

การลดทอนรายละเอียดเมชแบบยุบโดยใชการตั้งคาคะแนนดวยการเบีย่งเบนเชิงมุม

และความปรกติของหนา

นาย วรากร อ้ึงวิเชียร

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควชิาวิศวกรรมคอมพิวเตอร
คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย

ปการศึกษา 2553

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

COLLAPSE-BASED MESH SIMPLIFICATION USING ANGULAR
DEVIATION AND REGULARITY BIAS

Mr. Varakorn Ungvichian

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title

By

COLLAPSE-BASED MESH SIMPLIFICATION USING

ANGULAR DEVIA nON AND REGULARITY BIAS

Field of Study

Thesis Advisor

Mr. Varakorn Ungvichian

Computer Engineering

Assistant Professor Pizzanu Kanongchaiyos, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University III

Partial Fulfillment of the Requirements for the Doctoral Degree

...... ~: .. ~ :-: Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerthiranwong, Dr.Ing.)

THESIS COMMITTEE

............... Jr~ Chairman

(Associate Professor Somchai Prasitjutrakul, Ph.D.)

..... . ~f:::cc. ~ ... Thesis Advisor

(Assistant Professor Pizzanu Kanongchaiyos, Ph.D.)

CtJJ #a-tl -
........................ ~.~ External Examiner

(Chakrit Watcharopas, Ph.D.)

C\br~ 8-
. •... External Examiner

(Assistant Professor Natasha Dejdumrong, Ph.D.)

..... ~ .. k .. External Examiner

(Associate Professor Pavadee Sompagdee)

SIMPLIFICATION USING

'j/

19911'W1.

(COLLAPSE-BASED

ANGULAR DEVIATION

IV

MESH

AND

111 'Ii' fJi~ VflfJlJ~1191 fJ{fl'nYJmY~fflfltlJ~fJ tllnWI'YIfJ'UIlJ'lf 111fJf1THlll ~1'U 1'U 11 U'1

'tIfJ~ llJ 111 (l ffllJiJ~~i1J'1f'fJ'U li4mvilJfflJl 'Hlfll'W 1 'U tll'j! 'j'UlllfJ{lllv~v~mflwfll'W'tIfJ~ .
. " ~ ..::..d. I do cot 3I\t) ,.,do Q.I 1 'j/ 'j/

fffJ~'tIfJ~ Garland !!(l~ Heckbert l'UfJ~~lmtitll'j!l1m'UffllJl'jtl ~'lf ~1l1lf11J m~ff'jW'JfJlJ(l
'U

~ln1J'j~~1Jfl11lJ(l~I~Vll l¢i'ij r-l(l~1'U i~ V~!! ffll~tll'j1H mh ~ili tll'j'tlfJ~ Garland !!(l~ .
Heckbert 11lvl i'fl~II'U'U~ijjl'U ~lf1mllJ 1 ~~ mh~ I 'jn~ f1l'J i i'fl11lJ l~~fflfltlJ (principal

"" .
curvature) l1~fffJ~fh 'j1lJl1~Yif1'Y11~ ffllJl'Jtl(lllmllJfl'llJlfl1 fJVilflll ~1f1f1l'J i i'fl~!!'U'U~l

I~V1 l¢i' tll'j1Hmh ~ilitll'j l~lJ'tIfJ~ Garland l!(l~ Heckbert ~Ul!ff'U mil'U1w 111~1't1fJ~ •
fl11lJ 1 ~~fflfltlJ!!(l~Yif1'Y11~'tIfJ~ !!~(l~nfJ{I'~f1~ li4fJrll'U 1W l11~lalJ\l'jW 'tIfJ~~lmllJ 1 ~~I~'U

11f1~1 'U Yif1'Y11~'tI fJ1J~(lll 'U fJf1~lf1if ijtll'j i i'fl11lJl1'Jf1~'tIfJ~!!(l~tll'j I~ V~I1J'U 'tIfJ~lJlJ'lJfJ~ •
11U' 1~ l¢i' 1i4 fJrll'U 1W fl~!! 'U 'U 1 mJ ¢i' 1V !!(l~ijtll'j fJil1J1vi1~ilitll'j11i'1J~11 'U ~'W~l1i'1J~lm 'Wl~

ri1'U1J'U ffll li4fJ(lllnm~l i'i 'Uf11'J'Yh~l'U l¢i'a~lfl9111 ilitll'j 1 mJVh il1'l¢i'~lm~V'tIfJ~'j~v~ •
Hausdorff ~~li'i'Utll'jlll~l~l~'IJfJ~llJ'lf ~U'fJVf111 QEM l'U'lh~ 12% i1~ 70% 'j~1111~

'lf1~ 5% i1~ 50% 'tIfJ~~1'U1'U11U'11~lJ mh~l'jn~ QEM v~il1''j~v~~U'fJVflll IrlfJ(llll~'U . . .
~1'U1'U11U'lViU'fJVflll ti'(lf1fJ1VilJVilff'UfJV~mij'j~v~nmViii' O(n log n) !!~ ilifll'J

11 i' mh ~ ~'W1J1~ ri1'U ffllJl'jtl!~lJmllJl ~ 1't1fJ~fl'J ~1J 1'U tll'j i1~ 5.4 I'Vl1lrlfJ lViv1J tll'j tll'j •

~.Q .Q tI
fllfl1'lfl 1f11fl'J 'jlJflfJlJ'W1191fJ'J..

"f ..t QQ () t/~
(l lVlJfJ'lffJ'U ff91 ~

"f..t d .10<9 Q Q 0'... -? Mil
mVlJfJ'lffJ fJ.'YIu'Jf1'l:111'Y1Vl'U'W'Util1(lfl ... :;r·.'· II.----, .Q.Q .Q rI

ffl't111'lfl 1f11fl'J'jlJflfJlJ'W1191fJ'j

il tll 'j ff fl 1:11 _ 2_~ _~ ~

v

5071821021 : MAJOR COMPUTER ENGINEERING
KEYWORDS: THREE DIMENSIONAL COMPUTER GRAPHICS / MESH
SIMPLIFICATION / CURVATURE / EDGE CONTRACTION

V ARAKORN UNGVICHIAN : COLLAPSE-BASED MESH
SIMPLIFICA nON USING ANGULAR DEVIATION AND
REGULARITY BIAS. ADVISOR: ASST. PROF. PIZZANU
KANONGCHAIYOS, PH.D. , 199 pp.

A major research topic in computer graphics is mesh simplification,
reducing the face count of complex 3D models to improve rendering performance
while retaining visual quality. Current research prefers edge contraction based
methods, such as Garland and Heckbert's Quadric Error Metric, as such methods
lend themselves well to level-of-detail structures. Various research has suggested
improvements to QEM based on curvature-based scoring; however, using the two
principal curvatures and their directions can help reduce the inherent ambiguity of
using a single score. The proposed extension to Garland and Heckbert's method
calculates the principal curvatures and their directions for each vertex, to calculate
the absolute normal curvature in the direction of contraction. Also, the regularity
and the angular and dihedral deviations of the resulting faces are used to apply
penalties. A heap updating scheme that only updates the top portion of the heap to
save time is also described. The proposed method has been observed to reduce the
average Hausdorff distance, a measure of mesh difference, in a range between
12%-70% from 5% to 50% face count, although QEM still produces lower
distances at lower face count. Although the proposed algorithm retains an
O(n log n) time complexity, the partial heap update scheme has improved the
overall process by a factor of 5.4 compared to using full heap updates.

Department : J;'~mm~t~LEnghw~.rjnK

Field of Study : __ c.9.rrm~t~L~.Dgi.n~.~f~I)K

Academic Year : __ 2.Q.HL __ __ __ ____________ ____ ____ .

Student' s Signa~~~ __ .2\:~: __ .. ____ __ .
Advisor' s Signature .~1'f==-

vi

ACKNOWLEDGEMENTS

First of all, I thank my thesis advisor, Assistant Professor Pizzanu

Kanongchaiyos, Ph.D., for his useful advice and research suggestions, as well as the

thesis committee for this project for their useful feedback: Associate Professor

Somchai Prasitjutrakul, Ph.D., Assistant Professor Pizzanu Kanongchaiyos, Ph.D.,

Chakrit Watcharopas, Ph.D., Assistant Professor Natasha Dejdumrong, Ph.D., and

Associate Professor Pavadee Sompagdee.

I also thank the International Association of Computer Science &

Information Technology, for accepting my research paper for presentation at the 2nd

International Conference on Computer Modeling and Simulation, in Sanya, China,

between January 22-24, 2010.

Lastly, I also have to thank my family for their love and support

through all my years of education.

vii

CONTENTS

Page

Abstract (Thai)... iv

Abstract (English).. v

Acknowledgements.. vi

Contents.. vii

List of Tables.. x

List of Figures.. xi

CHAPTER

I INTRODUCTION... 1

1.1 Problem Statement and Motivation.. 1

1.2 Contributions.. 5

1.3 Dissertation structure.. 5

II BACKGROUND AND RELATED WORK.. 6

2.1 Basics of polygonal meshes... 6

2.2 Mesh simplification... 8

2.3 Related work... 14

2.3.1 QEM and QEM-based approaches.. 14

2.3.1.1 Quadric weighing.. 17

2.3.1.2 Score penalizing.. 19

2.3.1.3 Expanded matrices.. 20

viii

 Page

2.3.2 Non-QEM-based approaches... 21

2.3.2.1 Appearance-preserving... 22

2.3.2.2 Memory-saving approaches.. 24

2.3.2.3 Subdivided meshes... 25

2.3.2.4 Global properties.. 25

2.3.2.5 Optimal placement.. 26

2.3.3 Heap updating process... 26

2.4 Our observations.. 27

2.5 Summary.. 28

III THE SIMPLIFICATION ALGORITHM.. 31

3.1 Overview.. 31

3.1.1 Notation... 32

3.1.2 Scope... 33

3.2 Converting to Abstract Cellular Complex .. 33

3.3 Score calculation.. 34

3.3.1 QEM Score.. 35

3.3.2 Penalties... 39

3.4 Edge contraction... 44

3.5 Heap updates.. 46

3.5.1 Partial updating scheme.. 46

3.5.2 Affected vertices.. 48

3.5.3 Score re-calculation... 50

ix

 Page

3.6 Time and Complexity Analysis.. 54

3.7 Summary.. 57

IV EXPERIMENT AND RESULTS.. 59

4.1 Overview of the Experiment.. 59

4.2 Method.. 59

4.3 Experimental Results.. 62

4.4 Discussion.. 69

4.4.1 Hausdorff and visual results.. 69

4.4.2 Comparing empirical running time to complexity analysis................... 77

4.4.3 Analysis of running times with full and partial heap updates............... 80

4.4.4 Analysis of running times using different update parameters............... 80

4.5 Summary.. 81

V CONCLUSIONS... 84

5.1 Summary.. 84

5.2 Future Work... 87

REFERENCES... 88

APPENDIX: EXPERIMENTAL RESULTS... 96

A.1 Hausdorff distance and luminance difference results.................................. 96

A.2 Running times with and without partial updates, and with different

updating parameters.. 178

A.3 Pictures of results.. 187

BIOGRAPHY... 199

x

LIST OF TABLES

Table Page

4-1 Maxima, minima, arithmetic means and standard deviations for

t/n log n at each LOD... 78

A-1 Hausdorff distances and running times of models simplified with

QEM and our algorithm... 96

A-2 Penalty weights for all models .. 147

A-3 RMS of luminance differences of models simplified with QEM

(top) and our algorithm (bottom)... 150

A-4 Hausdorff distances on 50% reduced meshes...................................... 169

A-5 Hausdorff results from addition-based penalizing............................... 171

A-6 Comparing running time with and without partial updates: (top row)

with partial updates, (middle row) without partial updates, (bottom

row) ratio.. 178

A-7 Running times after changing update parameters................................ 181

xi

LIST OF FIGURES

Figure Page

2-1 David model.. 9

2-2 Brake assembly rotors in distance... 10

2-3 Mesh simplification mechanisms (left to right): Sampling, adaptive

subdivision, decimation, vertex merging... 11

2-4 Examples of quadric isosurfaces... 16

2-5 Ambiguity on sharp corners with QEM.. 16

2-6 Binormal vectors for Jong’s torsion detection method (2006).............. 18

2-7 Determining bending degree in Li and Zhu’s method (2008)............... 18

2-8 Back cost in Tang et al.’s method (2010).. 19

2-9 Visual importance calculation from Kim et al. (2008).......................... 20

2-10 Normal field deviation over edge from Hussain (2009)........................ 20

2-11 Feature sensitive isosurfaces in Wei and Lou’s method (2010)............ 21

2-12 Determining offset surfaces for Cohen’s method (1996)...................... 22

2-13 Parameterized normal map for Cohen et al.’s method (1998)............... 23

2-14 Rendering angles for Lindstrom and Turk’s method (2000)................. 23

2-15 Determining the optimal vertex placement in the Memoryless method

(1998) .. 24

2-16 Pruning the hierarchy in Balmelli’s method (2002).............................. 25

2-17 Selecting vertex from subdivided Bézier patch in Choi’s method (a),

results from dragon model using QEM (b) and Choi’s method (c)

(2008) .. 26

xii

 Page

3-1 Algorithm for edge-contraction simplification...................................... 31

3-2 Explanation for vx, ex, fx, <vx, vy>, <vx, vy, vz>, and F(vx)........................ 32

3-3 Explanation for angular weighting method... 36

3-4 Edge contraction in the area around a vertex with a valence of

3... 36

3-5 Contracting triangular hole.. 37

3-6 Contracting around triangular opening in model................................... 37

3-7 The change in dihedral angle between two faces after contracting

<vx, vy> to vy... 41

3-8 Boundary handling during initialization.. 43

3-9 Point-face relationships before and after edge contraction................... 45

3-10 Illustrating how vertices are affected by a contraction.......................... 48

3-11 Boundary handling during score re-calculation..................................... 52

3-12 The heap updating process.. 54

4-1 Graph comparing average Hausdorff distances between QSlim and

our method... 63

4-2 Graph comparing best and worst Hausdorff results with average for

all results (normalized using 1% QEM distance).................................. 64

4-3 Hausdorff distances for best results: Horse (left) and Head #313

(right)... 65

4-4 Hausdorff distances for worst results: Turbine (left) and Female #20

(right)... 66

xiii

 Page

4-5 Hausdorff distances for average results: Teddy Bear #177 (left) and

Princeton Armadillo #282 (right).. 66

4-6 Runtimes for Princeton data plotted against face count with n log n

trendlines... 67

4-7 n log n trendlines for Princeton data on graph....................................... 68

4-8 Runtimes for all data plotted against face count with n log n

trendlines... 68

4-9 Comparison of female model (a) reduced with both QEM (b-g) and

our methods (h-m) .. 70

4-10 Comparison of turbine blade model (a), reduced with both QEM (b-

g) and our methods (h-m).. 72

4-11 Comparison of teddy bear model (a), reduced with both QEM (b-g)

and our methods (h-m).. 73

4-12 Comparison of Princeton armadillo model (a), reduced with both

QEM (b-g) and our methods (h-m).. 73

4-13 Comparison of horse model (a), reduced with both QEM (b-g) and

our methods (h-m)... 74

4-14 Comparison of head model (a), reduced with both QEM (b-g) and

our methods (h-m) .. 75

A-1 Hausdorff distances for Female (left) and Male (right) models............ 173

A-2 Hausdorff distances for Cup (left) and Chair (right) models................ 174

A-3 Hausdorff distances for Squid (left) and Squid 2 (right) models.......... 174

xiv

 Page

A-4 Hausdorff distances for Table (left) and Table 2 (right) models........... 174

A-5 Hausdorff distances for Teddy (left) and Teddy 2 (right) models......... 175

A-6 Hausdorff distances for Hand (left) and Hand 2 (right) models........... 175

A-7 Hausdorff distances for Pliers (left) and Pliers 2 (right) models........... 175

A-8 Hausdorff distances for Dolphin (left) and Fish (right) models........... 176

A-9 Hausdorff distances for Bird (left) and Bird 2 (right) models............... 176

A-10 Hausdorff distances for Angel (left) and Armadillo (right) models...... 176

A-11 Hausdorff distances for Bunny (left) and Canyon (right) models......... 177

A-12 Hausdorff distances for Dinosaur (left) and Dragon (right) models..... 177

A-13 Hausdorff distances for Horse (left) and Turbine (right) models.......... 177

A-14 1% and 10% simplified models: (a) Female 1 and (b) Female 2 187

A-15 1% and 10% simplified models: (a) Cup, (b) Chair, (c) Squid............. 188

A-16 1% and 10% simplified models: (a) Squid 2, (b) Table 1, (c) Table 2.. 189

A-17 1% and 10% simplified models: (a) Teddy, (b) Teddy 2...................... 190

A-18 1% and 10% simplified models: (a) Hand, (b) Hand 2......................... 191

A-19 1% and 10% simplified models: (a) Pliers, (b) Pliers 2, (c) Dolphin.... 192

A-20 1% and 10% simplified models: (a) Fish, (b) Bird, (c) Bird 2.............. 193

A-21 1% and 10% simplified models: (a) Head, (b) Angel............................ 194

A-22 1% and 10% simplified models: (a) Big Armadillo, (b) Bunny............ 195

A-23 1% and 10% simplified models: (a) Canyon, (b) Dinosaur, (c)

Dragon... 196

A-24 1% and 10% simplified models: (a) Horse, (b) Turbine........................ 197

xv

 Page

A-25 Canyon model, simplified with (left) and without (right) boundary

preservation .. 198

A-26 Bottom of bunny model: Full (left), simplified with boundary

preservation (middle), without (right) .. 198

1

CHAPTER I

INTRODUCTION

In this chapter, we will explain the problem statement and motivation

behind our research into mesh simplification. We will then describe the contributions

we have made in this dissertation, and then provide an outline of the structure of the

remainder of the dissertation.

1.1 Problem Statement and Motivation

One of the many fields of computer research is computer graphics,

which can be used to generate imagery in two to three dimensions, allowing for many

applications, such as for simulation, gaming, or animation. Because three-dimensional

graphics are more suitable for representing real-world situations, especially for

simulations, three-dimensional graphics have become more popular. As the number of

applications for computer graphics has increased, along with computer graphics

hardware capability in general, so has the quality of three-dimensional polygonal

models.

Current models generally have on the order of hundreds of thousands,

and sometimes even millions of faces. For example, Stanford University has produced

a model of Michelangelo’s David statue containing about one billion faces, with

models of other statues by Michelangelo also available at a detail on the level of

hundreds of millions of faces (Levoy et al., 2000). Such a high number of faces makes

current 3D models not only more detailed and realistic, but also more complex than

2

can be efficiently rendered on typical graphics hardware, which has an inherent limit

on the speed of rendering.

In many applications, such fine detail is unnecessary and impractical,

especially when real-time display is desired, for example, in online role playing

games, where a high number of characters may appear on screen at a given time, and

real-time response to user input is of higher importance than high-quality rendering.

Therefore, it is usually necessary to reduce the number of faces in the model to a

much smaller number, while retaining as much visual (and/or geometric) resemblance

to the original model as possible. This process is known as mesh simplification or

mesh reduction, and many methods have been proposed in the literature, using several

different schemes. However, one of the most well-known and widely used algorithms

is Garland and Heckbert's Quadric Error Metric method (Garland and Heckbert,

1997), or QEM, which scores contractions based mainly on the sums of the squares of

the distances of the resulting vertex from the original mesh's faces.

As Garland and Heckbert's original metric is based solely on geometric

error, many subsequent papers have proposed enhancements to the original algorithm

to improve its performance. For example, some papers (Kim et al., 2008) have

described methods to efficiently extend the original metric to meshes with vertex

color, while others have incorporated other factors, such as curvature-based factors

(Xu et al., 2008; Li and Zhu, 2008), torsion (Jong et al., 2006), normal variance (Choi,

2008), and higher-dimension feature sensitivity metrics (Wei and Lou, 2010) to allow

the algorithm to recognize visually important features, and thus improve the resulting

simplified model. Assuming that there is an upper bound to the number of faces

3

adjacent to each vertex, edge-contraction based simplification algorithms can

generally be shown to have an overall time complexity of O(n log n) (Garland and

Heckbert, 1997). The current state of the art, however, has suggested a possible

ambiguity in the measure of curvature and curvedness.

The formal definition of curvature on a surface involves two directions

and their respective normal curvatures, which are the maximum (kmax) and minimum

(kmin) curvatures of the local area around a given point (Batagelo and Wu, 2007). The

Gauss curvature K is the product of the maximum and minimum, while curvedness is

measured with a Pythagorean sum of the two curvatures (2/2
max

2
min kk +).

Although both of these measures are easy to calculate, each one results in the

possibility of surfaces of different nature receiving the same measure, which is to be

expected of measures that provide a single value to determine the curvedness of the

surface. Our expectation is that the quality of the simplified mesh can be improved by

taking both principal curvatures and directions into consideration. The principal

curvatures indicate the minimum and maximum normal curvature around a given

point on the surface, and we believe that these values can help indicate the direction in

which it is more suitable to move a vertex, as we expect that moving vertices in

directions of little to no curvature (either on a flat surface or along a straight feature

edge) would affect the overall structure less than moving them in high curvature

directions.

The angular orientation of faces affects their rendered appearance, for

example, the reflection of light. Therefore, many contraction-based techniques check

the normal vectors of the resulting faces to prevent faces from folding over by

4

penalizing such contractions (such as QEM), while other methods use the angular

deviation as part of the score calculation. Hussein et al. (2001) and Choi (2008) use

the angular deviation from the current facial orientation as part of their respective

approaches, while other existing algorithms, such as Kobbelt (1998), focus on the

overall dihedral angle between pairs of faces after contraction, instead of the change

in the angle. However, Jia et al. (2006) point out a shortcoming with the latter

method: A feature edge between faces with already large dihedral angles would

produce a high contraction score, even in cases where contracting the edge would not

significantly alter the model's appearance (for example, an edge between two facets of

a cube). We also believe that considering overall dihedral angular deviation between

faces, that is, the relative orientation between a given pair of faces, can be used to

better improve overall orientation, by preventing features from flipping between

concavity and convexity.

Another less-researched topic about contraction-based algorithms is

the process of updating the heap. Most algorithms are assumed to perform updates on

the full heap after each contraction, whereas some papers have performed research

into improving the efficiency of heap updates. Cohen et al. (1997) flag scores for later

updates, while Wu and Kobbelt (2004) do away with the heap by using a random-

choice method that picks edges at random and contracts the best-scoring one, and

Chen et al. (2004) propose a method that saves memory space for the heap by setting

a limit on its size, filling the heap to the size limit, and then alternating edge

contractions with edge scoring, with a claim of linear time complexity due to the

constant heap size limit. The methods have been shown to not significantly affect the

accuracy of the simplification. However, we feel that there should be some degree of

5

assurance that a good-scoring edge is being contracted at each step, and that progress

is being made in the simplification process.

1.2 Contributions

The algorithm that we propose in this research uses a vertex-merging

approach based on QEM, utilizing the curvature direction to avoid ambiguity of

curvature measures, and angular and dihedral deviation to control facial orientation. It

has boundary preservation, and uses Kovalevsky’s topological data representation as

its input in order to reduce the time to pre-calculate necessary topological

relationships. The algorithm is of a dynamic approach to mesh reduction, allowing for

an exact level-of-detail to be defined offline, without considering the rendering

viewpoint at runtime. It also uses a “lazy” method of heap updating to reduce runtime,

at little to no cost of accuracy.

Our algorithm produces lower Hausdorff distances than QEM during

the early stages of the simplification on average (up to 5% level of simplification).

However, at drastic levels, it produces significantly worse distances on average.

1.3 Dissertation structure

The remainder of the paper will be sectioned as follows: Chapter II

(Related Work) will describe the details of prior research that relates to the work

presented here. Chapter III (The Proposed Algorithm) will describe the workings of

the algorithm. Chapter IV (Experiment and Results) will describe the experiments and

results, and discuss our results. Lastly, Chapter V (Conclusion) will suggest possible

further improvements.

6

CHAPTER II

 BACKGROUND AND RELATED WORK

This chapter provides background information and details on previous

work related to this current research. We will explain the basics of polygonal meshes

and data structures used to represent them, before discussing previously published

research work about edge-contraction based mesh simplification methods and heap

updating methods. We conclude the chapter by explaining the aims of our research in

context of the previous work.

2.1 Basics of polygonal meshes

There are many methods to represent three-dimensional models, such

as boundary representation and solid modeling; however, the most common method is

to use a polygonal mesh, a structure comprised of a collection of vertices

{v0, v1, v2...}, edges {e0, e1, e2...} and faces {f0, f1, f2...}, representing the surface of the

model. Although the faces can be of any shape, triangles are usually used, as the

surface of a triangle can be shown to be planar, and thus consistently-defined; in fact,

many rendering systems will decompose non-triangular faces into triangles before

display.

Another issue about the storage of three-dimensional models is the data

structure used to represent the models. Many data structures have been developed for

this purpose, each of which has its own advantages and disadvantages (Smith, 2006).

Among the most notable examples of such data structures are:

7

Vertex-vertex meshes: Object is represented as a list of vertices

adjacent to other vertices. Simple, but all edges and faces are implicit.

Face-vertex meshes: Object is represented as a list of faces and

vertices. Most generally used (e.g., the Object File Format or OFF), but edges are still

implicit.

Winged-edge meshes (Baumgart, 1975): Object is represented

explicitly as a list of faces, edges and vertices, along with topological relationships.

Flexible for geometric operations, but only allows for manifold meshes (meshes where

every edge is adjacent to exactly two faces), due to specifying the nearest clockwise

and counterclockwise edge at each endpoint for each edge (which only makes sense

on fully manifold meshes).

Most mesh simplification algorithms do not specify a representation

for the input data, and generally assume that the data input into the algorithm will

contain the necessary relationships, or that they can be derived at trivial cost. A few

examples of papers that take the representation of the input data into consideration

are:

Lindstrom’s Out Of Core method (Lindstrom, 2000): In addition to

general face-vertex meshes, this paper claims the ability to work on a “triangle soup”,

in which each individual triangle is represented directly as a triplet of vertex

coordinates (at the cost of extra disk space and much redundancy), as its use of a

clustering mechanism along with vertex merging means that the algorithm does not

require connectivity information.

8

Vieira’s Fast Stellar Simplification method (Vieira et al., 2003): This

paper adapts the “Corner Table” data structure by Rossignac (2001) to represent

triangular meshes, essentially a compact version of a half-edge representation, and

features an algorithm designed to use this structure. As with the winged-edge

structure, the “Corner Table” data structure assumes fully manifold models.

A paper by Kovalevsky (2001) proposes a “cell-list” representation

that we have named the Abstract Cellular Complex format, which allows for the

explicit storage of all topological relationships (for example, all faces adjacent to a

given edge) between mesh elements of various dimensions without requiring a search,

thus allowing for all necessary relationships to be pre-calculated and stored. This

representation also allows for non-manifold structures to be represented (unlike the

winged-edge structure). We have already created an algorithm for reconstructing a

possible 3D model from a wireframe into this representation (Varakorn Ungvichian

and Pizzanu Kanongchaiyos, 2006), and it is relatively trivial to create when the

vertices and faces are already known. Pre-calculating the relationships as part of the

structure can assist the mesh simplification process, as necessary relationships no

longer have to be determined.

2.2 Mesh simplification

The discrete nature of polygonal meshes means that to store more

detail, more faces are required. Due to the inherent limits of graphics hardware, the

high face count of a highly-detailed model may result in inefficient rendering. In order

to improve rendering performance, many algorithms have been developed to reduce

9

the face count of complex models. The problem of mesh simplification can be

formally defined as follows:

For a given polygonal model P, determine a model P' with x faces that

has the most resemblance to P.

An example of results from mesh simplification is shown in Figure

2-1, from Cignoni (2003). The model of the David statue (left) has been simplified

from 8 million faces to 1.7 million (center) and 10,000 faces (right), while still

retaining visual resemblance to the original. The rightmost model is suitable for most

casual applications, can be much more quickly rendered, and is also easier to store

and transmit over a network.

Figure 2-1: David model

Another reason to use mesh simplification is to reduce the detail of

objects that are further away from the viewer, as the details will no longer be as

10

visible; therefore, such objects will not require as many faces to represent properly.

As an example, Figure 2-2, from Cohen (1996), shows an example of an array of

brake assembly rotors. The furthest rotors take up less screen space than those in the

foreground, and thus require fewer faces.

Figure 2-2: Brake assembly rotors in distance

The main research problems concerning mesh simplification are: How

to best quantize the resemblance of the simplified model to the original, how to

minimize the amount of artifacts and visual errors resulting from the simplification

process, and how to maintain a reasonable running time. It should be noted that

Agarwal and Suri (1994) have shown that the problem of finding an optimal

simplified approximation for a general model is NP-Hard, that is, likely to be solved

only through impractical brute force algorithms; and in any case, there may be several

ways to define “optimal”, such as most visually similar or least surface difference.

Therefore, proposed methods use various heuristics to determine an approximation of

an optimal simplification. Detailed reviews of various mesh simplification methods

11

can be found in surveys by Cignoni (1997) and Luebke (2001), the latter of which

classifies the methods by mechanism, treatment of topology and whether they use

static, dynamic, or view-dependent simplification.

According to Luebke (2001), there are four major mechanisms for

mesh simplification under which such algorithms can be classified, as illustrated in

Figure 2-3: Sampling, which involves sampling the geometry either with points on the

surface (Boubekeur and Alexa, 2009), or voxels in a grid (Rossignac and Borrel,

1993); adaptive subdivision, which involves determining a base mesh from the

original model and recursively subdividing it back into the original (Eck et al., 1995);

decimation, which involves removing vertices and their surrounding faces, before re-

triangulating the resulting holes (Schroeder et al., 1992); and vertex merging, which

involves merging vertices together and removing degenerate faces (Garland and

Heckbert, 1997).

Figure 2-3: Mesh simplification mechanisms (left to right): Sampling, adaptive

subdivision, decimation, vertex merging

The most commonly-used and researched mechanism is vertex

merging, more specifically, edge contraction, in which the two vertices of an edge are

12

reduced to one, thus causing the edge’s adjacent faces to become degenerate, with

edge selection based on scoring. The vertex merging mechanism can be extended to

contracting triangular faces (Hamann, 1994; Gieng et al., 1997; Zhigeng, Jiaoying and

Kun, 2001), or structures with more complexity (Chen et al., 2007), however, it has

been noted that such extensions reduce the quality of the simplified model. Examples

of methods that use this mechanism include the energy function-based progressive

meshes (Hoppe, 1996) and the volume and boundary area-based fast and memory

efficient polygonal simplification, aka the Memoryless method (Lindstrom and Turk,

1998). However, one of the most well-known and widely used contraction-based

mesh simplification algorithms is Garland and Heckbert's Quadric Error Metric

method (Garland and Heckbert, 1997), which scores contractions based mainly on the

sums of the squares of the distances of the resulting vertex from the original mesh's

faces. Contraction-based methods are well-suited for level-of-detail based structures,

such as Hoppe’s progressive meshes, as one can simply store the edge contraction

steps as part of the structure, and then use the steps to re-create the mesh at any

desired level of detail.

Another one of Luebke’s classifications for mesh simplification

algorithms is their treatment and tolerance to topology. Topology-preserving

algorithms, such as decimation, can preserve manifold connectivity by avoiding

contractions that affect the local topology such as holes, and thus can help improve

visual fidelity. However, such algorithms also have a limit on the level of

simplification that can be performed. In order to produce drastic reductions in face

count, the majority of simplification algorithms are topology-modifying and topology

insensitive, as the algorithms are allowed to modify the local topology, usually

13

without taking the initial local connectivity into account. Topology-tolerant

algorithms can properly handle a mesh that has non-manifold portions. Although

three-dimensional models, especially those scanned from real objects, should ideally

be manifold at all points, models may have some topological imperfections, such as

more than two faces meeting at a single edge. Therefore, topology-tolerant algorithms

can be used on any model without first requiring the topology of the model to be

verified.

An example of topology preservation is to preserve the boundaries

around the edges of a structure, or holes. Such preservation can be promoted, or

enforced, using various methods, for example: calculating planes of constraint and

using them to calculate an extra quadric-based score (Garland and Heckbert, 1997),

penalizing edge contractions that affect boundaries (Fahn et al., 2002), and

constraining boundaries to remain within a defined area (Zelinka and Garland, 2002).

Although penalizing contractions on boundaries lowers the chances of a contraction

significantly affecting them, providing direct constraints on such contractions

provides an absolute guarantee of preservation. The cost of performing boundary

preservation includes the determination and storage of boundary edges and vertices,

and the calculation of penalties for edge contractions involving boundaries.

Luebke’s other categorization method is the type of mesh

simplification: static, dynamic, and view-dependent. For most general objects, the

current preference for mesh simplification is a dynamic approach, such that a model at

any given level of detail can be produced. Of the other types, static mesh

simplification allows for only a fixed set of simplified models that may not suit all

14

possible uses of the model, while view-dependent approaches are designed for large

objects such as terrains, and requires making simplification decisions at runtime in the

renderer, rather than performing the mesh simplification process offline.

2.3 Related work

In our review of related works, we will categorize the works into two

categories: QEM-based and non-QEM-based. QEM-based works will be categorized

into three subcategories: works based on quadric weighting, score penalizing and

expanding the quadric matrices. Non-QEM will be categorized into five

subcategories: appearance-preserving approaches, memory-saving approaches,

subdivided meshes, global properties and optimal placement. We will also discuss

papers that consider the heap updating process

2.3.1 QEM and QEM-based approaches

Although many types of mechanisms exist to reduce the number of

faces in a model while retaining as much visual or geometric resemblance to the

original as possible, we shall only focus on methods that use edge contraction to

achieve the desired simplification. Cignoni (1997) and Luebke (2001) have produced

more comprehensive reviews of the state of the art in mesh simplification.

Edge contraction is well-suited for mesh simplification for structures

based on level of detail, as one can store the sequence of contractions as part of the

structure, from which one can then easily recreate a model at a relatively exact desired

level. This property makes level-of-detail-based structures more attractive than

previous static structures, as it allows the rendering program to devote more faces to

15

more important objects, such as those in the foreground, while allocating an exact

number of faces. The concept of a hierarchical structure for geometric models was

originally proposed by Clark (1976), in which he proposes “varying environmental

detail” as a possible use.

An early example of an edge contraction-based algorithm and a level

of detail-based structure was Hoppe’s Progressive Meshes (Hoppe, 1996), which

proposes both a data structure that stores the progression of vertex mappings and edge

contractions, and a mesh simplification method to create models using this structure.

Their simplification method was based on greedy reduction of an energy function.

However, it has been noted that the simplification process is slow and intricate to

code. Another more recent example of a data structure for level-of-detail rendering is

“masking strips” (Ripolles, 2009), a structure based on triangle strips that uses edge-

contraction based mesh simplification as part of the algorithm for creating the

structure.

Garland and Heckbert (1997) devised a method for mesh simplification

that is still widely used in various forms, known as the Quadric Error Metric method

(or QEM). Their method calculates a symmetric 4×4 matrix for each vertex, based on

the planes (normal vectors) of its adjacent faces. For each plane p:

Kp=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

2

2

dcdbdad
cdcbcac
bdbcbab
adacaba

 (2-1)

where the plane equation of p is ax+by+cz+d=0 and |a, b, c|=1.

16

The Kp matrix can be used to calculate the square of the distance from

a given point v to p: vTKpv. The plane p (and thus Kp) of a given triangular face can be

determined easily using the coordinates of its vertices, and for each vertex, the

resulting matrix is a sum (which can be either regular or weighted to reduce the

effects of tessellation) of the matrices obtained from the adjacent faces. For each

edge, the matrices at each endpoint are summed together and used to determine the

vertex position with the least (or lesser) error and calculate the total score, before

inserting each score into a heap, and repeatedly contracting edges with the least total

score (updating scores as needed) until reaching the desired level of simplification.

Figure 2-4 shows examples of the isosurfaces resulting from the quadric matrices of

each vertex.

Figure 2-4: Examples of quadric isosurfaces

Figure 2-5: Ambiguity on sharp corners with QEM

17

This method has been noted to produce a good tradeoff between results

of simplification and execution time compared to previous methods, and has been

made widely available as QSlim. The main drawback of the regular QEM algorithm,

however, is that the error is strictly geometric distance-based, and does not take other

factors into account, such as sharp corners being interpreted the same as a near-flat

surface (Figure 2-5). Garland and Heckbert have already proposed other additions to

the method to improve mesh quality, such as allowing for contracting close vertices

not directly connected by any edge, detecting and penalizing contractions that produce

folded-over and/or narrow faces, and adding a quadric penalty to boundary vertices

based on constraining planes, to help preserve boundary areas. Due to the ease of

implementation and its availability, other papers have experimented with improving

the QEM method, suggesting various forms of penalty, either by weighting vertices’

matrices to favor the retention of certain vertices, applying penalties to the edge

scoring, or expanding the matrices to include other properties in the calculation.

2.3.1.1 Quadric weighing

User-Guided Simplification (Kho and Garland, 2003) allows the user

to weight the quadric matrices on features deemed visually important. Although it

more or less ensures that the user will receive satisfactory results for simplifying a

given model, it is not as useful or quick as fully-automatic simplification when

multiple models need to be simplified.

Jong et al. (2006) calculate the torsion of each vertex’s adjacent edges

using approximations of the Frenet-Serret equations (Figure 2-6 shows the binormal

vectors used to calculate torsion), and multiply the quadric matrices of each vertex

18

with the distance-weighted average of the resulting torsion values for each adjacent

edge. Their method makes the claim of improving the retention of features.

Figure 2-6: Binormal vectors for Jong’s torsion detection method (2006)

Li and Zhu (2008) multiply each vertex’s quadric matrix with a

weighted sum of the average length of its incidental edges and the vertex’s average

“bending degree”, based on the difference between the normal vectors of faces

adjacent to the vertex. Figure 2-7 shows the determining of the bending degree.

Figure 2-7: Determining bending degree in Li and Zhu’s method (2008)

Tang et al. (2010) use the orientations of the faces adjacent to a given

edge to calculate the average normal vector for the edge, and then use the angle

19

between the average normal vector and each adjacent plane to calculate a “back cost”

to weight the QEM matrix for the respective plane when calculating each vertex’s

matrix (Figure 2-8). The algorithm always contracts any given edge to its midpoint.

Figure 2-8: Back cost in Tang et al.’s method (2010)

2.3.1.2 Score penalizing

Similar to Li and Zhu’s approach, Xu et al. (2008) use the normal

vectors of the vertex and its adjacent faces to calculate a feature value for each edge,

which is then added to with the QEM score to assist in retaining features. In their

implementation, the square root of the feature value, multiplied by a weighing factor,

is added to one of the coefficients of the matrix; however, in effect, it is the same as

adding the feature value multiplied by the square of weighing factor.

Kim et al. (2008) extend the QEM method to meshes with vertex color,

by calculating color-related error separately from QEM geometric error, before

multiplying the color-related error with the QEM error. Figure 2-9 shows the

calculation of visual importance, a component of the color-related error.

20

Figure 2-9: Visual importance calculation from Kim et al. (2008)

Hussain (2009) calculates a vertex cost based on the normal field of

each vertex’s one-ring neighborhood for improved quality of simplification. His

method calculates the normal field deviation over all edges adjacent to a given vertex,

based on the areas and the normal vectors of its adjacent faces (Figure 2-10), and

sums them to determine its cost, and then adds the normal field deviation for each

given edge to its quadric error score to determine the cost of contracting each edge.

