1 Anatomical structure of human vocal system (Ling F., et al., 2004)

Voiced

Voiced speech is generated by modulating the air stream from the lungs, and
the generation is performed by periodically open and close vocal folds. The frequency
of vocal cords vibration is called the fundamental frequency (Fo), and it depends on
the physical characters of vocal cords (show in Figure 2.2.a)). Vowels and nasal

consonants belong to voiced speech.

Unvoiced

Unvoiced speech is generated by a constriction of the vocal tract narrow
enough to cause turbulent airflow, which results in noise or breathy voiced. It includes
fricatives, sibilants, stops, plosives and affricates. Unvoiced speech is often regarded

and modeled as white noise (show in Figure 2.2.b)).
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A g
W

(b)

Figure 2.2 Speech waveform of voiced (a) and unvoiced (b)

2.1.2 Discrete-Time Filter Modeling

The speech production is normally divided into three principal components:
excitation production, vocal tract articulation and lips and/or nostrils radiation. Which
have no coupling between each other, we assume that these three components are
linear, separately and planar propagation (Ling F., et al., 2004). Consequently we
could construct a simple linear model, discrete-time filter model, for speech
production, which consists of excitation production part, vocal tract filter part and
radiation part separately, shown in Figure 2.3. The excitation part corresponds to the
vibrating of the vocal cords (glottis) causing voiced sounds, or to a constriction of the
vocal tract causing a turbulent airflow and thus- causing the noise-like unvoiced
excitation. Therefore, Sound can be computed as the product of three respective

Fourier transfer functions flowing as

S(w) =U(@)H (@)R(w@) (2.1)

In time-domain, relation Eq. (2.1) will be presented as

s(n) =u(n)*h(n)*r(n) (2.2)
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where the excitation spectrum U (@) and radiation R(@) are mostly constant and
well known a priori, the vocal tract transfer function H(e) is the characteristic part

to determine articulation (Ling F., et al., 2004). Therefore it deserves our special

attention on how it can be modeled adequately.

[mpulse Voice d/unvoiced

1

1

1

1

| i switch

| Generator 1

| 1

| 1

' - i H(m) R(m)

, 1 u(n : tati !
| Voiced ] (n) Vocal tract — Lip radiation —PS ch
1

1

1

1

1

1

1

1

1

=
filter filter st

Random Noise
Generator

Unvoiced

__________________

Figure 2.3 Discrete-time speech production model
(adapt from Ling F., et al., 2004)

2.2 Signal Processing for Speech Recognition

Signal processing is vitally important for optimal speech recognition. The
purpose of signal processing is to derive a set of parameters to represent speech
signals in form, which is suitable for consequential processing. Various techniques of
signal processing and feature extraction are commonly used for speech recognition.
However, only some of those techniques, which are corresponding to framework of
this thesis, will be reported in this section.

2.2.1 Short-Term spectral Analysis

The short-term analysis principle is a valid approach to speech processing. The
speech signal changes continuously due to the movements of vocal system, and it is
intrinsically non-stationary. Nonetheless, in short segments, typically 20 to 40ms, and
overlap of 50% to 75%, speech could be regarded as pseudo-stationary signal (Ling
F., et al., 2004). Speech analysis is generally carried out in frequency domain with
short segments across which the speech signal is assumed to be stationary, and this
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kind of analysis is often called short-term spectral analysis. In addition, the short-
time Fourier analysis is one kind of short-term spectral analysis. It depends on
windowing of speech waveform and the results depend on the properties of the
specific window function. With a window of finite time duration, the window can
move progressively along the speech signal to select short sections for analysis.

Consider w(n) as a window function, when 0 <n <N -1, where N is window size.

The extracted signal with window function can define by
X, (n) = x, (N)w(n) 0<0<N-1 (2.3)

Since, Hamming Window is famously used as the window function of speech analysis.

The hamming window can be given by

w(n) = 0,54 = 0.46 cos( ’j’m

1); 0<n<N-1 (24)

Hamming Windows
1 T T T T T

Magnitude (dB)

I 1 1 1 I I
0 0.5 1 1.5 2 25 3

Angular Frequncy(rad's)

Figure 2.3 Hamming windows with 64 window length
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2.2.2 Preemphasis

The preemphasis is early applied to smooth spectrum of input speech signal
s(n) by passing first order FIR filter transfer function (E.q. (2.5) and (2.6)), where «
is the coefficient of filter, S(n) is the product of Signal preemphasis at sequence n,
s(n) is the input speech signal at sequence n, since s(n—1) is the input speech signal

at sequence n-1.

H(z)=1-az* (2.5)
S(n) =s(n) —as(n-1) (2.6)

Usually, the coefficient of filter (« ) of speech processing is mostly used at
0.95 to 0.99 (Rabiner and Juang, 1993).

2.2.3 Linear Predictive Coding Analysis

Linear Predictive Coding (LPC) can provide a complete description for a
speech prediction model at the vocal tract level (Rabiner and Juang, 1993). The basic
idea underlying LPC is that each speech sample x,, can be represented as a linear
combination of previous samples, and prediction error can be minimized according to

the mean-square value of the prediction error e,, which is defined by
p
€ =X, — zaixn—i (27)
i=1

where p is the order filter of LPC analysis, and a, are LPC coefficients.

The LPC coefficients, which minimize the mean-square prediction error over a
short segment (frame) of the speech waveform, can be obtained by setting the partial

derivative of the mean-square prediction error E, with respect to each a,, equal to

zero (Eq. (2.8) and (2.9)).

E, =2 e (m) (2.8)
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n —0; i=12,..,p (2.9)

By minimizing the prediction error, the LPC technique models the spectrum as
a smooth spectrum of an order p all-pole filter (Rabiner and Juang, 1993). The value
of p required for adequate modeling of vocal tract depends on the sampling frequency.
The LPC coefficients can be obtained by solving the Yule-Walker equation
(Maneenoi E., et al., 2003). The solution of this equation can be achieved with various
algorithms (Rabiner and Juang, 1993). However, the autocorrelation method has been

mainly used for this task.

2.2.4 Mel-frequency of filterbank Analysis

Alternatively, the spectral features can be obtained, by passing the speech
signal though a bank of bandpass filters. The filterbanks are generally triangular (see
figure 2.4.), and they are equally spaced along the mel scale, which is defined by
(Maneenoi E., et al., 2003)

f
Mel(f)=2595log,,| 1+——
(f) glo( 700) (2.10)

where f denotes the real frequency, and Mel(f) denotes the perceived frequency.

magnitude

FF.I:H:.-

Engersy in
| m|| B | . I B I ml,l gergy
] each band

MELSFEC

Figure 2.4 The triangular mel-frequency scaled filter banks

The mel scale is a linear frequency spacing below and logarithmic above 1

kHz. This scale is known to be a good scale for approximating the ability of human
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auditory system to discriminate frequencies (Ling F., et al., 2004). To implement the
filterbank, each segment of speech data is transformed using a Fourier transform and
the magnitude is taken. Each FFT magnitude coefficient is multiplied by the
corresponding filter gain and the results are accumulated. If the cepstral parameters
are computed from the log filterbank amplitude using the Discrete Cosine Transform
(DCT) as shown in Eqg. (2.11), then, the mel-frequency ceptral coefficients (MFCCs)
are obtained.

Voo iz, .
C, _\/%,Z_llmj COS(W(j —0.5)) (2.11)

where N is the number of filterbank channels and m; is the log filterbank amplitude.

Since, mel-frequency cepstral coefficients (MFCC) are the best known and
most commonly used features for not only speech recognition, but speaker recognition

applications as well (Ling F., et al., 2004).

2.2.5 Cepstral Analysis

The observed speech sequence is a convolution of the excitation and the vocal
tract filter impulse response in the time domain or the product of the excitation and
the filter spectral in the frequency domain. In the frequency domain, the product of
the excitation and filter spectral is transformed to the summation of these two spectral
by logarithmic operation. Then, the transformation from the frequency domain back
to the time domain results in the *“cepstrum”, which has a number of properties
suitable to the deconvolution of speech (Maneenoi E., et al., 2003).

There are several variants of ‘cepstral coefficients in use.. Two of the most
common are linear predictive cepstral coefficients (LPCC) and Mel-frequency
cepstral coefficients (MFCC). The cepstral coefficients, c, obtained from LPC

analysis, can be computed recursively from the LPC coefficients as

1 -
i
c,=a, +Zﬁcian_i; 1<n<p 2.12)

i=1
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C, = Zﬁcian—i; n>p (2.13)

where &, are LPC coefficients, c, are cepstral coefficients and p is order of LPC

coefficients.

2.2.6 Coefficient Weighting

The lower cepstrum coefficients have been found to be strongly affected by
speaker-specific characteristics, because the low-order cepstral coefficients are
sensitive to overall spectral slopes (Rabiner and Juang, 1993, Maneenoi E., et al.,
2003). This speaker-dependent effect on the cepstrum coefficients is undesirable, and
needs to be eliminated for speaker-independent speech recognition. Moreover, the
high-order cepstral coefficients are sensitive to noise and other forms of noiselike
variability. These sensitivities need to be minimized by weighting technique.
Weighting the cepstrum coefficients or less emphasis is given on the lower cepstrum
coefficients. The process of weighting or windowing the cepstrum coefficients are
also known as cepstrum liftering. Several weighting functions or lifting windows have
been proposed for speech recognition (Juang, et al., 1987). The raised sine function is

one of the liftering windows, w(i), which has been found to work very well in speech

recognition. This window is defined as

N ., QT L _
w(l)_1+23|n(Q} iI=12,...,N (2.14)

where Q is a liftering parameter, which is typically found experimentally. The new

weighted coefficients were obtained as
c(i) = c(i)w(i); i=12,...,N (2.15)

2.2.7 Delta Coefficients

The cepstral representation of speech spectrum provides a good representation
of the local spectral properties of the signal for the given analysis frame (Maneenoi
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E., et al., 2003). These coefficients are considered to be static or instantaneous
coefficients, which are computed without taking into account past or future spectrum
information. Spectral changes, such as formant transitions, play an important role in
speech perception. Therefore, it seems reasonable to incorporate such spectral
changes in the features to enhance speech recognition extending the analysis to

include information about the temporal cepstral derivative. To introduce the cepstral
order into the cepstral representation, the m™ cepstral coefficient at time t is denoted

by c,,(t). The time derivative of the log magnitude spectrum has a Fourier series

representation of the form

% acgt(t) » (2.16)

Slegsteri]- 3

It is well known that ¢, (t) is a discrete time representation, where t is a frame

index, simply using a first or second order difference is inappropriate to approximate
the derivative. Hence, a better method to approximate 8Cm(tyat IS using an

orthogonal polynomial fit over a finite length window; that is

aC(f;t(t):Acm(t) z,uZK:ka(t+k) (2.17)

where g is an appropriate normalization constant and (2K+1) is the number of

frames over which the computation is performed (Maneenoi E., et al., 2003).

Based on the computation described above, for each frame t, the results of O;
is a vector of N weighted and an appended vector of N time derivative MFCC/ LPCC,;
that is

O, = 1{G,(1), €, (t),..., €y (1), AE, (t), A, (1),..., Ay, (1)} (2.18)

where O, is a vector of C,(t) and AC,(t) with N components. C;(t) are the estimated
MFCC/LPCC coefficients at frame t, and AC (t) are the delta coefficients of

estimated coefficients at frame t.
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2.2.8 Fundamental frequency

The basic property of a vocal cord source is its periodicity expressed by the
duration of a complete voice period or by the inverse value of the voice fundamental
frequency (Fo), (Fant, 1970). Related to the number of times the vocal folds open and
close per second, the frequency of vocal cords vibration directly determines the
lowest frequency of the sound, which is produced (Borden and Harris, 1980). The
duration of pitch cycle can always vary from one period to the other. This changing of
pitch period perceived as pitch pattern or intonation contour of phrase or sentence is
particularly effective in expressing differences in attitude and differences in meaning.
Fundamental frequency is an important acoustic feature especially in tonal languages.
Different fundamental frequency contours indicate different lexical meanings of the
syllable. Another important exploiting of fundamental frequency is voiced/unvoiced
classification. Since, only voiced sound has quasi-periodic, in other hand, unvoiced
sound does not (Maneenoi E., et al., 2003).

Various fundamental frequency extraction techniques are generally grouped
into three major categories according to their principal features (Furui, 2001). Firstly,
the waveform processing consists of methods for detecting the periodicity peaks in the
waveform. Secondly, the correlation processing is composed of methods widely used
in digital signal processing of speech. Lastly, spectrum processing comprises the
methods for tracking pitch in spectral domain. However, among the correlation
techniques, autocorrelation function is become successful in pitch measurement of
short-time analysis of speech signal, when it was combined with time domain center
clipping (Sondhi, 1968; Rabiner, 1977; and Khanthavesone K., et al., 2002).

2.2.9 Energy Measures

Amplitude of a speech wave is a peak of a speech waveform. In other words,
the amplitude is a maximum displacement of a vibration of a mass, which is displaced
from its rest position and moving back and forth between two positions that mark the
extreme limits of its motion (Denes and Pinson, 1963). In speech recognition, an
absolute acoustic energy contour could be directly computed from a short-time
analysis of speech waveform using the following relation as
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() = 3 s 219

where, E(n) is an absolute energy value of frame n, s(m) are speech sample of

frame n, and M is a frame length.

2.3 Hidden Markov Model

The hidden Markov model (HMM) is a powerful statistical approach for the
study of time series modeling with many of the classical probability distributions. The
HMM approach provides a framework, which includes an automatic supervised
training algorithm with mathematically proven convergence, the Baum-Welch
algorithm. In addition, an efficient decoding scheme, the Viterbi algorithm, is
incorporated in the HMM. Many successful speech recognition systems have
employed the HMM approach as a major recognition part. Not only the HMM can be
used in speech recognition, but it also can be applied in statistical language modeling,

spoken language understanding, machine translation, and so on.

2.3.1 Definition of the Hidden Markov Maodel

A natural extension to the Markov chain introduces a non-deterministic
process that generates output observation symbols in any given state. Thus, the
observation is a probabilistic function of the state. This new model is known as a
hidden Markov model, which can be viewed as a double embedded stochastic process
with an underlying stochastic process or the state sequence not directly observable.
The state sequence is hidden, and can only be observed through another set of
observable stochastic processes. A hidden Markov model is basically a Markov chain,
where the output observation is a random variable generated according to the output
probabilistic function associated with each state. A set of output probability
distributions of each hidden state can be either discrete probability distributions or
continuous probability density functions. To describe the HMM characteristics, the
following HMM elements are defined (Maneenoi E., et al., 2003)

1) The number of states in the model is N. Generally, the states are

interconnected in such a way that any state can be reached from any other
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state. The individual states and the state at time t are denoted as

$=18,,5,....8 { and g, respectively.

