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CHAPTER |

INTRODUCTION

1.1 General

Small defects and flaws are unavoidably introduced in components
during the manufacturing and fabrication progess or initiated during applications as a
result of external excitations."Deiects and flaws présent in the component act as the
stress riser and, in turmyithe sirength reducer due to the high stress concentration
introduced in their neighborhood and thils can eventually lead to progressive failure of
such component once" cegiains oritical c‘_oo.,ditions have been attained. Fracture and

fatigue analysis and asSessment ha\fe thllerefore pbecome essential ingredients in the
design of engineering componenté to engyré their safety and integrity under service
conditions. To aid such @nalysis, :'physidéTIy‘:admissible, mathematical models and
powerful solution techniques (n_uéf be dé(r{é_ipﬁed in order to capture and predict

responses of interest with acceptabie level o@curacy.

In gené@r#aetufes—eaﬂ—b&e}assiﬁede&eifhgr brittle fractures or ductile
fractures depending.c‘m ‘their dominant failure characteristi"c‘,and behavior of fields in the
vicinity of the fracture ffant. Behavior of the ductile fracture is dominated primarily by the
significant plastic "defarmation’ induced around the ffont while the brittle fracture is
characterized by a rapid rate of crack advance with relatively row energy release and a
localizedy plasticy deformation;=i€) small-Scaleyielding pertaing_(séel for examples,
Anderson, 2005; Gdoutos, 2005). Common mathematical models used in the modeling
of the latter type of fractures are established within the context of linear elastic fracture
mechanics (LEFM). For this particular case, a localized zone of plastic deformation is
discarded and the entire body including a region of high stress concentration is
assumed to be linearly elastic. A single parameter, either the stress intensity factor or
the strain energy release rate, can be used to completely describe the dominant or

asymptotic field in the neighborhood of the crack front (K-field). For ductile fractures, the



size of a region with inelastic deformation is relatively large when compared with the
crack dimension and the K-field predicted by LEFM does not exist. Various models
based on elastic-plastic fracture mechanics (EPFM) have been proposed instead to
improve the response prediction (see Anderson, 2005). For this type of fractures, two
different parameters, one associated with the J-integral and the other corresponding to
the crack opening displacement, have been widely used to measure the extent of fields
around the crack front. It should be remarked that while LEFM-based analysis yields
certain unrealistic aspects of the fields near the«cragk front (e.g. singularity of the stress
and strain field at the -eraek front), wesults from-such analysis have been used
successfully in the response prédiction for various engineering applications (e.g. fatigue
analysis, prediction of cra€k growth initiation and propagation direction, etc.). The

present study is focused only on prittle fractures.

_—

The stress intensity- factor-‘;'isd'-a fundamental quantity in linear elastic
fracture mechanics that provides.a comple‘té—‘measure of a dominant field in the vicinity
of the crack front and, in particular,’indicatéét__m_e_ extent or magnitude of an asymptotic,
singular stress field (e.g. Williams; 13957). In ééﬁgral, the stress intensity factor depends
on several factors sueh as Ioéaihg conditiC).r;-STF-ﬁéterial properties, geometries of both
bodies and cracks and the location along the crack fro'ntr,;and determination of such
quantity requires solving a complete boundary value problem associated with the entire
body. Supported by evidehces from various gxperiments (e.g. Krishna Rao and Hasebe,
1995 and Xin et al., 2010 ),.a body containing pre-existing cracks, when loaded, only
deforms without Creating any new surface for a certain range of applied loads. Once the
appliedyload reachesha critical (value! (i.e. the corresponding stress |intensity factor
reaches its critical value), crack growth initiation is observed. The critical value of the
stress intensity factor at the onset of crack advance is termed the fracture toughness.
This quantity, generally taken as a property of materials, indicates the ability of the
constituting material to resist the formation of a new surface. Fracture toughness can be

determined from experiments following various well-known standards such as the British

standard (BS), the American Society for Testing and Materials (ASTM), a series of



International Standard (ISO) and the European Structural Integrity Society (ESIS).
Among several types of specimens and crack configurations found in earlier
experimental studies (e.g. single-edge notched bending (SEB), compact tension (CT),
arc-shaped tension (AT) and disk-shaped compact tension (DCT) specimens), the two
most common specimens widely used to determine the fracture toughness are the
single-edge notched bending (SEB) specimen and the compact tension (CT) specimen

as shown schematically in Figure 1.1 according to ASTM E399-90 (1997).
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Figure 1.1 Schematic of specimen configuration and crack: (a) single-edge notched

bending (SEB) specimen and (b) compact tension (CT) specimen

Results [from _many jexperiments ‘revealed [that the fracture toughness
exhibits strong dependence on the thickness of a specimen used as shown in Figure 1.2
(e.g. Anderson, 2009) sA thinner specimen generally lyields larger fracture toughness. As
the specimen thickness increases to a certain value, the fracture toughness converges
to a constant value termed the plane strain fracture toughness and denoted by K .. The
plane strain fracture toughness represents a true material property since it is
independent of the specimen thickness and this situation can be achieved only when
the specimen thickness is sufficiently large to render the behavior over the majority of
the crack front dominated by a plane strain condition. The ASTM E399-90 (1997)

recommended the minimum specimen thickness to obtain a valid K. by



Oy

2
BZZ.S[ﬁj (1.1)

where B is the specimen thickness, K. is the plane strain fracture toughness to be
determined, and o, is the yield strength of constituting material. Inequality (1.1) was
developed based on the assumption that the plastic zone size must be relatively small
compared to the specimen thickness (i.e. I, < B/50 where r, is the plastic zone size
along the crack front) and its applicability is still restricted to fractures at room
temperature and high-strength materials. In"addition; the estimation of the specimen

-

thickness by (1.1) involves _Kseswhich is unknown-a-priori.

4z

‘Plane strain dominated

Fracture toughness , K,

\/

Specimen-thickness;\B
Figure 1.2 Relationship between ffacture toughness K_ and specimen thickness B

An alternative to the above recommended empirical formula is to apply
linear elastic fracture mechanics to perform comprehensive three-dimensional stress
analysis along with an extensive parametric study on the specimen thickness.
Knowledge of the distribution of the stress intensity factor along the entire crack front for
various specimen thicknesses should at least provide useful information for selecting a
proper specimen thickness to ensure that the plane strain condition is dominated and,

as a result, the plane strain fracture toughness is obtained. More specifically, the



thickness of the specimen can be increased in the simulation until the stress intensity
factor over the majority of the crack front attains the value corresponding to the plane

strain condition.
1.2 Background and review

A mathematical model formulated within the context of two-dimensional
boundary value problems has been widely used in the stress analysis of a body
containing defects and flaws due to its simplicity and cheap computational cost while
still predicting results with-an-acceptable level-of-accuracy for several engineering
applications. On the basis oivanextensive literature survey, various studies on two-
dimensional crack problems /based on Dboth the plain stress and plain strain
assumptions were recorded (€.g./Chang and Mear, 1995; Dirgantara and Aliabadi,
2002; Khraishi and Demir, 2003; Freese aﬁ:d LE}aratta, 2006; Kutak et al., 2007). It should
be noted first that thesformer assumpti;h_ is well-suited for modeling a body of a
relatively small thickness#in Com-lpa;rison Wll‘,h {other dimensions whereas the latter is

vl ok
appropriate for components” of comparatively large thickness. Here, details of some

selected studies from this category are givq,ﬁ_.._‘@irgantara and Aliabadi (2002) applied

the dual boundary element method to solve an-elastic thi_nrplate containing three types

of cracks (i.e. centered.crack, edge crack and cracks emanating from a hole). In their
study, the crack surface displacement extrapolation (ESDE) technique was utilized
along with thederintegral;seheme te determing they stress~intensity factors. Numerical
results obtained, ,were "found to be~in"excellent"agreement with existing benchmark
solutions. Freese and Baratta. (2006) .thoroughly“investigated. a single edge-cracked
specimen by‘using'the ‘weight‘function method ‘and the medified” mapping collocation
technique. In their parametric study, the full range of crack length to specimen width
ratio and various loading conditions such as three-point and four-point bending, pure
bending, eccentrically loaded tension were considered. General explicit expressions for
computing the stress intensity factors were also deduced. Recently, Kutak et al. (2007)
proposed explicit formula for approximating the mode-| stress intensity factor for center

crack, single edge crack, and double edge crack in a linearly elastic thin plate under



the normal traction. In their work, the neural networks and the displacement
extrapolation method (DEM) were employed to determine the stress intensity factor and
a commercial FEM-package, ANSYS, was utilized to validate their numerical results.
Expressions of the stress intensity factors for two-dimensional cracked bodies with
various geometries, crack configurations, and loading conditions can also be found in
many textbooks of fracture mechanics (e.g. Barsom and Rolfe, 1999; Anderson, 2005;
Gdoutos, 2005). While use of a two-dimensional mathematical model to perform fracture
analysis gains popularity from its simplicity, ii“still peses several drawbacks. As already
been known, a two-dimensienal-model with the-plane stress assumption is well-suited
only for modeling a body o asrelatively small thickness in comparison with other
dimensions whereas thatased on the plane strain assumption is appropriate for
components of comparatively large thickness. In practices, there are various situations
that both plane stress and plane strain ass[jmptions do notapply (e.g. components with)
and, for those cases, fragture data (vi-flz._ stress intensity factors) exhibits strong
dependence on the component (-jirﬁensioris; %o gain more insight into such complex

boundary value problems,” a.comprehensive three-dimensional analysis must be

performed.

| el

In pésft' decades, work related to thre'e-rdrimensional linear fracture
analysis has increasinrgly gained attention™ from various researchers due to the
significant progress of pawerful numerical techniques and personal computers and the
need of more “sophisticated mathematical! models! to| better’ predict responses of
complex physical problems encountered in practices. Here, we summarize a series of
earlier studies relevant, to the present study: Alam and Mendelsen (1983) utilized the
method of line to study the mode-I stress intensity factor along the curved crack front of
the compact tension specimen (according to the ASTM standard) under pure tension
loading. Results from their study revealed that the distribution of the stress intensity
along the crack front exhibits strong dependence on the difference between the crack
length at the center of the crack front and the crack length at the boundary of the

specimen, termed the crack tunnel depth. In particular, the stress intensity factor



decreases in the central region of the crack front while increases over a small region
near the intersection between the crack front and the outer boundary as the crack tunnel
depth increases. Although such analysis was performed within the three-dimensional
context, the specimen thickness was fixed and, as a result, the influence of this

parameter on the distribution of the stress intensity factor cannot be addressed.