Figure 2-10: Normal field deviation over edge from Hussain (2009)

2.3.1.3 Expanded matrices

Garland and Heckbert’s own extension to colored meshes (Garland and

Heckbert, 1998) extends QEM to higher dimensions (up to 6), thus consuming more

21

memory than with Kim et al.’s method, as the size of the matrix in higher dimensions

is O(n2).

Wei and Lou (2010) extend QEM to higher-dimensions, using a 6-

dimension feature sensitive matrix that combines QEM distance with normal

variance. Figure 2-11 shows the isosurfaces of the matrices used in Wei and Lou’s

method. However, as with Garland and Heckbert’s extension to colored meshes, the

size of the matrix in higher dimensions is O(n2), thus increasing memory usage in a

quadratic manner.

Figure 2-11: Feature sensitive isosurfaces in Wei and Lou’s method (2010)

2.3.2 Non-QEM-based approaches

Although the QEM method among the most widely-used edge-

contraction-based algorithms for mesh simplification, other non-QEM approaches

have been proposed. These methods claim various strengths, such as the preservation

of appearance, or using less memory.

22

2.3.2.1 Appearance-preserving

The Simplification Envelopes method (Cohen, 1996) calculates offset

surfaces that limit the surface error (Figure 2-12), and then calculates surface

intersections to constrain all contractions to remain within the envelopes, thus

enforcing a geometric limit on surface error. However, this method requires

complicated calculations for both the envelopes, and surface intersections.

Figure 2-12: Determining offset surfaces for Cohen’s method (1996)

Cohen et al.’s (1998) Appearance Preserving Simplification method

uses parameterization of the model to normal and texture maps (Figure 2-13), along

with a “texture deviation metric”, to limit contractions to those that preserve the

overall appearance of the model, by ensuring that the parameterized maps do not shift

by more than a given error constraint. Using an error constraint allows for better

quality in simplification, however, it also limits the level of simplification possible.

23

Figure 2-13: Parameterized normal map for Cohen et al.’s method (1998)

The Image-Driven Simplification (Lindstrom and Turk, 2000) method

aims to preserve the appearance of the simplified model by rendering the model from

various angles to calculate the error, thus causing the process to be is significantly

slower. The use of rendering assures visual quality; however, although Lindstrom and

Turk have proposed various techniques to reduce the rendering time, such as “re-

rendering” only the affected portions of the image, purely geometric approaches are

still faster than using direct rendering to determine the error.

Figure 2-14: Rendering angles for Lindstrom and Turk’s method (2000)

24

2.3.2.2 Memory-saving approaches

The Memoryless method (Lindstrom and Turk, 1998) saves on

memory usage, by recalculating a quadratic error measure (different from Garland and

Heckbert’s algorithm) for each affected vertex based on its current configuration,

using volume and boundary preservation. Figure 2-15 shows a vertex being placed

based on volume preservation and volume optimization constraints. This method has

the cost of not storing the original structure for comparison and using extra running

time. However, in practice, it has been shown to produce better geometric results than

QEM.

Figure 2-15: Determining the optimal vertex placement in the Memoryless method

(1998)

Hussain et al. (2001) also take a memory saving approach, by using a

product of swept area and angular deviation as the error of simplification. Their

25

approach produces better running time than Lindstrom and Turk’s method, but is

slightly slower than QSlim, and produces slightly worse Hausdorff distance results.

2.3.2.3 Subdivided meshes

Balmelli et al. (2002) have also proposed a method to simplify

subdivided meshes with a 4-8 structure (that is, meshes in which the valence of

vertices alternates between 4 and 8). It achieves this by pruning the hierarchy of

vertex subdivisions, using a rate-distortion based metric, thus allowing for a “general

decimation” method that removes many vertices per cycle. Figure 2-16 shows their

result of pruning the subdivision hierarchy. The authors suggest that the method

provides an O(n log n) optimal mesh simplification algorithm for the case of 4-8

structures (in contrast to NP-Hard for the general case).

Figure 2-16: Pruning the hierarchy in Balmelli’s method (2002)

2.3.2.4 Global properties

Tang et al. (2007) propose two different and complex moment-based

metrics based on global feature change, one based on the surface, the other based on

volume. Their claim is that these metrics take global change into account. The results

show that this approach produces better volume and surface moment results than

26

QEM; however, they do not use Hausdorff distance results as part of their result

evaluation.

2.3.2.5 Optimal placement

Choi et al. (2008) uses shape compactness, angular deviation and

curvedness as factors to determine the optimal position from contracting each edge,

based on a set of points subdivided from a Bézier patch around the edge. This method

is different from the normal procedure of determining the position with the least error

cost. Although it produces similar average surface error to QEM, it produces more

areas of high surface error (in Figure 2-17(b) and (c), red spots have high surface

error).

(a) (b) (c)

Figure 2-17: Selecting vertex from subdivided Bézier patch in Choi’s method (a),

results from dragon model using QEM (b) and Choi’s method (c) (2008)

2.3.3 Heap updating process

Another topic concerning the mesh simplification process is how to

update the priority heap. Most edge-contraction based methods are assumed to

perform a full heap update after each contraction, that is, each entry in the heap is

27

checked before updating if necessary. However, a handful of papers have addressed

the issue of saving time on this step:

Cohen et al. (1997) defer the updates of edge scores by assigning a

“dirty flag” to scores that require updating, and re-calculate and re-insert flagged

scores when they are encountered in the heap. A possible pitfall for this method is the

possibility of encountering many consecutive “dirty flagged” edges, thus limiting

progress.

Wu and Kobbelt (2004) avoid using a heap altogether with their

“multiple-choice” method, by randomly picking a small subset of edges, calculating

each edge’s score, and contracting the edge with the least score. Their reasoning is

that when models are simplified at a drastic level, most edges are likely to be

contracted anyway.

Chen et al. (2004) save on heap space and execution time by filling the

heap up only to a given size limit, and then alternate performing contractions and

calculating scores for heap insertion, so as to keep the size of the heap under the limit.

Their research claims a constant time for each contraction step (and thus linear time

for the overall process).

2.4 Our observations

For most practical mesh reduction methods, we believe that the process

should, in addition to producing well-simplified models, work generally well over a

wide range of meshes, perform the simplification without requiring user intervention

28

during the process, rely entirely on geometry-based factors to determine score, and

rely on factors that are easily calculated, for speed and coding purposes.

More importantly, however, we have observed that mesh simplification

methods that use curvature to improve on QEM generally only use a single score per

vertex, which may result in ambiguity with surfaces with different properties

receiving the same score. The curvature of a surface can generally be defined using

two principal normal curvatures, the maximum (kmax) and minimum (kmin) curvatures

of the local area around a given point, and the directions of the curvatures. We believe

that using both curvatures along with their directions can help provide better scoring.

We have also observed that most methods assume a full update on the

priority heap after each contraction. Some research has been published that suggests

that full updates after each contraction are not necessary for producing quality results

from simplification. However, we feel that there should be some degree of assurance

that an edge with a “good” score is being contracted at each step (instead of randomly

picking a set of edges and expecting the best score among them to be “good”), and

that progress is constantly being made in the simplification process (instead of having

to repeatedly recalculate scores due to the “dirty flag”).

2.5 Summary

In this chapter, we have discussed background knowledge about

polygonal meshes and data structures used to store them, mesh simplification and

previous edge-contraction based mesh simplification methods. Polygonal meshes are

the most popular method for representing three-dimensional models, using vertices,

29

edges and faces to represent the surface. Many data structures exist to store this

information, such as winged-edge and cell lists. Most mesh simplification algorithms

do not specify a specific structure, although a handful exist that do. Mesh

simplification can be used to lower the number of faces in a complex three-

dimensional model. The simplified models can then be more easily stored or rendered

using typical hardware. Another reason to simplify models is to reduce the detail of

objects far from the viewer.

The problem of optimal mesh simplification is NP-Hard, so research

on mesh simplification methods focus on creating heuristics to produce a good result.

Many classifications for mesh simplification algorithms exist: mechanism, topology

handling and type. The most researched mechanism is edge contraction, and the

preferred approach is dynamic simplification, as these properties lend well to level-of-

detail based structures, which allow for models to be represented with an exact

number of faces. Based on the state of the art of edge-contraction based algorithms,

we classify the works into two categories: QEM-based and non-QEM-based. Garland

and Heckbert’s QEM algorithm uses the sums of the distances from the planes of

adjacent faces to calculate error score. Since the error is distance-based, it has

potential problems, such as ambiguity at sharp corners. QEM-based algorithms take

QEM algorithm and add other factors to the score calculation to improve handling of

features, while non-QEM-based algorithms calculate scores based on factors such as

volume optimization, surface and volume moment, or use normal maps, offset

surfaces, or direct rendering to control the process. Also, we note that a handful of

papers focus on how to save time updating the priority heap used in edge-contraction-

based algorithms.

30

From our observations, we note that QEM-based algorithms only use a

single score per vertex to assist in score calculation. We hypothesize that using both

principal curvatures of a surface can help improve the performance. We also consider

that heap updating algorithms should guarantee good scores and constant progress.

31

CHAPTER III

THE SIMPLIFICATION ALGORITHM

In this chapter, we will explain the proposed simplification algorithm.

We begin by describing the general overview for the algorithm, along with our

notational conventions and the scope of the models that we use. We then describe

each step in detail, explaining our implementation choices, before providing a time

and memory complexity analysis.

3.1 Overview

The algorithm will follow a similar approach to a typical edge-

contraction based simplification algorithm (Figure 3-1): After reading the input data,

we then calculate the score of each edge and place the scores in a priority queue. We

then contract edges with the best score, and update the scores in the queue, and then

repeat the contraction and update processes until the desired level of detail (LOD) has

been reached, or the priority queue is empty. We will explain our notation and scope,

before explaining each of the steps in detail.

Figure 3-1: Algorithm for edge-contraction simplification

Algorithm: Proposed Algorithm
Input: Polygonal Mesh (P)
Output: Simplified Mesh (P’)

1. Convert P to Abstract Cellular Complex
2. Score calculation,
3. Repeat {
4. Edge contraction
5. Heap update
6. } Until desired LOD reached
7. Output P’
8. End

32

3.1.1 Notation

In the following explanation of our algorithm, we will use the

following notations and definitions:

vx Vertex (Figure 3-2)

ex or <vx, vy> Edge (Figure 3-2)

fx or <vx, vy, vz> Face (Figure 3-2)

F(vx) Set of faces adjacent to vertex vx (Figure 3-2)

S(vx) Vertex to which vx is currently mapped

S-1(vx) Set of vertices that currently map to vx (i.e., the inverse of

S)

U(vx) Update cycle at which vx was most recently affected

U(ex) Update cycle at which the score for contracting edge ex was

most recently updated

Figure 3-2: Explanation for vx, ex, fx, <vx, vy>, <vx, vy, vz>, and F(vx)

33

3.1.2 Scope

For our algorithm, we use as our input polygonal meshes with the

following properties:

• singular objects

• no textures or colors

• triangular faces

• mostly manifold topology (i.e., boundaries are allowed, as well as a

small amount of non-manifold edges with more than two faces

adjacent)

3.2 Converting to Abstract Cellular Complex

Converting a face-vertex based polygonal mesh to Abstract Cellular

Complex format proposed by Kovalevsky (2001) is rather trivial. After inputting the

faces and vertices, for each face, we determine its edges by storing each pair of

consecutive endpoints in a binary tree, with lower numbered vertex first, to prevent

duplicate edges from being stored. After obtaining all the edges, we then determine

and store the faces adjacent to each edge, along with the edges adjacent to each

vertex. As the structure calls for specifying a start- and end-point for each edge, we

simply designate the lower-numbered vertex as the start-point.

The Abstract Cellular Complex format also allows for volumes to be

represented, as well as the right hand rotation order of faces around a given edge;

34

however, as we do not use these data in our algorithm, we do not need to determine

this information.

3.3 Score calculation

After receiving the mesh data input, we first determine the faces

adjacent to a given vertex, boundary edges (i.e., edges with exactly one adjacent face),

and boundary vertices (the vertices of the boundary edges). Using the cell-list

structure, these topological relationships can be determined at relatively small

computational cost.

We also calculate the principal curvatures and their directions for each

vertex, by calculating the normal vectors at each vertex, and then using Batagelo and

Wu’s method (Batagelo and Wu, 2007) of using linear least squares to estimate the

curvature tensor, and then calculating the eigenvalues and eigenvectors from the

resulting tensor. We have chosen Batagelo and Wu’s method, because their method is

easily implemented, and it is claimed to be fast, as well as robust on noisy meshes,

producing fewer outliers than other methods.

To calculate the overall score, we first calculate the quadric error based

on Garland and Heckbert’s method (the QEM score), and then calculate the regularity

and angular deviations of the resulting faces to penalize the score. We will now

describe each part of the process in detail.

35

3.3.1 QEM Score

After we have calculated the curvatures, we next calculate the quadric

matrices of each vertex. For each face, we calculate its normal vector to determine its

corresponding plane, and convert the plane to a Kp matrix as per the regular QEM

method. To each of the face’s constituent vertices, we weight it with the product of

the area and incident angle on the vertex. After inspecting every face, we perform a

weighted average to obtain a quadric matrix Q(v) for each vertex:

∑
∑

=

== k

i ii

k

i iip

w

wK
vQ i

1

1)(
θ

θ
(3-1)

Where θi is the angle of face fi with area wi incident on v (see Figure

3-3). It should be noted that this is the similar to one of the many possible ways

Garland and Heckbert propose to weight the quadric matrices to reduce the effects of

tessellation, except that Garland and Heckbert do not average the matrices, in order to

retain scale variance.

Figure 3-3: Explanation for angular weighting method

36

After we have prepared the data for simplification, we then determine,

for each edge e = <vx, vy>, whether e is suitable for contraction. First, we check the

valences of the vertices immediately adjacent to both endpoints, discarding any edges

where any such vertex has a valence of 3. This is because contracting the edge will

result in two of the faces surrounding the edge having the same vertices, resulting in

the resulting edge effectively becoming adjacent to three faces.

Figure 3-4: Edge contraction in the area around a vertex with a valence of 3

To explain, in Figure 3-4, vd has three faces around it: <vx, vb, vd>,

<vy, vb, vd>, and <vx, vy, vd>. After contracting <vx, vy> to vx, the first two faces are

effectively combined into a single face, while the third face becomes degenerated.

This results in <vx, vb> being adjacent to three faces: <va, vb, vx>, <vx, vb, vd>

(representing both original and the former <vy, vb, vd>), and <vx, vb, vc> (formerly

<vy, vb, vc>), whereas the pre-contraction configuration has no such edges.

We also determine the number of vertices that are adjacent to both

endpoints, and compare to the number of faces adjacent to the edge, and discard edges

where these two values are not equal. This prevents a contraction from altering the

topology of the model, such as by closing up a triangular hole (Figure 3-5), or closing

37

up a “cylinder” with a triangular opening (Figure 3-6): In Figure 3-5, two vertices are

adjacent to both vx and vy, but only one face is adjacent to <vx, vy>, as the edge is

opposite a hole. Contracting <vx, vy> closes up the hole. In Figure 3-6, two faces are

adjacent to both vx and vy (highlighted on the left), but three vertices are adjacent due

to a triangular opening in the structure (vx, vy, vc). Contracting <vx, vy> to vx results in

the opening being closed up, and the edge <vx, vc> becoming adjacent to four faces.

Figure 3-5: Contracting triangular hole

Figure 3-6: Contracting around triangular opening in model

38

If the edge passes this test, we then determine how to contract each

edge of the model, and the score of the contraction. There are two possible choices for

determining the position of the vertex resulting from edge contraction: Determine the

position with the minimal error score or choosing the endpoint with the lesser score

(also known as subset selection or half-edge contraction). Although the former allows

for lesser error, choosing between endpoints allows for easier calculation and also

avoids having to store coordinate differences in level-of-detail based data structures;

therefore, we have chosen the latter method.

We first calculate the score of contracting the edge to either of its

endpoints. We first calculate the QEM score in the same fashion as the regular QEM

method, by summing together the matrices of the edge’s endpoints and using the

summed matrices to calculate the QEM score. We then determine the absolute normal

curvature from the contracted point to the result point; that is, when contracting vx to

vy, we determine the normal curvature in the direction from vx to vy. Where kmax and

kmin are the maximum and minimum principal curvatures of vx respectively,
xvN

r
 is the

normal vector of vx, and D
r

 is the direction for kmax, the absolute normal curvature K

from vx to vy can be calculated as follows:

() ()
xxxx vyxvvyxv NvvNNvvND

rrrrr
××××=′ / (3-2)

22)(cos DD ′⋅=
rr

θ (3-3)

min
2

max
2)cos1(cos kkK θθ −+= (3-4)

Where D′
r

 is the unit vector representing the direction from vx to vy

projected on to the plane defined by
xvN

r
, and θ is the angle between D′

r
 and D

r
. We

multiply the score with the absolute normal curvature along with the edge length, as

39

the contraction of a longer edge is more likely to affect the shape of a model than a

shorter edge. The QEM score obtained for contracting <vx, vy> to vx is

() xyxxyxxyx vvQvQKvvvvvvs)()(),,(+=′ T (3-5)

3.3.2 Penalties

After obtaining the QEM score, we then apply penalties based on

various properties, starting with facial regularity or compactness, which is desirable

for applications such as finite element analysis. We calculate the regularity γ of each

resulting face as per Guèziec (1995):

2
3

2
2

2
1

34
lll

w
++

=γ (3-6)

Where w is the area of the face, and the li are the lengths of its edges.

This equation produces a result of 1 for an equilateral triangle, and 0 for a degenerate

triangle. We determine the face with the least regularity γmin, and penalize

contractions that result in faces with lower than 0.5 thusly:

5.00

5.015.0

min

min

2

min

≥

<−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r

r
rpreg (3-7)

Our choice of 0.5 allows for a degree of variance in facial regularity

from being perfectly equilateral without any penalty added to the contraction score.

Also, the above equation results in a score that tends towards positive infinity as the

regularity decreases to 0.

The next penalty we apply is related to facial orientation. We

determine the orientation of the resulting faces using a cross product, and compare the

40

angle θ with the face’s original orientation using a dot product, before penalizing

according to the largest angle of change in orientation θmax thusly:

o

o

90

90
sin1

sin

max

max
max

max

≥∞+

<
−=

θ

θ
θ

θ

angp (3-8)

Our choice of 90 degrees as the cutoff limit ensures that faces will

never flip over in relation to their original orientations. This procedure is also easier to

calculate than Garland and Heckbert requiring the resulting vertex to fall within a

given area.

We also compare the angle of each face’s orientation to the normal

vectors of the resulting vertices and calculate a curvedness-inverse-weighted average

θ’, where curvedness is a Pythagorean sum of the maximum and minimum curvatures

(2/2
max

2
min kkR +=), under the reasoning that normal vectors at areas of high

curvedness are less representative of the ideal facial orientation than those at areas of

lower curvedness. We then apply the same penalizing method as above. Where Rvi is

the curvedness of vi and),(
ivf NN

rr
∠ is the angle between the normal vector of f and

the normal vector of vi:

∑

∑
∠

=′

i

i

i

v

v

vf

R

R
NN

1

),(
rr

θ (3-9)

o

o

90

90
sin1

sin

max

max
max

max

≥′∞+

<′
′−

′
=

θ

θ
θ

θ

avgp (3-10)

41

We also consider the dihedral angles between the affected faces, and

faces immediately adjacent to any affected faces, and compare them to the dihedral

angles of the original orientations (Figure 3-7). Note that during later stages of the

simplification, the faces being compared may not have been adjacent to each other in

the original model.

Figure 3-7: The change in dihedral angle between two faces after contracting <vx, vy>

to vy

We also consider that the relative orientation of each pair of faces may

have changed from concave to convex, or vice versa. We consider that such changes

in orientation are less desirable; therefore, in our implementation, we detect such a

result, and apply an extra penalty to such contractions:

() ()
() () 0)()(sinsin2

0)()(sinsin
),,,(ˆ

212121
1

21
1

212121
1

21
1

2121
≤×⋅××+×

>×⋅××−×
=

−−

−−

OONNOONN

OONNOONN
NNOO srrrsrrr

srrrsrrr
rrrr

θ (3-11)

Where 1O
r

 and 2O
r

 are the original unit normal vectors of two faces,

and 1N
r

 and 2N
r

are the unit normal vectors of the same faces after the contraction. We

42

then use the highest dihedral angle score to calculate the penalty, in the same way as

the previous angles above:

o

o

90ˆ

90ˆ
ˆsin1

ˆsin

max

max
max

max

≥∞+

<
−=

θ

θ
θ

θ

rdcp (3-12)

Next, we take boundaries into consideration, by disallowing any

contractions that contract a boundary vertex to a non-boundary vertex, while allowing

contractions in the opposite direction. This ensures that the vertices of each boundary

in the simplified model are a subset of those in the original model’s corresponding

boundary. We only allow boundary vertices to be contracted if the contracted edge is

part of the boundary, and we also apply an extra penalty to the contraction based on

overall change in boundary area.

We determine the change in the boundary area thusly: When

calculating the score for the contraction of a boundary edge, we determine the

boundary vertex that would become adjacent to the contracted vertex, and calculate

the area of a triangle between that vertex and the edge to be contracted, which is the

area would be immediately affected by the contraction. For example, in Figure 3-8,

when contracting <vx, vy> to vy, we determine that vz would then become adjacent to

vy, resulting in the area <vx, vy, vz> being affected.

43

Figure 3-8: Boundary handling during initialization

After we have obtained the affected area, we calculate its ratio ρ to that

of an equilateral triangle with the same edge length as the remaining edge. From

Figure 3-8, the ratio would be calculated thusly:

()
() 2

,4/3

,,

zy

zyx

vv

vvvA
=ρ (3-13)

Where ()zyx vvvA ,, is the area of a triangle with <vx, vy, vz> as its

corners. We then use the ratio to calculate a score for the boundary change, similar to

the angular scores, to prevent severe changes in the boundary:

1

1
1

≥∞+

<
−=

ρ

ρ
ρ

ρ
bdrp (3-14)

The boundary checking process is optional, and may be skipped when

simplifying models that have few or no boundaries. (Our implementation

automatically skips the scoring portion of the process when the boundary score has

been assigned a weight of 0; however, it still prevents the contraction of boundary

vertices to non-boundary vertices.) Where ()xyx vvvs ,,′ is the original QEM score

44

from contracting <vx, vy> to vx, and α, β, and δ represent user-defined weights for each

part of the score, the final error score we obtain is as follows:

() ()() () regbdrrdcavgangxyxxyx pppppvvvsvvvs δβα +++++′= ,,log,, (3-15)

Taking the logarithm of the QEM score before adding the penalties

effectively multiplies the penalties (to the power of the user-defined weights) with the

QEM score. However, we will also experiment with a linear combination addition-

based penalizing method. After we have obtained the final scores of either possible

contraction of each edge, we insert the better score into a priority heap H, along with

the following information: the two endpoints (with the better-scoring endpoint listed

first), the original edge e, and the update cycle when the score was most recently

updated U(e), initially −1, for the purpose of updating the scores. In our

implementation, we have implemented H as a standard array with a value declaring its

size |H|.

3.4 Edge contraction

As in most other edge-contraction based algorithms, we obtain the

edge with the best score from the top of H and contract it, removing faces adjacent to

the contracted edge. While contracting edges, we keep track of the faces adjacent to

each vertex using F for the purpose of score calculation. We also keep track of vertex

mappings using S and S-1, and when each vertex has been affected by previous

contractions, for the purposes of score updating, using U. Initially, for every vertex v,

S(v)=v, S-1(v)={v}, and U(v)= −1.

For point-face relationships in F: When contracting <vx, vy> to vx, the

faces adjacent to exactly one of the endpoints become the faces adjacent to the

45

remaining vertex. Faces adjacent to both endpoints (i.e., adjacent to the edge) become

degenerate and can be removed. Therefore:

F(vx) ← F(vx) ∪ F(vy) − (F(vx) ∩ F(vy)) (3-16)

For example, in Figure 3-9, the edge <vx, vy> has been contracted to vx.

The faces adjacent to either vx or vy (light and medium shading) have now become

adjacent to vx, while faces adjacent to the edge (dark shading) have become

degenerated.

Figure 3-9: Point-face relationships before and after edge contraction

Using S and S-1 to track vertex mappings allows us to convert any

original face of the model to its face in the model at the current level of simplification

(and thus determine a face’s validity). Storing mappings in both directions in our

implementation also allows the mappings to be quickly updated: without the inverse

sets, updating would require making a pass over all vertices to check for and update

mappings, while the inverse indicates exactly which vertices to update. When

contracting <vx, vy> to vx, vertices that were originally mapped to either vertex are

now mapped to vx, that is, the resulting inverse is the union of the two sets:

S-1(vx) ← S-1(vx) ∪ S-1(vy) (3-17)
∀v∈ S-1(vx) ∪ S-1(vy), S(v) ← vx (3-18)

46

To save on memory usage, we remove the QEM matrices and S-1 and F

sets from contracted vertices immediately after contraction, by setting them to null

references. It can be easily shown that, using this method, the total memory used to

store S-1 remains constant throughout the execution, while the total memory for F

reduces according to the number of remaining valid faces, as in both cases, each

vertex (or valid face) is represented exactly once (or 3 times) in total amongst the sets

of S-1 (or F).

3.5 Heap updates

The next step in mesh simplification using an edge-contraction

mechanism is to update the priority heap. Most methods are assumed to perform full

updates after each contraction. However, we have chosen to perform updates

differently from typical edge-contraction based algorithms, by using a novel partial

and lazy updating scheme. We describe our scheme in detail, and explain our use of

affected vertices to determine which edges to update.

3.5.1 Partial updating scheme

Our scheme aims to combine the concepts of Cohen et al.’s “dirty flag”

and Wu and Kobbelt’s “multiple-choice” methods as described in the Previous Work

section, while providing both a better assurance of contracting a good score and

making constant progress during the process, by only updating upon finding an

outdated score, and then updating only the topmost portion of H. Our reasoning is that

scores that are near the top of H will likely not be affected by contractions, and will

thus remain close to the top after the update.

47

The details of our scheme are as follows:

• Check whether top score needs to be updated, based on vertex

mappings and update information, or a certain number of edges

have been contracted since the last update. If not, perform

contraction, else perform update.

• For all contractions in the top n−5 levels of the heap, where n =

⌊log 2 |H|⌋, re-calculate score if necessary to update. Our choice of

n−5 provides a balance between updating fewer entries resulting in

more frequent updates, and updating more entries than necessary. It

can be shown that the number of entries in the top n−5 levels is

between |H|/32 and |H|/64. We will also experiment with varying

the number of updated levels.

• Restore heap property by swapping values, starting from the last

updated score upwards.

48

3.5.2 Affected vertices

To determine which scores need to be updated, we take into account

which vertices have been affected and when. Each edge contraction affects the score

of several other contractions involving vertices in the nearby area. Any triangles

adjacent to the contracted vertex will change their shape, thus requiring any scores

involving those faces to be recalculated. Also, any edges with either vertex are also

affected, as the contracted vertex now maps to a new vertex, while the remaining

vertex has new faces adjacent to it, as well as a new quadric matrix (the sum of the

original vertices’ matrices). Therefore, when contracting <vx, vy> to vx:

• For every triangle T in F(vy), all vertices in T are affected,

• For every triangle T adjacent to any triangle in F(vy), all vertices in

T are affected, and

• vx is affected

Figure 3-10: Illustrating how vertices are affected by a contraction

49

To justify this reasoning, Figure 3-10 shows the effects of a contraction

from <vx, vy> to vx. In the left figure, the shaded faces are the faces considered when

calculating the score of the edge, namely: faces adjacent to either of the two vertices

(lightly shaded), or triangles that share an edge with any such face (medium shaded,

for determining the dihedral angle score). In the right figure, the shaded faces

(originally adjacent to vy) have been altered due to the contraction; therefore, any

vertices adjacent to any of those faces are affected. Also, the darker shaded faces are

adjacent to the affected faces, resulting in a change in dihedral angle; hence, the

vertices of those faces are also affected. The affected vertices are marked in black in

the right figure, while unaffected vertices are in gray. vy is also considered to be

affected, as any edges that originally had vy as an endpoint will now have vx instead.

To assist in tracking when each vertex has been most recently affected,

we store a value U representing the current update cycle, incrementing it at each

update. Our storage of U(v) and U(e) allows us to compare when the score was most

recently calculated, with when either endpoint was last affected, to determine whether

the score needs to be updated.

When we mark vertices as being affected, we store the current value of

the update cycle plus one: U(vx) U+1. This is so that if two contractions involving

the same vertex are encountered during the same update cycle, only the first update

will be performed, and the second will trigger a new update cycle. Also, when

updating a score immediately after either of its vertices has been affected, the score’s

update cycle will be equal to that of the affected vertex. Similarly, we also keep track

50

of when each face has been affected through contractions, under the simpler condition

that when contracting vx to vy, all faces in F(vx) are affected.

The criteria for when an edge’s score needs to be updated are as

follows:

• Either endpoint of the edge now maps to a different vertex

(checked using vertex mappings): S(vx) ≠ vx or S(vy) ≠ vy

• The most recent update for either endpoint is more recent than that

of the score: max(U(vx), U(vy)) > U(ex)

One could also inspect whether the most recent update for any face in

F(vx) or F(vy), or any faces adjacent to such faces, is more recent than that of the

score, however, the endpoint update condition is easier to check, especially when

considering the faces adjacent to those in F(vx) or F(vy). We also choose to

automatically invoke an update after a certain number of edges have been contracted

without any updates being invoked otherwise. We have chosen this limit to be 100,

but we have observed that this limit does not appear to significantly affect the overall

execution time.

3.5.3 Score re-calculation

When we re-calculate the score for a given edge, we determine its

endpoints using the vertex mappings, and check that the endpoints are different,

before determining whether score re-calculation is necessary based on the vertex

mapping, U(v) and U(e), and for edges that require re-calculation, determining

51

whether the edge is valid for contraction, before calculating the score in the same

method as during initialization (except for boundary handling, as described below)

and updating U(e) to the current update cycle. In the case of edges that are no longer

valid for contraction, or whose endpoints now map to the same vertex, we remove

them from consideration altogether, by swapping such an entry with the entry at the

bottom of the heap (|H|−1) and decrementing |H|, thus in effect removing it from the

heap. We also consider the possibility of two different edges with endpoints mapping

to the same vertices, for example, two edges of a triangle that has become degenerate

from contraction of the other edge. We search for and store the pairs of mapped

vertices in a binary tree, removing edges that map to a vertex pair that has already

been stored in the tree.

For score re-calculation, we consider not only the immediate boundary

change as in the initial calculation, but also the area that has been affected by previous

contractions. We achieve this by storing this information with the retained edge

during the contraction process in a binary tree. When we perform a contraction

affecting the boundary, we obtain the vertex that becomes adjacent to the remaining

vertex and the area immediately affected by the contraction, and then search the

binary tree to obtain the affected areas previously associated with the affected edges

(if any), and sum them to obtained the total area that has been affected overall, before

using it to penalize the contraction and storing it with the retained edge, for use in

later updates.

Using Figure 3-11 as an example, after vm and vn have previously been

contracted, <vz, vx> has the area of <vz, vx, vm> associated with it, while <vn, vx> has

52

<vx, vy, vn>’s area. Contracting <vx, vy> to vy would then result in the sum of these two

areas and <vx, vy, vz> being associated with <vz, vy>. This method may in some cases

overestimate the affected boundary area (for example, a boundary that alternates

between convex and concave); however, this helps to further limit boundary change.

Again, we skip the boundary check algorithm in models with few to no boundaries.

Figure 3-11: Boundary handling during score re-calculation

To save on unnecessary re-calculation when calculating the score, we

use a novel caching method, by using a binary tree to store a given face’s orientation

and regularity after a given contraction. We key the information under the following

convention: <fx, vx, vy, U>. If the face is unchanged by a given contraction (e.g., fx

when contracting vx to vy, where fx has vy but not vx), we store it (and search for it)

under the convention <fx, -1, -1, U>.

When we calculate a score and require the orientation and regularity of

a given face after a given contraction, we determine whether the given face and

contraction are already in the cache, and then whether update cycle stored in the entry

is more recent than that of the face in question. If so, we retrieve the information and

53

use it, before updating the most recent update cycle to the current value. Otherwise,

we (re-)calculate the information, and either insert the information into the cache,

keyed according to our convention (if it is not already in the cache), or update the

existing cache entry (if it is already in the cache).

To limit the cache size, we have chosen to both perform an update on

the whole heap and clear the cache when, at a given update, the size of the cache is 4

times the size of the number of the remaining faces, with a minimum of 10,000 cache

entries at low numbers of vertices. (We also update the whole heap where there are

less than 128 heap entries remaining.) This choice provides a good balance between

memory usage and cache efficiency. We will also experiment with different ratios of

cache entries to heap size. Figure 3-12 shows a summary of the process of updating

each heap entry.

54

Figure 3-12: The heap updating process

After we have re-calculated entries in the heap as necessary, we restore

the heap property, by swapping scores to their proper positions. We then repeat the

cycle of edge contraction and heap updates, until the desired level of simplification

has been reached, or in some cases, until no valid contractions remain in the heap.

3.6 Time and Complexity Analysis

Another point of analysis for our algorithm is the complexity of the

algorithm, both time-wise and memory-wise. In a similar fashion to Garland and

55

Heckbert’s analysis of their algorithm, it can be shown that, assuming an upper bound

on the number of faces adjacent to any given vertex, edge-contraction based

algorithms can generally be shown to have O(n log n) time complexity with respect to

face count, as detailed below:

Initialization: Constructing the quadric matrices takes linear time

(O(n)) with respect to face count, as well as calculating the normal vectors and the

resulting curvatures of the vertices. Calculating the score for each entry takes constant

time (assuming an upper bound on adjacent faces), and building the priority heap

takes O(n log n) time.

Contraction: Assuming the upper bound on adjacent faces, a constant

number of edges are affected with each contraction, and re-calculating the score for

each edge takes constant time. It then takes O(log n) time (with respect to heap size)

to restore the heap property per updated entry. Assuming that a constant number of

faces k are removed between every update cycle, the total running time used for the

simplification process, with respect to heap size, is:

log n + log (n–k) + log (n–2k) + + log m = log n! – log m! = O(n log n) (3-19)

Heap size is related to the number of edges. We have observed that in

the models we have used, the number of vertices is approximately half of the face

count. Assuming that the model is fully manifold, the number of edges is then

approximately 1½ times the face count. Therefore, our algorithm takes O(n log n)

running time in total.

Next, we will focus on memory complexity, with respect to the

numbers of the various structural elements. For each face, we store the constituent

56

vertices and edges along with its normal vector, nulling the information for each face

as it becomes degenerate, and a Boolean variable storing whether it is degenerate.

Assuming all-triangular meshes, this information is of constant size. Also, as

mentioned earlier, we limit our cache size to a constant multiple of the number of

remaining faces (or 10,000). This results in linear complexity storage (O(n)) with

respect to original face count.

For each edge, we store its start and end vertices, its adjacent faces and

a heap entry corresponding to the score of contracting the edge, with a constant size

limit for each entry (assuming a fully-manifold model). Again, this results in linear

complexity storage.

For each vertex, we store its coordinates, normal vector and curvature

data, its adjacent faces, and its current quadric matrix (removing each vertex’s data as

it has been re-mapped via contractions). As mentioned in the Edge Contraction

section, we also store bidirectional mapping information, reassigning and removing

the data for re-mapped vertices. All of these data also have a constant storage size,

and along with our bidirectional mapping scheme, this results in linear complexity

storage. Assuming the number of edges is approximately 1½ times the face count as

before, our algorithm uses linear storage with respect to face count. Both results are

equal to that of Garland and Heckbert’s QEM algorithm and most of its derivatives.

57

3.7 Summary

In this chapter, we have described our mesh simplification algorithm.

We use a typical edge-contraction approach. We begin by calculating quadric

matrices of each vertex, along with their principal curvatures and directions. After

determining the validity of contracting each edge, we then use the quadric matrices to

calculate the quadric error score, before determining the absolute normal curvature in

the contraction direction and edge length, and multiplying these values with the

quadric error. We then calculate regularity, along with angular and dihedral deviations

based on each face’s current and original orientation and each vertex’s curvedness,

and boundary changes where applicable, to calculate penalties to the error, before

choosing to contract to the better scoring vertex and storing the scores in a priority

heap.

When contracting edges, we keep track of vertex mappings and

affected vertices, in order to assist in updating the heap. We use an updating scheme

in which we only update the top portion of the heap when encountering a score that

requires an update. We take overall boundary change into account when necessary.

We also store a cache of orientations and regularities of faces resulting from possible

contractions to assist in score re-calculation. We limit the size of the cache by clearing

it when it reaches a certain size, and performing a full heap update. We contract edges

until the desired level of simplification has been reached, or no more valid

contractions remain.

58

We have analyzed the time and complexity for our algorithm. We have

determined that initialization takes O(n log n) running time, and the simplification

process also takes O(n log n) running time. We have also determined that the

algorithm uses linear storage space in relation to face count, consistent with Garland

and Heckbert’s original QEM algorithm and derivatives.

59

CHAPTER IV

EXPERIMENT AND RESULTS

The following chapter will describe our experiment with the new

algorithm and the results obtained from the experiment. We will then discuss the

results that we have obtained from the experiment.

4.1 Overview of the Experiment

In our experiment, we aim to compare the quality of the simplified

models from our algorithm with that of Garland and Heckbert’s quadric error metric

method, by using both a visual and geometric comparison (using RMS of luminance

difference and Hausdorff distances respectively). We also aim to verify how well the

running times for our algorithm conform to the expected O(n log n) complexity that

we have determined in Chapter III, and how much reduction in running time our

partial updating scheme achieves. We also aim to determine the effects of our

arbitrary choices for the heap-updating scheme.

4.2 Method

We have implemented the algorithm described in Chapter III using

Microsoft Visual Basic .NET, and tested it on a Pentium Dual Core system with 2 GB

RAM, using a data set of 388 models. 380 of the models used as sample data have

been obtained from Princeton University’s Benchmark for 3D Mesh Segmentation

(Chen et al., 2009), with 5 other large models from the Georgia Tech University’s

Large Geometric Models Archive (Turbine Blade [Figure A-24(b)], Dragon [Figure

60

A-23 (c)], Horse [Figure A-24(a)], Canyon [Figure A-23(a)], Angel [Figure 43(b)]),

the bunny model from the Stanford 3D Scanning Repository with holes in the bottom

(Figure A-22(b)), the large standard Armadillo model from Stanford (Figure A-22(a)),

and a dinosaur model (Figure A-23(b)) included to test for boundary handling and

scalability. Details of these models can be found in the Appendix.

For each model, we perform the simplification algorithm, obtaining

results at 50%, 20%, 10%, 5%, 2% and 1% of its original face count. As most of the

models in the test sample have even vertex distribution, we test its performance on

models with uneven vertex distribution by using QEM to simplify selected models to

50%, before using our algorithm.