2) The number of distinct observation symbols per state is M. The observation
symbols correspond to the physical output of the system being modeled. The

individual symbols is denoted as V ={V,,V,,...,.V,, }

3) The state transition probability distribution is A={a;}, where
a; = Pla.. =S, /q =S} 1<i,j<N (2.20)
4). The observation symbol probability distribution in state is B = {bj (k)}, where
b;(k)=P), at t/g =S} 1<j<Ni<k<M (2.21)
5). The initial state distribution is 7z = {r,}, where

7, =Plg,=S,] 1<i<N (2.22)

Since a.

i» 0;(k), and 7, are all probabilities, they must satisfy the following

properties: a; >0, b;(k) >0, 7, >0 forall i, j, and k,

N

Zaij =1 (2.23)
ibj(k) =1 (2.24)
iﬁi =1 (2.25)

Given appropriate value of N, M, A, B, and x, the HMM can generate an
observation sequence O =0,,0,,....,0;, Where each observation o,is one of the
symbols from V, and T is the number of observations in the sequence. A complete

specification of an HMM requires two constant parameters, N and M , representing

the total number of states and the size of observation symbols, and three sets of
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probability measures, A, B, and z. For convenience, the compact notation is used to
represent the complete parameter set of the model

A=(AB,7x) (2.26)

2.3.2 The Three Basic Problems of HMM

Given the definition of HMM, there are three basic problems of interest that

must be solved for the model to be useful. These problems are the following:

2.3.2.1 The Evaluation Problem

Given the observation sequence O =o0,,0,,....,0;, and the model 4 = (A, B, 7),
how to compute P(O |/1), the probability that the observation sequence is produced

by the model. This problem can be also viewed as given several competing models
and a sequence of observations, how to choose the model which best matches the

observations for the purpose of classification or recognition.

2.3.2.2 The Decoding Problem

Given the observation sequence O =o0,,0,,...,0,, and the model
A=(AB, ), what the most likely state sequence Q =q,,0,,...,0, according to
some optimality criteria is. This problem is the one to uncover the hidden part of the
model to find the carrect state sequence. Apart from the degenerate model, there is no
correct state sequence to. be found. Hence for practical situations, an optimality
criterion is employed to solve this problem as best as possible. Unfortunately, there
are several reasonable optimality criteria that can be imposed, and therefore, the
choice of criterion is.a strong function for the uncovered state sequence. Typical uses
might be to learn about the structure of the model, to find the optimal state sequences

for specific task, or to get average statistics of individual states.

2.3.2.3 The Estimation Problem

Given the observation sequence O =o0,,0,,....,0;, how to adjust the model
parameters A =(A B,7), to maximize P(O|A1). The problem concerns how to

optimize the model parameters so as to best describe how a give observation sequence
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comes about. The observation sequence used to adjust the model parameters is called
a training sequence. The estimation problem is the crucial one for most applications of
HMM, since the model parameters can be optimally adapted to observed data for real

phenomena.
2.3.3 Solutions to the Three Basic Problems of HMM

2.3.3.1 Solution to the Evaluation Problem

To calculate the probability of an observation sequence O = {0,,0,,....,0; },
given the model A, P(O|A). The most straightforward way is to enumerate every

possible state sequence of length T (the number of observations). For every fixed state

sequence

Q= {0, 0,000 | (2.27)

where g, is the initial state. The probability of the observation sequence O for this

state sequence is
=
PO1Q.4)=]] Pl la,4) (2.28)
t=1

From the output-independent assumption, the observations are assumed
statistically independent. This probability can be written as

P(O]Q:2)=b, (0,)b, (0,)..1b, (0;) (2.29)

By applying Markov assumption, the probability of the state sequence Q is

.

PQI|4)="P(a, D) ]P(a |0 1) (2.30)
t=1

= 7Z.Q1aQ1qZ anQs""aQPNT (231)

=a,,a,,...a (2.32)

Goth ~ G2 Gr-1Gr
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where, a, , denotes 7, for simplicity.

The joint probability of Oand Q, which Oand Q occur simultaneously, is

simply the product of the above two terms

P(0,Q|2)=P(0,Q|2)P(Q.4) (2.33)

The probability P(O | 2) is obtained by summing this joint probability over all

possible state sequences g giving

PO]4)= > P(0.Q2P(Q.2) (2.34)
all Q
7 lel athqt bqt (ot) (235)
all Q t=1

The interpretation of the computation in the above equation is the following. A

transition starts from an initial state g, with probability a and generates the

Qo0 *

symbol o, in this state with probability b, (0,). Then, a transition is made from the

initial state ¢, to state g, with transition probability a and generates the symbol

Gl !

o, with output probability b, (0,) attached to the corresponding state q,. This

process continues in-this manner until the last transition from state g, , to state g,

with transition probability -a and output probability generating b, (o;) symbol

Or 107 !

o; Is reached.
The computation of P(O].1), according to. its direct definition (Eq. (2.35))

involves on the order of O(NT) calculations. At every time t=1,2,...,T, there are N

possible states with can be reached. Therefore there are N' possible state sequences.
This calculation is computationally unfeasible, even for small values of N and T.

Clearly, a more efficient procedure is required to solve the Estimation
Problem. Fortunately, such a procedure exists and is called the forward-backward
procedure.
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2.3.3.1.1 The Forward Procedure

Consider the forward variable ¢, (i) defined as
(i) = P(0,0,...0,,0, = S; | 1) (2.36)

This is the probability of the partial observation sequence Oand state S, at

time t, given the model 4 . This probability can be inductively calculated as follows:

1. initialization
a,(1) = z,b. (0,), 1<i<N (2.37)

2. Induction
atﬂ(j){iat(i)ai,}bj(ow), el ew
i1
3. Termination

PO[4)= iaT (i) (2.39)

In the first step, the forward probabilities are initiated as the joint probability

of S;and initial observation o,. The induction step, which is the most important
forward calculation, is illustrated in Figure 2.5. This figure shows how S;can be
reached at time t+1 from the N possible states, S;,, 1<i< N, attimet. Since «(i)is
the probability of joint event that o,,0,,....,0,are-observed, and the state at time t is
S;, the product '« (i)a;is then the probability of ‘joint event that o,,0,,....,0,are
observed; and-S;is reached at time t+1 via S;at time t-. Summing this product over
all the N possible states, S;, 1<i< N at time t results in the probability of S;at time

t+1 through all the previous partial observations. By multiplying the summed quantity

by the probability b;(o,,,), a,,,(]) the probability of the new observation sequence
0;,0,,....,0,,0,,,, IS obtained in S;. The computation of the induction step is

performed for all S;, 1< j<N, for a given t. This computation is then iterated for
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t=1,2,...,T-1. Finally, the termination step gives the desired calculation of P(O | A) as

the sum of the terminal forward variables o (i) .

t t+1
(i) .4 (1)

Figure 2.5 The sequence of operations required for the

computation of the forward variable «,, (i)

The computation in the calculation of ¢, (i) requires only on the order of

O(N?) rather than O(N ') as required by direct calculation. The forward probability

calculation is based on the lattice (trellis) structure depicted in Figure 2.6. Since there
are only N states (nodes) at each time slot in the lattice, all possible state sequences
will remerge in these N nodes, no matter how long the observation sequence. At time

t=1, the first time slot in the lattice, the value of ‘o, (i), L<i< N, is calculated. At
time t=1,2,...,T, the only values of ¢,(]), 1<i1< N, are needed to compute. Each
calculation involves only N previous values of «, (i), because each of N grid point is

reached from the same N grid points at the previous time slot.
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3
OBSERVATION, t

Figure 2.6 Implementation of the computation of «, (i)

in terms of a lattice of observationstand S,

2.3.3.1.2 The Backward Procedure

In the similar way, a backward variable g, (i) can be defined as

ﬂt(l) = P(0t+lot+2""0T |qt = Si A) (2.40)

which is the probability of the partial observation sequence from t+1 to the end,

given state S;at time t and the model 4 . This backward-variable can be also solved

inductively in the manner similar to the forward variable as follows:

1) Initialization
B (i) =1, 1<i<N (2.41)

2) Induction
ﬂt(i) = Zaijbj (0t+1)ﬂt+1(j):

t=T-1T-2..1 1<j<N
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The initialization arbitrarily defines 5, (i) to be 1 for all i. In order to be in
S, at time t, and to account for the rest observation sequence, a transition from S, to
every one of the possible states at time t+1 must be made (the a;term), which
accounts for the observation symbol o,,in S; (the b;(o,,,) term), and then accounts
for the remaining partial observation sequence from S, (the 3., (]) term).

The computational complexity of g, (i)is similar to that of «,(i), which also

produces a lattice with observation length and state number. The induction step is
illustrated in Figure 2.7.
As mentioned above, both the forward and backward procedures can be

applied to compute P(O|A) for the evaluation problem. They can also be used

together to formulate a solution to the problem of model parameter estimation as

discussed in the next section.

t t+1

£ (1) Bra(l)

Figure 2.7 The sequence of operations required for the computation

of the backward variable g, (i)

2.3.3.2 Solution to the Decoding Problem

The hidden part of HMM, which is the state sequence, cannot be uncovered,
but can be interpreted in some meaningful ways. A typical use of the recovered state
sequence is to learn about the structure of the model, and to get average statistics
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within individual states. There are several possible ways to find the optimal state
sequence associated with the given observation sequence. One possible optimality
criterion is to choose the states q,, which are in the best path with the highest
probability. A formal technique for finding this single best state sequence is called the
Viterbi algorithm, which is very similar to the Dynamic Time Warping (DTW)
algorithm.

Firstly, the variable y,(i), the probability of being in state S, at time t, given

the model A and the observation sequence, is defined as

7(i)=P(q, =S5/10.4) (2.43)

This variable can be simply expressed in terms of the forward-backward

variables as

y.(i) = (1) B.(1) 7 a, (1) B.(1) (2.44)
e SAOYAQ:

a, (i) accounts for the partial observation sequence o,,0,,....,0, and the S, at
time t, while g, (i) accounts for the remainder of the observation sequence
0,.1,04,.----,0; and the S, at time t. The normalization factor P(O | 1), makes y,(i) a

probability measure so that
N -
dnliy=1 (2.45)
i=1

Using y,(i), the individually most likely state g, at time t can be solved as

q, = arg max[y,(i)} 1<t<T (2.46)

1<i<N

Although the above equation maximizes the expected number of correct states

by choosing the most likely state for each t, there could be some problems with the
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resulting state sequence. For example, when the HMM has state transitions, which
have zero probability, the optimal state sequence may not even be a valid state
sequence. This problem occurs because the solution in Eq. (2.46) simply determines
the most likely state at every instant, without regard to the probability of occurrence
of sequences of states.

One solution to the above problem is to modify the optimal criterion. The
most widely used criterion is to find the single best state sequence to maximize

P(Q]0, ), which is equivalent to maximizing P(Q,0|4). A formal technique for

finding this single best state sequence is called the Viterbi algorithm.

2.3.3.2.1 The Viterbi Algorithm

To find the single best state sequence, Q ={q,,q,,....q; |, for the given

observation sequence O = {01,02,....,0T } the quantity o, (i) is needed to define

o,(i)= max P[g,q,...q =S$;,00,..0, | 1] (2.47)

GiyG2 s s0t-1

where &, (i) is the best score along a single path at time t , which accounts for

the first t observations and end in S, . By induction, the Eq. (2.47) becomes to
81(1) = [max 5, (i)a; b (0,,1) (2.48)

To actually retrieve the state sequence, we need to keep track of the argument

that maximized Eq. (2.48), for each t and j. We do this via the array w,(j). The

complete procedure for finding the best state sequence can now be stated as follows:

1. Initialization
0,(1) = z;b. (0,); 1<i<N (2.497)
vy (i) =0 (2.50)

2. Induction

. . 2<t<T
6.()) = rjgg"\)l([ét—l(l)aij]bj(ot); 1<j<N (2.51)
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. . 2<t<T
vi(i)=agmaxfs@ay} 7 (252)

1<i<N S IS
3. Termination

P = max[d; (i)] (2.53)

1<i<N

q; = arg max|&; (i)] (2.54)

I<i<N

4. Path (state sequence backtracking)
A = ¥ea(00a); t=T-1T-2..1 (255)

The Viterbi algorithm (except for the backtracking step) is similar in
implementation to the forward calculation. The major difference is the maximization
over the previous states in Eq. (2.51), which is used instead of the summing procedure
of the forward variable calculation. Moreover, a lattice or trellis structure efficiently

implements the computation of the Viterbi procedure.

2.3.3.3 Solution to the Estimation Problem

The most difficult problem in HMM is to determine a method to adjust the

model parameters A= (A B,z) to maximize the probability of the observation

sequence given the model. There is no known way to analytically solve for the model,
which maximizes the probability of the observation sequence. Actually, given any
finite observation sequence, there is no optimal method of estimating the model

parameters. However, by choosing 4 = (A, B, ) that
P(O | A) is locally maximized, an iterative algorithm or gradient technique for

optimization is used. In this section, one iterative algorithm-known as Baum-Welch

algorithm is described.

a) Baum-Welch Re-estimation Algorithm

The mathematical foundations of the Baum-Welch algorithm for the
maximum likelihood estimation were established by Baum. An iterative method for

monotonically increasing value of an arbitrary homogeneous polynomial P(X) with

non-negative coefficients of degree d in variables x., 1=12,...,p, j=12,..,q,

ij

qi
defined over a stochastic domain ,D:x; >0, ZX” =1, through a series of
j=1
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transformations performed on {xij } was firstly purposed. The transformation is

defined as

L P(X)
ij
T(x;) = % (2.56)
7T aP(X)
j=1 ! aXij

and is often referred to a growth transformation of P(X). A special case of the re-

estimation procedure for probabilistic functions of Markov chains with discrete
observations was described. Later, the method was generalized to functions of
Markov chains with continuously distributed observations. Recently, an analysis,
which extends the algorithm to accommodate a large class of distributions and
mixture distributions, was presented. For the discrete output distribution, transition
and observation parameters are both re-estimated according to Eg. (2.56) in the
following. However, the re-estimation formulas for the parameters of a continuous
density HMM will be described later.

The purpose of the solution to the estimation problem is to obtain the model
from observations. If the model parameters are known, the forwardbackward
algorithm can be used to evaluate probabilities produced by given model parameters
for given observations.

In order to describe the procedure for re-estimation of HMM parameters,

&, (i, J), the probability of being in S; at time t and S; at time t+1, given the model

and observation sequence, is introduced.
(1, J)=P(a, =S;, 9.4 = $;10,4) (2.57)
The sequence of events leading to the conditions required by Eq. (2.57) is

illustrated in Figure 2.8. From the definition of the forward and backward variables,

& (i, j) can be written in the form

.. _at(i)aijbj(otﬂ)ﬂtﬂ(])
(i) = P(O [ )

(2.58)
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_ at(i)aijbj(ou—l)ﬂtﬂ(j) (259)

D a(i)ayb; (0.1) Bea (§)

i=1 j=1

where the numerator term is just P(q, =S;,q,, =S;|0,4) and the division by

P(O | 1) gives the desired probability measure.

