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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Topological spaces

Definition 1.1. A topology on a set X is a collection T of subset of X having

the following properties:

1. ∅ and X are in T ,

2. the union of the elements of any subcollection of T is in T ,

3. the intersection of the elements of any finite subcollection of T is in T .

A topological space is an ordered pair (X, T ) consisting of a set X and a

topology T on X, but we often omit specific mention of T if no confusion will

arise.

Definition 1.2. Let Y be a subset of topological space (X, TX). We define the

topology TY on Y by TY = {A ∩ Y ⊆ Y : A ∈ TX} and call it the subspace

topology.

Definition 1.3. Let (X, T ) be a topological space and O a subset of X. We say

that

1. O is open if O belongs to the collection T .

2. O is closed if X −O is open.

3. For x ∈ X, O is a neighborhood of x if O is an open set containing x.

Definition 1.4. Let (X, T ) be a topological space and A ⊆ X. The closure of A

is defined as the intersection of all closed sets (in X) containing A. The closure

of A is denoted by A.
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Note that : A is the smallest closed set containing A.

Definition 1.5. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

1. for each x ∈ X, there is at least one basis element B containing x.

2. if x belongs to the intersection of two basis elements B1 and B2 , then there

is a basis element B3 containing x such that B3 ⊆ B1 ∩B2.

If B satisfies these two conditions, then we define the topology T generated by

B as follows: A subset O of X is said to be open in X (that is, to be an element

of T ) if for each x ∈ O, there is a basis element B ∈ B such that x ∈ B ⊆ U .

Equivalentlly, T is the collection of all unions of basis elements.

Definition 1.6. A subbasis S for a topology on X is a collection of subset of X

whose union equals X. The topology generated by the subbasis S is defined

to be the collection T of all unions of finite intersections of elements of S

Note that : The collection of all finite intersection of elements of S is a basis

for a topology T .

Definition 1.7. A metric on a nonempty set X is a mapping

d : X ×X → R

having the following properties :

1. d(x, y) ≥ 0 for all x, y ∈ X; the equality holds if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Given x ∈ X and ε > 0, consider the set

Bd(x, ε) = {y ∈ X : d(x, y) < ε}.
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It is called the ε-ball centered at x. Sometimes we omit the metric d from the

notation and write this ball simply as B(x, ε), when no confusion will arise.

Example 1.8. Let d : R× R→ R be defined by d(x, y) = |x− y| for all x.y ∈ R.

Then d is a metric on R. Now we say that d is a euclidean metric on R, denoted

by dE.

Definition 1.9. If d is a metric on the set X, then the collection of all ε-balls

Bd(x, ε), for x ∈ X and ε > 0, is a basis for a topology no X, called the metric

topology induced by d.

Definition 1.10. If X is a topological space, X is said to be metrizable if there

exists a metric d on X that induces the topology of X. A metric space (X, d) is

a metrizable space X together with a spacific metric d that gives the topology of X.

Definition 1.11. A relation ≤ on a set A is called a partial order relation if

the following conditions hold for all α, β, γ ∈ A

1. α ≤ α.

2. If α ≤ β and β ≤ α, then α = β.

3. If α ≤ β and β ≤ γ, then α ≤ γ.

A directed set J is a set with a partial order ≤ such that for each pair α, β of

elements of J , there exists an element γ of J having the property that α ≤ γ and

β ≤ γ.

Example 1.12. N with a partial order ≤ is a directed set.

Definition 1.13. Let X be a topological space. A net in X is a function f from

a directed set Λ to X. If α ∈ Λ, we usually denote f(α) by xα. We denote the

net f itself by symbol (xα)α∈Λ, or merely by (xα) if the index set is understood.

Moreover if Λ = N, then (xn)n∈N is called a sequence.

The net (xα) is said to converge to the point x of X(written xα → x) if for

each neighborhood U of x, there exists β ∈ Λ such that for all γ ≥ β, then xγ ∈ U .
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Definition 1.14. Let (X, d) be a metric space. A sequence (xn) of points of X is

said to be a Cauchy sequence in (X, d) if it has the property that given ε > 0,

there is an integer N such that

d(xn, xm) < ε whenever n,m ≥ N .

The metric space (X, d) is said to be complete if every Cauchy sequence in X

converges to some point in X.

Example 1.15. Let X be a metric space.

Every convergent sequence in X is necessarily a Cauchy sequence.

Definition 1.16. Let X and Y be topological spaces.

A mapping T : X → Y is said to be continuous if for each open subset V of Y ,

the set T−1(V ) = {x ∈ X : T (x) ∈ V } is an open subset of X.

Theorem 1.17 ([4], p.104). Let X and Y be topological spaces; let T : X → Y .

Then the followings are equivalent:

1. T is continuous;

2. For every open set C of Y , the set T−1(C) is open in X;

3. For every subset A of X, one has T (A) ⊆ T (A);

4. For every closed set B of Y , the set T−1(B) is closed in X;

5. For each x ∈ X and each neighborhood V of T (x), there is a neighborhood U

of x such that T (U) ⊆ V .

If the condition in 5 holds for the point x of X, we say that T is continuous at

the point x.

Definition 1.18. A topological space X is said to be Hausdorff if each pair x, y of

distinct points of X, there exist disjoint open sets containing x and y, respectively.

Definition 1.19. Suppose that one-point sets are closed in X. Then X is said to

be regular if for each pair consisting of a point x and a closed set B disjoint from

x, there exist disjoint open sets containing x and B, respectively.
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Definition 1.20. Suppose that one-point sets are closed in X. Then X is said

to be completely regular if for each pair consistiong of a point x and a closed

set B disjoint from x, there exists a continuous mapping f : X → [0, 1] such that

f(x) = 0 and f(y) = 1 for each y ∈ B.

Remark 1.21. Every regular space is Hausdorff, and that a completely regular

space is regular.

Example 1.22. Every metric space is regular.

1.2 Banach spaces

Definition 1.23. A set X is called a vector space (or a linear space) over R

if we have a mapping + from X ×X to X and a mapping · from R×X to X that

satisfy the following conditions :

1. x+ y = y + x for all x, y ∈ X.

2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ X.

3. There is a vector 0 ∈ X such that x+ 0 = x for all x ∈ X.

4. λ(x+ y) = λx+ λy for all λ ∈ R and x, y ∈ X.

5. (λ+ µ)x = λx+ µx for all λ, µ ∈ R and x ∈ X.

6. λ(µx) = (λµ)x for all λ, µ ∈ R and x ∈ X.

7. 0 · x = 0 and 1 · x = x for all x ∈ X.

