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CHAPTER I 

INTRODUCTION 

 

Hearing aids are helping instrument for those who have a problem 
with hearing by increasing the volume of the sound. The magnitude of 
sound enters the ear. The basic component of hearing aids can be 
classified into microphone, amplifier, receiver and feedback path.  

One factor that limits performance of hearing aids is acoustic 
feedback. It occurs when the aid’s receiver produces an acoustic signal 
that leaks back to the microphone. Acoustic feedback is an important 
problem since it causes screeching sounds, which are greatly annoying to 
hearing aid user. So many researchers try to find the solution of acoustic 
feedback in hearing aid such as gain reduction or variation phase of 
acoustic feedback in hearing aid. Another way uses adaptive filter that 
generates the estimation of feedback path and subtracts out of the real 
feedback path. This paper focuses on the solution of acoustic feedback in 
hearing aids by using adaptive filter. 

Adaptive filter measures the output signal of the filter, and compares it 
to a desired output signal dictated by the true system. By the observing 
the error between the output of adaptive filter and the desired output 
signal, an adaptation algorithm updates the filter coefficients with the aim 
to minimize an objective function. Figure1.1 shows the basic schematic 
diagram of an adaptive filter, where ( )x n , ( )y n , ( )d n , ( )e n  are input, output, 
desired response and error signals of the adaptive filter for time instant n . 

In adaptation algorithm, the Least Mean Square (LMS) algorithm is 
widely used in adaptive filtering applications because of its simplicity in 
term of computation and implementation. However, the rate convergence 
is slow. On other hand, the Recursive Least Square (RLS) algorithm can 
significantly improve the convergence rate, but at a computational cost. It 
significantly requires more complex implementation. 

Affine Projection (AP) algorithm is a new adaptive filter. This 
algorithm has properties that lie between those of the normalized LMS 
and RLS. It has less complexity than RLS but much faster convergence 
than normalized LMS as shown in figure 1.1. The compromise between  
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Figure 1.1 AP algorithm compare with LMS and RLS algorithm 

RLS algorithm and normalized LMS algorithm depends on the projection 
order [1]. If the projection order equal to one, it produces the normalized 
LMS algorithm while projection order being equal to number of tap filter 
yields the windowed RLS algorithm, which means that has high flexible 
computational complexity.  

The following of this thesis is organized as follows. In Chapter 2 we 
describe about hearing aids, acoustic feedback in hearing aids and some 
solution of acoustic feedback, including the model of acoustic feedback 
problem. In Chapter 3 we describe adaptive filter. The algorithms adapt 
the adaptive filter such as the Least Mean Square (LMS) algorithm, 
Recursive Least Square (RLS) algorithm, and Affine Projection (AP) 
algorithm, we compare the computational complexity of three algorithms 
and evaluate those algorithm in the problem of acoustic feedback in 
hearing aids. In Chapter 4 we determine the parameters of AP algorithm. 
How many projection orders that are used in the model of acoustic 
feedback problem. We also examine and evaluate of AP algorithm on 
floating point arithmetic and on fixed point arithmetic.   In Chapter 5 we 
describe Levison Durbin recursion for inverting Toeplitz matrix for use in 
AP algorithm. This chapter will   develop Autocorrelation matrix of AP 
algorithm that becomes to Toeplitz matrix. It also evaluates AP algorithm 
using inverting Toeplitz matrix which compares AP algorithm, and then 
evaluate AP in fixed point arithmetic. Finally, Chapter 6 concludes our 
work and the recommendation for the future. 
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Figure 1.2 Block Diagram of an Adaptive Filter 

1.1. OBJECTIVE 

This paper is to empirically evaluate Affine Projection (AP) algorithm 
for acoustic feedback cancellation in hearing aids. 

1.2. SCOPES OF RESEARCH 

This research is based on simulation. This thesis uses MATLAB 
program to simulate non continuous adaptation in fixed point arithmetic. 
Its propose is to evaluate whether the AP algorithm is suitable for 
implementation in hardware with fixed point arithmetic. 

1.3. RESEARCH PROCEDURE 

-  Study the paper that relates to reducing acoustic feedback in hearing 
aids. 

-  Study Affine Projection (AP) algorithm.  

-  Simulate AP algorithms. 

- Study how to solve the problem of inversion. 

 
Filter  

Adaptation 
algorithm 

+ ( )x n  ( )y n

( )d n  

( ) ( ) ( )e n d n y n= −

- 
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-  Simulate the AP algorithm using inverting toeplitz matrix. 

-  Simulate the AP algorithm using fixed point arithmetic. 

1.4. CONTRIBUTION OF RESEARCH 

 This research will contribute to evaluating the practicality of 
implementing AP algorithm for acoustic feedback cancellation in hearing 
aids in hardware with fixed point arithmetic. 
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CHAPTER II 

ACOUSTIC FEEDBACK IN HEARING AIDS 

 

This chapter describes acoustic feedback in hearing aids. Section 2.1 
describes hearing aids. The problem of hearing aids is described in 
section 2.2. Section 2.3 describes model of acoustic feedback problem in 
hearing aids. 

2.1. HEARING AIDS 

A hearing aid is a device consisting of a microphone, amplifier, and a 
receiver. The amplifier enhances a few or several frequencies depending 
on the needs of the user, and the receiver transmits the modified sounds to 
the middle ear. 

Hearing impaired people usually have more hearing loss at some 
frequencies (pitch) than at others. Hearing aids therefore have to amplify 
more at some frequencies than at others. So internal hearing aids have to 
have more than one frequency as shown in figure2.1 

Figure 2.1 shows block diagram of hearing aids. It has N channels, 
each channel has different frequency and also has different rate of 
amplifier. Amplification can change the volume. The levels of sound 
depend on hearing impaired. The adjustment of volume can control by 
hand or automatic control. 

Another problem of hearing aids is noise signal (the sound is not 
wanted to listen such as the sound of air condition, children’s sound, etc. 
those signal are amplified with original sound), this problem is different 
from the problem of acoustic feedback and the solution is also different. 
So this research chooses only the problem of acoustic feedback of hearing 
aids. The cause, the characteristic and the solution of the problem is 
described below. 
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Figure 2.1 Block Diagram of Hearing Aids 

2.2 ACOUSTIC FEEDBACK IN HEARING AIDS 

Acoustic feedback in hearing aids occurs when the sound from 
receiver leaks back to microphone. It is called acoustic feedback as 
shown in figure 2.2 and the paths of acoustic feedback is called feedback 
path. Some of the feedback paths are as follows: 

- Acoustics near the ear 

Surfaces that may reflect sound, such as a telephone receiver or 
another person’s head (as during a hug), can increase the likelihood of 
feedback.  

-  Leakage around the ear mold 

A loose fitting or improperly formed ear mold or shell can create a 
path for sound to re-enter the microphone. 

     -  Microphone /receiver distance  

When the microphone and receiver are close, there is a greater 
likelihood that feedback will occur. This is especially true for smaller 
instrument styles. 