As an alternative to logarithm-based penalizing, we have also decided

to experiment with an alternate linear combination addition-based scoring method (as

not all models require boundary handling, the weight for boundary penalties β will not

be part of the linear combination). As our penalties are all scale-invariant, we will

multiply them the length of the model’s bounding-box diagonal B:

() () ()() () ()bdrregrdcavgangxyxxyxa pBpBpppBvvvsvvvs βδαϕ +++++′= ,,,,
 (4-1)

1=++ ϕδα (4-2)

For the purposes of running time analysis, we take the times from the

fastest of three rounds of execution into consideration. We also perform the algorithm

on selected models using a full heap update when encountering any score requiring an

update, to determine the time savings from using our partial heap update scheme.

61

 For comparison purposes, we use Garland and Heckbert’s QSlim

program (a readily-available implementation of their algorithm) to simplify the same

models to the same percentages using QEM, with a subset selection policy. For the

models used to test uneven vertex distribution performance, we simplify to 50%, and

then simplify the reduced model to the same percentages. After we have obtained the

results of both mesh simplification methods, we render the results using VRMLView,

and compare the results by using Cignoni, Rocchini and Scopigno’s (1998) Metro

comparison program to obtain the Hausdorff distance between the original model and

the simplified models. The Hausdorff distance between two models can be defined as:

)},(infsup),,(infsupmax{),(yxdyxdYXd
XxYyYyXx

H ∈∈∈∈
= (4-4)

Where X and Y are the models to be compared, and d(x, y) is the

distance between two points x and y on the surfaces of X and Y respectively. In other

words, the Hausdorff distance between two models is the largest distance between any

two closest points on each model’s surface. This metric has been commonly used to

assess the quality of simplified meshes. On the meshes reduced to 50% for uneven

vertex distribution testing, we compare with the 50% reduced mesh, rather than the

full version.

For visual comparison, we use the root-mean-square of luminance

differences, a metric previously used by Lindstrom and Turk for their Image-Driven

Simplification method. For simplicity, we will render the resulting models from a

single representative angle, and then determine the root-mean-square of the difference

between the luminance Y of each corresponding pixel:

62

xy

yxYyxY
RMS x xy

∑∑ −

=

2
10)),(),((

 (4-5)

It should be noted that while the Hausdorff distance is a definite

indicator that applies to each model and can directly be compared, the RMS of

luminance difference between a model and its reduced form will also depend on the

rendering angle. Therefore, one should not compare the RMS results of different

models; however, all renders of the same model from the same angle can be directly

compared.

To determine the effects of the arbitrary values we have chosen in the

heap-updating scheme on running time, we will replace the arbitrary values and run

the algorithm on selected models to show the effects. We will run the algorithm by

updating n-8 and n-4 layers, and clearing the cache and performing a full update when

the cache is 6 and 2 times the size of the heap. We will also run the algorithm without

using the caching method.

4.3 Experimental Results

The averaged graphical results of the Hausdorff distances from our

algorithm and QEM are shown in Figure 4-1. Figures 4-2 to 4-4 shows Hausdorff

results from the best and worst results from our data. Figures 4-5 and 4-6 show the

running times for each model and LOD plotted against face count using only the

Princeton data, as the non-Princeton data include models with about one order of

magnitude more faces than the Princeton data, and the correlated trendlines, while

63

Figure 4-7 shows the plot when including non-Princeton data. Details of all the

models that we have used along with the numerical results from Metro for each

model, the RMS averages of the luminance differences of each model, and selected

visual results from VRMLView and selected graphical Hausdorff results, are shown

in Appendix A.

Figure 4-1: Graph comparing average Hausdorff distances between QSlim and our

method

Figure 4-1 plots the average Hausdorff distance with respect to

bounding box diagonal from all of our 388 sample models against the level of

simplification, between our method (red line) and QEM (blue line), with the

horizontal axis representing the remaining percentages of the original face count at

which we obtain our result data (1%, 2%, 5%, 10%, 20%, 50%), and the vertical axis

64

representing the Hausdorff distance with respect to bounding box diagonal. We

observe that on most of the sample data models, the Hausdorff distance monotonically

decreases as the percentage of remaining faces increases, and vice versa. We also

observe that the new algorithm produces lower average Hausdorff distances than with

QSlim up to between 2% and 5% remaining faces. Lastly, we notice an increased

acceleration in the Hausdorff distance at less than 10% remaining faces using our

method.

Figure 4-2: Graph comparing best and worst Hausdorff results with average for all

results (normalized using 1% QEM distance)

Figure 4-2 shows a graph comparing the Hausdorff distance results of

the models that produce the best and worst results compared to QEM, with the

horizontal axis corresponding to remaining face percentages (as in Figure 4-1), and

65

the vertical axis corresponding to the Hausdorff distance results, normalized by

dividing with the Hausdorff distance of each given model’s 1% QEM simplification.

The best results (producing low Hausdorff distances and best visual resemblance) are

with the horse (Figure A-22(a), blue line on graph) and one of the head models (#313

in the Princeton data, Figure A-21(a), red line on graph), while the worst results are

with the turbine (Figure A-24(b), purple line on graph) and one of the low-polygon

female models (#20, Figure A-14(b), cyan line on graph). We have also included the

average Hausdorff distance, divided by the average 1% QEM distance (green line on

graph).

Figure 4-3: Hausdorff distances for best results: Horse (left) and Head #313 (right)

Figure 4-3 shows a comparison between the Hausdorff distances for

the aforementioned best results (from Figure 4-2), the horse and head models between

our method (red line) and QEM (blue line). We observe that the Hausdorff distance

on these models using our method is better than, or at least comparable with, the

distance using the QEM method, at all percentages of remaining face count.

66

Figure 4-4: Hausdorff distances for worst results: Turbine Blade (left) and Female #20

(right)

Figure 4-4 shows a comparison between the Hausdorff distances for

the aforementioned worst results (from Figure 4-2), the turbine blade and female

models, between our method (red line) and QEM (blue line). We observe that, while

the Hausdorff distance on the female model using our method is better than the

distance using the QEM method above 10% remaining face count, it increases rapidly

to become significantly higher than the corresponding distances for QEM from 5%

downwards (similar to Figure 4-1). The turbine model produces better results down to

5% remaining face count, however, the Hausdorff distance from our method also

increases rapidly from 5% downwards.

Figure 4-5: Hausdorff distances for average results: Teddy Bear #177 (left) and

Princeton Armadillo #282 (right)

67

Figure 4-5 shows a comparison between the Hausdorff distances for

two average results, for teddy bear model #177 and Princeton armadillo model #282,

between our method (red line) and QEM (blue line). We observe that it both cases,

our algorithm produces better or comparative results with QEM up to the 5%,

however, the Hausdorff distance from our method also increases rapidly from 5%

downwards.

Figure 4-6: Runtimes for Princeton data plotted against face count with n log n

trendlines

Figure 4-6 shows the runtimes for the Princeton data at the result

percentages: 50% (magenta), 20% (orange), 10% (cyan), 5% (purple), 2% (red), 1%

(blue) plotted against the original face count, with horizontal axis indicates the

number of the original faces, and vertical showing the run time in seconds. We have

also plotted trendlines in the same color as the data, and have shown the trendlines

68

only in Figure 4-7. We observe that most of the data lies close to the respective

trendlines, and the trendlines for the lower percentages of remaining faces lie closer to

each other, as there are fewer faces to be reduced at those lower levels.

Figure 4-7: n log n trendlines for Princeton data on graph

Figure 4-8: Runtimes for all data plotted against face count with n log n trendlines

69

Figure 4-8 shows the runtimes for all 388 models (including the larger

non-Princeton models) at the result percentages plotted against the original face count

as in Figures 4-6 and 4-7. We observe that, while our data generally lies relatively

close to the trendlines, the largest models in our sample data (>240,000 faces: turbine,

armadillo, and angel) produce significantly higher run times than the trendlines

plotted from the O(n log n) time complexity determined in Chapter III.

4.4 Discussion

In this section, we discuss the running times and results as described in

the previous sections, and determine the strengths and weaknesses of the algorithm.

We begin by commenting on the Hausdorff and visual results, comparing the

observed empirical running times with our complexity analysis and speculating on

possible causes for outlying running times, and lastly, comparing the running times

with and without the partial heap updating scheme.

4.4.1 Hausdorff and visual results

From the Hausdorff results as plotted in Figure 4-1, and visual results

shown in the Appendix, we observe that our mesh simplification method shows a

better or comparable performance to QEM at lower levels of simplification on

average. Also, the RMS luminance difference from our algorithm is close to that from

the QEM algorithm, suggesting that the factors we have implemented are useful for

simplification at those stages. These results show that a combination of using the

curvature measurement and angular deviations has improved the simplification results

when simplifying to 5% of original face count. However, these factors seem to

70

become less useful at more drastic levels of simplification, resulting in much higher

Hausdorff distances than on models simplified using QEM. This shows that, although

the curvature estimation is useful during the early stages of simplification, at later

stages it may no longer be sufficiently accurate due to changes in the vertex’s locality.

As a result, a contraction direction with low curvature, while sensible initially, may

become less sensible at higher levels, as the contraction may involve features that

were not accounted for in the original curvature calculation.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 4-9: Comparison of female model (a) reduced with both QEM (b-g) and our

methods (h-m)

As an example, in the female model from Princeton shown in Figure

4-9 at the 5%, 2%, and 1% levels (QEM: Figure 4-9(e)-(g), Ours: Figure 4-9(k)-(m)),

a vertex in the knee area may become adjacent to a vertex at the ankle or waist areas,

while the curvature measure was based on vertices in the knee area at the full face

71

count level (shown in Figure 4-9(a)), without taking further areas into account.

Therefore, a vertex in the knee area may be contracted to either the waist or ankle,

based solely on the curvature of the knee area, resulting in higher Hausdorff distances

than QEM. Comparing with QEM-based approaches, those that use the original model

to penalize the quadric matrices (Kho and Garland, 2003, Jong et al., 2006, Li and

Zhu, 2008) , or use larger matrices to take other factors into account (Wei and Lou,

2010) may use more triangles on feature areas (such as facial features and pointed

fingers) than the smoother parts of the figure, like our algorithm, while those that use

the current state of the mesh to calculate a penalty (Xu et al., 2008, Hussain, 2009,

Tang et al., 2010), while also likely to preserve feature areas, may calculate a penalty

based on a bad state.

For non-QEM-based approaches the female model, appearance-based

methods (Cohen, 1996, Cohen et al., 1998 Lindstrom and Turk, 2000) are likely to

generally produce better visual and Hausdorff distance results than QEM and our

method, while memory-saving approaches (Lindstrom and Turk, 1998, Hussain et al.,

2001) should perform about as well as QEM (and ours at lower levels). Balmelli et

al.’s algorithm (2002) is designed only for 4-8 subdivided meshes where the

subdivision hierarchy is known, and is thus irrelevant to our more general figures.

Tang et al.’s global moment-based approaches (2007) are likely to produce similar

Hausdorff distance results with QEM. Choi’s optimal positioning approach (2008)

produces more areas of high Hausdorff distance than with QEM, and is likely to

produce worse results at lower level than with our algorithm.

72

(a)

(b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 4-10: Comparison of turbine blade model (a), reduced with both QEM (b-g)

and our methods (h-m)

Another of our worst cases is the turbine blade model (Figure 4-10). It

has a complex structure, with inscribed lettering on the lower part of the model, and

many faces hidden from view at all angles. We observe that using our method, the

general shape of the blade has become highly corrupted at the 1% level (Figure

4-10(m)), and we also observe that the lettering on the lower part of the model

gradually disappears at higher face count than with QEM. We believe that the

algorithm may have used more faces on the non-visible portions of the model,

resulting in less faces available for the visible parts of the model. QEM-based

methods (Kho and Garland, 2003, Jong et al., 2006, Li and Zhu, 2008, Xu et al., 2008,

Hussain, 2009, Tang et al., 2010, Wei and Lou, 2010), in concept, treat hidden faces

equally as visible, and may end up retaining more faces on hidden surfaces than

visible; although Kho and Garland’s user-guided approach allows for the user to put a

weight on the visible surfaces. Nevertheless, it is not likely for these algorithms to

corrupt the blade model at low face counts.

73

In non-QEM based methods, most methods are also likely not to

significantly corrupt the blade model at low face counts. Lindstrom and Turk’s direct

rendering approach, in particular, should work very well on models such as these,

since contractions involving only hidden faces are likely considered not to have any

cost as they do not affect the overall rendered image. It should be noted that

Lindstrom and Turk use their image-driven method on this model, rendering both

normally, and with the frontal faces culled.

(a)

(b) (c) (d) (e)

(f) (g)

(h) (i) (j) (k)

(l) (m)

Figure 4-11: Comparison of teddy bear model (a), reduced with both QEM (b-g) and

our methods (h-m)

(a)

(b) (c) (d) (e)

(f) (g)

(h) (i) (j) (k)

(l) (m)

Figure 4-12: Comparison of Princeton armadillo model (a), reduced with both QEM

(b-g) and our methods (h-m)

74

Two of our average cases are shown in Figures 4-11 and 4-12: a teddy

bear model (#177) and one of Princeton’s armadillo models (#282). In both models,

the Hausdorff distance for our method starts out comparably with the results from

QEM, up until 5% of original face count, where the Hausdorff distance from QEM

becomes lower than that from our algorithm. The extensions used in QEM-based

methods mostly focus on retaining features, while maintaining or improving on

QEM’s Hausdorff results, as the smooth surfaces can be represented with fewer faces

without much surface error being introduced. Non-QEM-based methods are likely to

produce similar Hausdorff distances to QEM, while the appearance-based algorithms,

due to their focus on the overall appearance, should produce the best visual results.

(a)

(b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 4-13: Comparison of horse model (a), reduced with both QEM (b-g) and our
methods (h-m)

The best cases from our experiment are the horse model (Figure 4-13)

and the head (#313) model (Figure 4-14). For the horse model, we observe that the

model’s surface is generally smooth all around, except for the ears. We also observe

that our method preserves the ear’s shape better at the 1% level of total faces,

although it results in fewer faces being used for the rest of the horse’s body (Figure

4-13(g) and (m)), resulting in a somewhat more faceted look than with QEM. QEM-

75

based methods that focus on improving feature retention are likely to also devote

more faces to smaller features in a similar fashion, while retaining a comparable

Hausdorff distance performance to QEM. Most non-QEM-based methods are likely to

produce a performance generally close to QEM, with appearance-based algorithms

producing the best visual results, due to their focus on overall appearance.

(a)

(b) (c) (d) (e)

(f) (g)

(h) (i) (j) (k)

(l) (m)

Figure 4-14: Comparison of head model (a), reduced with both QEM (b-g) and our
methods (h-m)

For the head model (Figure 4-14), we observe that most of the model

consists of relatively smooth surfaces, with some facial features. We observe that

using both algorithms, the facial features have mostly disappeared between 2% and

1% remaining faces. We also notice that a small bump feature towards the bottom of

the model is retained in our method all the way to 1% (Figure 4-14(m)), while in the

QEM version, it has completely disappeared at the 1% level (Figure 4-14(g)). QEM-

based methods that aim to retain features are likely to put a high score on various

features in the model, including the facial features. As with the horse model, non-

QEM-based methods should produce a performance of similar quality to QEM, with

appearance-based algorithms producing the best visual results.

76

From the 50% reduced models, we observe that although the average

Hausdorff distance is better when using our algorithm at all levels, after we have

removed the outliers from consideration, the average of the remaining Hausdorff

distances from our method is only comparable with QEM up to 20%, suggesting that

uneven vertex distribution has a detrimental effect on the results of simplification.

When using the alternate linear combination addition-based penalizing

method, we observe that on most of the models we have tested it with, the original

logarithm-based penalizing method produces lower Hausdorff distances than when

using the linear combination-based method. This suggests that, at least for our scale-

invariant penalty factors, our logarithm-based penalizing method is more suitable than

the linear combination addition-based method.

From the results we have observed, we conclude that our use of

principal curvatures provides a useful indicator of the initial local properties of the

surface at a given vertex point, and can help improve simplification performance at

lower levels, and/or on models with smooth surfaces. Using both the orientation angle

of each individual face and the dihedral angle between each pair of faces to calculate

the overall error score of each given edge contraction has also helped faces to retain

their orientation. Also, preventing the algorithm from contracting boundary vertices to

non-boundary vertices, along with considering the change of area along the boundary,

allows for the preservation of boundaries on models, such as in the canyon terrain

model. Without this policy, boundaries would be much more noticeably eroded,

resulting in higher Hausdorff distances. In the Appendix, Figure A-25 shows a side-

by-side comparison of the canyon terrain model simplified to 1% with and without

77

any form of boundary preservation, showing significant boundary erosion without

boundary preservation, while Figure A-26 shows a comparison showing the holes on

the bottom of the bunny model, simplified to 1% with and without boundary

preservation, with the holes being better preserved when using boundary preservation.

Another possible weak point is the use of a curvedness-inverse-

weighted average of the angle between the normal vectors of the resulting face and its

vertices as an indicator of orientation quality, as it may only provide a partial

indication of how well a face’s orientation fits the surface with the given vertices.

Although this method works well on smooth surfaces, it does not consider “noise”

(such as minor projections or corners) in between the vertices (the canyon terrain

model provides an example). One possible explanation is that some contractions may

result in triangles with a surface covering the area with the noise, and its vertices on

the smoother surrounding surface, resulting in an average suggesting that the resulting

triangle has a near-ideal orientation, thus producing a low penalty. Another possibility

is all three vertices lying on areas of high curvedness (for example, facet edges of a

box), producing similar results.

4.4.2 Comparing empirical running time to complexity analysis

To determine how well the time spent on simplification for model

conforms to the expected O(n log n) running time complexity, we have divided the

running time at each level of detail by n log n (where n is the face count), along with

plotting the results on a graph and determining trendlines, as shown in Figures 4-5 to

4-7. From the graphs, we observe that the simplification of most models conforms

well to the expected complexity, with a few outliers. Also, the trendlines for later

78

stages of simplification are closer, as there are fewer faces between each stage. The

maxima, minima, arithmetic means and standard deviations of the results for t/n log n

at each level of detail are shown in Table 4-1.

Table 4-1: Maxima, minima, arithmetic means and standard deviations for t/n log n at
each LOD

LOD Max Min Mean Σ

50% 0.000701 0.000310 0.000430 0.000062

20% 0.001100 0.000518 0.000705 0.000089

10% 0.001202 0.000599 0.000786 0.000097

5% 0.001252 0.000632 0.000826 0.000100

2% 0.001282 0.000647 0.000852 0.000103

1% 0.001288 0.000654 0.000862 0.000103

Comparing the actual runtimes with the means and standard deviations,

we have noticed that the following models produce running times significantly higher

(
σ

xnnt −)log/(>+1) than average: 1 11-14 47 100 101 103-121 124 126 128 131 134

136 141 143 144 152 156 158 160 161 191 211 231 241-244 246 247 249-251 266

301-303 308-311 314 315, Angel, Armadillo, Turbine blade. The following models

produce significantly lower running time (
σ

xnnt −)log/(<−1): 2 5 6 8 16-21 35-38 40

154 183 270 275 276 284 288 307 322 323 328 329 333 335 336 343-345 348-350

354 357 363 365-367 369 374 375.

Possible explanations for the discrepancy in running time for the

aforementioned figures include:

79

Changing system workloads during the simplification of each model:

Although we have tried to minimize the effects of different workloads affecting the

execution of the algorithm by taking the best running times from multiple executions

of the algorithm on each model, fluctuations in the system workload and memory

usage during the process may still cause some change in overall execution speed,

especially in cases involving very large models and long execution time. The three

largest models in our test data (all from non-Princeton data) have significantly longer

running time, especially so with the angel model (the largest of our data).

Frequency of updates: The metric and (to some extent) the updating

procedure control the order in which edges are selected for contraction, and on some

models, it may result in more frequent updates than average, resulting in longer

execution time (due to the overhead of searching through the heap during updates).

This may depend on the overall facial structure of each model. Although there are no

obvious patterns on how a model may produce such a result, we have observed that

many of the chair, box and bird models produce significantly higher running time,

suggesting the facial structure of those models result in contraction sequences that

produce frequent updates; while the four-legged animal and trophy models produce

lower running time (significantly in many cases), possibly due to lengthy sequences

of contractions between updates.

We expect that all QEM-based approaches should produce similar

running times to our approach, due to the calculated time complexity. Among non-

QEM-based approaches, the appearance-preserving algorithms either pre-process the

mesh to create simplification envelopes or parameterized maps, or use a rendering-

80

based approach to calculate the score, thus using more time than QEM-based

algorithms. Other non-QEM-based algorithms still use geometrically based factors to

calculate the score, and thus should also produce similar running times.

4.4.3 Analysis of running times with full and partial heap updates

Comparing the running times between simplifying with full and partial

heap updates at every score to be updated, we observe a speed up by a factor of 5.38

on average. The speed up on the overall running time on our selected models ranges

from 4.253 (#391) to 7.734 (#141). The models we have selected and direct

comparisons of the running time are shown in Table A-2 (in the Appendix). These

results show that the partial heap updating scheme significantly reduces running time.

The reason behind the running time reduction is that our scheme generally only

inspects the topmost portion of the heap for updates, with contractions at the bottom

of the heap not being checked (except during the occasional full heap update), and

edges that would normally be updated many times before it is encountered in the heap

may only need to be updated a few times before contraction.

4.4.4 Analysis of running times using different update parameters

Comparing the running times when using different values than we use

normally (see Table A-7), we observe the following: increasing the size of the cache

before a full update reduces running time, and vice versa, due to having fewer full

updates during the execution. However, we believe that the increased cache size may

also result in memory problems when reducing larger models than those used to test

81

for this section. Also, performing the algorithm without the cache tends to use more

running time than with the cache.

Updating more layers significantly increases running time, due to the

extra overhead of updating more heap entries; however, updating fewer layers mostly

produces running times similar to using the normal values. We also note, however,

that one model (#111) does not reduce to 2% when using fewer layers, whereas it

does when using the normal values.

4.5 Summary

In this chapter, we have performed an experiment to compare the

results of our algorithm with Garland and Heckbert’s QEM method, both time-wise

and performance-wise (based on the Hausdorff distance between the original and

simplified models). We have used a sample array of 388 models to test the algorithm,

with 380 models from a sample set by Princeton, with other models from Georgia and

Stanford included for scalability and boundary handling testing. Each model was

reduced to 50%, 20%, 10%, 5%, 2% and 1%, rendered, and compared to the original

to determine Hausdorff distance and RMS average of luminance difference. We also

reduced some selected models to 50% using QEM, before then using both of our

algorithms, to test its relative performance on meshes with uneven vertex distribution.

The QSlim implementation was used to provide the results from the QEM method.

According to the experimental results, the average Hausdorff distance using our

algorithm on the full-sized models is lower than QEM down to between 5% and 2%

of the original face count, with RMS average results similar to those from WEM;

however, on meshes with uneven vertex distribution, the average distance when using

82

QEM is significantly better than our algorithm from 10% downwards. We also

observe that on most models, the Hausdorff distance increases faster after reducing to

10% remaining faces. We observe that our best results occurring from models with

mostly smooth surfaces, with the worst results occur with a model with significantly

sharp features and a model with hidden surfaces, with most other models producing

average results. The best models produce results better than or comparable to QEM at

all percentages of face count, while the worst models produce Hausdorff results many

times higher than QEM at 1% face count. We also observe that the runtimes generally

conform to the O(n log n) time complexity. However, we note that the largest data we

have used has significantly higher running time than the trendlines suggest.

The results from our algorithm are worse than QEM at higher rates of

simplification, as the curvature measurement may no longer be accurate at more

drastic levels of simplification. Comparing the results to other methods we have

referenced, QEM-based methods that focus on the retention of features may use more

triangles on areas deemed more visually important than with QEM. Among non-QEM

methods, our proposed method should produce better visual resemblance than global-

moment based approaches, optimal placement, and memory-saving approaches,

although appearance-based algorithms should still produce better visual resemblance,

especially in cases where hidden surfaces are involved (such as the turbine blade in

Figure 24). Another possible weak point may be that the curvedness-inverse-weighted

average of vertex normals may provide only a partial indication of orientation quality.

Although most of our runtimes conform to O(n log n) time complexity,

we observe that many of the models have significantly different running times from

83

the expected result. We have theorized two possible causes, changes in system loads

during the execution, and frequency of heap updates (which may result from facial

structures). Runtimes should be comparative to most QEM-based methods, and non-

appearance-based non-QEM-based methods, while using less time than the

appearance-based methods. We observe that using the original logarithm-based

penalizing method produces lower Hausdorff distances than using the linear

combination addition-based penalty.

We also observe that our heap updating scheme produces a significant

reduction in running time against full updates. We also tested the algorithm when

changing our chosen values for number of updated layers and cache size, and note

that increasing the number of layers also increases the running time, although

reducing the number of layers produces similar running time. Using the cache usually

reduces running time, and increasing the cache size before clearing the cache and

performing a full heap update significantly reduce the running time, and vice versa;

nevertheless, there may be memory issues when reducing large models.

84

CHAPTER V

CONCLUSIONS

In this chapter, we will summarize the purpose of our research and the

results we have obtained from it. We will then also consider the weaknesses of some

of our results, and suggest possibilities for future research into reducing these

weaknesses.

5.1 Summary

Mesh simplification is a procedure to simplify the facial complexity of

three-dimensional polygonal meshes for easier general handling, while retaining as

much resemblance to the original mesh as possible. As finding the optimal

simplification has been shown to be an NP-Hard problem, much research has been

made into determining heuristics that improve the various performance aspects of

mesh simplification algorithms. Mesh simplification algorithms based on a vertex

contraction mechanism, such as Garland and Heckbert’s well-known Quadric Error

Metric method, have become popular for research, because such a mechanism lends

naturally to level-of-detail based structures, which allow for a model to be displayed

with a relatively exact number of faces, thereby allowing for better allocation of faces

for rendering.

Many papers have described improvements to the Quadric Error

Metric method to extend it from being based solely on geometric distance, while

others use a non-QEM-based scoring method. Several papers improving the QEM

method use the local geometry of the area to calculate a single curvature-like measure

85

for each vertex to assist in the scoring. However, we believe that using a single

measure may be insufficient in describing the locality around a given vertex, as the

surrounding surface can be properly described using maximum and minimum

curvatures (kmax and kmin), along with principal directions. We also believe that

contracting an edge in a direction of low curvature is less likely to cause significant

visual changes than contracting in a direction of high curvature. Therefore, our paper

presents a method to use these properties to create an improved mesh simplification

method based on the edge contraction mechanism.

Our method aims to simplify the possible ambiguity of using a single

measure of curvedness on a given vertex by incorporating the calculation of the

principal curvatures and their directions to assist in determining the curvature in a

given edge’s direction, to produce low scores on contracting edges with low curvature

and high scores on edges with high curvature, from the same given vertex. We also

use the curvatures to help provide a measure of how well a resulting face would fit the

surface, given its constituent vertices and their normal vectors, by calculating a

curvedness-inverse-weighted average of the resulting face’s normal vector with the

vertices’ normal vectors.

Besides the curvature-based measures, for each resulting face, we also

take into account its regularity, its relative orientation to its original orientation, and

its relative dihedral angle with adjacent faces, and use the worst case of each for the

score calculation. We also include a simple boundary preservation policy, by

disallowing the contraction of boundary vertices to non-boundary vertices, and

86

considering the change in boundary area when calculating the error score. This

measure has been shown to provide preservation for boundaries and holes.

In our implementation of this algorithm, we use some methods to

reduce time used for heap updating, namely, updating only the top portion of the

heap, and using a cache to store the normal vector and regularity of resulting faces to

assist in the calculation of scores. We have shown that the overall algorithm takes

O(n log n) running time and linear storage relative to face count.

Testing our algorithm on 388 models (mostly from Princeton data), we

have found that this approach produces lower Hausdorff distances than the QEM

method at lower levels of simplification and/or on models with smooth surfaces,

suggesting that the use of a direction-based curvature measurement can provide some

improvement to the simplification in the early stages. However, the QEM algorithm

still produces lower distances at more drastic levels, especially on meshes with

uneven vertex distribution, suggesting that the factors we have used to assist the

simplification become deficient in later stages, likely due to the increase in the area

covered by the faces adjacent to any given vertex. Also, using the curvedness-inverse-

weighted average of angles between the face and its vertices’ normal vectors, while

working well on smooth surfaces, may not take surface noise, such as minor

projections, into account. We also observe that our choice of logarithm-based penalty

generally produces better Hausdorff results than the linear combination addition-

based penalty described in Chapter IV.

We have also found that the running time from our algorithm mostly

conforms to the expected O(n log n) complexity, with a few outliers, although the

87

models with the highest face count produce significantly higher running times.

Comparing the running time results between using and not using our partial heap

updating scheme, we have observed a significant decrease in running time. We note

that increasing the number of layers updated at each update increases the running

time; however, the running time remains similar when reducing the number of layers.

We also note that our caching method reduces running time, and increasing the cache

size reduces running time, and vice versa.

5.2 Future Work

Although our algorithm produces better Hausdorff distances than QEM

in the early stages of simplification, QEM still produces better results at more drastic

levels, especially on meshes with uneven vertex distribution. Therefore, our future

work to improve the algorithm includes improving the curvature factors that we use

for score calculation to make them more tolerant to uneven vertex distribution,

surface noise and changes in the model during the later stages of simplification. Other

possibilities are including easily-calculated factors that remain relatively unaffected

by these issues in the algorithm, and improving the robustness of the curvedness-

inverse-average of normal vectors as an indicator of ideal facial orientation.

Another possible topic of research is improving the memory

management of the process. Our paper uses various arbitrary values that we consider

provide a good balance for our purposes; however, further research into determining

the best values for the best balance of performance may be required. Also, further

research into determining the best method for applying the penalties to the QEM score

may improve results.

88

REFERENCES

Agarwal, P.K., and Suri S. Surface approximation and geometric partitions. In SODA

'94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete

algorithms, 24-33. Philadelphia : SIAM, 1994.

Balmelli, L., Vetterli, M., and Liebling, T.M. Mesh optimization using global error

with application to geometry simplification. Graphical Models 64, 3-4

(May-July 2002) : 230-257.

Batagelo, H.C., and Wu, S-T. Estimating curvatures and their derivatives on meshes

of arbitrary topology from sampling directions. The Visual Computer 23, 9

(September 2007) : 803-812.

Baumgart, B.G. A Polyhedron Representation for Computer Vision. In AFIPS '75:

Proceedings of the May 19-22, 1975, national computer conference and

exposition, 589-596. New York : ACM, 1975.

Boubekeur, T., and Alexa, M. Mesh simplification by stochastic sampling and

topological clustering. Computers & Graphics 33, 3 (2009) : 241-249.

Chen, H-H., Luo, X-N., and Ling, R-T. Surface Simplification Using multi-edge mesh

collapse. In ICIG '07: Proceedings of the Fourth International Conference

on Image and Graphics, 954-959. Washington : IEEE Computer Society,

2007.

Chen, H-K., Fahn, C-S., Tsai, J.J.P., Chen, R-M., and Lin, M-B. A linear time

algorithm for high quality mesh simplification. In IEEE Sixth International

Symposium on Multimedia Software Engineering, 2004. Proceedings.

169-176. Los Alamitos, CA : IEEE Computer Society, 2004.

89

Chen, X., Golovinskiy, A., and Funkhouser, T. A benchmark for 3D mesh

segmentation. In ACM SIGGRAPH 2009 papers, 73:1-73:12. New York :

ACM, 2009.

Choi, H.K., Kim, H.S., and Lee, K.H. A mesh simplification method using noble

optimal positioning. In Falai Chen and Bert Jüttler (eds.), GMP'08:

Proceedings of the 5th international conference on Advances in geometric

modeling and processing, 512-518. Heidelberg : Springer-Verlag Berlin,

2008.

Cignoni, P., Montani, C., and Scopigno, R. A Comparison of Mesh Simplification

Algorithms. Computers & Graphics 22, 1 (1998) : 37-54.

Cignoni, P., Rocchini, C., Montani, C., and Scopigno, R. External memory

management and simplification of huge meshes. IEEE Transactions on

Visualization and Computer Graphics, 9, 4 (October-December 2003) :

525-537.

Cignoni, P., Rocchini, C. and Scopigno, R. Metro: measuring error on simplified

surfaces. Computer Graphics Forum 17, 2 (June 1998) : 167-174.

Clark, J.H. Hierarchical geometric models for visible surface algorithms.

Communications of the ACM 19, 10 (October 1976) : 547-554.

Cohen, J., et al. Simplification envelopes. In SIGGRAPH '96: Proceedings of the

23rd annual conference on Computer graphics and interactive

techniques, 119-128. New York : ACM, 1996.

90

Cohen, J., Manocha, D., and Olano, M. Simplifying polygonal models using

successive mappings. In Roni Yagel and Hans Hagen (eds.), VIS '97:

Proceedings of the 8th conference on Visualization '97, 395-ff. Los

Alamitos, CA : IEEE Computer Society Press, 1997.

Cohen, J., Olano, M., and Manocha, D. Appearance-preserving simplification. In

SIGGRAPH '98: Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, 115 - 122. New York : ACM, 1998.

Eck, M., et al. Multiresolution Analysis of Arbitrary Meshes. In SIGGRAPH '95:

Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, 173-182. New York : ACM, 1995.

Fahn, C-S., Chen, H-K., and Shiau, Y-H. Polygonal Mesh Simplification with Face

Color and Boundary Edge Preservation Using Quadric Error Metric. In MSE

'02: Proceedings of the Fourth IEEE International Symposium on

Multimedia Software Engineering, 174. Washington : IEEE Computer

Society, 2002.

Garland, M., and Heckbert, P.S. Simplifying surfaces with color and texture using

quadric error metrics. In VIS '98: Proceedings of the conference on

Visualization '98, 263 - 269. Los Alamitos, CA : IEEE Computer Society

Press, 1998.

Garland, M., and Heckbert, P.S. Surface simplification using quadric error metrics. In

SIGGRAPH '97: Proceedings of the 24th annual conference on Computer

graphics and interactive techniques, 209 - 216. New York : ACM, 1997.

91

Gieng, T.S., Hamann, B., Joy, K.I., Schussman, G.L., and Trotts, I.J.. Smooth

hierarchical surface triangulations. In Roni Yagel and Hans Hagen (eds.), VIS

'97: Proceedings of the 8th conference on Visualization '97, 379 - 386. Los

Alamitos, CA : IEEE Computer Society Press, 1997.

Guèziec, A. Surface simplification with variable tolerance. In Second Annual Intl.

Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS

’95), 132-139. 1995.

Hamann, B. A data reduction scheme for triangulated surfaces. Computer Aided

Geometric Design 11, 2 (April 1994) : 197 - 214.

Hoppe, H. Progressive meshes. In SIGGRAPH '96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, 99-108.

New York : ACM, 1996.

Hussain, M. Efficient Simplification Methods for Generating High Quality LODs of

3D Meshes. Journal of Computer Science and Technology 24, 3 (2009) :

604-inside back cover.

Hussain, M., Okada, Y., and Niijima, K. Fast, Simple and Memory Efficient Mesh

Simplification. In Proceedings of the Fourth International Conference on

Computer Graphics and Imaging (CGIM2001), 72-77. Anaheim :

IASTED/Acta Press, 2001.

Jia, S., Tang, X., and Pan, H. Fast Mesh Simplification Algorithm Based on Edge

Collapse. Lecture Notes in Control and Information Sciences 344 (2006) :

275-286.

92

Jong, B-S., Tseng, J-L., and Yang, W-H. An efficient and low-error mesh

simplification method based on torsion detection. The Visual Computer 22,

1 (January 2007) : 56-67.

Kho, Y., and Garland, M. User-guided simplification. In I3D '03: Proceedings of the

2003 symposium on Interactive 3D graphics, 123 - 126. New York : ACM,

2003.

Kim, H.S., Choi, H.K., and Lee, K.H. Mesh simplification with vertex color. In Falai

Chen and Bert Jüttler, GMP'08: Proceedings of the 5th international

conference on Advances in geometric modeling and processing, 258-271.

Heidelberg : Springer-Verlag Berlin, 2008.

Kobbelt, L., Campagna, S., and Seidel, H-P. A General Framework for Mesh

Decimation. In Torsten Moller and Colin Ware (eds.), Proceedings of

Graphics Interface, 43-50. Lethbridge, Alberta : AK Peters/CRC Press, 1998.

Kovalevsky, V.. Algorithms and data structures for computer topology. In Gilles

Bertrand, Atsushi Imiya and Reinhard Klette (eds.), Digital and image

geometry, 38-58. New York : Springer-Verlag New York, 2001.

Levoy, M., et al. The digital Michelangelo project. In SIGGRAPH '00: Proceedings

of the 27th annual conference on Computer graphics and interactive

techniques, 131-144. New York : ACM Press/Addison-Wesley, 2000.

Li, Y., and Zhu, Q. A New Mesh Simplification Algorithm Based on Quadric Error

Metrics. In ICACTE '08: Proceedings of the 2008 International

Conference on Advanced Computer Theory and Engineering, 528-532.

Washington : IEEE Computer Society, 2008.

93

Lindstrom, P. Out-of-core simplification of large polygonal models. In SIGGRAPH

'00: Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, 259-262. New York : ACM Press / Addison-

Wesley, 2000.

Lindstrom, P., and Turk, G. Fast and memory efficient polygonal simplification. In

VIS '98: Proceedings of the conference on Visualization '98, 279 - 286. Los

Alamitos, CA : IEEE Computer Society Press, 1998.

Lindstrom, P., and Turk, G. Image-driven simplification. ACM Transactions on

Graphics (TOG) 19, 3 (July 2000) : 204-241.

Luebke, D.P. A Developer’s Survey of Polygonal Simplification Algorithms. IEEE

Computer Graphics & Applications 21, 3 (May 2001) : 24-35.

Ripolles, O., Chover, M., Gumbau, J., Ramos, F. and Puig-Centelles, A. Rendering

continuous level-of-detail meshes by Masking Strips. Graphical Models 71,

5 (September 2009) : 184-195.

Rossignac, J., 3D compression made simple: Edgebreaker with Zip&Wrap on a

corner-table. In International Conference on Shape Modeling and

Applications, SMI 2001, 278-283. Los Alamitos, CA : IEEE Computer

Society Press, 2001.

Rossignac, J., and Borrel, P. Multi-resolution 3D approximations for rendering

complex scenes. In B. Falcidieno and T.L. Kunii (eds.), Geometric Modeling

in Computer Graphics, 455-465. Genova, Italy : Springer Verlag, 1993.

94

Schroeder, W.J., Zarge, J.A., and Lorensen, W.E. Decimation of triangle Meshes. In

SIGGRAPH '92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, 65-70. New York : ACM, 1992.

Smith, C. On vertex-vertex systems and their use in geometric and biological

modelling. Doctoral dissertation, University of Calgary, 2006.

Tang, H., Shu, H.Z., Dillenseger, J.L., Bao, X.D., and Luo, L.M. Technical Section:

Moment-based metrics for mesh simplification. Computers and Graphics

31, 5 (October 2007) : 710-718.

Tang, Z., Yan, S., and Lan, C. A New Method of Mesh Simplification Algorithm

Based on QEM. Information Technology Journal 9, 2 (2010) : 391-394.

Varakorn Ungvichian and Pizzanu Kanongchaiyos. Mapping A 3-D Model into

Abstract Cellular Complex Format. Computer-Aided Design and

Applications Journal 3, 1-4 (2006) : 395-404.

Vieira, A.W., Velho, L., Tavares, G., and Lewiner, T. Fast stellar mesh simplification.

