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CHAPTER |
INTRODUCTION

This chapter presents the motivation, objectives, scopes, benefit of the

work, and research methodology of the thesis.

1.1 Motivation

Nowadays, there are many antiretroviral drugs but HIV-1 therapies are
still not very successful. The limitation of treatment success is the decrease of the viral
sensitivity to the drug called drug resistance. The cause of drug resistance is the
mutations in the reverse transcriptase and protease enzymes of HIV-1. In addition, it has
been estimated that every possible single point mutation occurs between 10" and 10°
times per day in an untreated HIV-1 infected individual and that double mutants also
occur commonly (Coffin, 1995). Thus resistance testing plays an important role in
managing HIV infections. In a medical area, there are two methods for resistance testing:
genotyping and phenotyping.

Genotypic resistance testing can be performed by scanning the viral
genome for resistance-associated mutations. The final results of this method provide a
prediction of susceptibility, usually classified into two or more groups (e.g. sensitive,
resistant or intermediate). The phenotypic testing can be performed by measuring viral
activity in the presence or absence of drug. The results of phenotypic testing are usually
reported as resistance factors (real values) called fold change. The fold change refers to
the fraction between 50% inhibitory drug concentration value (IC,,) of the patient’s virus
to the 1C,, value of the 'standardized wild type virus (ICq

/1Cq4 . However, the

patient) reference))

advantages and drawbacks of these methods are different. The advantages of
genotyping. are faster and cheaper than phenotyping. On the other hand, the results of
phenotypic method are easier to interpret than those of genotypic testing.

At present, there are public datasets of genotype-phenotype available on
the websites: Stanford HIV RT and Protease Sequence Database, and thus a learning
algorithm is an appropriate way to construct the model for predicting the phenotypic

results. In model construction process (or learning process), this approach uses



genotype data as inputs and it produces phenotype data as the output. One of the
advantages of using the learning algorithm to construct the model instead of phenotypic
testing is the prediction time. Although both methods of phenotypic testing and the
learning algorithm provide the same output in the format of the fold change value, the
learning algorithm takes less time than phenotypic testing in prediction. It takes a few
seconds to produce a result by using the model from the learning algorithm, whereas it
takes several weeks for phenotypic testing. Moreover, the model generated from a
learning algorithm helps reduce the cost of phenotypic testing. However, the
performance of the learning algorithm depends on the amount of phenotypic training
data. The more phenotypic data, the more accuracy of the learning algorithm gains.

This thesis applies the learning algorithms to construct the models for
predicting HIV-1 phenotypic drug resistance from HIV-1 genotypic data. In addition, this
thesis studies the predictive behavior of each classification model. Finally, a new
dynamic classifier combination method is proposed to construct the composite classifier

from these single models.

1.2 Objectives

The objectives of this thesis are as follows:

1. Apply four learning algorithms, i.e. the Support Vector Machine (SVM), the Radial
Basis Function Network (the RBF network), k-Nearest Neighbor (k-NN), and
Classification based on Association (CBA) to construct the models for classifying

HIV-1 drug resistance from genotypic data.

2. Study-the predictive behavior offeach classification: model constructed by these

learning algorithms.

3. Propose a new classifier combination method.



1.3 Scopes

The scopes of this thesis are as follows:

. Construct the models to classify drug resistance into two classes: resistant and

susceptible for 15 drugs separately (6 Protease Inhibitors (Pls), 6 Nucleoside Reverse
Transcriptase Inhibitors (NRTIs), and 3 Non-Nucleoside Reverse Transcriptase
Inhibitors (NNRTIS)).

Assess the predictive performance of the proposed methods by using 10-fold cross-
validation technique and compare to the genotypic HIV-1 resistance interpretation
system and other existing methods.

Develop a method for classifier combination and compare the predictive accuracy of
the proposed method with other classifier combination methods such as majority

voting and Naive Bayes.

1.4 Benefit of the Work

This thesis provides a new ensemble learning method for the application

of the prediction of HIV-1 phenotypic drug resistance from HIV-1 genotypic data that

yields a better predictive performance than existing methods.

1.5 Research Methodology

O oy T

. Study HIV-1 structure, HIV-1 drug resistance, and HIV-1 drug resistance testing.

. Review existing researches on the prediction of phenotypic drug resistance from

HIV-1 genotypes.

Study fundamental theories of learning algorithms and feature subset selection
techniques.

Collect-and prepare.initial datasets.

Set up experiments and test for single classifiers.

Analyze the result of single classifiers.

Develop a new classifier combination method.

Analyze the result of the ensemble learning and make conclusions.



1.6 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter Il describes
background of the type 1 human immunodeficiency virus (HIV-1) and reviews the
HIV-1 drug resistance prediction applications. In addition, the theoretical backgrounds
about the learning algorithms, feature selection techniques, and classifier combination
methods used in this thesis are described. In Chapter lll, we explain the processes of
model construction by using single classifiers, i.e. CBA, SVM, the RBF network, and k-
NN. Chapter IV presents the new algorithm for classifier combination.

Chapter V shows the experimental results. In the first part of this chapter,
we compare the predictive performance of four learning algorithms with the online drug
resistance prediction systems such as HIVdb and Geno2Pheno. In addition, the
predictive behaviors of each learning algorithm are analyzed in this chapter. For the
latter part of this chapter, the comparison of the predictive performance between the
proposed classifier combination method and other methods is demonstrated. Then the
discussion of how our proposed method enhances the predictive performance of the
single classifiers is presented at the end of this chapter. Finally, the conclusion of this

research is presented in Chapter VI.



CHAPTER I

BACKGROUND AND LITERATURE REVIEW

The context of this chapter is divided into two main sections. The
background of the type 1 human immunodeficiency virus (HIV-1) is described in the first
section. In addition, the theoretical backgrounds about the learning algorithms, feature
selection techniques used in this thesis, and the background of a composite classifier
are explained. For the latter section, the literature reviews of the HIV-1 drug resistance
prediction applications are reported. Moreover, applications in bioinformatics area

which use a classifier combination method are reviewed.

2.1 HIV-1 Background

This section explains the general descriptions of HIV-1 which are HIV-1

life cycle, antiretroviral agents, and drug resistance testing.

2.1.1 HIV-1 Life Cycle

There are six steps of HIV-1 life cycle as shown in Figure 2.1.

Figure 2.1: HIV-1 life cycle (Wikipedia, 2008).



2.1.1.1 Binding

HIV begins its infection of a susceptible host cell by binding to the CD4+
receptor on the host cell. When HIV binds to a CD4+ surface receptor, it activates other
proteins on the cell’s surface, allowing the HIV envelope to fuse to the outside of the cell.
After binding process, the viral capsid which contains the RNA and important enzyme, is

released into the host cell.

2.1.1.2 Reverse Transcription

At this step, HIV is stabilized by copying RNA into DNA and inserting it
into the host cell’'s chromosomes. This means the virus can perform more subtle
functions by using the host transcription machinery. The virus generates DNA from the

HIV RNA using the reverse transcriptase enzyme to perform reverse transcription.

2.1.1.3 Integration

The viral DNA is carried to the host cell's nucleus. After that, the viral
DNA must be integrated into the host cell DNA using the integrase enzyme. This new
DNA is called proviral DNA. If the proviral DNA becomes integrated into the host cell’'s
DNA the cell is now- fully-infected but not actively producing HIV proteins. This is the

latent stage of an HIV infection.

2.1.1.4 Transcription

Once HIV's genetic material is inside the host cell’s nucleus, it directs the
cell to produce new HIV. The strands of viral DNA in the nucleus separate and special
enzyme create.a complementary.strand of genetic. material .called messenger RNA or

MRNA.



2.1.1.5 Translation

The mRNA carries instructions for making new viral proteins from the
nucleus to a kind of workshop in the cell. Each section of the mRNA corresponds to a
protein building block for making a part of HIV. As each mRNA strand is processed, a
corresponding string of proteins is made. This process continues until the mRNA strand

has been transformed into new viral proteins needed to make a new virus.

2.1.1.6 Viral Assembly and Maturation

The final step begins with the assembly of new virus. Long strings of
proteins are cut off by protease enzyme. These proteins serve a variety of functions;
some become structural of new HIV, while others become enzymes.

Once the new viral particles are assembled, they bud off the host cell,
and create a new virus. The virus then enters the maturation stage, which involves the
processing of viral proteins. Maturation is the final step in the process and is required for
the virus to become infectious. With viral assembly and maturation complete, the virus is

able to infect new cells. Each infected cell can produce a lot of new viruses.

2.1.2 Antiretroviral for HIV-1

There are three classes of antiretroviral drugs that we used in our thesis:
protease inhibitors (Pls), nucleoside reverse transcriptase inhibitors (NRTIs), and non-

nucleoside reverse transcriptase inhibitors (NNRTIs).

2.1.2.1 Nucleoside Reverse Transcriptase Inhibitors (NRTIs)

The first class of drugs approved by the FDA is NRTI. There are several
drugs in the NRTI class such-as zidovudine (AZT), didanosine (ddl), zalcitabine (ddC),
stavudine (d4T), lamivudine (3TC), and abacavir (ABC). NRTIs work by binding to
reverse transcriptase enzyme in the reverse transcription step (step 2). NRTIs contain
faulty versions of the building blocks used by reverse transcriptase to convert RNA to
DNA. When reverse transcriptase uses these faulty building blocks, the new DNA

cannot be built correctly (Seattle Treatment Education Project, May, 2000).



2.1.2.2 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

There are currently three drugs approved for use in this class: nevirapine
(NVP), delavirdine (DLV), and efavirenz (EFV). NNRTIs work by attaching themselves to
reverse transcriptase enzyme to prevent the enzyme from converting RNA to DNA. “In
turn, HIV’'s genetic material cannot be incorporated into the healthy genetic material of
the cell, and prevents the cell from producing new virus” (Seattle Treatment Education
Project, June, 2000). However NNRTIs work in is the same point in the life cycle

interfered with by NRTIs. The difference is that NNRTIs simply do it in a different way.

2.1.2.3 Protease Inhibitors (Pls)

Currently, there are eight approved protease inhibitors which are amprenavir
(APV), atazanavir (ATV), indinavir (IDV), lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV),
saquinavir (SQV), and fosamprenavir (FPV). Pls work by blocking the activity of the
protease enzyme in viral assembly step (step 6). When the Pls bind to the protease
enzyme, the new viruses still leave the cell, but they are unable to infect other cells

(James and Pharm, 2005).

2.1.3 Resistance Testing

“Human immunodeficiency virus or HIV is a retrovirus that causes Acquired
Immune Deficiency Syndrome (AIDS), a condition in which the immune system begins to
fail, leading to life-threatening opportunistic infections” (Wikipedia). HIV-1 is one species
of human-infecting HIV. It is thought to have originated in southern Cameroon after
jumping from wild. chimpanzees to humans during the twentieth century. HIV-1 is the
most virulent since it is easily transmitted and.is the cause of the majority of HIV infection
globally.

The objective of the antiretroviral therapy is to prevent disease progression and
prolong survival, while maintaining quality of life. It is expected that long-term
nonprogressive will be achieved by reducing plasma viral load as much as possible for

as long as possible. The use of combinations of antiretrovirals with no overlapping



toxicity and demonstrated antiviral synergy is recommended to maximize the duration of
the antiviral response (Yeni, et al., 2002).

Although there are many antiretroviral drugs, HIV-1 therapies are still not very
successful. The limitation of treatment success is the decrease of the viral sensitivity to
the drug called drug resistance. The cause of drug resistance is the mutations in the
reverse transcriptase (RT) and protease enzymes of HIV-1. In addition, “it has been
estimated that every possible single point mutation occurs between 10" and 10° times
per day in an untreated HIV-1 infected individual and that double mutants also occur
commonly” (Coffin, 1995). Thus resistance testing is an important role in management of
HIV infections.

Currently there are two methodologies for resistance testing: genotyping and

phenotyping (Demeter and Haubrich, 2001).
2.1.3.1 Genotypic Testing

For genotyping, resistance testing can be performed by scanning the
viral genome for resistance-associated mutations. The results of this method are
obtained by using specific software that facilitates the process of sequence alignment
and summarizes codon changes. Interpretation of results from genotypic assays
requires knowledge of the association of specific mutations with either phenotypic
resistance or virologic response to a given drug called rules-based algorithms. These
algorithms provide a prediction of susceptibility, usually classified into two or more

groups (e.g. sensitive, resistant, and intermediate).
2.1.3.2 Phenotypic Testing

The phenotypic testing can be performed by measuring viral activity in
the presence and absence of drug. This method measures the ability of HIV-1 to grow in
the ‘presence of different antiretroviral agents over a fixed period in 'cell culture. The
results of phenotypic testing are usually reported as resistance factors (real value)
called fold change. The fold change refers to the fraction between 50% inhibitory drug

concentration value (IC,;) of the patient’s virus to the IC,, value of the standardized wild
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type virus (IC, ! 1Cyetorencey) - IT the fold change is above a certain value called cutoff,

patient)
the virus is resistant to that drug.

The advantages of genotyping are faster and cheaper than phenotyping
since it is less complex. But the disadvantage of genotyping is the difficulty to translate
the results into a meaningful conclusion about the resistance of the virus to drugs. On
the other hand, the results of phenotypic method are easier to interpret than genotypic
testing because the phenotypic results are represented by a single number for each
drug. However, the phenotypic method procedure is relatively complex, so it takes a

longer time than the genotypic method to produce accurate results from ten days to

several weeks. Moreover, the intricacy of this test also makes it more expensive.
2.2 Theoretical Backgrounds of Learning Algorithms
2.2.1 Association Rule Mining

Association rule mining is a useful technique for discovering correlation
among items. This approach was first introduced for market basket analysis (Agrawal,
Imielinski and Sawami, 1993).
Let I={i,,i,,....,i;} be a set of literals called items and let the database
consist of a set of transactions. An association rule has the form X — Y where X c |, Yc
[, and XNnY=. X is called an antecedence and Y is a consequence of the rule. For
example of a purchases relation, the rule {pen}—>{ink} means “if a pen is purchased in
a transaction, it is likely that ink will also be purchased in that transaction”.
There are two important measures used to select the interesting
association rules:
- Support: The support for a set ‘of litems 'is the percentage of
transactions containing both X and Y-

- Confidence: The confidence for the rule X —> Y is the percentage of
transactions containing X that also contain Y.

Considering the rule {pen}—>{ink} again, if the support of this rule is 75

percent, and the confidence is 95 percent, it can make the observation: “in 75 percent
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of the transactions both a pen and ink are purchased together, and 95 percent of the
transactions that contain a pen also contain ink”.

Association rule mining is the process of generating all interesting rules
that satisfy the user-specified minimum support (minsup) and minimum confidence
(minconf). There are two steps in association rule mining process: discovering frequent

itemsets and generating association rules.

2.2.1.1 Discovering Frequent ltemsets

This process finds all sets of items that have transaction support above
minsup. The support for an itemset is the number of transactions that contain the itemset.
Itemsets satisfying minsup are called frequent itemsets.

For discovering all frequent itemsets, the Apriori algorithm (Agrawal and
Srikant, 1994) is used to generate frequent itemsets. An important property of the Apriori

is that every subset of a frequent itemset must also be a frequent itemset.

) Ly = {large l-itemsets};
2) ford k=2 Lp_1 £ 0; k++ | do begin

3) ) = aprion-gen{L;_1 }; /f New candidates
1) forall tranzactions ¢ € T do begin
5) Uy = subset{Cy, t); ff Candidates contained in ¢
i) forall candidates ¢ € € do
LTl c.connt—4-+;
| &) end
[ 9) Ly = {c € C | c.count > minsup}
10} end

\
! 11} Answer = Uk L

Figure 2.2: The Apriori algorithm (Agrawal and Srikant, 1994).

The Apriori algorithm is shown in-Figure-2.2. Let L, be a set-of frequent k-
itemsets. The word k-itemsets means'an itemset having k items. Let C, be a set of
candidate k-itemsets and D be a set of transactions.

The Apriori algorithm makes multiple passes over the transactions for
finding frequent itemsets. In the first pass, the algorithm counts the support of individual

items and determines which of them are frequent 1-itemsets. A subsequent pass (or
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pass k) consists of two phases. First, the frequent itemsets L, , found in the (k-1)th pass
are used to generate the candidate itemsets C,, using the apriori-gen function. The
apriori-gen function generates the candidate itemsets having k-items by joining frequent
itemsets having k-1 items, and deleting those that contain any subset which is not
frequent. Next, the database is scanned and the support of candidates in C, is counted.
The subset function is used for fast counting of candidates in C,. At the end of the pass,
the algorithm determines which of candidate itemsets are actually frequent itemsets,
and uses them as the seeds for the next pass. This process continues until no new

frequent itemsets are found.
2.2.1.2 Generating Association Rules

Once frequent itemsets are identified, the generation of all possible rules

with the user-specified minconf is straightforward. To generate a candidate rule from

frequent itemset X, X is divided into two itemsets as a form “a —> (X-a)". If the ratio of
support(X) to support(a) of the candidate rule is at least minconf, this process will output

this rule.
2.2.2 Classification Based on Associations (CBA)

Associative classification is the first integrated framework of classification
rule mining and association rule mining (Liu, Hsu and Ma, 1998). The aim of this
framework is to make association rule mining technique applicable to classification tasks.
The integration is done by focusing on a special subset of association rules whose right-
hand-side are restricted to the classification class attribute. The special subset of rules
is called Class Association Rules (CARs). This framework adopts an existing association
rule mining algorithm to mine all the CARs that satisfy the minsup.and minconf
constraints.. « For ‘generating the complete set of 'CARs, Liu, Hsu and Ma (1998)
proposed a new algorithm called Classification Based on Associations (CBA). The CBA
algorithm consists of two parts: a rule generator called CBA-RG and a classifier builder

called CBA-CB.
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2.2.2.1 The CBA-RG Algorithm

Let <condset, y> be a form of a ruleitem, where condset is a set of items,
and yeY is a class label. condsupCount is the number of cases in D that contain the

condset. rulesupCount is the number of cases in D that contain the condset and are

labeled with class y. A general rule from each ruleitem is condset —> y. The support
and confidence of this rule are computed in the same way of an association rule. An
example of a ruleitem is <{(A,1), (B,1)}, (class, 1)>. From this ruleitem, A and B are
attributes. Ruleitems that satisfy minsup are called frequent ruleitems.