Receiver 

Channel 1 

Channel 2 

Channel N Amplifier N 

Amplifier 2 

Amplifier 1 

Microphone  

+ 

 …
…

…
…

.

 …
…

…
…

.

Main model of hearing aids 
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-  vent 

While larger vents have the advantages of reducing occlusion, 
releasing low frequency energy, and introducing direct sound from the 
environment, they also create a path for feedback 

Some solutions of feedback path are as follows:  

- Taking an accurate impression and ensuring a tight fit of the ear 
mold or shell. 

-  Choosing appropriate vent sizes. 

-  Selecting an instrument appropriate for the amount of amplification 
needed. 

Even through we can solve acoustic feedback using the 
aforementioned methods, there is still acoustic feedback. In [2], the 
solution of acoustic feedback in hearing aid can be divided into two parts 

 1.  Suppression of feedback path   

 -   Variation phase of feedback path is out of phase with incoming 
signal. In [3], they use Time Varying Delay, adding time varying delay in 
the signal path of hearing aids is generating a time varying phase 
response.  
 -   Gain reduction, for protection of amplifying feedback rather than 
attenuating feedback. Example of this solution uses filter, it will decrease 
amplification for high frequency (inverse filtering [3], notch filter 4]).   

2.   Canceling of feedback path 

     -   Separation between original sound and acoustic feedback. It can 
reduce noise signal by  using more than one microphone, it enable a 
hearing aid to provide more amplification to sounds arriving from the 
front than to the sounds arriving from other directions(superdirective 
array[5]  ). This way can cancel feedback but it does not work well. 

-    Using adaptive filter that generates the estimation of feedback path 
and subtracts to the real feedback path (feedback cancellation [3], [4], 
[6]). 
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Suppression of feedback can not solve the problem well and the sound 
is distortion. This paper interests the solution of acoustic feedback in 
hearing aids by using adaptive filter. In [6] it divides adaptation in 
adaptive filter for canceling feedback into two types. 

1. Continuous adaptation 

Continuous adaptation continually adjusts the adaptive filter weight 
while simultaneously processing the input signal. The probe noise 
( ( )pN n ) is always injected in the system .We can track the change of 
feedback path but it disturbs the user. It is shown in figure 2.3. 

2. non continuous adaptation 

When the normal signal path is broken and the filter is adapted or 
when a threshold change in gain is sensed so the probe noise ( ( )pN n ) is 
injected in the system very short. It does not disturb the user but we can 
not track the change of feedback at all time. It is shown in figure 2.4. 

 

 

                              

Figure 2.2 the Acoustic Feedback Path 
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Figure 2.3 Block Diagram of a Continuous Adaptation 
Feedback   Cancellation System 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.4 Block Diagram of a Non-continuous Adaptation 
Feedback Cancellation System 

 

2.3 THE MODEL OF ACOUSTIC FEEDBACK  
PROBLEM IN HEARING AIDS  

 This research gives one channel and one amplifier in hearing aids; it 
decreases complication and facilitates computer simulation. Adaptation in 
adaptive filter uses non continuous adaptation as shown in figure 2.4.   

Adaptive filter

+ 
Hearing aid 
processing 

Feedback path

Amplifier MMiiccrroopphhoonnee    
RReecceeiivveerr 
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This model uses impulse response of feedback path [2] that find from 
frequency response of feedback path [6], consists 32 taps. The impulse 
response as shown in figure 2.5 
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Figure 2.5 Impulse Response of Feedback Path 

The solution of acoustic feedback considers non continuous adaptation 
as shown in figure2.4 and the symbol of signal as follow  

( )pN n  , is random signal for help adjustment of adaptive filter, is zeros-
mean uncorrelated Gaussian signal with variance 0.1 

( )s n , is input signal of hearing aids, is zeros-mean uncorrelated Gaussian 
signal with variance 0.1 (the sound is soft)  
 

is input vector of adaptive filter , the filter order of the filter is L  

 ( ) [ ( ), ( 1),.... ( 1)]Tx n x n x n x n L= − − +
r  

h
r

 is feedback impulse response vector 

 [ (0), (1),.... ( 1)]Th h h h L= −
r

 

( )x nr
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( )fh n  is feedback signal in hearing aids  

 ( ) ( )Tfh n h x n=
r r                  (2.1) 

( )w nr  is tap weight vector of adaptive filter 

 1 2( ) [ ( ), ( ),...., ( ), ]T
Lw n w n w n w n=

r  

( )y n  is the output signal of adaptive filter 

 ( ) ( ) ( )Ty n w n x n=
r r                  (2.2) 

( )e n  is error 

 ( ) ( ) ( ) ( )e n s n fh n y n= + −              (2.3) 

( )o n  is the output signal of hearing aids  

[.]T  is transpose 
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CHAPTER III 

ADAPTIVE FILTER 

 

This chapter describes the adaptive filter. Section 3.1 describes types 
of filters that use in this thesis. Section 3.2 describes adaptation 
algorithm, which has LMS algorithm, RLS algorithm, and AP algorithm. 
Section 3.3 shows the computational complexity of adaptation algorithm. 
Simulation of adaptation algorithm will be shown in section 3.4. 

The problem of acoustic feedback in hearing aid uses adaptive filter. 
Adaptive filter has 2 parts. The first part is on structure of filters, and the 
second part is an adaptation algorithm. 

3.1. FILTER  

 Filter is designed to produce an output in response to a sequence of 
input data. The filter can have either finite duration impulse response 
(FIR) or infinite duration impulse response (IIR).  

This thesis uses Transversal Filter which is a finite memory response 
filter (FIR filter) with L  coefficients as shown in figure3.1. Transversal 
filter consists of three basic elements: unit delay element, multiplier, and 
adder 

The output of filter can be expressed as  

   ( ) ( ) ( )Ty n w n x n=
r r               (3.1) 

where 

 0 1 1( ) [ ( ), ( ),...., ( )]T
Lw n w n w n w n−=

r  is the vector containing the coefficients 
of the adaptive filter. 

 ( ) [ ( ), ( 1),...., ( 1)]Tx n x n x n x n L= − − +
r  is the vector containing the input of 

adaptive filter. 
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3.2. ADAPTATION ALGORITHMS 

Adaptation algorithm updates the filter coefficients with the aim to 
minimize an objective function. 

 

 

 

 

 

 

 

 

Figure 3.1 Filter Order L taps of Transversal Filter 

This section introduces three adaptation algorithms that possess 
different qualities in term of the performance. 

LMS algorithm to be described in section 3.2.1. Due to its low 
computational complexity, it still remains one of the most popular 
adaptive filtering algorithms. In section 3.2.2, we review the recursive 
least squares (RLS) algorithm, which is among the fastest adaptive 
filtering algorithm in term of convergence speed. The high computational 
complexity of the RLS algorithm can be significant in applications where 
the order of the adaptive filter is high. This inspired the development of 
algorithms with computational complexity some where in between those 
of the LMS and RLS algorithms. The affine projection (AP) algorithm [7] 
presented in section 3.2.3 utilizes the concept of reusing past information 
to improve the convergence speed. 