In XVI Brazilian Symposium on Computer Graphics and Image

Processing, 2003. SIBGRAPI 2003., 27-34. Los Alamitos, CA : IEEE

Computer Society, 2003.

Wei, J., and Lou, Y. Feature Preserving Mesh Simplification Using Feature Sensitive

Metric. Journal of Computer Science and Technology 25, 3 (2010) : 595-

605.

95

Wu, J., and Kobbelt, L. Fast Mesh Decimation by Multiple-Choice Techniques. In

Günther Greiner (ed.), Vision, modeling, and visualization 2002, 241-248.

Berlin : Aka GmbH, 2002.

Xu, L., Chen W., Liu. J., and Lü, T. An improved quadric error metrics based on

feature matrix. In 2008 IEEE Conference on Robotics, Automation and

Mechatronics, 582. Chengdu, China : IEEE, 2008.

Zelinka, S., and Garland, M. Permission grids: practical, error-bounded simplification.

ACM Transactions on Graphics (TOG) 21, 2 (April 2002) : 207-229.

Zhigeng, P., Jiaoying, S., and Kun, Z. A new mesh simplification algorithm based on

triangle collapses. Journal of Computer Science and Technology 16, 1:

(January 2001) : 57-63.

96

APPENDIX

EXPERIMENTAL RESULTS

In this chapter, we will display the complete running time and

comparison of Hausdorff distances between QEM and our algorithm. We will then

display selected visual results, as well as other images related to our results.

A.1 Hausdorff distance and luminance difference results

In Table A-1, we display the Hausdorff distances, with respect to

bounding box diagonal, of the models in our sample data simplified with QEM (top)

and our algorithm (middle), along with the running time (bottom). Table A-2 will

display the parameters used to weight the penalties.

