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CHAPTER 1

PRELIMINARIES

Media were introduced by

2 in 19/@0 generalize a class of models

of preference changes. gist; Set tates transformed by the

actions of a set of tra alled tokens isfying two axioms. We shall

1.1 A Jigsaw Puzz

Consider a jigsaw puzzle e 3 x 2. We c: e of this puzzle any partial

solution, formed by their correct positions.

Four such states are ﬂplayed in Figure 1.1.1 (a), (lﬂ (c) and (d). Thus, the

completed puzﬁ ugﬂgj ﬂﬁﬁg?w Ecr(ar fﬁjtial situation (the

empty board), and any single piece ‘approprlatelkplwed on the board A careful

coun b\ ] U b Tl 2/ bk ¥l 8 b e

corrwpond exactly two transformations which consist of placing or removing a

piece. In the first case, a piece is placed either on an empty board, or so that it

1We closely follow Section 1.1 of [5] for this first foundation example of media theory.



can be linked to some pieces already on the board. In the second case, the piece
is already on the board and removing it either leaves the board empty or does not
disconnect the remaining pieces. By convention, these two types of transformations
apply artificially to all the states in the sense that placing a piece already on the
board or removing a piece that is net on the board leaves the state unchanged.
This provides the first example of a medium; a€oneept based on a pair (., J) of
sets: a set % states, and a collection T ="(F)f tramsformations capable, in some cases,

of converting a state inte'a diffezént one. The formal definition given in the next
]

section of such a structure rélies on two constraining axioms.

(@ |7 (®) 1 @

Figure 1.1.1: The figures illustrate some states-of a jigsaw puzzle.

By the abovédefinition, none of these transformations is one-to-one. For in-
stance, applying {the transformation adding the upper left ‘piecel of the puzzle to
either of the states pictured in Figure 1.1.1 (a) or (b) results in the same state,
namely (a). In the first case, we have thus a loop. Accordingly, the two transfor-

mations associated with each piece are not mutual inverses. However, each of the



transformations in a pair can undo the action of the other. We shall say that these
transformations are reverses of one another. When the number of states is finite,
it may be convenient to represent a medium by its graph and we shall often do so.
The medium of a 3 x 2 jigsaw puzzle has its graph displayed in Figure 1.1.2 below.

As usual, we omit loops.
/s
An examination of this graph leads to furthéf_ilsight. For any two states S and
T, it is possible to find a s-e,g_,enoe of trapsformatlons whose successive applications
from S results in formmg{ path Srom S to T never strays from the allowed
set of states, and can be mlmm_a.llz short, that is: its length is equal to the

number of pieces which are n

om;non Bto-both states. Moreover, any two such
paths from S to T will involve xactl\;( the, sg.me transformations, but they may be

applied in different orders. an ilfustratlé’ﬁ;we have marked in Figure 1.1.2 two

,_ -;.-..‘,

such paths from state to the cpmpletei-: gu,zzle by coloring their edges in red
£

and blue, respectivelyiflfhgg two paths are —
M ,LJ
[34] > [134] —- [1345] — [12345] »—-*_ (1.1.1)

[34] = [346] " [2348) > (23456] -~ [123456] (1.1.2)

Observe also from the graph that.for any two.states.S and T, we can always find
a minimally short path from S and T that does not contain transformations in

exact opposite orders.
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A schematic of the puzzle
ieces numbered 1,...,6. Each of

?ium, that is, one partial

ing the list of its pieces.

!
mglormations one adding a

pisce, and the ﬁ;%ﬁb@g"ﬂ Eﬂ %@Weﬂﬂhﬂ@m only some of the

edges are la.bele%l (by a circle). ¢

ARIANN I URIINYIR

Each edge represents a é)axr of mutually reverse tr



1.2 Media and Nearmedia

Let . be a nonempty set and  a nonempty set of functions on .%. An element
of # is called a state and an element of 7 is called token. We write 7(S) =

and we assume that the identity function 79 is not a token. The pair (&, T) is
said to be a token system. Let S and 7' be two states. T is adjacent to Sif S #T
and ST =T for some token7 in Z. A -t!;joken 718 ; reverse of a token 7 if for any

two adjacent states S and'T', we have

/&f/ L andhonly i\ SRR

Note that 7 (if exists) m/ mque but may?ot be in 7. If the reverse 7 of T exists,

then 7 and 7 are mutua.l" rewersos and 7 -“1'

A
; "