Since y,(i), the probability of being in state S, at time t, given the
observation sequence and the model, is previously defined, & (i, j) can be related to

7, (1) by summing over j, giving

7 =240 ) (2560

If »,(i) is summed over the time index t, a quantity, which can be interpreted
as the expected number of times that state S, is visited, or equivalently the expected
number of transitions made from S,, is obtained. Similarly, summation of & (i, j)

over t from t=1 to t=T-1 can be interpreted as the expected number of transitions from
S; to §;. Thatis

T-1

Z7t (i) = expected number of transitions from S, (2.61)

t=1

-

z;(i, 1) = expected number of transitions from S;to S; (2.62)

t=1

Using the above formulas and the concept of counting event occurrences, a
method for re-estimation of the HMM parameters is given. A set of re-estimation

formulas for A, B, and = are
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7, = expected frequency in state S; at time y, (i) (2.63)

expected number of transitions from Si to Sj

a.:. =
expectednumber of transitions from Si

Ul

A
== (2.64)
A0

_ expectednumber of times in Sj and observing symbolvk
b. (k) =
J( ) expectednumber of timesin S ;

J

;y‘(j)
:S;:L (2.65)
(1)

From Eqg. (2.63) to (2.65), it can be proven that either:
1) The initial model A defines a critical point of likelihood function, where
new estimates equal old ones, or

2) Model A is more likely than model A in the sense that
P(O|4)>P(O}A)

Thus, if A is iteratively used to replace A and repeats until the above re-
estimation calculation, P(O | A). can be improved until some limiting point is reached.
The final result of this re-estimation procedure is call a maximum likelihood
estimation of the HMM. It should be pointed out that the forward-backward algorithm
leads to local minima only, and that in the mast problems of interest, the optimization

surface is very complex and has many local minima.
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t+1 t+2

a,b,(0,.,)

Ul

a,4(i) (i) Ba(1) Bro(1)

Figure 2.8 The sequence of operations required for the computation of

the joint event that the system is in S; attime tand S; at time t+1

b) Multiple Observation Sequence

Note that a single observation sequence is not enough for re-estimation of the
HMM parameters. Hence, in order to have sufficient data to make reliable estimates
of all model parameters, multiple observation sequences are used. The re-estimation
formulas can be easily extended to such multiple observation sequences. Let a set of L

observation sequences denoted as
0=[0",0®,.,0"] (2.66)

where O' = {ol',o'z,...,o}k } is the L™ observation sequence. Assuming that observation

sequences are independent of each other, the parameter estimations of HMM is then

based on the maximization of

P(O"|4) = f[ P(O'[2) (2.67)
= f[ P! (2.68)

Since the re-estimation formulas are based on frequencies of occurrence of

various events, the re-estimation formulas are modified by adding together the



36

individual frequencies of occurrence of each sequence. Thus, the re-estimation

formula for the transition probability a;, can be computed:

ZI;I; 3 atl (i)aijbj(otl+l)ﬂtl+1(j)
8y == (2.69)

i L q 11

IS0

I=1 T t=1

Similarly, the re-estimation formula for the observation symbol probability

distribution in state j, b;(k), can be computed:

y/ ;at' ()83
b, (k)=-— f“;l’tjk (2.70)
PREDIA OV

N
fin e JSN
||

2.3.4 Continuous Density Hidden Markov Model

If the observation does not come from a finite set, but from a continuous
space, the discrete output distribution discussed in the previous sections can be
extended to the continuous output probability density function (Maneenoi E., et al.,
2003). This implies that the vector quantization technique, which maps observation
vectors from the continuous space to the discrete space, is no longer necessary.
Consequently, the inherent error can be eliminated.

The Baum-Welch re-estimation algorithm discussed in subsection 2.3.3.3.a),
can be extended to estimate continuous probability density function with. the auxiliary

Q function. The generalized method to continuous output density functions can be

applicable to the Gaussian, Poisson, and Gamma distributions but not to the Cauchy
distribution. Furthermore, the estimation algorithm is expanded to cope with finite
mixtures of strictly log concave and elliptically symmetric density functions. This
section will discuss general re-estimation formulas for the continuous HMM, which is

applicable to a wide variety of elliptically symmetric density functions.
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2.3.4.1 Continuous Parameter Re-estimation

Using continuous probability density functions, the first candidate for a type of
output distributions is the multivariate Gaussian, since

1) Gaussian mixture density functions can be used to approximate any
continuous probability density functions in the sense of minimizing the error
between two density functions.

2) By the central limit theorem, the distribution of the sum of a large number of
independent random variables tends towards a Gaussian distribution.

3) The Gaussian distribution has the greatest entropy of any distribution with a
given variance.
The most commonly used distribution is the continuous Gaussian density

function defined as

1 Lo-uT =1 (0-p)
e 2

(2x)"|]

N(O; . 2) = (2.71)

where n is the dimensionality of the observation vector O, x and > are the mean

vector and the covariance matrix respectively. The advantage of normal distributions
is that the parameters of Gaussian can be easily and reliably estimated from a large
number of data. In order to obtain more accurate approximations, Gaussian mixtures
are used. With enough components, such mixtures can approximate any density
function with an arbitrary precision. The probability density of the multiple Gaussian

mixtures is defined as
M
bj(ot)zzcij(ot;ﬂjm’zjm) (2.72)
m=1

where M is the number of mixture components and m is the mixture weight for the

mixture component in state j . The mixture weights satisfy the stochastic constraint

dep=1 1<j<N (2.73)



38

1<j<N
c. >0 (2.74)
1<m<

For the continuous probability density functions, the likelihood of an input

observation is expressed as

P(O|2)=)>_P(0,Q|A) (2.75)
all Q

= > P(Q,A)P(0]Q, 1) (2.76)
all Q

An information-theoretic Q -function, which is considered a function of 4 in

the maximization procedure, is applied to derive the re-estimation formulas as

Q2. 4) =

P(O D a%P(o Q| A)logP(0,Q| 1) (2.77)

By using an auxiliary Q -function, re-estimated HMM parameters for the

multimodal Gaussian distributions-are

Z?’t(j m)
G = .78)
Z7t(] m)

- r»:M%

7:(J, m)o;

Ui =5 (2.79)
Y (im)

o Zyt(j!m)'(ot_lujm)(ot_:ujm)'

Y, = (2.80)

> r(im)

where prime denotes vector transpose and y,(j,m) is the probability of being in state

j at time t with the m™ mixture component for 0,
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r(ium) = | AOAD | CpNO02) (2.81)

2a(A() | 2c,uN©, 1)

=1

The re-estimation formula for a; is identical to the one used for discrete

observation densities.

There are two possible options in the design of the mixtures. Either the
Gaussian mixtures are state specific or they are shared (tied) between different states
of the HMM. HMM with state specific Gaussian mixtures is called continuous density
HMM. HMM that shares Gaussian mixtures among different states is called semi-
continuous HMM or tied mixture HMM (Maneenoi E., et al., 2003).

2.3.5 Hidden Markov Model for Speech Recognition
2.3.5.1 Composite Models for Continuous Speech Recognition

The parameter estimation and decoding techniques in the previous section are
defined to apply to a single HMM mapped onto an isolated word. One of the
advantages of the HMM approach is the ease with which it can be adapted to a
continuous recognition environment. In order to extend to the continuous model, two
modifications are made to the HMM structure. The first modification was already
discussed in subsection 2.3.3.1; the addition of the entry and exit states to each model.
The entry and exit states are defined as non-emitting states, which take At time to
traverse, where At is negligibly small. Thus, the forward and backward probabilities
that correspond tothe-entry and exit states are those at t— At and t+ At, where t is
the time value at the immediately following or preceding state respectively.
Therefore, the constraints-are

a,=0and a, =0 Vi (2.82)

which simply ensure that the entry and exit states can only be occupied for one
transition. The other structural change is the addition of glue models. These models
have only one emitting state, plus the entry and exit state, along with a non-zero entry

to exit transition probability. These glue models are often called null or tee models
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(Young, et al., 1999.). A model with entry and exit states is depicted in Figure 2.9 and
a tee model is shown in Figure 2.10. Using tee models and non-emitting entry and exit
states, a series of HMMs, with tee model between words, may be linearly combined
into a single HMM for training purpose.

The modification required for the training formulas can be generated in a
straightforward manner. The notation, a superscript q in parentheses representing the
current model, is used as the notation that a training sentence model is represented by

Q HMMs placed in sequence. The resulting forward and backward recurrent

algorithms can be rewritten directly from the earlier definitions and new model

structure. The forward equations are:

Initialization
q=1
Q)= 1 2.83
4 {a{‘ (Dar, Otherwise (2.83)
a; (j) = o (Vayjby(0,) (2.84)
Ny-1
! (N,) = X e (i)aq, (2.85)
i=2
Recursion
af (1) = q=1 (2.86)
t iy (Nou) + o™ (Dagy, Otherwise |
Ny s
a!(j)= {af Das + Zaﬁl(i)ai?}b?(ot) (2.87)
i=2
Nyl
ad(N) =Y ai(i)al, (2.88)
i=2
The corresponding backward equations are:
Initialization
BIN,) = i (2.89)
T T (NGaan, Otherwise '

Br (i) = A7 (Nyay, (2.90)



Nq—l
A =D B (iafbi(o;)
j=2
Recursion
0 q=1
AN )=
' (Ng) { (D + B (NgLad, Otherwise

BRI = AINak, + 3 B (i)ahi (0,,)

A=Y A(i)alhi(0)
j=2
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(2.91)

(2.92)

(2.93)

(2.94)

The Baum-Welch re-estimation equations for transition probabilities will now

be split into four categories:
1. Internal transitions between emitting states,
. Transitions from the entry state into emitting states,

2
3. Transitions from emitting states into the exit state,
4

. Tee transitions from the entry state directly to the exit state, generally zero

for non-tee models.

The equations are all similar to the original transition re-estimation formulas,

with some primary differences above. The resulting formulas are:

=il
o (i)ai(jq)b](q) (0t+1)18t(+ql) (J)
a/(@ = t=
ij T1 _ _
> a0 (i)
t=1
T
D> ol (aPbi¥(0,) 51 (j)
a’(q) — t=1

:
DI ORN L A Y
t=1

Y @t ()all A (N,)

> a4 )

(2.95)

(2.96)

(2.97)
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Zaq (1)a(q)ﬂ(q+l) (1)
a = +al(M)ald AN (W) (2.98)

Zas‘”(l)ﬁfq)(l)

It can also be seen from examination of the last equation that the last model

=Q in the state sequence cannot have a non-zero tee probability from the entry to

exit state. This restriction is generally enforced for the initial model q=1 as well, so
that neither the beginning nor end of an utterance sequence can be a tee model.

The underlying Baum-Welch equations for estimating output distributions

from Eq. (2.78) to (2.81) do not change once the modifications have been made to the

forward and backward probabilities.

V } ‘“ | |l||
u[}l[ll‘l|.l'llril| il |1||i|l\h1.' o]
'H T '

Figure 2.9 HMM with non-emitting entry and exit states
(From E. Maneenoi, et al., 2003.)
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Vlhflhhﬂ.‘i "1"|Iu]\-, ';'h J'\,-.J-W-J{
J!l s

Figure 2.10 Tee model HMM (From Maneenoi E., et al., 2003)

2.3.5.2 Multiple Observation Sequence

In a complex large vocabulary speech recognition system, there may be
literally thousands of models representing context-dependent sub-word units or
segmental sub-word units. One problem that arises when performing training
operation is that the Baum-Welch equations discussed so far are designed to be
computed on one training sentence at a time, which is likely to use only a handful of
different models just once or twice each, resulting in a very small quantity of training
data for each iteration and corresponding poor re-estimation. A simple and accurate
approach to solving is to-treat the training sentences as a concatenated series of
observation sequences assumed to be independent of each other (Maneenoi E., et al.,
2003). This concept leads to updating the parameters for each model only one time
over the entire training set, where the new parameters are given by continuously
summing the numerator and denominator terms of the re-estimation equations

throughout training. In the transition probability re-estimations, a B term, where P,

r

is the P(O|A) for the r'™ sentence, is added to the numerator and denominator. The

full set of re-estimation equations for the Gaussian mixture distributions with multiple

observation sequences, including entry and exit states and tee models, is given below
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-1

2P (Dag”bi® (0,,) A2 (1)

8 = S (2.99)
z Za(q) (I)ﬂt(q) (i)
r=1 r t=1
R (@ (@) @i
2 p e WA A7 ()
a\¥ = = (2.100)
Zi a(q)(l)ﬁ(c”(l) + o (9) (1)a(q) ﬂtm(l)
r=1 Pr t=1
R T,
Z;‘Za(q)(l)a(q) (q)(Nq)
a‘r’\(lq) r=1 "r t=1 R (2 101)
iNg R s '
L3000 A9 G)
=T Pr t=1
R 1 i \
2= > Waf g )
a{,\(IQ) =1 F)r t=1 +a(‘1) (1)a(t1) ﬂt(qul) (1) (2 102)
iNg R T, :
IEDWRLOT AL
=1 Br =1
' (q) (a) C mb(rﬂ? (0,)
7 (J,m) = { “Lﬁ (J)}{ @ (Ot)t (2.103)
r i
RAFT
> 2 70, m)
ciih = et (2.104)
D> 7P (im)
r=1 t=1 m=1
R T
> 7 (j,m).0,
'u;r(nq) = (2.105)
2.2 7%, m)
r=1 t=1

zzyt(q)(j: m)'(ot - /ujm)(ot . /ujm)'
> 27 (i)

r=1 t=1

(2.106)

The implementation of these equations can be made with attention to some

cancellations within the terms. In particular, the recursion for o (j) contains the
term b{® (o,) within it, which is also in the denominator of the formula for »{*(j,m).

The variable U{?(j) is defined as
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o’ (Da] if t=1

U (9) ( J) — Ng-1
' af(t)ay + D af(t)aj,B'(1)  Otherwise
i=2

(2.107)

to represent at“‘)(j) without bﬁq)(ot) term. The computation of this latter term is

cancelled entirely, giving

: 1 . .
7O (im) =V DAD (e bR 0) (2109)

r

Similar modifications may be made to the distribution re-estimation equations
for discrete probability densities so that composite models and multiple observation

sequences can be considered, resulting in the equation

b (0,) Hatitr - oag (2.109)

2.4 Large Vocabulary Continuous Speech Recognition

The performance of a speech recognition system depends on the system’s
ability to reduce uncertainty about the identity of a spoken word using information
from the acoustic signal and past word sequences.

The speech recognition problem can be viewed as a problem in communica-
tion theory (Shannon, 1948). A spoken word of known identity w is viewed as passing
through an acoustic channel model, which produces a sequence of acoustic
observation symbols a (Valtchev, 1995). An acoustic observation a is a sequence
feature vector extracted from the acoustic signal generated by the speaker while
uttering w. The joint probability of words w and acoustics observation a is

P(w,a) =P(a|w)P(w)=P(w|a)P(a) (2.110)
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The language model component, P(w), provides information about the word
sequence in w. The conditional distribution P(a|w) of acoustic given words
describes the acoustic channel model, and the conditional distribution P(w|a)
defines a probabilistic decoder. For a known sequence of observations, the marginal
distribution P(a) is assumed to be constant since it does not depend on the model
(Valtchev, 1995). The structure of speech recognition system, according to
information transmission theory, is depicted in Figure 2.11.

