

การเรียนรู้สหสัมพันธล์ูกผสมเชิงบวกและเชิงลบ

ในขั้นตอนวิธีการประมาณการแจกแจงส าหรับปัญหาการหาค่าเชิงการจัดที่เหมาะที่สุด

นายวรินทร์ วัฒนพรพรหม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2553

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

HYBRID POSITIVE AND NEGATIVE CORRELATION LEARNING
IN ESTIMATION OF DISTRIBUTION ALGORITHM

FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Mr. Warin Wattanapornprom

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2010

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENTS

 There are some people to whom I am deeply indebted for their help in the process

that ends with this PhD dissertation. This dissertation could not be completed without the

welcome help of certain people throughout the whole study period. I take this

opportunity to acknowledge their never faltering encouragement and support.

First of all, I wish to thank my Ph.D. supervisors Professor Dr. Prabhas

Chongstitvatana for offering me the opportunity to do this Ph.D. Special thanks also

for his wise supervision, guidance, patience, and friendly encouragement.

In particular, I would like to thank Assoc. Professor Dr. Parames Chutima and

his students including Dr. Mai, House, Nop, Yok, Pad, Rat and Guide for believing in

me and my underage Coincidence Algorithm (COIN) and giving me a chance to try

my algorithm in all your works. I would like to gratefully thank Assoc. Professor Dr.

Wiwat Vatanawood, Asst. Professor Dr. Sukree Sinthupinyo and Dr. Kata Praditwong

for their valuable comments and contributions throughout this study. I appreciate

their willingness to talk to me at any time I need them.

I also owe a debt of gratitude to my colleagues of the Intelligent System Lab

(ISL) and my Ph.D. Seminar Group especially P’Ning, P’Chat, P’Yod, P’Wak,

P’Pong, Dae, Kawtip, Puck, Dej, Aui, Petch, Nan, Palm, Kuk, Woon, Komate, Vit,

Peam, Yui, Lei, Ploy, Joe and Nui for useful discussions and encouragements during

my entire Ph.D. life. In addition, I also thank Zhang Qing Fu, Kalyanmoy Deb, Marco

Dorigo, Xin Yao and Chen Shi Chin for fruitful discussions and helpful suggestions

on my research during CEC2008. These discussions have sharpened my

understanding of different research issues, provided new points of view and directions

for my research or simply made research more enjoyable.

 Finally, the greatest thanks must dedicate to my family, my dad, my mom, my

sisters and all the members of my family for believing in me when I found it difficult

to believe in myself, for saying what I’ve needed to hear sometimes, instead of what I

wanted to hear, for siding with me and for giving me another side to consider. My

special appreciation goes to my beloved for putting so much thought and care and

imagination into our relationship, for sharing so many nice times and making so many

special memories with me.

CONTENTS

 Page

ABSTRACT (THAI)……………………………………..…….……………...…

iv

ABSTRACT (ENGLISH)…..……………………………………………………

v

ACKNOWLEDGEMENTS……………………………………………...………

vi

CONTENTS…………….………………………………………………………...

vii

LIST OF TABLES………..………….………………………………………...…

xii

LIST OF FIGURES………………….………………………………………...…

xiii

CHAPTER I INTRODUCTION..……….…………………………………...… 1

 1.1 General Background…………………………………………………... 1

 1.2 Problem Difficulties for Combinatorial Optimizations..……………… 2

 1.2.1 Cartesian and permutation spaces……….….……………..…. 2

 1.2.2 Neighborhoods and their similarities………..……………….. 4

 1.2.3 Recombination and disruption in permutation

 representation ………………………………………………..

7

 1.2.4 Degree of Freedom, exploitation and exploration...………….. 8

 1.2.5 Building blocks and linkage learning……………..………….. 10

 1.3 Research Motivation……..……………………………………………. 12

 1.4 Doctoral Framework……..……………………………………………. 13

 1.5 Research Objectives……..……………………………………………. 13

 1.6 Scope of the Study..……..……………………………………………. 13

 1.7 Research Contributions….……………………………………………. 14

 1.8 Dissertation Structure…..……………………………………………. 15

CHAPTER II METAHEURISTICS FOR COMBINATORIAL

 OPTIMIZATION……………......…………………………...…

16

 2.1 Introduction………………………………………………...………….. 16

 2.1.1 Combinatorial Optimization……...……………..……………. 16

 2.1.2 Solution Methods for Combinatorial Problems …..…………. 16

 2.1.2.1 Exact algorithms…………………………………..… 18

viii

 Page

 2.1.2.2 Approximate algorithms…………………………..… 19

 2.2 Single-Solution Based Algorithms………………………...………….. 22

 2.2.1 Neighborhood and local search……………………..……….. 22

 2.2.1.1 Move operators…………….……………………..… 23

 2.2.1.2 Selection of the neighbor…..……………………..… 24

 2.2.2 Simulated annealing…………..……………………..……….. 25

 2.2.3 Iterated local search…………..……………………..……….. 27

 2.2.4 Tabu search…………..……………………..………………... 28

 2.2.5 GRASP………..……..……………………..………………... 30

 2.3 Population Based Algorithms………………………...………………... 31

 2.3.1 Genetic algorithms…………………………………..……….. 31

 2.3.1.1 Crossover operators…………….…………………... 32

 2.3.1.1.1 Partially-mapped crossover (PMX)…..……... 33

 2.3.1.1.2 Cycle crossover (CX)…………….…..……... 35

 2.3.1.1.3 Modified crossover (MX)..……….…..……... 37

 2.3.1.1.4 Order crossover (OX)…....……….…..……... 38

 2.3.1.1.5 Order-based crossover (OBX)......…………... 39

 2.3.1.1.6 Position-based crossover (PBX)…....……….. 40

 2.3.1.1.6 Weight mapping crossover (WMX)…..…….. 41

 2.3.1.1.7 Edge recombination crossover (ER)…..…….. 41

 2.3.1.2 Mutation operators………..…….…………………... 47

 2.3.1.3 Selection operators……..……….…………………... 47

 2.3.2 Ant colony optimization……………………………..……….. 48

 2.3.3 Particle swarm optimization………………………………….. 49

 2.3.4 Estimation of distribution algorithms..……………………….. 51

 2.3.4.1 Edge histogram based sampling algorithms..……...... 53

 2.3.4.2 Node histogram based sampling algorithms..……..... 55

 2.3.5 Scatter search and path relinking………….………………….. 57

 2.4 Multi-Objective Combinatorial Optimization…………………………. 59

 2.4.1 Fitness assignment strategies.………………………..……….. 60

ix

 Page

 2.4.1.1 Scalar approaches………………………..………….. 61

 2.4.1.1.1 Aggregation method………………….……... 61

 2.4.1.1.2 Weighted metrics……………….…….……... 61

 2.4.1.1.3 Goal programming……………….…..……... 61

 2.4.1.1.4 Achievement function…..……….…..……... 61

 2.4.1.1.5 Goal attainment……..…..……….…..……... 62

 2.4.1.1.6 𝜖 -Constraint method ..…..……….…..……... 62

 2.4.1.2 Criterion-based approaches..…...………..………….. 62

 2.4.1.2.1 Parallel approach…….……………….……... 63

 2.4.1.2.2 Sequential or Lexicographic approach.……... 63

 2.4.1.3 Dominance-based approaches..…...………..……….. 63

 2.4.1.3.1 Dominance rank……..……………….……... 64

 2.4.1.3.2 Dominance depth……………….…….……... 65

 2.4.1.3.3 Dominance count……………….…..……….. 65

 2.4.1.4 Indicator-based approaches..…...………..………….. 65

 2.4.2 Diversity preservation.………………………..……..……….. 66

 2.4.2.1 Kernel methods…………....…...………..………….. 67

 2.4.2.2 Nearest-neighbor methods...…...………..………….. 67

 2.4.2.3 Histogram………………………………..………….. 67

 2.4.3 Elitism………………………………………...……..……….. 68

 2.5 Chapter Summary.....………………………..…………………………. 68

CHAPTER III NEGATIVE KNOWLEDGE…...……...……………………... 74

 3.1 Introduction………….………………………………………………… 74

 3.2 Negative Knowledge………………………………………………….. 74

 3.3 Related Concepts and Methodologies..……………………………….. 78

 3.3.1 Opposition-based learning….………………………………... 78

 3.3.2 Artificial immune system…..………………………………... 78

 3.3.3 Evolutionary algorithms…..…………………………………. 79

 3.3.3.1 Learnable Execution Model (LEM) ..……………… 79

x

 Page

 3.3.3.1 Learnable Execution Model (LEM) ..……………… 79

 3.3.3.2 Statistical Learning + Inductive Learning (SI3E)..… 79

 3.3.3.3 Evolutionary Bayesian Classifier-Based

 Optimization Algorithm (EBCOA)…………………

79

 3.3.3.4 Population Based Incremental Learning (PBIL)…… 79

 3.3.3.5 Compact Genetic Algorithm (cGA)………………… 80

 3.3.3.6 Incremental Bayesian Optimization Algorithm

 (iBOA)……………………………………………….

80

 3.3.4 Particle swarm optimization….………………………………. 80

 3.3.5 Evolutionary Ensemble with Negative Correlation Learning

 (EENCL)……………………………………………………...

80

 3.4 Schema Theorem and Order Schema………………………………….. 81

 3.4.1 Schema theorem...……………………………………………. 81

 3.4.2 Order schema…………………………………………………. 81

 3.4.2.1 Absolute order schema……………………………… 82

 3.4.2.2 Relative order schema…………………….………… 82

 3.4.2.3 Edge schema…………..………………….………… 86

 3.4.3 Negative schema…………………………………………..…. 87

 3.5 Negative Order Schema……………….……………………………….. 87

 3.6 Applying the Negative Knowledge in Optimization…………………... 89

 3.7 Chapter Summary………………………………….…………………... 91

CHAPTER IV COINCIDENCE ALGORITHM…………………………….. 92

 4.1 Introduction………………………………..…………………...……… 92

 4.2 Coincidence Algorithm………………………………………………... 92

 4.2.1 Design…..………………………………………….………… 92

 4.2.2 Components...…………………………………...…………… 93

 4.2.2.1 Generator…………..………..…………….………… 93

 4.2.2.2 Fitness function evaluator………..……….………… 94

 4.2.3 Mechanics…………………………………………………… 94

xi

 Page

 4.2.3.1 Initialization………..………..…………….………… 94

 4.2.3.2 Generating population…………..………..…………. 95

 4.2.3.3 Selection…………..…….…..…………….………… 95

 4.2.3.4 Updating the generator….…..…………….………… 96

 4.2.3.4.1 Reward…………..…..…………….………… 96

 4.2.3.4.2 Punishment…………..…………….………… 97

 4.2.4 Computation cost and space….……………………………… 99

 4.3 Multiobjective Coincidence Algorithm.….……………………………. 100

 4.4 Discussion………………………………..……………………………. 101

 4.5 Chapter Summary………………………………….…………………... 103

CHAPTER V EMPIRICAL ANALYSIS…………. ……………...………….. 104

 5.1 Introduction…………………………………..……………………... 104

 5.2 Magic Square…………………………………..……………………... 105

 5.2.1 Introduction…………………………………………………. 105

 5.2.2 Related works….……………………………………………. 105

 5.2.3 Experimental setup………….………………………………. 107

 5.2.4 Discussion……….………….………………………………. 108

 5.3 Combination chess puzzle……………………..……………………... 112

 5.3.1 Introduction…………………………………………………. 112

 5.3.2 Related works….……………………………………………. 114

 5.3.3 Experimental setup………….………………………………. 114

 5.3.4 Discussion……….………….………………………………. 115

 5.4 Knight’s tour..…………………………………..……………………... 124

 5.4.1 Introduction…………………………………………………. 124

 5.4.2 Related works….……………………………………………. 125

 5.4.3 Experimental setup………….………………………………. 126

 5.4.4 Discussion……….………….………………………………. 127

 5.5 Discussion….…………………………………..……………………... 134

 5.6 Chapter Summary……………………………..……………………... 135

xii

 Page

CHAPTER VI REAL WORLD APPLICATIONS…………………………... 136

 6.1 Introduction…………………………………..……………………... 136

 6.2 Travelling Salesperson Problem………………..……………………... 136

 6.2.1 Introduction…………………………………………………. 136

 6.2.2 Related works….……………………………………………. 136

 6.2.3 Experimental setup………….………………………………. 136

 6.2.4 Discussion……….………….………………………………. 137

 6.2.4.1 Gröstel24…………..………..…………….………… 137

 6.2.4.2 Gröstel48………………………..………..…………. 140

 6.2.4.3 Gröstel120…….…..…….…..…………….………… 141

 6.2.4.4 KroAB100…………...….…..…………….………… 142

 6.3 U-Shape Assembly Line Balancing Problem..……………………... 144

 6.3.1 Introduction…………………………………………………. 144

 6.3.2 Experimental setup………….………………………………. 145

 6.3.3 Discussion……….………….………………………………. 147

 6.4 U-Shape Assembly Line Sequencing Problem..….…………………... 149

 6.4.1 Introduction…………………………………………………. 149

 6.4.2 Experimental setup………….………………………………. 149

 6.4.3 Discussion……….………….………………………………. 150

 6.5 Discussion……………………………………..….…………………... 153

 6.6 Chapter Summary……………………………...….…………………... 153

CHAPTER VII CONCLUSION………………………………………………. 154

 7.1 Conclusion ………………………..………………………………….. 154

 7.2 Recommendation for Future Research………………………………... 155

REFERENCES……………………….......…………………………………....… 157

VITA…………………...…….......………...…………………………………...…

172

xiii

LIST OF TABLES

Tables

Page

Table 1.1 Value of 𝑄 𝑥, 𝑦, 𝑧 ∶ 𝑄(1,2,2), 𝑄(1,1,3), 𝑄(3,3,2) … etc. are non-

valid permutations …………………………………………………..

3

Table 2.1 Analogy between the physical system and the optimization problem. 25
Table 2.2 Feature classification of metaheuristics ……………………….…….. 70

Table 2.3 Intensification and diversification component of metaheuristics 71

Table 2.4 Deterministic manual times (seconds) for all models ……………….. 58

Table 3.1 Linking positive and negative knowledge…………………………… 78

Table 3.2 A Comparison of some statistics for binary,l-ary and size-l

permutation problems………………………………………………...

83

Table 5.1 Results of applying different approaches to solve Knight’s tour……. 133

Table 5.2 Summary of test suites and their properties ………...………………. 135

Table 5.3 Performance of EHBSA vs. COIN in combinatorial puzzles…….... 135

Table 6.1 Tour length for the Gröstel24 problem …………………..…………. 137

Table 6.2 Number of generations for the Gröstel24 problem ……..…………. 138

Table 6.3 Tour length for the Gröstel48 problem …………………..…………. 140

Table 6.4 Number of generations for the Gröstel48 problem…………………. 140

Table 6.5 Tour length for the Gröstel120 problem ..………………..…………. 141

Table 6.6 Number of generations for the Gröstel120 problem…………………. 141

Table 6.7 Problem sets of Hwang and Katayama …………...…………………. 146

Table 6.8 Result of the experiment in Hwang and Katayama’s problems.……. 148

Table 6.9 Performances of NSGA II and COIN in U-shaped assembly line

sequencing problems…………………………………………………

151

xiv

LIST OF FIGURES

Figures

Page

Figure 1.1 Value of 𝐹(𝑥, 𝑦)...……………………………………………….. 4

Figure 1.2 Example of neighborhood for a permutation problem of size 3…. 5

Figure 1.3 Absolute and relative positioning based similarity in permutation

representation …………………………………………………...

6

Figure 1.4 Application of the one-point crossover on the two permutation

chromosomes……………………………………………………..

8

Figure 1.5 A comparison of search space reduction by permutation vs.

binary schema at a same schema domination rate ………………

9

Figure 2.1 Classical optimization models ………………………………….. 18

Figure 2.2 Swap operator…………………………….......…………………. 23

Figure 2.3 Insertion operator …………………………….…………………. 23

Figure 2.4 Rotation operator …….………………………………………….. 23

Figure 2.5 Inversion operator ………………………………………………. 23

Figure 2.6 The partially-mapped crossover..………………………………... 34

Figure 2.7 The cycle crossover ……………………………………..………. 36

Figure 2.8 The modified crossover………………………………………….. 37

Figure 2.9 The order crossover…………………………………………..….. 39

Figure 2.10 The order-based crossover……………………………………….. 40

Figure 2.11 The position-based crossover………………………………...….. 41

Figure 2.12 The weight-mapping crossover………………………………….. 42

Figure 2.13 The edge recombination………………………………..………... 44

Figure 2.14 An example of asymmetric edge histogram matrix for

 𝑁 = 5, 𝐿 = 5, 𝐵𝑟𝑎𝑡𝑖𝑜 = 5.……………………………………….

54

Figure 2.15 An example of node histogram matrix for

 𝑁 = 5, 𝐿 = 5, 𝐵𝑟𝑎𝑡𝑖𝑜 = 5.………………………………………..

56

Figure 2.16 Fitness assignment strategies ……………………………………. 57

Figure 2.17 Fitness assignment: some dominance-based ranking methods …. 65

Figure 2.18 Diversity maintaining strategies ……………………………...…. 67

xv

Figures

Page

Figure 3.1 Effect of how a schema dominate the search space …………..… 85

Figure 3.2 Effect of how a more specific schema dominate the search space. 86

Figure 3.3 A comparison of absolute order schema and edge schema…….... 87

Figure 3.4 An example of a negative edge schema ~[! 3 4 !]……………... 89

Figure 3.5 The classification of the solution in the space ……….………….. 91

Figure 4.1 Updating the generator k=0.1………..………………………….... 99

Figure 4.2 The probability dependency tree of a 3 dimensions combinatorial

problem …………………………………………………………..

100

Figure 4.3 The non-dominate ranking in multiobjective coincidence

algorithm………………………………………………………….

101

Figure 4.4 Genealogy of COIN….…………………………………………... 102

Figure 4.5 The differentiation of substructures contain in the good and the

bad populations…………………………………………………...

103

Figure 5.1 Sample of magic square solutions...……………………………... 105

Figure 5.2 The magic squares that contain the conflict building blocks..…... 106

Figure 5.3 Encoding and building blocks (BB) of a 3 × 3 Magic Square

problem ………….……………………………………………….