A finite composition of tokens,m S ;'31,, is called a message. Its content is
F I = : f!
the set €(m) = {r,..., 7} For t:wo dlstmct—states S and T, if Sm = T for some
- ¥ " "'
message m, then we say that m produces & fmm S. Al message m is said to be

-

effective (resp. ineﬁ’éé’tz;ve) for a state S if Sm # S (res'ii Sm = §). It is called

stepwise effective if ST; T #F ST ...Tiy foralli =1,...,n— 1. A message is
inconsistent if 7,7 € € (m) for some T &€ € (m) and consistent otherwise. A concise
message for a state S is a message which is stepwise effective for §,consistent, and
any token occurs at-most once'in‘the message. A message-is closed for a state S if
it is stepwise effective and ineffective for S. A message m = 7,...7, is vacuous if
the set of indices {1,...,n} can be partitioned into pairs {3, j}, such 7; and 7, are

mutual reverses.



Let (#,.7) be a token system. The digraph G = (V, E) is said to represent
(&, 7) if V is the set of states . and the set E of ordered pairs of states (S, T")
is considered to be directed from S to T" when ST = T for some 7 € .

We illustrate the above terminologies in the following example.

Let m; = o1, m SNSRI JRgn. ™M, My, M3 are mes-

<)

sages. Their contentse E T, To, 71} and €(ms) =

{m, 72, 71,72}, raipectlvey Since Smy = quve have my produces V' from S. No-

B TR (YT N
iiﬁ“‘iﬁ Klibio ek I gL 1.

Furthermore, the messages m;, m, and mj are inconsistent. Clearly, m; is vacuous.

Some examples of consistent and concise messages are 71, 727y and T3T2Ty.



A token system (.%,.7) is called a medium if the following two axioms are

fulfilled.

[M;] For any two distinct states S and T in %, there is a concise message trans-

forming S into T'.

[M2] A message, which is cl

The token system given in doms [M;] and [M,], so it is a

medium

Example 1.2.2. The to ‘ ZYwith .# =4{S,T,V}and J = {1, 72, T3}
. \ N

as shown satisfies [M;] buf dges 5t fulf [M,).\Note b at the token system which

Example 1.2.3. Thé 1 7 = (S, T,V, W} and J =

{1, 72,71, 72} as showm:tisﬁes \f,] but does not fulfm[Ml].
AU IRERIRBNT
“RRTHININUNIINYIAY
Remark. The axioms [M;] and [Mj)] are independent.

Example 1.2.4. The 3 x 2 jigsaw in Section 1.1 is a medium where the set & of

states consists any partial solution obtained by a linked subset of the puzzle pieces



in their correct positions and the set J of tokens forms from adding and removing

one piece of puzzle and the remain puzzle pieces must be connected.

Example 1.2.5. Let P(X) be the power set of X, i.e., the family of all subsets

of X, and let ¥ = U {7z,7=} be the family of functions from P(X) into P(X)

zeX
where v, and 7, are deﬁr@”y/
; /

and

for all z € X. Corollary )g)lsa.medlum Its

graph is called a “c ? r} i section.

If X ={a} or X ﬂ{a b} or X = {;,b c}, then tﬂr graphs are respectively

S“°“‘“F‘g“‘ﬂ'13EJ’J°fIEJﬂ§WEJ’1ﬂ‘§
QW’]ﬁNﬂim UA1INYAY



RN
b AN, TR
7% i” {a} : L B {a} {b} {c}

Figure 1.2.2: The graphs o a}, X = {a,b} and X =

{a, b, c}, respectively. Fo labels in the last graph.

Example 1.2.6. Let Z? deng t ice points with the set of

transformations 7 consisfing © ,7; and 0;,; on Z2 defined

by

(k,q), 117‘”‘7;

- ﬂuﬂqwawswswnﬁ
ammmm MY Y

(k,9), ifitk—1
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and

(k,g+1), ifi=g;
g; . (k, q) i (ka Q)Ui =

(k,9), if i #q

and
[Tl Y ﬁi’:q—l;
e ——
)} I —_— t#q—'l

for all € Z. Then , ) isfasmedi it is an example of infinite media.

QRIANT INENY

To see this, let (a,b) and (c,d) be two distinct states in . Then there exist
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integers k and [ such that c =a + k and d = b+ [. Clearly,

M = TaTat+1 - - - Ta+k—10b0b41 - - - Obtl-1

is a concise message sending (a,b) to (c,d). Thus we have [M;]. To see that our

token system fulfills [My)], we may assume without loss of generality that a closed

message m’ sends (0,0) to ). That is{ (0,0)
number of going up tokens'o; is the same Qf of going down tokens 7;
and the number of goiw/ ens| T; 1Stk

backward tokens, 7;.
Let (&, .7) be a toke

ad =
T = {1 @I ST St € S ome S in &}.
We call (', Z5) an induced ;:: 73 of (#,T) for Ty # @.

