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CHAPTER I
INTRODUCTIO D PRELIMINARIES

Definition 1.1. A( ¢ is ac .;7 " of subset of X having

the following prop

1. @ and X ar

3. the intersectiondt - fang telst ection of T is in T .

A topological spac tdEre d ‘ -t ing of a set X and a
topology 7 on X, but we often-on ..‘i': m.i A on of 7 if no confusion will
arise. { -"' e

Definition 1.2. Let Y be : ,_c,; ace (X, Tx). We define the

topology Ty o ,_‘;;,_ . 7 L ¢all it the subspace
topology. A ,r‘

Definition 1.3. @'(X, be a topological space and O L: bset of X. We say
that

1 Oﬂp‘ﬂfﬁiﬂgﬂ HRINYINT

2. 0 1is osed if X — O is open

YRS TN A

Définition 1.4. Let (X, T) be a topological space and A C X. The closure of A
is defined as the intersection of all closed sets (in X ) containing A. The closure

of A is denoted by A.



Note that : A is the smallest closed set containing A.

Definition 1.5. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

1. for each x € X, there is at leas “ ¢ hasis clement B containing .

2. if x belongs to the intersect "y b WS By and By , then there

1s a basis element3s aming uchﬁ N Bs.

If B satisfies these two 7 j \":\ w T generated by
B as follows: A s Pset Q

Open. 1 ‘ 18, to be an element
of T) if for each \;S:\\ 5 such that v € B C U.
Equivalentlly, T is thefeollg - ,, clements.
Definition 1.6. A sub B * llection of subset of X

ubbasis S is defined

f elements of S

whose union equals

to be the collection T

Note that : The coll onsof all-finite eetior ‘f elements of S is a basis
for a topology T . I = :
Definition 1.7.74 o T T DD

)

roperties : 7 jﬂ

having the followz

RUATARE
QAT I i

Ba(z,e) ={y € X : d(z,y) < €}.



It is called the e-ball centered at x. Sometimes we omit the metric d from the

notation and write this ball simply as B(z,€), when no confusion will arise.

Example 1.8. Let d: R x R — R be defined by d(z,y) = |v — y| for all x.y € R.

Then d is a metric on R. Now we.say t s @ euclidean metric on R, denoted

by d. //f

e set

Definition 1.9. If d 1s the collection of all e-balls

By(x,€), for x € X and basis for a topelogy no X, called the metric

topology induced by d. .

Definition 1.10. If ,\ \\, metrizable if there
w“h- A metric space (X,d) is
A

exists a metric d 1 ithe tapeloc

)

a metrizable space th a.spack :
@ e |

,,, es the topology of X.

Definition 1.11. A ' a sct A i cd a partial order relation if

3. Ifa<p and f

-
A directed set J i ) cﬂ each pair «, 3 of
elements of J, theﬁems g the "irli érty that o <~ and
e
B <.

'3
o ﬁﬂﬁﬂﬂﬁ %JWEJE’] 13
Deﬁnitiom. 3. Let X be a topological space. A met in X is a function f from

a directed set A to X. If a € A, e usually denotesf(a) by x,. We @efiote the

ARSI RN TR VRS-

greover if A= en (x, )nen 18 called a sequence.

The net (x,) is said to converge to the point x of X (written x, — x) if for
each neighborhood U of x, there exists 3 € A such that for all v > 3, then x, € U.



Definition 1.14. Let (X, d) be a metric space. A sequence (x,) of points of X is
said to be a Cauchy sequence in (X,d) if it has the property that given ¢ > 0,

there is an integer N such that

d(zp, Tpm)

The metric space (X, d) is said i he. comy ot if every Cauchy sequence in X

converges to some point i

Example 1.15. Let

Every convergent seque

Definition 1.16. Le
A mapping T : X
the set T-(V)) = {

open subset V of Y,

Theorem 1.17 ([4], p spaces; let T : X — Y.

Then the followings are
1. T 1s continuousr
2. For every open set
3. For every subset A of X-

F_-.__'-I—-‘ls..-l__-

4. For every # ...................... g ‘

5. For each x Eﬂan ec
of x such tha

e k) 1 Eﬁ"ﬂ ININEAFT

Deﬁmtlon 1.18. A topological space X is said to beﬂausdorﬁ' if each mm y of

IRTIIN TR UN TN TR E

Définition 1.19. Suppose that one-point sets are closed in X. Then X is said to

, the [J s a neighborhood U
i

be regular if for each pair consisting of a point x and a closed set B disjoint from

x, there exist disjoint open sets containing x and B, respectively.