The CBA-RG algorithm is based on the Apriori algorithm to find all
ruleitems that have support above minsup. Let k-ruleitem denote a ruleitem whose
condset has k items. Let F, denote the set of frequent k-ruleitem. Each element of this
set has a form <(condset, condsupCount), (y, rulesupCount)>. Let C, be a set of

candidate k-ruleitems. Figure 2.3 shows the CBA-RG algorithm.

F, = {large 1-ruleitems}:
CAR, = genRules(F)):
prCAR, = pruneRules(CAR,):
for (k=2:F #: k++) do
C, = candidateGen(F, ):
for each data case d € D do
C, = ruleSubset(C,. d):
for each candidate ¢ € C, do
c.condsupCount+-+;

if d.class = c.class then c.ulesupCount++
11 end

12 end

13 F.= {c € C,| crulesupCount > minsup}:

14 CAR, = genRules(F,):

15 prCAR, = pruneRules(CAR)):

16 ‘end

17 CARs =|J,C4R,:

18 prCARs =U,prCAR,:

"D GO =1 Oy L e e

—
(=

Figure 2.3: The CBA-RG algorithm (Liu, Hsu and Ma, 1998).

The first scan over the data of the CBA-RG algorithm is represented at
lines 1-3. This step (line 1) counts the item and class occurrences to determine the

frequent 1-ruleitems. Then a set of CARs called CAR, is generated by genRules function
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using the set of 1-ruleitems (line 2). At line 3, CAR, is pruned with function pruneRules.
The function pruneRules uses the pessimistic error rate based pruning method in C4.5
(Quinlan, 1992). If rule r's pessimistic error rate is higher than the pessimistic error rate
of rule r obtained by deleting one condition from the conditions of r, then rule ris pruned.

For each pass k, there are four main operations. The first operation is to
generate the candidate ruleitems C, from frequent ruleitems F, , by the candidateGen
function (line 5). Second, the algorithm scans the database and updates various support
counts of the candidates in C, (lines 6-12). After these new frequent ruleitems have been
determined to form £, (line 13), the algorithm then produces the rules CAR, using the

genRules function (line 14). For the last operation, these rules are pruned in line 15.
2.2.2.2 The CBA-CB Algorithm

For the CBA-CB algorithm, the set of CARs (or prCARs) from the CBA-RG

algorithm is used to construct a classifier. The CBA-CB algorithm is shown in Figure 2.4.

1  R=sori(R):

2 for each rule 7 € R in sequence do

3 temp = (2.

4 for each case d € D do

5 if d satisfies the conditions of 7 then

6 store d.id in femp and mark 7 if it correctly

classifies d:

7 if 77 is marked then

8 msert 7 at the end of C;

9 delete all the cases with the ids in remp from D

10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number
of errors and drop all the rules after p in C;

15 Add the default class associated with p to end of C,
and return C (our classifier).

Figure 2.4: The CBA-CB algorithm (Liu, Hsu and Ma, 1998).

Let R be the set of generated rules which are CARs or pCARs, and D be
the training data. The concept of the algorithm is to choose a set of high precedence

rules in R to cover D. There are three steps of the CBA-CB algorithm.
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Step 1: This step ranks the set of generated rule R in decreasing order
according to the precedent relation (line 1). Given two rules, r, and r. r, has a higher
precedence than r, if;

1. the confidence of r; is greater than that of r, or

2. their confidences are the same, but the support of r; is greater than r,

or

3. Dboth the confidences and supports of r, and r, are the same, but r; is

generated before r,

Step 2: This step selects the sorted rules from the previous step to
construct the classifier (lines 2-13). For each of rule r, D is scanned to find the cases
covered by r. The rule r is marked if it correctly classifies a case d. If r can correctly
classify at least one case, it will be a potential rule in a classifier. The cases covered by
rule r are then removed from D. After that, the majority class in the remaining data is
selected to be a default class. Finally, the algorithm computes and records the total
number of errors classified by all rules in current classifier C and the default class with
the training data. The rule selection process is terminated when there is no rule or no
training case left.

Step 3: This step removes the rules in C that do not improve the
accuracy of the classifier (lines 14-15). First, the algorithm finds the cutoff rule which is
the first rule at which there is the least number of errors recorded on D. Then all rules
after the cutoff rule can be discarded. Finally, the remaining rules and the default class
in C are used to form a classifier.

In classifying an unseen case, the case is predicted as a class by the
consequence of the first rule covering the case. The default class is used to classify

when no covering rules in the classifier can be used.
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2.2.3 Support vector machine (SVM)

A support vector machine (SVM) is a supervised learning algorithm first
introduced by Vapnik (Vapnik, 1998). This algorithm can be used for classification and
regression problems, but in this thesis we will focus on the classification problem. The
concept of SVM is to map input vectors to a higher dimensional space and try to find a
maximal separating hyperplane. Two parallel hyperplanes are constructed on each side
of the hyperplane that separates the data between two classes. “The separating
hyperplane is the hyperplane that maximizes the distance between the two parallel
hyperplanes. An assumption is made that the larger the margin or distance between
these parallel hyperplanes the better the generalization error of the classifier will be”
(Wikipedia, 2008).

Let D be a training dataset containing labeled input vectors (X;, Y;) where
Xj is a sample data and Y; is its label, X; € RNand Yy, €{-1,1} for i=1,...,m. In a learning
step, the SVM algorithm finds the hyperplane that satisfies Equation (1). Where W is a
normal vector to hyperplane, |b|/||W” is the perpendicular distance from the hyperplane

to the origin, ||W|| is the Euclidean norm of w, and b is the bias.

w-x+b =20 (1)

The support vectors

(SVs)

Figure 2.5: Linear separating hyperplanes (Wikipedia, 2008).
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Figure 2.5 illustrates the maximum-margin hyperplane and margins for
SVM trained with training data from two classes. At least one vector which two parallel
hyperplanes pass through are called support vectors (SVs), or we can say samples on
the margin are the support vectors.

Let d, (d) be the shortest distance from the separating hyperplane to the
closest positive (negative) example. Define d. + d. be the margin of a separating
hyperplane. For the linearly separable case, the algorithm looks for the separating
hyperplane with largest margin. This can be formulated as follows. Suppose that all the
training data satisfy the following constraints:

X -W+b=>+1 vy, =+1 (2)

X - W+b<-1 y;,=-1 (3)
This can be combined into one set of inequalities:
yi(X;-w+b)-1>0 Vi (4)

Consider the points that lie on the parallel hyperplanes. The point lines
on the hyperplane X;-w+b=1 with normal w and perpendicular distance from the
origin [L—b|/|w|. Similarly, the point that lies on the hyperplane X, -w+b=-1 has
normal w, and the perpendicular distance from the origin is |-1-b|/|w||. Hence d. = d.=
1/|w| and the margin is 2/|w|. Note that two hyperplanes have the same normal (since
they are parallel) and that no training points fall between them. Thus these two
hyperplanes which give the maximum margin can be-found by minimizing||w||2, subject
to constraints in Equation (4) (Burges, 1998).

SVM uses the function in Equation (5) to classify a new sample X. The

sample X is classified as positive if f(x) >0 “and classified as negative if f (x)<0 .
f(x)=w-x+Db ©)

In some cases, there exists no hyperplane that can separate the two
classes of training data. To handle with this problem, the Soft Margin method (Cortes

and Vapnik, 1995) is used to choose a hyperplane that splits the examples as cleanly as
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possible, while still maximizing the distance to the nearest cleanly split examples. The
concept of this method is to relax the constraints (2) and (3) by adding positive slack

variables &; as shown in Equations (6)-(7).

X -WH+b>+1-&, y, =+1 (6)
X -W+b<-1+&, y, =-1 (7)
& 20 vi (8)

zi‘fi is an upper bound on the number of training errors. Thus the
objective function to be minimized is changed to Equation (9), where C is a free
parameter determined by a user. A larger C corresponds to assigning a higher penalty

to errors in classifying the training data.
2
Iwl™+C3é) (9)
i

In real world problems, most of the applications are non-linearly
separable. To handle this problem, kernel function is used to map the input space into a
higher dimensional feature space (Boser, Guyon and Vapnik, 1992). Then the algorithm
constructs a maximum margin hyperplane in the high-dimensional feature space. The

first kernels investigated for a pattern recognition problem are shown in Table 2.1.

Table 2.1: Summary of the non-linear kernels.
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2.2.4 Redial Basis Function (RBF) Network

The Redial Basis Function (RBF) network is an approach for function
approximation that is closely related to distance-weighted regression and also to
artificial neural networks (Powell, 1987, Broomhead and Lowe, 1988, Moody and
Darken, 1989). The construction of the traditional RBF network involves three layers with

entirely different roles as illustrated in Figure 2.6.

Figure 2.6: The RBF network.

As shown in Figure 2.6, the RBF network consists of three layers (Haykin,
1999). The first layer is composed of input nodes whose number is equal to the
dimension of the input vector. The second layer is a hidden layer. This layer consists of
nonlinear_units that are. connected directly to.all of the nodes.in the input layer. In this
layer, the input space is nonlinear transformed to the hidden space. The activation
functions of the individual hidden units are defined by Gaussian functions. The output
layer consists of a single linear combination unit, being fully connected to the hidden

layer. In this approach, the value of the output unit is a function given in Equation (10).

F(x) =W, +leiG(||X—ti||) (10)
i=1
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Where m; is the number of centers, vector t represents the center points,
vector w is the weights in the output layer, and G is the Gaussian function (see Figure
2.6) as shown in Equations (13) and (14).

In training step, the weight vector w in the output layer of the network will

be calculated by matrix computation as shown in Equation (11).
w=G"d (11)

Where G* is the pseudo inverse of matrix G defined in equation (12) and d is the

desired response vector in the training set.

G'=(G'G)'G" (12)
G:{gji} (13)
2
ol o izt
ji 20'i2 (14)

where i, j=1,2,....m;, X is the j th input vector of the training sample and t; is the ith
vector of the center and o denotes the width of the Gaussian function.

There are two main approaches to specifying the centers of the radial
basis functions in the hidden layer of the RBF network. The first approach assigns each
training data as a radial basis function. This method is efficient in the application that
does not have a large number of training data. Each of these radial basis functions may
be assigned the same width o For this approach; the RBF network learns a global
approximation to the target function in which each training example can influence the
value of fonly in the neighborhood of Xx;. One advantage of this approach is that it
allows the RBF network to fit the training exactly.

The second approach tries to select the set of the radial basis functions
that is smaller that the number of training data. This approach is much more efficient
than the first approach, especially when the number of training examples is large. The
set of centers may be distributed with centers spaced uniformly throughout the total

input space. A hybrid learning process is also used to find appropriate center locations.
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One popular technique is a clustering algorithm which allocates one radial basis

function for each cluster center.
2.2.5 k-Nearest Neighbor (k-NN)

k-Nearest Neighbor (k-NN) is a classic instance-based learning
technique (Mitchell, 1997). This technique constructs a different approximation to the
target function for each distinct query instance depending on its nearest neighbors. The
k-NN algorithm has an assumption that all instances correspond to points in the
n-dimension space.

Define a feature vector of an instance x to be a form <a;(x), a,(x),...,
an(x)>, where a,(x) denotes a value of the rth attribute of the instance x, and n represents
the total number of attributes. The k-NN algorithm measures a distance between the
instances x and its neighbors by using Euclidean distance. A distance between two

instances X and x; is defined as d(x;, x;) calculated by Equation (15).

A0, xj) = 1> @ () —ar (x))? (15)

=1

Training algorithm:
® For each training example <x, f(x)>, add the example to the

list training_examples

Classification algorithm:

® Given a query instance Xq to be classified,
o LetX;...Xx denote the kinstances from training_examples
that are nearest to X,
® Return
) k
f(xq) < arg maxZé(v, f (%))
veV i=1

where S@ab)=1if a=b and §(a,b) =0 otherwise.

Figure 2.7: The k-Nearest Neighbor algorithm.
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Figure 2.7 shows a process of the k-NN algorithm. This algorithm
considers discrete-valued target in a form f :R" -V . Let V be a finite set of all discrete
targets (or classes). The k-NN algorithm assigns the target f(xq) following the most
common value of f among the k training examples nearest to X,. For example, if k=1, the
1-NN algorithm assigns the f(xq) value to the value of f(x;), where x; is the training
examples nearest to Xq . If k is larger than 1, the algorithm assigns the most common
value among the k nearest training examples.

Figure 2.8 illustrates the concept of the k<-NN algorithm with all instances
are transformed into points in a two-dimensional space. A set of positive and negative
training examples are shown by ‘+" and ‘-' respectively. X, represents a query point.
From this figure, the 1-NN algorithm classifies Xq as a positive class whereas the 5-NN

algorithm assigns it as a negative class.

Figure 2.8: k-NN concept for two-dimensional space of data.

Besides discrete value of the target function, the k-NN algorithm can
handle with the continuous value of the target function. To do that, -the algorithm
calculate the'mean value of.the k nearest training instances instead of ‘using the most
common value of the nearest examples. Thus the approximate a continuous value of the

target function is performed in Equation (16).

k
Zizl F(xi) (16)

f(xg) «
(Xq) "
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One obvious modification of kNN is the distance-weighted nearest
neighbor algorithm. This algorithm is more effective and widely used than the traditional
k-NN algorithm. This is because the distance-weighted k-NN is robust to noisy training
data and quite effective when it is applied to a large set of training data. The main idea
of this technique is to weight the contribution of each of k neighbors according to its
distance to the query point X, (giving higher weight to closer neighbors). The distance-

weight is calculated by Equation (17).

1
W =, 17
(X x)+1 a7
where X; for i =1,..., k are the K nearest training instances and d(Xq,Xi) is the
Euclidean distance. So, the target function value is re-defined in Equation (18).
k
f(xq) < arg maxZwﬁ(v, f(x)) (18)

veV i=1

2.3 Relief Algorithms

Relief algorithms are heuristic measures for estimating the quality of the
attributes. Since the original Relief algorithm (Kira and Rendell, 1992) cannot deal with
incomplete and noisy data, and is limited to two class classification problems, there are
many extensions of the Relief algorithm that improve the performance of the Relief
algorithm. ReliefF is one of the most successful algorithm (Kononenko, 1994), that is
more robust and can deal with noisy and incomplete data. Furthermore, it can deal with
multiple class problems. RReliefF, an extension of ReliefF, can deal with continuous
class problems (Robnik-Sikonja and Kononenko, 1997). The algorithms of Relief, ReliefF,

and RReliefF are described in Sections 2.3.1, 2.3.2, and 2.3.3 respectively.

2.3.1. Relief

The main idea of Relief is to estimate the weight of each attribute
according to how well its value distinguishes between instances that are near each

other. The algorithm of Relief is shown in Figure 2.9.
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Figure 2.9: The Relief algorithm (Robnik and Kononenko, 1997).

Relief starts with m random instances from all of the instances in the
dataset. For each randomly selected instance R;, Relief finds the nearest instance from
the same class, called nearest hit H, and the nearest one from the different class, called
nearest miss M. For updating the weight of attribute A, Relief considers the value of

attribute A for R;, M, and H as follows.
WI[A]=P(different value of A | nearest miss) - P(different value of A | nearest hit) (19)

As shown in the formula, Relief tries to increase weight to the attributes
that have different values for two instances from the different classes whereas it tries to
decrease weight to the attributes that have different values for two instances with the
same class.

Function diff(A, Iy, I,) in Figure 2.9 calculates the difference between the
values of the attribute A for instances [, and |,. Equations (20) and (21) below show the
function diff for nominal.and numerical attributes respectively. For finding the nearest
neighbor, Manhattan ‘distance in (22) was used as a measure for calculating the

distance between two instances.

diff (Aly,1,) = {O;Value( Aly)=value(Al,)

1;otherwise

value( A, 1;)—value( A1, )
max( A)—min(A)

diff (A 1;,1,) =

5(I1,I2):Za:diff(Ri,ll,I2) (22)
i=1
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2.3.2. ReliefF

ReliefF is an extension of Relief and is more robust. ReliefF can deal with
noisy data by searching for k nearest neighbors from the same class and also k nearest
neighbors from the different class. To deal with multi-class problems, ReliefF updates
the weight of each attribute by averaging the contribution of all the hits and all the
misses as shown in lines 8 and 9 of Figure 2.10, where a (line 7) is a number of total

attributes.

Figure 2.10: The ReliefF algorithm (Robnik and Kononenko, 1997).