Example 1.2.7. Gorisider thie token s Ty with & = {S,T,U,V, X}

t9 - o T ]
UEIYHINEINS
WAMNIUYRTINYIAY

For ./ = {S,T,U,V}, we have Iy = {71, T2, T4, Ts, 71, T2, 71, 75} and for S =

{S,T,V}, we have Tgn = {1, 73,71,72}. The induced subtoken systems (", 7"
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and (", ") are respectively displayed below.

,//\\ N
N

Example 1.2.8. Consider the medium “(£(%, ¥) when X = {a,b,c} where
—
P(X) = {Z,{a},{b}, {c

.} defined in Examp

(arehAa, o) (b, ChA@B1} and @ = {Ye, T Y Tos o

is medium is shown in the right-
most of Figure 1.2.27 For .# &=/ . , , a,c},{b,c}} and F' =
{2,{a}, {0}, {c}, {a,b], {§

are respectively displayed

(f gf) and (f’ gy!)

{a,c}

e i
{a} i_;_——:,’ {6} {c}
S

The cube o with the vertex set P(X ) and subsets P
and @ of X aﬁj’iﬂ g ?j(gnﬁi mﬂce A (P NQ)U(Q\P)
is a smaew ‘ﬂ apq ﬂs?m nﬂlﬂ!rb‘?wgoﬁeﬁﬁ embeddable
into the tube /2 (X) for some set X. The cubes #(X) for |X| = 1,2 and 3 are

respectively shown in Figure 1.2.4 and some partial cubes of #(X) when |X| =

are displayed in Figure 1.2.5.
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A
O N

Figure 1.2.4: The cubes J#(X) when |X| = 1,2 and 3, respectively.

In this work, we soften the def of a medium to a nearmedium defined as
a token system ( ’. ,#@4_ 1l. Therefore, a medium

Y

is a nearmedium and : aearmedium which is not a

medium. This thesis is osgamzed as follows. In chapter 11, we construct two families

st AT IR Fon i Erample 125

and derive elementa.r)@ro erties afid their representations as graded families and
Iigm;ﬂﬁwm@ﬂwn

respectively. Section 2.3 gives an example of infinite nearmedia. The final chapter

graphs

demonstrates some applications and real-world examples for assessment theory of

nearmedia described in Chapter II.



CHAPTER II

FAMILIES OF NEARMEDIA

near@rovidos examples of infinite

——
o d does not fullfil [M],

This chapter presents two
token system which r

respectively, in the fin

Let X be a set. For n >
P, (X) = d n divides |S|}.

Let g = {’y‘l .",'7 ~—— ATERRRL 2K "-._;__ LISUINACL CICIOCALS X} be the fmily °f

functions on P,(X) glgl

ﬂ'lJEJ’J Emﬁﬂm{ﬂ‘i,%}csc

761 an ° H S'Yl], ln

ARIANNT 9191773 e

S~{ay,...,a,}, if{a1,...,an} CS;

and

’7.1...07. : S = S;yll...ln =

S, otherwise
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for any distinct elements ay,...,a, in X. It is clear that (P.(X),¥) is a token
system with 7a, 4. and 9a,..q, are mutual reverses. We give some examples with

their graphs in order to demonstrate the above definition and induced subtoken

systems.
Example 2.1.1. 1. Let X ={1,2, (X) ={2,{1,2},{1,3},{2,3}}
d g = ] y )28 Y12, ‘i . /
an {m2,713, 1287 __..ﬂ

2. Let X = {1,2,3,4}. 41,2}, {1,3},{1,2,3,4}} € P(X).

Then the indueed subtoke Yot V12, 13, 14 Foa } -

AULAENTNDAN T
QRAIN TN

Figure 2.1.2: The graph of (¥#,%¢).
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3. Let X = {1,2,3,4,5,6}. Consider ' = {@,{1,2},{1,3},{1,2,3,4,5,6}} C

P5(X). Then the induced subtoken system ¥¢' = {12, 113, T2, Y13 }-

{1,2,3,4,5,6}

3. Forn > 2, (P.(X),¥) satisfi : i if- only if | X| < 2n.

Proof. 1. Let P, Q& Bo(X). Assume. sz:;zz_:f_'?A mod n for some k =

(o
0,...,n—1. TheanﬁQ ="

j—@and |@ ~ P| =nl—k for

some positive mtegers h,g,4l and k < n. Write P\ Q = {p1, ..., Pnj-t}, @\ P =

{‘Ih---;qw—k}%d ﬂg{yl Emjﬂﬂqﬂi
ammnsmﬂmmma e

Va1.-an " Vn=2)+1--9n-1) Van(i=1)41--A(nl-k)01--Gk

It is clear from the construction that m is a concise message and Pm = Q.