We call + addition and · multiplication by scalars. Suppose that Y is a nonempty

subset of X. We say that Y is a subspace of X if for each x, y ∈ Y and α, β ∈ R,

αx+ βy belongs to Y .

Definition 1.24. A mapping ‖·‖ from a vector space X to R is called a norm if

1. ‖x‖ ≥ 0 for all x ∈ X; the equality holds if and only if x = 0.
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2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

3. ‖αx‖ = |α| ‖x‖ for all α ∈ R and x ∈ X.

We say that X with a norm ‖·‖ is a normed space (or normed vector space),

denoted by (X, ‖·‖).

Proposition 1.25. Let d‖·‖ : X×X → R be defined by d‖·‖(x, y) = ‖x− y‖. Then

d‖·‖ is a metric on X, so (X, d‖·‖) is a metric space. Therefore every normed space

is a metric space.

Example 1.26. For 0 < p < ∞, `p = {(xn) ⊆ R :
∑∞

i=1 |xi|p < ∞} and ‖·‖p :

`p → R be defined by ‖(xn)‖p = (
∑∞

i=1 |xi|p)
1
p . Thus `p is a vector space (over R)

and ‖·‖p is a norm on `p. So, `p with this norm is a normed space.

Definition 1.27. A normed vector space (X, ‖·‖) is a Banach space if (X, d‖·‖)

is a complete metric space. If (xn) is a sequence in X, the series
∑∞

i=1 xi (or∑
xn) is said to be summable if a sequence of partial sum (

∑n
i=1 xi) converges to

some point in X, and it is called absolutely summable if
∑
‖xn‖ <∞.

Theorem 1.28 ([2], p. 152). A normed vector space X is complete if and only if

every absolutely summable series in X is summable.

Example 1.29. For any 1 ≤ p < ∞, `p is complete and hence `p is a Banach

space.

Definition 1.30. Let X and Y be normed vector spaces and T : X → Y . We

say that T is a linear mapping or linear operator if for each x, y ∈ X and

α, β ∈ R, T (αx + βy) = αT (x) + βT (y). In particular, if Y = R, we call T a

linear functional.

A linear mapping T is called bounded if there exists C > 0 such that for all

x ∈ X, ‖T (x)‖ ≤ C ‖x‖ .

Proposition 1.31 ([2], p. 153). If X and Y are normed vector spaces and T :

X → Y a linear mapping, the following are equivalent :
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1. T is continuous;

2. T is continuous at 0;

3. T is bounded.

Definition 1.32. If X and Y are normed vector spaces, we denote the space of

all bounded linear mappings from X to Y by L(X, Y ). Thus L(X, Y ) is a vector

space. Let ‖·‖ : L(X, Y )→ R be defined by

‖T‖ = sup{‖T (x)‖ : x ∈ X and ‖x‖ = 1}

= sup{‖T (x)‖
‖x‖

: x ∈ X and x 6= 0},

for all T ∈ L(X, Y ). Then ‖·‖ is a norm on L(X, Y ) and called the operator

norm. Hence, L(X, Y ) with the operator norm is a normed vector space. In

particular, The space L(X,R) of bounded linear functional on X is called the dual

space of X and denoted by X∗.

Remark 1.33. Every dual space of a normed vector space with the operator norm

is a Banach space.

Example 1.34. Let 1 ≤ p <∞ and q ∈ R such that 1
p

+ 1
q

= 1.

Then the dual space of `p is isometrically isomorphic to `q; i.e., for each f ∈ (`p)
∗

there exists (xn) ∈ `q such that f(yn) =
∑
xnyn for all (yn) ∈ `p and ‖f‖ =

‖(xn)‖q.

Definition 1.35. Let X be a Hausdorff space and T : X → X a continuous

mapping. We say that

1. F (T ) = {x ∈ X : Tx = x} is the fixed point set of T .

2. C(T ) = {x ∈ X : the sequence (T nx) converges} is the convergence set of

T .

When F (T ) 6= ∅, let T∞ : C(T )→ F (T ) be defined by T∞x = limn→∞T
nx for all

x ∈ C(T ).
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Definition 1.36. Let (X, d) and (Y, ρ) be metric spaces and T : X → Y .

T is said to be

1. nonexpansive if ρ(Tx, Ty) ≤ d(x, y) for any x, y ∈ X;

2. quasi-nonexpansive if T (X) ⊆ X ⊆ Y , F (T ) 6= ∅ and ρ(Tx, p) ≤ d(x, p)

for any x ∈ X and p ∈ F (T );

3. lipschitzian if there is k ≥ 0 such that ρ(Tx, Ty) ≤ kd(x, y) for any x, y ∈
X;

4. uniformly lipschitzian if T (X) ⊆ X ⊆ Y and there is k ≥ 0 such that

ρ(T nx, T ny) ≤ kd(x, y) for any x, y ∈ X and n ∈ N.

Definition 1.37. [1] Let X be a nonempty Hausdorff space and T : X → X a

continuous mapping. A fixed point x of T is said to be virtually T -stable if for

each neighborhood U of x, there exist a neighborhood V of x and an increasing

sequence (kn) of positive integers such that T kn(V ) ⊆ U for all n ∈ N. We simply

call T virtually stable if every fixed point of T is virtually T -stable.

Theorem 1.38. [1] Suppose that X is a regular space and T : X → X a selfmap-

ping with F (T ) 6= ∅. If T is a virtually stable, then T∞ is continuous.

1.3 Weak topology

Proposition 1.39 ([3], p. 203). Let X be a set and let F be a family of mappings

and {(Yf , Tf ) : f ∈ F} a family of topological spaces such that for each f ∈ F ,

f(X) ⊆ Yf . Then there is the smallest topology for X with respect to which each

member of F is continuous. That is, there is a unique topology TF for X such that

the followings hold :

1. For each f ∈ F , f is a continuous mapping from (X, TF) into (Yf , Tf ).

2. If T is any topology for X such that for each f ∈ F , f is a continuous

mapping from (X, T ) into (Yf , Tf ), then TF ⊆ T .
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The topology TF has {f−1(U) : f ∈ F , U ∈ Tf} as a subbasis, and it is called the

weak topology on X induced by F .

Definition 1.40. Let X be a normed space. Then the topology for X induced

by the dual space of X (X∗) is the weak topology on X and also the topology

induced by its norm is called strong topology.

Definition 1.41. Let Y be a subset of a normed space X. The weak topology

on Y is a subspace topology of the weak topology on X

Theorem 1.42 ([3], p. 215). Let X be a normed space. If X has finite dimension,

the weak topology and strong topology are the same.