: i
Information % Channel W Decoder
Source

Transmission Theory ‘I%
Speech Recognition Process

Speech Recognition
System

/ Acoustic Channel {} \ a
Text Speech Acoustic Linguistic
Generation Production Processing Decoding

J.é

e

Figure 2.11 Structure of speech recognition according to information theory
(Adapted from Maneenoi E., et al., 2003)

The above definition of the speech recognition problem can be viewed as the
following as practical considerations (Maneenoi E., et al., 2003):

Acoustic ‘model structure — The acoustic model is a probabilistic function,
which models the phonological and acoustic-phonetic variations in the speech signal.
It is extremely difficult for a human expert to devise an accurate and complete
acoustic model due to partial knowledge and inability such knowledge in an
algorithmic form. For this reason, an acoustic model is defined as a family of
parametric distributions with parameter 4. The chosen family of distributions should

be based on true assumptions about speech and have a relatively small number of free
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parameters. The value of A identifies a unique acoustic model from the family and is

usually estimated from a large sample of speech data.

Parameter estimation — The ultimate goal in parameter estimation is to find a
parameter vector A, which produces a decoder with the lowest possible recognition

error rate. To achieve the lowest error rate, some objective function F(1), which
relates to the decoder’s performance, has to be optimized. The objective function

should be such that when F(/i) > F(A) then A will produce a better decoder than 4.

Once F(}f) has been chosen, the second problem is to find the parameter set A,

which maximizes it. Complex acoustic models typically employ a large number of
parameters, which makes it very unlikely that a globally optimal 4 will be found.
This means that even with a good function, it is possible to obtain unsatisfactory

results if the estimation procedure converges to a bad local maximum.

Probabilistic decoder — A speech decoder is a device, which attempts to find
the identity of a word from its acoustic representation. Since the chosen identity w is
different from the actual identity of the spoken word w then there is a decoding error.
The probability of making an error is the most important factor in choosing the
decoder. The optimal decoder with regard to minimizing the probability of error is the
maximum a posteriori (MAP) decoder, where w 1s chosen such that

W = arg max P(w | a) = arg max P(a|w)% (2.111)
w w a

2.4.1 Search Algorithm

The two main schemes of decoding most commonly used today are Viterbi
decoding using the beam search heuristic and stack decoding (Ravishankar, 1996;
Steinbissa, et al., 1995; Robinson, 2002; Maneenoi E., et al., 2003).

Continuous speech recognition is normally performed as a time synchronous
Viterbi search in a state space. The search produces the most likely word sequence by
matching each frame from the unknown utterance to a network of HMM instances
(Valtchev, 1995). The network is compiled corresponding to the grammar of the
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language. The search itself is the computationally most expensive part of the
recognition system due to the huge number of possible paths. This is a result of the
vocabulary size and inherent acoustic ambiguities. In order to reduce the search space,
it is customary to limit the scores generated by the acoustic models. Multi-pass
recognition systems are another way of making the recognition task more manageable
(Maneenoi E., et al., 2003).

2.4.2 Language Modeling

The language model is a natural component in the information-theoretic
formulation of the speech recognition problem. It is required in a large vocabulary
speech recognition system for disambiguating between the large set of alternative
confusable words that might be hypothesized during the search (Ravishankar, 1996;
Maneenoi E., et al., 2003). The language model defines the priori probability of a
sequence of a word sequence W. The probability of a sentence, a sequence of words

W, W,,...., W, , provided by the language model, is given by

PW) = P(w,)P(w, |w,)P(w, [w,,w,)P(w, |w,w,, W;)....P(W, |W,.., W, )

:lﬁ[P(wi | Wy, W) (2.112)

where P(w, |w,,...,w, ,) indicates the probability that the word w; was spoken
given that the word sequence w,,W,,....,w; was said. It is practically. impossible to

obtain reliable estimations given arbitrarily long histories of all the words in a given
language since that would require enormous amount of training data (Ravishankar,
1996; Loizou, 1995; Maneenoi E., et al., 2003).
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THE ANALYSIS OF LAO LANGUAGE

Lao (or Laotian) language belongs to the Tai language family which also
includes Thai, Shan, and languages spoken by smaller related ethnic groups in Laos,
Thailand, Burma, southern China, and northern Vietnam (Noulnavong O., et al.,
2003). The languages in the Tai family all share a common grammar and tone
structure, called “Tonal Language”. Lao language has many regional varieties in
Laos. The main difference between these varieties is tonal, different varieties will
have some changes in tone from the Vientiane Lao tone chart (Table 3.8). There are
also some differences in vocabulary from region to region. However the Vientiane
variety is becoming the unofficial national language. This can be seen in the capital
where people from all over the country live. Many people there change their
pronunciation or at least recognize that they speak a regional variety. The Vientiane
variety is spoken on TV and radio and broadcasted over the whole country. However,
Vientiane pronunciation is respected to be official national spoken language of Lao
P.D.R. Therefore, this thesis will consider in Vientiane spoken language only
(Vientiane is the capital of the Lao P.D.R.).

Since the syllable is principally considered a fundamental unit for acoustic-
phonetic analysis, it is important to have a good understanding about Lao syllables.
The basic Lao syllable sound consists of consonant sound, vowel sound and tone,
where consonant is unvoiced sound and vowel is voiced sound, while tone is music
sound and it will be represented by pitch contour-overa syllable. Almost Lao spoken
words are monosyllabic words, and perform several functions in a sentence. A
polysyllabic word. is -constructed. by concatenating -each- syllable. So, the several
combinations of these syllables with tones can produce several words. In addition, a

sentence is formed by a serial construction of these syllables.

Notice: Some phonetic symbol of Lao sounds below, have been modified to be

convenient in terms of programming and used in this thesis only.
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Table 3.1 Twenty-seven original Lao consonant and sounds

Letter Sound Example .

Lao Pronounce English

n g/ n gai0 (chicken)

2 Ik X2 kai0 (egg)

& Ikl §09¢ kwai3 (buffalo)

9 Ing/ Bp nguua3 (cow)

9 il 980N jawkl (glass)

8 Is/ (&9 squad (tiger)

4 /sl 299 saang?2 (elephant)

J Iny/ g9 nyung3 (mosquito)

0 [d/ oty dek3 (child)

0 It/ 0 taad (eye)

7 Ithi f9 thong4 (bag)

) Ith/ 09 thungO (flag)

1 In/ Un nokO (brid)

U b/ ww bxx2 (goat)

J Ip/ Ja paad (fish)

%] Iph/ &9 phgaengl (bee)

eJ Il AN fon4 (rain)

w Iph/ ot phuu3 (mountain)

U Il T fai4 (fire)

U Im/ 0 maa2 (horse)

¢J Iyl g yaa4 (medicine)

) n 9 liing3 (monkey)

3) Iw/ S wiid (hand-fan)

o /n/ M haan0 (goose)

9 Izl to 2004 (bowl)

S /n/ L= hquan3 (house)

s Ir/* eE9 frang0 (France)

Note: * s (r) is not used as the main consonant in Lao syllable. It is used only

when words from foreigner languages are pronounced in Lao.
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There are 27 original consonants and six consonant clusters realized in Lao
alphabetical order, representing 21 original sounds (Table 3.1). These consonants are
divided into three classes, 12 High Consonants, 8 Middle Consonants, and 12 Low
Consonants, as shown in Table 3.2. Note that, a special Lao consonant (*) is not
defined in any class. Since the consonant class is one of the critical factors in
determining a syllable’s tone, the consonant class has to be known in order to
correctly pronounce a Lao syllable or a word.

Table 3.2 Six Consonant clusters and sounds

Letter Sound Example

Lao Pronounce English
09 Ing/ 5y ngend  (civet cat)
" ) Inyl e nyai0  (big)
oy () In/ 211'1 nuu4 (mouse)
uy (19) Im/ oy muuO (pig)
g N/ NV laan4 (grandchild)
0o Iwi 03 wiid (comb)

Table 3.3 Three Consonant classes, High, Middle, and Low Consonants

High Consonants Middle Consonants Low Consonants

Letter sound Letter sound Letter sound
Ikl N g/ & Ikl

Ly /sl 9 il I Ing/
0 /th/ 9 d/ 2 /sl
W Iph/ 6 It S Iny/
eJ ik 8] b/ n Ith/
4 /n/ d Ip/ Y In/
) Ing/ ¢ Iyl w /Ph/
e Iny/ ] Izl U ik
o In/ ] /m/
) /m/ Q n
0N n D Iw/
Ib) Iw/ s /n/
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Normally, all Lao consonants can all be used at the beginning of a syllable,
namely “Initial Consonant”. However, some of them can be used at the end of a

syllable, called “Final Consonant”.

3.1.1 Initial Consonants

Actually, all Lao consonants are the initial consonants, that represented by 21
phonetic sounds, as illustrated in Table 3.1 and 3.2, which is included all, high, mid,

and low consonant classes. The initial consonants can also be combination consonants

such as, no - /gw/, 22 - /kw/, @2 - /kw/, 92 - /ngw/, and etc.

3.1.2 Final Consonants

There are eight basic final consonants sounds, five sonorant (unstop) final
consonants and three stop final consonants. The difference of stop and sonorant final
consonants is that, sonorant finals are voiced but stop finals are unvoiced. This
distinction is important for determining the syllable’s tone. All the sonorant final
consonants are low consonant, and all stop consonant are mid consonant as shown in
Table 3.4.

Table 3.4 Sonorant and Stop final consonants

Sonorant Stop
Letter sound Letter sound
9 /-ng/ N -kl
u /-n/ 9 /-t/
) [-m/ U [-p/
J [yl
9 1-w/

Notes that, When, n, o, u and & are initial consonants, they are transcribed as

lg/, Id/, Ibl and /nyl/, respectively. However, when they are final consonants, they are
often transcribed as /-k/, /-t/, /-p/ and /-y/.

The waveform and spectrogram of initial consonant associated with a vowel
(which a vowel commonly used to pronoun the consonant in Lao language), are

example as illustrated in Figure 3.1. Let see in Appendix for more examples.
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Figure 3.1 The waveform and spectrogram of example initial

consonant associated with a vowel, (a) are that of high consonants,

(b) are that of middle consonants and (c) are that of low consonants.
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In addition, Figure 3.2 shows that, when the syllables are uttered in continuous

the feature of final and initial at the transitional syllables may look the same
especially for the final consonants, which are the nasal, such as /ng/, /n/ and

/m/. The similarity of final (/n/) in a syllable and the initial (/m/) of a next syllable, is

shown i

n Figure 3.2.
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| kaan-maa /
Figure 3.2 Example of the similarity between final and initial in transitional syllables

Since the Figure 3.3, (a) and (b) show the speech waveforms and spectrogram

of the sample syllables, which are the syllables ending with stop final and non-stop

final consonants, respectively. Let see in Appendix for more examples.
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Figure 3.3 The waveforms and spectrogram of the syllables

ending with stop and non-stop final consonants

3.2 Lao Vowels

Table 3.5 Vowel categories, monophthong, diphthong and special vowel

Monophthongs Diphthongs Special vowels
Letter sound Letter sound Letter sound

xe lal ixe el X /ail

XA laa/ fexe I/ x Jail

X fil X 1qal (X Jaol

X fiil (X Iqae/ X Jamh/

% Io/ (8 Iqu/

X lqq/ (X9 Iqua/

X Iu/ xe lol

X fuu/ X law/

9 leel Xox lua/

i9% Ixx/ X Juua/

X Joo/ (Xe) lia/

X Jaaw/ (Xe) liia/

The Lao language has a complex vowel system. It is consisted a total of 28

vowels, representing 27 original sounds, where 12 vowels are monophthong, 12

vowels are diphthong, and other 4 vowels are special vowel, as shown in Table 3.5.
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Lao vowels can be divided into two groups as short (short vowel) and long sounds
(long vowel), as shown in Table 3.6. Note that, the special vowels are not defined to
both short and long vowels. It may be sound either short or long. Since the syllables
comprise of a special vowel, are not allowed to pronounce associated with any final

consonants. However, they are categorized as long vowels for tone rule purpose.

Table 3.6 Short vowel and Long vowel

Short vowels Long vowel
Letter sound Letter sound
X¥ lal X laa/
X lil X fii/
X Ig/ X Iqq/
X u/ X /uu/
(xe lel X leel
EXE Ix/ 197 Ixx/
5 lqa/ 5 Iqael
SE lqu/ (X9 lqua/
Ixe lo/ Ix Jool
X faw/ X Jaaw/
Xov fual X2 Juua/
Xe lial (xXe) fiia/
Tim::::’ bS8 B PR 208 L3 (380 B0 200 [ 528000
gL T
|ullmi|lw : AL m|muﬁluurumrmurn "
Time st [T R O e R e R R A R R e [T

@) lal [aal
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Figure 3.4 The differential of short and long vowel categories

In Figure 3.4 (a) and (b), the differential of short and long vowel categories
was been represented by time duration in syllable. The spectrogram of long vowel
syllable is similar to that of short vowel syllable. Since the duration of long vowel

syllable is appeared longer than that of short vowel syllable.

3.3 Lao Tones

As described above, Lao language is a tonal language of Tai language family.
A tonal language or tone language is one in which changes in pitch of syllable or
word, lead to changes in syllable or word meaning, such as, Thai, Chinese, Japanese,
Burmese, Vietnamese, Lao, and also some European, African, etc. Most languages
use tone to convey grammatical structure or emphasis, but this does not make them
tonal languages in this sense. In these cases, tones can change how the audience is
intended to interpret a word. But in“tonal languages, the tone is an-integral part of a
word itself.

In Lao language, tone is an integral component of a syllable, where tone
information is an essential lexical meaning of Lao utterance. Tones of Lao words are
determined by the tone chart (Table 3.7). All languages in the Tai family follow the
tone system explained here, with tones integrated into other aspects of pronunciation:
initial consonants, final consonant sounds, and vowel length.

Lao writing system has 4 tone marks, categorized as dynamic tones and static

tones (Table 3.8), there are represented Lao tones in Lao writing system. However,
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there are more than 4 tone sounds in Lao pronunciation. Since old Lao language
system presented 5 tone sounds to pronounce. In recent years, advance research find
out, there are perhaps more than 5 tones in Lao spoken language, it depends on the
region pronunciation, for example: there are five tones of Luangphapang
pronunciation (Northern of Laos), six tones of Pakse pronunciation (Southern of
Laos), and it’s very confusing of Vientiane tone categories (Middle of Laos), because,
Vientiane population is emigrated from many region of Laos. However, Vientiane
pronunciation with five tones is commonly used as the official spoken language of

Laos. Thus, Vientiane tone is only one that has to be studied in this thesis.