107

Figure 5.4 Performance of EHBSA in 3 × 3 Magic Square problem.……... 108

Figure 5.5 Performance of COIN in 3 × 3 Magic Square problem.………... 108

Figure 5.6 All of the 3 × 3 magic square solutions…………………………. 109

Figure 5.7 Generator snapshots of EHBSA, positive COIN, negative COIN

and COIN for the 3 × 3 magic square problem………………….

111

Figure 5.8 Performance of N-COIN in 3 × 3 Magic Square problem……... 112

Figure 5.9 Available move and sample solutions of combination problems..

Figure 5.10 The sample encoding of a combination 8-queen solution .……… 114

Figure 5.11 The sample encoding of a permutation 8-queen solution………... 115

Figure 5.12 Performance of EHBSA in 8-Queens-P problem ……………….. 116

Figure 5.13 Performance of COIN in 8-Queens-P problem …………..…….. 116

Figure 5.14 Performance of EHBSA in 8-Rooks problem ………………….. 117

Figure 5.15 Performance of COIN in 8-Rooks problem …………………….. 117

xvi

Figures

Page

Figure 5.16 Performance of EHBBSA in 8-Queens-C problem …..…..…….. 118

Figure 5.17 Performance of COIN in 8-Queens-C problem …..…..……..….. 118

Figure 5.18 Performance of EHBSA in 14-Bishops problem…..…..………… 119

Figure 5.19 Performance of COIN in 14-Bishops problem …..…..……..…… 119

Figure 5.20 Performance of EHBSA in 32-Knights problem…..…..………… 120

Figure 5.21 Performance of COIN in 32-Knights problem …..…..……..…… 120

Figure 5.22 Two compromising 32-Knight solutions obtained from COIN…. 121

Figure 5.23 Generator snapshots of EHBSA, P-COIN, N-COIN and COIN

for the 8 Queens-P problem………………………………………

122

Figure 5.24 Two of the earliest known knight’s tour solutions …..……..…… 124

Figure 5.25 Comparison of the performance of COIN vs. EHBSA ...…..…… 127

Figure 5.26 Average performance of the coincidence algorithm………..…… 127

Figure 5.27 Two of the solutions generated by the coincidence algorithm...… 128

Figure 5.28 The 27th row generator snapshots of EHBSA, P-COIN, N-COIN

and COIN for the knight’s tour problem…………………………

129

Figure 5.29 Comparison of the performance of P-COIN vs. N-COIN in the

knight’s tour problem…………………………………………….

132

Figure 6.1 The best candidates generated from the generator for Gröstel24.. 139

Figure 6.2 The number of good and bad selected solutions using an

adaptive selection method in Gröstel24 problems……………....

139

Figure 6.3 The population clouds in a bi-objective kroa/b100 TSP……….. 142

Figure 6.4 The parato frontier obtained from different generation and

updating method in a bi-objective kroa/b100 TSP……………...

142

Figure 6.5 The precedence diagram with assembly network (Jacjson 1956).. 144

Figure 6.6 The comparison of U-Line and straight complete line assignment 144

Figure 6.7 The comparison of NSGA-II and COIN in Thomoulos’s Problem 147

Figure 6.8 The comparison of NSGA-II and COIN in Kim’s Problem……... 148

Figure 6.9 Performances of NSGA II and COIN in U-shaped assembly line
sequencing problems …………………………………………...

148

Figure 6.10 Encoding of the sequencing problem……………………………. 145

Figure 6.11 The comparison of NSGA-II and COIN in Arcus’s Problem…… 152

xvii

Figure 6.12 The comparison of NSGA-II and COIN in Kim’s Problem…….. 152

Figure 6.13 Example of redundancy in the permutation-based approach...….. 153

CHAPTER I

INTRODUCTION

1.1 General Background

 Combinatorial optimization plays an important role for application in real world

problems including scheduling, balancing, timetabling and routing problems, where the

domains of feasible solutions are discrete. Combinatorial problems are intriguing as they

are easy to state but often very difficult to solve. There is no algorithm exists to find the

optimal solution to these classes of problems within polynomial time. Moreover, these

optimization problems can have both single or multiple solutions in both single or

multiple objectives. Most of them find a natural mapping in permutation spaces where

mathematical programming models are inappropriate as they rather produce infeasible

solutions than produce feasible ones.

 The algorithm approaches to combinatorial optimization problems can be

classified as exact and approximate, or sometimes called stochastic and heuristics. Exact

algorithms are guaranteed to find one or more optimal solutions in finite time by

systematically searching the solution space. Unfortunately, due to the NP-completeness

nature of the problems, the time needed to solve them may grow exponentially in the

worst case, for a reasonable problem size, exact algorithms are no longer feasible. To

practically solve these problems, one often has to satisfied with finding good

approximately solutions within a given reasonable polynomial time. Therefore

approximate algorithms or sometimes called metaheuristics are more preferable.

Normally, approximate algorithms cannot guarantee optimality of the solutions, anyhow,

in many cases, they are able to find optimal solutions in short computation time.

Over the past few decades, many metaheuristics algorithms have been designed

and applied to a wide variety of combinatorial problems. Unfortunately, the scalability of

such algorithms has been very poorly investigated. Since many of them use ad hoc

2

techniques for both representations and operators, they do not scale up. While, typical

industrial problems are often large and complex, traditional optimization methods are

expected to fail or yield inacceptable solutions.

1.2 Problem Difficulties for Combinatorial Optimizations

This dissertation addresses the ineffectiveness’s of combinatorial optimization

methods mainly based on representation of candidate solution and its consequences when

constructive and improvement methods are applied.

1.2.1 Cartesian and permutation spaces

This section describes the differences between two types of problems [1]

in the discrete domain. The problems where the domains of parameters to be optimized

take on sets of independent values belong to Cartesian or vector spaces, while the

problems with domains that are permutations of items belong to permutation spaces. In

Cartesian space, the parameters are independent from each other and the optimization

function can be represented geometrically in a multidimensional space, while the

parameters in the permutation spaces at a given position in the n-tupla are dependent on

all the others and constitutes the n-tupla of values differentiate one input from another.

Moreover, the parameters of the problems in mapped in the Cartesian space are directly

used as absolute numbers in order to evaluate a function, while the parameters of

permutation problems are indirectly used. In order to evaluate a function, one or more

properties of the items are used. In addition, the properties of an item can depend on an

absolute position of the item or a position related to the other items. Example 1.1 and 1.2

exemplify the different between the optimization function in discrete Cartesian space and

the optimization function in the permutation space. Particularly, the example 1.2 show

the indirectly use of the parameters in which the values of the input items depend on their

absolute positions.

3

Example 1.1: A two variable function to optimize (Discrete Cartesian

space)

 𝐹 𝑥, 𝑦 = 𝑥 − 𝑦 4 − 𝑥 − 𝑦 2 (1.1)

where 𝑥 ∈ 0 . . 5 , 𝑦 ∈ [1 . . 4]

Example 1.2: A three variables function described by a permutation

(Discrete permutation space)

 𝑄 𝑥, 𝑦, 𝑧 = 𝑥 × 𝑃 𝑥 + 𝑦 × 𝑃 𝑦 + 𝑧 × 𝑃𝑧) (1.2)

 where 𝑥 ∈ 1 . . 3 and 𝑃 𝑥 is the position of 𝑥 in the permutation

Figure 1.1 Value of 𝐹(𝑥, 𝑦)

Table 1.1 Value of 𝑄 𝑥, 𝑦, 𝑧 ∶ 𝑄(1,2,2), 𝑄(1,1,3), 𝑄(3,3,2) … etc. are non-valid
permutations

 Value
𝑥, 𝑦, 𝑧 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

𝑄(𝑥, 𝑦, 𝑧) 1+4+9
= 14

1+6+6
= 13

2+2+9
= 13

2+6+3
= 11

3+2+6
= 11

3+4+3
=10

1

2

3

4

5

0

50

100

150

200

250

1
2

3
4

x

F(x,y)

y

4

Consequently, in combinatorial problems, the concept of distance between

different coordinates seems to be senseless and cannot be applied in order to estimate or

predict the goodness of a solution. In permutation spaces, most optimization methods rely

on Proximate Optimality Principle (POP) [2] which consider the continuity of each

candidate solution based on its neighborhoods.

There are many approaches to classify metaheuristics, which will be precisely

described later in Chapter II. In this dissertation, we focus on the ways a solution is

generated, that are constructive and improvement. Constructive methods generate a

solution by joining together “pieces” or “components” of a solution, while improvement

methods generate a new solution from a pre-existent one and try to improve it by

modifying some of its component. Constructive strategies are sometimes called

recombination, while improvement strategies are usually known as local search. The

constructive methods have an advantage over the improvement methods as they usually

produce more diversity of solutions whereas the improvement methods have advantage

on the quality of solutions.

1.2.2 Neighborhoods and their similarities

 As already mentioned in section 1.2.1, combinatorial problems cannot be

represented geometrically in a multidimensional space. However, there are researches on

geometric permutations [3][4][5], which try to represent models to traverse in the

permutation spaces. Somehow, geometric permutations are not mature to be applied in

metaheuristics.

5

In an improvement scheme, the continuity of each solution depends on its

neighborhoods. The neighbors of a solution depend on one or more move operators

defined by the dedicated algorithm. Example 1.3 illustrates two different ways to define

move operators of an order-3 permutation problem that are neighborhood based on swap

operator and neighborhood based on rotation operator. It is exemplified that using a

rotation operator alone cannot traverse to some of the solution in the search space.

However, the rotation operator preserves larger sequences of concatenated items than the

swap operator. Consequently, many researches need to design such move operator to suit

the problems.

Example 1.3: neighborhood for a permutation based on different move

operator

Figure 1.2 shows the neighborhood of permutation 𝑠 of 𝑥 where

𝑥 ∈ 1 . . 3 , where figure (a) shows the neighborhood based on

swap operator and (b) shows the neighborhood based on rotation

operator. The neighbors of the solution (2,3,1) in (a) are (3,2,1),

(2,1,3), and (1,3,2) while in (b) are only (1,2,3) and (3,1,2).

Figure 1.2 Example of neighborhood for a permutation problem of size 3.
(a) neighborhood based on swap operator.

(b) neighborhood based on rotation operator.

 Foundations of local search methods are based on a principle called

Proximate Optimality Principle (POP) which assumes that good solutions share similar

substructure. Therefore, move operators are designed in order to generate the solutions

that are considered to share similarity in many ways which will be discussed more in the

(2,3,1) (1,2,3)

(3,1,2)

(2,1,3) (1,3,2)

 (3,2,1)

(b)

(2,3,1) (3,2,1)

(1,2,3) (1,3,2)

(2,1,3) (3,1,2)

(a)

6

next Chapter. Figure 1.3 illustrates two types of similarities. The highlighted blocks

indicate the similarity the two sequences are sharing. (a) indicates the similarity of items

align in the same column call absolute order while (b) indicates the similarity of the

maximum sequence found in two candidate solutions.

Figure 1.3. Absolute and relative positioning based similarity in permutation
representation

Clearly, the “neighborhood” concept emphasizes local search. In seeking

ever better solutions, local search methods employ a sensible tenet: solutions that are

similar in structure will generally be similar in fitness. With a little thought, especially

given that suitably good solutions tend to make up only a tiny fraction of the search

space, this implies that it is best to search locally in the region of the best solutions found

so far.

Local search methods therefore work via exploitation of the best candidate

solutions attained so far. That is, the structures of such candidates are exploited

constantly as a template for potentially better solutions. In contrast, there is usually little

exploration in local search. Such emphasis on exploitation corresponds to a very high

selection pressure strategy, with consequent well-known pitfalls. In particular, local

search techniques are highly prone to become “trapped” at solutions that are locally

optimal, with no means of escape toward better solutions that may exist elsewhere in the

fitness landscape.

1 5 2

7 9 3 6 8 4

6 4 8

5 7 9 2

2

1 3

1 5 3

7 9 2 4 6 8

1 5 3

7 9 2 4 6 8

(a)

(b)

7

1.2.3 Recombination and disruption in permutation

representation

Constructive methods differ from improvement methods in that they

balance effort between exploitation and exploration in a way that turns out to be more

effective in many applications. In combinatorial optimization, constructive schemes

usually refer to genetic algorithms. (not all evolutionary algorithms) The idea of crossing

over aiding the search process by recombining short, high fitness sections of the genotype

called building blocks. The aim of crossing over is to propagate these high fitness

building blocks throughout the population, raising average fitness by steering the

population towards promising areas of the search space. Difficulties quickly arise when a

simple genetic algorithm is applied. In particular, the encoding of a solution as a bit string

is not convenient as most sequences in the search space would not correspond to the

feasible solutions. Thus the permutation representation rather preferred in this class of

problem. However, directly applying classical recombination operators such as simple

one-point or two-point crossover to permutations will generate solutions that are invalid

and needed to be fixed. Accordingly, specialized permutation operators must be

developed. A disruption caused by a simple crossover is exemplified in example 1.3

Example 1.3: Application of the one-point crossover on the two

permutation chromosomes.

 Applying the one-point crossover operator at position 2 creates two

infeasible offspring, as illustrated in figure 1.4, none of the two offspring

is a valid permutation solution. The darker blocks indicate the redundant

components in the offspring which are no longer considered being

permutations.

8

Figure 1.4 Application of the one-point crossover on the two permutation chromosomes

 Consequently, various approaches have been proposed to avoid the

disruption problems in permutation representation which can be broadly grouped into two

classes: (i) those that focus on improving the crossover operator by adjusting the overall

crossover procedure in such a way that it is less likely to disrupt any distributed

knowledge stored in the genetic representation, and (ii) those that focus on improving the

genetic representation by implementing a one-to-one mapping between genotype and

phenotype so that several genetic permutations of the same phenotypic solution cannot

co-exist in the same solution. These approaches will be discussed more in detail in the

Chapter II.

1.2.4 Degree of freedom, exploitation and exploration

According to the convergence argument proposed by [6], the

characteristics of permutation encoding GA are (i) genetic convergence occurs during the

initial generations after which most members of the population will have similar genetic

representations, and therefore (ii) several significantly distinct permutations of the same

solution are unlikely to co-exist. In this case using an absolute order preservation

crossover operator is likely to produce offspring with similar fitness to their parents.

1 3 2

4 5 6 7 8 9

9 7 8

6 5 4 3 2 1

9 3 8

4 5 6 7 8 9

1 7 2

6 5 4 3 2 1

Parent 1

Parent 2

Offspring 1

Offspring 2

9

To see a better perspective, we illustrate the effect of order based

crossovers for permutation encoding GA. With a comparable decision space, a solution

encoded in permutation has much less degree of freedom than a solution encoded in

binary. For instance, an ordering problem with search space equal to 16! or 2.09228 ×

1013 feasible solutions would need only 16 degrees of freedom for a permutation

representation while it takes up to 64 degrees of freedom for a binary representation. Let

the feasible spaces be equivalent and let the schema domination rate for a degree of

freedom be equivalent, the trend of the search space reduction would be in the figure 1.5.

Figure 1.5 A comparison of search space reduction by permutation vs. binary schema at a same
schema domination rate

 Allowing the candidate solutions to be encoded in permutation rather than

binary representation would increase the convergence rate due to the higher significant

number of the degree of freedom of each candidate position. The higher order of the

permutation size indicates the higher degree of freedom. In addition, high fitness

substructures of a genotype are likely to dominate the population faster due to the

constraint of the permutation does not allow the redundancy of an item elsewhere in the

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

se
ar

ch
 sp

ac
e

n generation

Permutation

Binary

10

permutation solution. This property can either be advantage or disadvantage of the

constructive method. If some absolute order substructures show more outstanding fitness

than the other, they would cause high exploitation rate, yet lack of diverse solution. On

the other hand, if the substructures show similar fitness’s at any position, the algorithm

would not be able to converge to any single optima. For these reasons, the researchers

need to take good care of the population size and the diversity of the initial population. If

the initial population is not well diversified, for especially in an ordering problem with

larger degrees of freedom, a premature convergence can occur for any population based

method. If using an oversize population, the algorithm would waste too many function

evaluations in exploring the search space.

1.2.5 Building blocks and linkage learning

Further, when crossover is employed as a variation operator, the GA

increasingly samples combinations of building blocks, possibly discovering new ones as

a result[7]. There is, however, much debate over this hypothesis. For example, in some

problems there are verifiably no building blocks at the genotype level [8] and has been

shown to be somewhat problem dependent. Despite the lack of building blocks in some

problems, crossover may still be an effective search operator. Accordingly, this implies

that crossover operators are able to have beneficial effects that do not involve the

recombination of building blocks. It is shown that for many problems where crossover

was believed to be recombining building blocks, it was in fact performing a

macromutation [9][10].

Additionally, other aspects of how genetic algorithms work have been

questioned with the result that long-held principles have been shown to be false or

incomplete. Jones [11] presents a means by which the possible existence of building

blocks in a genotype can be ascertained in a less ambiguous manner than with previous

methods. The problem is first attempted using a process of proportional selection and

crossover, then compared to the same process using random crossover. The aim is to

disrupt the building blocks (if any are indeed present) using the random crossover

operator and see how performance is affected. Random crossover entails performing

11

crossover on one fit individual and a randomly generated individual. Given that the

second parent has been generated randomly, its fitness will on average be very low.

Combining a fit individual with a random individual effectively removes the implicit

information sharing offered by a population which clearly violates the idea of crossover.

If this approach is at least as effective as traditional crossover then it suggests that we do

not require the idea of crossover, but that its mechanics may be effective.

At first sight this lack of empirical evidence may seem odd, in particular

because the permutation problem appears to encapsulate the reasonable claim that it usually

makes little sense to recombine individuals who are genetically very dissimilar. As Watson

and Pollack [12] point out that “parents selected from two different fitness peaks are likely to

produce an offspring that lands in the valley in between”. For this reason, constructive

methods for permutation problems are not receiving good attention by many researchers.

 In addition to the building block hypothesis, Holland [13] has also

suggested that operators learning linkage information to recombine alleles might be

necessary for genetic algorithm success. Afterward, many methods have been developed

to solve the linkage problem. The linkage model can be implicit [14] or explicit [15],

probabilistic [16] (probabilistic model building genetic algorithms), or estimation of

distribution algorithm [17]. Unfortunately, most of the works are based on binary and

continuous representation. The outstanding algorithms used to solve the problem in

permutation representation domains are Edge histogram based sampling Algorithms

(EHBSAs) [18] and Node histogram based sampling Algorithms (NHBSAs) [19]

proposed by Tsutsui.