Later, Sukumar et al. (1997) developed a numerical technique based on
the coupling between the finite element method@and the element-free Galerkin method to
solve an isotropic, linearly«elastie, sin%le edge cracked specimen subjected to the
uniform normal traction _atwits™ top_and bottom surfaces. The element-free Galerkin
method was employed.speciallyto modiel the crack surface and the stress intensity
factor along the crack fgont is‘calculated Lisipg the volume and planar domain integral. It
can be concluded fromgthissstudy that tfie.stress intensity factor attains its maximum
value at the middle of the€ragk ffont and ollibcd'rjeases very rapidly in the region where the
crack front meets the boundary: In addif_"r_c-m,*f[he complete distribution of the stress
intensity factor along the crack rfl‘O‘ht obtéif;'gd_from such analysis shows significant

oy

discrepancy from the plane stréin case and—_th_i'st additionally supports the need of the

o

three-dimensional model. It shbﬁfd be noted Jh'c;\ﬁé\‘/er that this study is restricted only to

a specimen of fixed {h:ic?r]ess and an isotropic material wi_th:-Poisson’s ratio equal to 0.3.
This is still insufficient tQ;_describe the influence of the thio[{ness on the distribution of the
stress intensity factor alomg.the entire crack front. Next, Li et al. (1998) presented highly
accurate numerical solttions of an“identical problem by|using a powerful numerical
technique based on a weakly singular, symmetric_Galerkin boundary element method
(SGBEM). Howevery' the main focus of 'this| wark was to- develop the computational
procedure and this particular problem chosen in their analysis was only for verification

purpose.

Next, Wu (2006) explored the influence of thickness on the distribution of
the mode-I stress intensity factor for the center-cracked specimen subjected to uniform
normal traction at its top and bottom surfaces. In the analysis, a finite element software

ANSYS was utilized to model the associated boundary value problem and the quarter-



point displacement method was employed to extract the stress intensity factor along the
crack front. Results from this study indicated that the stress intensity factor in the central
region of the crack front starts to attain a converged constant value (i.e. the plane strain
condition) for a specimen with the thickness larger than four times of the crack length. It
should be noted that their study is still restricted only to a center-cracked specimen
made of an isotropic material with Poisson’s ratio equal to 0.3. Later, Kotosov (2007)
applied the first order plate theory to investigate the influence of the plate thickness on
the value of the stress intensity factors for a through erack embedded in a linearly elastic
infinite plate of finite thickness-and subjected to-both-remote uniaxial tension and remote
shear. Results from this studysstiggested that when the thickness of the plate increases,
the stress intensity factors decreases and finally converges to the value associated with
the plane strain condition 4While the‘analysis has taken the thickness of the plate into
account, use of the plate theowy provides _60 information of the distribution of the stress
intensity factors across the thlckness i3 p;mcular a single value of the stress intensity
factor was obtained and it should represent pnly the average of such quantity over the
entire crack front. Recently, Rungamornrai-;a@d Mear (2008b) revisited the same

problem as that studied by Li ef a/.:(1998) by:_.in;co_rporating material anisotropy. In their

analysis, the weaklyssingular SGBEM based on a pair Qf weakly singular, weak-form

integral equations for the displacement and traction proposed by Rungamornrat and
Mear (2008a) was utilized. Similar to the work of Li et al. (1998), the key objective of this
study was to sdevelopy an~efficient jand .accurate, numerical«technique capable of
performing three-dimensional linear fracture analysis. The" distribution of the stress
intensity., factors. along ,the. crack.front was. reported. and discussed, for an isotropic
material "with* Poisson’s" ratio "equal to "1/3 "and two" types of Wransversely isotropic
materials, i.e. zinc and graphite reinforced composite. However, the study did not

consider the influence of the thickness on the value of the stress intensity factors.

From an extensive literature survey, the studies of the influence of the
thickness of the body in the direction along the crack front on the value and distribution

of the stress intensity factors are still restricted to certain geometries, crack



configurations, loading conditions, and certain types of constituting materials. For
instance, complete investigation in the case of isotropic materials is limited to certain
values of Poisson’s ratio and specimen geometries while results for anisotropic case are

available only for a specimen with a fixed thickness.
1.3 Research Objective

The key objective of this fresearch is to explore the influence of the
thickness of specimens, commonly used in‘the.determination of the fracture toughness,

on the distribution of stress.intensity facters along-the-crack front.

1.4 Research Scope

The main fecus of this research is to perform a stress analysis of a
compact tension (CT).specimen of _,varioug:thjﬁ_cknesses and under pure mode-| loading
condition. Dimensions of the spemmen aéd Ioadmg characteristics are chosen to be
consistent with those specified in ASTM E399 90. Two types of materials, one

..i’ "
associated with an isotropic ,1_6'|aStIC materialand the other corresponding to a

transversely isotropic elastic material, are CogﬂT,_sngLe[ed in this study. For the latter type of

material, the axis of material symmetry is taken tobe perpgeho_licular to the crack surface.

1.5 Research Methodolc}_gy

Ar computational sprecedure~baseds aon=a .weakly singular, symmetric
Galerkin boundary ‘element method«(SGBEM) is utilized to' perform the comprehensive
stress analysis of a three-dimensional, homogeneous, generally. anisotropic, linearly
elastic medium containing ‘cracks.“The" stress lintensity factor is"computed using a
special formula in terms of the gradient of the relative crack-face displacement data

along the crack front which is obtained directly from the SGBEM.
1.6 Research Significance

Results from the present study provide the profound understanding of

the behavior of the mode-| stress intensity factor along the entire crack front of the CT
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specimen of various thicknesses for two important classes of linearly elastic materials,
i.e. isotropic and transversely isotropic solids. The knowledge of the specimen thickness
that yields the plane strain condition over the majority of the crack front has a direct
application to the optimal design of a CT specimen used in the determination of the

fracture toughness.

AULINENINYINS
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CHAPTER I

THEORETICAL BACKGROUND

This chapter devotes to the fundamental background in linear elastic
fracture mechanics and the formulation of the boundary value problem associated with a
cracked body. First, a stress field in the vicinity of the crack front and the definition of the
stress intensity factors are briefly summarized: Next, a pair of weakly-singular weak-form
boundary integral equations for the displacement and traction is presented. Finally, a
symmetric weak formulation governini; the three-dimensional crack problem is

established.

2.1 Stress field near the crack front; .- : %

_—

Consider a crack émbed}de‘cﬂ in a linearly elastic body as shown
schematically in Figure 2.1 /A reference loéé}_.Cartesian coordinate system is chosen, for
convenience, such that its origin isdocated éffth_e crack front, the X, -axis is normal to the
crack front, the X,-axis is normé"lrto- the Crac;:k;é:a;‘face and the X;-axis is tangent to the

crack front. Let(r,@,X,) denote a local eylindrical coordinate system defined based on

the local (X, X, X, ) |SyStefi-as Shown inFigre 2:1= By following the previous work by
Westergaard (1939), Sneddon (1946), Irwin (1957) and Williams (1957), the stress field

in the neighborhood of the crack front takes the following form
k . 2
o; =| — |6, (@) + > C,r26™ () (2.1)
[ R@gers

where gy denote the Cartesian stress components; K IS a constant depending on
applied load, geometry of the body and crack, material properties, and location along

the crack front; I is the distance from the crack front to a point of interest; 5'”- is an

angular dependent function; m is a non-negative integer; C_ are constants; and

m

&igm) are angular dependent functions.
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crack front. As apprﬁchlng the crack f@?s clearly dominated by the

first term and, within i hanics, the second term is

typically discarded. Thgas—-ym'

the singularity of order 16'\/£and its charac‘g;istic can be completely determined by a

single paramﬂlulrﬁ:le@ew %}%ﬁoﬁi&l&ﬂnﬂdﬁg the magnitude and

loading direction), properties of constituting materials, and geometry of the body and
g ﬁg’ prop ng g T g %D/ Yy

oo ARG ANV

2.2 Stress intensity factors

erallﬂmown as the K-field) exhibits

The stress intensity factor, denoted by K, is an essential parameter in
linear elastic fracture mechanics that is known to completely characterize the dominant
stress field in the neighborhood of the crack front. This fracture data is directly related to

the constant K in the expansion (2.1) via a simple relation:
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K = k27 (2.2)