2.3.3 RReliefF

RReliefF, extended from ReliefF, was designed for continuous class
problems. Therefore it does not find the nearest hits'and misses like ReliefF, but it uses
the probability of the relative distance between continuous class values of two instances
to estimate the weight of the attributes. RReliefF applies Bayes’ rule for calculating the
weight of attribute A as shown in Equation (23). The algorithm of RReliefF is shown in

Figure 2.11.
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Alpovithm ERelielF
Inpur: for each training instance a vector of attribute values x and predicted value 1 (x)
Output: the vector IV of estimations of the qualities of aftributes

1. set all Nic, 1"-_‘4!::], Ny __;,;_4!!]. H-[,'flin 0.0
2 for i == | to m do begin

3. randomly select instance R, |

4. select & instances [, nearest to K,

5 forj = 11tokdo begin

6 Nuo = Nao+ difftr () B 4,0 dlil ),
T for 4 == 1 to a do begin

8. Nad]:= Nyfd] + di e/ R ) dli, ),
9. NacaadA)= Naera ]+ diffiz () Ris 1)),
10, diffid, R,, 11} .dli 1):
11 end;
12, end,
13 end,

14. for 4 = toado
15, WA = Nogal A Nac - Vol d] — Nacaadld ]y (m = Nge )

Figure 2.11: The RReliefF algorithm (Robnik and Kononenko, 1997).

PdiffC‘diffA PdiffA K (1_ PdiffC‘diffA )PdiffA

WIA] =
Pairic 1- Py 23

where Pgia = P(different value of A | nearest instances), Pgirc = P(different prediction |
nearest instances), and Pqcgita = P(different prediction | different value of A and
nearest instances)

In Figure 2.11, #(.) in lines 6 and 9 represents the continuous value of the
prediction. Ngc, Nga[Al, and Ngczaa[A] represent the weights for different continuous
value ¢.), different attribute, and different prediction & different attribute respectively. In
addition, d(i,j) is the term that calculates the influence of the distance between instances
Riand |;.

d(i, j):M (24)
PICHCD

rank (R; ,Ij)jz

o

where d, (i, j) = e_[ (25)
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rank(R;,1;) in Equation (25) is the rank of the instance I in a sequence of
instances ordered by the distance from R; and o is a user defined parameter for

controlling the influence of the distance.
2.4 Composite Classifier

The term of a compoasite classifier or an ensemble of classifiers is used to
identify a set of classifiers whose individual decisions are combined in some way to
classify new examples (Dietterich, 1997).

There are two strategies of classifier combination: classifier selection and
classifier fusion (Kuncheva, 2002). For classifier fusion, it assumes that all classifiers are
equally experienced in the whole feature space and the decisions of all classifiers are
taken into account for classifying a new example X. The assumption of classifier
selection is that each classifier has expertise in some local area of the feature space.
When a feature vector X € R" is submitted for classification, the classifier responsible
for the neighborhood of X is given the highest authority to label X. There are two types of
classifier selection methods: static and dynamic (Kuncheva, 2002). The static method
proposes one best classifier for the whole data space, while the dynamic method takes
into account the characteristics of a new instance to be classified.

For the composite classifier construction, there are two architectures.
The first one is combining homogeneous classifiers. This method generates a composite
classifier by a single algorithm. This means that all component classifiers are learnt by
the same algorithm. An important requirement of this architecture is the diversity of
training data. This method manipulates the training set to generate multiple classifiers.
The learning algorithm runs several times, each time using a different distribution of the
training examples. This technique works especially well for unstable learning algorithms.
An unstable learning algorithm' is thelalgorithm whose output provides major changes in
response to small changes inthe training data.

The second architecture is combining heterogeneous classifiers. This
method uses different learning algorithms to form a composite classifier. An example
framework of this architecture is called “Stacked Generalization” proposed by Wolpert

(1992). This framework consists of two layers of the classifiers as shown in Figure 2.12.
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The classifiers at the level-0 receive inputs from the original data and each classifier
outputs a prediction. The classifier at the second layer receives the predictions of the
level-0 classifiers as input and outputs the final prediction. The concept of Stacked
Generalization is to minimize the generalization error by using the classifiers in higher
layers to learn the type of errors made by the classifiers in the previous level. The level-1
classifier tries to learn how previous classifiers make mistakes in classes they agree or

disagree and uses this knowledge when making predictions.

Figure 2.12: Stacked Generalization architecture (Gama, 2000).

The following subsections describe two classifier combination methods
that will be used to compare with our dynamic classifier combination method. These two

algorithms are examples of classifier fusion methods.
2.4.1 Majority Vote

Majority vote is the simplest and a classical method for combining
classifiers. This method is implemented by counting the number of classifiers which
make the predictions to each class labels. Finally, it-gives the class label having the
highest summation as an output.

Let d; ; be the prediction of the {" classifier from the set of classifiers D,
dy;e{0,t=1..T and j=1..cC, where T is the number of classifiers and ¢ is the
number of classes. d,; =1 if the t" classifier predicts class j, and d,; =0, otherwise.
The vote will then result in an ensemble decision for class K if k is satisfied by Equation

(26).

.
Zd = max d, (26)
t=1
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2.4.2 Naive Bayes

This method assumes that the classifiers are mutually independent. Let
D ={Dy, D,, ..., D .} be a set of classifiers and Q= {ay, ..., &} be a set of class labels.
For each classifier Dj, a ¢ x ¢ confusion matrix cM ! is calculated by applying D; to the
training data. The element cmkjyS is the number of elements of the dataset whose true
class label was ax, and are assigned by D; to class . Let cm,f's is the total number of
samples labeled by D; into class @ calculated by the summation of the sth column
ofcMI. Let LM is a ¢ x ¢ probability matrix ofcm 1. The element Im) _ is an estimate of
the probability that the true label is ey given that D; assigns crisp class label ax.
ImJ ;= P(a | D (X) = o) = cm,g_’s (27)

cm’s

Let sy,..., S. be the crisp class labels assigned to a new instance x by
classifiers Dy, Dy, ..., D, respectively. By the independence assumption, the estimate of
the probability that the true class label is @, is calculated by Equation (28), where

i=1, ..., C.

£ L
pi@ < [ [P@ 100 =sp=] [m/

j=1 j-1 (28)
Finally, this method assigns the class label to instance x according to the

maximum probability of the true class label.
2.5 Related Works

At present, there are many techniques for genotypic HIV-1 drug
resistance-prediction. The following contents are the literature reviews of the application
of HIV-1 drug resistance prediction.

For the genotypic HIV-1 drug resistance interpretation application, many
systems use rule-based techniques. (Shafer, Jung and Betts, 2000, Meynard, ray,
Morand, et al, 2002, Laethem, Luca, Antinori, et al, 2002, Reid, Bassett, Day, et al, 2002).
These systems contain the rules encoding information from the medical literature as the
knowledge base. One of these tools, the HIVdb system, is an online genotypic HIV-1

resistance interpretation system constructed by Stanford University (Shafer, Jung and
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Betts, 2000). This system uses the mutation scoring tables to calculate a score from
each sequence and interprets drug susceptibility into one of five classes ranging from
susceptible to high-level resistant. However, there are some limitations of the HIVdb
system such as the sensitivity to the drug cannot always be deduced from the viral
nucleotide sequence due to high polymorphism and limited knowledge of the role of
interaction among these amino acid substitutions (Rhafer, Jung and Betts, 2000, Rhee,
Gonzales, Kantor, Betts, Revela and Shafer, 2003).

Besides genotypic resistance interpretation systems, a variety of
techniques have been applied to phenotypic drug resistance from genotype such as
statistical analysis, and machine learning techniques. The phenotypic results from these
techniques are classified into two or more classes of drug susceptibility depending on
the certain cutoff values.

For statistical analysis, multiple linear regression analysis (REG) was
applied to the construction of a separate regression model for each drug (Wang,
Jenwitheesuk, Samudrala and Mitter, 2004). In the model, the dependent variable is the
logarithm of the IC50 fold change, while the independent variables are dummy variables
corresponding to mutations. In addition, this technique uses the stepwise regression
method to optimize the parameters for each independent variable. Moreover, cluster
analysis, recursive partitioning, and linear discriminant analysis are used to investigate
the relationship between results of genotypic and drug susceptibility phenotypic assays
(Sevin, DeGruttola, Nijhuis, Schapiro, Foulkes, Para, and Boucher, 2000).

Machine learning is the most popular approach applied to the prediction
of phenotype resistance from genotype. Geno2Pheno is the online system used to
predict the phenotypic resistance. This system constructed the model using the support
vector machines (SVMs). At the beginning (Beerenwinkel, et al., 2001), the system
focused on binary classification: susceptible or resistant. In this system, linear kernel
was used to map an input space into a feature space. In 2003 (Beerenwinkel, et al.,
2003), the Geno2Pheno system was developed to SVM regression models. Still, the

system was constructed with the linear kernel with an epsilon-insensitive loss function.
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Other supervised learning algorithms have been used to deal with this
problem such as decision trees (Beerenwinkel, et al., 2001, 2002) and artificial neural
networks (ANNs) (Wang and Larder, 2003). These algorithms classify drug susceptibility
into one of two classes: susceptible or resistant. Furthermore, the self-organizing map,
an unsupervised learning algorithm, was used to classify drug susceptibility into one of
three classes: high, medium, or low resistant (Draghici, S. and Potter, 2003). Most of the
works mentioned above use a single algorithm to classify drug resistance.

During the recent years, many bioinformatics applications applied
ensemble classifiers to construct the model for the classification tasks. Most of them
used a single learning algorithm to construct the ensemble classifiers and combined the
final prediction with the majority voting algorithm. In 2006, Shen and Chou (2006)
proposed the ensemble classifier for protein fold pattern recognition. The ensemble of
this work was formed by a set of base classifiers, each of which was trained by different
parameters. The individual classifiers were optimized evidence-theoretic k nearest
neighbors (OET-ANN) rules. The final prediction was combined by the weighted voting
algorithm. In the same year, Stepenosky, et al. (2006) presented the ensemble of three
multilayer perceptron (MLP) classifiers combined with majority vote and decision
templates method for an early diagnosis of Alzheimer’s disease.

In 2007, Liu, Zhu and Feng (2007) developed the ensemble classifier by
fusing ten basic individual K-local Hyperplane Distance Nearest Neighbor (HKNN)
classifiers through majority voting scheme. Recently, Tsymbal, et al. (2008) proposed an
ensemble learning approach for the antibiotic resistance prediction. In this work, a set of
classifiers were built over different.time periods. Each base classifier is given a weight
proportional to its local accuracy with regard to the instance tested, and the best base

classifier is selected, or the classifiers are integrated using weighted voting.



CHAPTER 1lI

SINGLE CLASSIFIERS CONSTRUCTION

This chapter describes the procedure used to construct various models
by using a single classifier, i.e. CBA, SVM, the RBF network, and k-NN. For single
classifiers construction, there are four steps which are described in more detail in the

following subsections.

3.1 Initial Data Collection

In the first step, all pairs of genotype-phenotype data for 6 drugs of
Protease Inhibitors (Pls) which are LPV, APV, NFV, IDV, SQV and RTV, 6 drugs of
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) which are 3TC, ABC, AZT, DA4T,
ddC and ddl, and 3 drugs of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)
which are DLV, EFV and NVP were downloaded from Stanford HIV RT and Protease
Sequence Database with the ViroLogic Susceptibility test method. Table 3.1 shows an
example of HIV-1 protease resistance database with primary and secondary amino acid
substitutions that are different from the HIV-1 wild-type strain. A capital letter appeared
in each column represents amino acid which is different from the HIV-1 wild-type.

After the database was downloaded, all genotype data were transformed
to sequences of amino acid by comparing with HIV-1 reference strain pNL4-3. Table 3.2
shows an example of amino acid sequences of the HIV-1 protease genes and its
phenotypic results for the NFV drug. The last column of this table represents the class of
drug susceptibility: susceptible (S)-and resistant (R).

There are 99 amino acid positions from position 1 to position 99 in
protease gene (or Pl drug) whereas there are 201 amino acid positions from position 40
to position 201 in reverse ‘transcriptase gene (or NRTI and NNRTI drugs). The total
samples, percentage of susceptible (S) and resistant (R) classes, and the cutoff value
for each drug are shown in Table 3.3. The phenotypic results were assigned into one of

two classes: susceptible or resistant according to the cutoff value of each drug.
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Table 3.1: HIV-1 protease resistance database with primary and secondary amino acid

substitutions that are different from the HIV-1 wild-type strain (oNL4-3).
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Table 3.3: Detail of total datasets.

Drug | Total Samples Perc.ent of Pgrcent of Cutoff
Susceptible Class Resistant Class Value
LPV 319 52 48 10.0
APV 541 55 45 2.0
NFV 626 33 67 25
IDV 595 45 55 2.1
SQv 606 50 50 1.7
RTV 573 57 56 2.5
37C 529 32 68 3.5
ABC 529 59 41 4.5
AZT 528 43 57 1.9
a4t 530 61 39 1.7
ddC 394 44 56 1.7
ddl 528 68 32 1.7
DLV 554 65 35 25
EFV 563 62 38 25
NVP 577 56 44 2.5

3.2 Feature Subset Selection

Since total amino acid positions of the HIV-1 protease gene and reverse
transcriptase .gene are 99:and 201 (respectively and some-of them are irrelevant or
redundant, these attributes may decrease the performance of the learning algorithm. To
alleviate this problem, a feature selection technique is used to select important attributes
from the training data. Besides improving the predictive accuracy, -selecting the
important attributes also reduces learning and testing times of the models.

In this paper, RReliefF, a classical feature estimation algorithm, was used to
select important attributes for each drug (Robnik-Sikonja and Kononenko, 1997).

RReliefF is an extended version of ReliefF which has been used to select important
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attributes in many applications in medical areas (Hilario, et al., 2004, Luts, et al., 2007,
Huang, et al., 2007). Whereas ReliefF is designed for handling data with a discrete class,
RReliefF is able to deal with data with a continuous class as in our case where
phenotypic drug resistance is a real value (continuous class). Though, the final
prediction of our method is discrete classification (resistant or susceptible), we found
from experiments that RReliefF provides more accurate results in the classification than
ReliefF. Therefore, RReliefF is used in our method.

After applying RReliefF to the training data, we selected the attributes,
which have the weights higher than or equal to & where 8 was set to 0.01. We set the
threshold of RReleifF to 0.01 because this threshold provides the number of selected
attributes close to the number of selected attributes by a rule-based method used by
Stanford HIV Drug Resistance Database. Moreover, amino acid positions (attributes)
selected by RReliefF and those recommended by Stanford HIV Drug Resistance
Database share several common attributes.

The relations between amino acid positions which were selected by rule-
based and RReliefF methods for each drug are illustrated in Figure 3.1 — Figure 3.3.
These figures show the number of attributes that were selected by the rule-based and
RReliefF methods. In addition, the number in the intersection between two cycles shows
the number of common attributes of the two methods for each drug. The percentage of
the intersection between rule-based and RReliefF methods is computed by the
proportion of the number of common attributes between two methods to the total
number of attributes selected by the rule-based method.

The relation in Figure 3.1 shows that-the set of attributes selected by
RReliefF for each Pl drug shared some attributes with the rule-based method and the
percentage of these common attributes was higher than or equal to 55.0%. For NRTIs
drugs (see Figure 3.2), the percentage of the intersection was higher than 70.0% for all
drugs except for 3TC (44.44%) and DDC (41.18%). The percentage of the intersection
for all NNRTIs drug (see Figure 3.3) was greater than 86.0%. However, in our
experiments, the attributes selected by RReleifF were different for each fold depending

on its training data.
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Though, for the same drug, mutation positions in different HIV genotypes
can be different, some of them may not affect the drug susceptibility. RReleifF has ability
to select only important mutation positions from the training set that are considered to be
able to distinguish between instances with the susceptible class and instances with the

resistant class.
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methods for Pls drugs.
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3.3 Data Transformation

Since genotype data are represented as amino acid sequences, these
data have to be transformed into a suitable format for a learning algorithm. Several
approaches to the description of protein sequences have been proposed. For example,
the knowledge-of the hydropathy-blocks is-used to translate the protein sequence to a
fixed-dimensional vector (Huang, Zhao, Huang and Cheung, 2006). For a protein
secondary structure prediction problem, all amino acid sequences are converted to real
number matrices by using a position. specific scaring matrix algorithm (Jones, 1999,
Ghosh and Parai, 2008). Moreover, the string kernel-based method such as spectrum,
mismatch, and wildcard kernels are applied for SVM (Davis, Hawkins, Maetschke and

Bodén, 2006). In data transformation process of this work, there are two steps to
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construct an input vector for SVM, the RBF network and k-NN from amino acid sequence
data.

In the first step, a sequence of amino acid positions was transformed
into a binary vector. Each amino acid position provided 20 binary input dimensions
(there were 20 amino acids which might occur in any position). As there were 99 and
201 amino acid positions of the HIV-1 protease (PR) gene and reverse transcriptase
(RT) gene respectively, at the beginning the number of input attributes of PR and RT
were 1980 and 4020 respectively. However, after feature selection process, the number
of input attributes for each drug was reduced significantly. This is because RReliefF
eliminated irrelevant attributes and selected important attributes in the feature selection
process.

After a sequence of amino acid positions has been transformed into a
binary vector, each binary element in the vector was assigned a weight. In assigning the
weight, RReliefF was used again to estimate the weight of each attribute (binary attribute
from binary vector). Finally, the final input value of element i in the input vector was
defined by Equation (29).

_{1+Wi =B (29)

10 if B =0

Where A, was the final input value, B, was the value of elementiin the binary vector, and
w, was the weight (a real value between -1 and 1) from RReliefF of attribute /.