Definition 1.20. Suppose that one-point sets are closed in X. Then X is said
to be completely regular if for each pair consistiong of a point x and a closed

set B disjoint from x, there exists a continuous mapping f : X — [0,1] such that

f(x) =0 and f(y) =

1 linear space) over R

meXtoXthat

orallx € X.

6. MNpx) = }‘orall)\ weR andx € X.

AR N0 ...,

subset of X. We say thatY is a subspace of X sz eachx,y €Y an ﬁ e R,

RN IAUNANNEN AL

Définition 1.24. A mapping I|| from a vector space X to R is called a norm if

\2

1. ||z|| = 0 for all x € X; the equality holds if and only if x = 0.



2 e+ yll < llzll+ llyll for all w,y € X.

3. ||ax|| = |a|||z|| for alla € R and z € X.

We say that X with a norm ||-|| is @ nermed space (or normed vector space),

denoted by (X, ||-|])-

- X -;‘: ,—
Proposition 1.25. Let djy : X x X JY) = .
dj. is a metric on X, dis a mietric wnm every normed space
is a metric space. : -
Example 1.26. "\,‘ :cz|p < oo} and [|-[], :

¢, — R be define JE” VT a wector space (over R)

ied space.

Definition 1.27. A ngrmed v ' \.~ wach space if (X,d.)
is a complete metri€ spae X, the series Y ;= x; (or
S a,) is said to be sumpmable of partial sum (Y, x;) converges to

some point in X, and it is calle a--.--i"- . "fi able if Y ||z, < co.
| s

Theorem 1.28 ([2], p. 152). space X is complete if and only if

every absolutely summab

Example 1.29 ;w—-—-—-———-——' ' {.‘-"" e {, 1s a Banach

space.

|

Definition 1.30. et X and Y be normed vector spaces andT - X =Y. We

saythat nea rator if for each x,y € X and
AT ST W

linear fu tzonal

G}Wﬁ PRI LN BT

PropOSItlon 1.31 (2], p. 153). If X and Y are normed vector spaces and T :

X — Y a linear mapping, the following are equivalent :



1. T is continuous;
2. T 1s continuous at 0;

3. T is bounded.

Definition 1.32. If X and, naces, we denote the space of
all bounded linear mapz’ i hus L(X,Y) is a vector
space. Let ||| : L —

for all T € L(X,VY). e Il £ -momm On ( d called the operator

d vector space. In

particular, The space & R) bf wear fu "x X is called the dual

1s a Banach space.

Example 1.34. Let 1 < p < oo and -t N
Then the dual sp ~_;_,____._—__Z - for each f € (£,)*
there exists (x,). @ L, ly and || f[| =

)l 1

Definition 1.35. Le&X be a Hausdorff space and T : X — X a continuous

TRARANET INEINT
QWTMFT‘T&WW‘TDWWH i

WhenF( ) # D, let T : C(T) — F(T) be defined by Tz = lim, .. T"x for all
v e C(T).



Definition 1.36. Let (X, d) and (Y, p) be metric spaces and T : X — Y.
T 45 said to be

1. nonexpansive if p(Tx,Ty) < d(z,y) for any z,y € X;

4. uniformly -ha v W C Y aud there is k > 0 such that
p(Trz, Tmy) <l

Definition 1.37. ucmply Hausdorff space. and T = X — X a
continuous mapping. SN v ually T-stable if for
each neighborhood of © and an increasing
sequence (ky) of poéz’tz’ alln € N. We simply

call T virtually stable @ i od point-of d is :\ ually T-stable.

Theorem 1.38. [1] Suppose - “space and T : X — X a selfmap-
ping with F(T) # &. If T isa Iy stat 1> is continuous.

1.3 Weak 7 ' " 7

Tl

Proposition 1.3@3] p. 203). Let X be a set and let F be ’J famaly of mappings

and { Yi, Ty) : f € E} Hamzly of topologzﬁspaces such that for each f e F,

o AN N Y

the followings hold :

VR IR IRURIAINYINY

2. If T s any topology for X such that for each f € F, f is a continuous
mapping from (X, T) into (Yy,Ty), then Tr C T.



The topology Tr has {f~*(U) : f € F,U € T;} as a subbasis, and it is called the
weak topology on X induced by F.

Definition 1.40. Let X be a normed space. Then the topology for X induced
by the dual space of X (X*) is the weak topology on X and also the topology

reqular.