17

2. Let m be a closed message for some state P. That is, m is stepwise effective
and ineffective for P and Pm = P. Suppose that 7, € €(m) and 7, ¢ €(m).
Then z € Pm and z ¢ P. We have a contradiction since Pm = P. Thus, for each
token 7, in ¥ (m), there is an appearance of the reverse token 7, in m. Because
m is stepwise effective, the appearances of t_oken v and 4, in m must alternate.

Suppose that the sequence of appearances of 7; and 7, begins and ends with ;.
-
Since the message m is stepwise effective for state P and ineffective for this state,

we must have z € P and'z & Pm = P, Y contradiction. Hence m is vacuous.

3. Let n > 2. Assume that/|X| > 2n and let @y, ..., az, be 2n distinct elements
in X. Notice that @, {al,_l_,-'.:. ?saz,;}; {ay; '5 ja,} and {a,,...,az.1} are in P,(X).

Then we may choose the /message @ = Yui. o Vants. .aznVar...an—1620 Yan. .azn_1s SO

>

that @m = @. It is clearly th_at"jfis 1S stélp;ﬁfs‘? effective and ineffective but m is
4!;,_ Y - - it i ol

]

not vacuous. Thus (P,(X),¥ )___do—'_es nof, g,j?ﬁzsﬂfy‘ [M;]. Conversely, suppose that

|X| < 2n. Let S € Pﬂl(lg._lt_fomes_tha.t_,siz_m_lﬁl_fn Therefore a message
Y, R .

which is stepwise effective for some state and ineffective for this state must be

vacuous. Od

Corollary 2.1.3. The token system (P.(X),¥) is a nearmedium for alln > 1. In
particular, (Fy(X),¥)\is/a medium and (P,(X),¥) is a-mediutn whenever n > 2

and | X| < 2n.

Let X be a set. For subsets P and @ of X, the distance between P and @ is
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defined by

|PAQ| = |(PN\Q)U(Q\ P)|, if PAQ is a finite set;
d(P,Q) =

00, otherwise.
A family % of subsets of X is called well-graded if for any two distinct sets P
and @ in Z, there is a sequence of sets P = R, R, ..., By = @ in & such that

d(Ri-1, R) = 1 for i =1, =i k and d(P, @) = k- Ovchinnikov established that

Theorem 2.1.4. [7] Let FC P\(X). Then a token system (F,9¢) is a medium

if and only if F is a M[-gmded famzlyiof subsets of X.

;’

We say that a family f C B (X ) is 'grqded if for any two distinct sets P and
Q in & where |[PNQ| = nh+k ]P\Ql ﬂ—,nj k and |@Q \ P| = nl — k for some

h,j,l € Z*,k € Z} and k <, there is-a, séquence of sets P = Ro, Ry, ..., Rju =

e‘—i

Qin & with R;_ 1CR,or&CR, lsucthatd(R I,R,)-nforz—l e

and d(P,Q) = n(j + E) 2 _j

. __.=" o

Remark. For n =1, _;g_be terms graded and well-graded are coincide.

Example 2.1.5; Let X ={1,2/3) ThénP; (X)) = {2 {1},42}, {3}, {1,2},{1,3},
{2,3},{1,2,3}}" Consider & = {2,{1},{3}} and &#' = {2, {1},{3},{1,2},{2,3}}.
We haveé that & |is.a graded family but /%' is not.a graded family because there is

no sequence of the length 2 from {1,2} to {2, 3}.

Theorem 2.1.6. Let & C P,(X). Then a token system (F,%¢) is a nearmedium

if and only if F 1is a graded family of X.
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Proof. Assume that (&,%¢) satisfies [M;]. Let P and Q be in &#. Then Pm = Q
for some concise message m. By the proof of Theorem 2.1.2 1., we have |[PN@Q| =
nh+k, |[P~Q|=nj—k, |Q~ P|=nl—k for some n,j,k,l € Z* and k <n,

P~Q={ps,. . ,Pnjk,@~P={q1,.. -, qu-},PNQ = {as,...,@nnsr} and

7

[l
Pn(j—1)+1--Pnj—k@1 -H 7’1 Gn )

ﬂﬂﬂ?ﬂ%ﬂﬁﬂﬂﬁﬁ?