Remark 1.43 ([3], p. 212). The weak topology on a normed space is completely

regular.

Definition 1.44. Let X be a normed space and O a subset of X. We say that

1. O is weakly open if O belongs to the weak topology.

2. O is weakly closed if X −O is weakly open.

3. For x ∈ X, O is a weak neighborhood of x if O is a weak open set

containing x.

Definition 1.45. Let X and Y be normed spaces. A mapping T : X → Y is said

to be weakly continuous (or weak-to-weak continuous) if for each weak open

subset V of Y , the set T−1(V ) is a weak open subset of X.

Theorem 1.46. Let X and Y be normed spaces. A mapping T : X → Y is weakly

continuous if and only if for any f ∈ Y ∗, f ◦ T is a weakly continuous functional.

Definition 1.47. Let X be a normed space and T : X → X a weakly continuous

mapping. A fixed point x of T is said to be weakly virtually T -stable if for

each weak neighborhood U of x, there exist a weak neighborhood V of x and an

increasing sequence (kn) of positive integers such that T kn(V ) ⊆ U for all n ∈ N.
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We simply call T weakly virtually stable if every fixed point of T is weakly

virtually T -stable.

Proposition 1.48 ([3], p. 212). A linear functional on a normed space is contin-

uous with respect to the weak topology if and only if it is continuous with respect

to the metric induced by its norm.

Definition 1.49. [3] A sequence (xn) in an infinite-dimensional Banach space X

is a Schauder basis for X if for each x in X there is a unique sequence (αn) of

scalars such that x =
∑

n αnxn.

Example 1.50. Let i ∈ N and ei = (0, 0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . ). Then ei ∈ `p for all

1 < p <∞ and a sequence (en) in `p is a Schauder basis for `p for all 1 < p <∞.

Theorem 1.51. ([3], p. 351) If (xn) is a Schauder basis for an infinite-dimensional

Banach space, then ‖xn‖−1 xn is a Schauder basis for the space, so there is a

Schauder basis (en) such that ‖ei‖ = 1 for any i ∈ N.

Definition 1.52. Let X be a Banach space. We say that X has a normalized

Schauder basis if there is a Schauder basis (en) for X such that ‖ei‖ = 1 for

any i ∈ N.

Definition 1.53. Let X be an infinite-dimensional Banach space with a Schauder

basis (xn). For each positive integer m, the mth coordinate functional x∗m for

(xn) is the mapping
∑

n αnxn 7−→ αm from X into R.

Theorem 1.54. [3] Each coordinate functional associated with a basis for Banach

space is a continuous linear functional.



CHAPTER II

WEAK CONTINUITY

It is well-known that every lipschitzian mapping is (uniformly) continuous. How-

ever, if T : `2 → `2 defined by T (x1, x2, . . . ) = (‖(x1, x2, . . . )‖2 , 0, 0, . . . ) for

(x1, x2, . . . ) ∈ `2, then T is lipschitzian but T is not weakly continuous. Therefore,

being lipschitzian does not imply the weak continuity. In this chapter, we will

present some conditions that guarantee the weak continuity.

Thrughout the chapter let E be a Banach space, X ⊆ E and T : X → E.

Definition 2.1. We say that T is functionally lipschitzian if for each f in E∗

there exist N ∈ N and g1, g2, . . . , gN ∈ E∗ such that

|f(Tx− Ty)| ≤
N∑
i=1

|gi(x− y)|

for any x, y ∈ X.

Proposition 2.2. If T1, T2 are functionally lipschitzian and a ∈ R, then T1 + T2

and a · T1 are functionally lipchitzian.

Proof. It is easy to see that they are functionally lipschitzian because for each

f ∈ E∗, f((T1 + T2)x) = f(T1x) + f(T2x) and f(a · T1x) = a · f(T1x).

Theorem 2.3. If T is functionally lipschitzian, then T is weakly continuous.

Proof. Let z ∈ X and U a weak neighborhood of Tz. Without loss of generality,

we may assume that

U =
n⋂
i=1

f−1
i (fi(Tz)− ε, fi(Tz) + ε)
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for some ε > 0 and f1, f2, .., fn ∈ E∗. Since T is functionally lipschitzian, for each

i = 1, . . . , n there exist Ni ∈ N and g(i,1), . . . , g(i,Ni) ∈ E∗ such that

|fi(Tx− Ty)| ≤
Ni∑
j=1

|g(i,j)(x− y)|

for any x, y ∈ X. Then

V =
( n⋂
i=1

Ni⋂
j=1

g−1
(i,j)

(
g(i,j)(z)− ε

Ni

, g(i,j)(z) +
ε

Ni

))
∩X

is a weak neighborhood of z. To see that T (V ) ⊆ U , let y ∈ V . Then

|fi(Ty − Tz)| ≤
Ni∑
j=1

|g(i,j)(y − z)| < ε;

i.e., Ty ∈ U . Hence T is weakly continuous.

In the next theorem, we will show that when E has finite dimension, function-

ally lipschitzian and lipschitzian conditions are equivalent.

Theorem 2.4. Suppose that E is finite dimensional. Then T is functionally lips-

chitzian if and only if T is lipschitzian.

Proof. Let {e1, . . . , eN} be a normalized basis for E.

(⇒) Assume that T is functionally lipschitzian and let x, y ∈ X. Then

‖Tx− Ty‖ ≤
N∑
i=1

|e∗i (Tx− Ty)| ‖ei‖

=
N∑
i=1

|e∗i (Tx− Ty)|.

Since T is functionally lipschitzian, for each i = 1, 2, . . . , N , there exist Ki ∈ N

and g(i,1), g(i,2), . . . , g(i,Ki) ∈ E∗ such that

|e∗i (Tx− Ty)| ≤
Ki∑
m=1

|g(i,m)(x− y)| ≤ (

Ki∑
m=1

∥∥g(i,m)

∥∥) ‖x− y‖ .

Then

‖Tx− Ty‖ ≤ (
N∑
i=1

Ki∑
m=1

∥∥g(i,m)

∥∥) ‖x− y‖ .



13

Thus T is lipschitzian.

(⇐) Assume that T is lipschitzian and let f ∈ E∗ and x, y ∈ X.

Since T is lipschitzian, there is L > 0 such that

‖Tx− Ty‖ ≤ L ‖x− y‖ .

Then

|f(Tx− Ty)| ≤ ‖f‖ ‖Tx− Ty‖

≤ ‖f‖L ‖x− y‖

≤ ‖f‖L
N∑
i=1

|e∗i (x− y)| ‖ei‖

=
N∑
i=1

|(‖f‖L)e∗i (x− y)|.