By inserting (2.2) into the first term on the right-hand side of (2.1), the dominant stress

field now becomes

oy = (L]aj ©) (2.3)

N 2ar
different behavior of the relative

T —— .
| nent of the general relative crack-
I,
surface, allel to the crack surface and

d tangent to the crack front

From the eigen analysis, the above a ptotic stress field can be decomposed into

three independent modes, i.e. th or mode |, the sliding mode or mode

and the tearing mode or m
crack-face displacement.

face displacement per

normal to the crack fro

ively, as shown in Figure 2.2.

ee modes exist and the local

(a) (b) ()

Figure 2.2 Schematics indicating the relative crack-face displacement for (a) mode | or

opening mode, (b) mode Il or sliding mode, and (c) mode Il or tearing mode
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where K,, K, and K,, are mode-l, mode-Il and mode-lll stress intensity factors,

respectively, and &;, ;' and &' are corresponding functions describing the angular

Ij !
dependent behavior in the local region surrounding the crack front. The stress intensity
factors for all three modes can be obtained from the local stress field resulting from

solving a complete boundary value problem via following formulas

K, =lim(V2ro,(r,0=0)) (2.5)
Ky =lim(2aro, (r,0 = 0) (2.6)
Ky =lim(V22r0(r,0 <0)) / (2.7)

It is remarked that the®definitions (2.5)-(2.7) apply to both isotropic and generally
anisotropic materials. Barneit and/Asaro (1972) and Xu (2000) proposed an alternative
expression for determinings the mixed—r:_qode stress intensity factors for generally

anisotropic media in terms of the relative cr;éck—face displacement:

K; ZEBH |im( AY J J- (2.8)
4 %—0 _ Xl ey

where k; are related to the stress intensity factors by kp= K, .k, =K, , k; =K, ; Au,
are components of rel,a;tive crack-face displacement with respect to the local coordinate
system (Xl,X2 ) deflned in Figure 2.1; and BII are constants involving all elastic

constants and the geometry-ef the crack front by

. =—j[aa ab,m(bbmnban,}w (2.9)

where a‘and b are orthonormal vectors contained in the plane defined by X, =0; ¢ is
the angle between the vector a and the X, -axis; the operator (-,-) is defined in terms of
the elastic constants Ey, by (a,b) =a,E;b,; and (b,b)™ denotes the inverse of
(b,b). The formula (2.8) can be used, when supplemented by positive features of the
selected numerical scheme, to accurately and efficiently compute the stress intensity

factor along the crack front for both isotropic and anisotropic cases. The explicit form of

the angular dependent functions &, ;' and &;" for certain special cases (e.g. two-



15

dimensional problem with both plane stress and plane strain assumptions, anti-plane
shear problem, etc.) can be found in textbooks for fundamental fracture mechanics (e.g.
Anderson, 2005; Gdoutos, 2005; Barsom and Rolfe, 1999; Kanninen and Popelar, 1985;
Hellan, 1984 ).

2.3 Boundary integral equations for cracked body

It is evident from sections 2.1 and 2.2 that the asymptotic and eigen
analysis provide only informatio , form of dominant elastic fields in the
neighborhood of the crack e ral important information such as

J
loading conditions, geo@ mairial

termed the stress intensit _This esse

> in terms of unknown constants
re data can be determined once

the complete boundary 1 1S th the entire body is solved. The

S, =S, US,

Figure 2.3 Schematic of three-dimensional cracked body
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Consider a three-dimensional, finite, cracked body that is made of a
generally anisotropic, linearly elastic material as shown in Figure 2.3. The boundary of
the body can be decomposed into three surfaces S WS, S,, and S, where SZUS_
represents two geometrically coincident crack surfaces, S, is a portion of the regular
boundary on which the displacement is fully prescribed, and S, is the remaining regular
boundary on which the traction is prescribed. It is remarked that on the crack surface

the traction is assumed to be known.

A pair of completely regularized.boundary integral equations for the
displacement and the traction-applicable to-a~cracked body made of a generally
anisotropy material was+proposcd by Rungamornrat and Mear (2008a). The final form of

those two equations are'givea’by

A AJUNE RIS s ()
o (4] fG (55D, (8)ds (8)ds(y)  10)
- ijp(y)hﬁ) HEy)v; (2)as(E)as(y)

ok S ]

~Je(y)% (y)t(v)ds (y) ="£Dt\7k( )ICT‘“(i ¥)D,v, (8)dS (8)dS (y)

S

+ |Da(v)[Gi(E-y)Y (F,)dS(F,)dS(y) (2.11)
+ ! % (y) SI n () Hi (5-Y)t (8)ds (8)ds (y)

o

whereS, =S, US,, S=S,US US’, T and Vv, are admissible test functions,
D, () =n.&50()/ &5, derotes’ @ ysurfade) differential foperator, £5;,fis| a permutation
symbol, €(y) is a geometric dependent function defined by c(y)=1/2 for y € S, and
c(y)=1for yeS;, t,(§) denotes the traction at point & on the boundary, v, (&) is the

boundary data defined by

_ ui(é)! gESO
Vi(é)—{Aui@) Cees: (2.12)
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with U, (&) and Au,(§)=u;(€)—u, (§) denoting the displacement on the regular
boundary and the jump in the displacement across the crack surface. All four kernels

appearing in above two integral equations are given explicitly by

H (E-y) = ‘4_17T(§—i _rii 2% 213)
UP(E-y) = K (&-y) (2.14)
G (8-Y) = €amEaucKep (E5Y) (2.15)
Coi (E-Y) = AnaKan (&=) (2.16)

tkoe

where &;is a Kronecker délta and the €omstant A, and the function K;‘,‘ (&—y) are

defined by
tkoe 1 ‘e
Anjdn = pam pbt Ebknd Eajeo _5 Eajkb Edneo £ (2-1 7)
Kii(€-y) = 87zr 2) 2,2;005(2) T (2.18)
z-r=0 : fr- i

where r=&-Yy denotes the position vector, 'r =\/F?, Z is a unit vector,
(z,2)y = 2,,Ep2,, @nd the closed contour integral is defined on a unit circle on a
plane normal t6.thé pasitionyveéctor £ (ke Z: ri= 00 ItTs warth:noting that the kernels
U E-Y).GE-Yy) and Ctk (§—y) are material dependent and possess the same
structure,imterms ofythe line integral wheneas thekemel g (& V) isindependent of
elastic constants. In addition, all four kernels are singular only at § = yand are of order
O(1/r) (see details of derivations and extensive discussion of these kernels in the work of
Rungamornrat and Mear, 2008a). For the special case of isotropy, i.e.

Eiju = l§,k5 +06,0) +2v5;0, I(1- 2V)J where u is the elastic shear modulus and v
is Poisson’s ratio, the closed contour integral (2.18) can be integrated explicitly and the
kernels UF(E-y) .G .(E—y) and Ctk (§—y) now simply reduce to a closed form
identical to those obtain by Li and Mear (1998) and Li et al. (1998):
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p _ _ 1 3—4V (é:| _yi)(é:p_yp)
UPE y)_167r(l—v),u[ r Oy + 3 (2.19)
Grﬁj (é - y) - Wl_v)r((l_ 2V)8mpj + (gt - yt)r(fp - yp) gtjm] (220)
ChE-y)= L((l— V)3 By + 20508 — 88y — 21 YiNE Vi) @mj 2.21)
4z(l-v)r r

The boundary integral equations«(2.10) and (2.11) possess several
positive features useful forthe present §Ftudy including that (i) they are cast in a weak
form well-suited for establishing the symmetric weak formulation for the SGBEM
discussed in the following section, (ii) éll kernels are only weakly singular of O(1/r)

allowing all involved integralst be intérprété'd in an ordinary sense and only requiring

_—

displacement data on the gegular bouhdarz/ and crack of the type C’ for those integrals
to be valid, (iii) they are applicable to crao’lkfs}pf_general geometries and under arbitrary
loading conditions, and {iv) ithey apply E_E)Jf_poth isotropic and generally anisotropic

linearly elastic media. S s

tif

2.4 Symmetric weak fqrmulation--fof crack préblem

To construct a symmetric weak formulationia:s’sociated with the boundary
value problem for a cracked body, a standard procedure similar to that employed by Li
et al. (1998) and Rungamafnrat/and Mear«42008b)’is employed. In such procedure, a
pair of weakly singular, weak-form integral equations for the displacement and traction
(2.10) and(2y14), is~employed=asfollows  @mythe surface S, the displacement integral
equation«(2.10) is applied by chodsing a test function such that 'typ =0"0n S, and on the
surface S, , the traction integral equation (2.11) is applied with a special choice of test
function satisfying \7p =0 on S,uUS,. Finally, on a single crack surface S_, the
traction integral equation (2.11) is again applied by choosing a test function \7p = Aﬁp
on S and V,=0 on S, =S,US, . A set of weak-form equations resulting from
appropriate applications to each surface is given in a concise form by (also see Li et al.,