12

1.3 Research Motivations

 Over a few decades, many metaheuristics have been proposed in order to solve

both single and multiple objective combinatorial optimization problems especially those

which can be represented in permutation. However, many researches turn to be somewhat

problems dependent. For example, local search methods need well designed move

operators in order to produce effective neighborhoods or genetic algorithms need

different appropriate crossover operators to many specific problems. Even though most

metaheuristics rely on either Proximate Optimality Principle (POP) [2] or Building

Blocks Hypothesis (BBH) [7], anyhow, due to the constraint of the representation, linkage

learning models are rarely been applied. The only few metaheuristics considered to learn

the linkage of the substructure contained in the solutions are Ant Colony Optimization

algorithms (ACO)[20], Edge Histogram Based Sampling Algorithms (EHBSA)[18] and

Node Histogram Based Sampling Algorithms (NHBSA)[19].

 The motivation of this research mainly based on a question whether the below

average solutions that population based metaheuristics usually discard contain useful

information and can be used in optimization or not. As a result, we raise a model capable

to learn the linkage of bad substructures in order to produce solutions not containing

them. We propose a hypothesis called a Negative Building Block Hypothesis (NBBH)

simply states that “An algorithm can seeks new-optimal performance by avoiding the

juxtaposition of short, low-order, low-performance schemata, called the negative

building blocks”. Further, we expect this hypothesis could fulfill as a counterpart of the

BBH.

13

1.4 Doctoral Framework

 According to Bassett’s observation [21] that the crossover operator works in the

problems in which there is no building blocks exist in the genotype level, we suspect that

there might be bad building blocks that the crossover operator might filter out in order to

form the better solutions. From this observation, we propose the Negative Building Block

Hypothesis (NBBH) and try to test this hypothesis using a simple scientific method. This

doctoral framework is as follows: literature surveying, making hypothesis, design and

perform experiments to test the hypothesis and conclude the results.

1.5 Research Objectives

The research objectives are to develop a new evolutionary algorithm for single

and multiple objectives combinatorial optimization problems and to study the role of

applying negative knowledge in evolutionary algorithm for combinatorial optimization

problems.

1.6 Scope of the Study

This research proposed to utilize the negative knowledge in combinatorial

optimization; however, limited to the design, implementation and testing of edge based

EDAs. The benchmarks in this research include multimodal artificial combinatorial

problems and some real world applications.

Some broad issues are ignored in the scope of the study and can be developed

further.

1. The studies of negative knowledge in the absolute order such as the node

based estimation of distribution algorithms.

2. The studies of negative knowledge in the geometry based algorithm.

3. The studies of parameter tuning of such algorithm.

4. The studies of local search and hybridization with other metaheuristics.

14

1.7 Research Contributions

 The outcomes derived from this research include:

1. The first contribution of this research is a new estimation of distribution

algorithm (EDA) based on permutation representation call Coincidence Algorithm

(COIN) which is naturally more suitable with most combinatorial problems. This

contribution is twofold. (i) a probabilistic model based on Markov chain matrix and (ii)

an incremental learning method that allow negative correlation learning of the samples.

 2. The second contribution is a negative building block hypothesis (NBBH)

simply state that “An algorithm can seeks new-optimal performance by avoiding the

juxtaposition of short, low-order, low-performance schemata, called the negative

building blocks”

 3. Thirdly, a set of benchmark to test the performance of algorithm in solving

globally multimodal optimization problems including both permutation and selection

problems. In addition, an alternative method to solve the fix-size combination problems

which most metaheuristics are not able to solve is also proposed. The results indicate that

negative correlation learning capability contributes in both quantity and quality of the

solutions, however, depends mainly on the quantity of building blocks being shared and

the quantity of building blocks being in conflict. The insight discussion can be seen in the

Chapter V.

 4. As a highlight, the roles of negative correlation learning specific in edge based

EDA are extracted as followed:

1) The negative knowledge forces the algorithm to explore out of the search

space marked as forbidden areas.

2) The negative knowledge helps the algorithm to produce more diverse

solutions, however dissimilar to the solutions considered to be bad quality.

3) In cooperating with the positive knowledge, the negative knowledge

contributes in discrimination of good and bad substructure.

15

4) The negative knowledge should enhance a constructive algorithm to

recognize better substructures and to compose better solutions.

 5. Finally, the most important contribution is the extension of COIN in solving

multi-objective problems by applying the non-dominated sorting and crowding distance

adopted from NSGA-II. The new algorithm was test in several real world problems. The

results state that multi-objective version of COIN can defeat NSGA-II for all

performance indicators.

1.8 Dissertation Structure

The outline of this dissertation is organized as follows. Chapter I states the

general background, objective, scope of study, and contributions. The state of the art

algorithms are reviewed in Chapter II. The negative knowledge which is the inspiration

of this research is presented in Chapter III. The proposed algorithm is presented in

Chapter IV. In Chapter V, a set of empirical study are discussed. Then we show the

application of the proposed algorithm in some real world applications in Chapter VI.

Finally, the conclusions and discussions of this research are presented and the future

directions are also suggested in Chapter VII.

CHAPTER II

METAHEURISTICS FOR

COMBINATORIAL OPTIMIZATION

2.1 Introduction
 This chapter provides some necessary knowledge on solution methodologies

for solving both single and multi-objective combinatorial problems. However, this

dissertation focuses on the methods which apply to the permutation representation,

which is naturally more suitable with combinatorial problems. The solution

methodologies involving the transformation of representations are not in the scope of

the review.

 This chapter can be divided into two main parts. The first part is the review of

the state of the art algorithms that are designed to solve combinatorial problems. The

second part is the additional techniques needed to solve the problems with multi-

objectives.

2.1.1 Combinatorial Optimization
Combinatorial optimization problems (COPs) [22] are characterized by

the consideration of a selection or permutation of a finite or a countable discrete set of

structures. This class of problems arises in many areas of pure mathematics, notably

in algebra, probability theory, topology and geometry.

In order to prevent the ambiguous of the term “Combinatorial

optimization problems” with any other literatures, we should first define this term

[23]. A combinatorial optimization problem is either a minimization problem or a

maximization problem with an associated set of instances.

17

Definition 2.1: Combinatorial Optimization Problem

An instance of a combinatorial optimization problem is

a pair (𝑆, 𝑓) where 𝑆 is the finite set of candidate solutions and

𝑓: 𝑆 → ℝ is a function which assign to every 𝑥 ∈ 𝑆 a value 𝑓 𝑥 where

𝑥 = (𝑥1, … , 𝑥𝑘) is a feasible solution belong to the discrete solution

set 𝑆. 𝑓 𝑥 is also called an objective function.

Combinatorial optimization considers the following problem:

Definition 2.2: Combinatorial Optimization is defined by

 𝑧 𝑆 = min𝑥𝜖𝑆 𝑓 𝑥 (2.1)

where 𝑥 = (𝑥1, … , 𝑥𝑘) is a feasible solution belong to the

discrete solution set 𝑆, usually called the decision space or solution

space. The function 𝑓 maps 𝑆 to ℝ is called the objective function.

Therefore 𝑓 𝑥 describes the objective function value of the solution

𝑥.

2.1.2 Solution Methods for Combinatorial Problems
According to Talbi[24], combinatorial optimization is a special class of

optimization distinct from the mathematical programming models. Nevertheless,

many literatures consider this class of optimization as a subclass of integer

programming. This class of problems is characterized by discrete decision variables

and a finite search space, moreover, the objective function and constraints may take

any form[25]. Figure 2.1 shows the classification of optimization models.

18

Figure 2.1 Classical optimization models [24]

As mentioned in Chapter I, the COPs are different from the

mathematical programming problems as the optimize variables are usually indirectly

used in order to evaluate a function. Therefore, the solution methodologies are also

different to those mathematical programming models. In addition, many state of the

art algorithms applied to different representations such as evolution strategy,

differential evolution and most estimation of distribution algorithms (EDA) are

inappropriate to solve these kinds of problems.

The algorithms to solve combinatorial problems can be divided into

two classes called exact algorithms and approximate algorithms.

 2.1.2.1 Exact algorithms
The exact algorithms are designed to find the optimal solution

to the combinatorial problems. They are usually computationally expensive because

they must (implicitly) consider all solutions in order to identify the optimum. These

exact algorithms are typically derived from the integer linear programming (ILP) [26].

Branch and X (refer to Branch and Bound, Branch and Cut and Branch and Price and

more variation) algorithms are commonly used to find an optimal solution to many

combinatorial problems, however in many cases, partial fitness cannot be determined,

thereby, without a heuristic to guide a search, such methods are not applicable.

Optimization models

Mathematical programming

models

Combinatorial

optimization

Constraint satisfaction

models

Integers Continuous Mixed

Nonlinear Linear

Combination Permutation

19

 2.1.2.2 Approximate algorithms

Many COPs are belonging to the class of NP-hard optimization

problems [27]. This means that there the algorithms that guarantee to find the optimal

solution within bounded time or exact algorithms might require the exponential

computational time. Therefore, running an exact algorithm for hours on a powerful

computer may not be very cost-effective. Accordingly, heuristic or approximate

algorithms are often preferred to exact algorithms for solving the COPs. Heuristic

strategies are receiving more and more interest as they can find the reasonable good

solution (but not necessarily an optimal one) compared to the given computational

time.

The term “heuristic” derives from the Greek verb “heuriskein”

() which means “to find” or “to discover” it is in optimization not so much

used to describe how to find as how to search for good solutions [28]. Generally, the

exact algorithms can apply heuristic strategies, for example, to guide the search in a

branch and bound procedure. However, the term heuristic is preferred to denote the

approximate algorithm. There are mainly two types of heuristics, “Constructive

Algorithms” and “Improvement Algorithms”. Constructive algorithms build a solution

by joining together “pieces” or “components” of a solution, while Improvement

algorithms start from a pre-existent solution and try to improve it by modifying some

of its component. Some heuristics algorithm combines both constructive and

improvement strategies altogether, we call these algorithms “Composite Algorithms”,

“Hybrid Algorithms” or “Memetic Algorithms”. These composite algorithms are now

the most powerful heuristics for solving COPs. Among the new generation of

composite heuristics, the most outstanding ones are the CCAO heuristic [29], the

iterated Lin-Kernighan heuristic [30][31], and the GENIUS heuristic [32].

Unfortunately, most of the algorithms are problem-specific and are not in the scope of

review. Somehow, they usually combine the existing constructive and improvement

strategies found in this chapter.

20

The Greek suffix “meta” used in the word metaheuristics

means “beyond, in an upper level”. The term “metaheuristics” was first used by

Glover [33] to describe a heuristic that is superimposed on another heuristic.

Generally speaking, metaheuristics are algorithms that combine heuristics (that are

usually problem specific solvers) in a more general framework.

According to Blum and Roli [34], metaheuristics are high level

concepts for exploring search spaces by using different strategies. These strategies

should be chosen in such a way that a dynamic balance is given between the

exploitation of the accumulated search experience and the exploration of the search

space. This balance is necessary on one side to quickly identify regions in the search

space with high quality solutions and on the other side not to waste too much time in

regions of the search space which are either already explored or don’t provide high

quality solutions.

The different metaheuristics approaches can be characterized

by different aspects concerning the search path they follow or how memory is

exploited. In this section, we discuss these aspects according to some general criteria

which may be used to classify the presented algorithms. For a more formal

classification of local search algorithms based on an abstract algorithmic skeleton we

refer to [34].

Trajectory methods vs. discontinuous methods: An

important distinction between different metaheuristics is

whether they follow one single search trajectory corresponding

to a closed walk on the neighborhood graph or whether larger

jumps in the neighborhood graph are allowed.

Population-based vs. single-point search: Related to the

distinction between trajectory methods and discontinuous walk

methods is the use of a population of search points or the use of

one single search point. In the latter case only one single

solution is manipulated at each iteration of the algorithm.

21

Memory usage vs. memoryless methods: Another possible

characteristic of metaheuristics is the use of the search

experience (memory, in the widest sense) to influence the

future search direction.

One vs. various neighborhood structures: Most local search

algorithms are based on one single neighborhood structure

which defines the type of allowed moves.

Nature-inspired vs. non-nature inspiration: A minor point

for the classification of metaheuristics is to take into account

their original source of inspiration. Many methods are actually

inspired by naturally occurring phenomena. The algorithmic

approaches try to take advantage of these phenomena for the

efficient solution of combinatorial optimization problems.

22

2.2 Single-Solution Based Algorithms
2.2.1 Neighborhood and local search

Local search seems to be the oldest and simplest metaheuristics

method [25,35]. It starts at a given initial solution. At each iteration, the heuristic

replaces the current solution by a neighbor that improves the objective function. The

search stops when all candidate neighbors are worse than the current solution,

meaning that a local optimum is reached. For large neighborhoods, the candidate

solutions may be a subset of the neighborhood. The main objective of this restricted

neighborhood strategy is to speed up the search. Variants of LS may be distinguished

according to the order in which the neighboring solutions are generated

(deterministic/stochastic) and the selection strategy (selection of the neighboring

solution).

PROCEDURE BasicLocalSearch

1. s <- GenerateInitialSolution()

2. Repeat

3. s <- Improve(N(s))

4. Until no improvement is possible

Algorithm 2.1: Basic Local Search

Definition 2.4: The neighborhood of a permutation [35]

The neighborhoods 𝑁(𝑠) of a permutation string 𝑠 is represented by

the set {𝑠’/𝑑(𝑠’, 𝑠) ≤ 𝜖} where 𝑑 represents a given distance that is

related to the move operator.

Definition 2.5: A locally minimal solution (or local minimum) [35]

with respect to a neighborhood structure 𝑁 is a solution 𝑠 such that

∀ 𝑠 ∈ 𝑁(𝑠) ∶ 𝑓 (𝑠) ≤ 𝑓 (𝑠). We call 𝑠 a strict locally minimal

solution if 𝑓 (𝑠) < 𝑓 (𝑠)∀ 𝑠 ∈ 𝑁(𝑠).

23

 2.2.1.1 Move operators

 For permutation-based representations, a usual neighborhood is

based on the swap operator that consists in exchanging or swapping the position of

two items 𝑆𝑖 and 𝑆𝑗 of the permutation. For a permutation of size 𝑛, the size of this

neighborhood is 𝑛(𝑛 − 1)/2.

Figure 2.2 Swap operator

 However, a swap operator might not be able to produce the

neighborhoods that share some similarity apart from the absolute positioning of items.

For instance, the insertion operator shown in figure 2.3 preserves both absolute and

relative similarities. Figure 2.4 shows a rotation operator which preserve relative

similarity and Figure 2.5 shows inversion operator which is a generalization version

of 1-Opt, 2-Opt, 3Opt and Double Bridge operators respectively.

Figure 2.3 Insertion operator

Figure 2.4 Rotation operator

Figure 2.5 Inversion operator

1 3 2

4 5 6 7 8 9

1 7 2

6 5 4 3 8 9

1 3 2

4 5 6 7 8 9

9 2 1

3 4 5 6 7 8

1 3 2

4 5 6 7 8 9

1 2 6

3 4 5 7 8 9

1 3 2

4 5 6 7 8 9

1 7 2

4 5 6 3 8 9

24

 2.2.1.2 Selection of the Neighbor

 There are many strategies to select a better neighbor [24][35]

including best improvement, first improvement and random select. A compromise in

terms of quality of solutions and search time may consist in using the first

improvement strategy when the initial solution is randomly generated and the best

improvement strategy when the initial solution is generated using a greedy procedure.

In practice, on many applications, it has been observed that the first improvement

strategy leads to the same quality of solutions as the best improving strategy while

using a smaller computational time. Moreover, the probability of premature

convergence to a local optima is less important in the first improvement strategy.

 In general, local search is a very easy method to design and

implement and gives fairly good solutions very quickly. This is why it is a widely

used optimization method in practice. One of the main disadvantages of LS is that it

converges toward local optima. Moreover, the algorithm can be very sensitive to the

initial solution; that is, a large variability of the quality of solutions may be obtained

for some problems. Additionally, there is no means to estimate the relative error from

the global optimum and the number of iterations performed may not be known in

advance. Even if the complexity is acceptable, the worst case complexity of LS is

exponential. Local search works well if there are not too many local optima in the

search space or the quality of the different local optima is more or less similar.

As already mentioned in the Chapter I that the main disadvantage of

local search algorithms is the convergence toward local optima, many alternatives

algorithms have been proposed to avoid becoming stuck at local optima.

25

2.2.2 Simulated annealing
Simulated annealing (SA) emerges from the work of Kirkpatrick et al.

[36] and Cerny [37]. Previously, SA has been applied to graph partitioning [36] and

VLSI design [37]. In the 1980s, SA had a major impact on the field of heuristic search

because of its simplicity and efficiency in solving combinatorial optimization

problems. Then, it has been extended to deal with continuous optimization problems

[38][39].

SA is based on the principles of statistical mechanics whereby the

annealing process requires heating and the slowly cooling a substance to obtain a

strong crystalline structure. The strength of the structure depends on the rate of

cooling metals. If the initial temperature is not sufficiently high or a fast cooling is

applied, imperfections (metastable states) are obtained. In this case, the cooling solid

will not attain thermal equilibrium at each temperature. Strong crystals are grown

from careful and slow cooling. The SA algorithm simulates the energy changes in a

system subjected to acooling process until it converges to an equilibrium state (steady

frozen state).

Table 2.1 Analogy between the physical system and the optimization problem [24]

Physical System Optimization Problem

System state Solution

Molecular positions Decision variables

Energy Objective function

Ground state Global optimal solution

Metastable state Local optimum

Rapid quenching Local search

Temperature Control parameter 𝑇

Careful annealing Simulated annealing

Table 2.1 illustrates the analogy between the physical system and the

optimization problem. The objective function of the problem is analogous to the

energy state of the system. A solution of the optimization problem corresponds to a

system state. The decision variables associated with a solution of the problem are

analogous to the molecular positions. The global optimum corresponds to the ground

state of the system. Finding a local minimum implies that a metastable state has been

reached.