Hence T is functionally lipschitzian.

When E is infinite dimensional, the following theorem gives some criteria for

being functionally lipschitzian.

Theorem 2.5. Suppose that E is infinite dimensional with a normalized Schauder

basis (en). Then T is functionally lipschitzian, if one of the followings holds :

1. There exist N ∈ N, g1, g2, . . . , gN ∈ E∗ and (cn) a sequence of non-negative

real numbers such that
∑

n cn <∞ and for each i ∈ N,

|e∗i (Tx− Ty)| ≤ ci

N∑
j=1

|gj(x− y)|

for any x, y ∈ X.

2. There exists k ∈ N such that for each i ≤ k, there exist Ni ∈ N and

g(i,1), . . . , g(i,Ni) ∈ E∗ such that for any x, y ∈ X

|e∗i (Tx− Ty)| ≤
Ni∑
j=1

|g(i,j)(x− y)|

and for each i > k, e∗i ◦ T = a · e∗i + bi for some a, bi ∈ R.
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Proof. (1) For each f ∈ E∗ and x, y ∈ X, we have

|f(Tx− Ty)| ≤ ‖f‖ ‖Tx− Ty‖

≤ ‖f‖
∞∑
i=1

|e∗i (Tx− Ty)| ‖ei‖

≤ ‖f‖
∞∑
i=1

(ci

N∑
j=1

|gj(x− y)|)

≤ ‖f‖ (
∞∑
i=1

ci)
N∑
j=1

|gj(x− y)|

=
N∑
j=1

| ‖f‖ (
∞∑
i=1

ci) · gj(x− y)|.

Hence T is functionally lipschitzian.

(2) For each f ∈ E∗ and x, y ∈ X, we have

|f(
∞∑

i=k+1

a · e∗i (x− y)ei)| = |a||f(
∞∑
i=1

e∗i (x− y)ei)− f(
k∑
i=1

e∗i (x− y)ei)|

≤ |a||f(
∞∑
i=1

e∗i (x− y)ei)|+ |a||f(
k∑
i=1

e∗i (x− y)ei)|

= |a · f(x− y)|+ |a| ‖f‖
k∑
i=1

|e∗i (x− y)|

and

|f(Tx− Ty)| = |f(
∞∑
i=1

e∗i (Tx− Ty)ei)|

≤ |f(
k∑
i=1

e∗i (Tx− Ty)ei)|+ |f(
∞∑

i=k+1

e∗i (Tx− Ty)ei)|

≤
k∑
i=1

|f(ei)||e∗i (Tx− Ty)|+ |f(
∞∑

i=k+1

a · e∗i (x− y)ei)|

≤ ‖f‖
k∑
i=1

Ni∑
j=1

|g(i,j)(x− y)|+ |a| ‖f‖
k∑
i=1

|e∗i (x− y)|

+ |a · f(x− y)|.

Hence T is functionally lipschitzian.
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Corollary 2.6. Suppose that E is infinite dimensional with a normalized Schauder

basis (en). If there exist N ∈ N, g1, . . . , gN ∈ E∗ and for each i ∈ N, there

are lipschitzian self-mappings h(i,1), . . . , h(i,N) of R whose Lipschitz constants are

L(i,1), . . . , L(i,N), respectively, such that

e∗i ◦ T =
N∑
j=1

h(i,j) ◦ gj|X

and
∞∑
i=1

max{L(i,j) : j = 1, . . . , N} <∞, then T is functionally lipschitzian.

Proof. Let i ∈ N, x, y ∈ X. Then

|e∗i (Tx− Ty)| ≤ |h(i,1)(g1(x))− h(i,1)(g1(y))|+ · · ·

+ |h(i,N)(gN(x))− h(i,N)(gN(y))|

≤ L(i,1)|g1(x− y)|+ · · ·+ L(i,N)|gN(x− y)|

≤ max{L(i,j) : j = 1, . . . , N}
N∑
k=1

|gk(x− y)|.

By Theorem 2.5(1), T is functionally lipschitzian.

The followings are some explicit examples of functionally lipschitzian (and

hence, weakly continuous) mappings.

Example 2.7. Let 1 < p <∞, i ∈ N and T : `p → R be defined by

Ti(x1, x2, . . . ) =


1
2i

sin(x1 + x2) , if i is odd ;

1
2i
|x3 − x4| , if i is even

for any (x1, x2, . . . ) ∈ `p. Let T : `p → `p be defined by

T (x1, x2, . . . ) = (T1(x1, x2, . . . ), T2(x1, x2, . . . ), . . . )

for any (x1, x2, . . . ) ∈ `p. Let N = 2,

g1 = e∗1 + e∗2, g2 = e∗3 − e∗4 and cn =
1

2n
.

Notice that for each x ∈ `p,
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Tx =
∞∑
i=1

( 1

22i−1
sin(g1(x))e2i−1 +

1

22i
|g2(x)|e2i

)
.

Since

∞∑
i=1

∥∥∥∥ 1

22i−1
sin(g1(x))e2i−1 +

1

22i
|g2(x)|e2i

∥∥∥∥
p

≤
∞∑
i=1

( 1

22i−1
| sin(g1(x))|+ 1

22i
|g2(x)|

)
,

∞∑
i=1

( 1

22i−1
sin(g1(x))e2i−1+

1

22i
|g2(x)|e2i

)
is an absolutely summable series of `p.

Then Tx ∈ `p. By Theorem 2.5(1), T is functionally lipschitzian.

Example 2.8. Let 1 < p <∞ and T : `p → `p be defined by

T (x1, x2, . . . ) =
( |x1 + x3|

3
,
|x2 + x4|

3
, x3, x4, x5, . . .

)
for any (x1, x2, . . . ) ∈ `p. By Theorem 2.5(2), T is functionally lipschitzian by

letting k = 2, N1 = N2 = 1,

g1 =
1

3
(e∗1 + e∗3) and g2 =

1

3
(e∗2 + e∗4).

Example 2.9. Let 1 < p <∞ and T : `p → `p be defined by

T (x1, x2, . . . ) =
( |x1 + x3|

3
,
|x2 + x4|

3
, 1,

1

2
,
1

3
,
1

4
, . . .

)
for any (x1, x2, . . . ) ∈ `p. By Theorem 2.5(2), T is functionally lipschitzian by

letting k = 2, N1 = N2 = 1, a = 0,

bi+2 =
1

i
for any i ∈ N, g1 =

1

3
(e∗1 + e∗3) and g2 =

1

3
(e∗2 + e∗4).