Table 3.7 Lao tone mark

Category Tone Mark Name
; X mai2-zeekl
Dynamic > .
X mai2-thoo3
/ X mai2-diil
Static 4

mai2-jat4daOvaa3

Table 3.8 Tone chart of Lao spoken in Vientiane

Live Syllable* Dead Syllable**
Syllable
Initial Inherent Tone ! ol Long Short
(low tone mark) | (falling tone mark) Vowel Vowel
consonant class
High Class
ldlsleln/2imingl | Low Rising (4) Low Falling(1)
mafon/ou/nRlndl Low Rising (4)
lelulatdidiainial | (or Low Falling)
High Fallin
Low Class 19 @) "o
lisialzlwlnle/ul | High Rising(3) Mid (0)
alu/dle)l

Notes: * A syllable consists of long vowel or ending with sonorant finals.

** A syllable consists of short vowel or ending with stop finals.

The number 0,1,2,3 and 4 are made up to represent for five Lao

tone types in thesis only.
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From history, five Vientiane tone chart has presented by Brown, 1965;
Reinhorn, 1970-1971; Strecker, 1980 (unpublished); Chittavoravong 1980
(unpublished); Enfield, 2000 and Crisfield-Hartmann, 2002. Since, Hoshino, Marcus
1973; and Levy 1980 have presented six tones of Vientiane pronunciation. However,
this thesis respects to apply as tone chart of Crisfield-Hartmann and Enfield, as
illustrated on the Table 3.8.

3.4 Lao Syllable Structure

As above description, Lao syllables are composed of three sound systems,
namely consonants, vowels, and tones. The smallest construction of sounds or a
syllable in Lao is composed of one monophthong unit or one diphthong, one, two, or
three consonants, and a tone (Paphaphan B., et al. 2000). A Lao syllable can be

formed as illustrated in Figure 3.5.

T
S = Gi(Cs)V(Cy)

Figure 3.5 The general Lao syllable structure

Where, C;is an initial consonant, V is a vowel, Cs is a final consonant, T is a

tone, and C; is additional consonants (/w/, /I/ or /r/).

Examples: - tJ Ipaid/ (go)
fuiga Igin4-kao2/ (have meal)
029U80 /kwaam3-Kit0/ (idea)
N999 /gwaang2/ (wide)

The syllable is principally considered a primitive unit for analysis with several
reasons. First, the language model originates from this unit. A syllable is composed of
sounds, which depends upon the phonological rules of each language. Second, the
syllable is an acoustic unit, which is closely connected with human speech perception

and articulation. Especially in connected speech, three linguistic factors, stress, tone,



60

and intonation, are influential in an utterance. The syllable integrates some co-
articulation phenomena and represents conversational speech compactly. Therefore,
using the syllable as the primitive unit is appropriate and has benefits for prosodic
study. Furthermore, a syllable embraces both spectral and temporal dependencies due
to its size, which makes the syllable a more stable acoustic unit. The syllable is
seemingly good for modeling as an acoustic unit.

When, a tone is a feature of pitch or fundamental frequency movement within
a syllable. The Figure 3.6, shows the average of pitch contours, extracted from male

and female voiced (Vientiane speaker) of a syllable, which has different tones.
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Figure 3.6 Average pitch contours over syllables of

Vientiane speaker, which are represented five tones

3.5 Lao Sentence

Lao language has more complex system. Unlike Western language, Lao
sentence can be performed in several functions with the same meaning. A Lao
sentence- may-compose -of a syllable of several syllables, since some time these
syllables can be noun, or verb, or etc; furthermore, Lao sentence can be a single
sentence or a combination sentence. However, the variety of Lao sentence can be
classified into two types, general sentence and special sentence (Paphaphan B., et al.
2000), the different of both is, the general sentence is form as full sentence, but
special sentence is form as broken sentence, which is widely used in spoken language.
In addition, the meaning of Lao sentence can vary with different tones information,

while the tone information is the continuous pitch contour of syllabic components in
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that sentence, as illustrated in Figure 3.7. In Figure 3.7 (a) and (b), actually, they are
different syllable meaning, which is the same a phonetic sentence pronouncing with
different tones. Furthermore, the pitch contour of each syllabic component in a
continuous sentence may difference, when those syllable have pronounced in
individual syllable (see Figure 3.7, (b) and (c)).
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CHAPTER IV

METHODOLOGY

The research procedure will be explained in this chapter. As first, the detail of
data collection method for training and testing will be described. Then, the proposed
tonal syllable recognition system for Lao continuous speech, such as feature
extractions and HMM model construction will be explained. The training and testing

methodology will also be explained in the last part of this chapter.

4.1 Data Collection

As the purpose of this thesis, a continuous speech recognition system for Lao
language will be implemented. All the sample data are recorded from Lao speakers.
The reading in Vientiane sound was selected for less significant coarticulatory effects
and pronunciation variations of Lao language. All the selected sentences are twice
recorded per each speaker in order to study the system generalization for speaker-
dependent and speaker-independent. Since, the recording configurations are detailed
as below:

1. The Speakers are both male and female, from age around 18-25 year old.

2. All the speakers are familiar in Vientiane pronunciation sound.

3. The sample sentences are described as the stories.

4. Recording the sentences by reading style, in quiet office environment.

5. Sample speech data have been recorded with mono-channel, at 16 kHz

sampling rate and 16 bits quantizing resolution.

In addition, to create an initial acoustic and tone -models, a number of training
samples must be sufficient. In-this task, eighty Lao sentences were recorded from 50
speakers (30 males and 20 females), which each sentence is lengthened around 5-14
second. There are 696 syllables in 27 sentences for the total sample data. Since, the
sample data of 20 males and 15 females are observed for training set. To evaluate the
speech recognition system, the sample data of other 10 males and 5 females are used
for speaker-independent testing set. For the speaker-dependent testing set, the sample
data is obtained from different recording of training set.
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4.2 System Procedure

Tonal syllable recognition system is required and necessary for speech
recognition system of tonal language. Several techniques of tonal syllable recognition
system has been presented, such as the research of Wang H.M., et al., 1994, Chen C.J,
et al., 1997 and Demeechai T., et al., 2001. Also, this thesis has attentively
represented a tonal syllable recognition system, associated with the specific
characteristic of a tonal language. As the explanation in Figure 4.1, the proposed
system will be individually recognized base syllable and tone recognitions. The
sample speech signal is initialized using the signal preprocessing algorithms of speech
recognition. Then, the set of feature vectors for base syllable recognition can be
obtained by using the corresponding feature extraction algorithms. Phonetic feature
vectors are putted into base syllables recognizer. In this step, the syllables will be
recognized and form as a sentence, based on HMM of base syllable for continuous
speech recognition. After base syllable recognition is finished, system will match a
context sentence (the result of base syllable recognition) with the list of any available
sentences. Where, the list of sentences Is contented only the available sentences.
Which, those sentences can be changed the meaning with different tones.

EBase Syllable Recognilion

HMM of Base

Syllables Codebook

<5 1T

W Phonetic Feature Recognizer o Sentence

& h h
¥ Meazurement v Matching 'Z(::l ¥
Rocognizoed
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Specch
Signal

Slgnal
Proprocessing

=
4 Tene Feature l

Y Measurem ent ¥ Recognizer

— T Tt

Tones Chart HMM of Tones

Tone Recognition

Figure 4.1 Tonal syllable recognition System for Lao language
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As the result, if the sentence matching is return found. Immediately, the
subsystem of tone recognition is started the process. Tone feature extractor was early
applied to obtain the corresponding feature vectors for tone recognition. Since, the
tone recognizer is recognized, based on HMM of tone recognition, The tone
recognizer will be processed associated with syllable boundaries and time derivative
of each syllabic component, which are the result of base syllable recognition then,
tone recognizer is classified to the most promising tones, based on available tones
chart. Finally, the results of both subsystems are combined together as the tonal
syllable recognition.

In addition, all both the HMM of base syllables and tones recognitions were
trained as following steps in Figure 4.2. Moreover, more explanation of training step
can be found in the HTK manual book (Young S., et al., 2002).
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Figure 4.2 The training step for HMM of tones and HMM of base syllables
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4.2.1 Feature Extraction

The feature extraction influences greatly the recognition rate so, it is vital for
any recognition/classification systems. Feature extraction is to convert an observed
speech signal (speech waveform) to some type of parametric representation for further
analysis and processing. Since, stationary spectral features have been used in speech
recognition systems for many years, such as Linear Prediction Analysis (LPA),
Filterbank analysis, Energy measurement, Delta coefficients, Fundamental frequency,
and etc. The spectral estimate assumes a stationary signal, only a small amount of data
is used for each estimate. The amount of data is usually referred to as the window
length. In this context, a good feature is obtained with 30 ms frame length, moving
every 10 ms. In the experiment, this thesis has also preformed with individual of
LPCC and MFCC feature vectors, associated with Energy and delta coefficients, to
observe the optimal feature for Lao speech recognition. Since, the feature vector will

be normalized during recognition.

4.2.1.1 Speech Preprocessing

Initially, the speech waveform is put through a low-order transfer function, to
spectrally flatten and to make it ess susceptible to finite precision effects later in the
signal processing. Typically, speech preprocessing of speech recognition are executed
following:

1) Preemphasis: As described in section 2.2.2, the speech waveform is
smoothing by using first-order FIR filter transfer function (Eq. (2.6).). Since,

the preemphasis factor (« ) is recommended at 0.97 (Ling F., et al., 2004).

Comparison. of the Preemphasized speech waveform and original speech

waveform are indicated in Figure 4.3.

2). Frame Blocking: The preemphasized speech waveform is blocked into frame
of N samples, with shifting every M samples for each frame. This process
continues until all the speech data is accounted for within once or more

frames. When 1" is frame index of speech by X, (n), and L is the total number

of frame, then

x,(N)=§(Ml+n); n=12..N; 1=012..L-1 (4.1
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The framework of this thesis will be preformed with frame of 30 ms, and

overlap of % frame duration, when the sampling rate of the speech data is

16 kHz, the corresponding value of N and M are respectively, 480 and 160
samples, which are obtained the optimal performance of Lao speech
recognition in the experimentation.

Windowing: This step is applied the hamming window function (Eq. (2.4).)
into each individual frame, to minimize the signal discontinuities at the
beginning and end of each frame. The concept is identical to the one discussed
with regard to the frequency domain interpretation of short-time spectral

analysis in subsection 2.2.1. when w(n) is defined as the window function,

then the result of windowing is
X, (n) = X, (N)w(n); n=12,...,N (4.2)

The Figure 4.4 is shown the output signal of windowing process, with the

frame blocking, N = 30 ms.
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Figure 4.3 Example of Preemphasized speech waveform
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Figure 4.4 Example signal of windowing processed

4.2.1.2 LPCC Measurement

Linear Prediction Coefficients (LPC) can parameterize the speech spectrum
quite well. LPC assumes an all-pole speech production model, as shown in Eq. (4.4).

In this equation, X (z) is the spectrum of the speech signal and G(z) is the spectrum

of the glottal excitation, which is assumed to be white. %(z) is the spectrum of the

vocal tract, where A(z) is modeled as a polynomial function of z.

X (2) = G(z)ﬁ (4.3)

1

=G(2)
l-a77 +a,2% +..4a,2°"

(4.4)

A(z) :1—Zp“akz-k (4.5)

The LPC coefficients, {al, Ay ap}, are estimated from the current frame of

data, given the speech production model, where p is the order of the LPC coefficients.

In LPC extraction, The filter coefficients, a,, are chosen to minimize the
mean square filter prediction error summed e, (Eq. (2.8), (2.9).), over the window

analysis. Since, the autocorrelation method is a common technique to obtain the
coefficients of LPC filter. So, it has been also considered for this task.
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Figure 4.5 The block daiagram of LPCC processor

The basic steps in the LPCC processing include the following:

1. Preprocessing (or speech preprocessing): This step is a common step which
is always used in several teachniques of speech processing. The proceeding
method of the speech preprocessing has been already descibed in above
seection. What is the initializaton before apply the LPC feature measurement
technique.

2. Autocorrelation Analysis: Each frame of windowed signal is next autocorrel-

ated to give
N-—7
R(r) =) X (MX (n-1), r=012,..,p-1 (4.6)
n=1

where, X, (n) is the windowed signal. p is the order of LPC analysis.

Typically, values of p from 8 to 16 have heen used (Rabiner, and Juang,
1993).

3. LPC Analysis: This step converts each frame of p autocorrelation into an LPC
parpameter set (LPC coefficients). As the concept of LPC analysis

D> Rz -Kk)a, =R (7); k=12,.,p (4.7

where, a,; 1<k < p, are the LPC coefficients, and can be given by using

Durbin’s method (Rabiner, and Juang, 1993). When, E is the prediction error,
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ki are auxiliary coefficients and «,, are the filter coefficients. Then a filter of

order 7 can be calculated as following steps:

E” =R (0) (4.8)

7—1
R(2)-2 ™Rz -]l
j=1

k, = £GD ; 1<z<p (4.9

al? =k, (4.10)
a? =ai™ —k.a"’ (4.11)
E® =(1-K2)EC (4.12)

For r =1,2,3,..., p, the final solution of Eq. (4.8)-(4.12) will be given as

aff 'V 1<m<p (4.13)

m

LPC Prarameter Conversion: it’s very importance that LPC parameter set is
the LPC cepstral coefficients. The principal advantage of cepstral coefficients
is that they are generally decorrelated and this allows diagonal covariances to
be used in the HMMs. In the case of linear prediction cepstral coefficients
(LPCC), it can be obtained from the Fourier transform representation of the
log magnitude spectrum. However, it can be shown that the required cepstral
can be more efficiently computed using a simple recursion (Eg. (2.12) and
(2.13)).

Paramenter Weighting: This technique will be appleid to weight the spectral
coefficients by a taper window so as to minimize the sensitivity of the low-
order cepstral coefficients to overall spectral slope, and the sensitivity of the
high-order cepstral coefficients to noise. The process of weighting or
windowing the cepstral coefficients, is also known as cepstral liftering (Eq.
(2.14).). Since, the new LPC cepstral coefficients can be given by Eq. (2.15).

. Temporal Cepstral Derivative: This step is applied to obtian LPC delta

coefficients (AC, (t)), which it provides a good representation of the local
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spectral properties of the signal for the given analysis frame. For the
computation detail of cepstral derivative can be found in subsection 2.2.7.

4.2.1.3 MFCC Measurement

The mel-frequency cepstral Coefficients (MFCC) are the best well known and
most commonly used features for speech recognition system. The computation of MFCC
is based on the short-time analysis and similar to that of Cepstral Coefficients, that have
described in subsection 2.2.4. The significant difference lays on the usage of critical bank
filters to realize mel-frequency warping. The critical bandwidths with frequency are based
on the human ears perception. The block diagram for computing MFCC is given as
Figure 4.6.