26

SA is a stochastic algorithm that enables under some conditions the

degradation of a solution. The objective is to escape from local optima and to delay

the convergence. From an initial solution, SA proceeds in several iterations. At each

iteration, a random neighbor is generated. Moves that improve the cost function are

always accepted. Otherwise, the neighbor is selected with a given probability that

depends on the current temperature and the amount of degradation ∆𝐸 of the objective

function. ∆𝐸 represents the difference in the objective value (energy) between the

current solution and the generated neighboring solution. As the algorithm progresses,

the probability that such moves are accepted decreases. This probability follows, in

general, the Boltzmann distribution:

 𝑃 ∆𝐸 , 𝑇 = 𝑒
𝑓 𝑠′ −𝑓(𝑠)

𝑇 (2.2)

It uses a control parameter, called temperature, to determine the

probability of accepting nonimproving solutions. At a particular level of temperature,

many trials are explored. Once an equilibrium state is reached, the temperature is

gradually decreased According to a cooling schedule such that few nonimproving

solutions are accepted at the end of the search. Algorithm 2.2 describes the template

of the SA algorithm.

PROCEDURE SimulatedAnnealing

1. s <- GenerateInitialSolution()

2. Initialize Temperature T

3. Repeat

4. select a random solution y from Neighborhood(x)

5. if f(y) > f(x) then x <= y

6. else if exp((f(y)-f(x))/Temp) < random[0;1] then x <- y

7. if f(x) > BestFx then {BestX <- x and BestFx <- f(x)}

8. Update(Temp)

9. Until Termination Condition is met

Algorithm 2.2: Simulated Annealing

27

2.2.3 Iterated Local Search
A major problem for local search algorithms is that they may get

trapped in local optima in the search space. In such a situation, an action should take

place that allows the local search to leave local minima and to continue the search for

possibly better solutions. One straightforward possibility is to modify the current

locally optimal solution 𝑠 using a modification larger than those used in the local

search algorithm. The application of such a move yields some intermediate solution

𝑠0 beyond the neighborhood searched by the local search algorithm and allows to

leave local minima. The local search is then continued from 𝑠0. Iterated local search

(ILS) [30][40] systematically uses this idea to solve combinatorial optimization

problems. In ILS a local search algorithm is applied repeatedly from initial solutions

obtained by modifications to one of the previously visited locally optimal solutions.

ILS is a simple, yet powerful metaheuristic to improve the

performance of local search algorithms. The simplicity stems from the underlying

principle and the fact that only few lines of code have to be added to an already

existing local search procedure to implement an ILS algorithm. ILS also can be

expected to perform better than to restart local search from a new, randomly generated

solution. This is emphasized by the fact that ILS algorithms are currently among the

best performing approximation methods for many combinatorial optimization

problems like the traveling salesman problem [40].

To apply an ILS algorithm to a given problem, three “ingredients”

have to be defined. One is a procedure Modify, that perturbs the current solution s

(usually a local optimum) leading to some intermediate solution s0. We will refer to

the perturbation also as kick-move in the following. Next, LocalSearch is applied

taking s0 to a local minimum s00. Finally, one has to decide which solution should be

chosen for the next modification step. This decision is made according to an

AcceptanceCriterion that takes into account the previous solution s, the new candidate

solution s00 and possibly the search history.

28

PROCEDURE IterateLocalSearch

1. generate initial solution s

2. s <- LocalSearch(s)

3. sBest <- s

4. repeat

5. s’ <- Modify(s,history)

6. s” <- LocalSearch(s’)

7. if (f(s”)<f(sBest)) then sBest <- s”

8. Until Termination Condition is met

Algorithm 2.3: Iterated Local Search

2.2.4 Tabu Search
Tabu search (TS) is an iterative local search metaheuristic [33,2]. The

most distinctive feature of TS compared to other metaheuristics is the systematic use

of a memory to guide the search process. For the detail discussions of its features, we

refer to the recently published book by Glover and Laguna [2].

The most widely applied feature of Tabu search is the use of a short

term memory to escape from local minima. TS typically uses an aggressive local

search that in each step tries to make the best possible move from 𝑠 to a neighbor 𝑠0

even if that move worsens the objective function value. To prevent the local search to

immediately return to a previously visited solution and to avoid cycling, moves to

recently visited solutions are forbidden. This can be implemented by explicitly

memorizing previously visited solutions and forbidding moving to those. More

commonly, reversing recent moves is forbidden by disallowing the introduction of

move attributes to a solution. In particular, reverse moves are forbidden for 𝑡𝑙

iterations; the parameter 𝑡𝑙 is called the tabu tenure. Forbidding possible moves has

the same effect as restricting dynamically the neighborhood 𝑁(𝑠) of the current

solution 𝑠 to a subset of admissible solutions. Thus, Tabu search can also be

considered as a dynamic neighborhood search technique. Yet, the Tabu conditions

29

may be too restrictive and they may forbid moves to attractive, unvisited solutions.

Aspiration criteria are used to override the tabu status of certain moves and to avoid

such situations. Most commonly, the aspiration criterion drops the tabu status of

moves leading to a better solution than the best one visited so far.

PROCEDURE TabuSearch

1. Find a feasible solution x

2. BestX <- x and BestFx <- f(x) and TabuList <- {}

3. Repeat

4. y <- Argmax {f(y) | y  Neighbor(x) MoveAttribute(x,y)

Tabulist}

5. if length(tl) > TabulistLength then remove the oldElement

from TabuList

6. add MoveAttribute(y,x) as the newest element to TabuList

7. x <- y

8. if f(x) > BestFx then { BestX <- x and BestFx <- f(x) }

9. Until Termination Condition is met

Algorithm 2.4: Tabu Search

To increase the efficiency of Tabu search, techniques exploiting the

long-term memory of the search process are used. These methods are used to achieve

intensification or diversification of the search process. Intensification strategies

correspond to efforts of revisiting promising regions of the search space either by

recovering elite solutions (that is, the best solutions obtained so far) or attributes of

these solutions. Diversification refers to exploring new search space regions

corresponding to the introduction of new attribute combinations. Many long term

memory strategies in the context of TS are based on a frequency memory on the

occurrence of solution attributes.

30

TS appears to be one of the most successful metaheuristics. For many

problems, TS implementations are among the algorithms giving the best tradeoff

between solution quality and the computation-time required [41,42].

2.2.5 GRASP
Greedy randomized adaptive search procedures (GRASP) [43][44]

allow escaping from local minima by generating new starting solutions. Each GRASP

iteration consists of two phases, a construction phase and a local search phase. In the

construction phase a solution is constructed from scratch, adding one solution

component at a time. At each construction iteration the components to be added are

contained in a restricted candidate list which is defined according to a greedy

function. However, not necessarily the best component is added. Instead, in each

solution construction step one of the components of the restricted candidate list is

chosen at random according to a uniform distribution. The algorithm is called

adaptive because the greedy function value for each component is updated reflecting

the changes due to the previously added component. The constructed solutions are not

guaranteed to be locally optimal with respect to some simple neighborhood definition.

Hence, in the second phase local search is applied to improve solutions.

PROCEDURE GRASP

1. generate initial solution s

2. repeat

3. s <- ConstructGreedyRandomizeSolution()

4. s’ <- LocalSearch(s)

5. if f(s’)< f(sBest) then sBest <- s’

6. Until Termination Condition is met

Algorithm 2.5: GRASP

31

2.3 Population-Based Algorithms
2.3.1 Genetic Algorithms

Genetic algorithm (GA) [13][7] is a specific type of evolutionary

algorithms [45]. Evolutionary algorithms are population-based, adaptive search

algorithms designed to attack optimization problems. They are inspired by models of

natural evolution of species and use the principle of natural selection which favors

individuals that are more adapted to a specific environment for survival and further

evolution. Each individual in an evolutionary algorithm typically represents a solution

with an associated fitness value. The three main operators used are selection,

mutation, and recombination. Selection prefers fitter individuals to be chosen for the

next generation and for the application of the mutation and recombination operator.

Mutation is a unary operator that introduces random modifications to an individual.

Recombination combines the genetic material of two individuals, also called parents,

by means of a crossover operator to generate new individuals, called offsprings.

The three main algorithmic developments within the field of

evolutionary algorithms are genetic algorithms, evolution strategies [46] [47] and

evolutionary programming [48]. These algorithms have been developed

independently and, although these algorithms initially have been proposed in the

sixties and seventies, only in the beginning of the nineties the researchers became

aware of the common underlying principles of these approaches [45]. (For a detailed

discussion of similarities and differences between these approaches we refer to [45].)

Here we focus on genetic algorithms since they appear to be the best suited

evolutionary algorithms for combinatorial optimization problems, which are the target

of this dissertation. Evolution strategies and evolutionary programming differ from

genetic algorithms by representing solutions directly as real valued parameters (in

case of genetic algorithm applications to continuous parameter optimization problems

the numbers are coded in binary form) and the much stronger reliance on mutation as

a primary search operator. Indeed, in evolutionary programming only mutation is used

for modifying solutions.

In the first GA applications, individuals were represented by bit strings

of fixed length [13]. Yet, this type of representation proved to be insufficient to

32

efficiently attack certain types of combinatorial problems [49] like permutation

problems. Therefore, for such problems usually more general, problem specific

encodings are applied. The crossover operator is usually understood as the main

operator driving the search in genetic algorithms. The idea of crossover is to exchange

useful information between two individuals and in this way to generate a hopefully

better offspring. Mutation is understood as a background operator which introduces

small, random modifications to an individual. Yet, recent results suggest that the role

of mutation has been underestimated [45]. The selection operator is used to keep the

population at a constant size, choosing preferably individuals with higher fitness

(survival of the fittest). The complete cycle of recombination, mutation and selection

is called generation.

PROCEDURE GeneticAlgorithm

1. generate initial population p

2. repeat

3. p’ <- Recombination(p)

4. p’ <- Mutation(p)

5. p <- Selection(p,p’)

8. Until Termination Condition is met

Algorithm 2.6: Simple Genetic Algorithm

2.3.1.1 Crossover operators

As mentioned in Chapter I, the recombination of two

permutation sequences is not straight forward. Applying GAs in combinatorial

problems turns to be somewhat problem dependent. Choosing an inappropriate

crossover operator would not improve the populations, yet disrupt the schemas as

well. Many permutation based crossover operators have been consecutively proposed

since 1985. They are broadly categorized to preserve the schemas in the parent

solutions in three manners including absolute order, relative order and edge. The

permutation based crossover operators are reviewed as followed:

33

2.3.1.1.1 Partially-mapped crossover (PMX) [50] was

first proposed by Goldberg and Lingle. This operator first randomly selects two cut

points on both parents. In order to create an offspring, the substring between the two

cut points in the first parent replaces the corresponding substring in the second parent.

Then, the inverse replacement is applied outside of the cut points, in order to

eliminate duplicates and recover all positions.

In figure 2.6, the offspring is created by first replacing

the substring 4-3-7-6 in parent 1 by the substring 1-7-5-3. Then, the redundancy items

in the parent 1 are mapped and were replaced by the matched items in the substring.

Those are item 1 was replaced by item 4 while item 5 was replaced by item 6.

However, the item 5 was mapped to item 7 which would be redundant to the items in

the exchanged substring as well, therefore, the mapping procedure repeats until an

available item is found. The item 5 finally mapped and replaced with the item 6 in the

parent 2.

Clearly, PMX tries to preserve the absolute position of

the items when they are copied from the parents to the offspring. In fact, the number

of items that do not inherit their positions from one of the two parents is at most equal

to the length of the string between the two cut points. From the above example, in the

offspring 1, only item 1 and 5 do not inherit their absolute position from one of the

two parents.

34

Figure 2.6 The partially-mapped crossover

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

2

4

1

3 7 6

9 8 5

9

1

4

7 5 3

8 2 6

2

4

4

3 7 6

9 8 6

9

1

1

2 5 3

8 2 5

1 4

7 3 6 5 7

1 7 5 3

4 3 7 6

Parent 1

Parent 2

Step 1. Select the substring

Step 2. Map the relationship

Step 3. Exchange the substring

Proto-Offspring 1

Proto-Offspring 2

Offspring 1

Offspring 2

Step 4. Legalize the offspring

3

35

2.3.1.1.2 Cycle crossover (CX) [51] was introduced by

Oliver. The cycle crossover focuses on subsets of items that occupy the same subset

of positions in both parents. Then, these items are copied from the first parent to the

offspring (at the same position), and the remaining positions are filled with the items

of the second parent. In this way, the position of each item is inherited from one of the

two parents, However, many edges (connection between each item) can be broken in

the process, because the initial subset of items is not necessarily located at

consecutive positions in the parent strings.

In figure 2.7, In order to construct offspring 1, the

subset of items {2, 9, 8} occupies the subset of positions {1, 7, 8} in both parents.

Hence, an offspring is created by filling the positions 1, 7, and 8 with the items found

in the parent 1, and filing the remaining positions with the items found in the parent 2.

36

Figure 2.7 The cycle crossover

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

Step 1. Select the first node

Offspring 1

Offspring 2

Step 3. Perform Crossover

2 9 8

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

Step 2. Find the legal mask by cyclic the occupied node

Proto-Offspring 1

Proto-Offspring 2

2 4 1

3 7 6 9 8 5

9 1 4

2 5 3 8 7 6

 1 4

2 1 4

7 5 3 9 8 6

2 1 4

3 7 6 9 8 5

Parent 1

Parent 2

37

2.3.1.1.3 Modified crossover [52] was proposed by

Davis. This crossover operator is an extension of the one-point crossover for

permutation problems. A cut position is chosen at random on the first parent

chromosome. Then, an offspring is created by appending the second parent

chromosome to the initial segment of the first parent (before the cut point), and by

eliminating the duplicates. An example is provided in figure 2.8.

Figure 2.8 The modified crossover

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

2

1

3 5 6

8 6

9

4

7 5 3

 8 5

Parent 1

Parent 2

Step 1. Choose the cut position

Step 2. Appending the chromosome and eliminating the duplicates.

Proto-Offspring 1

Proto-Offspring 2

Offspring 1

Offspring 2

Step 3. Legalize the offspring

2

2

1

3 5 6

8 4 6

9

9

4

7 5 3

1 8 5

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

38

2.3.1.1.4 Order crossover (OX) proposed by Oliver

[47] and Goldberg [7]. This crossover operator extends the modified crossover of

Davis by allowing two cut points to be randomly chosen on the parent chromosomes.

In order to create an offspring, the string between the two cut points in the first parent

is first copied to the offspring. Then, the remaining positions are filled by considering

the sequence of items in the second parent, starting after the second cut point (when

the end of the chromosome is reached, the sequence continues at position 1).

In figure 2.9, the substring 4-3-7 in parent 1 is first

copied to the offspring. Then, the remaining positions are filled one by one after the

second cut point, by considering the corresponding sequence of items in parent 2,

namely 9-4-1-7-5-3-8-2-6. Hence, item 9 is first considered to occupy position 1, the

item 4 is secondly considered to occupy the position 2 but it is discarded because it is

already included in the offspring. Item 1 is the next item to be considered, and it is

inserted at position 2. The procedure repeats as item 5 fills the position 6, item 3 is

discarded, item 8 fills the position 7, and item 2 fills the position 8. Finally, the last

item 5 fills the last sequence.

Clearly, OX tries to preserve the relative order of the

items rather than their absolute position. In figure 2.9, the offspring2 does not

preserve the position of most items in parent 1. The variant of OX, known as the

maximal preservative crossover [MPX], is also described in [53].

39

Figure 2.9 The order crossover

2.3.1.1.5 Order-based crossover (OBX) [54] was first

introduced by Syswerda. This crossover also focuses on the relative order of the items

on the parent chromosomes. First, a subset of items is selected in the first parent. In

the offspring, these items appear in the same order as in the first parent, but at

positions taken from the second parent. Then, the remaining positions are filled with

the items of the second parent.

In figure 2.10, item 4, 7, 9 are first selected in parent 1,

and must appear in this order in the offspring. Actually, these items occupy positions

1, 2 and 4 in parent 2. Hence, items 9, 4 and 7 occupy positions 1, 2 and 4,

respectively, in the offspring. The remaining positions are filled with the items found

in parent 1.

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

1

7 5

4

3 7

Parent 1

Parent 2

Step 1. Choose the cut position

Step 2. Select the substring

Proto-Offspring 1

Proto-Offspring 2

Step 3. Legalize the offspring

Offspring 1

Offspring 2

9

1

1

8
7 5 3

8 2 6

2

4

4

3 7 5

6 9 8

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

40

Figure 2.10 The order-based crossover

2.3.1.1.6 Position-based crossover (PBX) [54] was

also invented be Syswerda. Here, a subset of positions is selected in the first parent.

Then, the items found at these positions are copied to the offspring (at the same

positions). The other positions are filled with the remaining items, in the same order

as in the second parent.

The name of this operator is a little bit misleading,

because it is the relative order of the items that is inherited from the parents (the

absolute position of the items inherited from the second parent is rarely preserved).

This operator can be seen as an extension of the order crossover OX, where the items

inherited from the first parent do not necessarily occupy consecutive positions.

In figure 2.11, positions 3, 5 and 7 are first selected in

parent 1. items 4, 7 and 9 are found at these positions, and occupy the same positions

in the offspring. The other positions are filled one by one, starting at position 1, by

inserting the remaining items according to their relative order in parent 2.

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

2

1

1

9 5 3

7 8 5

4

9

7

3 4 6

8 2 6

Parent 1

Parent 2

Step 1. Choose the cut positions

Step 3.Perform Crossover

Offspring 1

Offspring 2

Step 2.Match up

41

Figure 2.11 The position-based crossover

2.3.1.1.7 Weight mapping crossover (WMX) was

recently proposed by Lee el al. [55][56] In many approaches, the mechanism of the

crossover is not the same with that of the conventional one-cut point crossover. Some

offspring may generate new chromosomes that are not possible to succeed the

character of the parents, thereby retarding the process of evolution. For this reason

weight mapping crossover is invented.

In figure 2.12, The weight mapping crossover begins

with identifying the cut position, then map the items in the substring according to

their weight. In this case, the weight of an item is equal to its value. For instance, an

item 3 has a weight equal to 3 as well. Thus, a substring 6-9-8-5 from the parent 1 is

sorted according to their weight and result is 5-6-8-9 then is map to the sorted

substring 2-3-6-8 from parent 2. Then the substring 6-9-8-5 is rearranged according to

the sequence of substring 3-8-2-6. The final step simply legalizes the offspring

according to the sequence of the mapped weight.

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

Step 1. Choose the cut position

Step 2. Appending the chromosome and eliminating the duplicates.