Example 2.10. Let 1 < p <∞, i ∈ N and Ti : `p → R be defined by

Ti(x1, x2, . . . ) =


sin(x1)
2i−1 + |x3+x4−x5|

3i−1 , if i is odd ;

|x1|
2i−1 + sin(x3+x4−x5)

3i−1 , if i is even

for any (x1, x2, . . . ) ∈ `p. Let T : `p → `p be defined by

T (x1, x2, . . . ) = (T1(x1, x2, . . . ), T2(x1, x2, . . . ), . . . )
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for any (x1, x2, . . . ) ∈ `p. Let N = 2, i ∈ N, g1 = e∗1, g2 = e∗3 + e∗4 − e∗5,

h(2i−1,1) =
1

22i−2
sin, h(2i−1,2) =

1

32i−2
|·|, h(2i,1) =

1

22i−1
|·|, h(2i,2) =

1

32i−1
sin .

Then Tx ∈ `p because the series

∞∑
i=1

(
h(i,1)(g(x))ei + h(i,2)(g2(x))ei

)
is absolutely summable series of `p.

Let L(i,j) be a Lipschitz constant of h(i,j). It is easy to see that

L(i,1) ≤
1

2i−1
and L(i,2) ≤

1

3i−1
.

Thus

max{L(i,1), L(i,2)} ≤
1

2i−1
, which implies

∞∑
i=1

max{L(i,1), L(i,2)} <∞.

By Corollary 2.6, T is functionally lipschitzian.



CHAPTER III

WEAK VIRTUAL STABILITY

Let E be a (real) Banach space , X ⊆ E and T : X → X a self-mapping with

F (T ) 6= ∅. It is proved in [1] that nonexpansiveness is a condition that guarantees

the strong virtual stability. In this chapter, we will present some conditions on T

that guarantee the weak virtual stability.

Definition 3.1. We say that

1. T is functionally uniformly lipschitzian if for each f ∈ E∗ there exist

N ∈ N and g1, g2, . . . , gN ∈ E∗ such that for any n ∈ N,

|f(T nx− T ny)| ≤
N∑
i=1

|gi(x− y)|

for any x, y ∈ X.

2. T is functionally uniformly quasi-lipschitzian if for each f ∈ E∗ there

exist N ∈ N and g1, g2, . . . , gN ∈ E∗ such that for any n ∈ N,

|f(T nx− T ny)| ≤
N∑
i=1

|gi(x− y)|

for any y ∈ X and x in F (T ).

Notice that every functionally uniformly lipschitzian mapping is functionally

lipschitzian and functionally uniformly quasi-lipschitzian.

Theorem 3.2. If T is functionally uniformly quasi-lipchitzian and weakly contin-

uous, then T is weakly virtually stable.

Proof. By the assumption, for each n ∈ N, T n is weakly continuous. Let z ∈ F (T )

and U a weak neighborhood of z. Without loss of generality, we may assume that

U =
n⋂
i=1

f−1
i (fi(z)− ε, fi(z) + ε)
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for some ε > 0 and f1, f2, . . . , fn ∈ E∗. Since T is functionally uniformly quasi-

lipschitzian, for each i there exist Ni ∈ N and g(i,1), . . . , g(i,Ni) ∈ E∗ such that

|fi(T nx− T ny)| ≤
Ni∑
j=1

|g(i,j)(x− y)|

for any n ∈ N, y ∈ X and x ∈ F (T ). Then

V =
( n⋂
i=1

Ni⋂
j=1

g−1
(i,j)

(
g(i,j)(z)− ε

Ni

, g(i,j)(z) +
ε

Ni

))
∩X

is a weak neighborhood of z. To see that for each n ∈ N, T n(V ) ⊆ U , let n ∈ N

and y ∈ V . Then

|fi(T ny − z)| = |fi(T ny − T nz)| ≤
Ni∑
j=1

|g(i,j)(y − z)| < ε;

i.e., T ny ∈ U . Hence, T is weakly virtually stable with respect to the sequence of

all natural numbers.

Corollary 3.3. If T is functionally uniformly lipchitzian, then T is weakly virtually

stable.

Proof. We have T is functionally uniformly quasi-lipchitzian and functionally lip-

chitzian. Then T is functionally uniformly quasi-lipchitzian and weakly continuous,

by Theorem 3.2, T is weakly virtually stable.

In the next theorem, we will show that when E has finite dimension, function-

ally uniformly lipschitzian and uniformly lipschitzian conditions are equivalent.

Theorem 3.4. Suppose that E is a finite-dimensional Banach space with a nor-

malized basis (e1, e2, . . . , eN). Then T is functionally uniformly lipschitzian if and

only if T is uniformly lipschitzian.

Proof. (⇒) Assume that T is functionally uniformly lipschitzian.

Let n ∈ N and x, y ∈ X. Then

‖T nx− T ny‖ ≤
N∑
i=1

|e∗i (T nx− T ny)| ‖ei‖

=
N∑
i=1

|e∗i (T nx− T ny)|.
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Since T is functionally uniformly lipschitzian, for each i = 1, 2, . . . , N , there exist

Ki ∈ N and g(i,1), g(i,2), . . . , g(i,Ki) ∈ E∗ such that for all n ∈ N

|e∗i (T nx− T ny)| ≤
Ki∑
m=1

|g(i,m)(x− y)| ≤ (

Ki∑
m=1

∥∥g(i,m)

∥∥) ‖x− y‖ .

Then

‖T nx− T ny‖ ≤ (
N∑
i=1

Ki∑
m=1

∥∥g(i,m)

∥∥) ‖x− y‖ ; i.e., T is uniformly lipschitzian.

(⇐) Assume that T is uniformly lipschitzian.

Let f ∈ E∗. Since T is uniformly lipschitzian, there is L > 0 such that for each

n ∈ N,

‖T nx− T ny‖ ≤ L ‖x− y‖ for all x, y ∈ X.

Then for each n ∈ N and x, y ∈ X

|f(T nx− T ny)| ≤ ‖f‖ ‖T nx− T ny‖

≤ ‖f‖L ‖x− y‖

≤ ‖f‖L
N∑
i=1

|e∗i (x− y)| ‖ei‖

=
N∑
i=1

|(‖f‖L)e∗i (x− y)|

Hence T is functionally uniformly lipschitzian.

When E is infinite dimensional, the following theorem gives some criteria for

being functionally uniformly lipschitzian.