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm

Model Faces 50% 20% 10% 5% 2% 1%

1 9408 0.003054 0.011327 0.012432 0.017059 0.040900 0.040838

0.002224 0.005295 0.012277 0.032251 0.043783 0.055846

19.158 33.048 35.902 36.953 38.445 39.006

2 20096 0.001073 0.003161 0.004794 0.007247 0.013983 0.027762

0.001112 0.003512 0.005974 0.010926 0.017590 0.031017

32.236 50.753 58.965 62.109 64.162 65.214

3 11278 0.001092 0.006000 0.005410 0.009275 0.019970 0.032207

0.001957 0.004880 0.010716 0.025016 0.067621 0.073772

19.869 33.909 36.993 38.585 40.068 40.759

97

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

4 11348 0.001332 0.003302 0.007753 0.012306 0.020742 0.042905

0.001747 0.005100 0.010210 0.034277 0.053011 0.079049

18.507 31.465 34.049 35.211 36.172 36.583

5 30308 0.003292 0.003839 0.007148 0.006391 0.027964 0.028467

0.001560 0.002181 0.004314 0.010219 0.034044 0.059597

45.405 70.301 81.397 87.045 89.068 89.859

6 20192 0.001643 0.003935 0.005358 0.009647 0.016934 0.036171

0.001740 0.004245 0.007328 0.017097 0.061595 0.074193

31.916 48.810 56.101 58.694 60.257 60.647

7 16878 0.006656 0.006656 0.013176 0.017469 0.035486 0.063384

0.001441 0.002913 0.006624 0.020418 0.042857 0.062437

27.920 46.206 50.202 52.986 54.789 55.410

8 22026 0.000985 0.004734 0.006311 0.009182 0.017323 0.025914

0.001144 0.002262 0.004779 0.009860 0.026979 0.047495

33.308 52.455 60.958 65.124 66.506 67.287

9 5274 0.007875 0.011246 0.022751 0.025450 0.064382 0.158390

0.002874 0.010769 0.013104 0.033556 0.043925 0.099771

8.262 11.927 13.650 14.411 15.352 15.773

10 19012 0.000993 0.002450 0.004205 0.007653 0.016236 0.016236

0.001528 0.003412 0.004700 0.008416 0.022224 0.028520

37.891 58.625 67.766 70.969 72.906 73.547

98

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

11 21994 0.000465 0.005455 0.008881 0.009683 0.014576 0.022895

0.001086 0.002134 0.004617 0.010499 0.042660 0.046877

50.633 78.583 86.554 89.479 91.271 91.862

12 11224 0.005916 0.006803 0.008752 0.013763 0.017112 0.053291

0.001319 0.002787 0.005350 0.010762 0.017468 0.037312

23.103 35.430 41.450 43.072 44.574 45.195

13 27402 0.002954 0.002954 0.005334 0.010978 0.018783 0.043622

0.001163 0.002322 0.004214 0.007249 0.020517 0.038733

61.844 96.078 110.719 118.188 120.609 121.203

14 11378 0.001736 0.003207 0.005490 0.009510 0.034676 0.034676

0.001518 0.004575 0.011178 0.022490 0.065200 0.081243

23.469 39.109 42.250 43.516 44.578 44.984

15 11258 0.002190 0.004832 0.008484 0.017178 0.037969 0.053825

0.002342 0.005748 0.012775 0.038460 0.058182 0.100492

19.328 32.437 35.321 36.833 38.145 38.826

16 30450 0.004354 0.004431 0.011743 0.014006 0.014865 0.030845

0.001525 0.003801 0.006686 0.010452 0.019276 0.035574

46.407 72.875 84.532 90.340 92.623 93.504

17 31816 0.003263 0.004775 0.005560 0.009595 0.015434 0.021837

0.001567 0.003189 0.006081 0.012974 0.025317 0.051791

48.980 76.921 89.008 94.997 97.330 98.351

99

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

18 30766 0.003344 0.007573 0.007573 0.008545 0.016463 0.022869

0.002343 0.003291 0.006332 0.010417 0.033494 0.049290

47.889 74.537 86.514 92.353 94.516 95.337

19 30950 0.002922 0.003350 0.005389 0.009624 0.023589 0.023589

0.001022 0.002190 0.004442 0.009257 0.023499 0.040833

46.537 71.953 83.470 89.749 92.203 93.164

20 31396 0.005243 0.005247 0.008305 0.008305 0.017013 0.017092

0.001270 0.003418 0.006048 0.011358 0.023708 0.044669

47.298 73.666 85.273 91.191 93.484 94.225

21 30396 0.000456 0.001545 0.002955 0.006206 0.012502 0.023335

0.000828 0.001451 0.003182 0.005664 0.024215 0.036284

52.185 78.583 86.554 89.479 91.271 91.862

22 30004 0.000458 0.001350 0.003480 0.004213 0.020042 0.018304

0.000768 0.001642 0.003879 0.017423 0.088027 0.088027

49.301 83.140 93.314 98.912 101.436 102.017

23 30074 0.000410 0.001318 0.003493 0.005569 0.011790 0.022425

0.000702 0.001462 0.002988 0.005086 0.018029 0.029649

56.712 111.330 122.086 125.851 129.086 130.478

24 30492 0.000488 0.001400 0.002798 0.005451 0.014162 0.024291

0.000866 0.001612 0.003946 0.012693 0.089179 0.145632

53.948 91.231 102.327 108.246 111.410 112.151

100

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

25 30170 0.000649 0.002587 0.002573 0.004101 0.007494 0.015958

0.000679 0.001842 0.003073 0.005299 0.012456 0.021934

58.000 97.625 109.094 113.250 116.281 117.484

26 30418 0.000649 0.001978 0.002908 0.005539 0.010608 0.021418

0.000807 0.001753 0.003114 0.006784 0.022202 0.029708

58.906 98.844 110.703 115.016 118.422 119.781

27 30274 0.002074 0.003909 0.006399 0.005692 0.017711 0.019446

0.000964 0.002263 0.004075 0.006605 0.014685 0.037336

58.672 99.094 110.735 115.047 118.578 120.016

28 30140 0.001300 0.002887 0.003115 0.016588 0.022814 0.030356

0.000785 0.001405 0.002549 0.006865 0.021322 0.041434

56.611 94.346 104.570 108.356 111.210 112.562

29 30254 0.000556 0.001631 0.003149 0.005770 0.020690 0.027292

0.000793 0.002041 0.004016 0.006430 0.013867 0.048340

51.594 87.376 98.311 102.127 104.891 106.073

30 30008 0.000318 0.001306 0.002369 0.003500 0.008099 0.015741

0.000728 0.001254 0.002263 0.004986 0.012150 0.017032

51.193 87.606 98.622 104.500 107.214 108.156

31 30454 0.000997 0.003755 0.003755 0.004534 0.019171 0.029141

0.000911 0.001629 0.002686 0.006126 0.016485 0.029743

54.919 92.553 104.100 108.075 111.310 112.832

101

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

32 29502 0.000564 0.001333 0.003219 0.007152 0.020644 0.025263

0.000849 0.001395 0.002614 0.008315 0.015619 0.029611

58.125 99.016 110.625 114.531 117.266 118.109

33 14698 0.000837 0.003046 0.006228 0.010887 0.022207 0.034847

0.001014 0.002488 0.007117 0.014981 0.035364 0.077658

22.693 38.796 42.301 44.674 46.236 46.767

34 19204 0.000635 0.002217 0.004939 0.008474 0.019095 0.022977

0.001083 0.002254 0.005496 0.006917 0.022813 0.041774

33.338 55.920 62.760 65.094 66.416 67.026

35 30268 0.001758 0.004544 0.005732 0.005732 0.018311 0.017410

0.000886 0.002109 0.002857 0.005775 0.015705 0.033037

49.571 83.780 93.735 97.280 99.783 100.895

36 18152 0.000598 0.001893 0.004640 0.008422 0.016085 0.022346

0.000975 0.001929 0.003740 0.009081 0.020196 0.032004

25.306 41.700 49.231 51.975 53.898 54.588

37 12540 0.001993 0.003772 0.005814 0.010357 0.032548 0.052556

0.002306 0.003542 0.006307 0.014257 0.043726 0.171060

17.756 29.152 34.309 36.222 37.203 37.784

38 30128 0.000782 0.004475 0.003525 0.005931 0.022479 0.024220

0.000758 0.002594 0.005697 0.030728 0.070070 0.069017

48.550 82.639 93.254 99.253 101.206 101.576

39 30322 0.006473 0.006441 0.006382 0.006335 0.009185 0.022904

0.000769 0.003540 0.007273 0.014674 0.049402 0.357970

51.965 88.367 99.153 102.948 105.311 106.153

102

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

40 30326 0.000487 0.001761 0.002544 0.005596 0.009671 0.019241

0.000753 0.001768 0.002691 0.004608 0.012667 0.025731

49.111 82.308 88.968 94.806 97.490 98.321

41 14028 0.000520 0.002056 0.003508 0.005245 0.013232 0.017964

0.000735 0.002029 0.005805 0.012352 0.016966 0.029383

23.023 38.936 42.431 44.474 45.616 46.347

42 8324 0.000423 0.001996 0.005759 0.007493 0.010440 0.071092

0.001645 0.002367 0.007110 0.019858 0.070725 0.102936

13.710 22.302 25.316 26.859 28.201 28.651

43 6824 0.001373 0.002217 0.006380 0.007938 0.012653 0.043182

0.000990 0.003806 0.008591 0.015301 0.040651 0.088274

11.426 18.186 20.279 21.231 22.042 22.532

44 12572 0.000631 0.002280 0.003378 0.005309 0.014003 0.018842

0.001199 0.002089 0.006364 0.015581 0.032212 0.062266

20.900 35.321 38.455 40.348 41.380 42.161

45 10794 0.000792 0.002473 0.004751 0.005987 0.032257 0.134932

0.000860 0.002863 0.007161 0.013574 0.030949 0.076616

17.155 29.432 32.146 33.869 34.800 35.361

46 4784 0.004670 0.004868 0.007586 0.007546 0.016756 0.023167

0.001160 0.002907 0.008529 0.015014 0.025008 0.040615

8.332 12.117 13.860 14.611 15.342 15.863

47 4052 0.001509 0.006504 0.010646 0.013609 0.019756 0.023448

0.001208 0.004181 0.009266 0.010380 0.025902 0.050801

7.571 11.076 12.768 13.620 14.401 14.761

103

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

48 10348 0.000487 0.001720 0.005243 0.008773 0.015047 0.021492

0.000814 0.002212 0.005572 0.013354 0.121845 0.487676

18.006 30.304 32.947 34.259 35.611 36.142

49 6220 0.000860 0.002930 0.005279 0.008233 0.021276 0.028307

0.001435 0.002773 0.006283 0.012711 0.042175 0.072208

11.196 17.575 19.598 20.459 21.301 21.781

50 14836 0.000540 0.002004 0.003598 0.007470 0.025911 0.017804

0.000970 0.002289 0.006531 0.011449 0.023909 0.046701

24.625 41.349 45.035 47.458 48.830 49.361

51 5712 0.001150 0.003325 0.004980 0.011593 0.024247 0.141063

0.001045 0.002857 0.007269 0.019807 0.035696 0.082072

9.664 15.262 17.145 18.326 19.158 19.708

52 3104 0.001364 0.003055 0.006005 0.022856 0.175207 0.175207

0.001473 0.004682 0.010132 0.034419 0.038693 0.077308

4.376 8.202 9.133 9.904 10.585 11.166

53 4988 0.001141 0.003475 0.006074 0.017029 0.019455 0.022682

0.001278 0.003909 0.009662 0.009860 0.031981 0.045562

8.923 13.580 14.591 15.412 16.354 17.004

54 14810 0.000492 0.002382 0.003619 0.006366 0.012164 0.018160

0.000731 0.002057 0.006884 0.017011 0.018499 0.053298

24.615 41.580 45.535 47.909 49.511 50.172

55 5696 0.001218 0.004088 0.006784 0.009452 0.014404 0.116381

0.001367 0.003615 0.008795 0.014332 0.043458 0.054060

10.085 15.562 17.475 18.266 19.128 19.798

104

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

56 17538 0.000499 0.003140 0.006758 0.007169 0.017110 0.032494

0.000853 0.001809 0.004356 0.007388 0.013144 0.024416

28.171 49.351 55.750 57.883 59.165 59.856

57 14822 0.000454 0.002248 0.003759 0.008865 0.013459 0.019320

0.000762 0.002628 0.005564 0.010502 0.018758 0.043901

24.535 41.510 45.385 47.839 49.231 49.802

58 3710 0.000986 0.004733 0.005603 0.012400 0.021741 0.031148

0.001202 0.007163 0.009217 0.016944 0.025045 0.057074

6.589 9.083 10.255 11.176 11.907 12.218

59 5786 0.000955 0.003010 0.004133 0.009255 0.028841 0.028858

0.001422 0.002516 0.005476 0.013215 0.032966 0.070953

10.896 16.464 18.326 19.077 19.829 20.309

60 4746 0.000775 0.003386 0.005035 0.011027 0.012460 0.023706

0.001300 0.004287 0.006844 0.012278 0.050447 0.050530

8.112 11.777 13.690 14.571 15.312 15.683

61 10796 0.000536 0.002478 0.003989 0.005720 0.016546 0.024715

0.000936 0.002663 0.005099 0.007859 0.017481 0.048546

19.418 33.078 36.202 38.355 39.817 40.338

62 11234 0.000637 0.002391 0.004241 0.006018 0.012813 0.027283

0.001021 0.001955 0.004364 0.008603 0.018469 0.034241

18.647 31.305 33.939 35.801 36.633 37.073

63 11034 0.000361 0.001797 0.003470 0.007774 0.015434 0.037876

0.000921 0.002081 0.004356 0.008727 0.018563 0.298004

17.425 27.670 32.146 33.358 34.450 34.880

105

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

64 13590 0.000704 0.002229 0.003605 0.006881 0.015574 0.022538

0.001313 0.002079 0.004485 0.008959 0.016906 0.037636

22.472 37.935 41.229 43.352 44.454 45.035

65 12892 0.000525 0.002151 0.003973 0.006451 0.014462 0.016017

0.000870 0.001727 0.004444 0.006799 0.015688 0.019473

21.781 36.663 39.927 41.920 43.042 43.623

66 15474 0.000161 0.001357 0.003329 0.005211 0.008953 0.020068

0.000562 0.001708 0.003668 0.006556 0.015426 0.022410

24.425 43.212 49.291 51.384 52.435 52.876

67 15298 0.000338 0.001641 0.002880 0.005286 0.012643 0.026596

0.000636 0.001847 0.003832 0.007218 0.012380 0.023534

24.005 42.421 48.289 50.182 51.204 51.644

68 11162 0.000575 0.002567 0.003732 0.007637 0.013518 0.026025

0.000823 0.002225 0.004088 0.008769 0.015798 0.025182

18.687 31.235 33.899 35.691 36.513 36.943

69 13398 0.000337 0.001580 0.002760 0.005664 0.014374 0.018674

0.000645 0.001707 0.004439 0.009875 0.022968 0.122371

22.032 37.844 41.480 43.733 44.955 45.505

 70 11258 0.000347 0.002259 0.003545 0.007512 0.034493 0.043923

0.000950 0.001903 0.003970 0.007964 0.019088 0.070189

18.056 31.285 34.259 36.052 37.023 37.614

71 11694 0.000450 0.001782 0.003654 0.006769 0.009775 0.022950

0.000866 0.001814 0.004290 0.008492 0.015972 0.033649

19.598 32.597 35.461 37.224 38.295 38.776

106

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

72 10452 0.000477 0.002253 0.004287 0.009333 0.018166 0.017433

0.001067 0.002696 0.004018 0.009133 0.026254 0.037230

16.734 28.571 31.185 32.306 33.438 33.909

73 10214 0.000611 0.002102 0.004337 0.008375 0.012048 0.019892

0.001021 0.002304 0.004553 0.008757 0.017561 0.024618

16.614 28.271 30.734 31.816 32.867 33.298

74 10084 0.000618 0.001861 0.003904 0.007359 0.011333 0.022221

0.001068 0.002731 0.004934 0.013017 0.020280 0.047445

16.674 28.461 30.975 32.176 33.338 33.979

75 17354 0.000441 0.001632 0.003649 0.004483 0.009898 0.017749

0.000896 0.001551 0.003459 0.005426 0.012140 0.019228

28.831 48.770 54.949 57.102 58.154 58.744

76 11842 0.000415 0.001625 0.004932 0.005208 0.012860 0.018548

0.000735 0.002132 0.004273 0.008284 0.018641 0.023337

17.715 31.385 34.470 36.032 37.003 37.454

77 13170 0.000468 0.001776 0.002842 0.005595 0.014212 0.015560

0.000958 0.001622 0.004186 0.007102 0.015671 0.022026

21.531 36.472 39.817 41.890 42.772 43.392

78 14936 0.000333 0.001332 0.002444 0.003877 0.016021 0.022129

0.000998 0.002084 0.003241 0.005507 0.015677 0.026219

24.215 41.159 44.905 47.378 48.800 49.251

79 13374 0.000349 0.001748 0.004105 0.005774 0.011998 0.020762

0.000717 0.001657 0.003944 0.007338 0.014342 0.024275

21.801 37.143 40.478 42.521 43.553 44.023

107

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

80 14698 0.000360 0.001685 0.003259 0.005551 0.015376 0.018567

0.000644 0.001758 0.003027 0.006742 0.013420 0.024816

23.283 40.508 44.564 47.138 48.750 49.291

81 12736 0.001768 0.003946 0.005353 0.011366 0.027569 0.034290

0.001463 0.004588 0.013379 0.022718 0.035793 0.065673

21.721 37.143 41.029 43.392 45.045 45.816

82 16594 0.000874 0.003428 0.006018 0.013026 0.029155 0.027886

0.001181 0.002999 0.006998 0.014243 0.034852 0.059523

28.000 46.958 51.234 53.898 55.650 56.371

83 12748 0.001815 0.003789 0.006423 0.009955 0.022021 0.096273

0.001476 0.004585 0.008928 0.018279 0.039005 0.056489

21.241 35.661 38.856 40.719 41.860 42.541

84 13696 0.001257 0.003380 0.007003 0.010610 0.026811 0.037560

0.001225 0.003312 0.007413 0.013982 0.037606 0.062843

22.613 38.285 41.660 43.733 45.215 45.776

85 16772 0.000956 0.003230 0.006266 0.015573 0.029114 0.030009

0.001415 0.003340 0.008854 0.019719 0.039061 0.063196

28.010 47.108 51.364 54.108 55.810 56.621

86 14072 0.001048 0.003933 0.007140 0.015672 0.023446 0.040536

0.001450 0.003649 0.009767 0.016791 0.041171 0.066506

23.504 39.367 42.892 45.105 46.647 47.418

108

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

87 14936 0.001758 0.002775 0.005684 0.009261 0.024654 0.029749

0.001440 0.003130 0.008026 0.015632 0.031728 0.061128

24.285 41.380 45.305 47.909 49.611 50.202

88 16416 0.000939 0.003094 0.005546 0.008851 0.024964 0.023400

0.001213 0.002746 0.005726 0.018812 0.029473 0.048502

27.309 46.036 50.192 52.866 55.099 55.800

89 15304 0.001301 0.003231 0.006483 0.013723 0.023992 0.031391

0.001622 0.003803 0.008743 0.014672 0.043997 0.065579

25.647 43.162 47.058 49.621 51.364 52.005

90 15750 0.001062 0.003403 0.007992 0.010002 0.019083 0.026732

0.001323 0.003658 0.008591 0.019088 0.050614 0.072136

25.957 43.693 47.639 50.292 51.995 52.646

91 17276 0.001094 0.003254 0.006445 0.013678 0.021187 0.028266

0.001305 0.002815 0.006861 0.015804 0.039400 0.062954

28.511 48.299 54.298 56.421 57.553 58.414

92 11730 0.001916 0.003606 0.008933 0.012003 0.025680 0.076213

0.001700 0.003905 0.009087 0.020744 0.049586 0.093215

18.807 32.497 35.491 37.364 38.636 39.297

93 16432 0.000809 0.003332 0.006172 0.009387 0.022010 0.034946

0.001769 0.002725 0.008535 0.012775 0.047612 0.105190

27.089 45.977 51.754 53.086 55.219 56.111

109

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

94 14468 0.001683 0.003008 0.006121 0.010479 0.018464 0.030114

0.001557 0.003000 0.006021 0.014104 0.033916 0.044007

24.165 40.308 40.063 46.206 47.689 48.279

95 14706 0.000984 0.003604 0.005690 0.010578 0.022865 0.039574

0.001123 0.003442 0.008047 0.018715 0.037867 0.057851

23.654 40.648 44.264 46.767 48.279 48.750

96 17004 0.001007 0.004228 0.005593 0.009940 0.020852 0.042139

0.001480 0.003030 0.006823 0.014600 0.030414 0.072939

28.751 47.969 52.025 54.619 56.401 57.052

97 16330 0.001366 0.004283 0.006576 0.017716 0.024356 0.035479

0.001471 0.003500 0.008257 0.018087 0.038154 0.066226

27.600 46.146 50.402 53.056 54.949 55.800

98 12304 0.001308 0.004877 0.005923 0.009647 0.020492 0.040508

0.001767 0.003513 0.010243 0.021207 0.052989 0.060210

20.660 34.820 37.955 39.767 41.129 41.790

99 13758 0.001167 0.003056 0.006310 0.010305 0.020295 0.032677

0.001251 0.003313 0.006999 0.022022 0.032188 0.056484

23.624 38.986 42.231 44.374 45.676 46.327

100 16124 0.001133 0.004149 0.005076 0.009841 0.019381 0.039986

0.001394 0.003043 0.009372 0.015122 0.037247 0.094443

32.813 55.703 61.000 64.063 65.844 66.438

101 16998 0.000054 0.001452 0.002917 0.007594 0.016074 0.020075

0.000358 0.001688 0.004069 0.007071 0.015602 0.024933

35.891 59.250 66.953 70.047 71.172 71.781

110

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

102 31456 0.016001 0.016001 0.010288 0.010775 0.017110 0.025999

0.000855 0.001838 0.003465 0.006740 0.014810 0.020548

66.171 112.063 125.672 132.719 135.250 136.016

103 19304 0.000469 0.002334 0.009989 0.009989 0.012717 0.023701

0.001085 0.002174 0.005711 0.009971 0.022975 0.079994

39.922 67.625 76.500 79.5625 81.266 81.891

104 17306 0.000557 0.000820 0.003351 0.006207 0.018272 0.025251

0.000332 0.002780 0.006833 0.021807 0.039594 0.226061

37.656 56.453 65.500 68.563 70.141 70.547

105 18530 0.000740 0.001484 0.003975 0.006845 0.017181 0.025543

0.000695 0.002568 0.008725 0.031098 0.303668 N/A*

38.641 64.797 70.953 75.984 76.828 N/A*

106 28104 0.008109 0.008610 0.008563 0.008610 0.011811 0.028546

0.000709 0.001910 0.003809 0.008179 0.023598 0.087128

69.156 99.234 116.297 120.313 123.031 123.797

107 22854 0.000529 0.002546 0.004147 0.008967 0.017935 0.023606

0.001108 0.002199 0.004730 0.007809 0.027350 0.031460

46.828 80.469 90.828 94.578 97.031 97.953

108 21008 0.000634 0.002520 0.004712 0.008372 0.016833 0.023065

0.001158 0.002026 0.004225 0.008428 0.018176 0.027522

42.982 73.886 83.410 87.345 90.230 91.862

109 20602 0.000082 0.001549 0.004268 0.007047 0.014546 0.044515

0.000575 0.001778 0.007350 0.011116 0.043881 0.110542

48.266 80.031 89.625 93.031 94.953 95.422

111

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

110 16920 0.008116 0.008230 0.008646 0.008980 0.019305 0.045441

0.001799 0.003104 0.010567 0.031547 0.128419 N/A*

34.797 62.672 71.281 74.093 75.156 N/A*

111 16100 0.008094 0.008093 0.008093 0.008433 0.015287 0.024168

0.001798 0.003412 0.009973 0.110990 0.137811 0.137811

38.344 62.891 70.203 71.500 73.047 73.219

112 27256 0.006877 0.010115 0.007329 0.010444 0.024986 0.024986

0.000735 0.001607 0.003457 0.009775 0.054521 0.370797

66.719 108.922 122.609 129.734 132.344 132.750

113 21500 0.003610 0.003613 0.003610 0.008049 0.013139 0.020665

0.001627 0.001855 0.005113 0.023223 0.148185 0.114980

46.922 79.688 90.656 96.125 97.438 97.469

114 11588 0.000263 0.001891 0.065273 0.073310 0.073310 0.170187

0.001267 0.004398 0.017078 0.050990 0.309078 0.361201

23.109 39.656 43.188 45.094 45.953 46.188

115 20086 0.002028 0.007305 0.010736 0.005455 0.012650 0.018202

0.001628 0.001628 0.006733 0.054788 0.119107 0.119107

45.969 77.375 87.781 91.875 94.281 94.406

116 26926 0.026033 0.025989 0.026157 0.026168 0.026266 0.026522

0.000182 0.001145 0.004168 0.015477 0.087511 0.173991

61.172 97.703 110.203 116.297 117.578 118.047

117 28744 0.021494 0.022012 0.021923 0.021833 0.022277 0.022138

0.000000 0.001608 0.004763 0.012955 0.090454 0.121110

77.296 116.500 129.969 136.781 138.797 139.157

112

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

118 18306 0.001013 0.003127 0.007241 0.009318 0.015834 0.021306

0.000656 0.002372 0.004959 0.010851 0.022189 0.122442

38.812 64.578 72.750 75.531 76.922 77.750

119 24652 0.000655 0.010680 0.020890 0.009022 0.016899 0.023350

0.001614 0.001614 0.004099 0.019477 0.075763 0.076477

61.250 93.953 105.625 109.969 112.484 112.750

120 20242 0.012452 0.017438 0.024766 0.024642 0.025298 0.025470

0.000135 0.001709 0.005199 0.035487 0.148873 0.214718

48.797 77.188 85.875 88.828 89.875 90.125

121 11888 0.001269 0.003310 0.006232 0.013082 0.018419 0.025329

0.001723 0.003308 0.009335 0.016785 0.035186 0.054382

23.484 38.896 42.571 45.065 47.488 48.700

122 14498 0.001040 0.003063 0.005406 0.009556 0.029307 0.026081

0.001181 0.002663 0.006204 0.013997 0.025692 0.041365

29.313 49.234 53.297 55.844 57.422 57.938

123 30982 0.000546 0.001842 0.004118 0.008383 0.020469 0.025811

0.001069 0.001726 0.005123 0.011176 0.029328 0.045709

60.938 103.516 116.266 120.922 124.766 125.484

124 6198 0.001465 0.002916 0.005836 0.008556 0.064251 0.258244

0.002545 0.009326 0.021552 0.024266 0.068673 0.206997

12.922 19.547 21.734 22.469 23.171 23.422

125 2682 0.002958 0.027280 0.065240 0.168817 0.198215 0.214263

0.008017 0.038168 0.067967 0.091343 0.208560 0.208560

4.484 7.031 8.031 8.625 9.141 9.219

113

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

126 12646 0.001289 0.002855 0.005444 0.010276 0.016837 0.021297

0.001489 0.004252 0.009041 0.019612 0.034690 0.116973

27.750 44.781 48.188 50.297 51.406 51.828

127 23808 0.000803 0.002549 0.005060 0.007306 0.024910 0.025467

0.000996 0.002499 0.004262 0.012666 0.028093 0.061302

47.938 83.719 93.593 96.656 98.797 99.547

128 12324 0.001234 0.003333 0.006754 0.014397 0.018960 0.104058

0.001415 0.003935 0.008298 0.021164 0.044172 0.149055

25.875 42.438 45.797 47.766 48.828 49.281

129 12284 0.001302 0.003537 0.005650 0.010671 0.017355 0.107116

0.001189 0.005006 0.008548 0.023193 0.048438 0.215950

24.109 40.469 44.031 46.047 47.078 47.531

130 15490 0.000956 0.003399 0.005526 0.008003 0.022037 0.030966

0.001175 0.002980 0.008531 0.015678 0.034066 0.063405

30.047 50.484 55.250 58.719 61.203 61.875

131 22098 0.000722 0.002950 0.003818 0.007296 0.014810 0.030555

0.001141 0.002175 0.004784 0.009780 0.039497 0.039497

48.547 81.813 92.328 95.781 98.172 99.031

132 15620 0.000351 0.001860 0.006173 0.007759 0.018602 0.020759

0.001272 0.004459 0.018672 0.030110 0.065135 0.143948

29.640 47.453 55.031 57.531 58.922 59.188

133 20932 0.000512 0.001867 0.003633 0.007893 0.022999 0.021785

0.001223 0.002546 0.005285 0.014902 0.032560 0.089986

39.266 66.594 74.563 77.250 78.609 79.391

114

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

134 21860 0.000931 0.003248 0.005398 0.011213 0.025547 0.042928

0.001404 0.002643 0.005501 0.012912 0.034867 0.054317

46.337 78.122 86.164 90.881 93.885 95.257

135 30398 0.000694 0.002377 0.004172 0.007528 0.014805 0.026230

0.001245 0.002750 0.005560 0.010158 0.022819 0.037079

56.938 95.422 106.578 110.578 113.344 114.469

136 28248 0.000759 0.002190 0.004596 0.005361 0.024108 0.021799

0.000973 0.002186 0.003474 0.007542 0.019627 0.037228

62.703 105.969 118.4375 122.906 126.000 127.094

137 18244 0.001415 0.002278 0.004851 0.009644 0.012918 0.018238

0.001471 0.003009 0.009870 0.019497 0.033424 0.080220

33.156 61.156 66.203 70.422 71.438 72.094

138 19184 0.000971 0.004039 0.005009 0.009545 0.014825 0.028533

0.001170 0.002796 0.008277 0.020057 0.047324 0.147565

34.719 60.063 67.500 70.031 71.359 72.109

139 16030 0.000952 0.003292 0.006956 0.009619 0.018169 0.026486

0.001631 0.002817 0.006800 0.011664 0.027451 0.040413

30.344 51.594 56.031 58.906 60.578 61.125

140 18396 0.001003 0.002502 0.003981 0.008026 0.013646 0.022397

0.001080 0.002310 0.004719 0.014409 0.022499 0.048058

35.187 58.906 63.875 67.078 69.156 69.844

141 27848 0.011917 0.023325 0.023006 0.023205 0.023405 0.023343

0.000000 0.000798 0.002153 0.004322 0.018364 0.021316

62.859 98.843 111.344 116.484 119.813 120.813

115

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

142 19600 0.000012 0.000998 0.003429 0.004899 0.019287 0.019311

0.000011 0.001730 0.003461 0.006788 0.014599 0.032945

39.531 67.625 75.438 78.094 79.375 80.188

143 18536 0.000157 0.001104 0.001679 0.004715 0.009497 0.014222

0.000000 0.001388 0.002033 0.006393 0.013693 0.036156

46.391 77.219 86.093 89.281 91.156 91.578

144 30160 0.000132 0.021038 0.020640 0.020492 0.020930 0.020624

0.000000 0.000099 0.001639 0.002253 0.009003 0.012654

78.531 120.984 133.516 139.891 142.172 142.688

145 26408 0.002728 0.005576 0.008912 0.012276 0.015450 0.018838

0.000195 0.001404 0.002228 0.005238 0.010691 0.021375

45.438 81.672 94.531 99.453 102.234 103.078

146 27424 0.005020 0.013443 0.013443 0.029930 0.029930 0.029930

0.001241 0.002476 0.003997 0.006116 0.016733 0.023292

57.643 93.314 104.130 109.748 112.091 113.043

147 27406 0.000112 0.008788 0.011605 0.008817 0.017714 0.020873

0.000000 0.001143 0.002366 0.003224 0.009957 0.021564

54.408 82.929 93.554 99.082 101.145 102.307

148 26746 0.008595 0.020942 0.021294 0.020954 0.021342 0.021814

0.000008 0.001177 0.002400 0.005750 0.013848 0.017740

49.101 77.692 88.377 93.925 96.238 97.060

116

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

149 27172 0.001826 0.020588 0.020633 0.020312 0.021505 0.020868

0.000000 0.001273 0.001645 0.004020 0.008213 0.020691

53.136 82.689 92.884 98.502 100.505 101.856

150 27154 0.020048 0.019793 0.020133 0.019999 0.019858 0.021119

0.000571 0.001562 0.003153 0.005195 0.009667 0.019267

49.641 80.215 90.029 93.895 96.809 98.111

151 25388 0.000004 0.003683 0.004407 0.007624 0.013172 0.026694

0.000002 0.001568 0.002214 0.004966 0.009630 0.019507

48.688 82.844 95.750 100.156 103.156 103.875

152 21082 0.000033 0.000327 0.000768 0.001473 0.007465 0.010454

0.001715 0.001715 0.005684 0.025529 0.044077 0.044203

57.372 84.171 95.097 99.263 101.786 102.007

153 27158 0.015292 0.020647 0.020473 0.019622 0.020740 0.021014

0.000000 0.000662 0.001400 0.003152 0.011615 0.019146

55.009 82.539 92.313 97.711 99.763 100.855

154 27854 0.000479 0.001906 0.003186 0.004949 0.012614 0.030213

0.000996 0.001749 0.002548 0.004556 0.009287 0.017418

43.262 74.417 83.931 87.686 90.630 91.832

155 28764 0.022793 0.023286 0.023064 0.023228 0.023236 0.023402

0.000001 0.000975 0.002147 0.004241 0.015284 0.020961

53.898 90.430 101.977 108.186 110.549 111.500

156 20196 0.000002 0.002550 0.002799 0.004907 0.008088 0.015609

0.000000 0.001399 0.002556 0.004341 0.015548 0.024295

53.166 81.237 88.517 91.401 93.545 94.316

117

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

157 27762 0.018161 0.018772 0.018759 0.018763 0.018789 0.018856

0.000000 0.001366 0.001721 0.003845 0.014404 0.015337

54.739 84.992 95.718 101.566 104.050 105.011

158 29170 0.000053 0.004826 0.007494 0.007494 0.013642 0.020611

0.000131 0.001173 0.002273 0.008234 0.012307 0.020828

85.523 124.229 135.805 141.994 144.297 145.359

159 27856 0.022750 0.022441 0.022230 0.022400 0.022746 0.022443

0.000010 0.001314 0.002351 0.003765 0.008710 0.021093

51.664 81.067 91.712 97.510 99.814 100.995

160 20160 0.015160 0.015160 0.015160 0.015227 0.016493 0.016318

0.004532 0.004532 0.005301 0.048770 0.062318 N/A*

55.430 75.939 85.863 89.599 90.831 N/A*

161 27648 0.000636 0.001728 0.003859 0.006812 0.023064 0.028744

0.001057 0.002250 0.003568 0.006740 0.018576 0.030684

66.976 102.497 112.121 115.586 118.210 119.452

162 20188 0.000710 0.002006 0.003746 0.007974 0.017460 0.030127

0.001168 0.002142 0.003645 0.007297 0.016744 0.027632

33.027 56.061 62.900 65.454 67.347 68.438

163 21758 0.000631 0.001755 0.003463 0.006452 0.027902 0.028889

0.001117 0.001786 0.003837 0.006901 0.019222 0.029887

36.202 61.559 69.149 72.004 74.387 75.428

164 29014 0.000548 0.001559 0.003829 0.010786 0.012553 0.021372

0.001125 0.002062 0.002582 0.006002 0.016495 0.029671

48.350 82.669 92.673 96.689 99.804 101.135

118

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

165 20462 0.000743 0.002078 0.003873 0.008466 0.017559 0.026919

0.001093 0.001774 0.003487 0.007450 0.017885 0.042395

34.049 57.933 65.134 67.848 69.820 70.982

166 22176 0.000615 0.002108 0.003884 0.007763 0.014936 0.026147

0.000953 0.002001 0.003054 0.006148 0.015093 0.023279

36.843 62.300 70.051 72.975 75.348 76.460

167 25290 0.000555 0.002153 0.003955 0.006353 0.014970 0.024094

0.000863 0.001798 0.002885 0.006081 0.013832 0.026604

42.291 71.362 80.075 83.360 85.713 86.805

168 21500 0.000621 0.001902 0.004184 0.007267 0.019106 0.025951

0.001060 0.002349 0.003585 0.006920 0.015027 0.026245

35.571 60.807 68.388 71.323 73.766 74.788

169 25118 0.000527 0.002087 0.002996 0.006015 0.011797 0.019042

0.000858 0.001805 0.003984 0.005673 0.012990 0.020789

42.281 71.939 79.965 83.180 85.563 86.795

170 24996 0.000595 0.001828 0.003050 0.005619 0.011755 0.021255

0.000913 0.001889 0.002514 0.004993 0.014151 0.023564

41.329 70.541 79.094 82.308 84.572 85.883

171 29806 0.000525 0.002130 0.003725 0.007122 0.010932 0.026198

0.000819 0.001342 0.002617 0.005998 0.018948 0.026481

52.505 89.549 100.525 104.630 107.845 109.087

172 20278 0.000691 0.002110 0.004186 0.008053 0.017056 0.028611

0.001363 0.001806 0.003614 0.007569 0.016960 0.030721

33.769 57.413 64.373 67.026 69.019 70.121

119

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

173 27730 0.000600 0.002046 0.003545 0.007540 0.013687 0.025415

0.001007 0.001555 0.003143 0.008311 0.017104 0.032521

46.206 77.832 87.696 91.502 94.466 95.678

174 25658 0.000495 0.002447 0.002766 0.005795 0.011725 0.023076

0.000830 0.001488 0.002874 0.005839 0.014440 0.036838

43.422 72.865 81.697 85.072 87.596 88.567

175 18956 0.000663 0.002354 0.004413 0.008195 0.019642 0.033192

0.001108 0.001924 0.003426 0.007903 0.019494 0.032622

31.465 53.317 59.966 62.400 63.962 64.924

176 24996 0.000601 0.001846 0.004105 0.006057 0.014522 0.028947

0.000936 0.002092 0.002997 0.008084 0.017783 0.040781

43.202 72.114 81.167 84.522 87.155 88.227

177 25082 0.000563 0.001977 0.004002 0.008223 0.012643 0.030202

0.001208 0.001827 0.003376 0.005564 0.018199 0.036952

42.301 70.832 79.574 82.949 85.613 86.734

178 24346 0.000701 0.002074 0.003358 0.006445 0.013679 0.022537

0.000943 0.002187 0.003171 0.006664 0.021391 0.032303

41.159 69.520 78.072 81.327 83.600 84.532

179 26644 0.000536 0.001804 0.003299 0.006095 0.015011 0.026472

0.001040 0.001415 0.003402 0.005716 0.021106 0.036033

45.405 75.899 85.152 88.667 91.521 92.583

180 19092 0.000640 0.002105 0.004447 0.010443 0.014069 0.032749

0.001084 0.001879 0.003395 0.006631 0.024308 0.042316

31.415 53.597 58.484 62.490 64.162 65.044

120

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

181 14480 0.000847 0.002703 0.005576 0.009162 0.017603 0.021623

0.001321 0.002688 0.004843 0.009168 0.026919 0.033829

27.844 47.328 51.391 54.047 56.141 57.141

182 20562 0.000690 0.002180 0.003875 0.007787 0.015905 0.026539

0.001202 0.002377 0.003573 0.011656 0.021094 0.041328

33.969 56.702 63.531 66.025 67.888 69.300

183 22822 0.000674 0.001886 0.003731 0.006245 0.015271 0.019417

0.001001 0.001956 0.003903 0.005649 0.015379 0.033268

35.030 60.908 68.258 71.052 73.376 74.287

184 9366 0.001635 0.004604 0.011158 0.011603 0.022244 0.042038

0.002357 0.004139 0.010296 0.021103 0.041762 0.096615

15.212 24.185 27.059 28.821 30.304 31.035

185 4974 0.003347 0.012195 0.011969 0.024789 0.038689 0.048276

0.003322 0.011239 0.019011 0.053520 0.052015 0.117778

8.412 12.358 14.040 15.072 15.933 16.313

186 13210 0.001034 0.002662 0.004959 0.008545 0.017520 0.022013

0.001321 0.003180 0.005150 0.016871 0.028135 0.047566

21.361 35.922 39.046 41.109 42.701 43.703

187 15256 0.000770 0.002568 0.004900 0.009491 0.016272 0.021524

0.001322 0.002197 0.004818 0.008729 0.030209 0.042906

25.867 42.822 46.627 49.251 51.103 52.005

188 17202 0.000766 0.002003 0.005508 0.005959 0.017664 0.023116

0.001067 0.002087 0.004319 0.007243 0.021078 0.027301

28.381 47.528 51.885 54.889 57.362 58.244

121

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

189 28164 0.000531 0.001989 0.004548 0.005941 0.012083 0.018721

0.000740 0.001607 0.002621 0.004890 0.012421 0.022562

47.969 79.054 88.057 91.702 94.326 95.467

190 14996 0.000759 0.002827 0.005059 0.009783 0.018181 0.025621

0.001118 0.003084 0.003617 0.008577 0.023913 0.032517

24.996 42.782 47.038 50.002 50.125 53.196

191 27528 0.000566 0.002538 0.003708 0.005820 0.013365 0.019965

0.000960 0.002136 0.004479 0.005807 0.023554 0.028798

56.722 96.819 111.000 114.995 119.061 120.223

192 13978 0.000780 0.002277 0.005283 0.009351 0.021669 0.029908

0.001042 0.002130 0.004326 0.010849 0.018533 0.030146

23.544 39.387 43.012 45.265 46.907 47.779

193 14624 0.000840 0.003319 0.005315 0.010321 0.026369 0.039448

0.001335 0.003462 0.005807 0.012249 0.023823 0.036995

24.605 41.620 45.726 48.440 50.262 51.124

194 16938 0.000788 0.002514 0.005236 0.009118 0.018234 0.029507

0.001125 0.002834 0.004093 0.010470 0.020766 0.051075

28.942 47.809 52.315 55.320 57.503 58.594

195 17044 0.000879 0.002936 0.004307 0.010113 0.025604 0.030817

0.001159 0.002593 0.004826 0.008401 0.030715 0.039573

29.192 48.650 53.186 56.161 58.364 59.445

196 14220 0.000904 0.002824 0.005694 0.010933 0.018607 0.032680

0.001321 0.003028 0.004101 0.009148 0.014683 0.051775

23.564 39.907 43.773 46.507 48.550 49.311

122

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

197 15102 0.000820 0.002973 0.007323 0.014849 0.027483 0.034076

0.001249 0.002289 0.005178 0.009080 0.031595 0.039703

25.717 43.202 47.388 50.202 52.205 53.006

198 19124 0.001008 0.001766 0.003787 0.005189 0.015194 0.021681

0.001074 0.001752 0.004358 0.008271 0.014003 0.034099

30.975 52.025 56.792 59.996 62.229 63.221

199 17290 0.001000 0.003460 0.005242 0.009021 0.018667 0.034023

0.001718 0.002496 0.006195 0.014424 0.023405 0.044820

29.673 49.041 53.327 56.341 58.574 59.465

200 3026 0.003791 0.007019 0.011551 0.024244 0.046029 0.098685

0.004562 0.010350 0.019353 0.040750 0.049974 0.122802

4.036 7.120 8.502 9.443 10.435 10.675

201 8970 0.000940 0.002395 0.006269 0.011389 0.016991 0.024085

0.001128 0.002959 0.005412 0.011096 0.017711 0.027170

18.136 27.520 30.604 32.657 34.039 34.710

202 8978 0.000819 0.003681 0.009003 0.006794 0.014201 0.027807

0.001409 0.002689 0.006000 0.009792 0.021107 0.037737

16.864 25.907 29.042 30.764 32.306 33.158

203 7808 0.001036 0.002670 0.005538 0.009814 0.021726 0.031296

0.001239 0.002861 0.005229 0.008115 0.020425 0.047523

13.710 21.571 24.405 25.927 27.540 28.491

204 8810 0.000743 0.002662 0.004436 0.009161 0.013179 0.018473

0.001376 0.002723 0.006247 0.007513 0.015079 0.026746

15.352 24.025 26.859 28.631 30.083 30.704

123

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

205 8952 0.000754 0.010514 0.010514 0.023997 0.041278 0.042360

0.001048 0.002207 0.003992 0.010015 0.022550 0.049710

15.512 24.535 27.660 29.402 31.055 31.906

206 9584 0.001273 0.002598 0.003547 0.007844 0.014179 0.028297

0.001459 0.003138 0.004351 0.007814 0.015008 0.032881

17.225 27.149 31.275 32.497 33.859 35.020

207 10400 0.035034 0.038447 0.032012 0.039465 0.022556 0.029904

0.001357 0.002428 0.004040 0.007244 0.018602 0.023938

19.648 31.625 34.269 35.711 37.294 38.395

208 12204 0.004004 0.005200 0.005642 0.007713 0.016251 0.020715

0.001157 0.002067 0.003196 0.007187 0.014722 0.035440

22.893 36.773 39.937 41.940 43.543 44.404

209 10216 0.000807 0.002728 0.005080 0.007376 0.019880 0.024560

0.001093 0.002127 0.004973 0.006494 0.023033 0.027471

18.196 29.913 32.517 33.919 35.501 36.482

210 11012 0.005697 0.005585 0.011254 0.014997 0.014241 0.019289

0.001131 0.002359 0.003716 0.007299 0.016559 0.050228

20.479 33.258 36.062 37.644 39.146 39.987

211 8564 0.000866 0.002945 0.005151 0.027639 0.042656 0.028441

0.001424 0.002741 0.006083 0.009328 0.021282 0.028368

17.797 27.984 31.156 32.891 34.031 34.641

212 8592 0.002174 0.005380 0.007314 0.018166 0.015401 0.028371

0.001409 0.002228 0.004518 0.008396 0.020948 0.028627

15.963 24.415 27.249 29.132 30.514 31.275

124

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

213 7922 0.001063 0.002896 0.004690 0.007707 0.028110 0.035439

0.001316 0.002499 0.005920 0.008192 0.018778 0.058142

13.800 21.581 24.315 26.268 27.429 28.421

214 7604 0.001082 0.002811 0.004810 0.010877 0.024160 0.024818

0.001342 0.002524 0.005242 0.008030 0.018520 0.039676

13.049 20.560 23.183 24.766 25.847 26.839

215 8922 0.002466 0.015086 0.007353 0.014067 0.015310 0.027283

0.001130 0.002462 0.006329 0.007721 0.014392 0.028347

16.634 25.256 28.171 30.053 31.455 32.236

216 8952 0.000941 0.002714 0.004074 0.010171 0.025717 0.033364

0.001179 0.003289 0.004274 0.008224 0.020619 0.038002

16.484 25.437 28.801 30.624 32.246 33.168

217 10398 0.002401 0.003685 0.006562 0.006741 0.020918 0.021990

0.001269 0.002580 0.005086 0.008650 0.013682 0.028925

19.007 30.934 33.678 35.261 36.593 37.794

218 12392 0.023463 0.032611 0.032614 0.027178 0.033305 0.038607

0.001092 0.002083 0.004136 0.007145 0.016177 0.026257

22.873 37.304 40.588 42.681 44.284 45.415

219 7880 0.000827 0.008216 0.009828 0.022546 0.028412 0.038186

0.001137 0.002473 0.005620 0.009999 0.017513 0.052067

14.070 21.942 24.806 26.368 27.720 28.731

220 8910 0.001061 0.008559 0.010049 0.016031 0.016101 0.021522

0.001108 0.001971 0.004370 0.008252 0.019771 0.089288

16.454 25.407 28.521 30.213 31.736 32.497

125

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

221 14238 0.000648 0.001990 0.003123 0.007984 0.012909 0.017831

0.000961 0.002068 0.004672 0.008029 0.023256 0.028294

22.873 39.437 43.713 46.186 47.468 48.129

222 10506 0.001411 0.009320 0.009320 0.009320 0.014978 0.024195

0.001160 0.002456 0.004354 0.011620 0.022721 0.044090

16.714 26.899 31.195 32.467 33.909 34.770

223 13308 0.000597 0.004310 0.004306 0.006909 0.019178 0.019123

0.001236 0.002236 0.003812 0.011345 0.020348 0.029352

22.082 38.005 41.730 44.033 45.285 45.916

224 10118 0.000742 0.002394 0.004370 0.008536 0.032093 0.032273

0.001074 0.002417 0.004574 0.009945 0.018658 0.033964

16.133 26.158 30.584 32.046 33.598 34.430

225 12148 0.000547 0.001913 0.003997 0.006279 0.016492 0.023795

0.000846 0.002137 0.003800 0.007389 0.016601 0.027402

20.520 34.720 38.095 40.158 41.440 42.241

226 10428 0.002137 0.007309 0.007309 0.018669 0.018669 0.025181

0.001017 0.001978 0.004171 0.011386 0.022534 0.051669

16.614 26.368 30.604 32.016 33.508 34.379

227 10428 0.002137 0.007309 0.007309 0.018669 0.018669 0.025181

0.001017 0.001978 0.004171 0.011386 0.022534 0.051669

16.934 26.708 30.934 32.306 33.779 34.670

228 11180 0.000722 0.002513 0.004323 0.007839 0.019115 0.036614

0.001078 0.002374 0.004826 0.009839 0.018923 0.042357

18.677 31.716 34.700 36.312 37.985 38.726

126

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

229 10486 0.000709 0.002412 0.006570 0.009466 0.018026 0.027587

0.001112 0.002219 0.004104 0.009598 0.025277 0.046216

17.275 27.119 31.465 32.767 34.239 34.770

230 15142 0.000538 0.002036 0.004006 0.005770 0.014089 0.024276

0.000881 0.001922 0.003417 0.005962 0.015918 0.031344

25.186 42.912 46.867 49.401 51.434 52.485

231 12524 0.001431 0.002163 0.004592 0.007849 0.025069 0.024896

0.000964 0.002802 0.004548 0.007698 0.021810 0.040588

24.688 42.156 46.625 49.109 50.391 51.109

232 10876 0.000733 0.002287 0.004059 0.009478 0.013723 0.039763

0.000962 0.002271 0.005051 0.010175 0.025700 0.050585

18.086 29.993 35.511 37.173 38.866 39.597

233 20368 0.000499 0.001712 0.003636 0.005403 0.013629 0.017744

0.000904 0.001752 0.003787 0.008843 0.019670 0.034457

39.734 67.781 76.438 79.719 82.141 82.891

234 14992 0.000739 0.002257 0.004066 0.006887 0.030266 0.032285

0.000811 0.001844 0.004208 0.009492 0.023266 0.031211

26.959 46.807 52.215 55.420 57.983 59.035

235 10496 0.000925 0.002508 0.004656 0.008567 0.016183 0.026879

0.001072 0.002552 0.004339 0.011065 0.027535 0.033380

19.368 31.906 36.783 38.275 39.927 40.869

236 9686 0.000851 0.002704 0.003929 0.009051 0.013594 0.031620

0.001134 0.002160 0.004930 0.012126 0.020885 0.038340

16.604 26.725 31.295 32.627 34.089 34.850

127

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

237 8874 0.001707 0.002559 0.004392 0.009588 0.014812 0.040240

0.000949 0.002839 0.004397 0.010293 0.022345 0.059796

15.022 26.428 27.099 28.942 30.514 31.245

238 10188 0.000747 0.002250 0.004586 0.009224 0.017315 0.024886

0.001224 0.002492 0.004824 0.010541 0.024103 0.055552

17.776 28.882 33.669 35.731 37.534 38.506

239 10238 0.000637 0.002103 0.004139 0.006805 0.014338 0.030576

0.000947 0.002729 0.004532 0.009056 0.015991 0.029510

20.156 31.672 36.594 38.031 39.391 40.203

240 13662 0.000656 0.002204 0.003803 0.007423 0.014277 0.039351

0.001032 0.001913 0.005020 0.009786 0.017315 0.039281

24.195 40.989 45.065 47.639 49.371 50.122

241 6952 0.000741 0.002159 0.003815 0.007700 0.011164 0.032201

0.000936 0.002048 0.005365 0.010416 0.021014 0.030753

14.844 22.578 24.984 26.141 27.328 27.891

242 15694 0.000669 0.002010 0.003406 0.005459 0.011191 0.015059

0.001111 0.002335 0.003399 0.011136 0.012704 0.022526

31.578 54.156 59.438 62.766 64.703 65.406

243 6312 0.000846 0.002974 0.005836 0.008503 0.019891 0.023469

0.001559 0.002748 0.005973 0.012124 0.030985 0.057274

12.798 20.179 22.693 24.035 25.296 25.827

244 8998 0.000651 0.002418 0.003769 0.007905 0.019052 0.024395

0.001023 0.002147 0.004078 0.007459 0.022391 0.030340

18.186 28.291 32.547 33.919 35.231 36.172

128

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

245 12946 0.000876 0.002485 0.003491 0.006766 0.013726 0.023762

0.001021 0.003197 0.004520 0.007665 0.025258 0.029816

23.944 41.720 46.016 48.520 49.872 50.593

246 8434 0.000668 0.002759 0.004581 0.006242 0.028944 0.044472

0.001068 0.003865 0.005899 0.008782 0.018766 0.046088

16.703 26.922 31.188 32.313 33.641 34.203

247 11034 0.000552 0.001949 0.004194 0.006808 0.010983 0.026658

0.000819 0.002178 0.003802 0.006673 0.017006 0.027875

21.912 36.943 40.168 42.401 43.773 44.364

248 23576 0.000624 0.001740 0.002647 0.004012 0.010305 0.020040

0.000708 0.001165 0.002601 0.005853 0.020244 0.021263

45.172 77.672 87.562 91.422 94.125 94.984

249 7424 0.000705 0.002456 0.004066 0.008036 0.014107 0.026090

0.001083 0.002713 0.007054 0.010093 0.020014 0.104541

15.469 24.375 27.516 29.125 29.953 30.484

250 8556 0.002148 0.009327 0.009327 0.012026 0.015401 0.015401

0.000793 0.002214 0.007486 0.011923 0.027166 0.313558

17.906 28.110 31.525 33.348 34.730 35.781

251 6312 0.000846 0.002974 0.005836 0.008503 0.019891 0.023469

0.001559 0.002748 0.005973 0.012124 0.030985 0.057274

12.829 21.391 23.813 24.969 25.922 26.297

252 12698 0.000575 0.001985 0.003797 0.005662 0.014313 0.017741

0.001013 0.002340 0.003740 0.005961 0.013490 0.032299

24.391 41.922 45.797 48.234 49.625 50.438

129

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

253 12324 0.001322 0.001908 0.003488 0.005515 0.014874 0.021809

0.000788 0.002258 0.004739 0.007763 0.021712 0.029519

19.391 32.593 35.453 36.984 37.719 37.984

254 7272 0.000647 0.002251 0.003952 0.006875 0.024473 0.017940

0.000969 0.002425 0.004690 0.011995 0.038387 0.040786

12.766 21.031 23.453 24.797 25.375 25.688

255 10104 0.000722 0.002241 0.003374 0.007398 0.011686 0.020710

0.001161 0.001972 0.004945 0.009833 0.017489 0.034060

18.781 29.734 34.484 35.656 36.875 37.391

256 11936 0.011743 0.016178 0.018178 0.018178 0.018178 0.028971

0.000731 0.001591 0.004017 0.011878 0.024481 0.106918

23.203 39.203 42.734 44.562 45.453 46.000

257 4266 0.036795 0.051530 0.051530 0.076139 0.094254 0.192701

0.005563 0.015646 0.079521 0.091119 0.109779 0.109779

8.272 11.937 13.059 13.790 14.781 15.342

258 17888 0.004323 0.005595 0.008951 0.011477 0.019433 0.031010

0.002644 0.012232 0.028545 0.064749 0.068432 0.095392

33.672 57.531 62.656 65.563 66.547 67.172

259 18026 0.000669 0.001877 0.003234 0.005356 0.014701 0.026121

0.000831 0.001899 0.003629 0.005445 0.014436 0.023062

35.361 57.713 62.760 66.355 68.368 69.470

130

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

260 4990 0.003781 0.012264 0.012911 0.042963 0.092943 0.247300

0.003521 0.009942 0.025309 0.043397 0.067166 0.426666

9.223 13.089 14.741 15.542 16.113 16.343

281 50542 0.002348 0.004108 0.004852 0.006469 0.018270 0.031355

0.001501 0.002587 0.004435 0.006124 0.020837 0.035884

105.682 178.196 197.905 207.599 211.694 213.697

282 48942 0.002499 0.004850 0.006796 0.008690 0.011651 0.029683

0.001997 0.002564 0.005978 0.007660 0.024542 0.040134