It is clear that d(R, 1 ﬁ]—nforﬂ—l ..,j4sl and d(P,Q)a= n(j + 1) — 2k.

Fmally%ﬂ1§i jgﬂl;hl MQQ ueﬂﬂ ﬂ E.I

Conversely, we assume that & is a graded family. Let P,Q € & C P,(X).
Then [P\ Q| = nj — k, |@ \ P| = nl — k, there is a sequence of sets P =

Ro,Ry,...,Rju = Q, Ri_y € R; or R; C R;, such that d(R;-1,R;) = n for
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t=1,...,7+ 1 and d(P,Q) = n(j + 1) — 2k. Define a message m by

YR;~Ri_1, Ri-l g R'n
M =Ty...Tju where 7; = fora.lli:l,...,j+l.

’7&-1\&7 Rl C Ri—l

Then Pm = Q. Since R;_; C R; or R, fori=1,...,5+1, m is stepwise

effective. Suppose that 7 and

which contradicts d(P, onsistent. Suppose that 7
occurs twice in m. Th \ ,my and mg3 is a stepwise
effective and consistent, : = Yay..an- Thus {a1,...,a,}

On the other ,.f],_,r_?-_ O = nl+ 1) — 9%

nm any token occurs at most

e ANEN NGNS °
= IPTRRNIAUUMING AL

Let X be a set. For n > 1, we define

proof for 7 = 7, 4. cm be done 1n a similar way. He

Qu(X)={SC X :|S|=n}
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Let 4 = {7a! : a; and a; are distinct elements in X} be the family of functions on

Qn(X) given by

(Su{a}) N {a;}, ifa; €S and a; € S;
1S Sy =

for any a; and a; in X with q;

S, otherwise
system and 7, and g

ediate that (Q,(X),¥) is a token
reve the graph represented this
nearmedium is undirey

Example 2.2.1. Let _ \\ \ {{1},{2},{3}} and ¥ =

{7%17}.".’7%)7%)7;,7%} \ shown below.
{&'Q"‘ ] \

e TTITe
Figure 2.2.1: The graph of (@1(X),¥) when X = {1,2,3}.

Example 2.2.2. LetB’ =

e {ﬁé”ﬁ“ﬁdﬂﬁfwﬁﬁ‘%m’“’”"’”
INYIAY

Figure 2.2.2: The graph of (Q:1(X),¥) when X = {1,2,3,4}.
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2. Q2(X) = {{1,2}, {1’3}, {174}’ {2$ 3}’ {2:4}’ {3’ 4}} and

* = {7,779, A% %1 %8 %)

Figure 2.2.3: X), &Y X ={1,2,3,4}.

Figure 2.2. 1

e 22 B3 B4 i .09

satisfies [M;). In other words, (Q4X),¥) is a.mearmedium.

AR AN IUARIINENA Y

Proof. Tiet P,Q € @Q,(X). Assume that |PNQ@| = I. Then |P~\Q| = n—I = |Q\ P|.

Write P\Q = {p1, .., Pn—1} and QNP = {qu,...,¢n_1}, and let m = 421 .. g"7}.
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W)' message and Pm = Q.

/4 e
9 —

Corollary 2.2.4. Let P,

A ' en there is a sequence of
sets P=Ry,R;,..., R, = : )—Zforz—l

and d(P,Q) = 2n

Proof. Let P,Q € Q.(X) 2n. Then PN Q = @.

The proof of the above le 7ir so that Pm = Q.

Ry = Tx; Q.

It is obvious that d(&-l,g}— 2fori=1,. ,n and d(P, Q) = 2n. O

A graph is suﬂou ﬁhﬂtﬂﬂniﬂﬂ :lﬂeji it is said to be
S| W“maﬁ?’ﬁ'm UAIINYAY

Theorem 2.12.5. Let |X| = 1. If G is the graph which represents (Qn(X),¥), then

G is n(l — n)-regular.
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Proof. Let P and @ be two vertices in G. Observe that if vertices P and @ are
adjacent, then |PAQ| =2,|P\Q|=1=|Q \ P|and |[PNQ| =n — 1. Write
P ={p1,...,pn} € Qu(X). Thus all neighbors of P are of the form (P~ {p;})U{z}
for some i € {1,2,...,n} and £ € X \ P. Hence we have n(l — n) choices of

neighbours of P, and so G is n(l — n)-

Corollary 2.2.6. Let 1< graph which represents

Proof. Since (i) = (lir ’ 2 : (X)|« V ne a function f: @.(X) —

Qi—+(X) by S +— X\.S for al & = "be vertices of @,(X) such that S

is adjacent to T'. Then there are =T,soa¢ S,be S,acT
and b ¢ T. Consequ = X Sb¢ X~ Sad X ST andbe X~ T. Thus