Theorem 3.5. Suppose that E is infinite dimensional with a normalized Schauder

basis (en). Then T is functionally uniformly lipschitzian if one of the followings

holds :

1. There exist N ∈ N, g1, g2, . . . , gN ∈ E∗ and (cn) a sequence of nonnegative

real numbers such that
∑

n cn <∞ and for each i, n ∈ N,

|e∗i (T nx− T ny)| ≤ ci

N∑
j=1

|gj(x− y)|

for any x, y ∈ X .
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2. There exists k ∈ N such that for each i ≤ k, there exist Ni and g(i,1), . . . , g(i,Ni) ∈
E∗ such that for any n ∈ N and x, y ∈ X

|e∗i (T nx− T ny)| ≤
Ni∑
j=1

|g(i,j)(x− y)|

and for each i > k, e∗i ◦ T = ae∗i + bi for some |a| ≤ 1 and bi ∈ R.

Proof. (1) For each f ∈ E∗, n ∈ N and x, y ∈ X, we have

|f(T nx− T ny)| ≤ ‖f‖ ‖T nx− T ny‖

≤ ‖f‖
∞∑
i=1

|e∗i (T nx− T ny)| ‖ei‖

≤ ‖f‖
∞∑
i=1

(ci

N∑
j=1

|gj(x− y)|)

≤ ‖f‖ (
∞∑
i=1

ci)
N∑
j=1

|gj(x− y)|

=
N∑
j=1

| ‖f‖ (
∞∑
i=1

ci) · gj(x− y)|.

Hence T is functionally uniformly lipschitzian.

(2) For each f ∈ E∗, n ∈ N and x, y ∈ X, we have

|f(
∞∑

i=k+1

an · e∗i (x− y)ei)| = |an||f(
∞∑
i=1

e∗i (x− y)ei)− f(
k∑
i=1

e∗i (x− y)ei)|

≤ |an|(|f(
∞∑
i=1

e∗i (x− y)ei)|+ |f(
k∑
i=1

e∗i (x− y)ei)|)

≤ |f(x− y)|+ ‖f‖
k∑
i=1

|e∗i (x− y)|
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and

|f(T nx− T ny)| = |f(
∞∑
i=1

e∗i (T
nx− T ny)ei)|

≤ |f(
k∑
i=1

e∗i (T
nx− T ny)ei)|+ |f(

∞∑
i=k+1

e∗i (T
nx− T ny)ei)|

≤
k∑
i=1

|f(ei)||e∗i (T nx− T ny)|+ |f(
∞∑

i=k+1

an · e∗i (x− y)ei)|

≤ ‖f‖
k∑
i=1

Ni∑
j=1

|g(i,j)(x− y)|+ ‖f‖
k∑
i=1

|e∗i (x− y)|+ |f(x− y)|

Hence T is functionally uniformly lipschitzian.

Corollary 3.6. Suppose that E is infinite dimensional with a normalized Schauder

basis (en). If there exist N ∈ N, g1, . . . , gN ∈ E∗ and for each i ∈ N, there

are lipschitzian self-mappings h(i,1), . . . , h(i,N) of R whose Lipschitz constants are

L(i,1), . . . , L(i,N), respectively, such that

e∗i ◦ T =
N∑
j=1

h(i,j) ◦ gj|X and (
∞∑
i=1

max{L(i,j) : j = 1, . . . , N})
N∑
k=1

‖gk‖ ≤ 1,

then T is functionally uniformly lipschitzian.

Proof. Let Ai = max{L(i,j) : j = 1, . . . , N} and B =
∑N

k=1 ‖gk‖. Claim that for

each i, n ∈ N,

|e∗i (T nx− T ny)| ≤ Ai(
∞∑
i=1

Ai)
n−1Bn−1

N∑
k=1

|gk(x− y)| for any x, y ∈ X.

Let i ∈ N and x, y ∈ X. By Corollary 2.6,

|e∗i (Tx− Ty)| ≤ Ai

N∑
k=1

|gk(x− y)|.

Assume that for some m ∈ N,

|e∗i (Tmx− Tmy)| ≤ Ai(
∞∑
i=1

Ai)
m−1Bm−1

N∑
k=1

|gk(x− y)|.
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Then

|e∗i (Tm+1x− Tm+1y)| ≤ Ai(
∞∑
i=1

Ai)
m−1Bm−1

N∑
k=1

|gk(Tx− Ty)|

≤ Ai(
∞∑
i=1

Ai)
m−1Bm−1B ‖Tx− Ty‖

≤ Ai(
∞∑
i=1

Ai)
m−1Bm

∞∑
i=1

|e∗i (Tx− Ty)| ‖ei‖

≤ Ai(
∞∑
i=1

Ai)
m−1Bm

∞∑
i=1

(
Ai

N∑
k=1

|gk(x− y)|
)

= Ai(
∞∑
i=1

Ai)
m−1Bm(

∞∑
i=1

Ai)
N∑
k=1

|gk(x− y)|

= Ai(
∞∑
i=1

Ai)
mBm

N∑
k=1

|gk(x− y)|.

By the claim and the assumption, we have for each i, n ∈ N

|e∗i (T nx− T ny)| ≤ Ai

N∑
k=1

|gk(x− y)| for any x, y ∈ X.

Hence T is functionally uniformly lipschitzian, by Theorem 3.5(1).

Corollary 3.7. Suppose that E is infinite dimensional with a normalized Schauder

basis (en). If there exists k ∈ N such that for each i ≤ k, there are gi ∈ E∗ and a

lipschitzian self-mapping hi of R (whose Lipschitz constant is Li) such that

e∗i ◦ T = hi ◦ gi|X

and for each i > k, e∗i ◦T = ae∗i +bi for some |a| ≤ 1, bi ∈ R and
∑k

j=1 Lj ‖gj‖ < 1,

then T is functionally uniformly lipschitzian.
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Proof. Let i ≤ k and B =
∑k

j=1 Lj ‖gj‖. Claim that for each n ≥ 2 and x, y ∈ X,

|e∗i (T nx− T ny)| ≤ Li ‖gi‖
(
Bn−2

k∑
j=1

Lj|gj(x− y)|

+ (
n−2∑
r=1

|a|n−1−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|n−1Li|gi(
∞∑

l=k+1

e∗l (x− y)el)|.

Since

|gi(Tx− Ty)| = |gi(
∞∑
j=1

|e∗ ◦ T (x− y))ej|)|

≤ ‖gi‖
k∑
j=1

|e∗j ◦ T (x− y)|+ |a||gi(
∞∑

l=k+1

e∗l (x− y)el)|

≤ ‖gi‖
k∑
j=1

Lj|gj(x− y)|+ |a||gi(
∞∑

l=k+1

e∗l (x− y)el)|, (*)

then

|e∗i (T 2x− T 2y)| ≤ Li|gi(Tx− Ty)|

≤ Li ‖gi‖
k∑
j=1

Lj|gj(x− y)|+ |a|Li|gi(
∞∑

l=k+1

e∗l (x− y)el)|.