95.748 166.399 187.149 196.753 201.580 203.793

283 48964 0.002163 0.002746 0.003583 0.005194 0.015780 0.025718

0.001257 0.002137 0.003194 0.009889 0.023408 0.043920

99.797 166.625 186.203 196.109 200.313 202.234

284 50984 0.002366 0.002584 0.004040 0.005814 0.010392 0.032316

0.001365 0.002342 0.006288 0.012321 0.056800 0.109229

92.393 157.086 181.611 193.528 216.902 222.760

285 50382 0.002438 0.003416 0.003906 0.006883 0.011586 0.023389

0.002339 0.002293 0.004362 0.007357 0.020292 0.037635

101.406 169.063 191.355 202.272 208.129 210.042

286 50212 0.002646 0.004118 0.006273 0.007761 0.014231 0.032564

0.001272 0.002750 0.003917 0.007078 0.016418 0.036690

109.708 193.569 217.493 230.241 235.298 237.752

287 50978 0.002910 0.004797 0.004494 0.006312 0.014605 0.027620

0.001446 0.002862 0.006601 0.016523 0.055717 0.102019

101.188 177.188 197.391 209.156 214.109 214.625

131

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

288 39996 0.003453 0.003914 0.004418 0.006517 0.020426 0.031706

0.001624 0.003178 0.004879 0.009535 0.025422 0.040580

72.004 119.922 134.413 141.924 145.229 146.691

289 50418 0.001276 0.002816 0.004181 0.006197 0.009815 0.024683

0.001162 0.002310 0.003344 0.005411 0.016902 0.038586

91.031 152.079 169.804 178.907 182.803 184.736

290 50858 0.002652 0.004500 0.004642 0.006121 0.012543 0.026452

0.001417 0.002939 0.005999 0.021006 0.075459 0.106535

88.768 147.272 164.547 173.700 177.555 179.128

291 49226 0.003680 0.006228 0.008930 0.008930 0.013989 0.030029

0.001786 0.003055 0.004644 0.007911 0.019760 0.037161

86.855 144.988 162.183 171.186 174.421 176.033

292 43544 0.002236 0.003880 0.004922 0.007131 0.018535 0.032799

0.001522 0.002625 0.004391 0.009743 0.019232 0.042093

76.891 128.995 143.997 149.425 154.392 155.714

293 29996 0.003477 0.005483 0.005498 0.008854 0.022563 0.033604

0.001867 0.003809 0.005902 0.010018 0.023146 0.059177

53.307 88.928 99.994 104.160 107.264 108.506

294 32998 0.001409 0.003387 0.003852 0.006517 0.015962 0.031869

0.001933 0.002879 0.006016 0.009254 0.024699 0.041768

56.101 94.125 105.271 109.438 112.802 114.174

295 33556 0.003288 0.003572 0.004888 0.007241 0.021011 0.040401

0.001924 0.002685 0.004783 0.008635 0.025635 0.049961

56.782 88.978 102.878 109.988 113.213 114.795

132

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

296 31660 0.001483 0.003964 0.005515 0.008954 0.012913 0.041018

0.001830 0.003246 0.005380 0.009926 0.023292 0.038529

53.657 83.420 96.619 103.289 106.163 107.204

297 30626 0.002259 0.003476 0.005544 0.008919 0.016042 0.044522

0.001920 0.003213 0.005722 0.012578 0.025501 0.043657

51.644 86.745 96.935 100.394 103.078 104.140

298 29996 0.003320 0.003892 0.005609 0.009479 0.023094 0.034523

0.001802 0.003373 0.006062 0.010766 0.025550 0.044063

52.095 87.075 97.580 101.506 104.430 105.532

299 34230 0.001299 0.003399 0.004930 0.006905 0.013447 0.039935

0.001575 0.003144 0.005006 0.010636 0.029246 0.062591

57.963 97.190 108.726 112.872 116.137 117.489

300 34902 0.001034 0.002850 0.004125 0.006575 0.013718 0.034051

0.001187 0.002840 0.003849 0.008825 0.020463 0.035228

64.473 115.636 124.769 136.076 145.940 150.076

301 18500 0.001279 0.003543 0.005097 0.008633 0.012728 0.030864

0.001613 0.003367 0.004583 0.007732 0.021307 0.045735

33.328 56.371 61.378 64.473 66.235 66.866

302 50246 0.008379 0.008379 0.009757 0.009757 0.011909 0.018582

0.004788 0.004853 0.004627 0.009664 0.035713 0.086761

103.489 170.806 190.915 201.870 208.710 209.872

303 31028 0.006967 0.008942 0.011577 0.007261 0.013702 0.025727

0.001456 0.002683 0.005509 0.010627 0.021562 0.038396

56.321 85.243 97.570 103.509 105.502 106.123

133

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

304 50930 0.000599 0.001842 0.002798 0.007719 0.011441 0.018507

0.001140 0.001873 0.003466 0.005419 0.015761 0.020099

82.348 143.657 162.053 171.356 174.841 176.324

305 55644 0.000654 0.004173 0.006765 0.007604 0.007487 0.010833

0.000963 0.001926 0.002762 0.005794 0.011978 0.029618

98.021 162.814 182.042 192.016 197.103 197.945

306 53592 0.000548 0.001222 0.004967 0.005063 0.008084 0.010511

0.000783 0.001474 0.002459 0.002999 0.009116 0.012589

95.437 158.228 176.384 185.587 189.122 190.774

307 54874 0.000553 0.001255 0.002672 0.005348 0.007113 0.013534

0.000919 0.001529 0.002337 0.003576 0.008647 0.012462

101.155 165.498 184.305 193.869 197.634 199.307

308 47948 0.000660 0.001478 0.002528 0.005099 0.009404 0.013855

0.000846 0.001543 0.002261 0.003499 0.008740 0.014985

82.819 137.718 153.300 161.372 164.376 165.558

309 10390 0.005295 0.011091 0.016269 0.030939 0.070816 0.116687

0.007843 0.020992 0.037047 0.090530 0.091532 0.138141

17.866 28.541 31.676 32.997 34.190 34.600

310 16522 0.001870 0.003964 0.006398 0.015326 0.017712 0.031271

0.002066 0.003257 0.005543 0.010715 0.020151 0.037356

28.841 43.933 51.614 53.217 55.069 55.440

311 50456 0.000573 0.002063 0.007105 0.007685 0.016879 0.020937

0.001211 0.002245 0.003470 0.005399 0.010804 0.020043

100.104 171.947 193.108 203.703 208.300 209.942

134

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

312 53966 0.003791 0.004310 0.004290 0.006515 0.013657 0.021130

0.000868 0.001824 0.003319 0.005230 0.016325 0.031007

100.655 182.412 208.209 222.520 230.622 234.197

313 21700 0.003873 0.013893 0.013893 0.013893 0.033479 0.049448

0.002407 0.004258 0.007805 0.012166 0.026915 0.048070

48.940 79.514 85.503 89.238 91.602 92.173

314 52870 0.000590 0.001564 0.003118 0.004457 0.008056 0.012410

0.000994 0.001565 0.002488 0.004626 0.010092 0.023604

103.399 173.760 192.271 206.136 211.875 213.177

315 51532 0.003816 0.003821 0.003715 0.005315 0.009247 0.015443

0.000969 0.001637 0.003345 0.004913 0.010060 0.018154

88.467 158.118 178.296 188.261 195.538 194.530

316 46786 0.000822 0.002284 0.007550 0.007779 0.011603 0.016457

0.001450 0.002298 0.004297 0.007502 0.015187 0.023404

84.061 150.466 168.763 177.886 182.012 184.015

317 55448 0.000411 0.001381 0.003593 0.006221 0.010216 0.013079

0.000751 0.001434 0.002124 0.004094 0.007899 0.016138

100.895 170.525 191.315 202.752 208.340 209.451

318 50286 0.000837 0.001865 0.002827 0.004289 0.009824 0.018536

0.000824 0.001393 0.002367 0.005788 0.010495 0.019303

99.433 167.431 187.890 198.255 204.334 208.259

319 53112 0.000293 0.000931 0.001607 0.005928 0.008381 0.009600

0.000776 0.000847 0.001439 0.003014 0.006337 0.009632

111.563 188.547 210.125 220.719 224.609 226.453

135

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

320 54232 0.000477 0.002135 0.004257 0.004663 0.007022 0.011573

0.001069 0.001587 0.002688 0.004089 0.010056 0.017811

115.734 196.938 220.641 232.234 236.625 238.578

321 29986 0.015154 0.080697 0.080336 0.082307 0.082629 0.085642

0.000000 0.000000 0.000005 0.000006 0.025466 0.120618

81.838 123.698 134.443 138.860 141.503 142.204

322 29978 0.000110 0.111473 0.111774 0.111540 0.114065 0.113415

0.000000 0.000000 0.000005 0.000013 0.025211 0.112454

77.281 120.000 132.50 137.125 140.250 140.875

323 29978 0.000005 0.002503 0.126121 0.126160 0.126272 0.125445

0.000000 0.000000 0.000006 0.000086 0.012144 0.096118

72.845 109.668 120.623 125.030 128.124 128.855

324 29620 0.087634 0.088982 0.088435 0.088198 0.088184 0.088278

0.000008 0.000776 0.002046 0.006336 0.023576 0.055453

53.016 85.162 95.567 99.473 101.726 102.237

325 29994 0.000418 0.000695 0.000658 0.000695 0.001428 0.001428

0.000005 0.000006 0.000008 0.000064 0.023785 0.088748

55.099 91.682 103.539 110.028 112.352 112.862

326 29986 0.057047 0.057047 0.057059 0.057059 0.057008 0.057008

0.000005 0.000015 0.000025 0.000807 0.058944 0.106564

57.152 93.735 104.851 110.769 112.271 113.133

327 29870 0.000032 0.000076 0.000205 0.000753 0.000951 0.004480

0.000006 0.000023 0.000263 0.016248 0.176316 0.173976

47.919 81.527 92.393 97.871 99.103 100.024

136

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

328 29984 0.000005 0.000006 0.128393 0.128678 0.127983 0.128620

0.000000 0.000000 0.000005 0.000007 0.028707 0.082320

79.264 123.398 136.576 141.804 145.159 145.910

329 29994 0.016464 0.124097 0.123632 0.123632 0.124106 0.124066

0.000000 0.000000 0.000000 0.000005 0.000007 0.023464

79.594 120.984 132.190 136.877 139.941 140.552

330 29996 0.000006 0.095017 0.094942 0.094942 0.094707 0.094762

0.000000 0.000000 0.000005 0.000007 0.030605 0.092813

75.047 120.406 132.766 137.234 139.766 140.281

331 29996 0.113543 0.113543 0.113543 0.113543 0.113543 0.113543

0.000000 0.000000 0.000005 0.000007 0.020965 0.076975

77.031 128.938 143.719 148.719 151.781 153.203

332 29990 0.000007 0.066778 0.065047 0.074340 0.095718 0.117880

0.000000 0.000007 0.000020 0.000052 0.027269 0.092432

73.025 100.434 112.752 119.362 122.336 123.067

333 29880 0.113542 0.113542 0.113542 0.113542 0.113542 0.113542

0.000000 0.000006 0.000011 0.000310 0.016547 0.111865

66.776 96.419 107.505 111.300 114.084 114.855

334 29990 0.088971 0.088971 0.088971 0.088971 0.088971 0.088971

0.000000 0.000000 0.000006 0.000320 0.086556 0.127409

65.969 106.953 121.016 128.281 129.484 130.375

335 29986 0.000006 0.087710 0.122494 0.122601 0.122500 0.121908

0.000000 0.000000 0.000004 0.000006 0.022227 0.139162

75.281 119.141 131.125 135.625 138.422 138.891

137

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

336 31006 0.004041 0.045860 0.045616 0.045805 0.045674 0.045440

0.000000 0.001304 0.001940 0.002615 0.004845 0.010092

59.896 92.583 104.460 110.679 112.902 113.663

337 23062 0.000478 0.001428 0.002649 0.005906 0.011273 0.023641

0.000877 0.002302 0.002716 0.004794 0.011297 0.029389

40.779 69.610 78.413 81.728 83.790 84.361

338 38802 0.000116 0.007732 0.006889 0.006769 0.006752 0.009646

0.000055 0.001297 0.001858 0.003714 0.014642 0.017717

70.141 116.357 132.140 140.472 143.967 145.379

339 29996 0.113543 0.113543 0.113543 0.113543 0.113543 0.113543

0.000000 0.000001 0.000005 0.000007 0.000007 0.104618

63.922 106.250 119.093 123.672 126.172 126.688

340 29990 0.088965 0.088965 0.088965 0.088965 0.088969 0.088970

0.000000 0.000000 0.000006 0.000006 0.081418 0.106384

64.234 104.844 118.250 125.578 126.781 127.688

341 3322 0.000001 0.000001 0.009260 0.020886 0.038773 0.078833

0.025949 0.115654 0.195246 0.197037 0.197037 0.197037

4.777 7.751 8.512 8.943 9.303 9.544

342 3322 0.000000 0.000000 0.006272 0.015127 0.038036 0.065457

0.032470 0.184711 0.186176 0.190001 0.211895 0.215702

4.578 7.313 7.844 8.093 8.250 8.343

343 3322 0.000001 0.000001 0.006272 0.017890 0.038036 0.076702

0.019264 0.135576 0.135576 0.141781 0.142812 0.142812

4.356 6.699 7.150 7.431 7.611 7.711

138

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

344 6360 0.002923 0.013797 0.013797 0.016082 0.029316 0.044245

0.001634 0.003064 0.006492 0.023473 0.057499 0.108977

11.436 17.045 18.457 19.798 20.770 21.210

345 7224 0.007032 0.010248 0.011395 0.017930 0.035908 0.040513

0.001160 0.003843 0.008895 0.030783 0.187655 0.225259

13.239 19.919 22.062 23.183 23.904 24.065

346 7170 0.003173 0.003634 0.009484 0.014055 0.027988 0.042094

0.002211 0.002766 0.005800 0.020012 0.085879 0.189056

13.159 19.839 21.932 23.053 24.075 24.295

347 5242 0.002552 0.005206 0.009919 0.030132 0.073209 0.113882

0.001710 0.005011 0.009622 0.048793 0.088630 0.152767

9.664 13.490 15.542 16.594 17.215 17.375

348 5132 0.000001 0.000001 0.000001 0.002773 0.012190 0.035879

0.073313 0.082654 0.082654 0.220317 0.220317 0.235518

6.189 11.847 12.498 13.319 13.740 13.900

349 5132 0.000000 0.000001 0.000001 0.002956 0.017762 0.026556

0.071576 0.216260 0.220180 0.220180 0.223769 0.231107

6.269 11.537 12.328 13.089 13.449 13.600

350 17514 0.021003 0.021692 0.021695 0.028357 0.035002 0.035871

0.000231 0.001401 0.001951 0.004810 0.019150 0.074257

30.284 45.085 52.175 54.408 55.470 56.121

351 10380 0.222535 0.458087 0.593273 0.796202 0.803227 0.866060

0.006076 0.001245 0.084882 N/A* N/A* N/A*

18.987 35.030 36.693 N/A* N/A* N/A*

139

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

352 20796 0.057031 0.057605 0.057547 0.056908 0.057274 0.057824

0.000420 0.000812 0.001399 0.003421 0.008715 0.023677

37.524 56.141 64.643 67.818 70.001 70.822

353 3020 0.093447 0.093447 0.353277 0.451729 0.461662 0.461662

0.066951 0.287812 0.287812 0.287812 0.287812 0.287812

4.066 6.099 6.610 6.900 7.080 7.180

354 5816 0.004914 0.019172 0.019172 0.026197 0.026197 0.042667

0.002933 0.003967 0.009031 0.049494 0.056885 0.108334

9.794 15.172 16.634 18.097 19.007 19.188

355 29984 0.000007 0.000236 0.000246 0.000236 0.000246 0.001971

0.000009 0.000086 0.000086 0.000689 0.000245 0.005283

47.900 71.052 81.437 84.822 86.865 87.776

356 29980 0.000007 0.000010 0.000032 0.000183 0.000183 0.001971

0.000010 0.000052 0.000183 0.000183 0.000183 0.007412

48.009 71.663 82.358 85.813 87.866 88.808

357 29764 0.050152 0.049930 0.049664 0.049186 0.049365 0.050016

0.000000 0.000083 0.000725 0.004558 0.022579 0.056077

59.656 88.657 100.404 106.693 108.596 109.057

358 28266 0.492324 0.492324 0.492324 0.584723 0.584723 0.617882

0.000006 0.000007 0.000495 0.007789 0.059920 0.068989

50.813 82.769 89.719 95.607 97.540 98.001

359 29924 0.059355 0.059988 0.059359 0.059987 0.059988 0.059987

0.000005 0.000008 0.000241 0.013123 0.059987 0.186906

54.498 87.866 97.990 101.646 104.060 104.701

140

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

360 4396 0.007333 0.007333 0.014286 0.029113 0.054777 0.127590

0.002018 0.005585 0.014512 0.044591 0.070872 0.079955

5.318 9.944 11.216 12.258 12.738 12.869

361 29734 0.001089 0.002497 0.005113 0.006773 0.017582 0.025099

0.001337 0.002258 0.005189 0.011103 0.038002 0.081720

49.631 88.770 93.965 97.891 100.955 102.267

362 28952 0.001016 0.002465 0.004162 0.004712 0.014114 0.020948

0.001324 0.002366 0.003053 0.006038 0.014147 0.027846

48.360 81.657 91.361 94.836 97.360 98.031

363 26864 0.000512 0.001392 0.002494 0.003539 0.007769 0.011731

0.000625 0.001052 0.001997 0.002943 0.006675 0.011746

42.792 66.736 77.041 82.128 84.211 84.992

364 27100 0.000866 0.001734 0.004407 0.006426 0.013439 0.030261

0.001087 0.002190 0.003384 0.007570 0.013653 0.046054

43.493 73.566 82.138 85.303 87.326 87.926

365 27028 0.001199 0.001830 0.003469 0.005283 0.009958 0.017085

0.001314 0.001381 0.002479 0.005530 0.015108 0.031040

44.534 74.447 82.999 85.964 87.997 88.758

366 21274 0.000751 0.002113 0.003610 0.008144 0.017943 0.027167

0.001263 0.001994 0.003158 0.006916 0.016798 0.034307

35.471 59.696 66.846 69.840 71.673 72.284

367 7800 0.001031 0.003679 0.008725 0.013665 0.023664 0.051209

0.001760 0.003834 0.008781 0.020098 0.066590 0.101866

12.638 22.062 23.384 24.946 26.037 26.618

141

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

368 22400 0.001136 0.001877 0.003279 0.005355 0.017525 0.028784

0.001313 0.001834 0.003335 0.007202 0.017397 0.031721

36.563 57.022 65.694 68.949 71.082 71.763

369 27212 0.001073 0.002380 0.003364 0.007818 0.012758 0.026730

0.001365 0.002311 0.003517 0.007333 0.026608 0.040568

44.284 68.699 79.895 85.233 87.265 88.067

370 27836 0.000654 0.001730 0.002450 0.005440 0.009909 0.017217

0.000810 0.001302 0.002695 0.004708 0.012370 0.026858

45.726 76.190 82.198 88.087 90.230 91.141

371 29194 0.000720 0.000967 0.001958 0.003532 0.007044 0.014705

0.000681 0.001358 0.002228 0.003419 0.007498 0.017142

58.394 87.265 98.652 104.530 107.044 108.426

372 13368 0.000711 0.002705 0.004522 0.007663 0.022497 0.031214

0.001097 0.001982 0.004720 0.009001 0.027446 0.052002

20.219 35.040 38.405 40.358 41.570 42.401

373 21112 0.000677 0.001791 0.003523 0.005444 0.015201 0.036518

0.001003 0.001588 0.003104 0.005905 0.015363 0.038300

33.568 57.843 65.084 67.848 69.830 70.501

374 29744 0.000836 0.001552 0.002914 0.005650 0.009434 0.016347

0.000847 0.001663 0.003087 0.004776 0.010111 0.021371

47.408 80.135 86.815 92.713 95.047 95.778

375 23520 0.000900 0.002230 0.003098 0.004981 0.018029 0.021959

0.001342 0.002366 0.003528 0.007525 0.022119 0.034241

38.465 64.703 72.174 74.747 76.230 77.111

142

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

376 25132 0.000944 0.002388 0.002732 0.004151 0.008665 0.016223

0.001030 0.002410 0.003047 0.006917 0.018158 0.023121

41.640 70.071 78.283 80.967 82.669 83.160

377 30342 0.001096 0.001808 0.003805 0.007788 0.012875 0.021184

0.000940 0.002056 0.003961 0.008046 0.022772 0.044124

47.999 81.607 91.401 95.007 97.510 98.331

378 13368 0.000676 0.002950 0.004083 0.006771 0.020130 0.026535

0.001477 0.002387 0.004373 0.009897 0.021195 0.055825

20.309 35.100 38.105 40.018 41.179 41.970

379 13842 0.000663 0.002632 0.005081 0.009778 0.022656 0.037411

0.000975 0.002020 0.003856 0.009788 0.022203 0.050516

21.952 37.624 41.149 43.312 44.774 45.495

380 18708 0.001488 0.002489 0.004994 0.009228 0.014456 0.045442

0.001032 0.002652 0.003760 0.010395 0.026336 0.051889

33.238 56.641 64.172 66.746 68.418 68.939

381 13872 0.001375 0.007602 0.013652 0.016166 0.054305 0.076122

0.001673 0.005275 0.007882 0.017825 0.055342 0.068584

28.150 46.206 50.483 52.846 54.398 55.430

382 16152 0.000992 0.002880 0.005779 0.011237 0.021359 0.029678

0.001302 0.002748 0.005367 0.012228 0.028687 0.077043

26.128 44.404 48.160 50.563 52.035 52.616

383 26658 0.001858 0.003464 0.004870 0.013298 0.015997 0.043755

0.001285 0.002411 0.005471 0.012166 0.026659 0.041848

42.581 66.395 76.961 82.068 84.051 84.632

143

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

384 9420 0.001663 0.006538 0.008346 0.014631 0.035855 0.075665

0.002395 0.005217 0.008186 0.021023 0.031447 0.071258

14.861 23.814 26.758 28.281 29.282 29.783

385 20868 0.000838 0.002957 0.005476 0.009009 0.029864 0.084266

0.000972 0.003372 0.005985 0.011942 0.027239 0.044473

32.497 55.330 62.049 64.333 65.624 66.355

386 4170 0.004953 0.009793 0.016621 0.064145 0.208613 0.208613

0.008591 0.020116 0.028540 0.081359 0.212535 0.333917

4.677 8.873 9.734 10.335 10.866 11.076

387 29356 0.001796 0.002954 0.004167 0.006567 0.018617 0.021281

0.001247 0.001976 0.004374 0.008457 0.019172 0.035760

47.538 80.255 89.769 93.154 95.477 96.248

388 16818 0.000983 0.003286 0.009164 0.018063 0.020775 0.052769

0.001737 0.003315 0.007386 0.014566 0.028490 0.047109

26.859 45.195 49.331 51.965 53.737 54.258

389 18976 0.001569 0.004104 0.009458 0.016880 0.030284 0.050725

0.001978 0.004735 0.010005 0.018903 0.034803 0.061026

30.083 51.144 55.410 58.174 59.806 60.547

390 18474 0.004718 0.004718 0.007415 0.009838 0.022606 0.041720

0.001415 0.002932 0.004859 0.010848 0.032931 0.074411

29.613 49.691 53.898 56.712 58.364 59.084

391 8626 0.002365 0.006586 0.017498 0.021369 0.047277 0.082662

0.003351 0.006442 0.013083 0.031258 0.051090 0.088611

14.551 22.643 25.266 26.448 27.810 28.571

144

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

392 17232 0.001389 0.002923 0.006117 0.009981 0.038493 0.053960

0.001406 0.002271 0.005318 0.011862 0.034991 0.047618

27.319 46.647 50.833 53.547 55.390 56.021

393 19510 0.001035 0.007336 0.007337 0.010655 0.021177 0.034376

0.001885 0.003904 0.009280 0.020976 0.038926 0.083584

31.996 54.158 58.845 62.720 63.752 64.483

394 18014 0.002032 0.006436 0.006917 0.011420 0.016697 0.040365

0.001495 0.002989 0.007534 0.013326 0.044649 0.082361

28.331 44.063 50.843 53.417 54.929 55.410

395 22620 0.272984 0.332769 0.332769 0.332769 0.385494 0.398229

0.002030 0.007206 0.017601 0.028308 0.147329 0.161227

36.482 56.671 67.948 70.541 71.533 71.893

396 11072 0.010332 0.010332 0.019134 0.040051 0.040983 0.042829

0.001887 0.004850 0.010394 0.024808 0.058231 0.071051

18.477 31.445 33.909 35.190 36.432 37.083

397 14532 0.001225 0.003593 0.007052 0.020791 0.025646 0.073059

0.001495 0.003482 0.009261 0.018979 0.025230 0.069649

23.133 39.877 43.352 45.495 46.937 47.528

398 2956 0.004507 0.014878 0.016821 0.027920 0.131701 0.186786

0.009676 0.033536 0.053987 0.101506 0.129866 0.249447

3.705 6.169 6.800 7.421 8.142 8.332

399 7818 0.002028 0.006164 0.010386 0.016235 0.049335 0.061937

0.002126 0.005863 0.010436 0.021605 0.042028 0.096367

13.059 20.390 23.023 24.465 25.136 25.647

145

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

400 7402 0.002110 0.004891 0.011562 0.018601 0.038060 0.129511

0.002438 0.006347 0.013551 0.033655 0.091739 0.152347

12.137 19.188 21.361 22.392 23.524 24.025

Angel 473986 0.000651 0.000840 0.001590 0.002387 0.004977 0.004795

0.000166 0.000530 0.000802 0.001514 0.003639 0.005333

1724.938 2765.348 3016.984 3127.703 3195.563 3208.172

Armadillo 345944 0.000308 0.000801 0.001390 0.002438 0.004754 0.006938

0.000395 0.000766 0.001657 0.002386 0.004894 0.007601

988.091 1604.988 1753.251 1819.687 1858.823 1874.616

Bunny 10000 0.005666 0.005851 0.011929 0.018848 0.037970 0.063597

0.005000 0.007320 0.014521 0.024966 0.058851 0.115279

18.607 28.882 32.807 39.267 40.298 40.889

Canyon 123008 0.002509 0.007535 0.013386 0.013422 0.018751 0.021248

0.004899 0.012800 0.028362 0.033196 0.033319 0.034957

252.423 405.323 451.109 473.982 486.449 490.535

Dinosaur 47903 0.000415 0.001216 0.003127 0.006570 0.008190 0.012105

0.000809 0.001367 0.002209 0.004090 0.010709 0.021204

83.660 134.714 155.874 170.926 182.913 188.481

Dragon 147572 0.000390 0.001371 0.002517 0.004044 0.008756 0.013321

0.000924 0.001713 0.002734 0.005545 0.012302 0.023209

321.532 548.629 615.195 646.279 662.993 669.493

Horse 96966 0.002390 0.002390 0.004419 0.004419 0.008960 0.014587

0.000490 0.001019 0.004283 0.004283 0.005694 0.014777

192.046 308.654 341.121 357.724 367.058 369.932

146

Table A-1: Hausdorff distances and running times of models simplified with QEM
and our algorithm (cont’d)

Model Faces 50% 20% 10% 5% 2% 1%

Turbine 239934 0.012420 0.012651 0.023771 0.023771 0.024878 0.025907

0.001682 0.002096 0.005963 0.016141 0.053420 0.082872

642.264 1071.190 1228.817 1276.355 1302.863 1315.271

Average QEM 0.007246 0.011695 0.015607 0.020497 0.030282 0.043810

 Ours 0.002154 0.006647 0.010642 0.017894 0.036530 0.061322

Max QEM 0.492324 0.492324 0.593273 0.796202 0.803227 0.866060

 Ours 0.073313 0.287812 0.287812 0.287812 0.309078 0.487676

Min QEM 0.000000 0.000000 0.000001 0.000183 0.000183 0.001428

 Ours 0.000000 0.000000 0.000000 0.000005 0.000007 0.005283
Bold indicates 10 highest Hausdorff distances at the given percentage for the given

algorithm

Italics indicate 10 lowest values at the given percentage for the given algorithm

* N/A: The algorithm exhausted all possible contractions before the given level

147

Table A-2: Penalty weights for all models

Model α β δ Model α β δ Model α β δ Model α β δ
1 4 0 4 45 4 0 1 89 4 0 1 133 4 0 1
2 4 0 1 46 4 0 1 90 4 0 1 134 4 0 1
3 4 0 1 47 4 0 1 91 4 0 1 135 4 0 1
4 4 0 1 48 4 0 1 92 4 0 1 136 4 0 1
5 4 0 1 49 4 0 1 93 4 0 1 137 4 0 1
6 4 0 1 50 4 0 1 94 4 0 1 138 4 0 1
7 4 0 1 51 4 0 1 95 4 0 1 139 4 0 1
8 4 0 1 52 4 0 1 96 4 0 1 140 4 0 1
9 4 0 1 53 4 0 1 97 4 0 1 141 4 0 1

10 4 0 1 54 4 0 1 98 4 0 1 142 4 0 1
11 4 0 2 55 4 0 1 99 4 0 1 143 4 0 1
12 4 0 1 56 4 0 1 100 4 0 1 144 4 0 1
13 4 0 1 57 4 0 1 101 4 0 1 145 4 0 1
14 4 0 1 58 4 0 1 102 4 0 1 146 4 0 1
15 4 0 1 59 4 0 1 103 4 0 1 147 4 0 1
16 4 0 1 60 4 0 1 104 4 0 1 148 4 0 1
17 4 0 1 61 4 0 2 105 4 0 1 149 4 0 1
18 4 0 1 62 4 0 1 106 4 0 1 150 4 0 1
19 4 0 1 63 4 0 1 107 4 0 1 151 4 0 1
20 4 0 1 64 4 0 1 108 4 0 1 152 4 0 1
21 4 0 2 65 4 0 1 109 4 0 1 153 4 0 1
22 4 0 1 66 4 0 1 110 4 0 1 154 4 0 1
23 4 0 1 67 4 0 1 111 4 0 2 155 4 0 1
24 4 0 1 68 4 0 1 112 4 0 1 156 4 0 1
25 4 0 1 69 4 0 1 113 4 0 1 157 4 0 1
26 4 0 1 70 4 0 1 114 4 0 1 158 4 0 1
27 4 0 1 71 4 0 1 115 4 0 1 159 4 0 1
28 4 0 1 72 4 0 1 116 4 0 1 160 4 0 1
29 4 0 1 73 4 0 1 117 4 0 1 161 4 0 1
30 4 0 1 74 4 0 1 118 4 0 1 162 4 0 1
31 6 0 2 75 4 0 1 119 4 0 1 163 4 0 1
32 4 0 1 76 4 0 1 120 4 0 1 164 4 0 1
33 4 0 1 77 4 0 1 121 4 0 1 165 4 0 1
34 4 0 1 78 4 0 1 122 4 0 1 166 4 0 1
35 4 0 1 79 4 0 1 123 4 0 1 167 4 0 1
36 4 0 1 80 4 0 1 124 4 0 1 168 4 0 1
37 4 0 1 81 8 0 1 125 4 0 1 169 4 0 1
38 4 0 1 82 4 0 1 126 4 0 1 170 4 0 1
39 4 0 1 83 4 0 1 127 4 0 1 171 8 0 1
40 4 0 1 84 4 0 1 128 4 0 1 172 4 0 1
41 4 0 1 85 4 0 1 129 4 0 1 173 4 0 1
42 4 0 1 86 4 0 1 130 4 0 1 174 4 0 1
43 4 0 1 87 4 0 1 131 4 0 1 175 4 0 1
44 4 0 1 88 4 0 1 132 4 0 1 176 4 0 1

148

Table A-2: Penalty weights for all models (cont’d)

Model α β δ Model α β δ Model α β δ Model α β δ
177 4 0 1 221 4 0 2 285 4 0 1 329 4 0 1
178 4 0 1 222 4 0 1 286 4 0 1 330 4 0 1
179 4 0 1 223 4 0 1 287 4 0 1 331 4 0 1
180 4 0 1 224 4 0 1 288 4 0 1 332 4 0 1
181 4 0 2 225 4 0 1 289 4 0 1 333 4 0 1
182 4 0 1 226 4 0 1 290 4 0 1 334 4 0 1
183 4 0 1 227 4 0 1 291 4 0 1 335 4 0 1
184 4 0 1 228 4 0 1 292 4 0 1 336 4 0 1
185 4 0 1 229 4 0 1 293 4 0 1 337 4 0 1
186 4 0 1 230 4 0 1 294 4 0 1 338 4 0 1
187 4 0 1 231 4 0 1 295 4 0 1 339 4 0 1
188 4 0 1 232 4 0 1 296 4 0 1 340 4 0 1
189 4 0 1 233 4 0 1 297 4 0 1 341 4 0 1
190 4 0 1 234 4 0 1 298 4 0 1 342 4 0 1
191 4 0 1 235 4 0 1 299 4 0 1 343 4 0 1
192 4 0 1 236 4 0 1 300 4 0 1 344 4 0 1
193 4 0 1 237 4 0 1 301 6 0 1 345 4 0 1
194 4 0 1 238 4 0 1 302 4 0 1 346 4 0 1
195 4 0 1 239 4 0 1 303 4 0 1 347 4 0 1
196 4 0 1 240 4 0 1 304 4 0 1 348 4 0 1
197 4 0 1 241 4 0 1 305 4 0 1 349 4 0 1
198 4 0 1 242 4 0 1 306 4 0 1 350 4 0 1
199 4 0 1 243 4 0 1 307 4 0 1 351 4 0 1
200 4 0 1 244 4 0 1 308 4 0 1 352 4 0 1
201 4 0 2 245 4 0 1 309 4 0 1 353 4 0 1
202 4 0 1 246 4 0 1 310 4 0 1 354 4 0 1
203 4 0 1 247 4 0 1 311 4 0 1 355 4 0 1
204 4 0 1 248 4 0 1 312 4 0 1 356 4 0 1
205 4 0 1 249 4 0 1 313 4 0 1 357 4 0 1
206 4 0 1 250 4 0 1 314 4 0 1 358 4 0 1
207 4 0 1 251 4 0 1 315 4 0 1 359 4 0 1
208 4 0 1 252 4 0 1 316 4 0 1 360 4 0 1
209 4 0 1 253 4 0 1 317 4 0 1 361 6 0 1
210 4 0 1 254 4 0 1 318 4 0 1 362 4 0 1
211 4 0 4 255 4 0 1 319 4 0 1 363 4 0 1
212 4 0 1 256 4 0 1 320 4 0 1 364 4 0 1
213 4 0 1 257 4 0 1 321 4 0 2 365 4 0 1
214 4 0 1 258 4 0 1 322 4 0 1 366 4 0 1
215 4 0 1 259 4 0 1 323 4 0 1 367 4 0 1
216 4 0 1 260 4 0 1 324 4 0 1 368 4 0 1
217 4 0 1 281 4 0 2 325 4 0 1 369 4 0 1
218 4 0 1 282 4 0 1 326 4 0 1 370 4 0 1
219 4 0 1 283 4 0 1 327 4 0 1 371 6 0 1
220 4 0 1 284 4 0 1 328 4 0 1 372 4 0 1

149

Table A-2: Penalty weights for all models (cont’d)

Model α β δ Model α β δ Model α β δ Model α β δ
373 4 0 1 382 4 0 1 391 4 0 1 400 4 0 1
374 4 0 1 383 4 0 1 392 4 0 1 Angel 4 0 2
375 4 0 1 384 4 0 1 393 4 0 1 Armadillo 4 0 2
376 4 0 1 385 4 0 1 394 4 0 1 Bunny 4 100 2
377 4 0 1 386 4 0 1 395 4 0 1 Canyon 4 100 2
378 4 0 1 387 4 0 1 396 4 0 1 Dinosaur 4 0 2
379 4 0 1 388 4 0 1 397 4 0 1 Dragon 4 0 2
380 4 0 1 389 4 0 1 398 4 0 1 Horse 4 0 1
381 4 0 1 390 4 0 1 399 4 0 1 Turbine 4 0 2

150

Table A-3 displays the root-mean-square average of the luminance differences

between a representative rendering of each original model and its reduced versions.

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom)

Model 50% 20% 10% 5% 2% 1%
1 0.020873 0.026478 0.033551 0.044898 0.066904 0.076304

 0.010394 0.023131 0.045521 0.056132 0.070847 0.081121
2 0.015726 0.018701 0.040625 0.029208 0.042938 0.054314

 0.009920 0.014711 0.038530 0.043373 0.041917 0.060596
3 0.007333 0.018175 0.025340 0.040738 0.058545 0.080211

 0.037244 0.021422 0.035000 0.065657 0.087449 0.095493
4 0.019127 0.025637 0.025351 0.036422 0.055449 0.074457

 0.037164 0.041833 0.040452 0.054015 0.076711 0.092756
5 0.009988 0.019871 0.026991 0.033823 0.047995 0.062093

 0.009509 0.022244 0.027771 0.038274 0.058609 0.083976
6 0.009095 0.040277 0.021532 0.031795 0.046401 0.058032

 0.009728 0.018993 0.028329 0.039344 0.060016 0.075309
7 0.011710 0.018282 0.023809 0.031727 0.043981 0.051924

 0.012753 0.017609 0.025225 0.051491 0.065027 0.087141
8 0.017151 0.016009 0.027137 0.023601 0.034521 0.042624

 0.005866 0.038247 0.041192 0.043176 0.056666 0.064430
9 0.035529 0.043209 0.047554 0.054941 0.067162 0.078566

 0.026535 0.032985 0.042745 0.063882 0.078221 0.092532
10 0.036529 0.039303 0.049056 0.046728 0.057833 0.073806

 0.036831 0.017355 0.043623 0.049667 0.060568 0.073716
11 0.004446 0.014234 0.022972 0.030997 0.044627 0.053639

 0.036659 0.018263 0.027915 0.055099 0.082625 0.095777
12 0.006495 0.026676 0.033337 0.037133 0.057027 0.066340

 0.030173 0.033718 0.035522 0.048517 0.066757 0.087732
13 0.040061 0.042571 0.042465 0.047231 0.046462 0.057257

 0.017786 0.023913 0.021797 0.032060 0.065386 0.079320
14 0.039155 0.042377 0.046132 0.051522 0.063473 0.074418

 0.039534 0.025710 0.035295 0.053133 0.102934 0.110237
15 0.016762 0.026495 0.037483 0.047541 0.065259 0.089644

 0.015164 0.029170 0.043003 0.061445 0.095779 0.098997
16 0.009791 0.020733 0.027909 0.038393 0.051392 0.062557

 0.028560 0.032526 0.038489 0.045337 0.060508 0.073890
17 0.009428 0.021043 0.027712 0.032192 0.039916 0.051270

 0.036813 0.019768 0.026383 0.035620 0.050659 0.070242
18 0.009543 0.019784 0.027138 0.034785 0.059943 0.069782

 0.036321 0.039848 0.045666 0.054031 0.066937 0.083905
19 0.008173 0.016131 0.022678 0.046968 0.045646 0.053006

 0.008004 0.021012 0.038474 0.046114 0.060420 0.076867

151

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
20 0.036894 0.032575 0.041676 0.044968 0.052620 0.060255

 0.032197 0.032066 0.043389 0.046370 0.063905 0.077155
21 0.012165 0.037408 0.039241 0.039437 0.035735 0.059793

 0.036447 0.037244 0.015258 0.021540 0.054924 0.064797
22 0.005154 0.012239 0.019534 0.025672 0.045847 0.067375

 0.032940 0.038926 0.041619 0.053864 0.127741 0.141894
23 0.018683 0.009402 0.014842 0.021358 0.036113 0.050105

 0.013848 0.009311 0.040490 0.021388 0.048817 0.048488
24 0.038390 0.039788 0.040935 0.045004 0.040209 0.068424

 0.006426 0.012015 0.043259 0.052148 0.125964 0.145917
25 0.035168 0.036251 0.037950 0.045332 0.048982 0.054134

 0.028968 0.036220 0.037720 0.039924 0.049258 0.056001
26 0.011389 0.015326 0.039928 0.027706 0.039448 0.054486

 0.006167 0.011136 0.025179 0.027371 0.038871 0.053252
27 0.004992 0.037277 0.015318 0.023071 0.042358 0.051950

 0.006172 0.020706 0.024162 0.026597 0.040687 0.059938
28 0.040849 0.041753 0.043691 0.048225 0.054345 0.059327

 0.013444 0.019932 0.019476 0.025497 0.037327 0.051522
29 0.003874 0.009256 0.014052 0.019900 0.031722 0.046328

 0.037190 0.035505 0.039043 0.019702 0.030910 0.057061
30 0.019780 0.035495 0.033888 0.021118 0.034486 0.050008

 0.036179 0.013104 0.016448 0.021084 0.028238 0.049935
31 0.021345 0.018730 0.022222 0.028374 0.044991 0.060361

 0.017012 0.034456 0.022169 0.025274 0.040067 0.048828
32 0.018387 0.034029 0.036208 0.040466 0.035691 0.051027

 0.015966 0.034329 0.035901 0.039049 0.036653 0.058001
33 0.018813 0.027598 0.034518 0.041075 0.065680 0.095086

 0.007253 0.015661 0.044594 0.057706 0.077472 0.124286
34 0.018284 0.010841 0.023674 0.024475 0.036682 0.048344

 0.005819 0.010722 0.016980 0.044111 0.040964 0.055527
35 0.003064 0.007166 0.010716 0.017005 0.030911 0.036368

 0.003791 0.007333 0.011229 0.016313 0.026060 0.032386
36 0.003489 0.013860 0.049525 0.053609 0.062598 0.068085

 0.038175 0.043453 0.018830 0.047984 0.046860 0.055160
37 0.027581 0.032065 0.026954 0.044723 0.092426 0.125105

 0.037213 0.041658 0.033928 0.053930 0.095881 0.133079
38 0.006107 0.015256 0.019579 0.034157 0.045602 0.055418

 0.007367 0.011641 0.138536 0.145130 0.095780 0.106114
39 0.036044 0.036815 0.038415 0.041251 0.050003 0.057650

 0.036176 0.037741 0.041021 0.047130 0.067578 0.156325
40 0.017794 0.018970 0.020862 0.020084 0.026035 0.037410

 0.013773 0.015049 0.016579 0.017318 0.019050 0.034728

152

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
41 0.055345 0.064009 0.054935 0.064783 0.053176 0.052146

 0.053360 0.052935 0.054213 0.056937 0.056086 0.056828
42 0.015681 0.017428 0.020385 0.038211 0.042100 0.038193

 0.033927 0.018650 0.019569 0.041121 0.066769 0.061894
43 0.003797 0.009106 0.012859 0.016251 0.022876 0.031740

 0.004290 0.010787 0.018227 0.026265 0.038437 0.046978
44 0.012403 0.038098 0.040636 0.026656 0.034698 0.050991

 0.037019 0.038674 0.041677 0.045268 0.038653 0.082408
45 0.007302 0.017317 0.023146 0.027280 0.035208 0.040930

 0.005988 0.012310 0.019180 0.030151 0.045940 0.054097
46 0.005597 0.016410 0.018230 0.024397 0.038036 0.034086

 0.004852 0.010777 0.016685 0.024544 0.035726 0.041812
47 0.005497 0.037764 0.019277 0.028647 0.039494 0.048442

 0.006500 0.017442 0.020272 0.029706 0.046854 0.063371
48 0.003141 0.008790 0.013503 0.025932 0.033074 0.040525

 0.013755 0.034562 0.036701 0.021113 0.066372 0.068417
49 0.034827 0.036480 0.016839 0.021425 0.035058 0.044500

 0.012384 0.020412 0.036862 0.028784 0.044369 0.055347
50 0.012790 0.014599 0.017126 0.020824 0.036916 0.028274

 0.013039 0.026984 0.029240 0.033178 0.038574 0.040528
51 0.006180 0.018730 0.022222 0.028374 0.044991 0.060361

 0.017012 0.034456 0.022169 0.025274 0.040067 0.048828
52 0.007165 0.015988 0.017300 0.022405 0.032223 0.041160

 0.007325 0.017015 0.025947 0.032566 0.041392 0.056097
53 0.017796 0.020671 0.024689 0.030961 0.035812 0.040672

 0.017647 0.021347 0.024753 0.027715 0.038703 0.048025
54 0.023124 0.024976 0.025422 0.030599 0.041127 0.045103

 0.024182 0.027452 0.024797 0.033424 0.040099 0.052242
55 0.098418 0.099455 0.099032 0.097504 0.091511 0.091907

 0.099501 0.098685 0.098400 0.097459 0.105997 0.103130
56 0.004217 0.011505 0.019587 0.027189 0.039205 0.049271

 0.006234 0.013336 0.041594 0.047805 0.051056 0.058754
57 0.010961 0.017745 0.020019 0.028412 0.029442 0.037140

 0.032147 0.025997 0.035429 0.025432 0.047237 0.048394
58 0.019672 0.029731 0.037441 0.047220 0.062400 0.072327

 0.013635 0.026638 0.036841 0.052830 0.075004 0.095466
59 0.013509 0.017735 0.025660 0.029415 0.040487 0.049961

 0.012799 0.023204 0.027596 0.030368 0.043297 0.052989
60 0.006460 0.022868 0.022456 0.030279 0.040113 0.044324

 0.006794 0.039550 0.022698 0.028849 0.042755 0.053602
61 0.004276 0.021572 0.039456 0.036961 0.045406 0.052572

 0.006123 0.012082 0.034114 0.035530 0.040334 0.053991

153

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
62 0.012793 0.015820 0.019560 0.025419 0.037240 0.052021

 0.013855 0.025424 0.020538 0.089241 0.047395 0.057483
63 0.036358 0.038918 0.015853 0.024808 0.029696 0.045907

 0.004198 0.014269 0.015668 0.024880 0.039440 0.066106
64 0.003257 0.010801 0.017358 0.024155 0.035874 0.051914

 0.004629 0.009647 0.023256 0.029559 0.042865 0.051933
65 0.036448 0.009677 0.013940 0.028572 0.038982 0.044470

 0.019173 0.037338 0.039250 0.042791 0.039639 0.050065
66 0.018147 0.036354 0.013129 0.028394 0.030534 0.039298

 0.036240 0.014232 0.018361 0.025630 0.037083 0.046046
67 0.002303 0.008960 0.014640 0.040792 0.031525 0.049181

 0.004377 0.011192 0.014979 0.022996 0.037147 0.046982
68 0.010687 0.033613 0.036737 0.027295 0.036136 0.048629

 0.012747 0.015427 0.020630 0.027930 0.039933 0.052851
69 0.011937 0.015099 0.015823 0.020373 0.036508 0.047638

 0.004586 0.010160 0.039977 0.045951 0.045324 0.087454
70 0.011590 0.010484 0.017243 0.023476 0.037704 0.047398

 0.004597 0.011208 0.018596 0.045425 0.044940 0.068743
71 0.017183 0.020577 0.019876 0.027594 0.041367 0.052429

 0.012198 0.037940 0.040753 0.046576 0.059564 0.067387
72 0.003301 0.010755 0.017775 0.029089 0.050706 0.066159

 0.041794 0.013628 0.040050 0.028334 0.064515 0.059559
73 0.037074 0.040091 0.018226 0.024841 0.040730 0.050133

 0.036561 0.016066 0.021557 0.031340 0.052497 0.048892
74 0.003423 0.010194 0.015731 0.026804 0.034517 0.063033

 0.032086 0.033450 0.040709 0.027587 0.042103 0.056211
75 0.003488 0.009098 0.014870 0.022657 0.031566 0.047957

 0.004798 0.037176 0.035838 0.022367 0.030243 0.056534
76 0.002010 0.036207 0.015142 0.022364 0.033096 0.043244

 0.004472 0.021017 0.025572 0.032424 0.041633 0.049541
77 0.003646 0.019544 0.024630 0.024984 0.039376 0.051084

 0.026691 0.011021 0.016701 0.026189 0.036713 0.052889
78 0.002814 0.009606 0.040008 0.038922 0.045265 0.060083

 0.005018 0.014026 0.025691 0.025686 0.050584 0.054996
79 0.003173 0.009494 0.016605 0.041500 0.038528 0.049716

 0.017693 0.010305 0.017007 0.024556 0.039225 0.060252
80 0.013372 0.018444 0.018788 0.023404 0.039411 0.051899

 0.004941 0.010313 0.016132 0.025703 0.039116 0.050970
81 0.008934 0.029518 0.032407 0.049212 0.064347 0.077778

 0.010703 0.021966 0.032911 0.049576 0.068737 0.088960
82 0.016389 0.028029 0.032816 0.045927 0.066745 0.081196

 0.038110 0.033356 0.045182 0.043435 0.060140 0.091319

154

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
83 0.007487 0.017535 0.043527 0.035373 0.052656 0.064941

 0.007828 0.040286 0.043969 0.036691 0.054784 0.074617
84 0.008281 0.017135 0.044046 0.036977 0.056184 0.071275

 0.037231 0.016267 0.043854 0.052946 0.062170 0.070875
85 0.021763 0.028652 0.031374 0.044385 0.064471 0.084664

 0.036663 0.040783 0.037448 0.050334 0.076169 0.105866
86 0.019146 0.023284 0.028592 0.036513 0.050275 0.068852

 0.020361 0.022694 0.032632 0.041936 0.063166 0.065637
87 0.035668 0.024459 0.023341 0.033340 0.053460 0.061710

 0.008874 0.015643 0.043168 0.049226 0.053338 0.084037
88 0.036837 0.042322 0.049134 0.047842 0.071726 0.087992

 0.009459 0.022299 0.037852 0.066844 0.084465 0.123601
89 0.028363 0.032376 0.037326 0.036149 0.053007 0.067121

 0.036083 0.038807 0.025979 0.037418 0.055082 0.070963
90 0.016006 0.041760 0.034319 0.045247 0.068400 0.092513

 0.013885 0.024013 0.035892 0.067631 0.086791 0.102254
91 0.032954 0.027573 0.034973 0.057357 0.079632 0.098087

 0.015510 0.026717 0.037968 0.058970 0.079920 0.102030
92 0.009828 0.022229 0.033098 0.044112 0.064247 0.077778

 0.011423 0.022325 0.048657 0.049766 0.072747 0.103566
93 0.015614 0.021578 0.027174 0.034687 0.049334 0.063774

 0.036725 0.018000 0.027953 0.044660 0.061714 0.082626
94 0.008574 0.041479 0.032684 0.048095 0.068422 0.096822

 0.015661 0.042342 0.049369 0.050045 0.085364 0.105506
95 0.011849 0.020828 0.030378 0.041550 0.058106 0.077435

 0.011369 0.020115 0.032875 0.051349 0.086359 0.117713
96 0.008996 0.017133 0.027747 0.038995 0.056430 0.069193

 0.037215 0.018165 0.027738 0.051417 0.070652 0.088745
97 0.015538 0.023692 0.031654 0.045170 0.066476 0.079567

 0.026236 0.036973 0.043783 0.047764 0.066057 0.093257
98 0.037021 0.041907 0.048371 0.046393 0.067120 0.073549

 0.037441 0.039317 0.034641 0.060036 0.085457 0.095085
99 0.005661 0.039621 0.021402 0.045961 0.046821 0.058114

 0.037370 0.039278 0.042462 0.029595 0.044876 0.057225
100 0.029817 0.022804 0.029718 0.037503 0.055261 0.068001

 0.019056 0.022723 0.025634 0.037753 0.052432 0.069756
101 0.009435 0.015421 0.022077 0.031176 0.044764 0.056546

 0.005475 0.015703 0.023057 0.030230 0.050370 0.060868
102 0.035168 0.029600 0.035115 0.044710 0.052993 0.073107

 0.026191 0.028504 0.032860 0.044045 0.055477 0.069380
103 0.002987 0.009525 0.017250 0.025106 0.036686 0.046566

 0.005423 0.011049 0.025418 0.027738 0.042436 0.061142

155

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
104 0.006625 0.006277 0.022537 0.026391 0.037739 0.051584

 0.019055 0.020257 0.024390 0.035141 0.058033 0.086016
105 0.008716 0.008261 0.028909 0.026799 0.040529 0.052607

 0.010031 0.013924 0.024200 0.049348 0.076242 N/A*
106 0.027250 0.028225 0.018407 0.024734 0.043907 0.054794

 0.005926 0.009469 0.030948 0.027125 0.049831 0.084974
107 0.014269 0.017960 0.026499 0.034021 0.049881 0.065856

 0.015242 0.027213 0.032184 0.035139 0.056018 0.068440
108 0.035269 0.023126 0.022281 0.030079 0.043395 0.055171

 0.013793 0.018248 0.026648 0.046161 0.056395 0.070811
109 0.002313 0.033837 0.037214 0.044405 0.041900 0.050915

 0.005355 0.012823 0.020841 0.035991 0.053714 0.099765
110 0.036224 0.012264 0.029096 0.069767 0.047923 0.067233

 0.012782 0.019626 0.034146 0.066182 0.111557 N/A*
111 0.010483 0.021599 0.029541 0.029867 0.040911 0.060546

 0.017795 0.018780 0.031116 0.087560 0.104379 0.104466
112 0.028395 0.012973 0.038298 0.023648 0.033357 0.044389

 0.005699 0.010907 0.017931 0.046796 0.071849 0.099822
113 0.009499 0.006659 0.020466 0.018542 0.029497 0.041277

 0.035457 0.038171 0.019843 0.036775 0.095770 0.088165
114 0.021002 0.016596 0.022498 0.029842 0.038542 0.044022

 0.009696 0.016267 0.027234 0.071246 0.098583 0.091111
115 0.012025 0.034613 0.024013 0.028704 0.042244 0.051080

 0.005021 0.021341 0.028172 0.062393 0.110413 0.113044
116 0.032665 0.032935 0.034393 0.026176 0.037398 0.045094

 0.016482 0.017685 0.022738 0.039101 0.092916 0.116432
117 0.035700 0.035757 0.036419 0.021913 0.029600 0.049443

 0.014609 0.036367 0.038843 0.045864 0.087399 0.092919
118 0.027670 0.021704 0.027713 0.035461 0.047863 0.057173

 0.018912 0.021820 0.023957 0.032797 0.054623 0.097614
119 0.005851 0.006492 0.038565 0.041238 0.051112 0.058415

 0.009865 0.009484 0.021119 0.045396 0.086164 0.109732
120 0.003399 0.019344 0.022638 0.029936 0.044283 0.055403

 0.019654 0.021684 0.027313 0.046477 0.127678 0.128122
121 0.009057 0.017788 0.027887 0.039473 0.059514 0.081618

 0.018713 0.046716 0.052885 0.047204 0.070719 0.103546
122 0.029471 0.035564 0.040708 0.058412 0.081204 0.113618

 0.025984 0.032783 0.043333 0.054602 0.087590 0.113636
123 0.003629 0.019887 0.022147 0.028988 0.043085 0.050994

 0.019604 0.021356 0.024095 0.045624 0.046720 0.065535
124 0.011888 0.034224 0.034119 0.040269 0.049917 0.052846

 0.038128 0.045088 0.043103 0.060275 0.069411 0.069549

156

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
125 0.019351 0.038551 0.054716 0.059799 0.082051 0.094118

 0.026888 0.062051 0.084582 0.099320 0.114330 0.166166
126 0.021761 0.029547 0.034466 0.044627 0.070231 0.082393

 0.038430 0.023169 0.050136 0.060099 0.086148 0.100499
127 0.035580 0.038055 0.043299 0.045806 0.072503 0.086346

 0.020468 0.025577 0.044174 0.052524 0.080671 0.103370
128 0.033473 0.038522 0.044077 0.051884 0.070574 0.086241

 0.024077 0.030187 0.036392 0.046863 0.073652 0.087279
129 0.036267 0.039470 0.043467 0.051238 0.063378 0.069982

 0.041783 0.044555 0.049885 0.057617 0.076729 0.094098
130 0.037607 0.023654 0.040205 0.053227 0.066885 0.080165

 0.037933 0.031422 0.037543 0.042697 0.070986 0.083427
131 0.007745 0.020367 0.032549 0.045258 0.071615 0.102075

 0.014691 0.024522 0.035115 0.051038 0.086626 0.125124
132 0.011562 0.022805 0.032311 0.047471 0.069759 0.090845

 0.036788 0.041672 0.054889 0.076850 0.105003 0.138580
133 0.010648 0.020352 0.031800 0.046706 0.074031 0.095504

 0.016010 0.022904 0.037265 0.057364 0.105091 0.175492
134 0.040487 0.037672 0.051630 0.065181 0.095680 0.120892

 0.027402 0.026683 0.038752 0.068643 0.100290 0.142885
135 0.010009 0.029717 0.038841 0.060643 0.085125 0.100023

 0.035086 0.027983 0.035990 0.063987 0.081859 0.116397
136 0.030827 0.037645 0.017850 0.029121 0.053000 0.055540

 0.036742 0.012359 0.041266 0.032665 0.050744 0.065172
137 0.036411 0.036373 0.030275 0.048403 0.059271 0.068792

 0.028151 0.036081 0.043172 0.047852 0.063092 0.076268
138 0.036434 0.040190 0.044844 0.048366 0.065608 0.081947

 0.032954 0.036266 0.041730 0.052939 0.075047 0.111684
139 0.035974 0.040182 0.046730 0.056796 0.070056 0.091818

 0.036516 0.040755 0.048028 0.057468 0.078934 0.110005
140 0.034874 0.034072 0.026382 0.050242 0.064292 0.083205

 0.035253 0.038409 0.035845 0.045185 0.061939 0.080492
141 0.000408 0.003712 0.039758 0.015593 0.031320 0.022035

 0.033460 0.037042 0.008170 0.012164 0.036578 0.051351
142 0.000074 0.015416 0.020659 0.030004 0.047478 0.058657

 0.031647 0.015149 0.019141 0.029100 0.052737 0.067001
143 0.027652 0.018739 0.016892 0.023906 0.034163 0.052359

 0.036578 0.036514 0.012690 0.041739 0.047120 0.062273
144 0.015407 0.015390 0.017915 0.025700 0.034807 0.047380

 0.014887 0.014923 0.024267 0.023853 0.038661 0.061775
145 0.009281 0.012179 0.013188 0.033505 0.045982 0.051629

 0.024973 0.024110 0.025644 0.019338 0.045128 0.046036

157

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
146 0.064492 0.054494 0.053841 0.058037 0.063506 0.071698

 0.053132 0.053102 0.065239 0.055868 0.060149 0.066807
147 0.029022 0.029624 0.016391 0.022159 0.026600 0.033679

 0.015395 0.014131 0.029382 0.021678 0.033151 0.051184
148 0.000341 0.008016 0.013398 0.021254 0.037848 0.047890

 0.004496 0.010699 0.013782 0.027738 0.042866 0.054224
149 0.004663 0.006046 0.008654 0.012917 0.019954 0.028834

 0.035375 0.005097 0.014381 0.038077 0.041988 0.053020
150 0.031948 0.033097 0.034811 0.021791 0.032151 0.038960

 0.017569 0.033333 0.034846 0.037024 0.043665 0.055019
151 0.033317 0.022129 0.024564 0.028285 0.035192 0.040913

 0.021394 0.022170 0.024269 0.023616 0.035655 0.043156
152 0.013483 0.036035 0.038119 0.044514 0.057050 0.069951

 0.028589 0.028590 0.031865 0.036857 0.025044 0.047730
153 0.007982 0.008405 0.011294 0.015328 0.026824 0.031244

 0.032288 0.032390 0.033019 0.034487 0.042565 0.048867
154 0.035889 0.037356 0.032531 0.043085 0.049089 0.058248