Mel-Spaced
Filterbank

v

speech —> i - Mel-Frequency
Waveform Preprocessing > | FFT | L — Filtering
A 4
log(.)
MFCC Delta Temporal — o
Coefficients Derivative = Liftering  r<— DCT 4_’
MFCC

Vector

Figure 4.6 The block daiagram of MFCC feature extraction

The computation of MFCC are commonly followed as

1. Preprocessing: Sinmilar to the LPCC process, signal preprocessing is applied
as the initail of MFCC procedure. The processing of this step can be
implemented as following subsection 4.2.1.1.

2. Fast Fourier Transform analysis (FFT): To implement the filterbank, each
frame of windowed signal is transformed using a Fourier transform to obtain
the magnitude cofficients. The FFT magnitude is exampled as illustrated in the
upper-rigth of Figure 4.7.

3. Mel-Frequency Filtering: After The FFT was applied, each FFT magnitude
spectrum coefficients is multiplied by the corresponding gain of mel-spaced
filterbank (Eq. 2.10). and the results accumulated. Thus, each bin holds a
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weighted sum representing the spectral magnitude in that filterbank channel
(see lower-left of Figure 4.7.). The cepstral parameters are computed from the
log filterbank magnitude using the Discrete Cosine Transform (DCT) as
shown in Eqg. (2.11), then, the mel-frequency coefficients are obtained (see
lower-rigth of Figure 4.7.). The detail of mel-frequency of filterbank analysis
has been reported in subsection of chapter 2 (signal processing of speech

recognition).
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Figure 4.7 Example of 12 MFCC coefficients extracted

4. Liftering: As described in section 2.2.6, the liftering or less emphasis is also applied
to MFCC- coefficients, to obtain robust features for speaker-independent speech
recognition. From Eq. (2.14) and (2.15), the new MFCCs is given by following

g(i) = (1+ gsin('—”jjc(i) (4.14)
2 \Q
5. Temporal Derivative: it’s similar to the PLCC feature extraction, this step is

also given the MFCC delta coefficients (AC, (t) ), which can be improved the

preformance of a speech recognition system by adding to the basic static
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paramenters. For the computation detail of temporal derivative can be found in

subsection 2.2.7.

4.2.1.4 Energy

In speech recognition, energy is also an important feature, which is well
known to represent voiced and unvoiced sounds portion. An absolute energy can be
directly computed from a speech waveform using Eq. (2.19). The absolute energy

contour along the speech waveform duration is shown in Figure 4.8.

Energy
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Amplitude

04 | | 1 1 1 | | |
0 2000 4000 6000 8000 10000 12000 14000 16000
Samples

Figure 4.8 Energy contour of sample speech waveform

4.2.1.5 Fundamental Frequency

As introduced in subsection 2.2.8, the vibration frequency of vocal cords is
defined as fundamental frequency (Fo), an important feature for automatic speech and
speaker recognition. Fundamental frequency, or pitch period is robust to noise and
channel distortions. Also, the different pitch contour of voice sounds is well known to
represent the different tones in Lao language (Kanthvisone K., et al., 2001). However,
speech recognition system based on pitch information works well with small number
of speakers, but error rate increases significantly with the increasing number of
speaker increases. Therefore, a speaker-independent speech recognition system has
been done combining pitch information with other features (Ling F., et al., 2004).

There are several existing techniques for fundamental frequency extraction.

However, autocorrelation method is applied as the analysis portion in this task, which
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short-time autocorrelation function is a simple computation technique, and the
autocorrelation method is well done for noise environment (Ling F., et al., 2004). In
addition, the accurate fundamental frequency will be improved by using center
chipping technique, combining with autocorrelation function (Kanthavisone k., et al.,
2001).

Speech Lowpass Frame Center
Waveform Filter Blocking Chipping
L Autocorrelation Autocorrelation
Analysis I Peak ]
Q-F, 3-Level _Fs
Vectors Quantizing Fo= P i

F, Vectors <«

Figure 4.9 The block diagram of tone feature extraction

In this thesis, tone features extraction is preformed following as the block
diagram in Figure 4.9. Since, the fundamental frequency is lower frequency of human
utterance. To minimize the effects from other formants of vocal excitation, lowpass
filter is applied with 900 Hz cutoff frequency at initiation. As the result, 3-level
quantization technique (Kanthavisone k., et al., 2001) was apply to minimize the

different level effect of male and female characteristic.

4.2.2 Hidden Markov Model Architectures

Hidden Markov models (HMMs) are a probabilistic tool, which are popular in
speech recognition systems because they are simple enough to implement in a real
time system, and also complex enough to capture the basic non-stationary structure of
speech. Because their behavior can be described with simple formulas, the full power

of mathematics and probability theory can be brought to solve on the speech
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recognition problem. The definitive tutorial on the basic HMM formulations can be
seen in section 2.3.

In this thesis, five states left-to-right Hidden Markov Model architecture is
investigated using for tone recognition. Since, the HMM architecture of base syllable
recognition is determined corresponding to the specific characteristic of speech model
as has been explained detail in next chapter.

The conventional, five states left-to-right HMM is exampled as show by the
Figure 4.10.

Figure 4.10 Conventional left-to-right Hidden Markov Model

The five states, Si, Sy, S3, S4, and Ss, correspond to states that the model can
take on. The model takes on the properties of a stationary stochastic process. While,
each state is described by its probability distribution function (PDF). This PDF can be
modeled by one of several ways.

The two small circles at the beginning and ending of the graph, are represented
respectively the entrance and exit states of the model. Since, the model does not
produce any output at a time in these states. All of the arrows represent allowed
transitions between states, which are the transition probabilities. The summation of
transition probabilities in a state is equal to 1. At each time increment, the model can
follow-only one of the allowed transitions.

Individual HMM models are united in a larger HMM structure, for continuous
speech recognition, as illustrated in Figure 4.11, with transitions between the
individual HMM models provided by the language model (see section 2.4.). Then, the
Viterbi algorithm is used to search the single state sequence path with the highest
probability.
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Figure 4.11 Transition production model

Figure 4.11 is presented a large HMM structure associated with transition
production model. The large circles are represented individual HMM of each symbol
model. The detail of HMM for continuous speech recognition can be found in
subsection 2.3.4.

4.2.3 Speech modeling

As the previous chapter, the acoustic-phonetic analysis of Lao language was
reported. The characteristics of vowels and consonants were thoroughly explored. Not
only does the acoustic-phonetic analysis contribute strong knowledge, but it also
provides well knowledge for modeling the appropriate speech unit for Lao language.
Various speech models have been. presented for-speech recognition with very large
vocabularies such as, phonetic, syllable, subword, initial-final and onset-rhyme, (Lee
K.F., et al., 1990; Lee L.H., et al.,-1993; Lee L.S., et al., 1997; Zue, et al., 1989;
Rabiner, et al., 1989 and Maneenoi E., et al., 2003), those technical models are widely
used in many research of speech recognition area. In this task, various speech models
are compared, to select a most suitable speech model for Lao language. As the
principle of the proposed system, onset-rhyme models technique (Maneenoi E., et al.,
2003) is mainly used as the acoustic model for base syllable recognition. The
proposed system is individually recognized base syllables and tones. Therefore, the
specific modeling of tone model is required. This research has also studied on various
technical tone models, to find out a suitable tone model for continuous Lao speech
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recognition. Since, haft-tone model technique (Thubthong N., et al., 2001), is
investigated to use for tone recognition part of the proposed system. Haft-Tone model
is a technical tone modeling for continuous speech, which is well know to prevent

some effects from tone information of neighboring syllables.

4.2.4 Codebook

As the result, base syllable recognition is obtained the estimate syllables form
as a sentence. Although, tone recognition has not considered in base syllable
recognition, however, a possible tone of each syllabic component may be exactly
known by following tone chart, especially, when that syllabic is belong in the group
of dead syllable. Furthermore, since the syllabic component of a sentence can be vary
with different tones but the meaning of that sentence is not always change. Therefore,

all the tonal variable sentences were list as a codebook, called “Codebook™.

4.2.5 Tone Chart Applying

One alternative way, the performance of tone recognition can be improved
using conditional of tone chart (see Table 3.8.), which the tone chart is made up
corresponding to specific characteristic of each language. Therefore, this research has
investigated to improve the performance of tone recognition system by using that
tone rule to limit the sequent number of tone model as tone mapping that is defined as
bellow

Ci:[H, M, L];

Cs : [naso, stop, non];
V :[short, long];
T:{0,1,2,3,4};

Tone of a syllable (T;) will be known depend on the type of initial consonant
(Cy), vowel (V) and final consonant (Cs), as presented bellow

H.long.{naso,non} = H.short.naso = {0, 1, 4} ;
H.short.{stop, non} = {4} ;

H.long.stop = {1} ;

M.long.{naso,non} = M.short.naso = {0, 1, 2, 4} ;
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M.short.{stop, non} = {4} ;

M.long.stop = {1} ;

L.long.{naso,non} = L.short.naso = {0, 2, 3} ;
L.short.{stop, non} = {0} ;

L.long.stop = {2} ;

Although, there are 3 classes of Lao consonant sounds (H, M, L), but some of
their symbols are represented by the same phonetic symbol such as f, h, k, s, p and t.
Therefore, event though, we have known all the phonetic symbols of syllable but we
can not known its tone, exactly. For example: a syllable, k.aa.t.=T, T={1} if k is
belong in high class (H) and T={2} if k is belong in low class (H). So, the condition
of this syllable, k.aa.t.= {1, 2}.

In addition, half-tone model (H-T) is mainly applied as the tone model for tone
recognition in this thesis, which is well known better than other tone models for
continuous tone recognition (Thubthong N., et al., 2001). To recognize tone of a
syllable, half-tone model technique was separately recognized tone of first half and
second half. Where, the first half is consisted of rhyme of the preceding syllable and
onset of the considering syllable, while the second half is consisted of rhyme of the
considering syllable and onset of the following syllable. In addition, we can exactly
know a possible tone of a syllable by following tone chart. Therefore, the requirement
sequence of half-tone recognition can be decreased by using conditional of tone chart,
i.e. each half of H-T model technique is required 25 sequences. However, it’s required

only 16 sequences maximum and less than that, with using conditional of tone chart.



CHAPTER V

EXPERIMENTAL RESULTS

In this chapter, experimental results will be presented with details. It is divided
into 3 sections: base syllable recognition, tone recognition and combining of both
base syllable and tone recognition, called tonal syllable recognition. A suitable
feature set of Lao syllable recognition is obtained from by comparing between LPC
cepstral coefficients and MFCC cepstral coefficients. In this chapter, it has also
studied the suitable HMM architecture of base syllable and tone recognitions, which
is correspond to speech model structure. Since, the comparison between and
discussion of baseline system and the proposed system will be preformed at the end of

this chapter.

5.1 Base Syllable recognition

The experiments of this section have been performed the training and
recognizing with sample data from both male and female speakers. Since, the feature
sets of LPC cepstral coefficients and MFCC cepstral coefficients are individually
applied to find out which is a suitable feature vector set for Lao speech recognition. In
the experiments, the set of LPC cepstral coefficients and energy contour are
represented by LPCC, and MFCC was used to represent for the set of MFCC
coefficients and energy contour. While the LPCC+A and MFCC+A are respectively
the feature sets of LPCC and MFCC, including with their corresponding delta
coefficients. As the result, a suitable speech model of base syllable recognition for
Lao language is obtained from by comparing ‘and evaluating of base syllable
recognition, in cases of applying monophoneme, subword, initial-final and onset-
rhyme models. In addition, the variable state of HMM models have also been studied
to select most suitable number of HMM states for each speech model.

Table 5.1, 5.2, 5.3 and 5.4 are the results in case of applying monophoneme,
subword, initial-final and onset-rhyme models, respectively. As the result, recognition
rates are obtained by changing the number of HMM states, from 3 to 10. The results
in all tables shown that, the recognition rate of base subword recognition is obtained
the optimum with 6 states of HMM architecture. Since, that of base monophoneme,

initial-final and onset-rhyme recognitions are obtained the optimum with 3 or/and 4
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states of HMM architecture. In addition, the limited number of HMM states is usually
depended on the time duration of each model instance, as shown in Table 5.1, 5.2, 5.3
and 5.4. Respectively, monophoneme models are based on phoneme unit, which is
smaller unit in any conventional speech units, and the maximum available HMM
states for training models, at 5 states. Subword model is based on syllable unit,
which its duration is quite long, and the maximum available HMM states of these
models is observed over 10 stated. Since, the maximum available HMM states of
initial-final models is not more that 5 state, consequently initial model of this
technical model is also based on phoneme unit. And the last is onset-rhyme models,
the similar of initial model, onset model was composed of the initial consonant and its
forward transition to the vowel portion, and the maximum available HMM states of
onset-rhyme model is limited at 6 states. Furthermore, the results in each table have
also indicated that, the MFCC+A feature set is always obtained higher recognition rate

than that of other feature sets.

Table 5.1 Base syllable recognition based on monophoneme model

Number of HMM state with Recognition Rates

Features
3 4 5 6 7 8 9 10
LPCC 63.62 62.23 62.19 4 - - B
MFCC 69.40 69.89 67.64 L - ; .

LPCC+A 74.64 73.78 70.83 - - - -
MFCC+A 77.67 77.71 74.15 - - - -

Table 5.2 Base syllable recognition based on subword model

Features Number of HMM state with Recognition Rates

3 4 B 6 1 8 9 10
LPCC 52.27 59.40 63.17 64.85 65.86 64.01 62.58 58.89
MFCC 59.90 62.75 69.21 71.48 72.23 71.98 69.71 65.69
LPCC+A 72.15 78.02 82.55 83.22 82.63 81.80 81.12 78.52

MFCC+A 80.54 82.97 85.82 86.41 86.16 84.73 82.89 80.70

Table 5.3 Base syllable recognition based on initial-final model

Number of HMM state with Recognition Rates

Features
3 4 5 6 7 8 9 10
LPCC 60.71 65.40 62.73 - - - -
MFCC 66.16 71.01 71.67 - - - -
LPCC+A 78.03 80.00 79.14 - - - -

MFCC+A 83.23 84.55 83.23 - - - -




Table 5.4 Base syllable recognition based on onset-rhyme model

Number of HMM state with Recognition Rates

Features
3 4 S 6 7 8 9 10
LPCC 63.89  69.75  68.69 6823 - - - -
MFCC 7182 7596 7864  76.92 - - - -
LPCC+A 81.82 8631 8545 8318 - - - -
MFCC+A 8747 8889 8879  85.91 - - - -

Figure 5.1 has also presented the comparison of average recognition rates, in

case of applying the different speech models. In the figure shown that, the perform-

ance of base onset-rhyme recognition are seen to be better than that of other,
especially when the number of HMM states are around 4 and 5. However, the limited

number of HMM states based on onset-rhyme model is observed maximum at 6

states. Consequently, the time duration of onset models are usually shorter than that of

rhyme models. Therefore, the suitable number states of individual onset and rhyme

models have been studied as Table 5.7.
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Figure 5.1 Base syllable recognition by using different speech models
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In above experiments, the feature sets of LPCC and MFCC plus their
corresponding delta coefficients are always given higher performance than that of
using LPCC and MFCC only. The results in Table 5.5, which are obtained with using
12 coefficients for both LPC and MFCC feature exaction. As the result, it is that, the
feature set of MFCC+A can be given higher performance than that of LPCC+A feature
set, especially for the case of using onset-rnyme model (see Figure 5.2). Since, onset-
rhyme model will be considered as speech model for next experimental of base

syllable recognition.