3.2.1 LEAST MEAN SQUARE (LMS) ALGORITHMS 

The Least Mean Square (LMS) [8] algorithm is probably the most 
widely used adaptive filtering algorithm. It consists of two basic steps 
where first the filter output ( )y n is computed and compared against a 

… 
… 0( )w n  1( )w n

1z−  

1( )Lw n−  2( )Lw n−

( 1)x n −( )x n  ( 1)x n L− +( 2)x n L− +

… ∑ ∑ ∑
( )y n

1z−  
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desired response  ( )d n  to determine the filter output error. This error is 
then used to adjust the filter parameter vector ( )w nr . The LMS algorithm is 
shown in equations (3.2) to (3.4) where the filter input vector containing 
the latest input values is denoted by ( )x nr , and µ  is the step size parameter. 

 ( ) ( ) ( )Ty n w n x n=
r r             (3.2) 

( ) ( ) ( )e n d n y n= −             (3.3) 

( 1) ( ) ( ) ( )w n w n x n e nµ+ = +
r r r            (3.4) 

 
The stability and convergence properties of the algorithm are 

determined by the step size parameter. If µ  is too large then the 
algorithm will not be convergent in the mean square. If, on the other 
hand, µ  is too small, then the algorithm will be very slow.  

  The LMS algorithm is very efficient computationally and is of 
complexity ( )O L . This is the main reason for its popularity in echo 
cancellation although it has been found to have a slower convergence rate 
than many other algorithms, such as RLS algorithm. When implementing 
the LMS algorithm on a computer with finite precision it is important that 
the step size is not chosen too small to prevent the stalling phenomenon 
from occurring. 

3.2.2 RECURSIVE LEAST SQUARE (RLS) 
ALGORITHMS 

To overcome the problem of slow convergence of the LMS algorithm, 
one can implement the recursive least squares (RLS) algorithm. The RLS 
algorithm is a recursive implementation of the least square (LS) solution, 
example it minimizes the LS objective function. The recursions for the 
most common version of the  RLS algorithm, which is presented in its 
standard form in TABLE 1, is a result of the  weighted least square 

(WLS) objective function
2

1
( ) ( , ) ( )

n

i
n n i e iε β

=

=∑ . 

( )e n is the difference between the desired response ( )d n  and the output 
( )y n produced by a transversal filter whose tap input (at time n ) equal 
( ), ( 1),......., ( 1)x n x n x n L− − +  as in figure3.1.    
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( ) ( ) ( )

( ) ( ) ( )T

e n d n y n
d n w n x n
= −

= −
r r                                                            (3.5) 

( )x nr  is the tap-input vector at time n  , defined by  

       ( ) [ ( ), ( 1),........, ( 1)]Tx n x n x n x n L= − − +
r  

( )w nr  is the tap-weight vector at time n  , defined by 

     [ ]0 1 1( ) ( ), ( ),......, ( ) T
Lw n w n w n w n−=

r  

Weighting factor ( , )n iβ , 0 ( , ) 1n iβ< ≤  
Differentiating the objective function ( )nε  with respect to ( )w nr  and 

solving for the minimum yields the following equation. 

   *

1 1

( ) ( ) ( ) ( ) ( )
n n

n i T n i

i i

x i x i w n x i d iλ λ− −

= =

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑ ∑r r r r  

where 0 1λ< ≤  is an exponential scaling factor often referred to as the 
forgetting factor. 

Defining the quantities:  

1
( ) ( ) ( )

n
n i T

i
n x i x iφ λ −

=

=∑ r r  

and 

  *

1
( ) ( ) ( )

n
n i

i
z n x i d iλ −

=

=∑ r  

the solution is obtained as 

 1( ) ( ) ( )w n n z nφ−=
r  

The recursive implementation is a result of the formulations 

  ( ) ( 1) ( ) ( )Tn n x n x nφ λφ= − +
r r  

and 

  *( ) ( 1) ( ) ( )z n z n x n d nλ= − +
r  
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The inverse 1( )nφ−  can be obtained recursively in terms of 1( 1)nφ− −  
using the matrix inversion lemma thus avoiding direct inversion of ( )nφ at 
each time instant n . The main problems with the RLS algorithm are 
potential divergence behavior in finite precision environment and high 
computational complexity, which is of order 2L  or 2( )O L .  

From Matrix inversion lemma we can write   

  
2 1 1

1 1 1
1 1

( 1) ( ) ( ) ( 1)( ) ( 1)
1 ( ) ( 1) ( )

T

T

n x n x n nn n
x n n x n

λ φ φφ λ φ
λ φ

− − −
− − −

− −

− −
= − −

+ −

r r

r r             (3.6) 

For convenience of computation let be 

  1( ) ( )p n nφ−=  

and 

  
1

1

( 1) ( )( )
1 ( ) ( 1) ( )T

p n x nk n
x n p n x n

λ
λ

−

−

−
=

+ −

r

r r                     (3.7) 

we may write Equation (3.6) as follows: 

  1 1( ) ( 1) ( ) ( ) ( 1)Tp n p n k n x n p nλ λ− −= − − −
r                  (3.8) 

( )p n : Inverse correlation matrix L  by L   
( )k n  : The gain vector L  by 1 

 
We get the desired recursive equation for updating the tap weight vector 

  
*

*

( ) ( 1) ( ) ( ) ( ) ( 1)

( 1) ( ) ( )

Tw n w n k n d n x n w n

w n k n nξ

⎡ ⎤= − + − −⎣ ⎦
= − +

r r r r

r               (3.9) 

*( )nξ : a priori estimation error defined by  

  
( ) ( ) ( ) ( 1)

( ) ( 1) ( )

T

T

n d n x n w n
d n w n x n

ξ = − −

= − −

r r

r r                  (3.10) 
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TABLE 3.1: the Recursive Least Square algorithm 

Initialize the algorithm by setting 

1(0) ,p Iδ −=     δ = small positive constant 

(0) 0w =  

For each instant of time, 1,2.....,n compute=  

                                            
1

1

( 1) ( )( )
1 ( ) ( 1) ( )T

p n x nk n
x n p n x n

λ
λ

−

−

−
=

+ −

r

r r  

                                           ( ) ( ) ( 1) ( )Tn d n w n x nξ = − −
r  

                                           *( ) ( 1) ( ) ( )w n w n k n nξ= − +
r r  

                                           1 1( ) ( 1) ( ) ( ) ( 1)Tp n p n k n x n p nλ λ− −= − − −
r  

 

Algorithms whose convergence rate and computational complexity are 
somewhere between those of the LMS and RLS algorithms are 
considered in the following section.  

3.2.3 AFFINE PROJECTION (AP) ALGORITHM 

Affine Projection algorithm is a new adaptive filtering algorithm, 
which includes RLS like convergence and normalized LMS like 
complexity. The Affine Projection (AP) algorithm [7] is a generalization 
of the well known Normalized Least Mean Square (NLMS) adaptive 
filtering algorithm.  

The tap weight ( nw ) update equation of the affine projection 
algorithm is shown in equation (3.11). Assume that the filter order of the 
filter is L  and the degree of projection order is N . 