1998; Rungamornrat and Mear, 2008b)
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L)+ ARG ¢ A(E4) - RO
A (t0) + G(Gu) + G (0,4u = K, (0) (2.22)
R (t,40) + €, (4G,u) + € (40,u) = R,(40)

where the linear operators . , Bhy and G, (with P,Q e {u,t,c} ) are given in terms of

weakly singular, double surface integrals by

Ao (XY) = [ X, WU E-yY, (2.23)

(2.24)
- j Xk(y
Sp

Go(XY)=[DX, (2.25)

Sp
and the operators &, VONing prescribed data on the boundary are
given by = _.',

= ".!?":'r i

R(E) =T (Eu,) - 4elt) =R Eu) (2.26)
Ry (@) =~ (0,8,) - A8 0) - 6, @, (2.27)

B V4 1213 10 R
gﬁiﬁ ﬁgﬁgﬂﬁfﬂﬂ laloR [l E- T
RXYV) = j X, (Y)Y, (y)dS (y). (2.29)

The symmetry of the weak formulation (2.22) should be obvious from the form of the

integral operators ., and G, and the symmetry of the kemels U;(§-Yy) and
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Ctk (§—y) . This set of integral equations forms a complete boundary value problem for
a body containing cracks in terms of unknown boundary data such as the traction on the
surface S,, the displacement on the surface S, and the relative crack-face
displacement on the crack surface S_ . For a special case of pure traction boundary

value problems (i.e. S, = ¢), the weak formulation (2.22) simply reduces to

C,(U,u) +C,(u,Au) =R,(U)

(AU,u) +C_ (AU, Au) =R, (AU

R.(@ = -R(G.t,)- / 1R @31

(2.32)

(2.30)

R,(AU) =—2F, (AU, t,

The formulation (2.22) e development of the weakly

singular SGBEM.

ﬂ‘lJEl’JT’IEWIiWEI']ﬂ?
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CHAPTER 1lI
SOLUTION PROCEDURE

In this chapter, we summarize a numerical technique utilized to solve the
boundary value problem associated with a cracked body, the post-process to extract
the stress intensity factor from the data along the crack front, a meshing procedure for
the CT specimen, and the mesh refinementvand study of convergence of numerical

solutions. ]

3.1 Weakly singular SGBEM
i

To solve thgfboundary vaILje.-probIem for a cracked body governed by a
set of integral equations (2.22) /a WedKIy S;ﬁwqular SGBEM developed by Li et al. (1998)
for cracks in isotropic media and by Rurigémornrat and Mear (2008b) for cracks in
generally anisotropic media is édépted. Dfue to the weakly singular nature of the
governing integral equations andjthe syr;rae};’y of the formulation, this numerical
technique is superior to othertgta}ndard bou_r_lT_dﬂy _integral equation methods in several
aspects. For instance, all interpblation functibﬁs can be used in the discretization of all
boundary data, all sinigvular integrals exist in an ordinaryrsense and can be integrated
accurately and efficienlly using some standard quadratdre, and it finally results in a
symmetric system ,of linear_algebraic equations. It should_be_remarked also that the
discretization is required-only on the-boundary of the-domainliand the crack surface and
this renders the reduction of the spatial dimensien from 3 to 2 for' three-dimensional
problems. Unlike ‘the “standard finiteelement method _(e.g. "Hughes, 2000), the
discretization is required for the entire domain and the meshing effort is non-trivial
especially in the region near the crack front where an extremely fine mesh is required to
accurately capture the singularity of the stress field (e.g. Swenson and Ingraffea, 1988;
Martha et al., 1993; Ayhan et al., 2003). For the SGBEM developed by Li et al. (1998)

and Rungamornrat and Mear (2008b), the asymptotic behavior of the field near the

crack front as discussed in sections 2.1 and 2.2 is directly and properly integrated into
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the near front approximation allowing relatively coarse meshes be employed to
construct reasonably accurate numerical results. Here, we only summarize some
important aspects of the SGBEM adopted in the present study while details of the
development can be found in the work of Li et al. (1998) and Rungamornrat and Mear

(2008b).

3.1.1 Discretization

The unknown displacement and traction on the regular boundary of the
domain are approximated by using contindous.interpolation functions defined in an
element-wise fashion on standard, two-dimensional, isoparametric, c’ elements (e.q.
Hughes, 2000) resulting from™ the discretization. The relative crack-face displacement
along the crack front is approximaied by1 special continuous interpolation functions via
the use of special crack-tip elements de\}erbped by Li ef al. (1998) and Rungamornrat
and Mear (2008b). The relative craek—fac%displacement on the remaining of the crack
surface is approximated by, the iqterpolatiéh functions from standard, two-dimensional,
isoparametric, C’ elements. It shou!d_ be no’geg that for'the CT specimen considered in
this study, the crack front intersetts the reg@ﬂbundary at two particular points known

as vertices. Since shape functions on the crack-tip elements and on the standard

elements are different;.an-element on-the regular boundary which contains the vertex

and is adjacent to the crack-tip element must be modified Tio maintain the continuity of
the displacement field. This can be achieved by using a special element developed by

Li et al. (1998);

3:1.2 Evaluation of kernels

Foriap isotfopic-case, |all folr kemels) P (E-y) ) U (EHY) . Gy (E-Y)
and C,ﬁfj (€ —y) are given in an explicit form in terms of fundamental functions. Thus,
evaluation of these kernels for every pair of source and field points (&§,Y ) is trivial. For
the case of generally anisotropic materials, the kernel Hi}) (§—y) can still be directly
calculated while the evaluation of the kernels U;”(§—~y), G (E-Y) and C,t:j (E-Yy) by
directly integrating the closed contour integral (2.18) for every pair (§,y) can lead to

massive computational cost. In this study, the interpolation technique proposed by

Rungamornrat and Mear (2008b) is utilized to avoid such direct integration.
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3.1.3 Numerical integration

All regular, single surface integrals are accurately and efficiently
integrated by using standard Gaussian quadrature. For double surface integrals, three
types of integrals including regular integrals, singular integrals and nearly singular
integrals are encountered after the discretization. All regular integrals can be efficiently
evaluated using standard Gaussian quadrature while both singular and nearly singular
integrals are integrated numerically. using; special quadratures developed by Xiao
(1998). Positive features of those special guadratures are that the integration can be
performed in the computational domain.(i.e. master.element), the singularity and rapid
variation behavior are remoyved wia using proper variable transformations, and the

accuracy of the schemie finally controlled by adjusting the number of Gauss points.

3.1.4 Solution of system of linear equations

A final” system (©f, Iinea_r: algebraic equations resulting from the
discretization is symmetric and a]so posit{v_el (El_efinite for pure traction boundary value
problems as considered in the pre_s}_ant studdyd I-t is worth noting that proper constraints
must be introduced in order toleliminate fh_éz;_fjgid body translations and rigid body
rotations or, equivalently, to ensuré- that th’q_:_system of linear equations possesses a

unique solution. For dhree-dimensional, pure traction boumdary value problems, six

constraints are needed. To solve such a symmetric, positive definite system of linear
equations, a standard conjugate gradient method with Jacobi-preconditioning is utilized
(e.g. Hamming;41987;uChapray and jCanale; 1990).; The«obtained solution (for pure
traction boundary value problems) contains nodal displacements on the regular
boundary, snedal, relative .erack-face, displacements aen, the, erack, surface, and extra
degrees of freedom along thecrack’front resulting“from' the use of crack-tip elements.
The last quantities are associated with the gradient of the relative crack-face
displacement along the crack front and they can be used in the determination of the

stress intensity factors as discussed in the following section.

3.2 Determination of stress intensity factors
It is apparent that a solution obtained directly from the weakly singular

SGBEM contains nodal quantities (displacements, tractions, and relative crack-face
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displacement) on the regular boundary and the crack surface. The elastic field within the
body (e.g. stress and displacement) can also be computed using the integral relations
proposed by Rungamornrat and Mear (2008a). If only the stress intensity factors are of
interest, the definition (2.8) offers a better candidate comparing to the definition in terms
of the stress (2.5)-(2.7) in order to avoid the computation of the field within the body. It is
noted however that the direct use of the definition (2.8) still requires the evaluation of the
limit and this calculation may affect the ‘accuracy of the stress intensity factors. To
enhance the accuracy, Rungamornrat and Mear(2008b) employed a special feature of
the crack-tip element aleng-with (2.8)'to develop-an explicit, limit-free formula for

determining the mixed-mode_ stress intensity factors as follows

ki (x.) = 1, ||( )zul(n)'//(n)(x ) (3.1)

where X, is any point on the cpack front; i]_ énd /i are parameters depending on the
geometry of the crack-tip element at polpt X.(see more details in the work of
Rungamornrat and Mear, 2008h); N denrc;i:éél!,;;he number of nodes in the crack-tip
element; U, is the nodal degree of frg@ém_associated with the n" node; and
¥ (x.) is the valuedof the no-dal shape fﬁﬁotion at point X . It is worth noting that
W (X;) is zero for ail vs,hape functions associated with nbdes not located on the crack
front; as a result, the summation appearing in the expression (3.1) involves only extra
nodal degrees of.freedom along the_crack front. In addition, components of all quantities
in the formula (8.1) afe referring'to the local coordinate system defined in section 2.1.