0 X mT. Therefore @, (X) and

Q:--(X) are isomorphic as required. O

ﬂ‘NEJ’J‘VIEJﬂﬁWEJ’]ﬂ‘i

Corollary 2.2.7% Let |X| = 1. Ifl > n, then (Qn(X ) does not satisfy [Ms).

e AR A 121 6 8

Proof. Let py,...,Pn, Pny1 be n+1 distinct elements in X. Then P = {py,...,pn},
Q={p1,-- ,Pn-1,Pnt1} and R = {p1,...,Pn-2, Pn, Pnt1} are three distinct states

in @,(X). Observe that the states P,Q and R form a triangle with tokens
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Vo Yon~t and Ypnt!, respectively,

P
‘Y:: -1 Tomi1
/ ?n+1\

R Yon—1 Q

and the message m = 75 ~yPr-1yPn+! is a nonvacuous stepwise effective and inef-

2.3 Infinite Nes

In this section, we give irmedia and an example of an
- ‘\\
infinite token system w o iﬁ- \
WE \
Example 2.3.1. Let ;,,., u ) \ attice points with the set of

WV i \
4 PaIrs oke gl
I ‘-— 3 o

0;,7; and v;, 7; on Z? defined

ag;

,@ (k,q)o: =

ﬂ’lJEJ’JVIEJVI WEJ’Iﬂ‘T
amaﬂmmu ANEIAY

i1 (k,q) = (k,q)5: =

and

(k1q)> ifi#q—'l;
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and

(k—1,q+1), ifi=k;
v;: (k,q) — (k,q)v; =

(k, ), if i # k;

and

1), ifi=k—I;

i 2 (K, q) ol ew

for all i € Z. Since (ﬂ/

system does not enjoy |

ifi #k—1;

0o is not vacuous, this token

\
the satisﬁes [M].

To show this, let (a, b 0 states in .. Then there exist

|

integers k and [ such tha Clearly my = 0,01 ... Ug_gy1,

with (a,b)m; = (a — k, b+ rout loss of generality that [ =

k+r for some integer i ALZE My = Op4kObtk+1 - - - Tbikir—1

with (a — k,b + k)rlly={@—#ksb=t)—(c;d)- itis obvios that

I
i¥

Va--lc+1&’fl»+lcCIr b+k+1 -

m= m1 = uau.._

< Obpkgr-1

maCOHCMm@fmafLﬂwﬁ WYIN3
IR I8 Y
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Example 2.3.2. Let Z> L lattice points with the set of

transformations 7 consigting L ~ ri,7; and 0;,6; on Z? defined

(kq), fzaék

™ ﬂUEJ’JVIEJ INYINT

(k—1, ) 1fz—k-—-

AN TNl nga Y

a;: (ka q) = (k1 Q)ai =

(k,q), if i # g;
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and
(k)q—l)’ 1f1.=q—-1,k5£0,q=,£1;

G;: (k,q) v (k,q)d; =
(k)Q)’ ifi#‘l*l;

By the proof in Example 1.2.6, this token system fulfills [M,]. Since there is no

concise message from (0, 0) o ( usystem does not satisfy [M;]. The

graph of this token system 1

4E .._,:&

Fm@,guﬂ A a YN e
amaﬂn‘imummmaa



CHAPTER III

APPLICATIONS

N
The assessment of hu ompetence, as i erformed today by many

e 4
specialists in the schools@ndiin the workpla

numerical evaluation of some a A mafural starting point for an assessment

theory stems from the o ) ledge normally precede,

_— . b L
in time, other piec '-V »me algebra problem may be

solvable by a studentmnly if some other problems have already been mastered by

that student. m ﬁ?cﬂlﬁ%%j%ﬂe’qrﬂqﬁsmes are required to

master a probltﬂ:, but may also be due to histgca.l or other gircumstances. For

exampa iw gﬂﬁﬁmjfmm Ciﬂcatglnﬂ'g@hﬂ a particular
9

order, even though there is probably no logical or pedagogical reason to do so.

Whatever its genesis may be, this precedence relation may be used to design an

*The detail of this section summerizes from [6].



efficient assessment mechanism.
The six types of algebra problems comprising Arithmetic, Beginning Abstract
Algebra, Intermediate Algebra and Pre-Calculus are displayed with examples in

Table 3.1.2.