Thus, at the end of this process, the inputs of each drug were real-
valued vectors whose dimensions depended on the number of attributes selected by

RReliefF.
3.4 Model Construction

For the -model construction process, CBA, SVM, the RBF network, and
k-NN were used to construct the classifiers separately for each drug. In the experiments,
we used the same training and testing datasets for all learning algorithm. However, the
input formats of CBA and other algorithms were different. The input of the CBA classifier
was a sequence of amino acids while the inputs of the SVM, RBF network and

k-NN classifiers were the real-valued vectors as described in Section 3.3. The output of
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CBA, SVM, and k-NN was y={-1,1} where -1 (1) represents the susceptible (resistant)
class whereas the output of the RBF network was a real value representing a logarithm
of IC50 fold change.

In the process of CBA model construction, we set the maximum length of
generating rules to 5. In addition, the pruning technique was used to reduce the number
of rules without losing the prediction accuracy. The minconf was set to 100% while
minsup was tuning in the range of 1% to 30%. In this experiment, several subsets of
attributes selected by various feature subset selection methods were used to construct
the models. The sets of selected attributes that yielded the best performance were used
as the inputs for the other learning algorithms including the composite classifiers.

For SVM, several kernel functions which were linear, polynomial degree
2, 3, and 4, and RBF were used to map an input space into a feature space. These
kernels used the same C of Equation (9) in Section 2.2.3 in learning the models. For the
RBF kernel, we varied the width of the RBF function in the range of 0.01 to 30.

For constructing the models using the RBF network, each training
example was represented as a center in the hidden layer and o for each center was set
to the same value. Thus the number of hidden nodes was equal to the number of total
training examples. To evaluate the predictive performance of the RBF network, an output
from the model was classified to the susceptible or resistant class using the cutoff value
(as shown in Table 3.3). In the experiments, we varied & values in the range of 1.0 to
3.5.

For k-NN, the class label of a new instance was assigned by the distance
weighted k-NN. In the experiment, we set the number of k to 1, 3, 5, 7, and 9. The
number that yielded the highest average accuracy was used to construct the base
classifiers for the composite classifiers.

The  CBA models were constructed by DMII-CBA, -a data. mining tool
developed at-School of Computing, National University of Singapore. SVM, the RBF
network, and k-NN techniques were implemented by Matlab and SVM toolbox Version
2.51. To evaluate the performance of four single classifiers in the testing process, 10-
fold cross-validation technique was used. For selecting parameters of CBA (minsup),

SVM and the RBF network (the width of RBF), we chose the same parameter values for
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each drug. To find the suitable parameters, each data fold was further divided to 5-fold,
then 5-fold cross-validation was used to measure the predictive performance of each
parameter values. The training and testing data of 10-fold and 5-fold cross-validation are

shown in Figure 3.4.
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Figure 3.4: Training and testing data for single classifier construction.



CHAPTER IV
COMPOSITE CLASSIFIERS CONSTRUCTION

This chapter focuses on the composite classifiers construction. At first,
the criteria to select the component classifiers are described. Then the proposed

composite classifier combination approach is presented in the last section.
4.1 Composite Classifier Construction Criteria

There are three main criteria for designing a composite classifier:
accuracy, diversity of the component classifiers, and efficiency of the entire composite
classifier (Skalak, 1997).

The accuracy of the component classifiers is the most important criteria.
If the predictions that are being combined are not highly accurate, then the ultimate
prediction accuracy will be difficult to be achieved. Hansen and Salamon (1990)
demonstrated that the composite classifier is most useful when its component classifiers
make errors independently with respect to others. They proved that when all the
component classifiers have the same error rate and that the error is less than 0.5 with
the assumption that their errors are completely independently, the expected ensemble
error must decrease monotonically with the number of classifiers. On the other hand, if
the error rate is more than 0.55, the error rate of the composite classifier is monotonically
increased.

The diversity of the component classifiers is a necessary factor in
classifier combination. Ali-and Pazzani (1996) have shown that error is mostly reduced
by using 'component classifiers whose errors are low correlated. In this work, we use
error correlation which has been implemented by Ali and Pazzani (1996) as a measure
of ‘diversity. of component classifiers. This ‘measure compares ‘the output of the
components with the correct target class.

Let f(x) = S; denote that instance x belongs to class S;, and f;(x)=S; mean
that the classifier fi predicts class S; for instance x. The definition of the error correlation
is the probability that two component classifiers make the same error as shown in

Equation (30) (Gama, 2000).
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¢ = p(fi(0) = ;001 i) = FOv f;00 = £ () (30)

For the efficiency of the composite classifier, we consider using a small
number of component classifiers. Given equal performance, one would prefer smaller
component classifiers because it takes less time in training and application. Some
research indicated that a small number of classifiers can be enhanced the accuracy of
the composite classifier. For example, a handwritten digit recognition system (Battiti and
Collar 1994) used only two to three neural networks to give the higher accuracy than the
best from an individual network. In addition, for the weather prediction task (Kwok and
Carter 1990), the experiments showed that the error rate reached a minimum with only

three or fewer component decision trees.
4.2 Dynamic Classifier Combination (DCC)

Our proposed composite classifier (called DCC) is a heterogeneous
architecture classifier that dynamically selects base classifiers according to each test
instance and uses a classifier fusion method for combining base classifiers. The
concept of DCC is to select the suitable classifiers to form the composite classifier.
These classifiers are dynamically chosen by a heuristic function depending on the
prediction of each base classifier in classifying a new instance x. After the base
classifiers are selected, DCC uses dynamic weighted voting to classify the new instance

X. The architecture of DCC is illustrated in Figure 4.1.

Figure 4.1: Dynamic Composite Classifier architecture.
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There are two main steps of DCC: selecting classifier combination and

assigning a final prediction. These steps are described in the following subsections.
4.2.1 Selecting Classifier Combination

This step dynamically selects the combination of the base classifiers for
a new instance x based on a heuristic function. Let BCC be the set of base classifier
combinations, i.e. BCC={{SVM, RBF network, k-NN}, {SVM, RBF network}, {RBF network,
k-NN}, {SVM, k-NN}}. A suitable classifier combination of the new instance x is the
member of BCC that has the maximum value of the heuristic function cw;(x). i is an index
of classifier combination pattern (member of CBB). This function is shown in Equation
(31). meanAcc;, stdAcci, and meanConfW; are the average percentage of the training
accuracies from the training instances near to x of the base classifiers in the i" classifier
combination of BCC, standard deviation of accuracies of that composite classifier, and
the average percentage of the ConfW values from the base classifiers in the i classifier
combination respectively. EC; is a value of error correlation of the i" classifier

combination calculated by Equation (30).

(meanAcc; x meanConfW; — stdAcc;) (31)

cw; (x) = =

ConfW measures the confidence of base classifier i in correctly
classifying the new instance x into susceptible (S) or resistant (R) class. The higher
value of the confidence weight implies that the base classifier has more confidence in
the classification. Each base classifier has a different function for calculating ConfW. The
Equations. (32)-(34) show the formula of ConfW for SVM, the RBF. network, and k-NN
respectively.

As ‘shown in Equation (32), dist(h, x) is the distance between the instance
x-and the separating hyperplane (h) of SVM. For the RBF network, cutoff represents the
cutoff value and out(x) is an output value of the instance x from the RBF network. For
k-NN, diffW(x) represents the difference between the weight of prediction of class S and
the weight of prediction of class R in the classification process of the weighted k-NN

classifier. typ(x) represents typicality of the instance x (Zhang, 1992). This value
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measures the confidence of an instance x in instance-based classification. It is defined
as the proportion between the average distance from the instance x to instances of
different classes to the average distance from the instance x to instances of the same

class.

ConfW gy (X) = \/m (32)

ConfW ggF network (X) = \/|CUt0ﬁ - OUt(X)| (33)
ConfW gy (X) = |diffw (x)|xtyp(x) (34)

Note that ConfW of each base classifier is normalized to [0..1] by the min-
max normalization method, where the minimum and maximum values are taken from the

training data.
4.2.2 Assigning a Final Prediction

After the base classifiers are selected by the previous step (these
classifiers are formed to be a composite classifier), the predictive information of the
base classifiers are sent to the Dynamic Weighted Voting (DWV) algorithm. This
algorithm computes dynamic weights of each base classifier and predicts the final
prediction using locally weight voting.

When x is fed to the composite classifier, the weight of each base

classifier j (wj) is computed by Equation (35).

wj (x) = ConfW j (x) + PerfW ; (x) (35)

Where ConfW ;(X) is the same value as shown in Equations (32)-(34) in Section 4.2.1.
The performance weight Perij measures the predictive performance
of base classifier j in correctly classifying training instances near the new sample x. Let
s be the class label predicted by base classifier j. This performance measurement
employs training instances near x to estimate the local accuracy of the base classifier
with respect to class s. Perij is calculated by the proportion of the samples that are

near to X whose true labels are s.
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For assigning a final prediction of the composite classifier, DWV
compares the total weight w* to the total weight w', where w* and w™ are the summation
of weight w; of all base classifiers i that predict class R, and the summation of those for
class S, respectively. Finally, DWV outputs the final prediction for the new instance x

according to the larger total weight.
4.3 Training and Evaluation Phases of the Composite Classifier

There are two phases of composite classifier construction: the training

phase and the evaluation phase.

Figure 4.2: Training and testing data for composite classifier construction.

4.3.1 Training Phase

1. Train the base classifiers using training data from 5-fold cross-validation. After
training, classify validation data into two classes (-1-or 1). Training and validation data
are shown in Figure 4.2 in the training phase. After this step, store the predictions of
each base classifier for the total training data.

2. Since in the step 1, base classifiers have not been trained on the entire training data,

re-train the base classifiers on the training data in the evaluation phase of Figure 4.2.
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4.3.2 Evaluation Phase

When a new example is presented (a test data in Figure 4.2 in the
evaluation phase), it is classified by all base classifiers. Then the predictions of all base
classifiers are sent to the Dynamic Classifier Combination (DCC) algorithm. The DCC
algorithm combines suitable classifiers to form a composite classifier and predicts the

final prediction.



CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter shows the experimental results. The content of this chapter
consists of two main parts. First, the experimental results of each learning algorithm are
presented. Then, we compare the predictive performance of four learning algorithms
with HIVdb and Geno2Pheno systems. In addition, the predictive behaviors of each
learning algorithm are analyzed in this chapter. The latter part shows the comparison of
the predictive performance between the proposed classifier combination method and
other methods. Then the discussion of how our proposed method enhances the

predictive performance of the single classifiers is presented.

5.1 Performance Evaluation Measurement

In the experiments, 10-fold cross-validation was used to minimize the
bias associated with the random sampling of the training and testing data in comparing
the predictive accuracy of four learning algorithms.

In this study, three performance measures were used to evaluate the
predictive performance. These measures were accuracy, sensitivity, and specificity. The
sensitivity is the probability of correctly predicting a positive (resistant) sample whereas

the specificity is the probability of correctly predicting a negative (susceptible) sample.

accuracy = TR
TP +TN + FP + FN (36)
- TP
sensitivity = ———— (37)
TP+ FN
", | TN
specificity = ———— (38)
P Y TN + FP

where TP denotes the number of resistant examples which are classified as resistant,
TN denotes the number of susceptible examples which are classified as
susceptible,
FP denotes the number of susceptible examples which are classified as resistant,

and FN denotes the number of resistant examples which are classified as susceptible.
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5.2 Single Classifier Results and Analysis

521 The Results of CBA Models

For constructing the classifiers from CBA algorithm, the minsup value of
each data fold was selected by 5-fold cross-validation. In this experiment, we compared
the predictive performances between each set of attributes selected by different feature
selection methods. In Allmutant approach, each attribute which had only one value on
all transactions of each drug was eliminated. For Rule-based approach, we selected the
important attributes, recommenced by Stanford HIV Drug Resistance Database. For
RReliefF, we ran RReliefF to select important attributes for each drug. Note that the
subset of selected attributes for each data fold was different depending on the training

data.

Table 5.1: The comparisons of the predictive accuracy of each feature selection

method.
Drug | Allimutant | Rule-based | RReliefF
LPV 86.83 84.95 85.58
APV St 85.75 86.88
NFV 92.02 9T 0 92.97
IDV 89.23 89.90 93.45
SQv 88.26 89.76 90.26
RTV 93.02 98.02 94.24
3T1C 90.60 92.63 89.79
ABC 83.74 84.68 85.07
AZT 88.07 92.05 92.05
d4T 85.66 86.23 86.60
ddC 78.27 78.98 83.50
ddl 7747 79.17 79.17
DLV 88.45 88.44 87.00
EFV 89.34 92.89 91.47
NVP 90.29 92.20 92.55
average 87.12 88.16 88.71
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The results in Table 5.1 showed that the sets of attributes selected by
RReliefF provided the best average accuracy. In addition RReliefF gave the highest
accuracy on eleven drugs. Rule-based and Allmutant methods vyielded the best
accuracy on four and two drugs, respectively. From the results of this experiment, we

decided to use only the set of attributes selected by RReliefF for the further experiments.

5.2.2 The Results of SVM Models

This subsection illustrates the experimental results of the SVM algorithm.
Several kernel functions of SVM were run to evaluate the predictive performance for this
application. The prediction results of all kernel functions are shown in Table 5.2 and

Figure 5.1.

Table 5.2: The comparisons of the predictive accuracy of each kernel function.

Drug Poly 2 Poly 3 Poly 4 Linear RBF
LPV 56.08 53:92 50.48 86.83 88.40
APV 54.68 5283 50.79 85.75 88.17
NFV 64.40 54.72 47.49 92.34 93.13
IDV 56.45 53.08 53.07 93.10 93.45
SQV 56.05 53.63 47.21 90.25 90.76
RTV 53.10 51.53 53.10 94.07 95.46
3TC 64.08 58.42 53.70 91.31 91.68
ABC 55.57 51.04 47.45 83.73 86.58
AZT 51.52 54.18 48.29 92.42 93.18
adaT 55.09 50.94 50.38 82.83 86.04
ddC 50.62 50.37 49.10 84.45 84.77
ddl 52.34 50.45 47.74 78.98 79.17
DLV 48.71 52.23 51.85 88.45 90.07
EFV 50.64 50.66 51.68 93.07 94.32
NVP 51.12 53.74 48.52 92.02 92.72
average | 54.70 52.78 50.06 88.64 89.86
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Column Poly 2, Poly 3, or Poly 4 in Table 5.2 represents the polynomial
kernel function degree 2, 3, or 4 respectively. The experimental results in Table 5.2
indicate that the suitable kernel function for the application of HIV-1 drug resistance
prediction was the RBF kernel since it provided the best predictive performance for all
drugs. The second best kernel is the linear kernel. The predictive results of polynomial
kernel functions show that this type of kernel function was not suitable for this
application. In addition, the higher degree of polynomial function, yielded the lower
predictive performance. Since the RBF kernel function gave the best predictivie
performance for this application, we used this kernel to construct SVM classifiers for the

composite classifiers. The overview of all kernel functions is illustrated in Figure 5.1.
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Figure 5.1: The predictive accuracy of each kernel function.

5.2.3° The Results of RBF Network Models

From all our experiments, this is the only one algorithm that outputs
continuous values. These outputs represent the logarithm of fold change for each drug.
Figures 5.2-5.4 show the overview of the comparison between target function and
predictive function generated by the RBF network models. Note that all graphs in

Figures 5.2-5.4 were constructed from the testing data belonging to only one folder.
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The results from Figures 5.2-5.4 demonstrate that for most of drugs, the
prediction of the RBF network models were consistent with the target functions

especially for ddC and EFV drugs.
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Figure 5.2: The comparison graphs between the target function and the predictive
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Figure 5.4: The comparison graphs between the target function and the predictive

function for NNRTIs drugs.

5.2.4 The Results of k-NN Models

In k-NN"maodel construction, several numbers of kK were run to compare
the predictive performance. Table 5.3 shows the predictive results of k-NN models with
different -numbers of k.. From. the| experimental  results, we found that predictive
accuracies ‘of-models increased with the increase of k. Thus we selected k=9 for

constructing k-NN base classifiers for the composite classifier.
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Table 5.3: The accuracy of k-NN models when k is varied.

Drug 1-NN 3-NN 5-NN 7-NN 9-NN
LPV 82.76 82.76 84.33 86.21 87.46
APV 83.55 83.55 83.92 84.10 84.66
NFV 90.26 88.50 91.69 92.01 92.17
IDV 89.58 90.08 91.60 92.61 92.44
SQv 87.29 87.29 89w 88.12 87.62
RTV 92.15 92.15 92.85 92.32 92.15
31C 88.85 90.36 91.12 91.49 91.49
ABC 83.55 83.74 84.31 83.74 83.74
AZT 91.10 91.10 91.48 91.86 91.67
d4T 82.45 82.45 83.96 84.91 86.23
ddC 63.45 81.47 82.74 83.00 83.76
ddl 78.03 78.03 79.55 80.87 80.30
DLV 86.64 86.64 88.63 87.91 88.09
EFV 88.10 89.70 92.19 90.76 90.59
NVP 91.16 91.16 91.16 91.16 90.30
average 85.26 86.60 87.91 88.07 88.18

5.2.5 The Comparisons of Four Single Classifiers

The results in Table 5.4 show the percentage of the sensitivity and
specificity of four algorithms. The results showed that all algorithms except for the RBF
network provided an average specificity value higher than sensitivity especially for k<-NN
while the RBF network had an average sensitivity value higher than specificity. However,
when comparing the sensitivity and specificity of four algorithms, we found that the RBF
network had the highest average sensitivity whereas k-NN provided the highest average
specificity. These results indicated that the RBF network had the highest ability to
correctly classify positive (resistant) examples and k-NN had the best performance in

correctly classifying negative (susceptible) examples.