Definition 1.44. Lt X be alnorm 1. 5pac and O a subset of X. We say that

1. O is weakly ope ‘ if b?'l‘o%; he wea u )log

2. O is weakly close —z'f w

3. Forx € X, O is a rf',la:rll‘

contamm v C

x if O 1s a weak open set

Definition 1.45 V n J : X =Y is said
to be weakly continuous (or e m uou%/ for each weak open

subset V of Y, the set T (V) is a weak open subset of X.

ﬂ UHANYNINYINS, ...

contmuous and only if for any f € Y™, foT is aﬂfakly continuous Wtzonal
ARIR NIRRT, VIR
mipping. A fized point x of T is said to be weakly virtually T-stable if for

each weak neighborhood U of x, there exist a weak neighborhood V' of x and an

increasing sequence (k) of positive integers such that T* (V) C U for all n € N.



10

We simply call T weakly virtually stable if every fized point of T is weakly
virtually T-stable.

Proposition 1.48 ([3], p. 212). A linear functional on a normed space is contin-

only if it s continuous with respect

éinsional Banach space X

here.is o unique sequence (o) of
\& N

.. . .,\*"* hen e; € £, for all
wder l, for all 1 <p < oo.

k- ‘. i 7 al
PN\
z' hatder be an infinite-dimensional
AN
- a R aS1? X

space, so there is a

ach @ in A

ay ‘ at X has a normalized

Schauder basis if there is P forX such that |le;|| = 1 for

—
any v € N. ﬁ' '“"“"

Definition 1.53. " hels=be-an=infinite=dimensions ""“""‘_Er ;-' with a Schauder
basis (x,). For edch, pe ate functional x}, for

) is the mappin QT Oy 170 into R. jﬂ
L un

space ZS

Theorem 1.54. [3] lﬁaﬂoordznate functiotad associated with a basis for Banach

EJ“%WHVI?W g1
9 ‘W'] AINIUNRIINYIANY



CHAPTER II
WEAK CONTINUITY

: @rmly) continuous. How-

4!!,,;;, 9,..)]l5,0,0,...) for

It is well-known that ever --":;::
ever, if T : f5 — /{5 definee
(1, 22,...) € la, then T ontlnuous Therefore,
being lipschitzian does u his chapter, we will
present some condit@ons that gu: i . \ w u ’

Thrughout the cha rr Y TPl and T: X = b.

Definition 2.1. 'e Sq

there exist N € N ¢

) 'ian if for each f in E*

for any x,y € X.

Proposition 2.2: If1 el d ]R then Ty + Ty
and a - T} "’v: - lepeh . ) ‘

Proof. 1t is easy to gee that _ -?"' n because for each

fe B f(Ty + o)) = f(Tlx) + f(Thz) and f(a Tiz) = @ f(Thz). O

Proof. Letq an Wea nelg hborhood of T'z. 1thout oss of generahty,

we may assume that

QW’]NH?\W NAINEIa
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for some € > 0 and fi, fa, .., fn € E*. Since T is functionally lipschitzian, for each

i=1,...,n there exist N; € N and g;1,...,9an,) € E* such that

S Lo (e — )

is a weak neighborhood g ¢ 7 et y € V. Then
\ N
ie., Ty € U. Hence \ O
In the next theorex il sh 3 . on Al e dlmensmn function-

ally lipschitzian and lipsghitzian, conditions are €q . .

Theorem 2.4. Suppose that E i ] “Then T 1is functionally lips-

g

chitzian if and only z'fT" lipselitz.

Proof. Let {e1,...,en} be 'é'_«, i

(=) Assume that 7' i

—Z|e Ta:—Ty

s L8 FRUNT WD ARG

and g(“)7 ’...,g(zK)EE suchthat

QWW@*&?‘F‘E&WWWHW@H

Th n
N K;
1Tz =Tyl < O ggm|) Iz =yl

i=1 m=1
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Thus T is lipschitzian.
(<) Assume that T is lipschitzian and let f € E* and z,y € X.
Since T is lipschitzian, there is L > 0 such that

Then

Hence T is functiona O

When F is infinite ¢ gives some criteria for

being functionally lip

Theorem 2.5. Suppose that -'-‘»-_;‘E-J e-d: onal with a normalized Schauder
basis (e,). Then T is func 'f;f,ra ipschitz

N
1. There exist N €N g1, 9o gn € F—and (e }a-sequeiige of non-negative

real numbe F 7

.,I
!

e of the followings holds :

e} (T = Ty)l < i D _lgs( = )

SAUEINENINEINT
ARSI INgNaE

j=1

and for each i > k, el oT =a-e +b; for some a,b; € R.
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Proof. (1) For each f € E* and x,y € X, we have

[f (T = Ty)| < [FI[ Tz = Ty]|

and

Ta:—Tye”Hf e;(Tx —Ty)e;)|

ﬂuﬂgnamwg’lm .