By using the crack-tip elements to=approximate thé.relative crack-face
displacement nearthe ‘crack front along with applying the_explicit formula (3.1) in the
determination of the stress intensity factors, Rungamornrat and Mear (2008b) found that

highly accurate results can be obtained by using only relatively coarse meshes. With

such attractive feature, the formula (3.1) is therefore utilized in the present study.

3.3 Geometries of CT specimen
In the present study, we focus only on a particular cracked body with its

configuration similar to a compact tension (CT) testing specimen. ASTM E399-90 (1997)
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has recommended the geometries of the CT specimen in the experiment for the plane
strain fracture toughness K, as shown in Figure 3.1. The ratio between the crack
length a (measured from the center of each hole to the crack front) and the specimen
width W (measured from the center of each hole to the back face of the specimen) must
be chosen in the range of 0.45 to 0.55 and the thickness is recommended to be 0.5W .
The entire width (measured from the back face to the front face) is equal to 1.25W .
A pair of equal and opposite loads is to be applied at the holes of radius 0.25W to open
the crack. The distance between the centerof gach.hole and the crack plane is equal to
0.275W and the distance-from-the crack plane-te-the top and bottom surface of the
specimen is equal to 0.6W _Details of a small starter notch in front of the crack plane

can be found in ASTM E399-90.(1997).

0.6W

1.2W

10.275W |0.275W |

0.6W

W
1.25W

Figure 3.1 Configuration of compact tension (CT) specimen recommended by ASTM

E399-90 (1997)

In the modeling, we choose a configuration as shown in Figure 3.2 to
represent the CT specimen shown in Figure 3.1. The difference between this model and

the actual CT specimen is due to the removal of the notch and then replacing it by a
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through-the-thickness crack. It is worth noting that this simplification should not
significantly alter the behavior of the problem but substantially reduces the meshing
effort. In the analysis, we choose a/W =0.5 and the thickness of the specimen is
varied in order to investigate its influence on the distribution of the stress intensity factor.
The applied loads at both holes are assumed to be uniformly distributed over the upper

part of the upper hole and the lower part of the hole.

X, 0.25W "~
X, Y ! E ”
v S E
X, O\ ik
'@;o’ .
o ¥P
t A
W ‘l
1.25W |

Figure 3.2 Configuration of compact tension (CT) specimen used in the analysis

3.4 Mesh generation

In' the' construction' of' a-finite 'element mesh-on the boundary of the CT
specimen and the crack surface, the number of distorted elements and elements with a
large aspect ratio is minimized, a finer mess is utilized in regions where fields are
anticipated to be complex such as regions near the crack front and vertices, and a
mesh with smooth transition is employed to connect the fine mesh region and the coarse
mesh region. Three types of elements are utilized in the discretization of the CT

specimen: (i) standard 6-node triangular elements and standard 8-node quadrilateral
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elements shown in Figure 3.3(a)-(b), (ii) 9-node quadrilateral crack-tip elements shown
in Figure 3.3(c), and (iii) special 9-node quadrilateral elements shown in Figure 3.3(d).
More specifically, elements in the second category are utilized only along the entire
crack front whereas on the front and back faces of the specimen, two elements of the
last type must be used to connect the crack-tip element and the standard elements. The

remaining boundary and crack surface are discretized by elements in the first category.

NN |

Crack front Surface breaking line
(a) () % () (d)

Figure 3.3 Schematic of elements utiIizéﬂ_Jn the discretization of CT specimen:
(a) standard 6-node triangular efement, (bj;siéﬁdard 8-node quadrilateral element,

(c) 9-node crack-tip element,:and (d)'sfp"ééial 9-node quadrilateral element

An exémple of a mesh for the CT specimen of a particular thickness
t/a=1 is shown in Figure 3.4. By exploiting the symmétry of its geometry, the mesh
generation effort|can be | signhificanily reduced: For'instanee, “only one of the top and
bottom surfaces, one of the two holes, one half of the two side-faces, and one half of the
crack surfdce are required:to be meshed. Meshes for the rémainingbaundary and crack
surface ¢an simply be obtained by the reflection about a plane of symmetry. It is evident
also that only a region on the crack surface close to the crack front (see Figure 3.4(b))
and a region on the two side-faces surrounding the vertices (see Figure 3.4(c)) have a
relatively finer mesh when compared with the other regions. Most of the effort and care
is therefore spent to achieve a good mesh in such region and the corresponding
transition zone. A good quality mesh with sufficient refinement is anticipated to yield

accurate stress intensity factors along the entire crack front.
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Figure 3.4 Example of mesh for CT specimen of thickness t/a =1: (a) mesh for entire

specimen, (b) mesh for crack surface, (c) mesh for side faces, (d) mesh for top and

bottom surfaces, (e) mesh for back and front faces, and (f) mesh for holes

3.5 Convergence study
The main focus of this section is to explore the convergence of the stress

intensity factor along the crack front using a series of meshes with different levels of
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refinement. Results from this convergence study are very useful in the selection of a
mesh that yields accurate numerical solutions while requiring relatively cheap
computational cost.

In the study, three meshes, a coarse mesh denoted by Mesh-1, a
medium mesh denoted by Mesh-2 and a fine mesh denoted by Mesh-3, are constructed

as shown in Figures 3.5-3.7 for a specimen of thickness t/a =1. The number of nodes

f

aining boundary for the three meshes is
_ ider three different materials, one

Poissen's-ratio v =0.30 and the other two

and elements on the crack surfac
reported in Table 3.1. In
associated with an isotr

corresponding to the tr 0P

those for zinc and cadmium’a

elastic constants chosen to be
—

\

materials, the axis of material sy ysen to direct perpendicular to the crack

d be noted that for the last two

surface.
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oi %\:\
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Crack surface Holes

Figure 3.5 Coarse mesh or Mesh-1 for CT specimen thickness t/a =1
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Figure 3.7 Fine mesh or Mesh-3 for CT specimen thickness t/a=1
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Table 3.1 Number of nodes and elements for three meshes shown in Figures 3.5-3.7

Mesh Number of nodes Number of elements
Total Boundary | Crack Total Boundary | Crack
1 927 829 98 324 298 26
2 2892 2425 1467 1050 900 150
3 7614 6781 833 2704 2436 268
'1

Table 3.2 Elastic constants (EPa) for zinc.and cadmium (e.g. Freund and Suresh, 2003).
The axis of material symmetry is'- taken t-b direst along the x,-coordinate direction.

AllE ¥
) Siad e _:_'_ﬁ 1 J:J
Materials Elll-l == Ellzz:r_ E1133 E3333 El313
Zinc ) 161 34.2 504 4., ) 61 38.3
Cadmium 115.8 39.8 40.6 51.4 20.4

Numericall results for the mode-| stress intensity. factor along the crack
front are reported for three materialssand three meshes in Figure 3.8. It is evident that
results pbtained from the Mesh=2:and Mesh-3 are almost identicalywhile those from the
Mesh-1 exhibit slight difference especially very near the vertices where the stress
intensity factor drops very rapidly. This should imply the rapid convergence and the
weak dependency on the level of mesh refinement for both isotropic and anisotropic
cases. Next, we investigate the convergence behavior of numerical results for the same
specimen but with the thickness t/a =4 . Meshes used in the analysis for this particular
case are obtained by simply scaling coordinates in the direction along the thickness of

the three meshes shown in Figures 3.5-3.7. Again, results of the mode-| stress intensity
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factor (see Figure 3.9) lead to the same conclusion as the previous case and, in
particular, stretching meshes in the thickness direction by four times still does not alter
the convergence characteristic of the numerical solutions. It is worth noting that
approximate solutions of this high quality can be achieved via the use of relatively
coarse meshes due mainly to the application of special crack-tip elements along the

crack front.

11

7 oo Rer e By el o el gl i g el @ B gl g b1
0050 04 0.3 -0.2 _J-0.1 0.0 0.1 0.2 0.3 0.4 0.5

s/t

Figure 8.8 Normalized mode-¥ stresstintensity factor along the'crack front for CT
specimen thickness t/a =1. Results are reported for three meshes and three materials

and S denotes the distance measured from the center of the crack front.

Since the medium mesh and the fine mesh yields results of comparable
accuracy while the latter consumes substantially more computational time, a level of

refinement similar to that for the former mesh will be used in the construction of meshes
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for a CT specimen of other thicknesses in the parametric study to explore the behavior

of the stress intensity factor along the entire crack front.

11

- Isotropic v = 0.3

K, tvW
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Figure 3.9 Normalized mode-| stress intensity factor along the crack front for CT
specimen thickness t/a = 4. Results,atereported forthree-meshes and three materials

and S denotes the distance measured from the center of the crack front.

3.6 Verification of numerical results

To verify the numerical results obtained from the weakly singular
SGBEM, comparisons with existing benchmark solutions for a two-dimensional plane
strain case and for isotropic materials are performed. Consider a CT specimen of
sufficiently large thickness to ensure the existence of a plane strain condition in the
central region of the crack front. Numerical results obtained from a mesh with the same
level of refinement as the medium mesh shown in Figure 3.6 are reported along with the

plane strain solution proposed by ASTM E399-90 (1997) in Figure 3.10 for Poisson ratio
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v=0.1 and in Figure 3.11 for Poisson ratio v=0.3. It is evident that the SGBEM
solutions (in the region exhibiting the plane strain condition) show very good agreement
with the benchmark solution. Besides this verification, it should be noted that extensive
verification of the weakly singular SGBEM and its formulation used in the present study
was already performed by Li et al. (1998), Rungamornrat (2006), and Rungamornrat and
Mear (2008b) for various crack problems associated with both isotropic and transversely

isotropic media.