A simple example of a prece ion between problems is illustrated by

Figure 3.1.1, which displays e diagram pertaining to the six

types of algebra proble n passing that we distinguish

between a type of pr t. type. Thus, a type of problem

is an abstract form ass of instances. For the

rest of this section, 0 mean problem type. The

Figure 3.1.1: Precedenof diagram for the gix types of algebra problems illustrated

mTamemﬂ'UEJ’WIEJﬂiWEﬂﬂ‘i
QWWﬁNﬂ‘iﬂJ UA1AINYAY
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Name of problem type Example of instance

a Word problem on proportions | A car on the freeway at an average
(Type 1) speed of 52 miles per hour. How many miles

does it travel in 5 hours and 30 minutes?

b Plotting a point in the -' ' ;/ opencil, mark the point at the

coordinate plane —

c Multiplication of mona W Perform ¢ | ’l'.:\ ng multiplication:

d Greatest common faéton/of/ | Fi 1-\\3\‘\ ommon factor of the
two monomials 2 Sylbnd 4tudyB.

answer as much as possible.

e Graphing the lin slope —7 passing through

given point with A i’

Write an equation for the line that passes

line through Wﬁ"’iﬂ : lnu%" w mﬂ,ﬁam is perpendicular

perpendicular% a given line ‘to the line 8z + S5y = 11.

f Writing the equatiio!!n of the

I TR A AL

The precedence relation between problems is symbolized by the downward ar-

rows. For example, Problem e is preceded by Problems b, c and a. In other



32

words, the mastery of Problem e implies that of b, ¢ and a. In the case of these
six problems, the precedence relation proposed by the diagram of Figure 3.1.1 is a
credible one. For example, if a student responds correctly to an instance of Prob-
lem f, it is highly plausible that the same student has also mastered the other five

ce relation is part of a much bigger
r& of Beginning Algebra, starting

'J. —.

problems. Note that this parti

one, representing a comprehg

—
with the solution of Si!my
as f in Table 3.1.2. =

The knowledge s

with problem typai such

Figure 3.1.1 completely

specifies the feasible certainly have mastered

3.1.1, we see that theraa: exac

T AuiAnandwini.,
S LA UK Eté 8 MR Gyt

problems The set K is our basic concept, and is called a knowledge structure. Note

S ateﬁ:ons:stent with it, forming

that a useful knowledge structure is not necessarily representable by a precedence

diagram and may simply be specified by the collection of knowledge states.
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The learning paths. This knowledge structure allows several learning paths.
Starting from the naive state @, the full mastery of state abcdef can be achieved
by mastering first a, and then successively the other problems in the order b

c— d— e f. But there are other possible ways to learn. All in all, there

’ ,f)the knowledge structure K, which are

%

are 6 possible learning paths co

displayed in Figure 3.1.3.

f

Figure 3.1.3: The 6 possib ing'| .' 1S/ nt with the precedence diagram

of Figure 3.1.1.

T — e

Doignon and Fﬁltﬁﬁﬁo ali %{ﬁ%}f owledge structure (with
respect to a top“: as a fami yﬂ gﬁts of a basic set cﬁitems3 of knowledge.
Each ﬂtﬁﬁ a Q ﬂ%ﬁ wa %ﬂﬂf}lﬁﬁgﬂpetmm of a

particul& individual in the population of reference. It is assumed that @,Q € K.

3.2 n-learning Sy

Two compelling learning axioms are:

3In a scholarly context, an item might be a type of problem to be solved, such as long division

in arithmetic.
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[Ki] If K C L are two states, with |L \ K| = n, then there is a chain of states
Ke=KCK,C...CK,=L

such that K; = K;_; + {¢;} with ¢; € @ for 1 <i < n. (We use + to denote

disjoint union.) In words, intui the state K of the learner is included

in some other state reach state L by learning one

item at a time.

[K>) If K C L are two s g¢ L,then LU{¢q} € K. In

words: If item q is t is also learnable from any

state L that can b g more items.

A knowledge structute K satigfying [K:1] and [K3] is called a learning

‘}‘a .Jd

space. To cast a learning spac i, we take any knowledge state to

be a state of the medi asisf in adding (or removing)
a.uitemquto' ofthetwefunctiom;:
T K—K: KHK+£g}a.nqu IC—-+IC K — K~ {q}. The study of media is

i A 5 4 b 1

[K2]. Note that a learning space is known in the combinatories’ literature as an

3B ) AN AT Y
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Figure 3.2.1: The gra o learni 1 en we case as a medium.