7, k+1

9 ﬁﬂﬂﬁﬁ!ﬂﬂd HAMHAE B

+la-f

Hence T is functionally lipschitzian. 0
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Corollary 2.6. Suppose that E is infinite dimensional with a normalized Schauder
basis (e,). If there exist N € N, ¢1,...,g8 € E* and for each i € N, there
are lipschitzian self-mappings hgy, ..., ha Ny of R whose Lipschitz constants are

Ly, -5 Ly, respectively, such that

1onally lipschitzian.

and Zmax{L(i‘ 4
i=1

Proof. Let i € N, 2

(z —y)]

y)l
By Theorem 2.5(1), T" is O
The followings are some expl functionally lipschitzian (and

hence, weakly continuo
N

Example 2.7. Lot furied by

o 3 &nwwwéﬁeﬁi
T(xy,x9,...) T1@1,$U2, . T2;v xz,... ,
ama»aﬂwum'mma ¢

Notice that for each x € £,
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o0

r .
Tz = Z (22i—1 Sln(gl( ))ezi—1 + ﬁ|92( )|€22‘).
i=1
Since
00 1 .!ltl i i 1 '
Z 21 s sin(gi1(z))ezi1 + sloa(@)lex| S| sin(g1(z))[ + 22z|gQ( )|)
i=1 .~ h F AL
(5 P
Z (221_ sin(gi(x)) ; , s0l summoable series of {
i=1 i ~— s
Then Tx € £,. By Theo s| fbr alli-div

for any (z1, s, . .. . J o i) 3 \ June zonally lipschitzian by

letting k =2, N| =

Example 2.9. Let 1 <p < os'ﬁé-

,e‘-"ﬁ* .«*

rv‘"
_—

for any (.1'1,.’172, ‘rh: # y lipschitzian by

lettzng k= 2, Nl Fi . :I!i"
i ' EAF |
1 1 * 1
biro = 7 for‘m 1eN, ¢ = 3 and ¢go = 62 +e}).
s UH AN AT WEIAT
&f— + |x3+x4 zs| o, if s odd ;

QW]ﬁWﬂ‘i LHEATNHAA Y

fo any (z1,22,...) € Ly. Let T : {, — £, be defined by

T({L’l,.’L'g, . ) = (Tl(xl,x2, e ),TQ(.’L‘l,J)z, e ), .. )
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for any (z1,22,...) €L,. Let N=2,1 €N, g1 =€}, go = e} + €} — ef,

. 1 1 .
h(2¢—1,1) = 222 S, h(Zi—l,Z) = WH’ h(Zi,l) = %H’ h(2i,2) = % S .

eaASlY

[ to see that

4

AUEINENINYINS
QRN ITUUMIN AL




CHAPTER III
WEAK VI STABILITY

Let E be a (real) Bar_la E —% : é a self-mapping with

F(T) # @. It is proved in | At nonexpansiveness.is a condition that guarantees

the strong virtual stabilitys T &his 1, we will present some conditions on 7T’

s

1. T is functionally amni " Zia ki ich f € E* there exist

2. T is functionally uniformly q st S itzian if for each f € E* there

exist N EN and gi5¢ r.any n € N,

for any y € ﬂnd x LI-!

Notice that every éunctlonally umformly.li;)schltman mapping is functionally

NN
Theorelﬁu function ﬂm? as ﬂlztz a eakly contin-

uous, then T is weakly virtually stable.

RN T AT AEE B

1id U a weak neighborhood of z. Without loss of generality, we may assume that

n

U =71 (fil2) = e fil) +

i=1
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for some € > 0 and fi, fo,..., fn € E*. Since T is functionally uniformly quasi-

lipschitzian, for each 7 there exist N; € N and g 1, ..., gu,n,) € E* such that

N;

is a weak neighbor __Tosec tha sach 71"EwD I"(V)CU,letneN
and y € V. Then ‘ —

| fi(T"
all natural numbers. O

Corollary 3.3. If LT 1s weakly virtually

stable.