—_
—_
IIIIIIIIIIIIIIII

tla=1 9)
t/a=20
t/a=40

............ ASTM E-399

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
=005 04 %03 -0.24 <000 00 0 020 10304 0.5

s/t

Figure 3.10 Normalized mode-| stress intensity factor along the crack front for CT
specimen for sufficiently large thicknesses along with the plane strain solution from
ASTM E399-90 (1997). Results are reported for isotropic material with v =0.1 and S

denotes the distance measured from the center of the crack front.
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Figure 3.11 Normalized mode-| stress intensity factor along the crack front for CT
specimen for sufficiently large thicknesses along with the plane strain solution from
ASTM E399-90 (1997). Results are reported for isotropic material with v =0.3 and S

denotes the distance measured from the center(ofithe crack front.

3.7 Mesh for.CT.specimen.with.different thickness

To eonstruct' meshes' fortthe 'CT! specimen=0f various=thicknesses, the
medium mesh for t/a=1 shown in Figure 3.6 is used as a prototype. Two following
simple strategies, (i) mesh stretching along the crack front direction and (ii) adding an
inner layer, are employed. The mesh stretching is applied first to obtain a series of
meshes for several thicknesses without adding nodes and elements but simply scaling
the coordinate along the crack front. However, this strategy can be used up to a certain

thickness in order to avoid elements of large aspect ratios and produce too coarse
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meshes. For a specimen with too large thickness to use the first strategy, the second
strategy is employed instead by adding a layer of elements and nodes in the central
region of the crack front. With this particular means, the mesh for the two side-faces
does not alter. With the proper combination of these two schemes, a series of meshes
can be constructed for the CT specimen of thickness ranging from t/a=1to t/a=40.
Examples of meshes for CT specimen of certain thicknesses are shown in Figures 3.12-

3.13. \

VBRI BT
QRA4N

(b)

Figure 3.12 Meshes for CT specimen: (a) t/a=1 and (b) t/a=5
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CHAPTER IV
NUMERICAL RESULTS AND DISCUSSION

In this chapter, results from an extensive parametric study to investigate
the influence of the thickness on the distribution of the stress intensity factor along the
crack front of the CT specimen are reparted and discussed. In the analysis, the
specimen thickness is varied from t/a=1to"1/2 =40 to ensure that the plane strain
condition dominates the majority.-of the.¢rack front.of the specimen with the maximum
thickness t/a=40. Two impertant classes of linear elastic materials, one associated
with isotropic materials andetheOther corfesponding to transversely isotropic materials,
are examined in the present sitdy . Meshes generated using the strategy described in

section 3.4 and section'3.7 are utilized in the analysis for the stress intensity factor.
),

4.1 Results for isotropic materials .

' §
i

To explore ‘thesiinfluence  of ihje specimen thickness and material
constants on the behavior of the stress inten_-s_'Ltg along the crack front for the isotropic
case, we perform thg-analysis for various thicknesses tlae {1,2,3,4,5,10, 20,40} and
several values of Poisson’s ratio ¥ €{0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50} for each thickness. It should be noted that theéstress intensity factor exhibits
material dependence enly on the Raisson's-ratio 1 et the Young’s modulusE . The
normalized mode-| stress intensity factors, denoted by Klt\/W/ P where P is the total
applied-loadwand t.and W are .the. specimen. thickness.and, width,, respectively, as
indicated in Figure=3.2,"s' reported as“a“function of the ‘nermalized distance along the
crack front, denoted by s/t where s is the distance measured from the center of the
crack front, in Figure 4.1 for v =0, Figure 4.2 for v =0.10, Figure 4.3 for v =0.30, and
Figure 4.4 for v =0.50 (results for other values of Poisson’s ratio are shown in Appendix
A). For each plot, the plane strain stress intensity factor proposed by ASTM E-399 is also
reported to allow the comparison and discussion. From this set of results, following

findings are summarized.
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Figure 4.2 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and v = 0.1
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Figure 4.4 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and v = 0.5
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® For Poisson’s ratio v =0, the plane strain condition dominates the
entire crack front with no regard of the specimen thickness and, in
addition, the computed results exhibit excellent agreement with the
benchmark solution except in the region close to the surface breaking
points. The slightly oscillated behavior of numerical solutions
observed in that region is due to the fact that the (reduced-order)
special crack-tip element sand the adjacent modified boundary
element containing the  wertices cannot accurately capture the
asymptotiefield: Note'in addition-that the stress field at the vertex, for
this particular..case, is singular-of the same order as that for the

interior point,of the craé'jl< front.

® [For small Poisson’s"ratidL(f:'e. v <0.1), the stress intensity factor varies
along the crack'-fro:nt tiLta,such variation is still insignificant for all
thicknesses conS|dered ‘The rapid decrease of the stress intensity
factor is observed A the nJel_ghborhood of the surface breaking point.
This implies that the sxng@ﬁy of the stress field at the vertex is of
order less thaf- ¥t —4

® For medeﬁaterand—laﬁge—léenssens#aﬁeﬂ e v >0.2), the variation of
the Stress intensity factor across the thlck becomes more significant
and aepends primarily on the specimén thickness. For a specimen
with small thickness (iLe! t£a'€5), the stressintensity factor attains its
maximum value at the center of the crack front and monotonically
decreases to;zero |atithe: tvo yertices) The slightyratel of decrease is
observed for the majority of the crack front except in a layer near the
outer boundary where the rapid drop occurs. In addition, the three-
dimensional analysis yields the stress intensity factor higher than the
plane strain value for a large portion of the crack front. For a specimen
with sufficiently large thickness (i.e. t/a>10), the stress intensity

factor starts to converge to the plane strain value in the central region
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of the crack front and the converged zone spreads towards the
vertices as the thickness increases.

® For a specimen with the maximum thickness t/a =40, the plane
strain dominated zone covers more than 70% of the crack front for all
values of Poisson’s ratio treated.

To additionally demonstrate the influence of the Poisson’s ratio on both the distribution

and magnitude of the stress inte cross the thickness, we create different

plots between K,tJVV/P ecimen thickness but varying the

Poisson’s ratio. Results a

in F @innest specimen (t/a=1), in
Figure 4.6 for t/a = SM =10, and in Figure 4.8 for t/a=40. It can

front while the Poisso in Ce i de. More specifically, the larger

the Poisson’s ratio, the

%ﬂﬂﬂ%ﬁﬁﬁﬂﬁ”

V—O1 v=05
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Figure 4.5 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various Poisson’s ratios and t/a =1
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Figure 4.7 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various Poisson’s ratios and t/a =10
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Next, we calculate of the stress intensity factor over the

entire crack front from

Y]

K, = [K,(s)ds = ]B (4.1)

where K, derﬁﬂ%ﬁ%fw% Wﬂﬁcﬂ ﬁross the thickness and

K, is the computed stress intensity a}ong the crack front. Although K, is obtained only

at nodﬁﬂﬁﬁﬂﬁﬁﬁsﬂaﬁﬁrﬁimo

o/
ﬂ l'erﬂ Elobtained using
n

quadrati¢ interpolation functions (this choice of interpo unctions Is not arbitrary but
chosen to be consistent with the special crack-tip elements used in the weakly singular

SGBEM) as follows:

_ (S_Sz)(s_se) (5_51)(5_33) (5_51)(5_32)
KI (S) - (51 - Sz)(31 - 53) KI (Sl) ' (sz - S1)(52 - 53) KI (SZ) ' (53 - S1)(53 - S2) KI (53)

(4.2)
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where K, (s,), K, (s,) and K, (s,) are stress intensity factors at nodes along the crack
front of the same crack tip element and S, S,, S; are distances from the center of the
crack front to those three nodes. To demonstrate the influence of the specimen
thickness on the existence of the plane strain dominated zone and its size, we plot the
average stress intensity factor IZ, , normalized by the plane strain solution Ky
( obtained by taking the converged stress intensity factor at the center of the crack front
of a specimen with the thickness t/a=40), versus the normalized specimen thickness
t/a as shown in Figure 4.9. It is evident that fef all Poisson’s ratios greater than zero,
IZ, monotonically decreases-and asymptotically-converges to K.; as the specimen
thickness increases. This finding_ along with results shown in Figures 4.1-4.4 implies that
once the plane strain domifiated Zzone exists along the crack front, its size becomes
larger as the specimen thickness increases. Furthermare, the rate of convergence to the
plane strain solution décreases as the Po_i?ssgn’s ratio increases. This clearly indicates
4

that a specimen made of a material with-higher Poisson’s ratio requires larger thickness

to achieve the same level of plané strain co‘raé_jtién along the crack front.