 0.032263 0.033384 0.034890 0.037913 0.045588 0.055264
155 0.000179 0.004780 0.012298 0.040603 0.027977 0.039741

 0.036079 0.036561 0.038138 0.040842 0.037235 0.058673
156 0.053529 0.018301 0.024030 0.028735 0.036103 0.039222

 0.016425 0.023315 0.023060 0.028221 0.038217 0.047422
157 0.028356 0.025464 0.029092 0.036385 0.042807 0.049798

 0.028855 0.029693 0.031834 0.035473 0.045453 0.072846
158 0.001046 0.006024 0.014946 0.018050 0.022496 0.029384

 0.035592 0.006315 0.038118 0.039898 0.034233 0.037999
159 0.030068 0.031472 0.033701 0.038386 0.046559 0.047460

 0.037370 0.038497 0.039700 0.041791 0.042930 0.049853
160 0.023923 0.014186 0.009180 0.012754 0.015386 0.021242

 0.019720 0.032504 0.019139 0.032852 0.050815 N/A*
161 0.030460 0.015234 0.039903 0.028244 0.048046 0.061454

 0.014327 0.017089 0.022559 0.030330 0.047182 0.067411
162 0.012685 0.016385 0.021234 0.032002 0.046525 0.062563

 0.013220 0.016503 0.021088 0.037857 0.046949 0.067784
163 0.004347 0.011135 0.019672 0.048401 0.049063 0.063655

 0.021198 0.011454 0.019364 0.030622 0.048249 0.064421
164 0.028104 0.036658 0.032295 0.049462 0.054332 0.069624

 0.036737 0.028777 0.039227 0.044705 0.057575 0.066194
165 0.032331 0.036376 0.039280 0.065179 0.077096 0.068294

 0.034892 0.019030 0.023889 0.031602 0.049216 0.066572
166 0.019591 0.026486 0.026418 0.035967 0.050299 0.062236

 0.021263 0.016372 0.030906 0.036773 0.051831 0.062780

158

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
167 0.036755 0.037884 0.040134 0.040034 0.055335 0.069958

 0.005631 0.010643 0.017138 0.043953 0.054353 0.064080
168 0.020096 0.010367 0.017881 0.031851 0.046333 0.059204

 0.021239 0.022937 0.037275 0.032333 0.047043 0.064854
169 0.036170 0.034060 0.037019 0.041217 0.057212 0.069331

 0.006032 0.011106 0.040994 0.045099 0.058966 0.073080
170 0.009635 0.013296 0.018430 0.027367 0.046245 0.062118

 0.006830 0.011724 0.020709 0.027696 0.043011 0.062168
171 0.027667 0.029276 0.032377 0.027203 0.041529 0.065206

 0.005073 0.013219 0.017812 0.024224 0.039437 0.062373
172 0.025209 0.028003 0.032498 0.063964 0.077437 0.072353

 0.015435 0.027442 0.031284 0.035490 0.054773 0.071337
173 0.036908 0.031728 0.033841 0.039764 0.051827 0.062275

 0.029802 0.031299 0.033971 0.039328 0.049480 0.066740
174 0.027925 0.015027 0.021191 0.029870 0.046588 0.067778

 0.036407 0.037602 0.017270 0.026719 0.040573 0.057336
175 0.032649 0.034422 0.038099 0.036577 0.060677 0.079772

 0.032418 0.021982 0.038126 0.045658 0.049292 0.073931
176 0.004263 0.012857 0.021920 0.031394 0.052897 0.075493

 0.036582 0.012443 0.018531 0.029055 0.047587 0.070382
177 0.037188 0.038408 0.041694 0.035808 0.054207 0.068132

 0.036746 0.017616 0.040465 0.045900 0.057649 0.062739
178 0.031059 0.032357 0.041006 0.048918 0.059944 0.074226

 0.032864 0.034181 0.044910 0.048617 0.052503 0.059927
179 0.027208 0.028928 0.018588 0.026766 0.043403 0.071765

 0.036801 0.037706 0.039443 0.026028 0.050298 0.063448
180 0.035957 0.010417 0.017371 0.026303 0.037218 0.057330

 0.005595 0.011174 0.016730 0.045436 0.053866 0.069775
181 0.036037 0.038161 0.034331 0.047986 0.058971 0.067669

 0.024867 0.033081 0.042475 0.051786 0.066245 0.074110
182 0.029164 0.041164 0.029872 0.034416 0.052383 0.057957

 0.027182 0.041683 0.043990 0.038801 0.058995 0.073190
183 0.036788 0.021751 0.022721 0.037877 0.059405 0.083643

 0.037164 0.039662 0.044175 0.052496 0.059866 0.095613
184 0.034237 0.038911 0.045382 0.060248 0.085937 0.108878

 0.029743 0.035841 0.039945 0.057045 0.079764 0.098131
185 0.031429 0.038416 0.046870 0.057608 0.070649 0.089549

 0.031787 0.041285 0.051026 0.064280 0.080630 0.088273
186 0.020902 0.024387 0.042774 0.050930 0.063359 0.071313

 0.008112 0.024731 0.030646 0.041022 0.068601 0.083812
187 0.036179 0.038250 0.042277 0.049201 0.059528 0.073478

 0.007701 0.014377 0.042518 0.048223 0.062894 0.078789

159

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
188 0.031559 0.033087 0.035573 0.039978 0.050271 0.050167

 0.027765 0.029144 0.026705 0.033900 0.051732 0.063762
189 0.027387 0.028656 0.025939 0.033791 0.045062 0.043634

 0.028290 0.029589 0.029977 0.035117 0.047335 0.051606
190 0.004290 0.013064 0.019012 0.029246 0.048015 0.057726

 0.006367 0.013493 0.020097 0.033845 0.048051 0.068220
191 0.024257 0.010207 0.017457 0.042435 0.053515 0.069319

 0.036364 0.037451 0.040177 0.044578 0.056449 0.071095
192 0.004500 0.039608 0.022393 0.044997 0.054187 0.073505

 0.007789 0.014012 0.024255 0.031045 0.051446 0.065521
193 0.014048 0.016642 0.023923 0.031440 0.046839 0.062265

 0.026796 0.029341 0.034009 0.041511 0.049160 0.065146
194 0.017525 0.023329 0.028599 0.034958 0.048903 0.059936

 0.013346 0.016757 0.026745 0.040491 0.050746 0.081421
195 0.032163 0.034096 0.037317 0.031616 0.046178 0.057431

 0.026939 0.024729 0.026632 0.034055 0.047672 0.063890
196 0.039637 0.012330 0.021919 0.036482 0.049494 0.061564

 0.036457 0.038679 0.041814 0.049417 0.059164 0.086099
197 0.007890 0.014903 0.020530 0.030215 0.044381 0.055281

 0.012618 0.013715 0.040435 0.031308 0.046035 0.060098
198 0.032797 0.028476 0.038330 0.041041 0.047816 0.055970

 0.031939 0.033004 0.038532 0.041129 0.044786 0.061166
199 0.018705 0.038137 0.034385 0.041651 0.064433 0.077479

 0.023879 0.022822 0.029782 0.039955 0.059085 0.086134
200 0.041021 0.029728 0.043709 0.058443 0.082808 0.109976

 0.022405 0.032584 0.047987 0.063091 0.093125 0.102363
201 0.036660 0.038571 0.042709 0.048694 0.064501 0.077726

 0.037060 0.039293 0.047153 0.053868 0.065956 0.071253
202 0.020731 0.024248 0.053616 0.035380 0.049351 0.070593

 0.033272 0.024465 0.030216 0.038743 0.052903 0.080115
203 0.006630 0.019059 0.025563 0.035052 0.053809 0.070735

 0.034424 0.020435 0.026895 0.035935 0.062826 0.087807
204 0.022604 0.023326 0.026479 0.039683 0.054178 0.069451

 0.028383 0.030460 0.034887 0.039541 0.055963 0.067989
205 0.039449 0.042396 0.045339 0.048204 0.066750 0.092365

 0.007691 0.035455 0.043616 0.051055 0.062256 0.085635
206 0.033879 0.035670 0.038233 0.047915 0.060762 0.078197

 0.037856 0.027352 0.032287 0.040828 0.059444 0.073200
207 0.049402 0.044973 0.045750 0.051409 0.049336 0.060143

 0.037041 0.022925 0.020641 0.037628 0.061677 0.076873
208 0.023553 0.026319 0.029835 0.035075 0.050630 0.073613

 0.021110 0.023530 0.027789 0.036910 0.054078 0.076246

160

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
209 0.032465 0.020286 0.024807 0.032244 0.047689 0.072874

 0.018027 0.020573 0.025651 0.033712 0.059178 0.075057
210 0.024229 0.044884 0.045730 0.049362 0.061061 0.071662

 0.032471 0.043279 0.041182 0.042182 0.056892 0.066848
211 0.037086 0.038865 0.041219 0.046551 0.052529 0.068941

 0.013473 0.014737 0.030497 0.035903 0.055705 0.073065
212 0.035315 0.039317 0.042537 0.048217 0.059141 0.072114

 0.035791 0.037810 0.040814 0.046314 0.066421 0.081316
213 0.005539 0.013236 0.020565 0.031212 0.060103 0.073954

 0.036129 0.014842 0.025299 0.035176 0.067314 0.082943
214 0.014118 0.018651 0.023931 0.037770 0.068647 0.078767

 0.007648 0.019113 0.024980 0.039461 0.058856 0.088586
215 0.020521 0.035916 0.037662 0.044819 0.054923 0.070000

 0.033348 0.028082 0.036644 0.045427 0.059825 0.078239
216 0.038173 0.040397 0.043566 0.050531 0.065168 0.079825

 0.025719 0.040736 0.044385 0.051445 0.062569 0.077296
217 0.019626 0.030536 0.034986 0.038175 0.064506 0.075035

 0.023367 0.025974 0.037314 0.040812 0.050559 0.076638
218 0.039898 0.052879 0.055747 0.055931 0.063131 0.076396

 0.019988 0.022662 0.026462 0.033382 0.047369 0.068750
219 0.023255 0.027866 0.032200 0.050117 0.073278 0.086501

 0.034877 0.025541 0.030803 0.052499 0.066922 0.097204
220 0.015339 0.014322 0.022617 0.029948 0.043685 0.066648

 0.013985 0.015048 0.024127 0.036566 0.070991 0.103982
221 0.039226 0.039820 0.041286 0.041737 0.054706 0.058086

 0.035494 0.036271 0.041774 0.047326 0.059364 0.077065
222 0.035392 0.037399 0.039130 0.024333 0.032436 0.054926

 0.036322 0.037270 0.016172 0.029418 0.057231 0.069374
223 0.017689 0.034993 0.038054 0.042398 0.056085 0.060297

 0.033733 0.031248 0.018356 0.025812 0.041627 0.066328
224 0.012577 0.010521 0.017849 0.028525 0.046878 0.063580

 0.005325 0.011144 0.031359 0.027472 0.044294 0.070199
225 0.011655 0.026358 0.020996 0.028515 0.042578 0.057797

 0.018046 0.020563 0.025264 0.028846 0.040750 0.054913
226 0.003746 0.022576 0.025600 0.030545 0.032051 0.045311

 0.004239 0.019335 0.022173 0.031787 0.053551 0.073464
227 0.014356 0.016836 0.020714 0.026584 0.032051 0.045311

 0.004239 0.012047 0.016215 0.027959 0.052119 0.074760
228 0.011541 0.013905 0.018186 0.024123 0.037705 0.047290

 0.021613 0.014135 0.019110 0.024042 0.044847 0.064378
229 0.012083 0.014996 0.019017 0.024375 0.036698 0.049939

 0.027579 0.015328 0.018753 0.024921 0.040991 0.068753

161

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
230 0.039479 0.033234 0.038626 0.042525 0.049935 0.061182

 0.023750 0.025131 0.038983 0.043274 0.055076 0.066569
231 0.036328 0.013881 0.022135 0.030532 0.054618 0.077891

 0.036405 0.038268 0.042351 0.031779 0.057832 0.074418
232 0.031097 0.034422 0.020050 0.036588 0.049217 0.068576

 0.036580 0.038410 0.021409 0.032553 0.066609 0.082209
233 0.013170 0.017110 0.025262 0.031108 0.044932 0.058897

 0.037367 0.020503 0.042603 0.033979 0.049411 0.062718
234 0.016995 0.027832 0.032145 0.031981 0.051698 0.061969

 0.025673 0.023134 0.032386 0.039232 0.056904 0.072037
235 0.018724 0.021136 0.032418 0.032675 0.047541 0.062227

 0.029306 0.031228 0.034221 0.033854 0.045408 0.073015
236 0.019369 0.023002 0.028392 0.036727 0.051361 0.073644

 0.014556 0.022884 0.027650 0.038529 0.057106 0.103989
237 0.005479 0.014178 0.020030 0.027763 0.045193 0.068000

 0.036611 0.038564 0.041639 0.032919 0.058485 0.103647
238 0.039802 0.039080 0.021847 0.038050 0.053450 0.064820

 0.012895 0.014440 0.020932 0.034674 0.066045 0.097447
239 0.004794 0.012448 0.020277 0.036414 0.045614 0.070397

 0.030642 0.032608 0.040889 0.029507 0.040977 0.064017
240 0.009288 0.015028 0.023878 0.031507 0.045821 0.067555

 0.012005 0.016648 0.022106 0.030772 0.054523 0.067659
241 0.038456 0.040242 0.043263 0.047241 0.053333 0.062068

 0.027459 0.030095 0.034183 0.047835 0.055393 0.060771
242 0.033979 0.037642 0.018294 0.024688 0.034425 0.043164

 0.005075 0.018699 0.017758 0.026066 0.038486 0.059393
243 0.020727 0.023855 0.028537 0.034341 0.059306 0.079307

 0.032458 0.034520 0.038526 0.043908 0.055797 0.075906
244 0.035601 0.038022 0.044821 0.048736 0.051726 0.055128

 0.028442 0.037728 0.042711 0.046855 0.059353 0.075512
245 0.028904 0.031189 0.032949 0.038562 0.044072 0.053796

 0.018486 0.030700 0.034333 0.038382 0.048473 0.061839
246 0.029896 0.039692 0.042365 0.046610 0.058646 0.067445

 0.038325 0.039860 0.033306 0.037370 0.048573 0.067989
247 0.011610 0.012957 0.021970 0.030194 0.042036 0.059776

 0.015347 0.019095 0.024370 0.027901 0.048558 0.067075
248 0.014313 0.017188 0.022355 0.029667 0.050821 0.053794

 0.035355 0.036358 0.021638 0.029466 0.042219 0.058524
249 0.005285 0.014871 0.023696 0.035220 0.052985 0.063999

 0.035877 0.025982 0.030719 0.039518 0.063645 0.085934
250 0.029115 0.036412 0.039231 0.042091 0.049885 0.058559

 0.043865 0.044997 0.048171 0.044483 0.052924 0.100629

162

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
251 0.024889 0.016552 0.022787 0.038361 0.053914 0.075360

 0.016264 0.024108 0.026245 0.033156 0.050028 0.075877
252 0.036966 0.038755 0.041126 0.041677 0.053019 0.063504

 0.037233 0.038930 0.041908 0.047435 0.054775 0.061590
253 0.037188 0.015072 0.041832 0.044907 0.052673 0.065326

 0.037460 0.015691 0.049694 0.033244 0.055607 0.073537
254 0.004071 0.020930 0.042007 0.025236 0.041969 0.042708

 0.012526 0.016561 0.019191 0.025665 0.040681 0.050438
255 0.033038 0.035291 0.038687 0.043299 0.056796 0.070561

 0.033345 0.035143 0.037898 0.035428 0.052879 0.079070
256 0.035380 0.035187 0.039359 0.042982 0.049972 0.056179

 0.035494 0.036772 0.018153 0.028189 0.054149 0.069215
257 0.041925 0.055093 0.064371 0.076583 0.107687 0.135066

 0.036531 0.047809 0.083005 0.107692 0.119630 0.124961
258 0.014133 0.022314 0.030859 0.048918 0.060210 0.072412

 0.014620 0.047034 0.085867 0.103843 0.122634 0.125800
259 0.005583 0.012301 0.017944 0.033969 0.043219 0.067418

 0.035562 0.037250 0.020275 0.033096 0.066221 0.077498
260 0.017371 0.032071 0.042577 0.053483 0.067971 0.079211

 0.020054 0.041677 0.048565 0.064029 0.084030 0.094424
281 0.020442 0.029167 0.031890 0.043215 0.058997 0.069868

 0.016303 0.026815 0.032724 0.043014 0.064682 0.084224
282 0.009027 0.019363 0.025594 0.033187 0.047130 0.056739

 0.010362 0.017814 0.025363 0.034514 0.052894 0.065253
283 0.039492 0.021058 0.025641 0.029390 0.038556 0.047985

 0.036979 0.039075 0.041748 0.046768 0.059830 0.071167
284 0.017559 0.032338 0.041223 0.051360 0.079555 0.086517

 0.019407 0.028843 0.040333 0.059800 0.113224 0.128247
285 0.037667 0.031793 0.027320 0.034979 0.047613 0.058715

 0.010232 0.040860 0.044453 0.049201 0.061565 0.075273
286 0.031319 0.021793 0.047540 0.038359 0.058069 0.064826

 0.032572 0.019976 0.044318 0.046009 0.062602 0.076812
287 0.015458 0.022949 0.026950 0.036047 0.050530 0.061267

 0.038274 0.042207 0.048080 0.062478 0.098610 0.107542
288 0.014604 0.024969 0.030381 0.038479 0.053374 0.064562

 0.011692 0.020073 0.026578 0.053668 0.057430 0.076068
289 0.010017 0.019810 0.025608 0.033436 0.047052 0.061476

 0.031323 0.040122 0.043816 0.049199 0.062360 0.068808
290 0.010454 0.043903 0.029129 0.038274 0.054660 0.064371

 0.013000 0.023424 0.036733 0.064383 0.126677 0.129734
291 0.016076 0.036669 0.033198 0.048916 0.061991 0.071980

 0.033053 0.038560 0.033452 0.042171 0.059850 0.076801

163

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
292 0.009251 0.041555 0.042342 0.032291 0.054376 0.053423

 0.010251 0.016110 0.022401 0.032485 0.046760 0.058034
293 0.019210 0.028568 0.047067 0.043447 0.058578 0.073460

 0.017982 0.024871 0.032641 0.045188 0.061261 0.077770
294 0.015269 0.020958 0.025323 0.030016 0.039157 0.046257

 0.016465 0.020925 0.025659 0.033915 0.049602 0.065659
295 0.011519 0.021529 0.046303 0.037318 0.051787 0.062647

 0.040093 0.042719 0.026727 0.036655 0.055141 0.068499
296 0.014162 0.036665 0.042731 0.050251 0.058057 0.068817

 0.040121 0.044301 0.048378 0.056652 0.064639 0.088544
297 0.013776 0.026103 0.035103 0.044250 0.065601 0.076755

 0.016064 0.023903 0.031953 0.042711 0.061187 0.082733
298 0.018941 0.025558 0.031475 0.038893 0.051498 0.065386

 0.019308 0.024444 0.031988 0.039047 0.057739 0.085005
299 0.014536 0.034304 0.036086 0.044882 0.064066 0.078654

 0.038875 0.044061 0.049568 0.057999 0.081252 0.087155
300 0.019749 0.023456 0.030486 0.040116 0.054311 0.067831

 0.013593 0.042591 0.047395 0.055741 0.069587 0.089204
301 0.033725 0.038016 0.041164 0.048194 0.056847 0.070306

 0.038671 0.040860 0.043740 0.041365 0.061001 0.077528
302 0.012131 0.023520 0.033391 0.043100 0.066386 0.083031

 0.031518 0.024177 0.033781 0.052205 0.085949 0.130768
303 0.039322 0.046278 0.051450 0.050074 0.070912 0.086197

 0.023849 0.039364 0.047707 0.051844 0.075833 0.090049
304 0.030050 0.032250 0.027917 0.026363 0.038598 0.049286

 0.038867 0.037953 0.040827 0.027639 0.046007 0.056231
305 0.011344 0.018001 0.025837 0.032712 0.042973 0.052568

 0.012623 0.019143 0.022839 0.030527 0.045317 0.057787
306 0.033274 0.026911 0.029340 0.033191 0.040691 0.055039

 0.033573 0.034607 0.036697 0.033107 0.038208 0.050480
307 0.016362 0.020890 0.029158 0.034995 0.043720 0.061554

 0.017137 0.014619 0.020720 0.033362 0.045817 0.060619
308 0.012623 0.015448 0.016601 0.022857 0.035136 0.050482

 0.013544 0.014441 0.038574 0.041148 0.035398 0.047049
309 0.030019 0.049724 0.065597 0.071097 0.091955 0.097089

 0.066223 0.079898 0.045054 0.050725 0.086897 0.118179
310 0.013247 0.038691 0.043925 0.042656 0.037797 0.032055

 0.047153 0.041861 0.061980 0.070382 0.077317 0.074089
311 0.007042 0.020318 0.033451 0.039887 0.054566 0.067626

 0.016578 0.040817 0.028684 0.040294 0.054165 0.065775
312 0.056061 0.039934 0.044073 0.036681 0.052565 0.065280

 0.075178 0.005972 0.015476 0.019954 0.027879 0.041233

164

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
313 0.015624 0.032660 0.044797 0.058313 0.078953 0.093628

 0.036557 0.045465 0.041929 0.054056 0.073364 0.092819
314 0.003547 0.011933 0.019593 0.030289 0.033519 0.042966

 0.037071 0.012441 0.019201 0.026185 0.039678 0.058905
315 0.004941 0.013380 0.021253 0.029951 0.045111 0.053167

 0.039610 0.041212 0.024417 0.032604 0.044987 0.057846
316 0.007001 0.026707 0.027024 0.035407 0.052525 0.071127

 0.014310 0.021705 0.029555 0.039310 0.051411 0.067905
317 0.004305 0.022539 0.042832 0.029065 0.042814 0.055844

 0.036557 0.038001 0.041284 0.045807 0.039252 0.054786
318 0.014566 0.019928 0.026089 0.047021 0.042081 0.052456

 0.032021 0.034322 0.041953 0.033309 0.047658 0.055522
319 0.038188 0.037554 0.038925 0.019896 0.034877 0.043660

 0.036697 0.037338 0.038666 0.040637 0.036196 0.047840
320 0.011930 0.021856 0.030812 0.039424 0.054865 0.071512

 0.015521 0.022030 0.035000 0.047872 0.062191 0.074565
321 0.033423 0.033428 0.034399 0.035503 0.018431 0.018449

 0.034251 0.034261 0.034256 0.034244 0.040195 0.078185
322 0.029137 0.029590 0.010968 0.011026 0.011073 0.011289

 0.009862 0.009764 0.012913 0.009838 0.031495 0.080610
323 0.010798 0.009822 0.010018 0.010221 0.010238 0.010370

 0.037133 0.032469 0.009862 0.009930 0.029404 0.058864
324 0.037399 0.037544 0.016345 0.038899 0.029584 0.034661

 0.034259 0.034390 0.035214 0.038782 0.063612 0.118004
325 0.032934 0.033596 0.015650 0.015626 0.015596 0.015610

 0.051248 0.016616 0.016748 0.015424 0.022553 0.094249
326 0.034589 0.016060 0.016646 0.034503 0.017840 0.017788

 0.015527 0.015704 0.016384 0.035405 0.056654 0.086593
327 0.025920 0.025934 0.028597 0.019865 0.021586 0.021737

 0.039699 0.035351 0.021415 0.023902 0.115884 0.119284
328 0.009716 0.037126 0.005828 0.010521 0.010602 0.010719

 0.010487 0.010487 0.010490 0.008067 0.032455 0.086779
329 0.034269 0.015521 0.017608 0.020434 0.017725 0.107499

 0.016379 0.018637 0.015768 0.015505 0.016932 0.015501
330 0.033675 0.015387 0.015387 0.015387 0.015422 0.015461

 0.051245 0.010986 0.010987 0.013719 0.022516 0.061507
331 0.061502 0.063010 0.063010 0.061504 0.061509 0.061504

 0.035166 0.035167 0.035167 0.033455 0.030674 0.087899
332 0.015375 0.018348 0.015798 0.015839 0.015943 0.018267

 0.033806 0.033817 0.021530 0.021667 0.031486 0.048657
333 0.060152 0.060162 0.068405 0.068606 0.057334 0.057342

 0.035749 0.035765 0.035767 0.035773 0.038152 0.102844

165

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
334 0.034452 0.034454 0.034457 0.033339 0.015444 0.015493

 0.033810 0.033808 0.033810 0.033830 0.062056 0.088876
335 0.036020 0.036029 0.036974 0.034178 0.017525 0.017547

 0.018644 0.019494 0.036073 0.036071 0.042031 0.136684
336 0.031627 0.031854 0.032485 0.017965 0.022386 0.024934

 0.032976 0.033056 0.033406 0.034367 0.036313 0.039532
337 0.003849 0.009695 0.021488 0.029421 0.038527 0.059027

 0.006706 0.012444 0.017421 0.027365 0.045752 0.067751
338 0.004666 0.013306 0.017334 0.020967 0.026755 0.031017

 0.025650 0.013534 0.038314 0.040999 0.036994 0.045491
339 0.060440 0.061822 0.068721 0.068491 0.061494 0.061940

 0.033723 0.033629 0.033613 0.033569 0.008984 0.105922
340 0.022163 0.011501 0.021982 0.015472 0.014988 0.015525

 0.033707 0.033706 0.033701 0.033741 0.076426 0.111734
341 0.003555 0.006497 0.015582 0.028401 0.055451 0.065758

 0.029057 0.065742 0.086430 0.088122 0.094099 0.096824
342 0.003660 0.005574 0.013168 0.024402 0.053644 0.061209

 0.024218 0.071273 0.078470 0.081077 0.086222 0.088369
343 0.036825 0.005059 0.012063 0.028150 0.050137 0.059590

 0.029160 0.048464 0.056093 0.068023 0.077166 0.083651
344 0.016774 0.014697 0.016462 0.013974 0.022426 0.034481

 0.036350 0.005427 0.018415 0.022308 0.049328 0.076655
345 0.017474 0.014318 0.036256 0.014143 0.026721 0.037521

 0.030021 0.007140 0.012352 0.036703 0.057068 0.078294
346 0.041571 0.020369 0.012159 0.018204 0.033587 0.045844

 0.036288 0.036748 0.012544 0.034426 0.060096 0.090781
347 0.022780 0.032564 0.034608 0.036906 0.046269 0.059915

 0.020296 0.022196 0.029298 0.056969 0.082133 0.074818
348 0.019078 0.019210 0.019505 0.020103 0.025881 0.030874

 0.035625 0.034223 0.040312 0.050348 0.051452 0.065942
349 0.021623 0.021916 0.007433 0.022598 0.028055 0.040521

 0.046251 0.080327 0.084748 0.091138 0.092877 0.098157
350 0.014591 0.020566 0.014898 0.015684 0.021196 0.025952

 0.018399 0.018561 0.019251 0.021788 0.035029 0.068934
351 0.099964 0.122034 0.145123 0.150743 0.149662 0.148789

 0.006093 0.013978 0.066741 N/A* N/A* N/A*
352 0.035514 0.002272 0.003518 0.006488 0.010312 0.014555

 0.013160 0.002761 0.035454 0.005897 0.036582 0.047959
353 0.098041 0.098873 0.125329 0.126612 0.129216 0.130942

 0.060939 0.104302 0.106399 0.107001 0.107397 0.108763
354 0.036563 0.007728 0.012401 0.019559 0.035361 0.042515

 0.006560 0.010990 0.019443 0.059044 0.062067 0.069873

166

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
355 0.035881 0.035589 0.035634 0.037065 0.011763 0.011857

 0.010975 0.011445 0.011688 0.011812 0.036132 0.037055
356 0.023784 0.017473 0.017564 0.031183 0.014092 0.014329

 0.025041 0.021982 0.022929 0.025293 0.025467 0.027383
357 0.036749 0.050686 0.046849 0.047587 0.036413 0.036413

 0.035716 0.035852 0.035853 0.036403 0.042991 0.068385
358 0.115529 0.127988 0.133339 0.130313 0.125254 0.125258

 0.013474 0.004765 0.036285 0.040724 0.086428 0.090747
359 0.021337 0.043221 0.045796 0.021767 0.029336 0.041042

 0.169677 0.005088 0.005491 0.014987 0.067794 0.075491
360 0.004997 0.063902 0.037336 0.027108 0.049055 0.061159

 0.008318 0.013503 0.023317 0.053048 0.067392 0.061392
361 0.014192 0.020194 0.032142 0.041208 0.064334 0.083246

 0.025607 0.025346 0.034771 0.045483 0.069192 0.095120
362 0.011218 0.015297 0.023938 0.017678 0.024637 0.032841

 0.019014 0.017784 0.020016 0.026824 0.032391 0.041060
363 0.003186 0.019585 0.006026 0.037842 0.021191 0.021614

 0.017021 0.017317 0.017907 0.018993 0.023527 0.025203
364 0.044246 0.037988 0.041562 0.055936 0.069391 0.086666

 0.044552 0.047310 0.033718 0.054004 0.077385 0.104757
365 0.035862 0.037886 0.019643 0.025955 0.039703 0.059451

 0.036874 0.038379 0.041084 0.045484 0.060452 0.092060
366 0.038342 0.037167 0.038751 0.042131 0.053589 0.067457

 0.036645 0.037028 0.038244 0.036864 0.051392 0.069675
367 0.020715 0.029680 0.038338 0.052387 0.066465 0.087319

 0.009401 0.017060 0.035625 0.051832 0.080835 0.111456
368 0.013640 0.013727 0.016831 0.028766 0.045812 0.057033

 0.037132 0.038453 0.040096 0.044041 0.055231 0.071258
369 0.007743 0.015254 0.020933 0.030081 0.048125 0.055161

 0.012252 0.014725 0.021923 0.033863 0.054235 0.079328
370 0.040757 0.041459 0.041663 0.043995 0.045371 0.058668

 0.023661 0.024524 0.041798 0.043445 0.049179 0.062298
371 0.029025 0.029409 0.040063 0.036928 0.044571 0.052034

 0.034349 0.028015 0.028965 0.034028 0.045884 0.046694
372 0.029849 0.038325 0.035320 0.040718 0.060899 0.072292

 0.036912 0.038259 0.035703 0.041564 0.065897 0.084785
373 0.002933 0.013998 0.012926 0.018400 0.030097 0.045100

 0.020809 0.007411 0.011893 0.018793 0.031921 0.044544
374 0.004654 0.013181 0.020216 0.025046 0.026517 0.031596

 0.036491 0.036847 0.015880 0.020305 0.029149 0.041398
375 0.036046 0.041263 0.021849 0.027921 0.038272 0.055114

 0.008500 0.022099 0.028936 0.026166 0.042244 0.070390

167

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
376 0.037890 0.019831 0.026650 0.036877 0.048805 0.073962

 0.010843 0.018190 0.026538 0.038288 0.059683 0.075852
377 0.036192 0.039732 0.022564 0.026800 0.041006 0.053846

 0.031554 0.036221 0.039033 0.030358 0.049707 0.066639
378 0.025766 0.031738 0.028878 0.037394 0.060051 0.079311

 0.013559 0.031907 0.032504 0.042939 0.064249 0.101953
379 0.038339 0.025393 0.029799 0.039215 0.054897 0.079790

 0.038173 0.039717 0.043752 0.044248 0.062579 0.092830
380 0.035271 0.036411 0.039118 0.042346 0.046920 0.064122

 0.035603 0.036588 0.038431 0.041227 0.056984 0.075035
381 0.017810 0.027090 0.034577 0.041604 0.060909 0.070302

 0.018791 0.021957 0.033607 0.052884 0.083574 0.104570
382 0.009857 0.022055 0.032701 0.044965 0.066789 0.091750

 0.011240 0.024846 0.037586 0.049391 0.083102 0.113167
383 0.039449 0.043620 0.027740 0.041480 0.065546 0.085802

 0.037465 0.041971 0.047685 0.059925 0.087317 0.102060
384 0.016709 0.032814 0.046728 0.062700 0.082563 0.104156

 0.018707 0.033810 0.047204 0.064633 0.097648 0.112693
385 0.024013 0.028725 0.034305 0.041667 0.060470 0.075048

 0.023614 0.021268 0.030283 0.046088 0.072050 0.094646
386 0.032765 0.056731 0.070538 0.093188 0.109616 0.125969

 0.033682 0.057727 0.079221 0.122038 0.166601 0.164513
387 0.028701 0.017406 0.024502 0.030900 0.047411 0.055359

 0.036617 0.039304 0.043122 0.034930 0.052733 0.072936
388 0.038862 0.024280 0.023834 0.033771 0.048734 0.066822

 0.008195 0.039458 0.044810 0.045672 0.067031 0.096332
389 0.023405 0.030347 0.035908 0.044602 0.057269 0.069628

 0.023793 0.029653 0.037153 0.048005 0.066058 0.070522
390 0.004386 0.012468 0.026146 0.031259 0.033696 0.042980

 0.023894 0.035228 0.021810 0.026012 0.043553 0.071985
391 0.040034 0.046122 0.052076 0.054710 0.074287 0.086228

 0.040370 0.043379 0.048020 0.063651 0.075765 0.112865
392 0.038457 0.014630 0.031490 0.033173 0.043447 0.064331

 0.017198 0.032059 0.037382 0.046816 0.067212 0.095152
393 0.031258 0.029566 0.033358 0.038830 0.053428 0.064344

 0.022994 0.043444 0.048576 0.055086 0.075791 0.096666
394 0.006977 0.016284 0.039943 0.035915 0.043194 0.060266

 0.007795 0.015825 0.031423 0.036778 0.057584 0.095898
395 0.094308 0.114682 0.116990 0.123211 0.126083 0.128233

 0.023710 0.030328 0.051266 0.070986 0.108379 0.112407
396 0.036722 0.022547 0.030471 0.044056 0.067894 0.082868

 0.037541 0.042352 0.047971 0.050204 0.093812 0.106416

168

Table A-3: RMS of luminance differences of models simplified with QEM (top) and
our algorithm (bottom) (cont’d)

Model 50% 20% 10% 5% 2% 1%
397 0.014823 0.017081 0.027800 0.044083 0.054088 0.060429

 0.032805 0.035549 0.040401 0.051204 0.061278 0.070160
398 0.019700 0.044719 0.060138 0.076765 0.104849 0.105356

 0.045139 0.053264 0.086974 0.124495 0.153122 0.112469
399 0.021150 0.021828 0.030966 0.042424 0.060172 0.074959

 0.010991 0.020166 0.030869 0.054618 0.067030 0.080650
400 0.008576 0.018690 0.029387 0.039228 0.055594 0.066406

 0.032525 0.022718 0.032211 0.037369 0.059039 0.079814
Angel 0.014139 0.032132 0.032910 0.034025 0.032070 0.040792

 0.031598 0.032095 0.032787 0.034232 0.037597 0.042236
Armadillo 0.031939 0.030912 0.034436 0.037393 0.049770 0.057793

 0.016829 0.024094 0.035528 0.040600 0.045008 0.053709
Bunny 0.025511 0.041030 0.055987 0.072644 0.094844 0.110413

 0.025744 0.041697 0.057375 0.077030 0.122551 0.160426
Canyon 0.049364 0.093497 0.111589 0.121958 0.141523 0.150134

 0.085059 0.115739 0.035854 0.135881 0.157200 0.167699
Dinosaur 0.005684 0.009487 0.038467 0.019460 0.027968 0.040933

 0.039054 0.037134 0.038648 0.020738 0.035993 0.054517
Dragon 0.028082 0.033012 0.025692 0.044294 0.052977 0.063510

 0.013399 0.020140 0.027092 0.036105 0.056378 0.080200
Horse 0.040753 0.032168 0.034074 0.029448 0.050884 0.046243

 0.025982 0.027367 0.028554 0.022322 0.054128 0.064437
Turbine 0.027627 0.032332 0.036445 0.041952 0.052423 0.059264

 0.027614 0.033361 0.040413 0.054371 0.083463 0.097988
Average 0.022643 0.027375 0.031574 0.037908 0.049846 0.061883

 0.024873 0.027678 0.033843 0.042246 0.059792 0.077612
Max 0.115529 0.127988 0.145123 0.150743 0.149662 0.150134

 0.169677 0.115739 0.138536 0.145130 0.166601 0.175492
Min 0.000074 0.002272 0.003518 0.006488 0.010238 0.010370

 0.003791 0.002761 0.005491 0.005897 0.008984 0.015501
Bold indicates 10 highest RMS luminance difference averages at the given percentage

for the given algorithm

Italics indicate 10 lowest values at the given percentage for the given algorithm

* N/A: The algorithm exhausted all possible contractions before the given level

169

Table A-4 displays the results for meshes with uneven vertex distribution that

were created using QEM reduction to 50%, before performing further simplification

with both algorithms. As this test has been performed using fewer meshes, we have

chosen to display two sets of averages, one with all data, and the other with

significant outliers (marked in italics) removed.

Table A-4: Hausdorff distances on 50% reduced meshes

Model 50% 20% 10% 5% 2% 1%
1 0.005891 0.011402 0.018834 0.022061 0.084247 0.111470

 0.004732 0.018146 0.030507 0.043841 0.061621 0.131485
11 0.005012 0.008881 0.009686 0.014576 0.021207 0.021621

 0.001539 0.004419 0.008734 0.018541 0.053077 0.060882
21 0.002023 0.002953 0.005251 0.016580 0.024810 0.044302

 0.001396 0.003481 0.009428 0.022292 0.057157 0.101220
101 0.001638 0.002910 0.005363 0.010694 0.023517 0.030562

 0.001223 0.005134 0.008143 0.017886 0.112510 0.273840
121 0.002725 0.005364 0.009598 0.016891 0.023798 0.149994

 0.002315 0.008874 0.019638 0.025271 0.143526 0.182596
131 0.001697 0.003414 0.006209 0.011061 0.020580 0.036597

 0.001750 0.006385 0.013237 0.023101 0.083554 0.083554
141 0.274710 0.345206 0.368698 0.368698 0.368710 0.390440

 0.000450 0.003112 0.020969 0.180241 0.195543 N/A*

151 0.159593 0.270593 0.270593 0.283130 0.319881 0.544245
 0.001587 0.003423 0.009555 0.253358 0.264896 0.275277

161 0.001210 0.003185 0.005423 0.016790 0.021774 0.039356
 0.002049 0.003349 0.006403 0.012046 0.032734 0.061718

171 0.001087 0.002799 0.005156 0.009667 0.015228 0.034612
 0.001078 0.002987 0.006094 0.014582 0.025857 0.053851

181 0.001622 0.004910 0.009234 0.027287 0.031706 0.031642
 0.001927 0.004567 0.007839 0.016862 0.061106 0.107411

191 0.112850 0.369641 0.409859 0.409859 0.459248 0.461870
 0.001463 0.002904 0.007286 0.020929 0.027186 0.070660

201 0.003040 0.011038 0.010554 0.017694 0.044833 0.051810
 0.002088 0.005312 0.012609 0.020542 0.045132 0.102804

211 0.001281 0.003021 0.014202 0.015640 0.015640 0.040179
 0.001638 0.003865 0.006155 0.012420 0.023633 0.041620

221 0.001176 0.003438 0.007301 0.008456 0.018090 0.045353
 0.001548 0.003648 0.009002 0.014075 0.037553 0.055626

231 0.002022 0.003345 0.011016 0.011394 0.021515 0.038959
 0.001671 0.004549 0.009484 0.017799 0.046244 0.054597

170

Table A-4: Hausdorff distances on 50% reduced meshes (cont’d)

Model 50% 20% 10% 5% 2% 1%
241 0.001499 0.004409 0.005709 0.010546 0.044435 0.040879

 0.001951 0.005069 0.010844 0.018118 0.069945 0.092267
251 0.001930 0.003842 0.006587 0.012511 0.036436 0.061209

 0.001977 0.006226 0.010290 0.027637 0.046993 0.046993
Average 0.032278 0.058908 0.065515 0.071308 0.088648 0.120839

 0.001799 0.005303 0.011457 0.042197 0.077126 0.105671
(no outliers) 0.002257 0.004994 0.008675 0.014790 0.029854 0.051903

 0.001925 0.005734 0.011227 0.020334 0.060043 0.096698
Max 0.274710 0.369641 0.409859 0.409859 0.459248 0.544245

 0.004732 0.018146 0.030507 0.253358 0.264896 0.275277
Min 0.001087 0.002799 0.005156 0.008456 0.015228 0.021621

 0.000450 0.002904 0.006094 0.012046 0.023633 0.041620

* N/A: The algorithm exhausted all possible contractions before the given level

171

Table A-5 shows results from a smaller experiment with an addition-

based penalizing system, as described in Chapter V. The results from the original

penalizing method are also shown for comparison. All of the models used in this

experiment (except for the Canyon model) were fully manifold, therefore, β (weight

for boundary penalty) was set to 0 for all models (for the Canyon model, β was set to

1). The α and δ weights (angular and regularity penalties) used in the experiment are

displayed with the results.