Proof. We have T is funcgionall; amiformly i=lipe itzian and functionally lip-

chitzian. Then T is functionally uniform] __ 1 lipchitzian and weakly continuous,

by Theorem 3.2, T is weakly-virtaally stab O
In the next th i :.r" ension, function-

ally uniformly ‘f are equivalent.

- Il
Theorem 3.4. Suppose that - dimensional Ba- h space with a nor-

malized basis (eq, 62,. . Then T is functzonally uniformly lipschitzian if and

et B Aol HEJJ(J ANHIDT

LetnENandx y € X. Then

oLl ASATUNRIINYINY

B
=) (T —1Ty)|.
i=1
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Since T is functionally uniformly lipschitzian, for each ¢ = 1,2,..., N, there exist

K; € Nand gg1), 96,2)s - - -» 96,k:) € E* such that for all n € N

Ki Ki
le; (T = T™y)| <Y g (@ = 0)| < O [lgam ) 1z =yl
m=1 i

(<) Assume that T i
Let f € E*. Since T is s [ > 0 such that for each

e

Hence T is fungtiot 0

When F is infinite § some criteria for

being functionally :.‘\! iformly lipsel i |

Theorem 3.5. Suppoie that E is infinite dzwszonal with a normalized Schauder

ol e"Ff‘lJ”Eif‘”J neraweIngd

1. There exist N € N, g1, g9, .. ‘gN € E* and (eg) a sequence of nonnegative

AN EANISNE1A Y

le;(T"x — T"y) |<ch|ng—

for any x,y € X .
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2. There exists k € N such that for eachi < k, there exist N; and g1y, - - -, gi,n;) €
E* such that for anyn € N and z,y € X

N;

le; (T —T"yY)| < > 9.5 —y)|

and for each i >k, €; Ol <1 andb; € R.

Proof. (1) For each f -'.;au-;-:- nd- LY E ;—m’m's ave,

Hence T is functionally unlfor J,

(2) For each f

(S @ SNl - e

i=k+1

Lk

< [a"[ (1 Ze T =y ez)|+|f e (x —yei)])

ﬂumnﬂmwmm
ammnimumfmmaﬂ
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Hence T is functiona O
Corollary 3.6. Suppese that B is i fimitedimens: o normalized Schauder
basis (e,). If there exi gy o each i € N, there
are lipschitzian self-mappi 05 | (i,),"_ T FR wh e Lipschitz constants are
Ly, -, Lawy, respct" Ly A, ,,..,
N f/ ‘ - N
e;oT =Y hij o gjl IF pi=L o NDY gl <1,
=1 k=1
then T is functionally unifos “ﬁ“:m Jid
Proof. Let A; = ...‘:ﬁzz.‘;m::::'_w {I. Claim that for

N A
each i,n € N, =

| ey
I M
ol

lef (T"x — Ty <A ZA )BT 1Z|gkx— y)| for any z,y € X.

o fUE TRENINGINT
AT NUETIER QoL TTate

oo

N
ler(T™a = T™y)| < A0 A)" ' B™ Y gkl — v)
k=1

i=1
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Then

0o N
lef (T e — T Hy)| < A0 A" BT gk(Tx — Ty))|
=1 k=1

BB Tx - Ty

By lei(Tz — Ty)| |leill

By the claim and the

le; (T"z — 1"y, . e " for any =,y € X.
' A ‘
Hence T' is functionally uniformiy-lipschitzi v Theorem 3.5(1). O
oA
Corollary 3.7. § ) a gormalized Schauder
basis (ey,). If thi “’—-_'_ﬁ-_—'_- ‘ re g; € E* and a
lipschitzian self "'—. . U ; i) such that

' .un‘

e;oT =h ogz|X

::;f;:@uﬂﬁmm; LN
9 AINTUNNINGIA Y
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Proof. Let i < k and B = Z;?:l L;|lg;|l. Claim that for each n > 2 and z,y € X,

k
€ ("% = T"y)| < Li i (B"-22L~|gj v =)

Since

Assume that

(T —T) J,<L||gﬁ||(Bm2ZL|gg )l

ﬂuﬂﬂ‘ﬂlﬁlﬂiﬂﬂﬁﬂi o

I=k+1

ﬂmmnﬁmmﬁ%ﬂmaﬂ

fo some m > 2.
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Then

k
e (T = Ty < Lilgill (B2 Y Lslgs (T — Ty)|

+ la|™ Lilgi( Z ez (z —y)er)|
I=k+1

ﬂuﬂamawﬁmaﬂnﬁ
ammnﬁ%ﬂﬂﬁ%%mﬁ’ﬂ

+ |a|™L; |gZ e (x —
I=k+1

By the induction hypothesis, we have the claim.
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Also, we have

leX(Tx — Ty)| < Lilgi(z — y)| for any =,y € X.