1n n n nw w Xµ ε−= +              (3.11) 

 nX  is a L  by N matrix and has the structure 

 [ ] [ ]1 1 1 1, ,.... , ,.... t
n n n n N n n n LX x x x x x x− − + − − += = ,      
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where  [ ]1,...., t
n n n Lx x x − +=  is input signal vector and [ ]1,..., t

n n n Nx x x − +=  

µ  is the step size 

nε  is the normalized error vector, [ ]1 1
,...., t

n n n N N
ε ε ε − + ×

=  
1t

N n nR X X Iδ
−

⎡ ⎤= +⎣ ⎦ , is autocorrelation matrix, N by N  

 The normalized error ( nε ) is calculated as 

  1t
n n n n N nX X I e R eε δ

−
⎡ ⎤= + =⎣ ⎦             (3.12) 

δ  is convergence parameter 
I  is an N by N  identity matrix  

ne  is the error vector, [ ]1 1
,...., t

n n n N N
e e e − + ×
=  

  1
t

n n n ne d X w −= −                (3.13) 

The N dimension vector, nd , is a desired response consisting of the 
response of the echo path impulse response, eph  to the input and the 
additive system noise, ns  

  t
n n ep nd X h s= +                (3.14) 

eph  is a L by 1 vector   

 The scalar δ  is the convergence parameter for the sample 
autocorrelation matrix inversion used in (3.12) in the calculation of the 
N dimension normalized error vector, nε , where t

n nX X  may have 
eigenvalues close to zero, creating problems for the inverse. The matrix 

t
n nX X Iδ+  hasδ as its smallest eigenvalue which, if large enough, yields a 

well behaved inverse. The step size parameterµ  is the relation factor. As 
in NLMS, the algorithm is stable for 0 2µ≤ < . 

 If N is set to one, equation (3.11), (3.12), (3.13) reduce to the familiar 
NLMS algorithm thus, AP algorithm is a generalization of NLMS.   
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3.3   COMPUTATIONAL COMPLEXITY OF    
         ADAPTATION ALGORITHMS 

  From above three (LMS, RLS, AP) algorithms, we can compare 
computational complexity in one iteration cycle, N  is projection order; L  
is number of tap weight. invK is a constant associated with the complexity 
of the inverse required in equation (3.12). The lowest computational 
complexity is LMS algorithm in TABLE 3.2. The highest computational 
complexity is RLS algorithm in TABLE 3.3. The computational 
complexity of AP algorithm link between LMS algorithm and RLS 
algorithm as shown in TABLE 3.4, it is depend on the projection order. 
 According to computational complexity of adaptation algorithms, in 
the real time, as shown in TABLE 3.5, AP algorithm gives various 
projection orders.   

TABLE 3.2: Computational complexity of LMS algorithm  
LMS algorithm The number of 

additions/subtraction 
The number of 
multiplication 

( ) ( ) ( )Ty n w n x n=
r r  

( ) ( ) ( )e n d n y n= −    

( 1) ( ) ( ) ( )w n w n x n e nµ+ = +
r r r  

1L −  

1 

2L  

L  

 

L  

Total computational 
complexity 

3L  2L  

TABLE 3.3: Computational complexity of RLS algorithm 

RLS algorithm The number of 
additions/subtraction 

The number of 
multiplication 

                                            
1

1

( 1) ( )( )
1 ( ) ( 1) ( )T

p n x nk n
x n p n x n

λ
λ

−

−

−
=

+ −

r

r r   

( ) ( ) ( 1) ( )Tn d n w n x nξ = − −
r  

 *( ) ( 1) ( ) ( )w n w n k n nξ= − +
r r                     

1 1( ) ( 1) ( ) ( ) ( 1)Tp n p n k n x n p nλ λ− −= − − −
r

 

2 2L L+  

L  

L  

24L  

 

2L  

L  

L  

2 1L L− +  
Total computational complexity 25 4L L+  22 1L L+ +  
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TABLE 3.4: Computational complexity of AP algorithm 

AP algorithm The number of 
additions/subtraction 

The number of 
multiplication 

1
t

n n n ne d X w −= −  

1t
n n n nX X I eε δ

−
⎡ ⎤= +⎣ ⎦  

1n n n nw w Xµ ε−= +  

LN  

2N N−  

N  

LN  

2
invK N  

LN L+  

Total computational complexity 2LN N+  22 invLN K N L+ +  

TABLE 3.5 Computational complexity in the real time 

             Complexity 
algorithms 

The real time (second)/iteration 

Least Mean Square 
(LMS) 

0.0002 

Recursive Least 
Square (RLS) 

0.0004 

2N =  9N =  10N =  32N =  40N =  Affine Projection 
(AP) 0.0002 0.0002 0.0004 0.0008 0.0014 

3.4   SIMULATION 

Affine Projection algorithm is applied to the problem of hearing 
aids and uses the model of acoustic feedback problem in section 2.3 of 
chapter 2. If the projection order increases, the rate of convergence is 
very fast but it has more complexity than normalized LMS as shown in 
Figure 3.2. In Figure 3.3 comparing with RLS algorithm, LMS algorithm 
and AP algorithm (the projection order equal to 5), the rate convergence 
of AP algorithm closes to the rate convergence of RLS algorithm and less 
complexity. AP algorithm is useful for applying to acoustic feedback 
problem, if we wish to use AP algorithm to implement hardware of 
adaptive filter of hearing aids, we must consider the fixed point model of 
AP algorithm. Because the real number can not be used as the signal in 
hardware, we have to quantize it then convert to binary. Therefore, before 
we implement hardware, we have to simulate AP algorithm by fixed point 
arithmetic. It is presented in chapter 4.  
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Figure 3.2 Graph of AP algorithms with each Projection Order 
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Figure 3.3 Graph of the Convergence Rate with Three 
Adaptation algorithms 
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CHAPTER IV 

APPLICATION OF AFFINE PROJECTION (AP) 
ALGORITHM IN HEARING AIDS 

 
This chapter will use AP algorithm to cancel acoustic feedback in 

hearing aids because it get both low computational complexity and fast 
convergence rate. However, it depends on the projection order.  In section 
4.1 we determine the projection order of AP algorithm to acoustic 
feedback problem in hearing aid. In section 4.2, we determine the number 
of bits.  

4.1. DETERMINATION OF PARAMETER 

Acoustic feedback solution in hearing aids uses Affine Projection 
(AP) algorithm. The block diagram of AP algorithm is shown in figure 
4.1, nx is input signal. AP algorithm has properties that lie between those 
of the normalized LMS algorithm and RLS algorithm; it has less 
complexity than RLS but much faster convergence than normalized LMS 
as shown in chapter 3. But we have to determine how many projection 
orders that we use to get low computational complexity and good 
performance.  