t/a

Figure 4.9 Normalized average stress intensity factor versus normalized thickness for

various Poisson’s ratios
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In addition, an empirical relation between the normalized average stress
intensity factor K, /KpS and the normalized specimen thickness t/a for any Poisson’s
ratio can readily be obtained from a standard curve-fitting technique. Based on the data
shown in Figure 4.9, a hyperbola function form is suggested in the curve fitting

procedure and the final empirical formula is given by

K, 0.4008v° +0.0
=1+ n 3
Kes ~+197.05v* ~298.601

~0.001

. //ﬂ.76v+4.7006

(4.3)

where v is the Poisson’

obtained from the formula. (4" rom the analysis by the SGBEM. It is evident that

ﬂz 5 ‘Vl ﬂﬁWEﬂOﬂ‘i .
9 ‘W'L ﬁﬂ‘im ) ILEJ’]@ d
sut/as

0.96

Figure 4.10 Normalized average stress intensity factor versus normalized thickness

obtained from equation (4.3) and from analysis data
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4.2 Results for transversely isotropic materials

A brief description of a constitutive equation and independent material
constants for transversely isotropic materials is given here first to clearly identify some
parameters chosen in the parametric study. The six stress components {0,,, 0,,, O,
0,,, Oy, 0531 and the six strain components {&;,, &, , €33, &, €y, st for this
particular class of materials (with the axis of material symmetry directing along the Xj-
axis and perpendicular to the crack plane) are related by five independent material

constants via following two equivalent consiifutive equations (e.g. Staab, 1999 and

Singh, 2007)

o] [Eun  Eiz B0 0 0 0n | [ &n

02 B Enn B 0 ‘_ 0 0. || &2

O | _ Biss  Eus B 0= 0 0 ] €3 (4.4)
01, 0 0 0f AELyu —Euzp)g 0 01| 28,

Oy 0 0 0 0 Ensnw O ||2¢,

oz) | O 0 0 SRS 0N NE . ;. || 24

e, ] [ UE, —v,/E,“—v [E, " 0 0 0 Jfoy

£y -v,/E, 1/ Egrr==v, | By S0 0 0 ||loy

& | _| Ve [EnoetE e 0 0 0 |losx 4.5)
2¢,, 0 0 0 2A+v,)/E, 0 0 |lop

26,, 0 0 0 0 1/G,, 0 ||lopm

2¢,, 0 0 0 0 0 1/G, ||oy,

where Ejjy;, By, Ejpas s Eggzsand Ejg, are five independent elastic constants; E | and
v, aréghe Young'ssmodulus and" Poisson’s/ratio ini the | X; = X, ssymmetry plane; E,,
G, and? v, (or v, ) are the Young’s modulus, shear modulus and Poisson’s ratio in

the X, direction; and the two Poisson’s ratios are not independent but related through

v, lE,=v,IE,.

In the parametric study, we first investigate the influence of the specimen
thickness on behavior of the stress intensity factor along the crack front for two particular

transversely isotropic materials (i.e. zinc and cadmium) and then the influence of the
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Poisson’s ratio v, the modulus ratio E;/E, and the modulus ratio G, /E, are
thoroughly examined.

4.2.1 Results for zinc and cadmium

For this particular case, we perform numerical experiments for various
thicknesses t/a e {1, 2,3,4,5,10, 20,40} by using the same meshes as those employed
in the isotropic case. The elastic constants for zinc and cadmium used in the analysis
are given in Table 3.2. The normalized mode-| stress intensity factor (K,t\/VV/ P) are
reported as a function of the normalized distance along the crack front (s/t) in Figure
4.11 for zinc and in Figure 4.12 for cadmium. Fhe average stress intensity factor
(computed based on equations(4.1) and (4.2)) normalized by the plane strain solution
(obtained by taking the converged stress intensity factor at the center of the crack front
of a specimen with the thigkness t/a = 40 ) is shown in Figure 4.13 as a function of the

normalized thickness. From'this set/of results, it can be concluded that

® The 'computed siress in'&en-:_sity factors for zinc and cadmium exhibit
only slight differgnpe, bo’@ﬁ}jné_terms of the distribution and magnitude,
for all thicknesses_l_considé_;tj?‘edd- in the analysis. In addition, the average
stress intensity/factor for z@ié‘slightly higher than that for cadmium.

® For thin specimens (t/a]_<_’75")ﬁhe distribution of the stress intensity
factgl;p@ssesses—the—same characteristic as that for the isotropic
caserFor instance, the maximum stress iatensity factor still occurs at
the céhter of the crack front and drop re{pidly at the region close to the
vertices. Inladdition, the stress intensity, factoris higher than the plane
strain solution for the majority of the crack front and no plane strain
dominated zone'is plesenved inythis rangeraf thickness.

® For sufficiently thick specimen (t/a >10), the plane strain dominated
zone is observed in the central region of the crack front. Similar to the
isotropic case, as the specimen thickness increases, this zone
expands towards the outer boundary.

® As clearly demonstrated by Figure 4.13, the average stress intensity
factor decreases monotonically and asymptotically converges to the

plane strain solution as the specimen thickness increases. In
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particular, for a specimen with the thickness t/a>5, the difference
between IZI and K is less than 2% whereas a specimen with the

thickness t/a >10, the difference reduce to a fraction of 1%.

tincreases

Figure 4.11 Normalized mod I?%?Tg Sity -‘t\o ersus the normalized distance

alopgihe cra or zinc
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Figure 4.12 Normalized mode-I stress intensity factor versus the normalized distance

along the crack front for cadmium
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Zinc

K, Cadmium
K s /

. ol :-" 1 o . y . .
Next, we investigate the Influe Poisson’s ratio v, in the X, - X,

symmetry plane on lﬁm-----“---w----m-wma{. etor for various thicknesses.

In numerical experime -]i , @ re fixed except the Poisson’s

ratio v, that is varied over its entire range. The fixed material constants (i.e. E;, E,,

G, and v, ﬂjuﬁ 633»?1 W?Tgm gen in Table 4.1. Seven

values of Poisson’s ratio, i.e 0.40,0.50,0.60}, are

) N AT AT TR

in Tabl

Table 4.1 Material constants for cadmium used in the investigation of Vv,

Material Ep (GPa) | E, (GPa) GZp (Gpa) 1% 1% v

Cadmium 83.0 30.0 20.0 0.10 0.70 0.26
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Table 4.2 Elastic constants (GPa) associated with different values of Poisson’s ratio

(vp ). The axis of material symmetry is taken to direct along the x,-coordinate direction.

Materials Ellll EllZZ E1133 E3333 El313

v, =0.00 106.8 | 23.8 33.9 47.2 20.0

v,=0.10 1152 | p3087 40.3 50.4 20.0

v, =0.20 129.8 | 606 49.5 55.0 20.0

-

v,=0.30 5047 916 ew2 62.5 20.0

v,=0.40 2085 fIf 4462 | 914 76.3 20.0

v, =0.50 gazdsf | “277s | 587 1103 | 200
;f .

v, =0.60 1787 4¢11268.4 8994 | 3333 | 200
: 3 {_

d )i Fr )]
Results obtained frem this extensive analysis reveal that the distribution

o

of the stress intensity, factor éio‘h'g the Cra<.:’!k".-f>r*o_n’t for.both thin and thick specimens

possesses the sah_w_é characteristic as that for zinc:"__-and cadmium as clearly
demonstrated in Figure-_s 4.14-416" forv, =0,0.3,0.6 (résults for other values of are
shown in Appendix B). The. Poisson’s ratio v, only influences the magnitude of the
stress intensity factor for a given specimen thickness as indicated in Figures 4.17-4.20
for t/a=1,510,40. It is important to point out that results for v, =0 possess totally
different,behavior framithase for the isotropicicase with' v = 0. Na“independence of the
specimen thickness is observed for the case of transversely isotropic materials.

The average stress intensity factor K, for different values of v, is also
reported as a function of the normalized thickness in Figure 4.21. Similar to the isotropic
case, obtained results confirmed that as the Poisson’s ratio v, increases, K,
monotonically converges to the plane strain solution with a slower rate. Note in particular

that the difference between IZ, and K, is less than 2% for a specimen with the

thickness t/a>5 and less than 1% for a specimen with the thickness t/a >10.
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Figure 4.15 Normalized mode-I stress intensity factor versus the normalized distance

along the crack front for various thicknesses and v, = 0.3
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Figure 4.17 Normalized mode-I stress intensity factor versus the normalized distance

along the crack front for various Poisson’s ratios and t/a=1
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Figure 4.19 Normalized mode-I stress intensity factor versus the normalized distance

along the crack front for various Poisson’s ratios and t/a =10
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Figure 4.21 Normalized average stress intensity factor versus normalized thickness for

different values of v,
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4.2.3 Influence of modulus ratio E / E,

Next, the influence of the modulus ratio E /E, is investigated. In the
analysis, five modulus ratios Ep /E, €{0.25,0.5,1,2,3} are considered while other
elastic constants remaining fixed. Again, those fixed material constants are taken from
cadmium as shown in Table 4.1. Elastic constants associated with each modulus ratio
employed in SGBEM are given in Table 4.3. It is important to emphasize that the value of

v,, can readily be computed from the relation v, =v, (E, /E,).