Since
(@]

|gi( Z e (z —
I=k+1
B <1 and |a| <1, for cael

le; (T"e = T"y)| <

K3

[ . {5
D ZL (3 oo~ o)+l )

ﬂuagmamwmm
A mﬁﬁ“ﬁm AN2088.

and hence, are weakly virtually stable by Corollary 3.3) mappings.

Notice that such mappings T' may not be nonexpansive.
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Example 3.8. Let T : {5 — {5 be defined by

) . (l.’L‘l +£L’3| |£E2 +JJ4|

T(CL’l,CBQ,... 3 ’ 3 ,CL'3,$4,ZL'5,.--)

for any (z1,22,...) € {o. 8, T is functionally lipschitzian. Let

k=2, a=1, bjyo=1 for anyi

1
g1 = g(
Since
91(.'171,.7)2,' (.T2—|—.7)4),
we have ||g1|| = || g2 1, ha, respectively.

Then Ly = Ly < By Corollary 3.7, T is

Suppose T'(x1, z2, . oint set of T.

Then & 1'
o=+l 2o EEECTEEY N L
922 = (71 + 23)* - p,?::: 4-

0= (4.’1,’1 T )

Therefore, we have

_ AuYInenInes
QRIRINTURATINY 1N
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Therefore, F(T) is not convex. Moreover, since

101,1,8,8,0,...) — (0,0,..)[l, = I(1,1,8,8,0,...)]

we have T is not Mo

Example 3.9. Let ) oM ,. N}y andT: X — X
be defined by ; : LA N

T($1,[L’2, .

for any (x1,29,...) € [2? ‘

1 == - 1
bivo = r for anyi e N 91 S-gkEtes) (e5+ey) and  hy(x) = he(z) = |z|.
Since

g1(@y, 37 )= 3 (22 + 24),

we have ||g1|| = || g2l = %2, Let Ll, Ly be szschztz constanis® f hy, ha, Tespectively.
Then Ly 1 §C& | €22 < 1. By Corollary 3.7, T is
AN
Suppose T (1, 22, .. for finding the ﬁxed pomt set ofT Then

TR ﬁ“ﬂﬂ *ﬁﬁm ) Tﬁ’El '1 i

It follows that F(T 1,=,...)} and hence is convet.

(24 2
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Let x = (x1,29,... ),y = (Y1,¥2,...) € X.
Then

I

Mw4wm=( s+l = Iy g+ 5 o+l = o+ gl

D1+ﬂ VAP A g + (01 + 10
L1 t 1 i : . 1
: ﬂyz + y4)|] 2

gt 73) (11 + y3)

Ys + T3y1 + T3y3)
1

N RN 2
P20 --a._____. TaYo + £E4y4)]

L f f | 4 ,;--': ' L 711 3 i + 2$1$3 + 2y1y3
'\ + 2womwy + 2y2y4]

N|=

= 1 . —yl)
(hiins - 2 , !
S Yt 4)(Z2 —3/2)]
A TR 1
1 s ol .q._ 5
A. , o 2 4+y4|2]2

= ;‘ |

. i )
Therefore, T is no : DANSIVE.
3 i¥

Example 3.10. Let h‘ < oo and h : R be defined by

FI‘LJEJ NUNTNENT

h(z) =<z ,zf0‘§x<1 foranymeR

ARAYTUANINGIAY

— 0, be deﬁned by

T+ To +x
T(xl,xQ,...):<h( 14 3), h( 24 4),903,:174,3:5,...)
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for any (z1,22,...) € . Let g =5 >1and k=2, a=1, bys =1 for any
i €N,
hy = hy = h, 91=61 = and 922621—64

Since
) . To + g

gl($1,$2,--- 4 9

we have |lg1]| = [|ga]| = 42

ts of hy, hs, respectively.
Then Ly = Ly <1 and q

- < 1. By Corollary 3.7,

T is functionally unifo

but

Hence, F(T) is not conves: Si 7

11 4
H(Z,Z,2,2,0,...j (030, ...)

~2,2,0,...)=T(0,0,...)

44

“’”““wawé’wmm
ammnimumfmmaﬂ
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