This thesis examines many projection orders. We use the model of 
acoustic feedback problem in section 2.3 of chapter 2. Figure 4.2 
compares various projection orders ( N =1, N = 2, N = 4, N = 8), plot 
excess Mean Square Error with step size ( ) 0.005µ = , and the number of 
iteration is 5000. Each curves the average of 100 trials. While the 
projection order is increases, the convergence is fastest. Initially, we test 
to see whether AP algorithm is works in floating point arithmetic. If we 
wish to use AP algorithm to implement on hardware in hearing aids, we 
must consider the fixed point model of AP algorithm. Because the real 
number can not be used as the signal in hardware, we have to quantize the 
number and convert to binary. So, before we implement hardware, we 
have to simulate AP algorithm by fixed point arithmetic. We also have to 
determine how many bits that we use because if we choose wrong 
number of bits, the Mean Square Error will diverge instead converge. So, 
section4.2 calculates resolution of data and compares which bit is stable 
converge like floating point arithmetic.  
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Figure 4.1 Block Diagram of AP algorithm [9] 
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Figure 4.2 Convergence of (AP) algorithm with 100 trials 

Normalize error: 
1t

n n nX X I eδ
−

⎡ ⎤+⎣ ⎦  

n nX ε  

Adjustment:
1n n n nw w Xµ ε−= +  

Convolution: 
     1n nw X−  

+

ˆ
nd
−

 
nd

ne  

nx  
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4.2. RESOLUTION OF DATA 

 Determination of number of bits as shown in figure 4.3 is for adaptive 
filter applied to acoustic feedback problem in hearing aids, and the 
maximum of each variable are shown in TABLE 4.1.  

We use 10 bits of the input ( nx ) and 19bits of the output ( ny ), the step 
size ( 0.005µ = ) is represented 10 bits where the sign bit is denoted by left 
most bit. Next position is Most Significant Bit (MSB), which is 2-8 and 
the right most bit is referred to as the Least Significant Bit (LSB), the 
position is 2-16. Other positions are shown in figure 4.4 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Adaptive Filter for Determination of Number of Bits 
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Figure 4.4 Data of Step Size 

The tap weight of adaptive filter ( nw ) is represented by 19 bits, where 
every bit is shown in figure 4.5. (MSB is 42− and LSB is 212− ) 

 

 

 

 

 

 

 

 

Figure 4.5 Data of Tap Weight 

The input signal ( nx ) is represented by 10 bits, where every bit is shown 
in figure 4.6. (MSB is 12−  and LSB is 92− ). 
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  b9      b8            b7           b6         b5          b4       b3             b2           b1         b0 
 

Sign bit 
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Figure 4.6 Data of Input Signal 

The output of adaptive filter ( ny ) is multiplication between tap weight 
(use only 10 bits) and input signal. It is represented by 19 bits as shown in 
figure 4.7. 

 

 

 

 

 

 

 

  

Figure 4.7 Data of Output 

Desired response ( nd ) is represented 10 bits, which is shown in figure 4.8. 
(MSB is 12− and LSB is 92− ). 
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Figure 4.8 Data of Desired Response 

Addition between the out put ( ny ) and desired response ( nd ) has to be the 
same bit and have the same position. So ny is truncated the first most 
significant bit 7 bits of ny and ny  extends the sign bit 3 bits (ext). The new  
output uses 10 bits as shown in figure 4.9 

 

  

 

 

 

 

 

Figure 4.9 Data of New Output  

From figure 4.3, normalized error ( nε ) multiplies between error ( ne ) and 
inversion of auto correlation ( NR ). It is shown in figure 4.10 and used 
only 10 bits for next step 
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Figure 4.10 Data of Normalized Error 

µε  is multiplication between normalized error and step size , it is shown 
in figure 4.11and it is used only 10 bits for multiplication with input 
signal. 

 

 

 

 

 

 

 

 

Figure 4.11 Data of µε  

xµε   is multiplication between µε  and input signal, it is shown in figure 
4.12 .  xµε  has to be the same position with tap weight. So xµε is 
truncated the first most significant bit of 15 bits and it extends sign bit 4 
bits (ext), the new xµε  is shown in figure 4.13 
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Figure 4.12 Data of xµε  

 

 

 

 

 

 

 

Figure 4.13 Data of new xµε  

TABLE 4.1 the Sizes of Signal in Adaptive Filter 

Signals Sizes of signal 
input ( )x n  using number bits :10 bits 

minimum value = -1.3329 

maximum value =1.3329 
tap weight ( )w n  using number bits :10 bits  

minimum value = - 0.045131 

maximum value =0.084209 
output ( )y n  using number bits :10 bits  

        

        

      b18           b17          ……..         b9             …….               b0 
 

Sign bit

82−

162−

252−  
 

 
 

      b18           ext       ext       ext       ext        …    ….           b0 
 

Sign bit

42−

62−

212−  
 

 
 

19 bits 

52−

72−
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minimum value = -0.13486  

maximum value =0.13486 
desired response ( )d n  using number bits :10 bits  

minimum value = -1.2399 

maximum value =1.2399 
error ( )e n  using number bits :10 bits 

minimum value = -1.183 

maximum value =1.183 
step size µ  using number bits :10 bits  

 value =0.005 
normalized error ( )nε  using number bits :10 bits  

minimum value = -1.183  

maximum value =0.40775 
inversion of auto correlation R  using number bits :10 bits  

minimum value = 0 

maximum value =1 
multiplication of µ ( )nε  using number bits :10 bits  

minimum value = -0.0018047   

maximum value =0.0020388 
multiplication of µ ( ) ( )n x nε  using number bits :19 bits  

minimum value = -0.0014792  

maximum value =0.0014792 

 

Now we can compare floating point arithmetic and fixed point arithmetic 
that the projection order set to one, two, and four in section 4.2.1, section 
4.2.2, and section 4.2.3 respectively.   
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   4.2.1. PROJECTION ORDER SET TO ONE 

Projection order set to one, equation(3.11), (3.12), (3.13) and (3.14) 
become Normalized LMS (NLMS) algorithm  

                
Input signal, L by 1 vector 

[ ]1,...., t
n n n LX x x − +=  

         1t
n n nR X X Iδ

−
⎡ ⎤= +⎣ ⎦  is the inversion of autocorrelation 

error ( ne )  is scalar 
normalized error ( nε )   is scalar 
desired response( nd )  is scalar 
 

We evaluated AP algorithm in floating point arithmetic by one 
projection order as shown in figure 4.14. Then, we evaluate in fixed point 
arithmetic (the input is 8 bits, 9 bits, 10 bits, and 13 bits) as shown in 
figure 4.15. While the input gives 10 bits up to 13 bits, the excess Mean 
Square Error converge the same as floating point arithmetic.    

4.2.2. PROJECTION ORDER SET TO TWO 

The projection order equal to two ( 2N = ).  

Input signal, L-by-2 matrix 
 

1

1 2

1 2

. .