Proto-Offspring 1

Proto-Offspring 2

Offspring 1

Offspring 2

Step 3. Legalize the offspring

1

6

5

7 9 3

9 2 6

1

4

4

3 7 8

8 2 5

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

 4 7 9

 7 3 2

42

Figure 2.12 The weight-mapping crossover

2.3.1.1.7 Edge recombination (ER) was proposed by

Whitley et al. [57] The adjacency representation is designed to facilitate the

manipulation of edges. The crossover operators based on this representation generate

offspring that inherit most of their edges from the parent chromosomes. The

adjacency representation can be described as follows: node 𝑗 occupies position 𝑖 in the

chromosome if there is an edge from item 𝑖 to item 𝑗 in the permutation string. This

representation usually considers the relationship between edges as they are

symmetrical. For instance an edge 3-2 is equivalent to 2-3. Various crossover

operators are designed to manipulate this representation. These operators are aimed at

transferring as many edges as possible from the parents to the offspring; however, the

effective and most powerful one has shown to be only edge recombination.

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

Step 1. Choose the cut position

Step 2. Mapping the weight of the substring

Offspring 1

Offspring 2

Step 3. Legalize the offspring according to the mapping

Parent 1

Parent 2

6 9 8 5

3 8 2 6

5 6 8 9

2 3 6 8

2 4 1

3 7 6 9 5 8

9 1 4

7 5 3 8 6 2

3 8 2 6

6 9 8 5

43

The edge recombination operator reduces the myopic

behavior of the alternate edge crossover [58] approach with a special data structure

called edge map. The edge map maintains the list of edges that are incident to each

node item of the parent and that lead to the nodes not yet included in the offspring.

Hence, these edges are still available for extending the search and are said to be

active. The strategy is to extend the search by selecting the edge that leads to the node

item with the minimum number of active edges. In the case of equality between two

or more item nodes, one of these nodes is selected at random. With this strategy, the

approach is less likely to get trapped in a dead end.

For the parent 2-1-4-3-7-6-9-8-5 and 9-4-1-7-5-3-8-2-6

(path representation), the initial edge map is shown in figure 2.13 Let us assume that

node 1 is selected as the starting node. Accordingly, all edges incident to node 1 must

first be deleted from the initial edge map. From node 1, we can go to nodes 2, 4 or 7.

Each node has three active edges; hence, a random choice is made between nodes 2, 4

and 7. We assume that node 2 is selected. From 2, we can traverse to nodes 5, 6 and 8.

Node 5 and 8 has up to three active edges while node 6 only has got two, so the latter

is selected. From node 6, there are two choices 7 and 9 with the same amount of

active edges, thus a random choice is made. The procedure repeats until there is no

node left. From the figure 2.13 the final candidate is generated one node by one node

start from node 1 and end up with 8. The final candidate is 1-2-6-9-4-3-7-5-8 which

inherits edge 2-1, 6-9, 4-3, 3-7 and 8-5 from parent 1 while inherits edge 2-6, 9-4, 7-5

from parent 2.

More variant of edge recombination which focuses on

edges common to both parents is described in [57]. Recently, a descendant of ER

called Sequential Constructive Crossover (SCX) [58] proposed by Armed Z.H.

integrated the edge weight matrix to the edge map in order to choose a better path.

.

44

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

Step 1. Constructing an edge map

Step 2. Constructing a candidate solution

1

4

7

5

2

1

3

3

3

RandomSelect (2,4,7) = 2

1 2

2 5

6

2

3

8

3

1

4

7

2 5

3

8 6

9

RandomSelect (6) = 6

RandomSelect(1,2,3,4,5,6,7,8,9) = 1

45

1 2

RandomSelect (7,9) = 9

6

7

6

9

2

2

1 2

6 9

4

8

9

1

2

RandomSelect (4) = 4

1 2

6 9 4

RandomSelect (3) = 3

4

3

3

46

Figure 2.13 The edge recombination

1 2

6 9 4

RandomSelect (7,8) = 7

3

7

5

3

8

1

2

1

1 2

6 9 4

RandomSelect (5) = 5

3 7

7

5

1

1 2

6 9 4

RandomSelect (8) = 8

3 7 5

5

8

0

1 2

6 9 4 3 7 5 8

2 4 1

3 7 6 9 8 5

9 1 4

7 5 3 8 2 6

Parent 1

Parent 2

1 2

6 9 4 3 7 5 8 Offspring

Edge From 1

Edge From 2

47

2.3.1.2 Mutation operators

Mutation is a genetic operator that alters one or more gene

values in a chromosome from its initial state. This can result in entirely new gene

values being added to the gene pool. With these new gene values, the genetic

algorithm may be able to arrive at better solution than was previously possible.

However, mutation operators in permutation representation are also needed to be

design such that the operators always generate the feasible solutions. Typically, the

move operators of local search are adopted as the mutation operators for

permutations.

2.3.1.3 Selection operators

Selection is a genetic operator that chooses a chromosome from

the current generation’s population for inclusion in the next generation’s population.

Usually, selection operators are not restricted to the representations. The three most

commonly used selection methods are proportional (roulette wheel), tournament, and

ranking. A proportional selection operator selects the population from the

probabilities in which the chance of a chromosome getting selected is proportional to

its fitness (or rank). This is where the concept of survival of the fittest comes into

play. A tournament selection operator randomly divides the populations in to subsets,

and then selects the best candidates among the member of such set. A ranking

selection operator selects the top N percent of the population based on their rank. The

variant of these operators can be found in [7].

48

2.3.2 Ant colony optimization
Ant colony optimization (ACO) is a population-based search inspired

by the behavior of ants [59][60][61][62]. Ants are simple insects that live in colonies

and show their amazing capabilities through their cooperative behavior like finding

shortest paths from a food source to their colony. The ants exchange information via

pheromones. The pheromones are chemical substances which the ants lay down in

varying quantities to mark a path. While isolated ants move essentially at random, an

ant encountering a previously laid pheromone trail can detect it and may follow the

pheromone trail. The ants’ probability to follow the pheromone trail depends on the

pheromone intensity. The higher the pheromone intensity indicates the larger the

possibility to follow. At the same time the ants following the pheromone trail may lay

down additional pheromone and a positive feedback loop results. The more ants

previously have chosen the pheromone trail, the more ants will follow it in the future.

One of the basic ideas of ant colony optimization is to use an algorithmic counterpart

of the pheromone trail as a medium for cooperation and communication among a

colony of artificial ants which is guided by positive feedback.

The most important part in ACO algorithms, in general, is how the

pheromone trails are used to generate better solutions in future iterations of the

algorithm. The idea is to combine the solution components that in previous iterations

have shown to be part of good solutions, even better solutions may be generated.

Thus, ACO algorithms can be seen as adaptive sampling algorithms – adaptive in the

sense that they consider past experience to influence future iterations.

PROCEDURE AntColonyOptimization

1. Initialize PheromoneTrails, calculate HeuristicInformation

2. Repeat

3. p <- ConstructSolutions(PheromoneTrails,

HeuristicInformation)

4. GlobalUpdateTrails(p)

5. Until Termination Condition is met

Algorithm 2.7: Ant Colony Optimization

49

We give an algorithmic skeleton into which fit the ACO algorithm

applications for static combinatorial optimization problems. For an outline of the

more general ACO metaheuristics we refer to [65]. In the main loop of the algorithm,

first solutions are generated for all ants of the colony (the colony is indicated by p) by

a function ConstructSolutions. The solution construction typically uses the pheromone

information and problem specific local heuristic information. The solutions are then

improved by a local search phase (LocalSearch). This local search phase is optional;

in fact, it is not used in all applications of ACO algorithms to combinatorial

optimization problems. Finally, the solutions are used to update the pheromone trails

in a function GlobalUpdateTrails.

2.3.3 Particle swarm optimization
Particle swarm optimization (PSO) is a population-based metaheuristic

inspired from swarm intelligence [63]. It mimics the social behavior of natural

organisms such as bird flocking and fish schooling to find a place with enough food.

Indeed, in those swarms, a coordinated behavior using local movements emerges

without any central control. Originally, PSO has been successfully designed for

continuous optimization problems. Its first application to optimization problems has

been proposed in Ref. [64].

In the basic model, a swarm consists of 𝑁 particles flying around in a

𝐷-dimensional search space. Each particle 𝑖 is a candidate solution to the problem,

and is represented by the vector 𝑥𝑖 in the decision space. A particle has its own

position and velocity, which means the flying direction and step of the particle.

Optimization takes advantage of the cooperation between the particles. The success of

some particles will influence the behavior of their peers. Each particle successively

adjusts its position 𝑥𝑖 toward the global optimum according to the following two

factors: the best position visited by itself (𝑝𝑏𝑒𝑠𝑡𝑖) denoted as 𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷)

and the best position visited by the whole swarm (𝑔𝑏𝑒𝑠𝑡) (or 𝑙𝑏𝑒𝑠𝑡, the best position

for a given subset of the swarm) denoted as 𝑝𝑔 The vector (𝑝𝑔 − 𝑥𝑖) represents the

difference between the current position of the particle 𝑖 and the best position of its

neighborhood.

50

PROCEDURE ParticleSwarmOptimization

1. Initialize p[N]

2. Repeat

3. Evaluate f(p[N])

4. UpdateVelocities(p[N])

5. UpdatePosition(p[N])

6. UpdateBestFoundPaticle(pBest[N],gbest)

5. Until Termination Condition is met

Algorithm 2.8: Particle Swarm Optimization

Update the velocity: The velocity 𝑣𝑖 that defines the amount of

change that will be applied to the particle is defined as

𝑣𝑖 𝑡 = 𝑣𝑖 𝑡 − 1 + 𝜌𝑖𝐶1 × 𝑝𝑖 − 𝑥𝑖 𝑡 − 1 + 𝜌2𝐶2 × 𝑝𝑔 − 𝑥𝑖 𝑡 − 1 (2.5)

where 𝜌1 and 𝜌2 are two random variables in the range [0, 1]. The constants 𝐶1 and 𝐶2

represent the learning factors. They represent the attraction that a particle has either

toward its own success or toward the success of its neighbors. The parameter 𝐶1 is the

cognitive learning factor that represents the attraction that a particle has toward its

own success. The parameter 𝐶2 is the social learning factor that represents the

attraction that a particle has toward the success of its neighbors. The velocity defines

the direction and the distance the particle should go

Update the position: Each particle will update its coordinates in the

decision space.

 𝑥𝑖 𝑡 = 𝑥𝑖 𝑡 − 1 + 𝑣𝑖 𝑡 (2.6)

Then it moves to the new position.

Update the best found particles: Each particle will update

(potentially) the best local solution:

 if 𝑓 𝑥𝑖 < 𝑝𝑏𝑒𝑠𝑡𝑖 , then 𝑝𝑖 = 𝑥𝑖 (2.7)

51

Moreover, the best global solution of the swarm is updated:

 if 𝑓 𝑥𝑖 < 𝑔𝑏𝑒𝑠𝑡𝑖 , then 𝑔𝑖 = 𝑥𝑖 (2.8)

Hence, at each iteration, each particle will change its position

according to its own experience and that of neighboring particles. As for any swarm

intelligence concept, agents (particles for PSO) are exchanging information to share

experiences about the search carried out. The behavior of the whole system emerges

from the interaction of those simple agents. In PSO, the shared information is

composed of the best global solution gbest.

Traditionally, PSO algorithms are applied to continuous optimization

problems. Some adaptations must be made for discrete optimization problems. They

differ from continuous models in mapping between particle positions and discrete

solutions: Many discrete representations such as binary encodings [65] and

permutations can be used for a particle position. The velocity models may be real

valued, stochastic, or based on a list of moves. In stochastic velocity models for

permutation encodings, the velocity is associated with the probability for each item to

be generated in a position. Further information can be found in [66][67]. Velocity

models for discrete optimization problems have been generally inspired from

mutation and crossover operators of EAs.

2.3.4 Estimation of distribution algorithms
Estimation of distribution algorithms (EDA) are a recent class of

optimization techniques based on the concept of using probability distribution of the

population in reproducing new offsprings [68][69]. EDAs construct a probability

distribution of desired population and then create new individuals by sampling from

this probability distribution. This class of algorithms is classified as non-Darwinian

evolutionary algorithms as they replace Darwinian operators with probability

distributions. The first algorithms belonging to this class have been proposed in Refs.

[70].

52

The principal idea in EDAs is to transform the optimization problem

into a search over probability distributions. They maintain a population of individuals.

A probabilistic model for promising individuals is constructed. For instance, EDA

estimates the probability distribution of each decision variable of the optimization

problem. The probabilistic model represents an explicit model of promising regions of

the search space. The induced probabilistic model will be used to generate new

solutions. The generated individuals will replace the old population in a full or a

partial manner. This process iterates until a given stopping criteria. The general EDA

can be sketched as follows (Algorithm 2.9):

PROCEDURE EDA

1. Initialize ProbabilisticModel

2. Repeat

3. p <- Sampling(ProbabilisticModel)

4. p <- Selection(p,p’)

5. Update(ProbabilisticModel,p)

6. Until Termination Condition is met

Algorithm 2.9: Estimation of Distribution Algorithm

Various algorithms in EDA class have been proposed since 1994, the

famous EDAs including PBIL (population based incremental learning)[71], CGA

(compact genetic algorithm)[72], UMDA (univariate marginal distribution

algorithm)[73], MIMIC (mutual information maximizing input clustering)[74], and

BOA (Bayesian optimization algorithm)[75]. These algorithms differ from each other

in encoding, probability models and the methods to update the models. Further

information of these algorithms can be found in Refs.[68][69]

The results obtained from the EDA family of algorithms are not yet

competitive compared to more traditional metaheuristics especially in combinatorial

problems. The simple explanation is that all the mentioned EDAs use inappropriate

encoding to solve permutation problems. Recently, two EDAs that naturally represent

the permutation in the genotype have emerged. They are called EHBSA (edge

histogram based sampling algorithm) [18] and NHBSA (node histogram based

sampling algorithms) [19].

53

2.3.4.1 Edge Histogram Based Sampling Algorithm

Edge Histogram Based Sampling Algorithm (EHBSA) [18]

was proposed by Tsutsui in 2002. EHBSA was designed to solve combinatorial

problems and has shown the competitive performances in solving many real world

applications including traveling salesman problems (TSP), flow shop scheduling

problems (FSSP) and capacitated vehicle routing problems (CVRP).

In permutation scheme, the models of solutions can be

represented as a graph of nodes connected by edges. EHBSA utilizes Edge Histogram

Matrix (EHM) to learn the mutual information of edges contained in the selected

solutions and then construct new solutions by sampling from it. The idea of EHBSA

is to use the edge recombination (ER) [57] in genetic algorithms with the whole

selected population instead of tradition two-parent recombination.

Constructing Edge Histogram Matrix: Edge histogram

matrix is a matrix that simply store the summation of edge counted from the selected

population plus a bias. Let string of 𝑘th individual in population 𝑃(𝑡) at generation 𝑡

represent as 𝑠𝑘𝑡 = (𝜋𝑘
𝑡 0 , 𝜋𝑘

𝑡 1 ,… , 𝜋𝑘
𝑡 𝐿 − 1). 𝜋𝑘𝑡 0 , 𝜋𝑘𝑡 1 , … , and 𝜋𝑘

𝑡 𝐿 − 1

are the permutation of (0,1, … , 𝐿 − 1) where 𝐿 is the length of the permutation. Edge

histogram matrix 𝐸𝐻𝑀𝑡 (𝑒𝑖,𝑗
𝑡)(𝑖, 𝑗 = 0,1, … , 𝐿 − 1) of population 𝑃(𝑡) is

symmetrical and consists of 𝐿2 items as follows:

𝑒𝑡 𝑖,𝑗 =
 (𝛿𝑖,𝑗 𝑠𝑘

𝑡 + 𝜀 if 𝑖 ≠ 𝑗𝑁
𝑘=1

0 if 𝑖 = 𝑗
 (2.9)

where 𝑁 is the population size, 𝛿𝑖,𝑗 𝑠𝑘𝑡 is a delta function defined as

 𝛿𝑖,𝑗 𝑠𝑘
𝑡 =

1 if ∃𝑕[𝑕 ∈ 0,1, … 𝐿 − 1 ∧

𝜋𝑘
𝑡 𝑕 = 𝑖 ∧ 𝜋𝑘

𝑡 𝑕 + 1 mod𝐿 = 𝑗]

0 otherwise

 (2.10)

and 𝜀 𝜀 > 0 is a bias to control pressure in sampling nodes just like those used for

adjusting the selection pressure in the proportional selection in GAs. The average

number of edges of item (𝑒𝑖,𝑗
𝑡) in 𝐸𝐻𝑀𝑡 is 2𝐿𝑁/(𝐿2 − 𝐿) = 2𝑁/(𝐿 − 1). So, 𝜀 is

determined by a bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜 (𝐵𝑟𝑎𝑡𝑖𝑜 > 0) of this average number of edges as

54

 𝜀 =
2𝑁

𝐿−1
𝐵𝑟𝑎𝑡𝑖𝑜 (2.11)

A smaller of value of 𝐵𝑟𝑎𝑡𝑖𝑜 reflects the real distribution of edges in sampling of

nodes and a bigger value of 𝐵𝑟𝑎𝑡𝑖𝑜 will give a kind of perturbation in the sampling. An

example of 𝐸𝐻𝑀𝑡 is shown in figure 2.14.

Figure 2.14 An example of asymmetric edge histogram matrix for

 𝑵 = 𝟓, 𝑳 = 𝟓,𝑩𝒓𝒂𝒕𝒊𝒐 = 𝟓.

Sampling from Edge Histogram Matrix: The sampling

algorithm of EHBSA is similar to Ant Colony Optimization[20]. A new individual

permutation 𝒄[] is generated straightforwardly as follows:

PROCEDURE SamplingfromEHM

1. Set position counter 𝑝 ← 0

2. Obtain first node 𝑐[0] randomly from [0, 𝐿 − 1]

3. Construct a roulette wheel vector 𝑟𝑤[] from matrix as

𝑟𝑤[𝑗] ← 𝑒𝑡𝑐 𝑝 ,𝑗 (𝑗 = 0,1, … , 𝐿 − 1)

4. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]] ← 0 for 𝑖 =

0,… , 𝑝)

5. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/ 𝑟𝑤[𝑗] 𝐿−1
𝑗=0 using

roulette wheel 𝑟𝑤[].