Assume that

|e∗i (Tmx− Tmy)| ≤ Li ‖gi‖
(
Bm−2

k∑
j=1

Lj|gj(x− y)|

+ (
m−2∑
r=1

|a|m−1−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|m−1Li|gi(
∞∑

l=k+1

e∗l (x− y)el)|

for some m ≥ 2.
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Then

|e∗i (Tm+1x− Tm+1y)| ≤ Li ‖gi‖
(
Bm−2

k∑
j=1

Lj|gj(Tx− Ty)|

+ (
m−2∑
r=1

|a|m−1−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (Tx− Ty)el)|
)

+ |a|m−1Li|gi(
∞∑

l=k+1

e∗l (Tx− Ty)el)|

≤ Li ‖gi‖
(
Bm−2

k∑
j=1

Lj

[
‖gi‖

k∑
j=1

Lj|gj(x− y)|

+ |a||gi(
∞∑

l=k+1

e∗l (x− y)el)|
]

+ (
m−2∑
r=1

|a|m−1−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|m−1Li|gi(
∞∑

l=k+1

e∗l (x− y)el)| (by(*))

≤ Li ‖gi‖
(
Bm−1

k∑
j=1

Lj|gj(x− y)|

+ |a|Bm−2

k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|

+ (
m−2∑
r=1

|a|n−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|mLi|gi(
∞∑

l=k+1

e∗l (x− y)el)|

≤ Li ‖gi‖
(
Bm−1

k∑
j=1

Lj|gj(x− y)|

+ (
m−1∑
r=1

|a|m−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|mLi|gi(
∞∑

l=k+1

e∗l (x− y)el)|.

By the induction hypothesis, we have the claim.
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Also, we have

|e∗i (Tx− Ty)| ≤ Li|gi(x− y)| for any x, y ∈ X.

Since

|gi(
∞∑

l=k+1

e∗l (x− y)el)| ≤
k∑
l=1

||gi(el)|e∗l (x− y)|+ |gi(x− y)|,

B < 1 and |a| ≤ 1, for each n ∈ N and x, y ∈ X,

|e∗i (T nx− T ny)| ≤ Li ‖gi‖
(
Bn−2

k∑
j=1

Lj|gj(x− y)|

+ (
n−2∑
r=1

|a|n−1−rBr−1)
k∑
j=1

Lj|gj(
∞∑

l=k+1

e∗l (x− y)el)|
)

+ |a|n−1Li|gi(
∞∑

l=k+1

e∗l (x− y)el)|

≤ Li ‖gi‖
(
Bn−2

k∑
j=1

Lj|gj(x− y)|

+ (
n−2∑
r=1

|a|n−1−rBr−1)
k∑
j=1

Lj

( k∑
l=1

||gj(el)|e∗l (x− y)|+ |gj(x− y)|
))

+ |a|n−1Li

( k∑
l=1

||gi(el)|e∗l (x− y)|+ |gi(x− y)|
)

≤ Li ‖gi‖
( k∑
j=1

Lj|gj(x− y)|

+ (
∞∑
r=1

Br−1)
k∑
j=1

Lj

( k∑
l=1

||gj(el)|e∗l (x− y)|+ |gj(x− y)|
))

+ Li

k∑
l=1

||gi(el)|e∗l (x− y)|+ Li|gi(x− y)|.

By Theorem 3.5(2), T is functionally uniformly lipschitzian.

The followings are some explicit examples of functionally uniformly lipschitzian

(and hence, are weakly virtually stable by Corollary 3.3) mappings.

Notice that such mappings T may not be nonexpansive.
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Example 3.8. Let T : `2 → `2 be defined by

T (x1, x2, . . . ) =
( |x1 + x3|

3
,
|x2 + x4|

3
, x3, x4, x5, . . .

)
for any (x1, x2, . . . ) ∈ `2. By Example 2.8, T is functionally lipschitzian. Let

k = 2, a = 1, bi+2 = 1 for any i ∈ N,

g1 =
1

3
(e∗1 + e∗3), g2 =

1

3
(e∗2 + e∗4), and h1(x) = h2(x) = |x|.

Since

g1(x1, x2, . . . ) =
1

3
(x1 + x3) and g2(x1, x2, . . . ) =

1

3
(x2 + x4),

we have ‖g1‖ = ‖g2‖ =
√

2
3

. Let L1, L2 be Lipschitz constants of h1, h2, respectively.

Then L1 = L2 ≤ 1, so L1 ‖g1‖ + L2 ‖g2‖ ≤ 2
√

2
3

< 1. By Corollary 3.7, T is

functionally uniformly lipschitzian.

Suppose T (x1, x2, . . . ) = (x1, x2, . . . ) for finding the fixed point set of T .

Then

x1 =
1

3
|x1 + x3| ≥ 0

9x2
1 = (x1 + x3)2 and

0 = (4x1 + x3)(2x1 − x3)

x2 =
1

3
|x2 + x4| ≥ 0

9x2
2 = (x2 + x4)2

0 = (4x2 + x4)(2x2 − x4).

Therefore, we have (x1, x2, . . . ) ∈ F (T ) if and only if (x3 = −4x1 or x3 = 2x1)

and (x4 = −4x2 or x4 = 2x2) for any x1, x2 ≥ 0. Thus

(1, 1, 2, 2, 0, . . . ), (1, 1,−4,−4, 0, . . . ) ∈ F (T ),

but

1

2
(1, 1, 2, 2, 0, . . . ) +

1

2
(1, 1,−4,−4, 0, . . . ) = (1, 1,−1,−1, 0, . . . ) /∈ F (T ).
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Therefore, F (T ) is not convex. Moreover, since

‖(1, 1, 8, 8, 0, . . . )− (0, 0, . . . )‖2 = ‖(1, 1, 8, 8, 0, . . . )‖2

=
√

2 + 2 · 82

<
√

2 · 32 + 2 · 82

= ‖(3, 3, 8, 8, 0, . . . )‖2

= ‖T (1, 1, 8, 8, 0, . . . )‖2

= ‖T (1, 1, 8, 8, 0, . . . )− T (0, 0, . . . )‖2 ,

we have T is not nonexpansive.