. .

n n

n n

n

n L n L L

x x
x x

X

x x

−

− −

− + − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

            

1

11 12

21 22

t
n n nR X X I

R R
R R

δ
−

⎡ ⎤= +⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 is the inversion of auto correlation 

  
2 11[ , ]t

n n ne e e
×−=      : error vector 

1 2 1[ , ]t
n n nε ε ε − ×=    : normalized error 

 1 2 1[ , ]t
n n nd d d − ×=   :  desired response 
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We evaluated AP algorithm in floating point arithmetic by two 
projection orders as shown in figure 4.16 then, we evaluated in fixed 
point arithmetic (the input is 8 bits, 9 bits, 10 bits, and 13 bits) as shown 
in figure 4.17. While the input gives 10 bits up to 13 bits, the excess 
Mean Square Error converge the same as floating point arithmetic.    

4.2.3. PROJECTION ORDER SET TO FOUR 

Resolution of data is the same projection order that equal to two but 
we have four errors, four outputs and four normalized errors  

 
Input signal, L-by-4 matrix 
 

1 2 3

1 2 3 4

1 1 2 4

. . . .

. . . .

n n n n

n n n n

n

n L n L n L n L L

x x x x
x x x x

X

x x x x

− − −

− − − −

− + − − − − − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

            

1

11 12 13 14

21 22 23 23

31 32 33 34

41 42 43 44

t
n n nR X X I

R R R R
R R R R
R R R R
R R R R

δ
−

⎡ ⎤= +⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is the inversion of auto correlation 

  
3 4 1[ ,.., ]t

n n ne e e − ×=    : error vector 
3 4 1[ ,.., ]t

n n nε ε ε − ×=   :  normalized error vector 
3 4 1[ ,.., ]t

n n nd d d − ×=  :  desired response vector 
 
 

We evaluated AP algorithm in floating point arithmetic by four 
projection orders as shown in figure 4.18 then, we evaluated in fixed 
point arithmetic (the input is 8 bits, 9 bits, 10 bits, and 13 bits) as shown 
in figure 4.19. While the input gives 10 bits up to 13 bits, the excess 
Mean Square Error converge the same as floating point arithmetic.   On 
floating point arithmetic, the iteration is around 3000, which has a little 
bit fluctuation. Therefore, on fixed point arithmetic. It has much 
fluctuation because the input is not enough to use it (the input is 8bits).   
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4.2.4. PROJECTION ORDER SET TO EIGHT 

Resolution of data is the same projection order equal to two but we 
have eight errors, eight outputs, eight normalized errors  

Input signal, L-by-8 matrix 
 

1 7

1 2 8

1 6 8

. .

. .
. .
. .

. .

n n n

n n n

n

n L n L n L L

x x x
x x x

X

x x x

− −

− − −

− + − − − ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

            

1

11 18

81 88

. .
. .
. .

. .

t
n n nR X X I

R R

R R

δ
−

⎡ ⎤= +⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is the inversion of auto correlation 

  
7 8 1[ ,.., ]t

n n ne e e − ×=    : error vector 
7 8 1[ ,.., ]t

n n nε ε ε − ×=   :  normalized error vector 
7 8 1[ ,.., ]t

n n nd d d − ×=  :  desired response vector 
 

We evaluated AP algorithm in floating point arithmetic by eight 
projection orders as shown in figure 4.20 then, we evaluated in fixed 
point arithmetic (the input is 8 bits, 9 bits, 10 bits, and 13 bits) as shown 
in figure 4.21. While the input gives 10 bits up to 13 bits, the excess 
Mean Square Error converge the same as floating point arithmetic.  On 
floating point arithmetic, the iteration is around 3000, which has a little 
bit fluctuation. Therefore, on fixed point arithmetic. It has much 
fluctuation because the input is not enough to use it (the input is 8bits).   
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Figure 4.14 Floating Point Arithmetic with Projection Order Set to One 
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Figure 4.15 Fixed Point Arithmetic with Projection Order Set to One 
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Figure 4.16 Floating Point Arithmetic with Projection Order Set to Two 
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Figure 4.17 Fixed Point Arithmetic with Projection Order Set to Two  
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Figure 4.18 Floating Point Arithmetic with Projection Order Set to Four 
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Figure 4.19 Fixed Point Arithmetic with Projection Order Set to Four 
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Figure 4.20 Floating Point Arithmetic with Projection Order Set to Eight 
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Figure 4.21 Fixed Point Arithmetic with Projection Order Set to Eight 
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CHAPTER V 

MODIFICATION OF AFFINE PROJECTION 
ALGORITHM 

 

This chapter modifies AP algorithm to cancel acoustic feedback in 
hearing aids, because matrix inversion is difficult to implement. So, we 
discuss how to avoid inversion by using inverting Teoplitz matrix. 
Section 5.1 introduces inverting Toeplitz matrix using Levinson Durbin 
Recursion. Section 5.2 develops autocorrelation of AP algorithm which 
becomes to Toeplitz matrix. Section 5.3 evaluates AP algorithm using 
Toeplitz matrix in fixed point arithmetic. 

5.1 THE LEVINSON DURBIN RECURSION 

Levinson [10] presented a recursive for solving a general set of linear 
symmetric Toeplitz matrix equations  

        xR a b=                                                (5.1) 

Durbin improved the Levinson recursion for the special case in which 
the right hand side of the Toeplitz equations is a unit vector. In this 
section we describe developing this algorithm, known as   the Levinson 
Durbin recursion and inverting Toeplitz matrix. 

  5.1.1 DEVELOPMENT OF THE RECURSION 

 All poles modeling using prony’s method or the autocorrelation 
method requires that we solve the normal equations which, for a thN  
order model, are  

1
( ) ( ) ( ) 0       ;     1, 2,..,

N

x N x
l

r k a l r k l k N
=

+ − = =∑         (5.2) 

where the modeling error is 

1
(0) ( ) ( )

N

N x N x
l

r a l r lε
=

= +∑               (5.3)  

Combining equation(5.2) and (5.3) into matrix form we have 
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(0) (1) (2) . . . ( ) 1 1
(1) (0) (1) . . . ( 1) (1) 0
(2) (1) (0) . . . ( 2) (2) 0
. . . . . .
. . . . . .
. . . . . .

( ) ( 1) ( 2) . . . (0) ( ) 0

x x x x

x x x x N

x x x x N

N

x x x x N

r r r r N
r r r r N a
r r r r N a

r N r N r N r a N

ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢−
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− − ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   (5.4) 

which is a set of 1N +  linear equations in the 1N +  unknowns 
(1), (2),..., ( )N N Na a a N  and Nε . Equivalently, equation (5.4) may are written 

as  

1uN N NR a ε=                 (5.5)    

where NR  is a ( 1) ( 1)N N+ × + Hermitian Toeplitz matrix and 1u [1,0,...,0]T=  
is a unit vector with 1 in the first position 

 The Levison Durbin recursion for solving equation (5.5) is an 
algorithm that is recursive in the model order. In the other words, the 
coefficients of the ( 1)stj +   order all pole model, 1ja + , are found from the 
coefficients of the j  pole model, ja . We begin, therefore, by showing 
how the solution to the thj order normal equations may be used to derive 
the solution to the   ( 1)stj +   order equations. Let ( )ja i be the solution to 
the thj order normal equations 