6. Update the position counter 𝑝 ← 𝑝 + 1.

7. If 𝑝 < 𝐿 − 1, go to Step 3.

Algorithm 2.10: Sampling Algorithm of EHBSA

𝑠1
𝑡 = 0,1,2,3,4

𝑠2
𝑡 = (1,3,4,2,0)

𝑠3
𝑡 = (3,4,2,1,0)

𝑠4
𝑡 = (4,0,3,1,2)

𝑠5
𝑡 = (2,1,3,4,0)

𝑃(𝑡)

node 𝑗

0 1.1 0.1 1.1 0.1

1.1 0 2.1 2.1 0.1

1.1 2.1 0 1.1 0.1

0.1 1.1 0.1 0 4.1

2.1 0.1 2.1 0.1 0

𝐸𝐻𝑀𝑡

n
o

d
e
𝑖

55

 In this review, we exemplify only the simple version of

EHBSA. However, there are variations of EHBSA such as hybridization with absolute

order base crossover obtained from genetic algorithm to improve the quality of the

results. Further information can be found in Ref. [18][19]

2.3.4.2 Node Histogram Based Sampling Algorithm

Node Histogram Based Sampling Algorithm [19] (NHBSA)

was also proposed by Tsutsui. NHBSA was also designed to solve combinatorial

problems and have shown the competitive performances in many more combinatorial

problems. However, NHBSA differs from EHBSA as NHBSA is more suitable to the

problems where fitness’s depend on the absolute order of item. NHBSA utilize a

Node Histogram Matrix (NHM) to construct a solution.

Constructing Node Histogram Matrix: Node histogram

matrix is a matrix that simply store the summation of node counted from the selected

population plus a bias. Let string of 𝑘th individual in population 𝑃(𝑡) at generation 𝑡

represent as 𝑠𝑘𝑡 = (𝜋𝑘
𝑡 0 , 𝜋𝑘

𝑡 1 ,… , 𝜋𝑘
𝑡 𝐿 − 1). 𝜋𝑘𝑡 0 , 𝜋𝑘𝑡 1 , … , and 𝜋𝑘

𝑡 𝐿 − 1

are the permutation of (0,1, … , 𝐿 − 1) where 𝐿 is the length of the permutation. Node

histogram matrix 𝑁𝐻𝑀𝑡 (𝑛𝑖,𝑗
𝑡)(𝑖, 𝑗 = 0,1, … , 𝐿 − 1) of population 𝑃(𝑡) consists of

𝐿2 items as follows:

𝑛𝑡 𝑖,𝑗 = (𝛿𝑖,𝑗 𝑠𝑘
𝑡 + 𝜀 𝑁

𝑘=1 (2.12)

where 𝑁 is the population size, 𝛿𝑖,𝑗 𝑠𝑘𝑡 is a delta function defined as

 𝛿𝑖,𝑗 𝑠𝑘
𝑡 = 1 if 𝜋𝑘𝑡 𝑖 = 𝑗

0 otherwise
 (2.13)

and 𝜀 𝜀 > 0 is a bias to control pressure in sampling nodes just like those used for

adjusting the selection pressure in the proportional selection in GAs. The average

number of edges of item (𝑛𝑖,𝑗𝑡) in 𝑁𝐻𝑀𝑡 is 𝐿𝑁/(𝐿2) = 𝑁/𝐿. So, 𝜀 is determined by a

bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜 (𝐵𝑟𝑎𝑡𝑖𝑜 > 0) of this average number of nodes as

 𝜀 =
𝑁

𝐿
𝐵𝑟𝑎𝑡𝑖𝑜 (2.14)

A smaller of value of 𝐵𝑟𝑎𝑡𝑖𝑜 reflects the real distribution of nodes in sampling of

positions and a bigger value of 𝐵𝑟𝑎𝑡𝑖𝑜 will give a kind of perturbation in the sampling.

An example of 𝑁𝐻𝑀𝑡 is shown in figure 2.15.

56

Figure 2.15 An example of node histogram matrix for

 𝑵 = 𝟓, 𝑳 = 𝟓,𝑩𝒓𝒂𝒕𝒊𝒐 = 𝟓.

Sampling from Node Histogram Matrix: Although the

𝑵𝑯𝑴𝒕 is simpler to construct than the 𝑬𝑯𝑴𝒕 , the sampling algorithm of NHBSA is

a little bit more complicate. In EHBSA, each node is constructed one position by one

position in a sequence. However, in NHBSA, each node is constructed with a random

position sequence. A new individual permutation 𝒄[] is generated straightforwardly as

follows:

PROCEDURE SamplingfromNHM

1. Set counter 𝑝 ← 0

2. Construct a roulette wheel of all positions.

3. Set to 0 previously sampled positions

4. Sample a position j from the roulette wheel of position

5. Construct a roulette wheel vector 𝑟𝑤[] from matrix as

𝑟𝑤[𝑖] ← 𝑛𝑡 𝑐 𝑝 ,𝑖(𝑖 = 0,1,… , 𝐿 − 1)

6. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]] ← 0 for 𝑖 =

0,… , 𝑝)

7. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/ 𝑟𝑤[𝑗] 𝐿−1
𝑗=0 using

roulette wheel 𝑟𝑤[].

6. Update the counter 𝑝 ← 𝑝 + 1.

7. If 𝑝 < 𝐿, go to Step 2.

Algorithm 2.11: Sampling Algorithm of NHBSA

𝑠1
𝑡 = 0,1,2,3,4

𝑠2
𝑡 = (1,3,4,2,0)

𝑠3
𝑡 = (3,4,2,1,0)

𝑠4
𝑡 = (4,0,3,1,2)

𝑠5
𝑡 = (2,1,3,4,0)

𝑃(𝑡)

position 𝑗

1.1 1.1 0.1 0.1 3.1

1.1 2.1 0.1 2.1 0.1

1.1 0.1 2.1 1.1 1.1

1.1 1.1 2.1 1.1 0.1

1.1 1.1 1.1 1.1 1.1

𝑁𝐻𝑀𝑡

n
o

d
e
𝑖

57

2.3.5 Scatter Search and Path Relinking
Scatter search has its origin in the paper of F. Glover [76]. SS is a

deterministic strategy that has been applied successfully to some combinatorial and

continuous optimization problems. Even if the principles of the method have been

defined since 1977, the application of SS is in its beginning.

SS is a evolutionary and population metaheuristic that recombines

solutions selected from a reference set to build others [77]. The method starts by

generating an initial population satisfying the criteria of diversity and quality. The

reference set (RefSet) of moderate size is then constructed by selecting good

representative solutions from the population. The selected solutions are combined to

provide starting solutions to an improvement procedure based on a S-metaheuristic.

According to the result of such procedure, the reference set and even the population of

solutions are updated to incorporate both high-quality and diversified solutions. The

process is iterated until a stopping criterion is satisfied.

The SS approach involves different procedures allowing to generate

the initial population, to build and update the reference set, to combine the solutions

of such set, to improve the constructed solutions, and so on. SS uses explicitly

strategies for both search intensification and search diversification. It integrates search

components from P-metaheuristics and S-metaheuristics. The algorithm starts with a

set of diverse solutions, which represents the reference set (initial population) This set

of solutions is evolved by means of recombination of solutions as well as by the

application of local search (or another S-metaheuristic).

PROCEDURE ScatterSearch

1. Generate RefSet

2. Construct a roulette wheel of all positions.

3. Repeat

4. SolutionRecombinationMethod(RefSet)

5. Until a termination condition is met

Algorithm 2.11: Scatter Search

58

 Search components of scatter search algorithms: The search

component of SS including diversification generation method, improvement method,

reference set update method, subset generation method and solution combination

method.

The diversification generation method generates a set of diverse initial

solutions. In general, greedy procedures are applied to diversify the search while

selecting high-quality solutions. The improvement method transforms a trial solution

into one or more enhanced trial solutions using any S-metaheuristic. In general, a

local search algorithm is applied and then a local optimum is generated. In reference

set update method, a reference set is constructed and maintained. The objective is to

ensure diversity while keeping high-quality solutions. The subset generation method

operates on the reference set, to produce a subset of solutions as a basis for creating

combined solutions. This procedure is similar to the selection mechanism in EAs.

However, in SS, it is a deterministic operator, whereas in GAs, it is generally a

stochastic operator. Finally, the solution combination method recombined the subset

of solutions produced by the subset generation method. In general, weighted

structured combinations are used via linear combinations and generalized rounding to

discrete variables. This operator may be viewed as a generalization of the crossover

operator in GAs where more than two individuals are recombined.

Path relinking method: [78] [79] The path relinking method is

simply a solution combination method. However, the main idea of path relinking is to

generate and to explore the trajectory in the search space connecting a starting

solution 𝑠 and a target solution 𝑡. The idea is to reinterpret the linear combinations of

points in the Euclidean space as paths between and beyond solutions in a

neighborhood space. The path between two solutions in the search space

(neighborhood space) will generally yield solutions that share common attributes with

the input solutions. A sequence of neighboring solutions in the decision space is

generated from the starting solution to the target solution. The best found solution in

the sequence is returned. The path relinking method becomes popular in finding the

set of multi-objective solution in the Pareto frontier. The variants of this method can

be found in the Ref.[80][81]

59

2.4 Multi-Objective Combinatorial Optimization
As far as real world decision making is concerned, it is also well known, that

decision makers have to deal with more than one objective. The growth in the interest

of theory and methodology of multi-criteria decision making (MCDM) over the last

thirty years [82] [83][84][85] is well aware.

Definition 2.3: Multi-objective Combinatorial Optimization [82]

 𝑀𝑂𝑃 = min𝑥𝜖𝑆 𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑛 𝑥) (2.15)

where 𝑛 (𝑛 ≥ 2) is the number of objectives, 𝑥 = (𝑥1, … , 𝑥𝑘)

is a feasible solution belong to the discrete solution set 𝑆 defined in the

definition 1.1. 𝐹(𝑥) = (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑛 𝑥) is the vector of

objectives to be optimized.

Surprisingly, multi-criteria or multi-objective combinatorial optimization

(MOCO) has not been widely studied. There is a lack of “standard” benchmarks even

if recently there is an interest in providing test instances for classical combinatorial

MOPs.

In this dissertation, we preferred to review the multi-objective technique in a

form of addition to the common concepts of single-objective metaheuristics, since the

multi-objective techniques that applied to combinatorial problems are rarely studied.

A unified view of multi-objective metaheuristics [24] is presented in an attempt to

provide a common terminology and classification mechanisms. The goal of the

general classification is to provide a mechanism that allows a common description

and comparison of multi-objective metaheuristics in a qualitative way. It also allows

the design of new multi-objective metaheuristics, borrowing ideas from current ones.

The multi-objective metaheuristics contains three main search components:

Fitness assignment: The main role of this procedure is to guide the search

algorithm toward Pareto optimal solutions for a better convergence. It assigns a

scalar-valued fitness to a vector objective function.

Diversity preserving: The emphasis here is to generate a diverse set of Pareto

solutions in the objective and/or the decision space.

Elitism: The preservation and use of elite solutions (e.g., Pareto optimal

solutions) allows a robust, fast, and a monotonically improving performance of a

metaheuristic.

60

The following sections discuss how these three search components can be

defined independently to design a multi-objective metaheuristic.

2.4.1 Fitness assignment strategies
For a given solution, a fitness assignment procedure maps a fitness

vector to a single value. The fitness scalar value measures the quality of the solution.

According to the fitness assignment strategy, multi-objective metaheuristics can be

classified into four main categories including scalar approaches, criterion-based

approach, dominance-based approach and indicator-based approsed. Figure 2.16 show

overviews of dominance-based, criterion-based and scalar approaches.

Scalar approaches: They are based on the MOP problem

transformation into a single objective problem. This class of approaches based on

aggregation that combine the various objectives 𝑓𝑖 into a single objective function𝐹.

These approaches require for the decision maker to have a good knowledge of his

problem.

Criterion-based approaches: In criterion-based approaches, the

search is performed by treating the various noncommensurable objectives separately.

Dominance-based approaches: The dominance-based approaches12

use the concept of dominance and Pareto optimality to guide the search process. The

objective vectors of solutions are scalarized using the dominance relation.

Indicator-based approaches: In indicator-based approaches, the

metaheuristics use performance quality indicators to drive the search toward the

Pareto front.

Figure 2.16 Fitness assignment strategies

(a) Dominance-based (b) Criterion-based (c) Scalar

61

2.4.1.1 Scalar approaches

This class of multi-objective metaheuristics contains the

approaches that transform a MOP problem into a single objective. Among these

methods one can find the aggregation methods, the weighted metrics, the goal

programming methods, the achievement functions, the goal attainment methods, and

the 𝜀-constraint methods. The use of scalarization approaches is justified when they

generate Pareto optimal solutions.

 2.4.1.1.1 Aggregation method The aggregation (or weighted)

method is one of the first and most used methods for the generation of Pareto optimal

solutions. It consists in using an aggregation function to transform a MOP into a

single objective problem by combining the various objective functions 𝑓𝑖 into a single

objective function 𝐹 in a linear way [86][87]:

 𝐹 𝑥 = 𝜆𝑖𝑓𝑖 𝑥
𝑛
𝑖=1 , 𝑥 ∈ 𝑆 (2.16)

 where the weights 𝜆𝑖 ∈ 0…1 and 𝜆𝑖 = 1𝑛
𝑖=1 . The solution of the

weighted problem is weakly Pareto optimal.

2.4.1.1.2 Weighted metrics In this approach[88], the decision

maker must define the reference point 𝑧 to attain. Then, a distance metric between the

referenced point and the feasible region of the objective space is minimized. The

aspiration levels of the reference point are introduced into the formulation of the

problem, transforming it into a single objective problem.

2.4.1.1.3 Goal programming It is one of the oldest and most

popular methods dealing with MOPs [89]. The decision maker defines aspiration

levels 𝑧 𝑖for each objective 𝑓𝑖 , which define the goals 𝑓𝑖(𝑥) ≤ 𝑧 𝑖 .Then, the deviations

𝛿𝑖 associated with the objective functions 𝑓𝑖 are minimized.

2.4.1.1.4 Achievement functions Achievement functions have

been introduced by Wierzbicki [90]. Unlike the previous methods where the reference

point must be chosen carefully (e.g., ideal point), an arbitrary reference point 𝑧 can be

62

selected in the objective space. A Pareto optimal solution is produced for each

location of the reference point. Different Pareto optimal solutions may be generated

by using various reference points. Without using the augmentation factor, weakly

Pareto optimal solutions are generated.

2.4.1.1.5 Goal attainment [91] The goal attainment method

constitutes another approach that is based on the preference specification of the

intermediary of a goal to reach. In this approach, a weight vector and the goals for all

the objectives have to be chosen by the decision maker.

The major drawback of this method is the possible absence of

the selection pressure of the generated solutions. For instance, if there are two

solutions that have the same value for one objective and different values for the other

objective, they have the same fitness. The search algorithm cannot differentiate them

in the problem resolution.

2.4.1.1.6 𝝐-Constraint method [92] In the popular 𝜖-

constraint, the problem consists in optimizing one selected objective 𝑓𝑘 subject to

constraints on the other objectives 𝑓𝑗 , 𝑗 ∈ 1, 𝑛 , 𝑗 ≠ 𝑘 of a MOP. Hence, some

objectives are transformed into constraints. The new considered problem may be

formulated as follows:

(𝑀𝑂𝑃𝑘(𝜖))

min 𝑓𝑘(𝑥)
𝑥 ∈ 𝑆

𝑠. 𝑐. (𝑓𝑗 (𝑥) ≤ 𝜖𝑗 , 𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑘

 (2.17)

Where the vector 𝜖 = (𝜖1, … 𝜖𝑛) represents an upper bound for

the objectives. Thus, A single objective problem subject to constraints on the other

objectives is solved.

2.4.1.2 Criterion-based approaches In this class that is mainly based

on P-metaheuristics, the search is carried out by treating the various objectives

separately. Few studies belonging to this class exist in the literature. Among them one

can find the parallel selection in evolutionary algorithms, parallel pheromone update

in ant colony optimization, and lexicographic optimization.

63

2.4.1.2.1 Parallel Approach [93][94] In this approach, the

objectives are handled in parallel. P-metaheuristics may be transformed easily to

parallel criterion-based multi-objective optimization algorithms. Indeed, the

generation of new solutions will be carried out independently according to the

objectives.

 2.4.1.2.2 Sequential or Lexicographic approach [95] In this

approach, the search is carried out according to given preference order of the

objective defined by the decision maker. This order defines the significance level of

the objectives. Let us suppose that the objective indices of the functions also indicate

their priority; the function 𝑓1 has the greatest priority. Then, a set of single objective

problems are solved in a sequential manner.

If the problem associated with the most significant objective function

has a unique solution, the search provides the optimal solution found and stops.

Otherwise, the problem associated with the second most significant objective function

is solved, including the constraint that the most significant objective function

preserves its optimal value (i.e., an equality constraint is associated with the already

optimized functions).

The solution obtained with lexicographic ordering of the objective is

Pareto optimal. A relaxation may be applied to the constraint regarding the previous

objective functions. For instance, a small decrease in the performance of the most

significant objective functions may be allowed to obtain trade-off solutions.

2.4.1.3 Domainance-based approaches

 The dominance-based approaches use the concept of

dominance in the fitness assignment, contrary to the other approaches that use a

scalarization function or treat the various objectives separately. This idea was

introduced initially by Goldberg [7]. The main advantage of dominance-based

approaches is that they do not need the transformation of the MOP into a single

objective one. In a single run, they are able to generate a diverse set of Pareto optimal

solutions and Pareto solutions in the concave portions of the convex hull of feasible

objective space.

64

P-metaheuristics seem particularly suitable to solve MOPs,

because they deal simultaneously with a set of solutions that allow to find several

members of the Pareto optimal set in a single run of the algorithm. Most of Pareto

approaches use evolutionary multi-objective algorithms (EMOs). One can mention the

commonly used ones: NSGA-II (nondominated sorting genetic algorithm) [96] , and

SPEA2 (strength Pareto evolutionary algorithm) [97]. Many other competent EMOs

have been developed, such as MOMGA (multi-objective messy GA) [98], MOMGA-

II [99][100] and neighborhood constraint GA [515]. Moreover, Pareto P-

metaheuristics are less sensitive to the shape of the Pareto front (continuity,

convexity).