Table 5.4: The sensitivity and specificity of four single classifiers.
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Sensitivity (%) Specificity (%)

R P oot | kNN | cBA | svm | RSP | kNN | cBA
LPv | 88.24 | 89.54 | 83.01 | 83.01 | 88.55 | 88.55 | 91.57 | 87.95
APV | 86.94 | 90.20 | 80.00 | 84.90 | 89.19 | 86.15 | 8851 |88.51
NFV | 9496 | 9496 | 9377 | 9544-| 89.47 | 86.12 | 89.00 |88.04
DV | 95.14 | 9453 | 92.40 | 93.92 | 9135 | 88.72 | 92.48 |92.86
sQv | 91.81 | 9245 | 8430 | 91.13 | 89.78 | 86.90 | 90.74 | 89.46
RTV | 97.37 | 9474 | 8947 | 9441 | 9331 | 93.31 | 9517 |94.05
3TC | 9448 | 9448 | 94.48 | 8812 | 8563 | 82.04 | 85.03 |93.41
ABC | 8440 | 8853 | 73.85 | 81.19 | 88.10 | 8553 | 90.68 | 87.78
AZT | 95.704] 96.03 | 94.70 | 94.04 | 89.82 | 84.07 | 87.61 |89.38
44T | 81.34 | /88.04 | 7943 | 8565 | 89.10 | 8567 | 90.65 | 87.23
ddc | 9455'| 9318 | 92.73 | 93.18 | 7241 | 7069 | 72.41 | 7126
ddl | 60.82 | 8042 | 4854 | 5965 | 87.96 | 80.67 | 9552 |88.52
DLV | 81.63 | 8265 | 7500 | 78.06 | 9469 | 92.18 | 9525 |91.90
EFV | 91.20 | 94.44 | 80.09 | 88.43 | 96.25 | 9510 | 97.12 | 93.37
NVP | 87.06 | 90.59 | 80.39 | 86.67 | 97.21 | 9503 | 98.14 | 97.21
average | 88.38 | 90.95 | 82.81 | 86.52 | 89.52 | 86.72 | 90.66 | 89.40

As shown in Table 5.5, compared to the accuracy of four learning

algorithms, SVM gave the highest average accuracy and had the highest accuracy on

nine drugs. SVM vyielded the accuracy between 79.17% (for ddl) to 95.46% (for RTV)

whereas k-NN provided the worst average accuracy (80.30% for ddl to 92.44% for IDV).

The RBF network yielded the second best of the highest average accuracy, and had the

best accuracy on six drugs. The accuracy of the RBF network was between 80.49% (for

ddl) to 94.85 (for EFV). The accuracy of CBA was between 79.17% (for ddl) to-94.24%

(for RTV). The accuracy of each data fold for four learning algorithms are shown in

Tables A.1-A.4 in Section A.1 of Appendix A.
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Note that the accuracy of ddC for the HIVdb system cannot be measured
because the HIVdb system did not have ddC drug for testing. When comparing the
accuracy of four learning algorithms with Geno2Pheno and HIVdb systems, we found
that all learning algorithms provided the higher average accuracy than two online
systems. In addition, the learning algorithms yielded the best accuracy on all drug

except for NFV DLV and NVP on which the HIVdb system gave the best accuracy.

Table 5.5: The comparison of the predictive accuracy for all classifiers.

Drug Accuracy (%)
SVM RBF Network k-NN CBA Geno2pheno HIVdb
LPV 88.40 89.03 87.46 85.58 81.51 73.98
APV 88.17 87.99 84.66 86.88 85.77 85.58
NFV 93.13 92.01 92.17 92.97 88.18 93.93
IDV 93.45 91.93 92.44 93.45 90.59 92.27
SQV 90.76 89.44 87.62 90.26 85.31 86.96
RTV 95.46 94.07 92.15 94.24 91.97 94.07
3TC 91.68 90.55 91.49 89.79 86.01 91.12
ABC 86.58 86.77 83.74 85.07 78.45 73.16
AZT 93.18 90.91 91.67 92.05 89.21 91.86
aaT 86.04 86.60 86.23 86.60 67.74 78.11
ddC 84.77 83.25 83.76 83.50 61.17 -
ddl 79.17 80.49 80.30 79.17 75.00 67.99
DLV 90.07 88.81 88.09 87.00 88.99 91.16
EFV 94.32 94.85 90.59 91.47 91.47 93.96
NVP 92.72 93.07 90.30 92.55 90.64 93.93
average | 89.86 89.32 88.18 88.71 83.47 86.29
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5.2.6 Data Analysis

The distribution of data is an important factor on the predictive
performance of the learning algorithm. If the distribution of susceptible and resistant
samples in the datasets is known, this information may help us explain why the
predictive accuracies of learning algorithms (SVM, the RBF network, k-NN, and CBA) in
classifying HIV-1 drug resistance are different.

In this subsection, we analyze the distribution of susceptible and
resistant samples for each drug using hierarchical clustering implemented with Matlab.
In running hierarchical clustering, we used the real-value vectors from total samples as
inputs to the clustering algorithm, and set the number of clusters to thirty clusters for all
drugs. After we ran the clustering algorithm, each sample in a cluster was assigned its
actual class label in order to view the distribution of susceptible and resistant samples.

The information in Table 5.6 shows the number of susceptible samples
(in column S) and resistant samples (in column R) for each cluster. This information
shows the distribution of susceptible and resistant samples in each drug. Considering
the clusters for all drugs, we found that all drugs always had only one cluster that
contained susceptible samples greater than 75% of total susceptible samples, and there
were eleven drugs that contained susceptible samples greater than 90% of total
susceptible samples in one cluster. In addition, the number of clusters which contained
susceptible samples was less than the number of clusters which contained resistant
samples significantly. Thus we can conclude that in most of datasets the distribution of

susceptible samples was tight and the distribution of resistant samples was scattered.
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Table 5.6: The number of susceptible (S) and resistant (R) samples in the clusters for all drugs.
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5.2.6  Predictive Performance Analysis

With the data distribution information provided by the clustering algorithm,
we can explain a predictive behavior of each learning algorithm as follows. As k-NN
uses a majority vote from all neighbors to predict an output, the prediction of k-NN is
depended on a ratio between the number of susceptible samples and resistant samples
near a new sample. Since in most of datasets the density of susceptible samples was
higher than resistant samples (as described in section 5.2.6), k-NN tends to predict
output as a susceptible class.

Although the contribution from each of the hidden nodes of the RBF
network is localized to a region nearby the new sample like k-NN, the RBF network
provides a global approximation to the target function. In addition, in contrast to k-NN,
the RBF network computes the weights of each hidden nodes (training samples) using
all training data in the training step. For this reason, the RBF network can improve the
performance of recognizing resistant samples of k-NN caused by an imbalance of the
density between susceptible samples and resistant samples.

As SVM uses only support vectors (samples) that lie at the border
between susceptible and resistant samples and uses an optimization technique to find a
suitable hyperplane to classify a new sample, this approach can eliminate a predictive
bias of predicting susceptible class which may occur in k<-NN. Thus SVM provided the
best performance in predicting phenotypic HIV-1 drug resistance.

For the CBA algorithm, the predictive behavior does not depend on the
distribution of the training 'data. This is because the-CBA algorithm does not use the
distance function to produce an output. On the other hand, the prediction of this
technique depends on the number of the samples for each class of all training data.
Considering the CBA results' in Table 5.4 and the percentage of susceptible and
resistant classes in Table 3.3 in Chapter 3, we found that for-most of drugs, if the
number of the susceptible (resistant) sample is higher than the resistant (susceptible)
sample in a dataset, the specificity (sensitivity) of that dataset is greater than the

sensitivity (specificity).
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5.3 Composite Classifier Results and Discussion

5.3.1 Experimental Results

Table 5.7 shows the comparison between the proposed composite
classifier (represented by column DCC) and three single classifiers. The experimental
results demonstrate that our proposed classifier combination method (DCC) provided
the best or the second best accuracy for all drugs. The accuracies of the composite
classifier were the best for eleven drugs, the second best for four drugs. In addition, the

composite classifier yielded the highest average accuracy.

Table 5.7: The accuracy of three single classifiers and the dynamic composite classifier.

Drug Accuracy (%)
DCC SVM RBF network k-NN
LPV 89.97 88.40 89.03 87.46
APV 88.91 88.17 87.99 84.66
NFV 92.49 9818 92.01 9217
IDV 93.28 93.45 91.93 92.44
sQv 91.42 90.76 89.44 87.62
RTV 95.11 95.46 94.07 92.15
37C 91.68 91.68 90.55 91.49
ABC 86.96 86.58 86.77 83.74
AZT 93.37 93.18 90.91 91.67
d4T 87.17 86.04 86.60 86.23
ddC 84.77 84.77 83.25 83.76
ddl 82.20 7917 80.49 80.30
DLV 89.89 90.07 88.81 88.09
EFV 94.85 94.32 94.85 90.59
NVP 93.59 92.72 93.07 90.30
average 90.38 89.86 89.32 88.18
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Table 5.8: The predictive accuracy of single classifiers and the composite classifiers.

Accuracy (%)

Drug
SVM | RBF Network k-NN | Majority Vote | Naive Bayes | DCC
LPV | 88.40 89.03 87.46 89.34 89.66 89.97
APV 88.17 87.99 84.66 87.43 87.43 88.91
NFV | 93.13 92.01 921V, 93.13 93.13 92.49
IDV 93.45 J1%98 92.44 93.78 93.78 93.28
SQV | 90.76 89.44 87.62 90.92 90.92 91.42
RTV 95.46 94.07 92415 95.46 95.29 95.11
3TC | 91.68 90.55 91.49 91.30 91.30 91.68
ABC | 86.58 86.77 83.74 86.58 86.58 86.96
AZT | 93.18 90.91 91.67 92.42 92.42 93.37
daT 86.04 86.60 86.23 86.98 87.36 8717
ddC | 84.77 83.25 83.76 84.52 84.52 84.77
ddl 7917 80.49 80.30 81.44 81.44 82.20
DLV | 90.07 88.81 88.09 90.61 90.61 89.89
EFV 94.32 94.85 90.59 94.32 94.32 94.85
NVP 92.72 93.07 90.30 92.37 93.07 93.59
average | 89.86 89.32 88.18 90.04 90.12 90.38

Table 5.8 demonstrates the predictive accuracy of three single classifiers
and three different classifier combination methods. From the results, we found that all
composite: classifiers enhanced the predictive performance of three single classifiers
especially for LPV, SQV, d4T, and ddl drugs in which all of three composite classifiers
provided.-the ~higher -accuracies: than three  single classifiers: -In. addition; when
comparing the predictive performance of our proposed classifier combination-method
(DCC) with other two classifier combination methods (Majority Vote and Naive Bayes),
we found that DCC provided the best accuracy for ten drugs, and also yielded the
highest average accuracy. The accuracy of each data fold for majority vote, naive Baye,

and DCC are shown in Tables A.5-A.7 in Section A.1 of Appendix A.
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5.3.2 Predictive Performance Analysis for the Composite Classifier

There are three main reasons that we selected SVM, the RBF network,
and k-NN to be the component classifiers. First of all, these learning algorithms use the
same input data for constructing the models. This prevents a bias of getting different
information from input data among three classifiers. The second reason is of the
accuracy of the component classifiers. This is an important criterion for selecting
component classifiers. The results in Table 5.7 show that all of these classifiers provided
the average predictive accuracy greater than 80%. The final reason is of the diversity of
the component classifiers. Ali and Pazzani (1996) have shown that error is mostly
reduced by using component classifiers whose errors are low correlated. To measure
the diversity of SVM, the RBF network, and k-NN, we calculated error correlation
between all pairs of these learning algorithms as shown in Table 5.10. Since the average
of all error correlation between pairs of algorithms was not highly correlated (lower than
0.526), SVM, the RBF network, and k&-NN were considered to be good candidates for the
component classifiers.

To analyze how the composite classifiers enhance the predictive
performance of the single classifiers, a static composite classifier was constructed. The
static composite classifier combined SVM, the RBE network, and k-NN classifiers with
weight voting to predict all testing data. Then we applied the Dynamic Weighted Voting
(DWV) algorithm already described in Section 4.2.2 to the final prediction of the
composite classifier. Table 5.9 shows the accuracy of the static composite classifier
compared with three single classifiers. The column stdev shows the standard deviations
of accuracy-of all base classifiers. We used these values to measure the performance
variation between the base classifiers.

The results in Tables:5.9 and 5.10 indicate that the improvement of the
composite classifier depends on error correlation and performance variation between
base classifiers. If the performance variation is small, the improvement could be
obtained more easily. Otherwise the base classifier with the worst performance could
induce poor performance of the composite classifier. Error correlation is another factor

which affects the improvement of the composite classifier. If error correlation is high, the
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improvement could not be easily achieved as when one classifier makes error, the

others are likely to commit the same error.

In our case, when the standard deviation was small (e.g. less than or

equal to 1.0), the improvement was obtained for all drugs except for 3TC and ddC. The

predictive performance of the static composite classifiers of 3TC and ddC did not

improve because all pairs of classifiers of 3TC and ddC drugs had high error correlation

more than 0.7 and 0.8, respectively. On the other hand, when the performance variation

was large, it was more difficult to achieve the improvement of the composite classifier,

e.g. as in the cases of APV, ABC, AZT, EFV, and NVP. However, when the performance

variation was quite large but the error correlation was small, the predictive performance

of the composite classifiers could be improved such as in the case of SQV.

Table 5.9: The accuracy of three single classifiers and the static composite classifiers.

Accuracy (%)
brug RBFSrYel\t/Iwork SVM neFEv?/Erk k-NN stdev
k-NN
LPV 89.34 88.40 89.03 87.46 0.79
APV 87.43 88.17 87.99 84.66 1.98
NFV 93.13 93.13 92.01 92.17 0.60
IDV 93.78 93.45 91.93 92.44 0.77
SQV 90.92 90.76 89.44 87.62 1.57
RTV 95.46 95.46 94.07 92.15 1.66
3TC 91.30 91.68 90.55 91.49 0.61
ABC 86.58 86.58 86.77 83.74 1.69
AZT 92.42 93.18 90.91 91.67 1.16
daT 86.98 86.04 86.60 86.23 0.29
ddC 84.52 84.77 83.25 83.76 0.78
ddl 81.44 79.17 80.49 80.30 0.72
DLV 90.61 90.07 88.81 88.09 1.00
EFV 94.14 94.32 94.85 90.59 2.32
NVP 92.37 92.72 93.07 90.30 1.51
average 90.03 89.86 89.32 88.18 0.86
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Table 5.10: Error correlation of all pairs of three algorithms.

Error correlation
Drug SVM RBF network SVM average
RBF network k-NN k-NN
LPV 0.532 0.389 0.510 0.477
APV 0.518 0.410 0.531 0.486
NFV 0.632 0.650 0.704 0.662
IDV 0.403 0.431 0.448 0.427
sQv 0.446 0.418 0.489 0.451
RTV 0.429 0.386 0.392 0.402
3TC 0.741 0.759 0.712 0.737
ABC 0.533 0.444 0.495 0.491
AZT 0.500 0.559 0.509 0.523
a4t 0.480 0.500 0.615 0.532
ddC 0.853 0.831 0.938 0.874
ddl 0.430 0.294 0.518 0.414
DLV 0.539 0.422 0.635 0.532
EFV 0.525 07323 0.371 0.406
NVP 0.414 0.412 0.581 0.469
average 0.531 0.482 0.563 0.526

To enhance the predictive performance of the composite classifiers, we
constructed the dynamic composite classifiers instead of static combination. In our
dynamic classifier combination method, a combination pattern of the base classifiers
depends on a new instance. This property makes a dynamic composite classifier have
more predictive performance than a static composite classifier since the dynamic
composite classifier is more adaptable to each new instance.

The important problem of constructing.a dynamic composite classifier is
how to select the.component classifiers. Which base classifiers are suitable to form a
composite classifier? To solve this problem, we consider that the accuracy, the
performance variation, and the error correlation of the composite classifiers will help us
measure the quality of the component classifiers. In addition, the confident weight of
each base classifier in predicting a new instance is an important factor in selecting

suitable composite classifiers.
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Considering the predictive results of the dynamic composite classifiers
constructed by DCC (shown in Table 5.7) and the results of the static composite
classifiers (shown in Table 5.9), we found that the dynamic composite classifiers
enhanced the predictive performance of the static composite classifiers for eleven drugs.
Furthermore, our dynamic composite classifiers also yielded the better performance
than majority vote and naive Bayes methods for ten drugs. These results indicate that

DCC has an ability to select suitable component classifiers.



CHAPTER VI

CONCLUSIONS

This thesis applies learning algorithms: SVM, the RBF network, k-NN, and
CBA for constructing the models to predict HIV-1 drug resistance from HIV-1 genotypic
data into two classes i.e., resistant or susceptible for 15 drugs separately. The
advantage of using the learning algorithm to construct the model is the prediction time.
The learning algorithm takes less time than phenotypic testing in prediction. Moreover,
the model generated from a learning algorithm helps reduce the cost of phenotypic
testing. However, the performance of the learning algorithm depends on the amount of
phenotypic training data. The more phenotypic data, the more accuracy of the learning

algorithm gains.