1(0) (1) (2) . . . ( )
(1)(1) (0) (1) . . . ( 1) 0
(2)(2) (1) (0) . . . ( 2) 0
.. . . . .
.. . . . .
.. . . . .
( )( ) ( 1) ( 2) . . . (0) 0

x x x x j

jx x x x

jx x x x

jx x x x

r r r r j
ar r r r j
ar r r r j

a jr j r j r j r

ε⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢=⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢− − ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥

    (5.6) 

which, in matrix notation  is  

1uj j jR a ε=                 (5.7) 
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given ja , we want to derive the solution to the  ( 1)stj +   order normal 
equations,  

1 1 1 1uj j jR a ε+ + +=                (5.8) 

The procedure for doing this is a follows. Suppose that we append a zero 
to the vector  ja  and multiply the resulting vector by 1jR + . The result is  

(0) (1) (2) . . . ( ) ( 1) 1
(1) (0) (1) . . . ( 1) ( ) (1)
(2) (1) (0) . . . ( 2) ( 1) (2)
. . . . .
. . . . .
( ) ( 1) ( 2) . . . (0) (1)

( 1) ( ) ( 1) . . . (1) (0)

x x x x x

x x x x x j

x x x x x j

x x x x x

x x x x x

r r r r j r j
r r r r j r j a
r r r r j r j a

r j r j r j r r a
r j r j r j r r

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

0
0
.
.
.( )

0

j

j

j

j

ε

γ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.9) 

where the parameter jγ  is 

1
( 1) ( ) ( 1 )

j

j x j x
i

r j a i r j iγ
=

= + + + −∑           (5.10) 

 The key step in the derivation of the Levinson Durbin recursion is to 
note that the Hermitian Toeplitz property of 1jR +  allow us to rewrite 
equation (5.9) in the equivalent form  

(0) (1) (2) . . . ( ) ( 1) 0
(1) (0) (1) . . . ( 1) ( ) ( )
(2) (1) (0) . . . ( 2) ( 1) ( 1)
. . . . .
. . . .
( ) ( 1) ( 2) . . . (0) (1)

( 1) ( ) ( 1) . . . (1) (0)

x x x x x

x x x x x j

x x x x x j

x x x x x

x x x x x

r r r r j r j
r r r r j r j a j
r r r r j r j a j

r j r j r j r r
r j r j r j r r

+⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

0
0
.
..
.(1)

1

j

j

j

a

γ

ε

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.11) 

Combining the resulting equation with equation (5.9) 
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1 1 1

1 0
0 0(1) ( )
0 0(2) ( 1)
. .. .
. .. .
0 0( ) (1)

0 1

j j

j j

j j

j j j

j j

j j

a a j
a a j

R

a j a

ε γ

γ ε

+ + +

⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ Γ = +Γ⎨ ⎬ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

        (5.12) 

Since we want to find the vector 1ja + which, when multiplied by 1jR + , yield 
a scaled unit vector, note that if we set  

   1
j

j
j

γ
ε+Γ = −                 (5.13) 

The equation (5.12) becomes 

1 1 1 1uj j jR a ε+ + +=    

where 

1 1

1 0
(1) ( )
(2) ( 1)
. .
. .
( ) (1)
0 1

j j

j j

j j

j j

a a j
a a j

a

a j a

+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥= + Γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

             (5.14) 

which is the solution to the ( 1)stj + order normal equations. Furthermore, 

2

1 1 11j j j j j jε ε γ ε+ + +
⎡ ⎤= + Γ = − Γ⎢ ⎥⎣ ⎦

          (5.15) 

equation (5.14), referred to as the Levinson order update equation, may 
be expressed as 

1 1( ) ( ) ( 1)     ;   0,1,..., 1j j j ja i a i a j i i j+ += + Γ − + = +       (5.16) 
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All that is required to complete the recursion is to define the condition 
necessary to initialize the recursion. These conditions are given by the 
solution for the model of order 0j =    

0

0

(0) 1
(0)x

a
rε
=

=
                 (5.17) 

   5.1.2 THE CHOLESKY DECOMPOSITION 

We have seen the Levinson Durbin recursion is an efficient algorithm 
for solving the autocorrelation normal equation. It may also be used to 
perform Cholesky decomposition of the Hermitian Toeplitz 
autocorrelation matrix NR . The Cholesky (LDU) decomposition of a 
Hermitian matrix C is a factorization of the form 

HC LDL=                  (5.18) 

where L  is a lower triangular matrix  with ones along the diagonal 
and D  is a diagonal matrix . With the Cholesky decomposition of the 
autocorrelation matrix we will easily be able to establish the equivalence 
between the positive definiteness of NR , the positivity of the error 
sequence jε , and the unit magnitude constraint on the reflection 
coefficient jΓ . In addition, we will be able to derive a closed form 
expression for the inverse of the autocorrelation matrix as well as a 
recursive algorithm for inverting a Toeplitz matrix. 

To derive the Cholesky decomposition of NR , consider the 
( 1) ( 1)N N+ × +  upper triangular matrix 

1 2

2

1 (1) (2) . . . ( )
0 1 (1) . . . ( 1)
0 0 1 . . . ( 2)
. . . .
. . . .
. . . .
0 0 0 . . . 1

N

N

N

N

a a a N
a a N

a N
A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (5.19) 

This matrix is formed from the vectors 0 1, ,..., Na a a that are produced 
when the Levinson Durbin recursion is applied to the autocorrelation 
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sequence (0),..., ( )x xr r N . Note that the thj column of NA contains the filter 
coefficients, 1

R
ja − , padded with zeros. Since  

R
j j j jR a uε=                 (5.20) 

where [ ]0,0,...,1 T
ju = is a unit vector of length 1j + with a one in the 

final position then  

0

1

2

0 0 . . . 0
* 0 . . . 0
* * . . . 0
. . . .
. . . .
. . . .
* * * . . .

N N

N

R A

ε
ε

ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          (5.21) 

which is a lower triangular matrix with the prediction error jε  along 
the diagonal (an asterisk is used to indicate those elements that are, in 
general, nonzero). 

Since the product of two lower triangular matrices is lower triangular 
matrix, if we multiply N NR A on the left by the lower triangular matrix H

NA , 
then we obtain another lower triangular matrix, H

N N NA R A .note that since 
the terms along the diagonal of NA  are equal to one, the diagonal of  

H
N N NA R A  will be the same as that N NR A , and H

N N NA R A will also have the 
form 

0

1

2

0 0 . . . 0
* 0 . . . 0
* * . . . 0
. . . .
. . . .
. . . .
* * * . . .

H
N N N

N

A R A

ε
ε

ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          (5.22) 

Even more importantly, however, is the observation that since H
N N NA R A  

is Hermitian, then the matrix on the right side of the equation (5.22) must 
also be Hermitian. Therefore, the term below the diagonal are zero and  
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H
N N N NA R A D=                (5.23) 

where ND  is a diagonal matrix 

{ }0 1diag , ,...,N ND ε ε ε=  

 5.1.3 INVERTING A TOEPLITZ MATRIX  

 In this section, deriving a recursive algorithm for inverting a Toeplitz 
matrix NR  and show how this recursion may be used to derive the 
Levinson recursion for solving a general set of Toeplitz equations NR x b= . 
Showing how the decomposition derived in section5.1.2 may be used to 
express the inverse of a Toepliz matrix in terms of the vectors ja  and the 
error jε .the Levinson Durbin recursion will then applied to this 
expression for 1

NR−  to derive the Toeplitz matrix inversion recursion. 