Table A-5: Hausdorff results from addition-based (top) and logarithm-based (bottom)
penalizing

Model α δ 50% 20% 10% 5% 2% 1%
1 .04 .04 0.003221 0.008186 0.020139 0.050261 0.046100 0.052993
 0.002224 0.005295 0.012277 0.032251 0.043783 0.055846

11 .04 .02 0.001773 0.005697 0.010630 0.013751 0.041870 0.059879
 0.001086 0.002134 0.004617 0.010499 0.042660 0.046877

21 .02 .02 0.000859 0.005629 0.012069 0.022804 0.041686 0.068408
 0.000828 0.001451 0.003182 0.005664 0.024215 0.036284

31 .02 .02 0.001046 0.004171 0.009114 0.013396 0.032604 0.044061
 0.000911 0.001629 0.002686 0.006126 0.016485 0.029743

41 .02 .01 0.003745 0.010782 0.014526 0.022632 0.044625 0.051597
 0.000735 0.002029 0.005805 0.012352 0.016966 0.029383

51 .04 .01 0.004701 0.009897 0.013608 0.021043 0.063311 0.063311
 0.001045 0.002857 0.007269 0.198070 0.035696 0.082072

61 .04 .02 0.001672 0.004870 0.007596 0.012780 0.024877 0.043107
 0.000936 0.002663 0.005099 0.007859 0.017481 0.048546

71 .04 .01 0.001347 0.003355 0.006685 0.008866 0.022761 0.039401
 0.000866 0.001814 0.004290 0.008492 0.015972 0.033649

81 .08 .01 0.003344 0.013319 0.023162 0.031626 0.082547 0.082547
 0.001463 0.004588 0.013379 0.022718 0.035793 0.065673

91 .04 .01 0.002704 0.010609 0.016245 0.026014 0.040292 0.060484
 0.001305 0.002815 0.006861 0.015804 0.039400 0.062954

101 .04 .01 0.002158 0.006011 0.013504 0.014754 0.033577 0.039902
 0.000358 0.001688 0.004069 0.007071 0.015602 0.024933

111 .04 .02 0.004063 0.008094 0.013912 0.020512 0.039066 0.069711
 0.001798 0.003412 0.009973 0.110990 0.137811 0.137811

172

Table A-5: Hausdorff results from addition-based (top) and logarithm-based (bottom)
penalizing (cont’d)

Model α δ 50% 20% 10% 5% 2% 1%
121 .02 .01 0.003183 0.013139 0.023718 0.029295 0.038815 0.104132

 0.001723 0.003308 0.009335 0.016785 0.035186 0.054382
131 .04 .01 0.003925 0.007276 0.014393 0.024043 0.045249 0.063384

 0.001141 0.002175 0.004784 0.009780 0.039497 0.039497
141 .04 .01 0.000007 0.001240 0.004102 0.010815 0.021084 0.059335

 0.000000 0.000798 0.002153 0.004322 0.018364 0.021316
151 .04 .01 0.000027 0.003362 0.005408 0.008219 0.013736 0.024338

 0.000002 0.001568 0.002214 0.004966 0.009630 0.019507
161 .02 .01 0.001093 0.004736 0.012361 0.022681 0.028093 0.036708

 0.001057 0.002250 0.003568 0.006740 0.018576 0.030684
171 .02 .01 0.001049 0.004368 0.009773 0.017931 0.030683 0.057850

 0.000819 0.001342 0.002617 0.005998 0.018948 0.026481
181 .02 .02 0.001498 0.006862 0.009167 0.019401 0.042370 0.044638

 0.001321 0.002688 0.004843 0.009168 0.026919 0.033829
191 .02 .01 0.001277 0.003562 0.010515 0.012513 0.026983 0.054035

 0.000960 0.002136 0.004479 0.005807 0.023554 0.028798
201 .02 .02 0.001618 0.004905 0.006739 0.011644 0.023292 0.031477

 0.001128 0.002959 0.005412 0.011096 0.017711 0.027170
211 .04 .04 0.001473 0.004357 0.008335 0.020163 0.027414 0.031591

 0.001424 0.002741 0.006083 0.009328 0.021282 0.028368
221 .04 .02 0.001003 0.005319 0.011424 0.016682 0.028560 0.054341

 0.000961 0.002068 0.004672 0.008029 0.023256 0.028294
231 .04 .01 0.001171 0.007742 0.012605 0.022419 0.038736 0.051755

 0.000964 0.002802 0.004548 0.007698 0.021810 0.040588
241 .04 .01 0.001866 0.006512 0.008518 0.013869 0.020003 0.081559

 0.000936 0.002048 0.005365 0.010416 0.021014 0.030753
251 .04 .01 0.002925 0.006509 0.013227 0.014528 0.026519 0.039704

 0.001559 0.002748 0.005973 0.012124 0.030985 0.057274
281 .02 .02 0.001511 0.004942 0.009003 0.020984 0.035004 0.050837

 0.001501 0.002587 0.004435 0.006124 0.020837 0.035884
291 .02 .01 0.001852 0.006249 0.015005 0.022746 0.048905 0.047393

 0.001786 0.003055 0.004644 0.007911 0.019760 0.037161
301 .06 .01 0.001672 0.005768 0.011444 0.024936 0.053522 0.061029

 0.001613 0.003367 0.004583 0.007732 0.021307 0.045735
311 .04 .01 0.001423 0.004729 0.011786 0.018082 0.024727 0.031528

 0.001211 0.002245 0.003470 0.005399 0.010804 0.020043
313 .04 .01 0.007135 0.007461 0.014864 0.027092 0.038751 0.065515

 0.002407 0.004258 0.007805 0.012166 0.026915 0.048070

173

Table A-5: Hausdorff results from addition-based penalizing (cont’d)

Model α δ 50% 20% 10% 5% 2% 1%
321 .04 .02 0.000000 0.000569 0.003871 0.008705 0.012630 0.015814

 0.000000 0.000000 0.000005 0.000006 0.025466 0.120618
331 .04 .01 0.000000 0.000007 0.000007 0.011459 0.011087 0.027787

 0.000000 0.000000 0.000005 0.000007 0.020965 0.076975
341 .04 .01 0.029733 0.141720 0.162863 0.211988 0.220224 0.220224

 0.025949 0.115654 0.195246 0.197037 0.197037 0.197037
351 .02 .01 0.001526 0.019115 0.088408 N/A* N/A* N/A*

 0.006076 0.001245 0.084882 N/A* N/A* N/A*

361 .06 .01 0.002499 0.010469 0.016088 0.022784 0.032267 0.067565
 0.001337 0.002258 0.005189 0.011103 0.038002 0.081720

371 .04 .01 0.000696 0.002157 0.004087 0.008030 0.019108 0.029171
 0.000681 0.001358 0.002228 0.003419 0.007498 0.017142

381 .02 .01 0.002091 0.010843 0.023459 0.045668 0.058461 0.053997
 0.001673 0.005275 0.007882 0.017825 0.055342 0.068584

391 .04 .01 0.008792 0.016667 0.024697 0.037599 0.065090 0.065454
 0.003351 0.006442 0.013083 0.031258 0.051090 0.088611

Canyon .02 .02 0.001684 0.006566 0.011067 0.022801 0.030387 0.035161
 β: 1 0.004899 0.012800 0.028362 0.033196 0.033319 0.034957

Horse .04 .01 0.000566 0.002303 0.005272 0.008983 0.014943 0.025378
 0.000490 0.001019 0.004283 0.004283 0.005694 0.014777

* N/A: The algorithm exhausted all possible contractions before the given level

Figures A-1 to A-13 show graphs of the Hausdorff distances between

our method and the QEM method for selected models.

Figure A-1: Hausdorff distances for Female (left) and Male (right) models

174

Figure A-2: Hausdorff distances for Cup (left) and Chair (right) models

Figure A-3: Hausdorff distances for Squid (left) and Squid 2 (right) models

Figure A-4: Hausdorff distances for Table (left) and Table 2 (right) models

175

Figure A-5: Hausdorff distances for Teddy (left) and Teddy 2 (right) models

Figure A-6: Hausdorff distances for Hand (left) and Hand 2 (right) models

Figure A-7: Hausdorff distances for Pliers (left) and Pliers 2 (right) models

176

Figure A-8: Hausdorff distances for Dolphin (left) and Fish (right) models

Figure A-9: Hausdorff distances for Bird (left) and Bird 2 (right) models

Figure A-10: Hausdorff distances for Angel (left) and Armadillo (right) models

177

Figure A-11: Hausdorff distances for Bunny (left) and Canyon (right) models

Figure A-12: Hausdorff distances for Dinosaur (left) and Dragon (right) models

Figure A-13: Hausdorff distances for Horse (left) and Turbine (right) models

178

A.2 Running times with and without partial updates, and with different updating

parameters

In Table A-6, we compare the running times of selected models when

running with (top row) and without (middle row) partial updates, and display the

ratios of the running times (bottom row).

Table A-6: Comparing running time with and without partial updates: (top row) with
partial updates, (middle row) without partial updates, (bottom row) ratio

Model 50% 20% 10% 5% 2% 1%
1 19.158 33.048 35.902 36.953 38.445 39.006
 114.719 174.953 191.328 198.203 201.844 202.891
 5.988 5.294 5.329 5.364 5.250 5.202

11 50.633 78.583 86.554 89.479 91.271 91.862
 254.563 375.734 414.578 432.313 440.563 443.047
 5.028 4.781 4.790 4.831 4.827 4.823

21 52.185 78.583 86.554 89.479 91.271 91.862
 375.688 550.969 602.013 623.469 634.875 638.313
 7.199 7.011 6.955 6.968 6.956 6.949

31 54.919 92.553 104.100 108.075 111.310 112.832
 373.641 543.172 590.781 611.391 621.906 625.406
 6.803 5.869 5.675 5.657 5.587 5.543

61 19.418 33.078 36.202 38.355 39.817 40.338
 116.938 170.391 184.984 191.266 194.844 196.016
 6.022 5.151 5.110 4.987 4.893 4.859

81 21.721 37.143 41.029 43.392 45.045 45.816
 138.234 203.859 224.969 233.516 238.234 239.469
 6.364 5.488 5.483 5.382 5.289 5.227

111 38.344 62.891 70.203 71.500 73.047 73.219
 339.438 430.922 456.250 469.594 476.734 479.016
 8.852 6.852 6.499 6.568 6.526 6.542

121 23.484 38.896 42.571 45.065 47.488 48.700
 148.516 211.203 227.156 234.125 239.047 240.047
 6.324 5.430 5.336 5.195 5.034 4.929

131 48.547 81.813 92.328 95.781 98.172 99.031
 276.891 399.906 435.188 448.875 456.859 459.031
 5.704 4.888 4.713 4.686 4.654 4.635

141 62.859 98.843 111.344 116.484 119.813 120.813
 634.078 844.766 896.344 920.625 931.531 934.422
 10.087 8.547 8.050 7.903 7.775 7.734

179

Table A-6: Comparing running time with and without partial updates: (top row) with
partial updates, (middle row) without partial updates, (bottom row) ratio (cont’d)

Model 50% 20% 10% 5% 2% 1%
151 48.688 82.844 95.750 100.156 103.156 103.875

 494.343 665.609 706.828 723.828 733.016 735.734
 10.153 8.034 7.382 7.227 7.106 7.083

171 52.505 89.549 100.525 104.630 107.845 109.087
 357.141 520.406 564.344 585.484 596.813 599.891
 6.802 5.811 5.614 5.596 5.534 5.499

181 27.844 47.328 51.391 54.047 56.141 57.141
 155.203 230.906 250.859 262.500 267.953 269.594
 5.574 4.879 4.881 4.857 4.773 4.718

191 56.722 96.819 111.000 114.995 119.061 120.223
 337.734 509.531 556.938 577.281 587.172 590.343
 5.954 5.263 5.017 5.020 4.932 4.910

201 18.136 27.520 30.604 32.657 34.039 34.710
 103.734 154.343 168.984 174.969 178.109 178.969
 5.720 5.608 5.522 5.358 5.232 5.156

211 17.797 27.984 31.156 32.891 34.031 34.641
 98.906 145.797 162.891 168.547 171.844 172.844
 5.557 5.210 5.228 5.124 5.050 4.990

221 22.873 39.437 43.713 46.186 47.468 48.129
 165.250 241.906 262.125 271.078 275.906 277.297
 7.225 6.134 5.996 5.869 5.812 5.762

231 24.688 42.156 46.625 49.109 50.391 51.109
 142.688 204.609 223.203 230.813 234.984 236.359
 5.780 4.854 4.787 4.700 4.663 4.625

241 14.844 22.578 24.984 26.141 27.328 27.891
 69.438 102.719 111.672 116.000 118.125 118.859
 4.678 4.550 4.470 4.437 4.322 4.262

251 12.829 21.391 23.813 24.969 25.922 26.297
 65.438 96.313 104.359 107.859 110.297 110.953
 5.101 4.503 4.382 4.320 4.255 4.219

281 105.682 178.196 197.905 207.599 211.694 213.697
 664.609 969.344 1047.641 1086.172 1108.375 1114.891
 6.289 5.440 5.294 5.232 5.236 5.217

291 86.855 144.988 162.183 171.186 174.421 176.033
 622.922 923.109 1008.250 1042.344 1061.484 1067.453
 7.172 6.367 6.217 6.089 6.086 6.064

301 33.328 56.371 61.378 64.473 66.235 66.866
 203.984 301.516 330.844 348.469 355.891 357.984
 6.120 5.349 5.390 5.405 5.373 5.354

311 100.104 171.947 193.108 203.703 208.300 209.942
 844.359 1183.766 1266.609 1302.000 1320.469 1326.438
 8.435 6.884 6.559 6.392 6.339 6.318

180

Table A-6: Comparing running time with and without partial updates: (top row) with
partial updates, (middle row) without partial updates, (bottom row) ratio (cont’d)

Model 50% 20% 10% 5% 2% 1%
321 81.838 123.698 134.443 138.860 141.503 142.204

 427.766 624.266 686.578 718.297 733.031 738.453
 5.227 5.047 5.107 5.173 5.180 5.193

331 77.031 128.938 143.719 148.719 151.781 153.203
 435.813 655.078 722.594 751.891 766.891 771.094
 5.658 5.081 5.028 5.056 5.053 5.033

341 4.777 7.751 8.512 8.943 9.303 9.544
 32.109 55.328 60.047 62.500 63.781 64.141
 6.722 7.138 7.054 6.989 6.856 6.721

351 18.987 35.030 36.693 N/A* N/A* N/A*

 125.359 175.141 190.109 N/A* N/A* N/A*

 6.602 5.000 5.181 N/A* N/A* N/A*

361 49.631 88.770 93.965 97.891 100.955 102.267
 312.938 467.938 510.234 529.391 539.813 543.531
 6.305 5.271 5.430 5.408 5.347 5.315

371 58.394 87.265 98.652 104.530 107.044 108.426
 306.875 452.984 491.719 509.453 519.391 522.531
 5.255 5.191 4.984 4.874 4.852 4.819

381 28.150 46.206 50.483 52.846 54.398 55.430
 134.938 200.953 220.609 229.438 234.406 235.766
 4.794 4.349 4.370 4.342 4.309 4.253

391 14.551 22.643 25.266 26.448 27.810 28.571
 81.016 121.563 132.594 137.547 140.156 140.875
 5.568 5.369 5.248 5.201 5.040 4.931

Avg. 6.408 5.645 5.534 5.491 5.424 5.383
* N/A: The algorithm exhausted all possible contractions before the given level

181

Table A-7 displays the running times when changing the parameters

used in our updating scheme as described in Chapter V, along with running times

when not using caching. For comparison, we also display the running times using

normal parameters.

Table A-7: Running times after changing update parameters

Model Parameters 50% 20% 10% 5% 2% 1%
1 n-8 layers 25.891 41.422 47.578 51.422 53.828 54.859
 n-4 layers 28.703 43.906 47.641 49.484 50.063 50.266
 |C|≥|H|×6 13.797 25.656 30.328 32.391 33.844 34.516
 |C|≥|H|×2 33.969 49.861 52.984 54.234 55.500 56.234
 No Cache 19.438 35.703 38.422 39.484 40.844 41.422
 Regular 19.158 33.048 35.902 36.953 38.445 39.006
11 n-8 layers 51.359 84.016 99.688 105.531 108.922 112.578
 n-4 layers 62.516 95.469 109.156 112.656 114.547 114.984
 |C|≥|H|×6 30.594 57.672 69.031 73.125 75.703 76.703
 |C|≥|H|×2 113.188 157.672 171.078 176.547 179.578 180.672
 No Cache 48.844 77.969 86.828 90.078 92.219 93.016
 Regular 50.633 78.583 86.554 89.479 91.271 91.862
21 n-8 layers 67.797 102.078 116.938 124.813 127.938 130.094
 n-4 layers 85.453 128.547 145.984 152.172 154.547 155.172
 |C|≥|H|×6 43.953 80.719 94.797 99.016 101.844 102.859
 |C|≥|H|×2 78.594 140.031 152.219 159.109 161.734 162.656
 No Cache 60.500 103.156 115.375 119.750 123.094 124.203
 Regular 52.185 78.583 86.554 89.479 91.271 91.862
31 n-8 layers 81.672 92.859 107.547 115.375 118.453 121.328
 n-4 layers 84.328 128.891 146.703 153.391 156.250 157.109
 |C|≥|H|×6 47.250 87.234 102.188 106.844 110.125 111.484
 |C|≥|H|×2 77.203 139.891 152.531 159.563 162.375 163.484
 No Cache 62.547 106.469 121.672 126.797 130.797 132.344
 Regular 54.919 92.553 104.100 108.075 111.310 112.832
41 n-8 layers 25.672 40.594 47.750 50.500 52.969 54.297
 n-4 layers 41.141 66.328 70.703 73.344 74.828 75.250
 |C|≥|H|×6 21.719 38.813 45.750 48.266 49.531 50.453
 |C|≥|H|×2 39.016 58.906 66.016 68.578 70.031 70.938
 No Cache 29.875 50.031 54.391 57.078 58.594 59.547
 Regular 23.023 38.936 42.431 44.474 45.616 46.347

182

Table A-7: Running times after changing update parameters (cont’d)

Model Parameters 50% 20% 10% 5% 2% 1%
51 n-8 layers 11.344 17.797 19.766 22.109 23.734 24.172
 n-4 layers 18.250 25.875 28.094 28.953 29.688 29.875
 |C|≥|H|×6 9.219 16.578 18.750 19.953 21.250 21.984
 |C|≥|H|×2 13.781 20.250 21.906 23.438 24.578 25.359
 No Cache 11.594 18.391 20.703 21.781 22.813 23.563
 Regular 9.664 15.262 17.145 18.326 19.158 19.708
61 n-8 layers 20.422 33.094 38.656 40.688 43.516 44.547
 n-4 layers 30.422 46.484 51.703 52.938 54.063 54.313
 |C|≥|H|×6 17.625 31.234 36.703 38.188 39.547 40.250
 |C|≥|H|×2 31.141 46.875 50.797 52.953 54.359 55.063
 No Cache 22.641 39.000 42.531 44.813 46.328 46.813
 Regular 19.418 33.078 36.202 38.355 39.817 40.338
71 n-8 layers 21.328 34.141 39.953 42.063 44.531 45.734
 n-4 layers 31.938 52.516 56.281 58.484 59.438 59.953
 |C|≥|H|×6 17.969 32.422 38.297 39.906 41.563 42.031
 |C|≥|H|×2 32.078 48.078 52.375 54.797 56.203 56.781
 No Cache 25.656 42.125 45.813 48.031 49.484 50.141
 Regular 19.598 32.597 35.461 37.224 38.295 38.776
81 n-8 layers 24.234 38.594 45.188 48.234 51.906 53.156
 n-4 layers 36.688 55.906 63.031 65.688 67.203 67.516
 |C|≥|H|×6 19.844 35.875 42.313 44.578 46.203 47.063
 |C|≥|H|×2 37.359 54.922 61.047 62.906 65.109 65.922
 No Cache 27.516 46.656 50.984 54.203 56.375 58.094
 Regular 21.721 37.143 41.029 43.392 45.045 45.816
91 n-8 layers 32.672 51.297 60.234 64.578 68.422 69.953
 n-4 layers 49.375 75.563 86.250 89.234 90.578 91.359
 |C|≥|H|×6 26.281 49.266 57.844 61.094 63.453 64.172
 |C|≥|H|×2 49.594 77.766 82.844 86.328 88.625 89.734
 No Cache 43.578 75.203 83.156 85.891 87.422 88.625
 Regular 28.511 48.299 54.298 56.421 57.553 58.414
101 n-8 layers 33.203 62.359 76.234 81.859 85.984 88.188
 n-4 layers 48.344 74.594 85.672 88.578 90.016 90.797
 |C|≥|H|×6 30.438 48.906 57.016 60.047 62.016 62.781
 |C|≥|H|×2 47.781 83.906 99.469 104.375 106.656 108.469
 No Cache 43.672 70.375 79.094 82.125 83.984 85.313
 Regular 35.891 59.250 66.953 70.047 71.172 71.781
111 n-8 layers 39.250 65.016 76.219 80.703 83.313 N/A*

 n-4 layers 52.547 78.500 88.844 91.703 92.906 93.094
 |C|≥|H|×6 27.578 47.625 55.984 59.000 60.281 60.391
 |C|≥|H|×2 66.031 101.250 108.625 111.484 112.734 112.750
 No Cache 39.141 63.891 73.656 76.281 78.766 79.078
 Regular 38.344 62.891 70.203 71.500 73.047 73.219

183

Table A-7: Running times after changing update parameters (cont’d)

Model Parameters 50% 20% 10% 5% 2% 1%
121 n-8 layers 27.578 43.594 51.422 54.625 58.000 59.813
 n-4 layers 34.000 50.563 55.688 56.922 58.047 58.344
 |C|≥|H|×6 20.500 35.297 40.953 42.719 44.625 45.297
 |C|≥|H|×2 29.328 51.688 55.609 57.875 59.344 60.281
 No Cache 25.234 42.766 46.484 49.063 50.953 51.844
 Regular 23.484 38.896 42.571 45.065 47.488 48.700
131 n-8 layers 65.563 99.563 114.031 119.469 123.750 126.516
 n-4 layers 65.422 95.984 109.344 112.766 114.750 115.250
 |C|≥|H|×6 37.359 64.313 75.031 79.203 82.078 83.703
 |C|≥|H|×2 47.359 93.813 104.031 108.297 111.234 112.734
 No Cache 45.328 75.828 85.109 88.641 91.234 92.328
 Regular 48.547 81.813 92.328 95.781 98.172 99.031
141 n-8 layers 59.516 93.531 105.391 110.406 114.109 115.781
 n-4 layers 66.375 107.531 123.750 129.938 132.203 132.641
 |C|≥|H|×6 68.344 100.688 113.672 118.688 122.094 123.438
 |C|≥|H|×2 80.141 139.453 157.328 165.531 169.891 170.688
 No Cache 61.125 95.438 107.656 112.656 116.141 117.219
 Regular 62.859 98.843 111.344 116.484 119.813 120.813
151 n-8 layers 41.797 80.500 91.266 95.313 99.250 101.938
 n-4 layers 56.094 97.281 108.219 114.281 116.703 117.219
 |C|≥|H|×6 50.531 75.031 90.109 94.813 98.031 99.234
 |C|≥|H|×2 63.109 105.109 120.797 125.063 127.922 128.969
 No Cache 49.828 81.703 93.375 97.813 100.688 101.531
 Regular 48.688 82.844 95.750 100.156 103.156 103.875
161 n-8 layers 59.484 93.281 108.391 117.703 121.000 122.953
 n-4 layers 80.500 129.281 141.625 147.953 150.438 151.078
 |C|≥|H|×6 41.797 75.391 88.250 92.922 96.328 97.609
 |C|≥|H|×2 82.578 128.844 144.813 149.063 152.359 153.813
 No Cache 57.531 97.297 108.938 113.188 116.438 117.828
 Regular 66.976 102.497 112.121 115.586 118.210 119.452
171 n-8 layers 67.156 104.641 120.547 128.625 131.969 133.594
 n-4 layers 85.938 137.859 150.547 157.625 160.516 161.516
 |C|≥|H|×6 44.453 81.188 95.547 102.531 104.922 105.734
 |C|≥|H|×2 88.563 137.703 154.906 159.578 163.234 164.719
 No Cache 64.063 108.172 122.125 127.156 131.219 132.766
 Regular 41.329 70.541 79.094 82.308 84.572 85.883
181 n-8 layers 28.859 46.156 53.672 56.438 59.453 61.125
 n-4 layers 41.063 62.094 68.750 71.125 72.453 72.703
 |C|≥|H|×6 19.750 36.297 42.750 44.859 45.984 46.719
 |C|≥|H|×2 35.438 62.094 68.531 70.234 72.391 73.344
 No Cache 29.547 49.266 53.375 56.156 57.750 58.531
 Regular 27.844 47.328 51.391 54.047 56.141 57.141

184

Table A-7: Running times after changing update parameters (cont’d)

Model Parameters 50% 20% 10% 5% 2% 1%
191 n-8 layers 54.047 84.766 99.031 106.922 112.172 114.531
 n-4 layers 79.453 119.875 136.250 142.266 144.344 144.984
 |C|≥|H|×6 40.969 76.250 91.391 95.844 99.031 100.453
 |C|≥|H|×2 81.328 125.141 140.594 144.359 147.172 148.141
 No Cache 55.078 93.859 105.625 109.734 112.750 113.813
 Regular 56.722 96.819 111.000 114.995 119.061 120.223
201 n-8 layers 18.766 29.516 33.641 36.641 39.422 40.391
 n-4 layers 23.250 41.938 44.875 45.813 46.828 47.047
 |C|≥|H|×6 13.406 23.969 27.078 28.984 29.922 30.344
 |C|≥|H|×2 22.625 36.438 39.688 41.344 42.156 42.813
 No Cache 19.203 29.625 32.891 34.844 36.000 36.547
 Regular 18.136 27.520 30.604 32.657 34.039 34.710
211 n-8 layers 21.031 32.578 37.469 39.813 42.641 43.500
 n-4 layers 25.375 37.641 40.250 41.156 41.984 42.219
 |C|≥|H|×6 15.141 27.922 31.500 33.438 34.594 35.188
 |C|≥|H|×2 21.969 35.516 38.469 39.609 40.828 41.656
 No Cache 18.000 28.313 31.547 33.328 34.516 35.141
 Regular 17.797 27.984 31.156 32.891 34.031 34.641
221 n-8 layers 31.625 48.109 56.313 59.688 62.469 64.281
 n-4 layers 39.969 62.859 69.766 72.266 73.531 73.859
 |C|≥|H|×6 21.469 40.750 47.781 50.094 51.656 52.453
 |C|≥|H|×2 34.234 60.375 66.891 69.172 70.375 71.141
 No Cache 28.641 49.031 53.484 56.438 58.094 58.953
 Regular 22.873 39.437 43.713 46.186 47.468 48.129
231 n-8 layers 24.094 40.609 47.766 50.922 54.500 56.016
 n-4 layers 34.250 52.938 59.109 61.266 62.234 62.641
 |C|≥|H|×6 19.656 35.203 41.797 43.813 44.813 45.234
 |C|≥|H|×2 35.734 52.813 58.563 60.047 61.578 62.250
 No Cache 26.031 44.328 48.609 51.203 52.453 53.156
 Regular 24.688 42.156 46.625 49.109 50.391 51.109
241 n-8 layers 15.359 24.484 28.469 31.219 33.875 34.781
 n-4 layers 16.109 27.406 29.875 31.063 31.484 31.672
 |C|≥|H|×6 10.344 18.906 21.422 22.516 23.438 23.781
 |C|≥|H|×2 17.906 26.438 29.219 30.578 32.219 32.906
 No Cache 14.531 22.531 25.094 26.328 27.578 28.172
 Regular 14.844 22.578 24.984 26.141 27.328 27.891
251 n-8 layers 15.844 23.516 26.953 30.563 32.781 33.375
 n-4 layers 16.859 29.500 32.172 33.516 33.891 34.031
 |C|≥|H|×6 9.625 17.781 20.375 21.703 23.156 23.922
 |C|≥|H|×2 15.359 22.688 25.188 26.406 27.578 28.109
 No Cache 13.047 20.563 23.000 24.172 25.203 25.672
 Regular 12.829 21.391 23.813 24.969 25.922 26.297

185

Table A-7: Running times after changing update parameters (cont’d)

Model Parameters 50% 20% 10% 5% 2% 1%
281 n-8 layers 114.859 179.906 208.578 222.641 229.984 231.813
 n-4 layers 153.328 229.391 259.344 270.516 277.031 278.578
 |C|≥|H|×6 88.250 161.719 199.078 207.094 213.875 215.328
 |C|≥|H|×2 158.047 238.438 266.266 277.313 283.344 284.719
 No Cache 106.797 177.281 197.484 207.625 211.750 213.625
 Regular 105.682 178.196 197.905 207.599 211.694 213.697
291 n-8 layers 109.438 164.156 188.438 200.250 206.453 208.063
 n-4 layers 148.281 224.109 253.891 265.188 271.484 273.000
 |C|≥|H|×6 84.250 150.047 173.922 182.063 189.047 190.891
 |C|≥|H|×2 154.594 233.266 260.563 271.391 277.188 278.422
 No Cache 104.891 174.172 194.000 203.969 207.969 210.000
 Regular 86.855 144.988 162.183 171.186 174.421 176.033
301 n-8 layers 36.547 58.000 67.594 71.453 74.922 77.313
 n-4 layers 52.859 84.984 92.891 95.938 97.813 98.234
 |C|≥|H|×6 30.359 58.438 63.484 66.578 68.688 69.516
 |C|≥|H|×2 53.422 85.016 93.250 96.109 97.813 98.797
 No Cache 37.375 65.109 73.875 78.547 80.156 81.672
 Regular 33.328 56.371 61.378 64.473 66.235 66.866
311 n-8 layers 100.453 171.516 185.891 198.688 205.578 207.094
 n-4 layers 168.156 279.563 307.063 325.984 332.203 333.344
 |C|≥|H|×6 132.859 190.219 205.406 220.281 225.156 227.094
 |C|≥|H|×2 131.609 235.516 263.828 275.000 280.906 281.922
 No Cache 116.594 194.344 218.688 230.219 234.828 236.766
 Regular 100.104 171.947 193.108 203.703 208.300 209.942
321 n-8 layers 74.438 122.234 131.453 140.750 143.625 144.188
 n-4 layers 128.844 179.438 193.281 202.219 206.500 207.703
 |C|≥|H|×6 112.375 170.641 181.203 187.922 192.500 193.438
 |C|≥|H|×2 103.453 152.719 165.828 174.156 177.156 177.844
 No Cache 101.625 150.297 163.656 168.750 172.047 172.922
 Regular 81.838 123.698 134.443 138.860 141.503 142.204
331 n-8 layers 58.359 103.734 113.000 120.281 122.891 125.156
 n-4 layers 111.172 160.797 178.141 187.938 192.313 193.953
 |C|≥|H|×6 84.047 140.219 151.563 158.156 161.922 162.594
 |C|≥|H|×2 95.609 146.953 164.391 169.531 172.938 173.391
 No Cache 105.969 172.641 191.984 198.656 203.063 203.875
 Regular 77.031 128.938 143.719 148.719 151.781 153.203
341 n-8 layers 4.578 7.594 8.609 10.609 11.594 11.953
 n-4 layers 9.766 14.516 15.859 16.453 16.953 17.250
 |C|≥|H|×6 5.766 8.656 9.469 9.922 10.156 10.266
 |C|≥|H|×2 5.156 8.438 9.234 9.641 9.984 10.250
 No Cache 6.813 11.063 12.078 12.578 12.984 13.297
 Regular 4.777 7.751 8.512 8.943 9.303 9.544

186

Table A-7: Running times after changing update parameters (cont’d)

Model Parameters 50% 20% 10% 5% 2% 1%
351 n-8 layers 18.625 29.594 32.984 N/A* N/A* N/A*
 n-4 layers 28.953 51.531 56.359 N/A* N/A* N/A*
 |C|≥|H|×6 21.234 36.172 39.984 N/A* N/A* N/A*
 |C|≥|H|×2 20.969 38.188 41.797 N/A* N/A* N/A*
 No Cache 25.750 44.234 46.625 N/A* N/A* N/A*
 Regular 18.987 35.030 36.693 N/A* N/A* N/A*
361 n-8 layers 55.375 86.375 100.781 108.359 111.750 114.031
 n-4 layers 97.078 150.516 169.938 177.109 180.063 181.297
 |C|≥|H|×6 45.609 84.797 99.250 104.406 108.203 109.797
 |C|≥|H|×2 74.781 137.063 153.688 157.922 161.172 162.734
 No Cache 79.563 134.016 150.250 156.391 160.844 162.563
 Regular 49.631 88.770 93.965 97.891 100.955 102.267
371 n-8 layers 54.063 83.016 95.734 100.828 106.016 108.500
 n-4 layers 84.219 130.000 145.516 152.547 155.797 156.750
 |C|≥|H|×6 40.906 76.938 90.125 94.531 98.141 99.297
 |C|≥|H|×2 76.781 129.266 146.828 151.422 154.813 156.297
 No Cache 77.625 120.766 139.109 148.438 151.813 153.438
 Regular 58.394 87.265 98.652 104.530 107.044 108.426
381 n-8 layers 25.516 40.625 47.734 50.250 53.203 54.672
 n-4 layers 40.484 61.750 69.438 72.313 73.828 74.281
 |C|≥|H|×6 21.297 38.563 45.313 47.609 49.094 49.969
 |C|≥|H|×2 39.578 58.188 64.797 67.109 68.672 69.609
 No Cache 36.375 62.328 67.953 71.375 73.281 74.453
 Regular 28.150 46.206 50.483 52.846 54.398 55.430
391 n-8 layers 16.328 25.125 28.109 29.734 31.719 32.609
 n-4 layers 21.734 36.891 41.422 42.531 43.281 43.750
 |C|≥|H|×6 12.547 22.984 25.875 27.766 28.516 29.453
 |C|≥|H|×2 22.859 35.484 38.078 39.203 40.359 41.063
 No Cache 23.703 35.109 38.344 39.891 41.422 42.375
 Regular 14.551 22.643 25.266 26.448 27.810 28.571
* N/A: The algorithm exhausted all possible contractions before the given level

187

A.3 Pictures of results

For all figures: (Top row) Full model, 1% simplification with QEM,

and our method; (Bottom row) 10% simplification with QEM, and our method.

(a)

(b)

Figure A-14: 1% and 10% simplified models: (a) Female 1 and (b) Female 2

188

(a)

(b)

(c)

Figure A-15: 1% and 10% simplified models: (a) Cup, (b) Chair, (c) Squid

189

(a)

(b)

(c)

Figure A-16: 1% and 10% simplified models: (a) Squid 2, (b) Table 1, (c) Table 2

190

(a)

(b)

Figure A-17: 1% and 10% simplified models: (a) Teddy, (b) Teddy 2

191

(a)

(b)

Figure A-18: 1% and 10% simplified models: (a) Hand, (b) Hand 2

192

(a)

(b)

(c)

Figure A-19: 1% and 10% simplified models: (a) Pliers, (b) Pliers 2, (c) Dolphin

193

(a)

(b)

(c)

Figure A-20: 1% and 10% simplified models: (a) Fish, (b) Bird, (c) Bird 2

194

(a)

(b)

Figure A-21: 1% and 10% simplified models: (a) Head, (b) Angel

195

(a)

(b)

Figure A-22: 1% and 10% simplified models: (a) Big Armadillo, (b) Bunny

196

(a)

(b)

(c)

Figure A-23: 1% and 10% simplified models: (a) Canyon, (b) Dinosaur, (c) Dragon

197

(a)

(b)

Figure A-24: 1% and 10% simplified models: (a) Horse, (b) Turbine

198

Figure A-25: Canyon model, simplified with (left) and without (right) boundary

preservation

Figure A-26: Bottom of bunny model: Full (left), simplified with boundary

preservation (middle), without (right)

199

BIOGRAPHY

Varakorn Ungvichian was born on 22 May, 1983. Ungvichian received

a Bachelor of Engineering (B.Eng.) degree in Computer Engineering from the Faculty

of Engineering, Chulalongkorn University in 2005, entered the Master of Engineering

curriculum at the Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University the same year, received a Master of Engineering (M.Eng.)

degree in 2007, and entered the Doctor of Engineering curriculum at the Department

of Computer Engineering, Faculty of Engineering, Chulalongkorn University in 2007.

Ungvichian has presented two of his research papers at international

level conferences: “Mapping a 3-D Model into Abstract Cellular Complex Format” at

CAD ’06 in Phuket, Thailand from June 19-23, 2006, and “Quadrangle Collapse

Mesh Reduction with Regularity and Angular Deviation Bias” at ICCMS 2010 in

Sanya, China from January 22-24, 2010.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Problem Statement and Motivation
	1.2 Contributions
	1.3 Dissertation structure

	Chapter II Background and Related Work
	2.1 Basics of polygonal meshes
	2.2 Mesh simplification
	2.3 Related work
	2.4 Our observations
	2.5 Summary

	Chapter III The Simplification Algorthm
	3.1 Overview
	3.2 Converting to Abstract Cellular Complex
	3.3 Score calculation
	3.4 Edge contraction
	3.5 Heap updates
	3.6 Time and Complexity Analysis
	3.7 Summary

	Chapter IV Experiment and Results
	4.1 Overview of the Experiment
	4.2 Method
	4.3 Experimental Results
	4.4 Discussion
	4.5 Summary

	Chapter V Conclusions
	5.1 Summary
	5.2 Future Work

	References
	Appendix
	Vita