The knowledge str (@) s st 0 be an n-learning space if K
fulfills | \
(K} If K C L are two states in A%, with |L | for some positive integer r,

then there is a chain of s ==

such that K; = ,_1 +{q,-- ,q,+,,_1} with ¢; J# for 1 < i < n. Again, +

St“‘“‘”f?ﬁﬁl“ﬂ“%’lﬁlﬂ‘iw gIN3

61 P UG

and d(K;_;,K;) = 1,1 =1,...,k. Following this concept, we say that a family
K C P,(Q) is graded if, for any A, B € K where |ANB| = nh+k,|ANB| =nj—k

and |B~\ A| =nl—k for some h,j,l € Z*,k € Z{ and k < n, there exists a finite
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sequence of sets A = Ko, K;,...,K;;y =Bin K with K;_; C K, or K; C K;_;
such that d(K;_;,K;) =nfori=1,...,5+ 1 and d(A, B) = n(j + ) — 2k such
that d(K;_,,K;) = nfori=1,...,5+ [ and d(A, B) = n(j + 1) — 2k. Finally,

we remark similarly to Chapter II that graded and well-graded are coincide when

!l//

Theorem 3.2.1. Let K edge s

n=1.

wh 1s closed under union, that

is, for any two states € K. Then K is a graded

family of @ if and only 4

Proof. Let K, L € K dnd \ for some r € Z*. Conse-

quently, |K N\ L| = 0 \ \ sraded, there is a sequence

K =KyK,,...,K, = K: and d(K;, K;_;) = n. Hence

K satisfies [K7].

Conversely, we A{B € K. Since K is closed

under union, AU B -;-’i |A N B| = nj for some

h,i,7 € Z*. Slmﬂarly,‘therexsachmnofstatesKo-—-BCKl_ .C K ;=

0m sl 8173 W YIAL PHBH AT o o o

ACK’ . C Kj,_; = AUB. Then wewmbtain the inclusions

’QW’]ENT]‘EEU NWIINEINE

SACK C...CKij=AUBDK,_, ..2K,2K,=B.

Thus Ko = A, K}, ..., K;_; =AUB,K,_j,..., K], Ky = B is a desired sequence

of set in K such that d(A, B) = n(h + 1 — 2j). Hence K is graded as required. O
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By Theorem 2.1.6, we have

Corollary 3.2.2. Let K C P,(Q) which is closed under union. Then a knowledge

structure K is a nearmedium if and only if K satisfies [K}].

AULININTNEINS
ARIAATUIM TN



REFERENCES

(1] E. Cosyn, H.B. Uzun, Note on two necessary and sufficient axioms for a well-
graded knowledge space, J. Math. Psychol., 53 (1) (2009), 40-42.

[2] R.P. Dilworth, Lattices with unique irreducible decompositions, Ann. Math.,
41 (1940), 771-777.

[3] J.-P. Doignon and J.-Cl. Falmag thledge Spaces, Springer-Verlag, Berlin

1999.

[4] J.-P. Doignon and
Int. J. Man Mach.

[5] D. Eppstein, J.-CL.
plinary Applied

[6] J.-Cl. Falmagne;"E. @os
knowledge, in theory 2
Formal concept @na
Springer-Verlag,

kov, Media Theory: Interdisci-
lin 2008.

. Thiry, The assessment of
ter and L. Kwuida, Editers,
rence, Lect. Notes. Artif. Int.

[7] S. Ovchinnikov, Media t 7 Representations and examples, Discrete Appl.

ﬂ‘lJEJ’JVIEWﬁWEJ’]ﬂ‘i
awwaﬂmm UA1AINYAY



~ Place of Birth

VITA

Name

Date of Birth

Education

Scholarship e P ‘\\”‘a

\!
t (DPST)

ience

o fm
supported F}ﬁ -

Ir‘

ﬂ‘LJEJ’JVIEWI‘iWEJ’]ﬂ'E
amaﬁnimwnﬂmaﬂ

39



	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents
	CHAPTER I PRELIMIN ARIES
	1.1 A Jigsae Puzzle
	1.2 Media and Mearmedia

	CHAPTER II FAMILIES OF NEARMEDIA
	2.1 Pn(X)-family
	2.2 Qn(X)-family
	2.3 Infinite Nearmedia

	CHAPTER III APPLICATIONS
	3.1 Knowledge Structures
	3.2 n-learning Spaces

	References 
	Vita