Example 3.9. Let X = {(x1, x2, . . . ) ∈ `2 : xi ≥ 0 for any i ∈ N} and T : X → X

be defined by

T (x1, x2, . . . ) =
( |x1 + x3|

3
,
|x2 + x4|

3
, 1,

1

2
,
1

3
,
1

4
, . . .

)
for any (x1, x2, . . . ) ∈ `2. Let k = 2, a = 0,

bi+2 =
1

i
for any i ∈ N g1 =

1

3
(e∗1+e∗3), g2 =

1

3
(e∗2+e∗4) and h1(x) = h2(x) = |x|.

Since

g1(x1, x2, . . . ) =
1

3
(x1 + x3) and g2(x1, x2, . . . ) =

1

3
(x2 + x4),

we have ‖g1‖ = ‖g2‖ =
√

2
3

. Let L1, L2 be Lipschitz constants of h1, h2, respectively.

Then L1 = L2 ≤ 1, so L1 ‖g1‖ + L2 ‖g2‖ ≤ 2
√

2
3

< 1. By Corollary 3.7, T is

functionally uniformly lipschitzian.

Suppose T (x1, x2, . . . ) = (x1, x2, . . . ) for finding the fixed point set of T . Then

x1 =
1

3
|x1+1| ≥ 0, x2 =

1

3
|x2+

1

2
| ≥ 0 and for any i = 3, 4, . . . , xi =

1

i− 2
.

It follows that F (T ) = {(1

2
,
1

4
, 1,

1

2
, . . . )} and hence F (T ) is convex.
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Let x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ X.

Then

‖Tx− Ty‖2 =
( 1

42
||x1 + x3| − |y1 + y3||2 +

1

42
||x2 + x4| − |y2 + y4||2

) 1
2

=
1

4

[
|x1 + x3|2 + |y1 + y3|2 − 2|(x1 + x3)(y1 + y3)|

+ |x2 + x4|2 + |y2 + y4|2 − 2|(x2 + x4)(y2 + y4)|
] 1

2

=
1

4

[
|x1 + x3|2 + |y1 + y3|2 − 2(x1 + x3)(y1 + y3)

+ |x2 + x4|2 + |y2 + y4|2 − 2(x2 + x4)(y2 + y4)
] 1

2

=
1

4

[
|x1 + x3|2 + |y1 + y3|2 − 2(x1y1 + x1y3 + x3y1 + x3y3)

+ |x2 + x4|2 + |y2 + y4|2 − 2(x2y2 + x2y4 + x4y2 + x4y4)
] 1

2

=
1

4

[
|x1 − y1|2 + |x3 − y3|2 − 2x1y3 − 2x3y1 + 2x1x3 + 2y1y3

+ |x2 − y2|2 + |x4 − y4|2 − 2x2y4 − 2x4y2 + 2x2x4 + 2y2y4

] 1
2

=
1

4

[
|x1 − y1|2 + |x3 + y3|2 + 2(x3 − y3)(x1 − y1)

+ |x2 + y2|2 + |x4 + y4|2 + 2(x4 − y4)(x2 − y2)
] 1

2

≤ 1

4

[
2|x1 − y1|2 + 2|x3 + y3|2 + 2|x2 + y2|2 + 2|x4 + y4|2

] 1
2

≤ ‖x− y‖2 .

Therefore, T is nonexpansive.

Example 3.10. Let 1 < p <∞ and h : R→ R be defined by

h(x) =


1 , if x > 1;

x , if 0 ≤ x ≤ 1;

0 , if x < 0

for any x ∈ R.

Let T : `p → `p be defined by

T (x1, x2, . . . ) =
(
h(
x1 + x3

4
), h(

x2 + x4

4
), x3, x4, x5, . . .

)
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for any (x1, x2, . . . ) ∈ `p. Let q = p
p−1

> 1 and k = 2, a = 1, bi+2 = 1 for any

i ∈ N,

h1 = h2 = h, g1 =
e∗1 + e∗3

4
and g2 =

e∗2 + e∗4
4

.

Since

g1(x1, x2, . . . ) =
x1 + x3

4
and g2(x1, x2, . . . ) =

x2 + x4

4
,

we have ‖g1‖ = ‖g2‖ =
q√2
4

. Let L1, L2 be Lipschitz constants of h1, h2, respectively.

Then L1 = L2 ≤ 1 and q > 1, so L1 ‖g1‖ + L2 ‖g2‖ ≤ 2 q√2
4

< 1. By Corollary 3.7,

T is functionally uniformly lipschitzian. It is easy to see that

(1, 1, 8, 8, 0, 0, . . . ), (0, 0, 0, 0, . . . ) ∈ F (T ),

but

(
1

4
,
1

4
, 2, 2, 0, 0, . . . ) /∈ F (T ).

Hence, F(T) is not convex. Since∥∥∥∥(
1

4
,
1

4
, 2, 2, 0, . . . )− (0, 0, . . . )

∥∥∥∥
p

=

∥∥∥∥(
1

4
,
1

4
, 2, 2, 0, . . . )

∥∥∥∥
p

=
p

√
2

4p
+ 2p+1

<
p

√
2(

9

16
)p + 2p+1

=

∥∥∥∥(
9

16
,

9

16
, 2, 2, 0, . . . )− (0, 0, . . . )

∥∥∥∥
p

=

∥∥∥∥T (
1

4
,
1

4
, 2, 2, 0, . . . )− T (0, 0, . . . )

∥∥∥∥
p

,

we have that T is not nonexpansive.



REFERENCES

[1] P. Chaoha, W. Atiponrat. Virtually Stable Maps and Their Fixed
Point Sets. J. Math. Anal. Appl., 359 (2009) 536-542.

[2] Gerald B. Folland. Real Analysis : Modern Techniques and Their
Applications. Canada: A Wiley-Interscience publication, 1999.

[3] Robert E. Megginson. An Introduction to Banach Space Theory. Grad-
uate Texts in Mathematics vol. 183. New York: Springer-Verlag, 1998.

[4] James R. Munkres. Topology. Massachusetts Institute of Technology: Pren-
tice Hall, Inc., 2000.



32

VITA

Name Mr. Sittichoke Songsa-ard

Date of Birth 30 May 1985

Place of Bitth Bangkok, Thailand

Education B.S.(Mathematics), Chulalongkorn University, 2007

Scholarship Development and Promotion of Science and Technology

talents project (DPST)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction and Preliminaries
	1.1 Topological spaces
	1.2 Banach spaces
	1.3 Weak topology

	Chapter II Weak Continuity
	Chapter III Weak Virtual Stability
	References
	Vita