For constructing the single classifiers, some pre-processing data
techniques such as data selection, data transformation are used to prepare the data
suitable for each learning algorithms. In this thesis, RReliefF is applied to select
important amino acid positions. From the experimental results, we found that SVM
provided the best predictive performance. The method that yielded the second best
predictive performance was the RBF network. Moreover, the RBF network had the best
ability in recognizing resistant samples. The third best algorithm was CBA. Though k-NN
had the lowest average accuracy, the predictive performance was quite good (the
average accuracy was more than 88.0%). In addition, k&-NN performed the best
performance on recognizing susceptible samples. Besides comparing the predictive
performance among four learning-algorithms, we also-compared. the -performance of four
learning algorithm with"online drug resistance systems: ‘HIVdb'and Geno2Pheno. The
results.showed that all learning algorithms provided'the better predictive performance

than those two online systems.
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In the part of the composite classifier construction, this thesis proposes a
new dynamic classifier combination method called DCC. The concept of DCC consists
of two steps. First, it tries to select the suitable classifiers to form the composite classifier.
These classifiers are dynamically chosen by a heuristic function depending on the
prediction of each base classifier in classifying a new instance. Then it uses a dynamic
weighted voting algorithm to classify the new instance. The results from our experiments
indicated that our dynamic composite classifiers enhanced the performance of single
classifiers. In addition, the proposed dynamic classifier combination method yielded the
better performance than other classifier combination methods such as majority vote and
naive Bayes.

In the HIV treatment, a patient is treated with a combination of drugs.
This is an open problem in the application of HIV drug resistance prediction. It is
challenging to construct the model to predict the clinical success for drug combination
treatments. It would help the doctor finding the combination of drugs that would

decrease the viral load of the patients.
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APPENDIX A

ADDITIONAL EXPERIMENTAL RESULTS

A.1 The accuracy of 10-Fold Cross-Validation

Tables A.1 to A.7 show the accuracy of 10 folds for the single classifiers and

the composite classifiers.

Table A.1: The accuracy of 10 folds for CBA classifiers.
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Table A.3: The accuracy of 10 folds for RBF network classifiers.
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Table A.4: The accuracy of 10 folds for k<-NN classifiers.
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Table A.5: The accuracy of 10 folds for majority vote classifiers.
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Table A.6: The accuracy of 10 folds for naive Baye classifiers.
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Table A.7: The accuracy of 10 folds for DCC classifiers.
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A.2 Predictive Performance with Clinical Data

This section reports the predictive performance of our four single classifiers
and the proposed composite classifier (DCC) with the TruGene system, an FDA-approved
genotypic testing system based on rule-based interpretation rules, by using 97 clinical
samples.

Tables A.8 to A.13 show the predictive results of clinical data for TruGene,
CBA, SVM, the RBF network, k-NN, and DCC models, respectively. All of these tables also
show the outcomes of the drug susceptibility from patients. Column ‘Sample ID’ represents
patient ID. Columns Drug1 to Drug4 represent the combination of drugs treated to a patient.
Columns ‘TruGene1’ to ‘TruGene4’ in Table A.8 represent the predictive results from the
TruGene system. The value 1 (-1) in_these columns (TruGene1-4) represents resistant
(susceptible). The column ‘Outcome’ of these tables shows the results of the drug
susceptibility of the patients. The value -1 represents clinical success. This means that after
the doctor treats drugs to the patient, the viral load of that patient becomes lower than 50
copies/ml. On the other hand, the value 1 represents clinical failure. This means that the

patient is resistant to the drugs since the viral load is greater than 50 copies/ml.



Table A.8: The predictive results of the clinical data from the TruGene system.
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Sarmple 1D | Drag 1 Drug2 Drug 3 Drug 4 | TriuGene!  ThuGene? TruGened  TruGened | Outcome
14-0025 EFV ({3 RTW = 1 -1 -1 0 -1
14-0033 Dol AZT ICeW RTY 1 -1 -1 -1 -1
140077 8ZT ITC = = =1 -1 0 0 -1
14-0051 04T (n]nl} RTY SaY -1 -1 -1 -1 1
140115 &ZT 3TC EFY = -1 -1 -1 0 -1
140119 Dol 82T |Cof RTY -1 -1 -1 -1 -1
14-0174 04T i P 3 il -1 1 0 -1
14-0179 &ZT ABIC ICr RTY -1 -1 -1 -1 -1
14-0303 04T aATC 1T RTY =l -1 -1 -1 1
140320 ool 8ET |Cef = -1 -1 -1 0 -1
140325 Lol &ZT 1T RTY - -1 -1 -1 -1
14-0354 04T [n]n]} ICoW RTY -1 = -1 -1 -1
1403579 82T ABC |Co RTY = | -1 -1 -1 -1
14-0411 Lol AZT 1T RTY -1 = -1 -1 -1
14-0412 Lol &ZT 1D RTY il -1 -1 -1 -1
14-0425 Lol &ZT 1D RTY =) -1 -1 -1 -1
140477 ool 82T 1D RTY -1 -1 -1 -1 -1
14-0489 Lol &ZT 1T RTY -1 =1 -1 -1 -1
14-0502 EFV 1D RTY = -1 -1 -1 0 -1
140529 Dol 82T EFY = -1 1 -1 1
14-0554 Lol (|30 LPYIR: = i =il -1 0 1
14-0569 AZT 3TC 1T RTY -1 -1 il -1 -1
140617 ool AET EFV LPYIR -1 -1 -1 -1 -1
140704 Dol 8ZT ICv RTY -1 -1 £ -1 -1
140753 &ZT 3TC ICeW RTY 1 1 -1 -1 -1
1407549 Lol &ZT DY RTY -1 -1 -1 -1 -1
14-0760 Lol &2T DY RTY -1 -1 -1 -1 -1
1407592 04T [a]n]} DY RTY 1 -1 -1 -1 -1
14-0501 [aYu]} &ZT DY RTY -1 -1 -1 -1 -1
14-0561 Dol 82T EFY = -1 -1 ol 0 -1
14-1000 Dol 3TC ICr RTY -1 -1 -1 -1 -1
14-1176 Lol &ZT DY RTY -1 -1 -1 -1 -1
25-00041 DEd AZT = B 1 -1 0 0 1
250003 0dT n]u]| 3 5 -1 1 -1
250030 ool = o = -1 0 -1
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Table A.8: The predictive results of the clinical data from the TruGene system (cont.).

Sample ID [ Drug1 Drug 2 Drug 3 Drug 4 | TruGenel  TruGene2  TruGenes  TruGened | Outcorme
25-00589 Lol 82T = = 51 -1 0 0 -1
250102 Lol = = = -1 0 0 0 -1
2501138 Lol 82T = = -1 -1 0 0 -1
250124 Lol MYP = = - -1 0 0 -1
250133 82T 3T EFY = -1 -1 -1 0 -1
250139 82T ABIC = = -1 -1 0 0 -1
250187 3TC EFY = = -1 -1 0 0 -1
250213 Dol 82T 4 - =l -1 0 0 1
250415 Lol 82T 7 N -1 -1 0 0 -1
25-0419 Lol 82T = N | -1 0 0 -1
250442 EFV = $ = -1 0 0 0 -1
250452 Lol 82T = — -1 S 0 0 -1
25-04595 Lol 82T 5 5 1l -1 0 0 1
Gen149 DdT Dl 3T LPYIR, 1 1 1 -1 -1
Gen162 04T Dol = - -1 -1 0 0 1
Gen1? 1 EFV 1D RTY = =1 -1 -1 0 -1
Gen1sd DdT ABIC 3T LPYIR, -1 -1 -1 -1 -1
Gen221 DY RTY = = -1 = 0 0 -1
Gen22G 82T 3T ICot RTY 1 1 -1 -1 -1
Gen232 EFV DY RTY = -1 -1 -1 0 -1
Gen236 DdT a3n]} 1D RTY -1 -1 -1 -1 1
Genz259 3TC EFY ID RTY 1 -1 -1 -1 -1
Gen270 04T Dol LPYW/R ~ 1 1 i 0 -1
Gen295 EFY ICY RTY = -1 -1 -1 0 -1
Gen300 82T AT LPYIR = 1 1 -1 0 -1
Gen3i6 EFV DY RTY = -1 -1 -1 0 -1
Gen3d3 EFV DY RTY = -1 -1 -1 0 -1
Gen3ad 82T 3T DY RTY -1 -1 -1 -1 -1
GEN353 EFY DY RTY = -1 1 1 0 -1
Gen363 82T 3T Y 5 1 -1 -1 0 -1
Gen3g4 Lol 3T DY = -1 =1 -1 0 -1
Gen3Es ABC 3T = = 1 1 0 0 -1
Gen3a0 82T 3T EFY o -1 -1 -1 0 1
Gen3as [Byel} 82T 1Dt RTY -1 -1 1 1 -1
Gend0v EFY B £ £ =1 0 0 0 -1
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Table A.8: The predictive results of the clinical data from the TruGene system (cont.).

Sample D Drug 1 Drug 2 Drug s Drug 4 | TuGenel  TruGene2 TruGened  TruGened | Outcome
Gend 14 04T 3TC = = -1 -1 0 a -1
Gend22 Lol Fs EFY S -1 -1 -1 a 1
Gend27 04T 3TC MR = -1 -1 -1 a -1
Gend 37 T LP YR Sy s 1 el -1 a -1
5end 39 EFY LPYIR = = -1 -1 0 a -1
Genddd EFY 1D RTY = =i =i -1 a -1
Gendds BET 3 1T RTY -1 = -1 -1 -1
GendB0 aTc EFY LPYR. - 1 -1 -1 a -1
Genddo BET 3TC |G RTY 1 = -1 -1 -1
Genals EFY 1D RTY — =1, -1 -1 a -1
5enad 04T B1n]l ICW > -1 1 1 a 1
5enav Lol 3TC 1D RTY -1 =l -1 -1 -1
Gens?y ABC 3TC ICY AR 1 -1 -1 -1 -1
5ens1 BET ABIC 3TC = -1 1 1 a -1
5en643 Dol 8ZT < = -1 -1 0 I -1
5enG45 EFY RTY Sov 7 -1 -1 -1 a -1
Gen6E7 DDl 3TC ICr GARY -1 =] -1 -1 -1
5enBES 04T ABIC ICeW RTY -1 -1 -1 -1 -1
5enB70 LPYIR Soy = = -1 -1 0 a -1
5enB7 BET 3TC - - -1 -1 0 a -1
Genf 03 [B3n]l 3TC EFY = -1 -1 -1 a -1
5en¥s EFY DY RTY = -1 -1 # | a -1
5en¥a2 BET ENG = E -1 -1 0 a -1
Genf&7 Lol 3TC = = -1 -1 0 a -1
5engd EFY LPYIR = = -1 -1 0 a -1
Cut29255651 | LPWR Soy = S -1 -1 0 a -1
Cut3E01975 [ LPWR Sy = = -1 -1 0 I -1




Table A.9: The predictive results of the clinical data from the CBA model.
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Sample ID | Drug 1 Drug 2 Drug 3 Drug 4 CEA CEAZ CEBAS CEA4 Cutcome
140028 EFY DY RTY 8 -1 -1 -1 0 -1
140033 Lol 82T ICY RTY S -1 -1 -1 -1
140077 82T 3TC = = -1 -1 0 0 -1
140091 DdT (10l RTY Sy -1 -1 -1 -1 1
140115 82T 3TC EFY = -1 -1 -1 0 -1
140114 Lol 82T IDY RTY -1 -1 -1 -1 -1
140174 DdT 3L RS = -1 -1 -1 0 -1
140174 82T ABIC ICY RTY Sl -1 -1 -1 -1
140303 DdT 3TC DY RTY -1 = -1 -1 1
140320 Lol 82T ICoty = -1 -1 -1 0 -1
140328 Lol 82T ICY RTY Sl -1 -1 -1 -1
140354 DdT (B7n] ICot RTY 1 1 -1 -1 -1
140374 82T ABIC |CoY RTY -1 -1 -1 -1 -1
140411 Lol 82T 1D RTY -1 -1 -1 -1 -1
140412 Lol 82T IDY RTY -1 -1 1 -1 -1
140425 Lol 82T IDY RTY -1 -1 -1 -1 -1
140477 Lol 82T DY RTY 1 -1 -1 -1 -1
140494 Lol 82T ICl RTY -1 -1 -1 -1 -1
140502 EFY ICY RTY = =1 -1 -1 0 -1
140524 Lol 82T EFY = -1 -1 -1 1
140554 Lol DY LFPYIR : =i -1 -1 0 1
140564 82T 3TC ICY RTY -1 1 -1 -1 -1
140617 (51n]] 82T ER LPYIR -1 -1 -1 -1 -1
140704 0ol 82T 1D RTY -1 -1 -1 -1 -1
140753 &ZT 3TC ICY RTY 1 1 -1 -1 -1
140754 Lol 82T ICY RTY -1 -1 -1 -1 -1
140760 Lol 82T DY RTY -1 -1 -1 -1 -1
140752 DdT Lol DY RTY -1 -1 -1 -1 -1
140301 Lol 82T DY RTY -1 -1 -1 -1 -1
140861 Lol 82T EFY = -1 -1 -1 0 -1
14-1000 (B10] 3TC IDY RTY -1 1 -1 -1 -1
14-1176 Dol 87T 1Dt RTY -1 -1 -1 -1 -1
2540001 Lol 82T = = -1 -1 0 0 1
2540003 04T (B3n]] = = -1 -1 -1
2540030 [n]u]] 4 = 5 il 0 -1




Table A.9: The predictive results of the clinical data from the CBA model (cont.).
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Sample ID |Drug1 Drug2 Drug3  Drug 4 CEA CEAZ CEBAS CEA4 Cutcome
2540054 Lol 82T = 5 -1 -1 0 0 -1
2540102 Lol = - 3 -1 0 0 0 -1
250118 Dol 82T = = -1 -1 0 0 -1
2540124 Lol MWYF - = 1 1 0 0 -1
2540133 82T 3TC EFY = -1 -1 -1 0 -1
2540134 82T ABIC = = =i = 0 0 -1
2540197 3TC EFY = = -1 il 0 0 -1
2540213 Lol 82T - - = & 0 0 1
250415 Lol 82T = = -1 -1 0 0 -1
2540414 Lol 82T = = = Sil 0 0 -1
2540442 EFY = i = = i 0 0 -1
2540452 Lol 82T - = il &il 0 0 -1
2540495 Lol 82T e £ -1 = | 0 0 1
Gen1d4s DdT (B1n]l IE LPYWIR 1 1 1 -1 -1
Gen162 DdT LDl = = -1 -1 0 0 1
Gent? EFY IDY RTY = R -1 -1 0 -1
Gen181 DdT ABIC 3TC LPYR: -1 -1 -1 -1 -1
Gen221 DY RTY = - -1 =] 0 0 -1
Gen22g 82T 3TC IDY RTY = =] -1 -1 -1
Gen232 EFY DY RTY = -1 -1 -1 0 -1
Gen236 DdT Lol ICY RTY = -1 -1 -1 1
Gen2s4 3TC EFY ICY RTY 1 -1 -1 -1 -1
Gen270 4T (B1n]l LPYIR = 1 -1 -1 0 -1
Gen293 EFY (L% RTY = -1 -1 =1 0 -1
Gen300 &ZT 3TC LPYIR = 1 1 -1 0 -1
Gen316 EFY DY RTY = -1 1 -1 0 -1
Gen3d3 EFY DY RTY = -1 -1 -1 0 -1
Gen3s 82T 3TC DY RTY -1 1 -1 -1 -1
Gen3sd EFY DY RTY = -1 1 1 0 -1
Gen363 82T 3TC MFY = 1 -1 -1 0 -1
Gen36d Lol 3TC DY = -1 -1 il 0 -1
Gen3Es ABIC 3TC - = 1 -1 0 0 -1
Gen 380 82T 3TC EFY = -1 -1 -1 0 1
Gen 395 (B1n]l 82T ICY RTY -1 -1 -1 -1 -1
Gend0f EFY = N § -1 0 0 0 -1




Table A.9: The predictive results of the clinical data from the CBA model (cont.).
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Sample D Drug 1 Drug 2 Drug 3 Drug 4 CEAl CEBAZ CEBAS CEBA4 Qutcome
Gend 14 DdT 3TC = = -1 il 0 a -1
Gend22 DDl 3TC EFY > 1 = -1 a 1
Gend27 DdT 3TC MYP N -1 = -1 a -1
Gend37 T LF YR Sy o il = -1 a -1
Gend 39 EFY LPYWIR = = Sl -1 0 a -1
Genddd EFY 1Dt RTY = =i -1 -1 a -1
Gendds 82T s 10 RTY -1 =i -1 -1 -1
GendB0 T EFY LPY/R = 1 = -1 a -1
Genddo 82T 3TC 1D RTY 1 S -1 -1 -1
Genals EFY ICY RTY = = -1 -1 a -1
Genad DdT ool 1D > ail 5 -1 a 1
Gena? Lol 3TC 1LY RTY 5l 1 -1 -1 -1
GensTy BBC 3TC DY RTY -1 1 -1 -1 -1
Genb1 82T ABIC 3TC Z -1 < 1 a -1
Genbg43 Lol 82T = = -1 = 0 a -1
GenB4s EFY RTY Sov - -1 -1 -1 a -1
GenBE7 Lol 3TC ICr RTY -1 4 -1 -1 -1
GenBES DdT ABIC ICe RTY -1 =1 -1 -1 -1
GenB70 LPYIR Soy = = -1 =il 0 a -1
GenBv 82T 3TC = = = 1 0 a -1
Gen703 [B3n]l 3TC EFY = = = -1 a -1
Gents EFY DY RTY - -1 -1 -1 a -1
Gen¥a2 82T EG = = -1 = 0 a -1
Gen?&7 (510l 3TC = = -1 = 0 a -1
Gendd EFY LPYIR = = -1 Sl 0 a -1
Cut29255651 | LPWR Soy = = -1 =il 0 a -1
Cut3E01975 | LPWR Sy = = -1 il 0 I -1