 Let NR  be a nonsingular Hermitian Toeplitz matrix. Using the 
decomposition given in equation (5.23), taking the inverse of both sides 
we have  

( ) 1 1 1 1H H
N N N N N N NA R A A R A D

− − − − −= =            (5.24) 

multiplying both sides of this equation by  NA  on the left and by H
NA  on 

the right give the desired expression for 1
NR−   

1 1 H
N N N NR A D A− −=                (5.25) 

ND  is a diagonal matrix, 1
ND− is easily computed. Therefore, finding the 

inverse of NR simply involves applying the Levinson Durbin recursion to 
the sequence (0),..., ( )x xr r N  forming the matrix NA , and performing the 
matrix product in equation (5.25).  

5.2 AFFINE PROJECTION ALGORITHM USING 
INVERTING TOEPLITZ MATRIX 

In equation (3.12), the main difficulty of implementing   an AP 
algorithm is how to invert the correlation matrix NR  effectively [11] and 
[7] suggested to use the sliding window fast RLS type algorithm and 
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suggested use of the matrix inversion lemma twice. As [12] pointed out, 
the FTF (Fast Transversal Filter) type of algorithm is too complicate to 
implement and numerically unstable, and hence, it is difficult to use in the 
real environment. The use of the matrix inversion lemma is also not 
guaranteed to be stable. It is worthwhile to mention that [13] used 
approximation in transform domain. This method also   has an inherit 
problem as [13] proposed to use either periodic restart or leaky 
integration to reduce the error accumulation in the fixed point 
implementation. 

In [13] to develop a new algorithm, consider the matrix NR  as 

0 1 1

1 0 2

2 1 3

1 2 0

ˆ ˆ ˆ( ) ( ) . . . . ( )
ˆ ˆ ˆ( 1) ( 1) . . . . ( 1)
ˆ ˆ ˆ( 2) ( 2) . . . . ( 2)

. . .

. . .

. . .
ˆ ˆ ˆ( 1) ( 1) . . . . ( 1)

N

N

N

N

N N

r n r n r n
r n r n r n
r n r n r n

R
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And the autocorrelation matrix becomes a Toeplitz matrix. The inversion 
of a Toeplitz matrix is calculated by equation (5.25). Computational 
complexity of the inversion of a Toeplitz matrix is less than the 
computational complexity of normal inversion matrix as shown in 
TABLE 5.1, which is difficult to compare it. That’s why, TABLE 5.2 
give various matrix.  

5.3 SIMULATION RESULT 

Comparison between normal inversion matrix and the inversion of 
Toeplitz matrix, it is shown in figure 5.1, it compares various projection 
orders ( N =1, N = 2, N = 4, N = 8), plot excess Mean Square Error with 
step size ( ) 0.005µ = , iteration is 5000, each curve the average of 100 trials. 

AP algorithm using inverting Toeplitz matrix converges similar to AP 
algorithm. So we will use inversion of Toeplitz matrix with AP algorithm 
that is not difficult to inverse if the projection order increase. 

 For the resolution of data the same AP algorithm is applied and the 
input is 10 bits, it is enough for convergence like floating point 
arithmetic. 

 5.3.1 PROJECTION ORDER SET TO TWO 

Affine Projection algorithm uses Toeplitz matrix for inversion. It 
compares between floating point arithmetic as shown in figure5.2 and 
fixed point arithmetic (input is 8 bits, 9bits, 10bits, 13bits) as shown in 
figure5.3. While the input gives 10bits up to 13bits, the excess Mean 
Square Error converge same as floating point arithmetic.    

5.3.2 PROJECTION ORDER SET TO FOUR 

Affine Projection algorithm uses Toeplitz matrix for inversion. It 
compare between floating point arithmetic as shown in figure 5.4 and 
fixed point arithmetic (input is 8 bits, 9 bits, 13 bits) as shown in figure 
5.5.  While the input gives 10 bits up to 13 bits, the excess Mean Square 
Error converge the same as floating point arithmetic.    
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TABLE 5.1 Computational complexity of inversion matrix 
 
 
 
 
 
 
 
 
 
 

 
TABLE 5.2 Computational complexity of various matrixes 
 

Number of multiplication Number of addition/subtraction  
3N =  4N = 5N = 6N =  7N =  8N =  3N = 4N = 5N = 6N = 7N =  8N =  

Normal inversion 
matrix 

30 288 3360 46080 725760 12902400 14 103 694 5003 40270 362815

Inversion of 
Toeplitz matrix 

29 52 85 130 189 264 20 36 60 94 140 200 
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(a) Convergence of (AP) algorithm  
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 (b) Convergence of (AP) algorithm using Inverting Toeplitz matrix 

Figure 5.1 Comparison between AP algorithm and AP algorithm using 
Inverting Toeplitz Matrix 
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Figure 5.2 Floating Point Arithmetic using Inverting Toeplitz Matrix 
(Projection Order equal to two) 
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Figure 5.3 Fixed Point Arithmetic using Inverting Toeplitz Matrix 

(Projection Order equal to two)                                          
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Figure 5.4 Floating Point Arithmetic using Inverting Toeplitz Matrix 

(Projection Order equal to four) 
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Figure 5.5 Fixed Point Arithmetic using Inverting Toeplitz Matrix 
(Projection Order equal to four) 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATION 

 

This thesis uses Affine Projection (AP) algorithm to adapt the 
coefficient of the adaptive filter. It gets both low computational 
complexity and fast convergence rate, thus making useful to implement in 
hardware since it can reduce complexity of hardware and save the area of 
hearing aids. Therefore, it makes a small hearing aid. Before 
implementing hardware, we have to evaluate this algorithm in fixed point 
arithmetic. 

 This thesis evaluated AP algorithm by many projection orders 
(projection order equal to one, two, and four). Each projection order by 
fixed point arithmetic are 8 bits’ input, 9 bits’ input, 10 bits’ input and 13 
bits’ input. And at least number bits is 10bits’ input, fixed point 
arithmetic converge the same as floating point arithmetic.  One problem 
is inversion of autocorrelation matrix that is difficult to implement, if the 
projection order increase. Therefore, this thesis also evaluated AP 
algorithm using inverting Toeplitz matrix.  

However, we have to consider number of projection orders, if 
projection orders increases, the computational complexity of AP 
algorithm may equal to   RLS algorithm. In this thesis, number of 
projection orders is smaller than nine. It means that computational 
complexity is not so much. It is the fast convergence rate, which is goal 
of this thesis. 

 In this thesis, AP algorithm is simulated in fixed point arithmetic and 
10 bits converges like floating point arithmetic. In the next work, AP 
algorithm should be implemented on FPGA chip and its hardware 
complexity should be investigated in the future research. 
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