Table 5.5 Comparison of using different speech models
for both LPCC+A and MFCC+A

Acoustic Models with Recognition Rates

Features o —
IMonophone Subword Initial-Final ~ Onset-Rhyme
LPCC+A 73.78 78.02 80.00 86.31
MFCC+A 77.71 82.97 84.55 88.89
100 -
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Figure 5.2 Comparison of using different speech models
for both LPCC+A and MFCC+A
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Table 5.6 Comparison of using different number of cepstral coefficients, in case of

applying 4 states HMM of onset-rhyme model

Number of Coefficients with Recognition Rates

Features
9 10 11 12 13 14 15
LPCC 60.45 63.74 65.96 67.12 69.75 68.69 70.81 70.56
MFCC 75.00 74.09 74.95 75.25 75.96 75.56 76.01 76.16
LPCC+A 8293 83.79 85.15 86.16 86.31 86.62 85.81 86.62
MFCC+A 8854 89.24 88.89 88.99 88.89 88.94 88.43 88.59

The number of feature coefficients is also effect to performance of the system.

The smaller number of feature coefficients can be decreased computing complexity,

and the large enough number of feature coefficients maybe also given higher

performance. As Table 5.6, the recognition rates of base syllable recognition based on

onset-rhyme model, in case of using LPCC and MFCC feature sets are increased

when the number of feature coefficients is usually increased up to 12, 13 and 14.

Since, that of using LPCC and MFCC plus their corresponding delta coefficients

(LPCC+A and MFCC+A) sets are obtained the optimal recognition rates at around 9

to 12 coefficients. As the result, in this experiment, the feature set of MFCC+A is

usually given higher recognition than other feature sets for base syllable recognition,

as illustrated in Figure 5.3.
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Table 5.7 Base syllable recognition based on individual onset and rhyme models

HMM state of Rhyme model

3 4 5 6 Il 8 9 10

3 87.47 88.84 89.09 87.98 88.48 87.37 87.68 86.01
% 4 87.68 88.89 89.09 88.38 87.88 86.92 86.46 85.15
§ 5 87.27 88.74 88.79 87.73 86.72 86.11 84.80 82.68
é 6 85.81 86.77 86.77 85.91 85.45 83.99 81.31 79.24
o
it}
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Figure 5.4 Comparison of 3-5-onset-rhtme model

with different number of MFCC coefficients

The results shown in Table 5.7 are obtained with using 12-MFCC+A feature
set. The training models are individually specified number of HMM states for onset
and rhyme models. In experiment, the available number of HMM states for rhyme

model can be varied up to 10, since that of onset model can be varied up to 6 states
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only. However, the optimum recognition rate is obtained with 5 states of HMM of
rhyme, and 3 or/and 4 states of HMM of onset. Since, the smaller number of state is
expected to be decreasing the computational complexity of a system. Therefore, 3
states of HMM of onset and 5 states of HMM of rhyme (3-5-onset-rhyme model) are
introduced for Lao speech recognition base on onset-rhyme model, and was using for
the proposed system in this thesis. However, a higher performance of base syllable
recognition based on 3-5-onset-rhyme model can be obtained with 9-MFCC+A

feature set as shown by Figure 5.3, which is corresponding to the result in Table 5.6.

5.2 Tone recognition

In order, Tone recognition is an important part of this thesis. Since, several
techniques have been presented to recognized tones for any tonal language, and a
popular feature exaction of those researches is an analysis of pitch (or fundamental
frequency). Therefore, in this task has also applied the sets of pitch analysis for tone
recognition system. In addition, tone model can also be effect to the performance of
tone recognition result. Therefore, the studying of tone model techniques is necessary
to select a suitable tone model for tone recognition of Lao. As in Table 5.8, 5.9 and
5.10 are the results of tone recognition in different tone models and tone feature sets.
In Table 5.8 is the specific results form female speaker, since the tone recognition of
male speaker only are resulted as in Table 5.9, and the results of tone recognition of
both male and female speakers are obtained as show in Table 5.10. As the result, tone
recognition results in case of specific gender are seen to be better than that of both
male and female, especially for in case of applying feature set of included direct
fundamental frequency -(Fo), consequently,. fundamental frequency (or pitch) of
different gender are usually performed in different contour levels.

Table 5.8 Tone recognition of female speaker only

Recognition Rates

Tone Models
Fo QFo Fot QFo
CI-T 52.45 54.43 52.16
CD-T 76.09 83.72 81.55

H-T 86.56 88.02 86.96
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Table 5.9 Tone recognition of male speaker only

Recognition Rates

Tone Models
Fo QFo Fot QFo
CI-T 55.09 54.66 55.72
CD-T 78.37 85.10 82.26
H-T 86.36 88.71 87.54

Table 5.10 Tone recognition of both male and female speakers

Tone Models Recognition Rates

Fo QFo Fo+ QFo
CI-T 46.44 52.08 50.17
CD-T 66.98 80.00 78.33
H-T 67.67 85.65 82.54

In addition, a suitable HMM architecture of a tone model is as importance to
improve the performance result of tone recognition system. As shown in Table 5.11,
the results of tone recognition are also varied following the number of HMM states is
changed. A suitable number of HMM states for tone recognition based on context
independent tone model (CI-T) and half-tone model (H-T), is around 5 states. Since
the duration of context dependent tone model (CD-T) is longer than other two models
(CI-T and H-T), so 7 states of HMM is more suitable for CD-T model.

Table 5.11 Comparison of continuous tone recognition

with the various number of HMM states

Tone Number of HMM state with Recognition Rates
Models 3 4 5 6 7 8 9 10
CI-T 4539 5098 5208 5176 50.18 5020 = 4755  46.31
CD-T 7041 7587 80.00 8320 ~ 8678 8601 8477  81.96
H-T 7564  83.66 ~ 8565 « 8223  80.76  80.44 7802  74.39

The comparison of using different tone models such as CI-T, CD-T and H-T
models is indicated in Figure 55. The results show that, CD-T and H-T models can be
given higher performance than that of CI-T. Although, the performance results of both
CD-T and H-T models can be given higher, however they are observed in different
number of HMM states. Since, H-T model is observed in smaller number of HMM
states, CD-T model is observed in bigger of that. In order, the sequence of CD-T
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model is too larger than that of H-T model. Therefore, it’s clearly that, the CD-T
model system is obtained high performance with more complex computation than that
of H-T model system.

100 T T T T

Recognition Rate (%)

—_8— CIT
30F —a— CD.T|]|
-—G-= HT
20 | | | 1 1 |
3 4 5 6 7 8 9 10

Mumber of State

Figure 5.5 Comparison of continuous tone recognition results

of using different tone models

5.3 Tonal Syllable recognition

As the proposed of this thesis, to combine both tone and base syllable
recognition systems together, this section has been performed the experimental results
by applying several techniques of tonal syllable recognition such as, joint detection
(J.D.), sequential detection (S.D.) and the proposed method. Also, the experiment has
been recognized for both speaker-independent (Speaker-1D) and speaker-dependent
(Speaker-DD).

Table 5.12 is shown the results of the proposed system, by individually report
for sub-system such as: base syllable and tone recognitions, and shown the final
recognition as tonal syllable recognition (see Figure 4.1 for the process step of tonal
syllable recognition based on proposed system). As the evaluated result in above
section, 3-5-onset-rhyme model technique is used as a proposed model for base
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syllable recognition with using 9-MFCC+A set as the feature vectors, which is well
known in the previous section that it can give better performance of base syllable
recognition for Lao language. In this case, the performance of base syllable and tone
recognitions are defined following the description of HTK manual book (S. Young et
al., 2002). Since, the performance results of tonal syllable recognition based on the

proposed method can be computed by following a equation below,

Resultfinal = Resultbase syllable — (1 - Resulttone) (51)

Where, Resultine IS considered equal to the result of tone recognition part,
when the system allows to recognizing tone. Otherwise, Resultine Will be considered
equal to 1. Since, Resultyase syiianie 1S the result of base syllable recognition part and

Resultsing is the final result of tonal syllable recognition system.

Table 5.12 Recognition of sub-system, including the final result
for both speaker-independent and speaker-dependent recognitions

Speaker-1D Speaker-DD
Corr. Acc. Corr. Acc.
Base Syllable 80.14 78.19 89.27 86.97
Tone 86.71 84.84 92.65 90.26
Tonal Syllable 66.85 6303 8192  77.23

(Proposed Method)

Table 5.13 is shown the performance results of tonal syllable recognition in
comparison of applying joint detection, sequential detection, a proposed method and
also a proposed method without using Lao tone chart. Joint detection method is a
classic. method (H. M. Wang, et al., 1994 and T. Demeechai, et al., 2001), by
combining of both features for base syllable and tone recognition as a feature packet.
Sequential detection method, which is early presented in 1997 by C. J Chen, et al.,
and again, in 2001 by T. Demeechai, et al, this technique was required to separately
recognize base syllable and tone recognitions. Subsystem of tone recognition will be
applying when the target syllable is allowed to carry different tones. Similarly, the
proposed system will be allowed to recognize tone when the target sentence is

allowed to carry different tones on some syllabic components. While, the proposed
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method has applied tone chart (Tone chart can be given from each tonal language) to

decease the sequent reference models during tones classification. The experiment has

also compared the result of the proposed system [1] without using tone chart.

Table 5.13 Comparing the result of tonal syllable recognition

in case of applying different techniques

Speaker-1D Speaker-DD
Corr. Acc. Corr. Acc.
J.D. Method 63.11 58.93 68.20 64.11
S.D. Method 64.08 59.78 80.65 75.85
Proposed Method™  63.97 59.16 80.27 76.54
Proposed Method 66.85 63.03 81.92 77.23
90 -
80 - 3 4 ]
70 - r 4 X
60 [] =
50 - O Speaker-ID
40 - @ Speaker-DD
30 - “t <
20 - — — i
O = T T m
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Method" Method[1]

Method

Figure 5.6 Comparison of tonal syllable recognition results

using different techniques

In comparison, joint detection method is obtained lower performance result at

63.11% and 68.20% recognition rates, respectively for speaker-independent and

speaker-dependent recognitions. As well known, tone information of neighboring

syllables can be effected changing the shape of a tone (N. Thubthong, et al., 2001).

However, joint detection technique has not applied any algorithm to prevent those

effects, because joint detection is directly combined both features of phonetic and
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tone as a feature set and recognized tonal syllable as base syllable recognition. While
the proposed method is obtained higher performance result that the other, at 66.85%
and 81.92% recognition rates, respectively for speaker-independent and speaker-
dependent recognitions (see Figure 5.6). Furthermore, the proposed system has also
provided faster recognizing than that of sequential detection method in the experiment
(see Figure 5.7). Since, the results of sequential detection method and the proposed
method are obtained similarity, in term of corrected recognition (see Figure 5.6).
However, the recognition speed of proposed method ™! is seen to be clearly better that

of sequential detection method as well, as illustrated in Figure 5.7.

High
Mid o
Low l
/ P N
_ 57 L

J D Method S0 Method Froposed Froposed
hlethod[ 1] Method

Figure 5.7 Recognition speed of using different techniques in z-score



CHAPTER VI

CONCLUSIONS

6.1 Summary and Conclusions

Automatic speech recognition (ASR) system has received considerable
attention as a natural interface system for the future communication of human and
machine. However, high performance of that system is well known with non-tone
language such as: English, French, Italian, etc. Although, there are several speech
recognition researches, have been worked on tonal language. The performance of
continuous speech recognition is still haven limitation with that of tone recognition.
Therefore, this research has proposed a robust method to recognize tonal syllable of
continuous speech, implementing based on Lao language. The performance of tonal
syllable recognition can also improved with a suitable combination technique of base
syllable and tone recognitions. This thesis has proposed a similar method of the two-
step tonal syllable recognition technique and sequential detection method. The
proposed method is given a convenient method to implementation. Also, it has
provided individual subsystem of base syllable and tone recognition that, we can be
specifically applied the suitable techniques corresponding to each subsystem as well.

Subsystem of base syllable recognition was performed based on onset-rhyme
model technique. Onset-Rhyme model is an optimal acoustic modeling for continuous
Lao speech recognition, which is well known from the experimental results of this
thesis. Although, onset-rhyme “model technique is required large sequence of
reference models, but it can be prevent the problem of continuous speech as well. In
addition, MFCC coefficients were seem to be a suitable feature vector of base syllable
recognition, especially for the set of MFCC and -its delta coefficients. Since, the
optimal performance of the proposed system is observed at around 9 MFCC
coefficients. This number of feature coefficients is also given high performance,
corresponding with 3 states of onset model and 5 states of rhyme model.
Consequently, the duration of onset is usually less than that of rhyme. Therefore, the
suitable HMM architecture for onset and rhyme models should be individually

assigned.
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Since, the results of base syllable recognition subsystem was obtained without
considering tone, it maybe confused in Lao meaning of some word or sentence.
Therefore, tone recognition is required to correct that. Tone recognition part of the
proposed system is performed with the traditional feature vector of tone recognition
system. Fundamental frequency (or pitch) contours of Lao utterance has computed to
extract a suitable feature vectors of Lao tone recognition. In experimental result
shown that, tone recognition result is obtained high performance with the feature set
of 3-level quantization (QFy). QF, feature is well known to prevent the effect of
different tone levels of male and female. Although, the performance of using CD-T
and H-T are seem very similar, but H-T is given lower sequence of reference tone
models, which it can also be reduced the system complexity. Corresponding of H-T
model technique, 5-states of HMM model is proposed for tone recognition, which is
an optimal number of HMM states of tone model.

The proposed method is mainly proposed of two tasks. Firstly, the conditional
division to recognize tone iIs performed at the sentence level. And secondly, the
sequent number of reference tone models will be reduced by using conventional rules
of Lao tone. As the result, the proposed method is advantaged on the recognition task.
Although, it is requested times for training step, but it is shown high speed in
recognition step. Also, the proposed system can obtained higher performance than
that of other baseline system.

From the experimental results of this thesis, as expected, the performances of
the proposed method are obtained higher than that of joint detection and sequential
detection methods. The recognition rates of both cases of speaker-independent and
speaker-dependent recognitions are shown at 66.85% and 81.92%, respectively, and
63.03% and 77.23% for accuracies. Since, the average recognition rate of the
proposed system can be improved up 8% of joint detection, and 2% of sequential
detection. Although, the recognition speed of the proposed method can not be fester
than that of joint detection method. Clearly, it’s shown faster than that of sequential
detection as well. However, the similarity of different tone model and the differential
of the same tone in continuous speech can be decreased the recognition rate of the
system. Those problems are effect from some difference between Lao tone mark and

acoustic tone.
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6.2 Future Works

Although, the concept of the proposed method has been developed and
observed with high performance, there are some interesting issues worth of
investigations.