The normalized mode-I stress’intensity factor is reported along the crack
front for various thickness t/ae{I,JZ,S, 5,10; 20,40} in Figures 4.22-4.26 for
Ep/EZe{0.25,0.5,1,2,3}, respectively. The plots between the normalized stress
intensity and the normalized disience albng the crack front for various modulus ratio
E,/E, €{0.25,05,1,2,3}arg also shown in Figures 4.27-4.30 for t/a=1,510,40,
respectively. The modulusiratio Eﬁ/EZ c;;nly_; slightly influences the distribution of the
stress intensity factor along'the crack fro’ﬁ{ibyt significantly affects its magnitude. In

addition, as the ratio E, /E, increases, the{"sji:_rgss intensity factor tends to decreases.
22 h

The average streés iAtensity ?ar;_tor along the crack front is also reported

for different values Of Ep/EZ in Figure 4.31. It is Bbviéls that the average stress

strong dependence on the modulus' ratio and, in particular, as

intensity factor exhibits

Ep I E, increases, K, increases and it requires larger specimen thickness in order to

achieve the same value of K.

Table 4.3 Elastic constants (GPa) associated with different values of modulus ratio

Ep | E{THeaxis of material symmietty s takén‘to directalgng<-cardinate direction.

Materials Ellll E1122 E1133 E3333 El313
E, =0.25E, 7.7 0.9 2.3 31.2 20.0
E, =0.50E, 15.8 2.2 4.7 324 20.0
E, =E, 33.2 6.0 10.2 35.3 20.0
E, = 2E, 74.9 20.4 24.8 42.9 20.0
E, =3E, 131.9 50.1 473 54.6 20.0
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Figure 4.23 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and E,/E, = 0.5
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Figure 4.25 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and E,/E, =2
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Figure 4.27 Normalized mode-I| stress intensity factor versus the normalized distance

along the crack front for various modulus ratios E,/E, and t/a=1
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Figure 4.29 Normalized mode-| stress intensity factor versus the normalized distance

along the crack front for various modulus ratios E,/E, and t/a=10
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4.2.4 Influence of modulus ratio G, / E

Finally, we explore the influence of the modulus ratio Gzp/Ep. In the
analysis, four values of the modulus ratio GZp / Ep €{0.25,0.5,1, 2} are considered while
other elastic constants remaining fixed. Again, those fixed material constants are taken
from cadmium as given in Table 4.1. Elastic constants associated with each value of the
modulus ratio employed in analysis by the SGBEM are given in Table 4.4. It is important
to emphasize again that the value of Vi Can readily be computed from the relation

vy =V,(E, /E,).

The normalized mode-| stress intensity factor is reported along the crack
front for various thickness” ifae{1,2,3,510,20,40} in Figures 4.32-4.35 for
Gzp / Ep €{0.25,0.5,1, 2} ,srespectively. "lThe plots between the normalized stress
intensity and the normalized distance alén’g the crack front for various modulus ratio
Gzp/Ep €{0.25,0.5,1,2} are also-shovvr:; in Figures 4.36-4.39 for t/a=1,5,10,40,
respectively. From thes€ obtained resulis, ';Q_jpji[ar behavior to the case of Poisson’s ratio
v, and modulus ratio EJ/E, (er.g!._;the va'r_i'éj;i_‘o-n of the stress intensity near the vertex,
the existence of the plane strain.dominated ziné‘m the central region of the crack front)

is deduced when the thickness-cf-the specinﬁéh'inereases. In addition, the modulus ratio

GZp / Ep only slightly'jhﬂupnrpq the distribution of the stréss intensity factor along the
crack front but strdﬁgly affects its magnitude. The strégs intensity factor tends to

increases as the modulus ratio G,, / E, increases.

The l[average stress intensity factor along the crack front is also reported
for different values of G,, / E in Figufe 4.40. It is ghyious from this get of results that the
averageistress intensity! factor.exhibits only slightly. dependenceon the modulus ratio
GZp / Ep and it decays monotonically to the plane strain value as the specimen

thickness increases.
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Table 4.4 Elastic constants (GPa) associated with different values of modulus ratio

Gzp/Ep. The axis of material symmetry is taken to direct along the x,-coordinate

direction.
Materials Ellll E1122 E1133 E3333 E1313
GZp = 0.25Ep 116.6 41.2 41.0 51.3 20.8
Gzp:0.50Ep ~____ \:.‘ S/ 41.0 51.3 41.5
G 65— . 83.0
.. //m\\- ]

1 ﬁl’ﬂ TS

qw qmmumwmam
e _MS/t ) o

Figure 4.32 Normalized mode-I stress intensity factor versus the normalized distance

along the crack front for various thicknesses and G, / E | = 0.25
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CHAPTER V

CONCLUSIONS AND REMARKS

An extensive parametric study has been conducted to thoroughly
investigate the influence of the thickness and material properties on the behavior of the
stress intensity factor along the erack frant of the compact tension (CT) specimen. A

numerical technique based upen the weakly.singular, symmetric Galerkin boundary
w
element method (SGBEM) hasbeen adopted to perform three-dimensional stress

analysis of the corresponding poundary value problem. The stress intensity factor has

\
been accurately computed using‘an explicit formula in terms of the nodal data along the

crack front. In the modeling of the rélgtivéérack-face displacement in the local region
surrounding the crack frent, fspecial cra"@k—’t'ip elements with a square-root function
embedded in the shape function. have been utilized. Use of these crack-tip elements

renders the stress intensity factor being éabt_ured accurately using relatively coarse
o o Yol Ay
meshes. . =

tif

A J-ay
gl

Geomé_try of the CT specimen and the Ioadi_ng condition considered in

the present study has*been chosen to be consistent with ASTM E399-90 except that (i) a
notch in front of the crack plane has been removed to simplify the meshing procedure
and (ii) the specimen,thickness.has.been.varied to investigate its.influence on the stress
intensity factor'across the thickness=A llevel-of'mesh refinement has been investigated
to ensure that converged numerical results have been obtained for'various thicknesses
and material ‘propertiesy To reduce the meshing! effort, a simple strategy based on the
coordinate stretching and insertion of an interior layer has been exploited to generate
meshes for larger thicknesses. In addition, benchmark solutions for some special cases
have been compared to verify both the numerical technique used and the meshing

scheme.

Extensive numerical experiments have indicated that the specimen

thickness shows very significant influence on the value of the mode-| stress intensity
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factor across the thickness both in terms of the distribution characteristic and the

magnitude. In particular, the stress intensity factors predicted by a three-dimensional
model exhibit substantial discrepancy from the plane strain solution for almost the entire
crack front when the thickness of the specimen is relatively small compared to other
specimen dimensions. However, when the thickness of the specimen is sufficiently
large, a plane strain dominated zone has been observed in the central region of the
crack front and the size of this zone increases with the specimen thickness. It is
important to remark that the behavior of the singular stress field near the vertex (a point
where the crack front meets the outer boundaiy) has been found very complex and the
stress intensity factor in this'local regiori generally exhibits the rapid drop when moving
towards the vertex. Such..ecomplex ‘behavior cannot be captured by using two-
dimensional mathematicalodéls: Based on numerous results from a parametric study
of material properties for oth" isotropic and transversely isotropic cases, it has been
found that the distribution of the stress inté;nsijy factor along the crack front exhibit very
weak dependence on‘the matgrial propig—::r}igs pbut show significant impact on its
magnitude. In addition, material préperties‘i'h_g\;e pbeen found to strongly influence the
value of the average stress intensity facté_ﬁﬁbross the thickness and the rate of
convergence to the plane strain sofution. THi‘S_i-;FrﬁpLies that specimens made of different
materials may requise=different thickness in orderto gain_the same level of plane strain

condition across the crack front.

Results obtained from the present investigation should provide better
insight into the behavior of the stress lintensity factor along the crack front for brittle
materials where the small-scale yielding pertains. Fhis knowledge gan be used directly
as a useful’ guidelineyin the. design. of test specimens to determine the fracture
toughness, an essential material property in fracture mechanics. In general, fracture
toughness obtained from experiments can be thickness-dependent if the specimen
thickness is not chosen properly. To obtain the fracture toughness that represents the
true material property, the specimen thickness must be chosen sufficiently large to
ensure that the behavior along the majority of the crack front is dominated by a plane

strain condition. A comprehensive, three-dimensional stress analysis (similar to that
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employed in the current study) may be performed in advance for various thicknesses
to gain an insight into the distribution of the stress intensity factor along the crack front

and help to choose proper specimen dimensions.

As a final remark, fracture toughness depends not only on the specimen
thickness but also on the temperature, loading rate and the extent of inelastic

deformation near the process zone. It has been known that the variation in temperature
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Appendix A
The normalized stress intensity factor (K,t\/W/P) versus the
normalized distance along the crack front (s/t) for various specimen thicknesses
t/ae{1,2,3,4,510,20,40} is reported in Figures A.1-A.7 for v = 0.05, 0.15, 0.20,
0.25, 0.35, 0.40 and 0.45, respectively.
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along the crack front for various thicknesses and v = 0.35
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Figure A.7 Normalized mode-I| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and v = 0.45



79

Appendix B
The normalized stress intensity factor (K,t\/W/P) versus the
normalized distance along the crack front (s/t) for various specimen thicknesses
t/ae{1,2,3,5,10,20,40} is reported in Figures B.1-B.4 for v,= 0.10, 0.20, 0.40, and

0.50, respectively.
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Figure B.3 Normalized mode-I| stress intensity factor versus the normalized distance

along the crack front for various thicknesses and v, =0.40
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