Table A.10: The predictive results of the clinical data from the SVM model.
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Sarple 1D | Drug 1 Drug 2 Drug 3 Drug 4 S S 2 S 3 S 4 Cutcame
140025 EFY DY RTY = -1 -1 -1 0 -1
140033 DDl &ZT 1D RTY -1 -1 -1 -1 -1
140077 82T 3TC = = -1 -1 0 0 -1
140091 DdT (10l RTY Sy -1 -1 -1 -1 1
140115 A&FT 3TC EFY - -1 -1 -1 0 -1
140119 Lol 82T ICY RTY = -1 -1 -1 -1
140174 DdT 3TC FWE 3 -1 =] 1 0 -1
140179 A&FT SBC 1D RTY -1 -1 -1 -1 -1
140303 DdT 3TC |DY RTY -1 = -1 -1 1
140320 Lol 82T ICot = S -1 -1 0 -1
140328 Dol &ZT 1D RTY -1 & -1 -1 -1
140354 DdT Lol ICot RTY = -1 -1 -1 -1
140379 82T ABIC ICY RTY -1 S -1 -1 -1
140411 DDl AT DY RTY | | -1 -1 -1
140412 Lol 82T DY RTY -1 -1 -1 -1 -1
140425 Lol 82T 1Dt RTY -1 -1 -1 -1 -1
140477 DDl 82T DY RTY -1 -1 -1 -1 -1
140495 Lol 82T ICYy RTY -1 -1 -1 -1 -1
140502 EFY IDY RTY s =] -1 -1 0 -1
140529 DDl 82T EFY = -1 1 -1 1
140554 Lol DY LPYIR = = -1 -1 0 1
140569 82T 3TC 1Dt RTY =] -1 -1 -1 -1
1406517 oDl 82T EFY LPYIR -1 -1 1 -1 -1
140704 ool AZT 1D RTY -1 -1 -1 -1 -1
140753 82T 3TC ICY RTY 1 1 -1 -1 -1
140759 Dol 82T 1D RTY -1 -1 -1 -1 -1
140760 Lol 82T DY RTY -1 -1 -1 -1 -1
140792 DdT Lol DY RTY -1 -1 -1 -1 -1
140501 Dol 87T DY RTY -1 -1 -1 -1 -1
140561 Lol 82T EFY = -1 -1 -1 0 -1
14-1000 By 3TC IDY RTY 1 1 -1 -1 -1
14-1176 Dol 82T 1T RTY -1 -1 -1 -1 -1
260001 Lol 82T = = -1 -1 0 0 1
2650003 DdT Lol S = -1 1 -1
2650030 [a]n]] 3 = = il 0 -1




Table A.10: The predictive results of the clinical data from the SVM model (cont.).
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Sample ID | Drug1 Drug? Drug3 Drug 4 Sl SWh2 SWM3 SWhid outcome
2540054 Lol 82T > e -1 -1 0 0 -1
2540102 Lol = - 3 -1 0 0 0 -1
2540118 Lol 82T = = il -1 0 0 -1
2540124 Dol MYE = = il 1 0 0 -1
2540133 82T 3T EFY = -1 -1 -1 0 -1
2540134 82T ABIC # = = = 0 0 -1
2540197 3TC EFY = = = il 0 0 -1
2540213 Lol 82T = 2 &l = 0 0 1
250415 Lol 82T - = -1 -1 0 0 -1
2540414 Lol 82T = N 1 1 0 0 -1
2540442 EFY & - = = 0 0 0 -1
2540452 Lol 82T 5 = =il = 0 0 -1
2540495 Lol &ZT 7 £ -1 = 0 0 1
Gen1d4s DdT [B1nl} I LPYIR, 1 1 1 -1 -1
Gen162 DdT 3n]} = = -1 -1 0 0 1
Gent? EFY ICt RTY - Rl = -1 0 -1
Gen181 DdT ABIC 3TC LPYYR, & -1 -1 -1 -1
Gen221 DY RTY = = -1 = 0 0 -1
Gen22g 82T 3T ICY RTY = 1 -1 -1 -1
Gen232 EFY DY RTY = -1 -1 -1 0 -1
Gen236 DdT a3n]} ICY RTY = -1 -1 -1 1
Gen2s4 3TC EFY IDY RTY 1 -1 -1 -1 -1
Gen270 DT Dol LPYIR = 1 -1 -1 0 -1
Gen293 EFY ICet RTY = -1 -1 =] 0 -1
Gen300 82T 3T LPYIR = 1 1 -1 0 -1
Gen316 EFY DY RTY = -1 -1 -1 0 -1
Gen3d3 EFY DY RTY = -1 -1 -1 0 -1
Gen3s 82T 3T DY RTY -1 1 -1 -1 -1
Gen3sd EFY DY RTY = -1 1 -1 0 -1
Gen363 82T 3T MFY = 1 1 -1 0 -1
Gen36d (B30]l 3T DY = -1 1 ol 0 -1
Gen36a ABC 3T = = 1 -1 0 0 -1
Gen 380 82T 3T EFY = -1 -1 -1 0 1
Gen39s (n1n]l AZT 1Dt RTY -1 -1 -1 -1 -1
Gendo? EFY - > 5 il 0 0 0 -1




Table A.10: The predictive results of the clinical data from the SVM model (cont.).
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Sarmple D Drug 1 Drug 2 Drug 3 Drug 4 SWhd SWh2 SWhS Sh4 Outcorme
Gend 14 04T 3TC = 2 -1 -1 0 0 -1
Gend22 ool ITC EFY o -1 1 -1 0 1
Gend2y D41 ITC MY P & -1 -1 -1 o -1
Gend 3y 3TC LP iR Sl o =i =il -1 0 -1
Gend3d EFY LPWiFR = = = -1 0 0 -1
Genddd EFY 1Dy RTY 3 =i =i -1 0 -1
Gendds 82T 3TC 1D RTY Sil -1 -1 -1 -1
Gendsl 3TC EFY LPW/R = 1 -1 -1 0 -1
Genddl 82T ITC 10 RTY 1 1 -1 -1 -1
Gensls EFY 1D RTY = =1 -1 -1 0 -1
Gengd 04T ool 1D > = -1 -1 0 1
Gensil ool 3TC 1D RTY gl 1 -1 -1 -1
Gens?y AEC 3TC 1D RTY -1 -1 -1 -1 -1
Genkl 82T AEC 3TC 2 -1 -1 1 0 -1
Genbds ool 82T 5 = = =] 0 0 -1
Genbds EFY RTY S - &1 -1 -1 0 -1
Genbey ool 3TC 1Dy RTY -1 1 -1 -1 -1
Genbes 04T AEC 1Cn RTY -1 -1 -1 -1 -1
Gensvo LPWIiFR S = = -1 -1 0 0 -1
Genbi 82T 3TC - = = 1 0 0 -1
Gen?03 [B3ul} 3TC EFY = -1 -1 -1 0 -1
Genvs EFY 1D RTY = -1 -1 &l 0 -1
Genya2 AZT SIS - - -1 -1 0 a -1
Genvey ool 3TC = = -1 -1 0 0 -1
Gengs EFY LPWIiR = = -1 -1 0 0 -1
Out2925861 | LPWER S - - -1 -1 0 o -1
Outs3E01878 | LPWR S = = -1 -1 0 a -1




Table A.11: The predictive results of the clinical data from the RBF network model.
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Sample ID | Drug 1 Drug 2 Drug 3 Drug 4 FEF1 REF2 REF3 REF4 Cutcome
140028 EFY DY RTY - -1 -1 -1 0 -1
140033 Lol 82T ICY RTY 1 -1 -1 -1 -1
140077 82T 3TC = = -1 -1 0 0 -1
140091 DdT (n1n]l RTY Sy -1 -1 -1 -1 1
140115 82T 3TC EFY = -1 = -1 0 -1
140114 Lol 82T 1Dt RTY 1 -1 -1 -1 -1
140174 DaT I MWE i -1 =il 1 0 -1
140174 82T ABC ICY RTY Sl -1 -1 -1 -1
140303 DdT 3TC DY RTY Sl -1 -1 -1 1
140320 Lol 82T ICot = 1 -1 -1 0 -1
140328 Lol 82T ICY RTY = = -1 -1 -1
140354 DdT (B1n]] ICoY RTY -1 -1 -1 -1 -1
140374 82T ABIC ICoY RTY -1 1 -1 -1 -1
140411 Lol 82T 1D RTY 1 | -1 -1 -1
140412 Lol 82T DY RTY 1 -1 -1 -1 -1
140425 Lol 82T ICY RTY 1 -1 -1 -1 -1
140477 Lol 82T DY RTY 1 al -1 -1 -1
140494 Lol 82T IDt RTY -1 -1 -1 -1 -1
140502 EFY ICY RTY = -1 -1 -1 0 -1
140524 Lol 82T EFY = 1 1 1 1
140554 Lol DY LFPYIR, ¢ 1 1 -1 0 1
140564 82T 3TC 1Dt RTY -1 1 -1 -1 -1
140617 (B1n]] 82T EFY LPYIR 1 -1 1 -1 -1
140704 [B1n]l 82T 1Dt RTY -1 -1 -1 -1 -1
140753 &ZT 3TC ICY RTY 1 1 -1 -1 -1
140754 Lol 82T ICY RTY 1 -1 -1 -1 -1
140760 Lol 82T DY RTY -1 -1 -1 -1 -1
140792 DaT Lol DY RTY -1 1 -1 -1 -1
140301 Lol 82T DY RTY 1 -1 -1 -1 -1
140861 7n] 82T EFY = 1 -1 -1 0 -1
14-1000 [B10]l 3TC DY RTY 1 1 -1 -1 -1
14-1176 [a3nll 82T Dot RTY 1 -1 -1 -1 -1
2540001 Lol 82T = = 1 -1 0 0 1
2540003 04T (B3n]l S = =l -1 -1
2540030 []n]] 4 = N 1 0 -1
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Table A.11: The predictive results of the clinical data from the RBF network model (cont.).

Sample ID | Drug1 Drug 2 Drug 3 Drug 4 REF1 REF2 REF3 FEF4 Outcome
25-0059 Lol 82T = e 1 -1 0 0 -1
250102 Dol = = = 1 0 0 0 -1
2501138 Lol 82T = = 1 -1 0 0 -1
250124 Lol MYE = = -1 1 0 0 -1
250133 &ZT 3T EFY = -1 -1 1 0 -1
250139 82T BT = ~ -1 1 0 0 -1
250187 3TC EFY = = -1 -1 0 0 -1
250213 Lol 82T = - 1 =il 0 0 1
250415 Dol 82T 3 N 1 = 0 0 -1
25-0419 Lol 82T = 2 1 -1 0 0 -1
25-0442 EFV 4 5 = =, 0 0 0 -1
250452 Lol 82T = = 1 -1 0 0 -1
25-0495 ool 82T = & 1 i 0 0 1
Gen149 DdT Dol 3T LPYR, 1 1 1 -1 -1
Gen162 DdT 3n]} = = -1 -1 0 0 1
Gen1? 1 EFY IO RTY = -1 -1 -1 0 -1
Gen1sd DdT ABIC 3T LPYIR, -1 -1 -1 -1 -1
Gen22q DY RTY > = -1 = 0 0 -1
Gen22s &ZT 3T IDY RTY -1 1 -1 -1 -1
Gen232 EFY DY RTY = -1 -1 -1 0 -1
Gen236 DdT a3n]} ICot RTY -1 1 -1 -1 1
Gen259 3T EFY ICY RTY 1 1 -1 -1 -1
Gen2¥i 04T Dol LPY/R = 1 -1 -1 0 -1
Gen295 EFW ICrY RTY E -1 -1 -1 0 -1
Gen300 82T e LPYW/R = 1 1 -1 0 -1
Gen3i6 EFV DY RTY = -1 -1 -1 0 -1
Gen3d3 EFV DY RTY = -1 -1 -1 0 -1
Gen3ad 82T 3T DY RTY -1 1 -1 -1 -1
Gen3a3 EFV DY RTY = -1 1 -1 0 -1
Gen363 82T 3T Py 4 1 1 -1 0 -1
Gen3g4 (ayul} 3T DY = 1 1 -1 0 -1
Gen36s ABC 3T = = 1 -1 0 0 -1
Gen3al &ZT 3T EFY = -1 -1 -1 0 1
GEn395 ool 82T IEe RTY -1 -1 =1 -1 -1
Gend0? EFY B 7 5 1 0 0 0 -1
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Table A.11: The predictive results of the clinical data from the RBF network model (cont.).

Sample D Drug 1 Drug 2 Drug 3 Drug 4 FEF1 REF2 REF3 REF4 Qutcome
Gend 14 04T 3TC = = -1 -1 0 a -1
Gend22 Dol 3TC EFY = 1 1 -1 a 1
Gend27 04T S MYP = -1 -1 -1 a -1
Gend 37 aTc LF YR SO - -1 -1 -1 a -1
5end 39 EFY LPYWIR o E -1 il 0 a -1
Genddd EFY 1Dt RTY = = -1 -1 a -1
Gendds BET 3TC IC W RTY = = -1 -1 -1
GendB0 T EFY LPYIR = 1 -1 -1 a -1
Genddo BET I 1D RTY 1 1 -1 -1 -1
Genals EFY ICY RTY = =1 1 -1 a -1
5enad D47 [B1n]l ICoW e il 1 1 a 1
5enav Lol 3TC ICW RT 1 1 -1 -1 -1
Gena?y ABC 3TC ICY BT -1 -1 -1 -1 -1
5ens1 BET ABIC 3TC £ -1 -1 1 a -1
Geng43 DDl 8FT - - 1 -1 0 a -1
5enG45 EFY RTY Sov = & -1 -1 a -1
5enBE7 Lol 3TC ICeY RTY -1 =] -1 -1 -1
5enBES 04T ABIC ICW RTY -1 -1 -1 -1 -1
5enB70 LPYIR Soy = = -1 -1 0 a -1
5enB7 BET 3TC = = & 1 0 a -1
Genf 03 (B30l 3TC EFY = -1 -1 -1 a -1
5en¥s EFY |DY RTY ~ -1 -1 i a -1
5en¥a2 BET 3TC = = -1 -1 0 a -1
Gen?Ey Dol 3TC = = 1 -1 0 a -1
5engd EFY LPYIR = = -1 -1 0 a -1
Cut29268651 | LPWR SOy - - -1 -1 0 a -1
Cut3E01975 [ LPWR Say = = -1 -1 0 I -1




Table A.12: The predictive results of the clinical data from the k-NN model.
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Sample ID | Drug 1 Drug 2 Drug 3 Drug 4 F=MM1 FeMR2 F=MP3 FMM4 | Outcorne
140028 EFY DY RTY E -1 -1 -1 0 -1
140033 Lol 82T ICY RTY = -1 -1 -1 -1
140077 82T 3TC = = -1 -1 0 0 -1
140091 DdT Gl RTY Sy -1 -1 -1 -1 1
140115 82T 3TC EFY = -1 -1 -1 0 -1
140114 Lol 82T 1Dt RTY = -1 -1 -1 -1
140174 DdT ILG MWF b -1 = 1 0 -1
140174 82T ABC ICY RTY -1 -1 -1 -1 -1
140303 DdT 3TC |CoY RTY -1 -1 -1 -1 1
140320 Lol 82T ICot = =i -1 -1 0 -1
140328 Lol 82T ICY RTY = =] -1 -1 -1
140354 DdT Lol ICot RTY = -1 -1 -1 -1
140374 82T ABIC |CY RTY -1 -1 -1 -1 -1
140411 Lol 82T ICY RTY | | -1 -1 -1
140412 Lol 82T DY RTY -1 -1 -1 -1 -1
140425 Lol 82T 1Dt RTY -1 = -1 -1 -1
140477 Lol 82T DY RTY -1 -1 -1 -1 -1
140494 Lol 82T ICY RTY -1 -1 -1 -1 -1
140502 EFY IDY RTY = =] -1 -1 0 -1
140524 Lol 82T EFY = -1 1 -1 1
140554 Lol DY LPYIR = = -1 -1 0 1
140564 82T 3TC ICY RTY -1 -1 -1 -1 -1
140617 Lol 82T EFY LPYIR -1 -1 1 -1 -1
140704 (B3u]l AT 1D RTY -1 -1 -1 -1 -1
140753 82T 3TC ICY RTY 1 1 -1 -1 -1
140754 Lol 82T ICY RTY -1 -1 -1 -1 -1
140760 Lol 82T DY RTY -1 -1 -1 -1 -1
140752 DdT Lol DY RTY -1 -1 -1 -1 -1
140301 Lol 82T DY RTY -1 -1 -1 -1 -1
140861 Lol 82T EFY = -1 -1 -1 0 -1
14-1000 (B30l 3TC IDoY RTY -1 1 -1 -1 -1
14-1176 (B3]l 82T ICoY RTY -1 -1 -1 -1 -1
2540001 Lol 82T = = -1 -1 0 0 1
2540003 04T (B3n]] = = -1 -1 -1
2540030 [n]u]| 1 = 3 ol 0 -1




Table A.12: The predictive results of the clinical data from the <-NN model (cont.).