Some difference between Lao tone mark and acoustic tone may be prevent
with other computation of speech signal. Lao tone marks had to present for long time
before, the signal or speech processing have been studied, they preferred tone mark by
listening from voided sound.

Due to limited resources, the speech data were recorded from only 30 male
and 20 female speakers. However, this set of sample data can sufficiently be verified
by the proposed tonal syllable recognition in evaluation. To implement a practical Lao
continuous speech recognition interface system, more speakers are necessary to train

the model variation from various speakers.
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Appendix A

Waveform and Spectrum of Lao Consonants
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SFS/WASP v. 1.3
Praatv. 4.2
Cooledit.prov. 1.0
Winsnoori v. 3.1

Speech Labeler v. 1.0

Appendix B

List of Soft-tools

http://www.redhat.com

http://htk.eng.cam.ac.uk

http://www.phon.ucl.ac.uk/resource/sfs

http://www.phon.ucl.ac.uk/resource/sfs/wasp.htm

http://www/.praat.org

http://www.syntrillium.com/cooledit

http://www.loria.fr/~laprie/winsnoori

http://www.eng.chula.ac.th
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Robust Method of Continuous Speech Recognition
for A Tonal Language

S. Chanthamenavong’, E. Maneenoi”, and S. Jitapunkul ™~

DSPRL, Electrical Engineering, Chulalongkorn University, Bangkok, Thailand, 10330.
“senglathsamy@hotmail.com, ~“ekkarit@hotmail.com, ~somchai.j@chula.ac.th

ABSTRACT

This paper proposes a combination of base syllable
and tone recognitions technique in order to improve the
performance of continuous speech recognition for tonal
language. In the experimental result, Lao language was
selected to test the proposed technique, the analysis of
mel-frequency cepstral coefficients, and normalized pitch
contour were mainly applied to extract feature vector,
respectively, for base syllable recognition and tone
recognition systems. Then, tone recognition was applied
immediately when the codebook allowed the target
sentence (the result of base syllable recognition) to carry
different tones. To improve performance of tonal syllable
recognition system specifies language model and tone
mapping of a tonal language were used. The results show
that, the proposed system can de obtained higher
performance in comparison with the baseline system. In
term of recognition speed, the proposed system can
improved up 25% of that of baseline for small codebook.

Keywords: Tonal Syllable Recognition, Continuous
Speech Recognition, Lao Recognition.

1. INTRODUCTION

In a tonal language, tones are lexically significant of
word meaning. Therefore, tone information is very
essential for speech recognition of tonal languages. In
decade, many researchers have been done separately for
syllable and tone recognition. However, to create a novel
speech recognition system. for.tonal -language, - the
combining of base syllable recognition and tone recog-
nition are required. Since the success of base syllable
recognition is most processing for isolated word recog-
nition. However, continuous-speech recognition has been
also developed in recent years. Although, continuous
speech recognition is a complex system but it can meet
the recognition of natural speech target better than
isolated word. Almost continuous speech recognition has
processed with applying the syllable structure of a
language to design the acoustic model, such as word,
monophone, initial-final and onset-rhyme models [1, 5].
Where, the system based on initial-final and onset-rhyme
models are leader such as, the research of E. Maneenoi, et
al. [1], as their study, the continuous speech recognition
system utilizing onset-rhyme model as speech units has
given high performance. Unfortunately, tone recognition
has not been considered in their experimentation. Also,

many researches of tone recognition have been developed
for tonal language such as Mandarin, Canton, Thai,
Japanese and etc. We expect that, those researches will be
adapted to Lao language as well.

Various techniques such as dynamic time warping,
neural network and hidden Markov models, were studied
and used in speech recognition process, such as isolated
word, connected word, continuous speech and etc;.
However, the Hidden Markov models technique is widely
used in continuous speech recognition. Also, the
recognition of Lao tones by using HMM has been
presented [2]. In their result, Lao tone recognition system
is given the high recognition rate in the implementation
with isolated word recognition. Presently, there is no Lao
speech recognition dealing with continuous speech.
Therefore, to implement a natural continuous speech
recognition system for Lao speech, it should be exploited
as tonal syllable recognition.

In recent year, there are some papers to be already
presented the methods for tonal syllable recognition,
based on continuous speech such as Joint detection,
Sequential detection and Linked detection [3]. The
sequential detection method is observed with high perfor-
mance, and lower computational complexity than that of

1. 152000

o259

[=al —

-O.ZEDS
S0O00 Hz

SO0 Hz

1-_.!.1M"' Iml:lﬂr‘inwmﬁ,;-l |
e ‘

13278 H=| - -- - il

O Hx| 75 H=

wai3 | Pitch
(‘horse run fast) coniour

| maa2 | len0 |
(a). maa2- len0-wai3

1.091873

0.2

-0.002167 s

-0.324
S000 Hz

SO0 Hz

13115 HZf - e

0 Hz| 75 H=

| maad | len0 | wai3 |
(b). maad- len0-wai3 (dog run fast)

Fig.1: The sample sentences with different tone
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Table 1: Tone mapping of Lao syllable

Live Syllable Dead Syllable
Syllable [ (2]

Initial Inherent Tone Long Vowel Short Vowel
consonant class (low tone mark) | (falling tone mark)

[km_!%;ﬁs]s[h] Low Rising (4) Low Falling(1)

Middle Class Low Rising (4) / Low Falling (1) Low Rising (4)
ow Rising
[alLchlialaibliop] | (O RAM B g o)
[vl[>] High Falling (2)
Low Class

[KI[sI[tIPILfI[NIIng] | High Rising(3) High Falling (2) Mid (0)
[ny][n][mI[r][1][w]

both linked detection and joint detection methods. In the
process of sequential detection, tone recognition will be
enabled only when the estimated syllable of base syllable
recognition able to carries difference tone. In fact, it’s not
necessary some time. As specific characteristic of tonal
language, especially for Lao language, several Lao
syllables can be changed the meaning itself, when it
carries different tone [8], but when those syllables are
constructed as a sentence, the meaning of that sentence is
not always changed with different tones. Therefore, we
expect that, the performance of the sequential detection
method will be improved and reduce recognition time
duration, by recognizing tone of syllabic components in a
sentence only when that sentence has a possibility to
change the meaning with different tones.

This paper has organized follow as. In section 2,
specific characteristic of Lao spoken language, one of
tonal language, will be investigated in order to use it as
our example. The tonal syllable recognition of continuous
speech method will be presented in selection 3. Section 4
will be the evaluation of experimental results, in several
aspects. Finally, the conclusions of this paper will be
described in section 5.

2. LAO SPOKEN LANGUAGE

Almost Lao spoken words are monosyllabic word,
and perform several functions in a sentence. A poly-
syllabic word is constructed by concatenating -each
syllable. So, the several combinations of these syllables
with tones can produced the several words. In addition, a
sentence is formed by a serial construction of these
syllables.

There are 27 consonants in Lao alphabetical order and six
high consonant clusters, representing 21 sounds, and are
divided into three classes, high consonants, middle
consonants and low consonants. Lao language has 28
vowels representing 27 sounds and can be divided into
three classes, short vowels, long vowels and additional

-
S=CGi(CV(Cy)

Fig.2: A Lao syllable structure

vowels. Furthermore, the spoken language can be pron-
ounced five tone sounds [8].

Lao syllable structures are composed of three parts of
sound, consonants, vowel, and tone. The standard Lao
syllable structure can be presented as illustrated in
“Fig.2:”, where C; is an initial consonant, C. is a co-
articulated consonant, V is a vowel, C; is a final
consonant and T is a tone. There are three types of Lao
syllable, Open-syllable, Live-syllable and Dead-syllable.
And each syllable is able to appear with different tone [8,
9], as presented in “Table 1:”.

Normally, every Lao syllable consists of a tone, and
it always change the meaning itself when it has a different
tone. For example: gai0 (chicken) and gail (far). Also,
the meaning of a Lao sentence will be changed, when it
consists of syllables with different tones, as shown in
“Fig. 1:”. However, some Lao sentences do not change
the meaning when their tone is changed. For example:
kail-kaol-gap4-gai0 (I have chicken for a meal), and
kail-kaoO -gap4-gail (“It has no meaning in Lao!”).

3.PROPOSED METHOD

This paper proposes a tonal syllable recognition
method of continuous speech recognition for tonal
language. The proposed system will be processed step by
step as below (Four step in total), and its chart is
presented in‘‘Fig. 3:”

— Feature Extraction: the speech waveform is
through signal analyzer to extract phonetic feature
for base syllable recognition. While tone feature
will be extracted immediately, after the enable of
tone recognizer. For the detail can see in section 3.1.
— Base syllable recognition: In this step, phonetic
features in HMM of base syllables are implemented
based on phonotactic onset-rhyme model in order,
to recognize syllabic components of a sentence. The
estimated syllable boundaries and its time derivative
are obtained as the results of base syllable
recognition.

— Automatically, system will check the result of

base syllable recognition in codebook that contains
all variable sentences associated with tone info-
rmation. If the checking function returns false, the
result of base syllable recognition will be accepted



as final result of system. Otherwise, tone recognit-
ion part is implemented immediately.

— If the target sentence has been found in code-
book, altogether tone recognizer is enabled. Firstly,
tone feature has extracted and segmented by using
information of the estimated syllable boundaries and
it’s time derivative which are the results of base
syllable recognizer. Then, HMM of tones associated
with tone mapping information (see “Table 1:”) are
implement-ed based on left-tone-dependent model
to recognize a possible tone of syllabic component
in a sentence.

3.1. Feature Extraction

A hamming window of 30 ms frame size has been
applied every 10 ms (frame shift). Then, computation of
mel-frequency cepstral coefficients (MFCCs), log-energy
and zero-crossing were applied to extract phonetic feature
vector for base syllable recognition as shown in upper
part of “Fig. 3:”. When tone recognizer is enabled. The
computation of log-pitch is used as tone feature vectors,

Input
Speech
Hamming
Window
\ 4 v
Computation .
of Computation of mel-
log-pitch frequency cepstral
coefficients,
log-Energy
and Zero-crossing
Tones
Mapping l
A
HMM of HMM of
> Tone |7 Base syllable
Recognitio Recognition
X
3
Yes 2
e}
o
No ©
v
Tone Base syllable
Recognized Recognized

Fig.3: Block diagram of tonal syllable recognition
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and is segmented by using information of the estimated
syllable boundaries and it’s time derivative, which are the
result of base syllable recognition. Consequently, mean
and variance of pitch contour for the same tone can vary
considerably from one speaker to another, especially
between male and female. Therefore, the pitch contour
should be normalized before applied as tone feature. In
paper [6], the pitch was normalized by division with
average speaker’s pitch. In paper [2], the pitch was
normalized by using the difference of pitch and that of
left frame, then quantized into three levels (-1, 0, 1). This
technique can give high recognition rate for Lao tone
recognition. This paper has also adopted the technique of
[2] to normalize of tone feature vector.

4. EXPERIMENTS

4.1. Speech Data

The performance of this technique will be evaluated
using sample speech data of Lao speech sentence. The
speech data will be recorded twice of 10 Lao sentences
from both male and female speakers (eight males and
seven females) utterance on speed speaking style, in open
office environment. The sentences are both tonally and
phonetically (five sentences can vary the meaning depend
on tone, and the others are not vary in anyways) of short
conversation. All the samples were recorded with mono
channel, 16 kHz sampling rate and 16 bits resolution. In
this experiment, the speech data from five male and five
female speakers were used as training set, and other five
is used as speaker-independent testing set. For speaker-
dependent testing will use the remaindered data from
speaker of training set. All the experiments in this paper
were used the same sample data on database.

4.2. Recognition Results

The results of each substitution system are shown in
“Table 2:”. The computing of tone recognition rate is
observed by recognizing tones associated with tone
mapping after the codebook allowed a target sentence to
carries different tones. Otherwise we will assume that the
tone recognition-rate. is-100%. However, the results of
tone recognition that shown in “Table 2:”, are considered
only when, tone recognition was enabled. Since, the
standard computing recognition-rate in [7] is used to
obtain the results ‘of base syllable recognition. And the
result of tonal syllable recognition (proposed system), are
obtained by multiply that of both base syllable and tone
recognitions. The tone recognition of sequential detection
has been always classified into five tone types (25 left-
tone-dependent models) for a syllable. Also, the proposed
system has been classified into two tone types only (10
left-tone-dependent models), depending on tone mapping
is allowed. While, the joint detection has been recognized
very large number of tonal syllable models. In addition,
the experiments have also been evaluated the recognition
results in cases of applying joint detection, sequential
detection, and the proposed method. The result of each
case is illustrated in “Table 3:”. As the results, the



proposed system can obtained 84.63% correction for
speaker-dependent and 78.17% correction for speaker-
independent, which is the higher than that of both joint
detection and sequential detection. Where, sequential
detection can obtain the recognition rate of, respectively,
84.04% and 77.58% for speaker-dependent and speaker-
independent. And joint detection can obtain the
recognition rate of, respectively, 72.97% and 68.72%.

The results have shown that, joint detection is
obtained lower recognition rate than that of both sequen-
tial detection and the proposed system. Consequently,
some confusing observation of tone recognition can
decrease overall performance of tonal syllable recognition
in every times instant. In case of sequential detection and
proposed method, the results of tone recognition can be
affected to tonal syllable recognition, only when the
system allowed to recognizing tone, especially for the
proposed method, the probability that tone recognition
will be applied during tonal syllable recognition, it is
smaller than that of sequential detection method.
Although, the results of the proposed method can not be
superior to that of sequential detection clearly, but in term
of recognition speed it’s obtained 25% higher than that of
sequential detection. However, the proposed system is
required more memories than sequential detection system
for a language model.

Table 2: The results of tonal syllable recognition of
proposed system

Speaker-Dependent | Speaker-Independent
(% Corr.) (% Corr.)
Rec-ggﬂ(ietion 90.52 86.02

Table 3: Comparison the result of proposed system
and other baselines system

Recognition Speaker-Dependent | Speaker-Independent
Methods (% Corr.) (% Corr.)

5 e‘]t‘e"c'llton 72.97 68.72
Froposed 84.63 78.17

5. CONCLUSIONS

This paper has introduced a tonal syllable recognition
method for continuous speech in tonal language, based on
HMM algorithm, by using a language model and specific
tone mapping of Lao tonal language to reduce recognition
time duration and improve performance of tonal syllable
recognition for continuous Lao speech. The result shown
that, the performance of proposed system is superior to
that of joint detection, while it is similar to that of
sequential detection. However, in our experiments, we
found that, the recognition speed of proposed system can
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be improved up 25% of that of baseline for small
codebook.
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