Figure 2.17 Fitness assignment: some dominance-based ranking methods.

Our concern here is to design a fitness assignment procedure to guide

the search toward the Pareto border. Ranking methods are usually applied to establish

an order between the solutions. This order depends on the concept of dominance and

thus directly on Pareto optimality. Most of these fitness assignment procedures have

been proposed in the EMO community. The most popular dominance-based ranking

procedures are as follows (see Figure. 3.17) [102]:

2.4.1.3.1 Dominance rank In this strategy, the rank associated

with a solution is related to the number of solutions in the population that dominates

the considered solution [103]. This strategy was first employed in the MOGA

algorithm (multi-objective genetic algorithm) [103]. In the MOEA algorithm, the

fitness of a solution is equal to the number of solutions of the population that

dominate the considered solution, plus one.

65

2.4.1.3.2 Dominance depth The population of solutions is

decomposed into several fronts. The nondominated solutions of the population receive

rank 1 and form the first front 𝐸1. The solutions that are not dominated except by

solutions of 𝐸1 receive rank 2; they form the second front 𝐸2. In a general way, a

solution receives the row 𝑘 if it is only dominated by individuals of the population

belonging to the unit 𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘−1. Then, the depth of a solution corresponds

to the depth of the front to which it belongs. For instance, this strategy is applied to

the NSGA-II algorithm [96].

2.4.1.3.3 Dominance count The dominance count of a solution

is related to the number of solutions dominated by the solution. This measure can be

used in conjunction with the other ones. For instance, in the SPEA algorithm family,

the dominance count is used in combination with the dominance rank [97].

Since a single value fitness (rank) is assigned to every solution in the

population, any search component of a single objective metaheuristic can be reused to

solve MOPs. For instance, the selection mechanism in EAs can be derived from the

selection mechanisms used in single objective optimization. The interest of Pareto-

based fitness assignment, compared to scalar methods, is that they evaluate the quality

of a solution in relation to the whole population. No absolute values are assigned to

solutions.

2.4.1.4 Indicator-Based Approaches

In indicator-based approaches, the search is guided by a

performance quality indicator [104]. The optimization goal is given in terms of a

binary quality indicator 𝐼 that can be viewed as an extension of the Pareto dominance

relation. A value 𝐼(𝐴, 𝐵) quantifies the difference in quality between two

approximated efficient sets 𝐴 and 𝐵. So, if 𝑅 denotes a reference set, the overall

optimization goal can be formulated as

 arg minA∈Ω 𝐼(𝐴, 𝑅) (2.18)

where Ω represents the space of all efficient set approximations.

66

The reference set 𝑅 does not have to be known, it is just

required for the formalization of the optimization of the optimization goal. Since 𝑅 is

fixed, the indicator 𝐼 actually represents a unary function that assigns a fitness

reflecting the quality of each approximation set according to the optimization goal 𝐼.

If the quality indicator 𝐼 is dominance preserving, 𝐼(𝐴, 𝑅) is minimum for 𝐴 =

 𝑅[842]. Indicator-based multi-objective algorithms have several advantages:

 The decision maker preference may be easily incorporated

into the optimization algorithm.

 No diversity maintenance; it is implicitly taken into account

in the performance indicator definition.

 Small sensitivity of the landscape associated with the Pareto

front.

 Only few parameters are defined in the algorithm.

2.4.2 Diversity Preservation
P-metaheuristics are reputed to be very sensitive to the choice of the

initial population and the biased sampling during the search. Diversity loss is then

observable in many P-metaheuristics. To face this drawback related to the stagnation

of a population, diversity must be maintained in the population. The fitness

assignment methods presented previously tend to favor the convergence toward the

Pareto optimal front. However, these methods are not able to guarantee that the

approximation obtained will be of good quality in terms of diversity, either in the

decision or objective space.

Figure 2.18 Diversity maintaining strategies.

67

Thus, diversity preservation strategies must be incorporated into multi-

objective metaheuristics. In general, diversification methods deteriorate solutions that

have a high density in their neighborhoods. As suggested in Ref. [102], the diversity

preservation methods may be classified into the same categories used in statistical

density estimation.

2.4.2.1 Kernel methods

Kernel methods define the neighborhood of a solution I

according to a Kernel function K, which takes the distance between solutions as the

argument. For a solution 𝑖, the distances 𝑑𝑖𝑗 between 𝑖 and all other solutions of the

population 𝑗 are computed. The kernel function 𝐾(𝑑𝑖) is applied to all distances.

Then, the density estimate of the solution i is represented by the sum of the Kernel

function 𝐾(𝑑𝑖).

2.4.2.2 Nearest-Neighbor methods

In the nearest-neighbor approach, the distance between a given

solution I and its 𝑘𝑡𝑕 nearest neighbors is taken into account to estimate the density of

the solution. For instance, this approach is used in the SPEA2 algorithm [97], where

the estimator is a function of the inverse of this distance.

2.4.2.3 Histograms

The histograms approach consists in partitioning the search

space into several hypergrids defining the neighborhoods. The density around a

solution is estimated by the number of solutions in the same box of the grid. For

instance, this approach is used in the PAES (Pareto archived evolution strategy)

algorithm [105]. The hypergrid can be fixed a priori (statically) or adaptively during

the search with regard to the current population.

One of the most important issues in the diversity preservation

approaches is the distance measure. Many metrics can be used. Moreover, the

distance may be computed in the decision and/or objective space of the problem. In

general, in MOPs, the diversity is preserved in the objective space. However, for

some problems, the diversity in the decision space may be important in terms of

decision making, and may also improve the search.

68

2.4.3 Elitism
In general terms, elitism consists in archiving the “best” solutions

generated during the search (e.g., Pareto optimal solutions). A secondary population,

named archive, is used to store these high-quality solutions. First, elitism has been

used to prevent the loss of the obtained Pareto optimal solutions. In this passive

elitism strategy, the archive is considered as a separate secondary population that has

no impact on the search process. Elitism will only guarantee that an algorithm has a

monotonically nondegrading performance in terms of the approximated Pareto front.

Then, elitism has been used in the search process of multi-objective metaheuristics

(active elitism), that is, the archived solutions are used to generate new solutions.

Active elitism allows to achieve faster and robust convergence toward the Pareto front

for a better approximation of the Pareto front. However, a care should be taken to be

trapped by a premature convergence if a high-elitist pressure is applied to the

generation of new solutions.

The archive maintains a set of “good” solutions encountered during the

search. The strategy used in updating the archive (elite population) relies on size,

convergence, and diversity criteria.

2.5 Chapter Summary
This Chapter, we review the metaheuristics for solving combinatorial

problems particularly in the permutation representation. Each metaheuristic approach

is designed with the aim of both intensification and diversification or sometimes

called exploitation and exploration. However, the terms exploitation and exploration

have a more restricted meaning. In fact, the notions of exploitation and exploration

often refer to rather short term strategies tied to randomness, whereas intensification

and diversification refer to rather medium and long term strategies based on the usage

of memory. As the various different ways of using memory become increasingly

important in the whole field of metaheuristics, the terms intensification and

diversification are more and more adopted and understood in their original meaning.

Table 2.2 summarizes them in term of their feature. The symbol  indicates

the existence of the features. While symbol  presents partial feature and symbol 

indicates nonexistence of the features. Table 2.3 summarizes all the reviewed

metaheuristics in term of intensification and diversification component.

69

Table 2.2 Feature classification of metaheuristics

Feature
Algorithm

SA Tabu ILS GRASP GA ACO PSO EDA SS

Trajectory         
Population         
Memory         

Multiple

Neighborhood         

Nature-inspired         

Among the presented metaheuristics, SA, Tabu search and SS are typical

examples of trajectory methods. These methods usually allow moves to worse

solutions to be able to escape from local minima. Also local search algorithms which

perform more complex transitions which are composed of simpler moves may be

interpreted as trajectory methods. In ant colony optimization, iterated local search,

genetic algorithms, GRASP, PSO and EDA starting points for a subsequent local search

are generated. This is done by constructing solutions with ants, modifications to

previously visited locally optimal solutions, applications of genetic operators,

randomized greedy construction heuristics, driving particles and sampling from the

probabilistic model respectively. The generation of starting solutions corresponds to

jumps in the search space; these algorithms, in general, follow a discontinuous walk

with respect to the neighborhood graph used in the local search. SS is consider to

contain both trajectory and non-trajectory methods as the algorithm can be

customized.

70

Table 2.3 Intensification and diversification component of metaheuristics

Metaheuristic I&D component

SA acceptance criterion + cooling

schedule

ILS black box local search

kick-move

acceptance criterion

TS neighbor choice (tabu lists)

aspiration criterion

GA recombination

mutation

selection

ACO pheromone update

probabilistic construction

VNS black box local search

neighborhood choice

shaking phase

acceptance criterion

GRASP black box local search

restricted candidate list

PSO Velocity

Information Sharing

EDA Sampling from distribution

SS diversification generation method

improvement method

reference set update method

subset generation method

solution combination method

71

Tabu search, simulated annealing, iterated local search, and GRASP are such

single-point search methods. On the contrary, in ACO, GA, PSO, EDA and SS

algorithms, a population of individuals is used. Using a population-based algorithm

provides a convenient way for the exploration of the search space. However, the final

performance depends strongly on the way the population is manipulated.

Memory is explicitly used in Tabu search. Short term memory is used to

forbid revisiting recently found solutions and to avoid cycling, while long term

memory is used for diversification and intensification features. In ACO and EDA an

indirect kind of adaptive memory of previously visited solutions is kept via the

pheromone trail matrix which is used to influence the construction of new solutions.

Also, the population of the GA, PSO and SS could be interpreted as a kind of memory

of the recent search experience. Recently, the term adaptive memory programming

[245] has been coined to refer to algorithms that use some kind of memory and to

identify common features among them. Also ILS could be classified as an adaptive

memory programming algorithm. On the contrary, SA and GRASP do not use memory

functions to influence the future search direction.

ILS algorithms typically use at least two different neighborhood structures N

and N0. The local search starts with neighborhood N until a local optimum is reached

and in such a situation a kick-move is applied to catapult the search to another point.

The behavior of GA and SS has the same effect as the kick-move in ILS and therefore

may also be interpreted as a change in the neighborhood during the local search. On

the other side, the solution construction process in ACO, EDA and GRASP is not

based on a specific neighborhood structure. Nevertheless, one could interpret the

construction process used in ACO, EDA and GRASP as a kind of local search, but this

interpretation does not reflect the basic algorithmic idea of these approaches.

Among the presented methods, ACO, SA, and GA belong to the nature-

inspired algorithms. The others, have been inspired more by considerations on the

efficient solution of combinatorial problems.

72

 This dissertation mainly focuses on how a solution is generated. There are two

main methods that are constructive methods and improvement methods. Table 2.4

summarize the methods in term of their capability to preserve the schema order of the

initial solution.

Table 2.4 Information inheritance for generation methods

Generate methods

Preservation

Relative
order

Absolute
order

Edge

Improvement

Swapping X

Insertion X

Rotation X

Inversion X

Constructive

Modified (MX) X

Order (OX) X

Order based (OBX) X

Position based (PBX) X

Partially mapped(PMX) X

Cycle (CX) X

Weight Mapping (WMX) X

Edge recombination (ER) X

73

 For the multi-objective metaheuristics, we present a unified view of their

feature in an attempt to provide a common terminology and classification mechanisms

including fitness assignment, diversity preserving and elitism.

The fitness assignment can be classified as scalar, criterion-based, dominance

based and indicator based. The scalar methods are more suitable to S-metaheuristic.

They are easy to implement, yet require a decision maker to fine-tune the parameter.

Criterion based methods are used in both single solution and population based

algorithms. These methods are good at finding the extreme solutions for each

objective as they treating each objective separately, however lack of the coverage in

the Pareto frontier. The dominance-based methods are more suitable to population

based algorithms. They do not need the transformation of the MOP into a single one.

Moreover, they are able to generate a diverse set of Pareto optimal solutions.

Indicator-based method use indicator to determine the quality of a solution. The main

advantage of this method is that it implicitly embedded the diversity mechanism into

the indicator; therefore, no diversity maintenance is required.

The diversity preservation mechanism is needed to prevent the genetic drifting

in constructive based algorithms. One of the most importance issues in the diversity

preservation is the distance measure. Many metrics can be use. In Kernel methods and

histogram based methods, the distances are usually determined in the objective

spaces. While the nearest neighbor methods, the distances are usually determine by

the genotypes of the solutions. Histogram based methods are easiest to implement,

however, the grids sizes need to be appropriate to the fitness landscape. The nearest

neighbor methods provide the best diverse solutions compared to the other methods,

but require expensive computation.

One of the main issues of the multi-objective optimization is elitism. Archives

are needed to maintain in order to improve both quality and quantity of the solution.

The strategy used in updating the archive depends on size, convergence and diversity

criteria.

CHAPTER III

NEGATIVE KNOWLEDGE

3.1 Introduction
In nature, the potential differences between two reference points produce

potential energies including gravity, electricity, elasticity, pressure and temperature.

The higher the potential difference causes the higher energy and thus higher

acceleration rate of a particle carrying the energy. It is interesting to find out if there

exists a potential difference of knowledge in order to accelerate the learning process

in machine learning.

Machine learning methods usually use the empirical data, such as from sensor

data or databases to shape the behaviors of computers. In classification tasks, the

negative samples usually help the learner to learn a concept faster and more

accurately. However, in optimization tasks, the negative information is rarely utilized.

In improvement methods such as tabu search[2]. memories are used in order to forbid

the search process to search in the landscape considered to be inferior. However, in

constructive methods, the algorithms such as GA[13][7] and SS[76] try to extract only

good substructures in order to compose a better solution, therefore positive

information are usually kept in form of a population of desired solution, while the

negative information are simply neglected. This research tries to study how the

concept of negative knowledge contributes to the construction of a candidate in

permutation representation.

3.2 Negative Knowledge

Negative knowledge has been previously discussed as developed in the field

of artificial intelligence, education and business philosophy [106] [107] [108]. Before

we get to know more about the negative knowledge, we need to clarify the definition

of negative knowledge which commonly misunderstood to be bad, disadvantageous,

or malign. Just like negative numbers, they are not being either good or bad. The term

“negative” in negative knowledge does not imply a valuation. Instead, the term

75

“negative” refers to characteristic attributes which will be described later. To clarify

an important attribute of negative knowledge requires considering the use of the term

“knowledge” in constructivist theorization which is considered to be “propositional

knowledge”. In constructivism, knowledge is not seen as an exact representation of

reality, but rather as a

map of what reality allows us to do. It is the repertoire of concepts conceptual

relations, and actions or operations that have proven to be viable in the

pursuit of our goals.(von Glasersfeld) [109]

In that sense, knowledge in a constructivist understanding is regarded as a

system of representations and assumptions about reality that is closely related to

individual goals or individual achievement. Roughly speaking, this means that

individuals‟ assumptions can be called viable if they do not contradict previous

knowledge and turn out to be useful for reaching goals. Yet, non-viable knowledge is

knowledge that somehow stands in contradiction to prior knowledge or is

counterproductive with regard to a certain goal.

The basic idea that is pursued through the concept of negative knowledge is

that just because knowledge is non-viable in the described understandings, it is not

necessary worthless or superfluous. This is because in order to reach a goal, there are

often different ways that seem possible and the task of identifying the right one is

very complex and demanding. Therefore, it is seen as having a heuristic advantage

through knowing what is wrong in regard to a certain task: that is, to have negative

knowledge. Hence, negative knowledge can be described as non-viable knowledge

that is heuristically valuable.

According to the quote of von Glaserfeld, knowledge is compared to a map.

Remaining with that metaphor, negative knowledge can be seen as an indicator of

adverse ways, wrong turns or disadvantageous routes in order to reach a certain

destination.

76

In 1994, Minsky[106] introduced explicitly the idea of knowing negatively in

his literature “Negative Expertise”. He points out that competence often requires one

to know what one must do, but it also requires one to know what not to do. Living

things more often learn to avoid disaster rather than how to succeed in order to

survive. In the process of learning, even experts seem to have negative rather than

positive goals, namely that we seem to learn what should not be done. Minsky also

states that the creativity of the machine does not only come from the randomization,

but also come from the reduction of the search space. The performance of a smart or

creative problem-solver is not how many trials precede a success, but how few. So the

secret lies not in disorderly search, but in pre-shaping the search space so as reduce

the numbers of useless attempts.

 In 2005, Oser and Spychiger [107] define negative knowledge as knowledge

about “what something is not, (in contrast to what it is), and how something does not

work, (in contrast to how it works), which strategies do not lead to the solution of

complex problems (in contrast to those, that do so) and why certain connections do

not add up (in contrast to why they add up)”

In 2006, Parviainen and Eriksson[108] extended Minsky‟s idea. They further

characterize the negative knowledge by identifying four features of negative knowing

as follows:-

1) to know what one does not know: experts are usually aware of their

own competence, but they must also know what they do not know

and what they should know

2) to know what not to do: experts must know both how to achieve

goals and how to avoid disasters, namely „learning what not to do‟

3) unlearning and bracketing knowledge: experts may get into a

situation when they have to give up some parts of their knowing

and „unlearn‟ or „bracket‟ their skills and know-how

4) failures and mistakes: experts should also regard the value of

failures and disappointments as emotions, as well as recognize the

creativity that emerges from making mistakes

77

Apart from the negative knowing, they also argue that negative is not

considered as the mere empty opposite to the positive. They purpose that positive and

negative knowledge can be considered as independent areas, which overlap one

another in the following way:

Table 3.1 Linking positive and negative knowledge[108]

Positive knowledge Positive and Negative

knowledge
Negative knowledge

True justified beliefs To know what one
does not know

Unlearning and
bracketing knowledge

Constructive,
cumulative,
paradigmatic

To know what not to
do

Failures and mistakes
ignorance

 In 2008, Gartmeier et al.[110] describe the three functions of negative

knowledge as follows:-

1) negative knowledge increases certainty: It is assumed that negative

knowledge helps to increase individuals‟ certainty through

awareness of possible positive as well as negative outcomes of

their actions and through the capability to judge their respective

probabilities under given circumstances.

2) negative knowledge increases efficiency: Negative knowledge is

assumed to contribute to effective action.

3) negative knowledge promotes reflection: Negative knowledge is

assumed to promote detailed reflective processes, because an

essential component of reflection comprises an engagement with

individual‟s prior and episodic knowledge. Remembering and

being aware what is inappropriate in a given situation should

enhance the ability to precisely discriminate similar phenomena.