94

Sample ID [ Drug1 Drug2 Drug3  Drug 4 R F-MMN2 F-MM3 F-MMN4 outcome
2540054 Lol 82T = e -1 -1 0 0 -1
2540102 Lol = = 3 -1 0 0 0 -1
2540118 Lol 82T = = il -1 0 0 -1
2540124 Lol MYP = = -1 -1 0 0 -1
2540133 82T e EFY = il -1 -1 0 -1
2540134 82T ABIC = = = = 0 0 -1
2540197 3TC EFY = = = Gl 0 0 -1
2540213 Lol 82T = 2 & -1 0 0 1
250415 Lol 82T = = -1 =i 0 0 -1
2540414 Lol 82T = N = -1 0 0 -1
2540442 EFY & 7 = = 0 0 0 -1
2540452 Lol 82T = = -1 &l 0 0 -1
2540495 Lol 82T 7 £ -1 Sl 0 0 1
Gen1d4s DdT [B1n]l 3TC LPYIR 1 1 1 -1 -1
Gen162 DdT (7n] E o -1 -1 0 0 1
Gent? EFY ICY RTY = R = -1 0 -1
Gen181 DdT ABIC 3TC LPYR: & -1 -1 -1 -1
Gen221 DY RTY = H =il &1 0 0 -1
Gen22g 82T 3TC ICY RTY 1 1 -1 -1 -1
Gen232 EFY DY RTY = =i -1 -1 0 -1
Gen236 DdT Lol ICY RTY il -1 -1 -1 1
Gen2s4 3TC EFY ICY RTY 1 -1 -1 -1 -1
Gen270 DT (B1n]l LPYIR = 1 1 -1 0 -1
Gen293 EFY IDY RTY = -1 -1 =1 0 -1
Gen300 &ZT 3TC LPYIR = 1 1 =1 0 -1
Gen316 EFY IDY RTY = -1 = -1 0 -1
Gen3d3 EFY DY RTY = -1 -1 -1 0 -1
Gen3s 82T 3TC DY RTY -1 1 -1 -1 -1
Gen3sd EFY DY RTY = -1 1 -1 0 -1
Gen363 82T 3TC MFY = 1 1 -1 0 -1
Gen36d (70l 3TC DY = -1 1 ol 0 -1
Gen36a ABIC 3TC = = 1 =1 0 0 -1
Gen 380 82T 3TC EFY = -1 -1 -1 0 1
Gen 395 (B1n]l 82T ICY RTY -1 -1 1 -1 -1
Gend0? EFY - = = -1 0 0 0 -1




Table A.12: The predictive results of the clinical data from the <-NN model (cont.).
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Sample D Drug 1 Drug 2 Drug 3 Drug 4 =M F-MM2 KNG F-MM4 outcome
Gend1d DT 3TC = = -1 -1 0 0 -1
Gend22 (B10]] IS EFY = - 1 -1 0 1
Gend2y DaT 3TC MY P - -1 -1 -1 0 -1
Gend3y 3TC LF YR S S -1 il -1 0 -1
Gend3s EFY LPYWIR o = -1 il 0 0 -1
Genddd EFY 1Dt RTY 3 = -1 -1 0 -1
Gendds 82T I 1D RTY = = -1 -1 -1
Gends0 3TC EFY LPYIR = 1 -1 -1 0 -1
Gendso &ZT I DY RTY 1 1 -1 -1 -1
Gensls EFY ICY RT' = = -1 -1 0 -1
Gensd DT (10l 1D > ail -1 -1 0 1
Gensy ]| 3TC DY RTY -1 1 -1 -1 -1
Gena?? ABC 3TC DY RTY -1 -1 -1 -1 -1
Genk 8ZT ABIC 3TC = -1 -1 1 0 -1
Genbds (B10]] 82T = 2 = -1 0 -1
Genbds EFY RTY S = & -1 -1 -1
GenBE7 (B10]] 3TC 10t RTY -1 1 -1 -1 -1
GenBEs DT ABIC 1Dt RTY -1 Sl -1 -1 -1
GenByo LPYWIR Soy - - -1 -1 0 0 -1
Genky 82T 3TC > = =1 1 0 0 -1
Gen?03 ool 3TC EFY = -1 -1 -1 0 -1
Genvs EFY IDY RTY = -1 -1 | 0 -1
Genvs2 &ET SIS = = -1 -1 0 0 -1
Gen?E7 (51| 3TC = = -1 -1 0 0 -1
Gends EFY LPYIR = = -1 -1 0 0 -1
Cut289265561 | LPWR Soy = = -1 -1 0 0 -1
Cut3601975 [ LPWR Sy = = -1 -1 0 0 -1




Table A.13: The predictive results of the clinical data from the DCC model.
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Sample 1D | Drag 1 Drug 2 Drug 3 Drug 4 By DiCC2 B e DiCC4 Ctcorne
140025 EFY DY RTY 3 -1 -1 -1 0 -1
140033 Lol 82T IDY RTY -1 -1 -1 -1 -1
140077 82T 3TC = = -1 -1 0 0 -1
140091 DdT (a1n]l RTY Sy -1 =il -1 -1 1
140115 82T 3TC EFY 2 =i -1 -1 0 -1
140119 Lol 82T IDY RTY -1 -1 -1 -1 -1
140174 DdT 3TC FWE & il -1 1 0 -1
140179 82T ABIC ICY RTY -1 -1 -1 -1 -1
140303 DdT 3TC |CoY RTY =] -1 -1 -1 1
140320 Lol 82T |Coty = -1 -1 -1 0 -1
140325 Lol 82T ICY RTY -1 Sil -1 -1 -1
140354 DdT (B1n] ICot RTY =1 -1 -1 -1 -1
140379 82T ABIC ICY RTY -1 -1 -1 -1 -1
140411 Lol AZT 1D RTY | Sl -1 -1 -1
140412 Lol 82T IDY RTY -1 -1 -1 -1 -1
140425 Lol 82T ICY RTY -1 -1 -1 -1 -1
140477 Lol 82T DY RTY -1 -1 -1 -1 -1
140495 Lol 82T IDt RTY -1 -1 -1 -1 -1
140502 EFY ICY RTY e =i -1 -1 0 -1
140529 Lol 82T EFY = -1 1 -1 1
140554 Lol DY LFPYIR, : .l 1 -1 0 1
140569 82T 3TC 1Dt RTY -1 1 -1 -1 -1
1406517 (51n]] 82T EFY LPYIR -1 -1 1 -1 -1
140704 0ol 8T 1D RTY -1 -1 -1 -1 -1
140753 &ZT 3TC ICY RTY 1 1 -1 -1 -1
140759 Lol 82T ICY RTY -1 -1 -1 -1 -1
140760 Lol 82T DY RTY -1 -1 -1 -1 -1
140792 DdT Lol DY RTY -1 -1 -1 -1 -1
140501 Lol 82T DY RTY -1 -1 -1 -1 -1
140561 7n] 82T EFY = -1 -1 -1 0 -1
14-1000 (B30] 3TC DY RTY 1 1 -1 -1 -1
14-1175 B3]l 82T ICot RTY -1 -1 -1 -1 -1
250001 Lol 82T = = -1 -1 0 0 1
250003 04T [n1n]] - - -1 -1 -1
2540030 [n]0]] Y = N -1 0 -1
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Sample ID |Drug1 Drug 2 Drug 3 Drug 4 D]y 0y LCC2 DiCC3 DiZC4 Outcome
25-0059 Lol 82T = e -1 -1 0 0 -1
250102 Lol = = 3 -1 0 0 0 -1
2501158 Dol 82T = = -1 -1 0 0 -1
250124 Lol MYE = = =il -1 0 0 -1
250133 82T 3T EFY = -1 -1 -1 0 -1
250139 &ZT ABIC = = i) -1 0 0 -1
250187 3TC EEL = = il -1 0 0 -1
250213 Lol 82T 2 - &l = 0 0 1
250415 Lol 82T = = -1 -1 0 0 -1
250419 Dol 82T F 2 1 -1 0 0 -1
25-0442 EFV r 5 = = 0 0 0 -1
250452 Lol 82T 3 = -1 = 0 0 -1
25-0495 Lol &ZT = & & | 0 0 1
Gen149 DdT Dol 3T LR, 1 1 1 -1 -1
Gen162 DdT B3n]} = = -1 -1 0 0 1
Gen1? 1 EFV ICt! RTY = -1 = -1 0 -1
Gen1sl 04T ABIC 3T LPYsR, -1 -1 -1 -1 -1
Gen22q DY RTY = = -1 &1 0 0 -1
Gen22G 82T 3T 1Dy RTY -1 1 -1 -1 -1
Gen232 EFV DY RTY = -1 -1 -1 0 -1
Gen236 DdT a3n]} ICot RTY -1 -1 -1 -1 1
Gen259 3T EFY 1D RTY 1 -1 -1 -1 -1
Gen270 04T Ol LPY/R = 1 -1 - 0 -1
Gen2489G EFY ID RTY = =1 -1 -1 0 -1
Gen300 82T e LPY/R = 1 1 -1 0 -1
Gen3i6 EFV DY RTY = -1 -1 -1 0 -1
Gen343 EFV DY RTY = -1 -1 -1 0 -1
Gen3ad 82T 3T DY RTY -1 1 -1 -1 -1
Gen3a3 EFV DY RTY = -1 1 -1 0 -1
Gen363 82T 3T [ FY 1 1 1 -1 0 -1
Geni6d Dol 3T DY = -1 1 -1 0 -1
Gen36s ABC 3T = = 1 -1 0 0 -1
Gen3a0 82T 3T EFY = -1 -1 -1 0 1
Gen395 Y]] &ZT B RTY a1 -1 -1 -1 -1
Gend0v EFY B 7 5 -1 0 0 0 -1
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Sarmple D Drnug 1 Drug 2 Drug 3 Drug 4 (1l | DCC2 DiCC3 DiCCd Qutcarne
Gend1d 04T 3TC - - -1 -1 0 0 -1
Gend22 B]n]] 3TC EFY = -1 1 -1 0 1
Gend2? D41 3TC MYP N -1 -1 -1 0 -1
Gend3y T LFYIR: S N -1 =i -1 0 -1
Gend3s EFY LFPWIR = = -1 -1 0 0 -1
Genddd EFY DY RTY - -1 -1 -1 0 -1
Gendds AZT 3T ICe ¥ RTY -1 =i -1 -1 -1
Gends0 T EFY LPYIR = 1 -1 -1 0 -1
Gendso AZT I ICoY RTY 1 1 -1 -1 -1
Gensls EFY DY RTY = -1 -1 -1 0 -1
Gensd 04T Dol 1D > = S -1 0 1
Gensy B]n]] 3TC ICY RTY -1 1 -1 -1 -1
Gens?y ABC 3TC ICY RTY -1 -1 -1 -1 -1
Genkd AZT ABC 3TC F -1 -1 1 0 -1
Genbds B]n]] 8ET < = -1 =1 0 -1
GenBds EFY RTY Sov > -1 -1 -1 -1
GenBEy B]n]] 3TC |Ce RTY -1 -1 -1 -1 -1
GenBEs D41 ABC ICry RTY -1 -1 -1 -1 -1
GenBTo LPYIR Sav - - -1 -1 0 0 -1
Genky AZT 3TC = - -1 1 0 0 -1
Gen?i3 B]n]] 3TC EFY = -1 -1 -1 0 -1
Gen?s EFY DY RTY - -1 -1 &l 0 -1
Gen7s2 AZT 3TC = = -1 -1 0 0 -1
Gen?sy ool 3TC = = -1 -1 0 0 -1
Gendd EFY LPWIR = = -1 -1 0 0 -1
Cut2825561 | LPWR Sy = = -1 -1 0 0 -1
COut3601978 [ LPWR Sy - - -1 -1 0 0 -1
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The four single classifiers, the composite classifiers (DCC) including the
TruGene system predict the drug susceptibility drug by drug. But in practice, doctor treats
a combination of drugs to a patient. This combination is different depending on the
symptoms of a disease of each patient and the doctor. Usually there are three or four drugs
in a combination. Thus to evaluate the predictive performance of the four single classifiers
and the proposed composite classifier (DCC) including the TruGene system with the clinical
data, we design six rules for the drug combination prediction. These rules are defined as
follow.

Rule 1 —> If there is at least one drug that gives a prediction to resistant
class, then a final prediction of that drug combination is resistant.

Rule 2 —> If there are two drugs that give a prediction to resistant class,
then a final prediction of that drug combination is resistant.

Rule 3 —> If there are three drugs that give a prediction to resistant class,
then a final prediction of that drug combination is resistant.

Rule 4 —> If there is at least one drug that gives a prediction to susceptible
class, then a final prediction of that drug combination is susceptible.

Rule 5 —> If there are two drugs that give a prediction to susceptible class,
then a final prediction of that drug combination is susceptible.

Rule 6 —> If there are three drugs that give a prediction to susceptible
class, then a final prediction of that drug combination is susceptible.

Table A.14 shows the accuracy of all models predicted by six rules. The
results in Table A.14 demonstrate ‘that rule 4 gave the best accuracy for all methods. Thus
in further experiments, we used only the outputs from the rule 4 to compare the predictive

performance among these methods.
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Table A.14: The predictive accuracy of drug combination by six rules.

Rules Accuracy (%)

TruGene CBA SVM RBF Network k-NN DCC
rule 1 7217 65.98 65.98 47.42 68.04 69.07
rule 2 79.38 81.44 80.41 78.35 80.41 81.44
rule 3 85.57 85.57 85.57 84.54 86.60 86.60
rule 4 86.60 86.60 86.60 85.57 87.63 87.63
rule 5 82.47 81.44 79.38 76.29 81.44 81.44
rule 6 77.32 75.26 7217 60.83 75.26 75.26

Table A.15 shows the concordance between four single classifiers and the
composite classifier with the TruGene system. The concordance calculated from the
number of the samples with the same prediction from a pair of algorithms divided by the

number of total cases for each drug.

Table A.15: The concordance between each model and the TruGene system.

Drug Concordance with TruGene (%)
CBA SVM RBF Network k-NN DCC
LPV 97.22 98.61 98.61 98.61 98.61
APV 91.67 93.06 90.28 94.44 93.06
NFV 84.72 81.94 81.94 88.89 83.33
IDV 91.67 93.06 91.67 94.44 91.67
sQv 95.83 97.22 88.89 94.44 95.83
RTV 95.83 95.83 94.44 93.06 94.44
3TC 87.50 82.29 84.38 83.33 84.38
ABC 67.71 68.75 63.54 64.58 69.79
AZT 88.54 91.67 94.79 95.83 93.75
DAT 76.04 80.21 80.21 73.96 77.08
DDC 77.08 77.08 79.17 7917 77.08
DDI 60.42 69.79 53.13 64.58 67.71
DLV 82.29 85.42 84.38 82.29 86.46
EFV 57.29 91.67 89.58 83.33 90.63
NVP 93.75 95.83 94.79 93.75 96.88
average 83.17 86.83 84.65 85.65 86.71
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The results from Table A.15 show that the SVM model provided the highest
average concordance (86.83%) to the TruGene system while the DDC model gave the
second best average concordance. The third and the fourth best in average concordance
methods were k-NN and the RBF network, respectively. Finally, the model which provided
the lowest average concordance was CBA.

The comparisons of the predictive performance of four single classifiers, the
proposed composite classifier (DCC), and the TruGene system with clinical data is
illustrated in Talbe A.16. The number of the patients predicted to each class (clinical
success or failure) of all methods is shown in the first two rows of the table. The row TP, TN,
FP, and FN represent the number of true positive, true negative, false positive, and false
positive clinical-data. The concordance is the concordance between other classifiers and
the TruGene system. The concordance correct is calculated from the number of samples
which are correctly classified by both algorithms divided by the number of the samples with

the same prediction from those algorithms.

Table A.16: The comparisons of predictive performance among all methods.

Methods TruGene | CBA | SVM | \3BF | kNN | DCC | Clinical
Clinical Success 96 96 96 93 97 97 85
Clinical Failure 1 1 1 4 0 0 12
Accuracy (%) 86.60 | 86.60 | 86.60 | 8557 | 87.63 | 87.63
TP (Clinic+,other+) 0 0 0 1 0 0
TN (Clinic-,other-) 84 84 84 82 85 85
FP (Clinic=,0ther+) 1 1 1 3 0 0
FN (Clinic+,other-) 12 12 12 11 12 12
Sensitivity (%) 0.00 0.00. |- 0.00 . 833 | 0.00.-| 0.00
Specificity (%) 98.82 | 98:82-| 98.82 | 96.47 | 100.00 | 100.00
Concordance (%) - 97.94 | 97.94 94.85 98.97 | 98.97
o aaye . 87.37 | 87.37 | 88.04 | 87.50 | 8750
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The results in Table A.16 show that all of models predicted the outputs more
than 93 cases as clinical success, especially for k-NN and DCC models which totally gave
predictions to clinical success. For the accuracy of all models, k-NN and DCC provided the
best accuracy (87.63%). CBA and SVM gave the same accuracy with TruGene (86.60%),
and the RBF network yielded the lowest accuracy (85.57%). Thought TruGene, CBA, and
SVM predicted only one sample to clinical failure, these samples are wrongly classified (see
the TP row). Thus the sensitivities of these models are zeroes. However the RBF network
predicted four patients as clinical failure, and only one of these four patient was correctly
classified (see the TP row), so the sensitivity of this model is only 8.33%. On the other hand,
since k-NN and DCC predicted all patients as clinical success, these methods then provide
100% of specificities. For evaluating the concordance of the drug combination prediction
between four single classifiers and our proposed composite classifiers with TruGene, we
found that DCC gave the highest concordant relation (98.97%). While the RBF network
provided the lowest concordant relation, this model yielded the best in concordant correct

prediction (88.04%).
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