The negative knowledge has shown to be beneficial in many ways. This

dissertation presumes that it could be used in a constructive algorithm where building

blocks are combined to form a better solution. On the other hand, bad building block

should be avoided to construct a solution as well.

78

3.3 Related Concepts and Methodologies

3.3.1 Opposition-based learning

In 2005, the concept of opposition-based learning (OBL)[111] has

emerged. Tizhoosh introduces the idea of learning toward the opposite states, opposite

weights, opposite actions and many more opposition ways. The secret behind OBL is

the simultaneous consideration of an estimate and its corresponding opposite estimate

in order to achieve a better approximation of the current candidate solution. The

opposition-based learning has been successfully applied to accelerate reinforcement

learning[112], back propagation learning[111], and differential evolution[113].

OBL algorithms are considered to be utilizing of the negative

knowledge to accelerate the optimization process. However the opposition-based

extension idea of genetic algorithm is still too far from the negative knowledge. The

anti -chromosome with inverted sub mutation can partially describe some of the

negative information. The negative concept of a binary representation of a sub-

chromosome [*101*] is not as simple as [*010*]. The complete negative concept

should includes [*001*], [*011*], [*100*], [*110*] and [*000*] as well. This

example indicates that the size of the negative concept in probabilistic-based learning

is unimaginable large compared to the positive one.

3.3.2 Artificial immune system

Artificial immune systems (AIS) are computational systems inspired

by the principles and processes of the vertebrate immune system. The algorithms

typically exploit the immune system's characteristics of learning and memory to solve

a problem. The negative selection techniques[114] in AIS try to output the

complementary concept of the real target concept. Algorithms in this class are used in

many areas including classification and optimizations.

79

3.3.3 Evolutionary Algorithms

 There are some works based on evolutionary algorithms that try to

utilize the negative knowledge hidden in the below average solutions by applying

classification techniques in optimization. These algorithms include:-

3.3.3.1 Learnable Execution Model (LEM)

In 2000, Michalski[115] proposed algorithms that apply

classifiers to develop a population of solutions. The candidates of a population are

divided as the fittest and the less fitted ones. Then the characteristics of the good ones

are strengthened while bad ones are avoided.

3.3.3.2 Statistical Learning + Inductive Learning (SI3E)

Later in 2003, Llorà and Goldberg[116] proposed an algorithm

that combined the Induction of Decision Tree (ID3) and evolutionary algorithm using

statistical approaches.

3.3.3.3 Evolutionary Bayesian Classifier-Based Optimization

Algorithm (EBCOA)

In 2004, Miquelez, Bengoetxea, and Larrañaga[117] introduced

a new estimation of distribution algorithm based on Bayesian classifiers and later

extended in the continuous optimization domains[118].

 3.3.3.4 Population Based Incremental Learning (PBIL)

 In 1994, Baluja [71] proposed the first estimation of

distribution algorithm called PBIL. This algorithm allows learning from the below

average solutions. Variations of negative learning rate were used in the original paper.

From the empirical experiments, different negative learning rates show their

effectiveness in different behaviors in different benchmarks. Moreover, negative

correlation learning in PBIL contributes to find the optimal solutions in hard

deceptive problems faster than the other benchmark algorithms in term of function

evaluations.

80

3.3.3.5 Compact Genetic Algorithm (cGA)

In 1998, Harik et al. presented and EDA called CGA [72]. In

each iteration, cGA generates two candidate solutions from the current probability

vector. Then, the two generated solutions compete against each other. The the winner

and the loser are used to update the probabilistic vector using reward and punishment

model. Performance of cGA can be expected to be similar to that of PBIL.

3.3.3.6 Incremental Bayesian Optimization Algorithm (iBOA)

 In 2008, Pelikan et al. proposed another EDA called iBOA

[119]. This algorithm modify the original Bayesian Optimization Algorithm (BOA) to

estimate the probabilistic model in an incremental manner. Similar to cGA, the loser

of a tournament selection lost their probability to be regenerated to the winner. The

main benefit of using iBOA instead of the standard BOA is that iBOA eliminates the

population and it will thus reduce the memory requirements of BOA. iBOA also

provides the first incremental EDA capable of maintaining multivariate probabilistic

models built with the use of multivariate statistics.

3.3.4 Particle Swarm Optimization

 In 2005, Yang and Simon proposed a new version of PSO that

utilized only the negative knowledge in optimization where each particle adjusts its

position according to its own previous worst solution and its group's previous worst to

find the optimal value. The strategy is to avoid a particle's previous worst solution and

its group's previous worst based on similar formulae of the regular PSO. In their

experiments, the results show that the NPSO[120] always finds better solutions than

PSO in every benchmark.

3.3.5 Evolutionary Ensemble with Negative Correlation Learning

(EENCL)

In 2000, Liu, Yao and Higuchi proposed ensemble techniques

[121][122] which composed of neuron networks (NN). The negative correlation

learning and fitness sharing were adopted to encourage the formation of diverse

species in the population.

81

3.4 Schema Theorem and Order Schema
The Schema Theorem is defined by Holland[13] represented a mile stone in

the development of Genetic Algorithms. In schema theorem, the search space is

partitioned into subspaces of varying levels of generality, and mathematical models

are constructed which estimate how the number of individuals in the population

belonging to certain schema can be expected to grow in the next generation.

3.4.1 Schema theorem

Theorem 3.1: Schema Theorem [13]

The expected number 𝐸 of schema 𝐻 at generation 𝑡 + 1 when

using a canonical GA with proportional selection, single point

crossover and gene wise mutation is,

 𝐸 𝑚 𝐻, 𝑡 + 1 ≥
𝑚(𝐻,𝑡)𝑓(𝐻,𝑡)

𝑓 (𝑡)
 1 − 𝑝𝑐

𝛿 𝐻

1−𝑙
𝑝𝑑𝑖𝑓𝑓 𝐻, 𝑡 − 𝑜 𝐻 𝑝𝑚 (3.1)

where 𝑝𝑑𝑖𝑓𝑓 𝐻, 𝑡 is the probability that parent does not match

schema 𝐻; 𝑝𝑐 is the selected threshold of applying crossover and 𝑝𝑚

is the threshold of applying mutation.

Schema theorem implies that schema with fitness

greater than the average population fitness are likely to account for

proportionally more of the population at the next generation. From

this Theorem, Goldberg arose the building block hypothesis (BBH),

which attempted to explain how a GA solves a problem by positing

that near optimal solutions were forged from small, low-order,

better-than-average schemata.

3.4.2 Order schema

 In 1992, Kargupta, Deb and Goldberg [123] discussed about schemata

in permutation problems, the so called order schema or o-schema is defined by

assigning a sequence characteristic to a similarity subset. It has unique alleles at all of

its fixed positions and contains all permutations of other alleles at don‟t care

positions. In general, an o-schema can be classified into two broad categories –

absolute ordering schema and relative ordering schema.

82

Table 3.2 A Comparison of some statistics for binary,l-ary and size-l permutation

problems[123]

 𝑏𝑖𝑛𝑎𝑟𝑦 𝑙 − 𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 − 𝑙 permutation

Solution Space 2𝑙 𝑙𝑙 𝑙!

String in an order 𝑜(𝐻) schema 2𝑙−𝑜(𝐻) 𝑙𝑙−𝑜(𝐻) (𝑙 − 𝑜(𝐻))!

Number of 𝑜(𝐻) schemata 2𝑜(𝐻) 𝑙𝑜(𝐻)
𝑃𝑚(𝑙, 𝑜(𝐻))

Total schemata 3𝑙 (𝑙 + 1)𝑙
𝑙

𝑖

𝑙

𝑖=0

𝑃𝑚(𝑙, 𝑖)

3.4.1.1 Absolute order schema The absolute o-schema defines a

similarity subset having some common allelic position characteristics. For instance,

the absolute o-schema [! ! ! 1 ! 8 ! !] defines the subset of all valid permutation string

that have alleles 1 and 8 in fourth and sixth positions respectively. The string 𝑆1 =

 [4 3 2 1 5 8 7 6] is contained in the schema, while 𝑆2 = [1 5 8 2 4 3 5 6 7] is not

contained in the schema. This schema representation is useful in the problems where

the placement of certain position is important. In this type of schema, both ordering

and position of the defined alleles are important.

3.4.1.2 Relative order schema The relative o-schema defines a

similarity subset having some common order allelic characteristics which in between

the order there can be some gap containing any size of the permutation substring. For

example, the relative o-schema [! ! ! 1 ! 4 ! !] represents the subset of all valid

permutation string that have allele 1 happens before 4 in any configuration without

having any restriction on the specific allelic position of genes. This coding is

important for problems where ordering among alleles is the only matter.

According to the literatures [123] and [7], the definitions of relative o-

schema are inconsistent. The definition defined in 1989[7] allow only the fixed

distance between the defined schemata. For example, the strings containing 4 placed

83

after 1 with in a fixed order of gaps. In this dissertation, we refer to the relative o-

schema proposed in 1989 as type I relative o-schema and the one in 1992[123] as type

II relative o-schema.

Size of a schema can be used to describe the searching boundary of a

GA. If a schema dominates a population, the available solution that a simple

crossover operator can search is reduced according to the size of the schema. Table

3.2 summarizes the statistics of three different types of schemas, that are binary, unary

with size 𝑙 and permutation with size 𝑙. For example, in a binary representation GA,

let [∗ ∗ 1 ∗ ∗] be a binary schema with order 1, given size 𝑙 of the solution strings

equal to 5, the solution space contained only 2𝑙−𝑜(𝐻) = 25−1 = 14 total strings. The

number of solution per space ration is 1/2. The larger number of order, the smaller

number of available space is.

The size of a schema in higher based unary is relatively less than the

size of a schema in lower based unary. For example, let [∗ ∗ 4 ∗ ∗] be a based 5 𝑙-

ary schema with order 1, given size 𝑙 = 5. The solution space is equal to 55 = 3,125,

while the number of solution strings in an order 1 schema is equal to 55−1 = 625.

The number of solution per space ratio is 1/5 which is relatively less than the binary‟s.

Once a schema dominates the population, a GA reduces the search

space according to the based 𝑙-ary schema. This higher based schema indicates the

higher degree of exploitation. Consequently, many researches in GA prefer to

represent the genotype of a solution string using the lowest order as possible, in order

to fine grain the search and to preserve the diversity.

In permutation representation, the redundancy of an item is not

allowed. This means that an item can occupy only one position at a time. Therefore, if

an o-schema dominate the population, the number of solution per space would be

worse than a unary schema with the equal based. Let [∗ ∗ 1 ∗ ∗] be a binary schema,

there would be only 16 strings in the order 1 schema which is 1/2 of the solution

space. While an absolute o-schema [! ! 1 ! !] reduce the solution space down from

120 to only 24 strings. Figure 3.1 shows the effect of how a schema with greater

84

fitness dominates the population in permutation and binary representation. The gray

area indicates the number of solutions in the schema, while the white area indicates

the deducted solution spaces.

(a) absolute order schema

(b) binary schema

Figure 3.1 Effect of how a schema dominate the search space

In figure 3.1 (a), an absolute order schema [2 ! ! !] dominate the

population causes the reduction of the search space by 3/4, while a binary schema

[0 ∗ ∗ ∗] reduces only 1/2 of the whole space in figure 3.1 (b). As generation

progressed, the more specific order schema [2 3 ! !] and binary schema [0 0 ∗ ∗]

dominates the population. The order schema reduces the search space at a much

greater rate compared to the binary schema. In figure 3.2 (a) the order schema with

order 2 reduces the space down to only 1/12, while the binary with order 2 reduces the

search space down to 1/4 .

0

1

2

3

4

5

1
2

3
4

1
2

4
3

1
3

2
4

1
3

4
2

1
4

2
3

1
4

3
2

2
1

3
4

2
1

4
3

2
3

1
4

2
3

4
1

2
4

1
3

2
4

3
1

3
1

2
4

3
1

4
2

3
2

1
4

3
2

4
1

3
4

1
2

3
4

2
1

4
1

2
3

4
1

3
2

4
2

1
3

4
2

3
1

4
3

1
2

4
3

2
1

f(x)

x

0

1

2

3

4

5

0
 0

 0
 0

0
 0

 0
 1

0
 0

 1
 0

0
 0

 1
 1

0
 1

 0
 0

0
 1

 0
 1

0
 1

 1
 0

0
 1

 1
 1

1
 0

 0
 0

1
 0

 0
 1

1
 0

 1
 0

1
 0

 1
 1

1
 1

 0
 0

1
 1

 0
 1

1
 1

 1
 0

1
 1

 1
 1

f(x)

x

85

(a) absolute order schema

(b) binary schema

Figure 3.2 Effect of how a more specific schema dominate the search space

 From the example, binary encoding let the algorithm to fine grain the

search. However, such encoding could consequence a big trouble as the

recombination and mutation of one or more solution strings are most likely to

generate infeasible solutions. Therefore, encoding a solution string in permutation is

unavoidable. Unfortunately, as mention in Chapter I, using a permutation encoding

could easily lead to a premature convergence. This is the explanation why GAs with

permutation encoding do not scale.

0

1

2

3

4

5

1
2

3
4

1
2

4
3

1
3

2
4

1
3

4
2

1
4

2
3

1
4

3
2

2
1

3
4

2
1

4
3

2
3

1
4

2
3

4
1

2
4

1
3

2
4

3
1

3
1

2
4

3
1

4
2

3
2

1
4

3
2

4
1

3
4

1
2

3
4

2
1

4
1

2
3

4
1

3
2

4
2

1
3

4
2

3
1

4
3

1
2

4
3

2
1

f(x)

x

0

1

2

3

4

5

0
 0

 0
 0

0
 0

 0
 1

0
 0

 1
 0

0
 0

 1
 1

0
 1

 0
 0

0
 1

 0
 1

0
 1

 1
 0

0
 1

 1
 1

1
 0

 0
 0

1
 0

 0
 1

1
 0

 1
 0

1
 0

 1
 1

1
 1

 0
 0

1
 1

 0
 1

1
 1

 1
 0

1
 1

 1
 1

f(x)

x

86

(a) absolute order schema

(b) edge schema

Figure 3.3 A comparison of absolute order schema and edge schema

 3.4.2.3 Edge schema In this dissertation, we aim to study the roles of

negative knowledge mainly on edge based estimation of distribution algorithm.

Therefore we propose a new schema call edge schema. An edge is a link or

connection between two nodes and has important information about the permutation

string. However, edge can be symmetry. This research refers to the edge schema as

the edges are asymmetry. The set of edge schema can be considered as a subset of

relative o-schema, yet the gaps are not taken into account. Figure 3.3 illustrate the

comparison of an absolute order schema and an edge schema. In a fitness landscape,

two types of schema conquer different geometries. The figure 3.3 (a) illustrates how

an absolute o-schema [2 ! ! !] dominate the population, while (b) illustrates an edge

schema[! 2 3 !]. This can be seen that the number of solutions contained in the edge

0

1

2

3

4

5

1
2

3
4

1
2

4
3

1
3

2
4

1
3

4
2

1
4

2
3

1
4

3
2

2
1

3
4

2
1

4
3

2
3

1
4

2
3

4
1

2
4

1
3

2
4

3
1

3
1

2
4

3
1

4
2

3
2

1
4

3
2

4
1

3
4

1
2

3
4

2
1

4
1

2
3

4
1

3
2

4
2

1
3

4
2

3
1

4
3

1
2

4
3

2
1

f(x)

x

0

1

2

3

4

5

1
2

3
4

1
2

4
3

1
3

2
4

1
3

4
2

1
4

2
3

1
4

3
2

2
1

3
4

2
1

4
3

2
3

1
4

2
3

4
1

2
4

1
3

2
4

3
1

3
1

2
4

3
1

4
2

3
2

1
4

3
2

4
1

3
4

1
2

3
4

2
1

4
1

2
3

4
1

3
2

4
2

1
3

4
2

3
1

4
3

1
2

4
3

2
1

f(x)

x

87

schema [! 2 3 !] is equal to that in the absolute o-schema [2 ! ! !]. The two darker

gray bars in (b) are the solution where the circulated edges are taken into the account.

From this example, we also illustrate the different kind of neighborhoods. Using

inappropriate move operators or crossover operators could not be able to find such

good regions. As illustrated, the edge schema can cover all the global optimal

solutions and consider them to be the neighborhood of each others.

3.4.3 Negative Schema

In 2006, Tae and Lee[124] prove that a negated concept is defined

implicitly by a hidden feature abstracted from the property common to all the objects

not belonging to the concept. This paper proposes based on Minsky that there is a

logical schema that enables an agent to perceive a negated concept. However, the

negative schema of Tae and Lee is defined based on an assumption in which an agent

can recognize only one concept at a time. They also state that the positive and negated

concepts, exist together, and two concepts cannot be recognized at the same time.

3.5 Negative Order Schema
In this work, we purpose a way to recognize negative schema in the ordering

problems and show the role of the negative schema in search and optimization.

In most evolutionary algorithms, the positive schemas usually dominate the

population and assume that the solutions in the inverse set of the schema are negative

due to the selection process filters the less fitted solutions. Thus the strings that are

not contained in the schema are extinct especially in the ordering problems; the

strings satisfied by the schema are not easy to regenerate by chance. The search and

optimization procedure might be stuck in some local peaks. Moreover, some of the

multimodal and multi-objective solutions might be missing. These problems are well

aware therefore many researches try to preserve the diversity and elitist in order to

explore more in the uncovered searching areas and prevent the extinction of solutions

in the uncovered space.

88

Negative o-schemas play a different role compared to the positives. They are

used to void the search space rather than to limit the search space. The more specific

schemas void less space than the general ones as can be seen in Figure 3.4 The

negative o-schemas are defined using a “~” in front of the positive o-schema. For

example ~[! 3 4 !] is negative edge schema that void the search space from the

string containing in the negative schema. The search space after voiding is reduced

down from 4! to 4! − 3!. Therefore the remaining space is greater than the space

bounded by the positive schema with the equally order.

Figure 3.4 An example of a negative edge schema ~[! 3 4 !]

The positive schemas dominated by the selected solution seen so far, thus the

uncovered peaks that have not been found in the previous generation were not

considered. In contrast, if the negative schemas are identified by the solution seen so

far in the very beginning generations, the remaining spaces apart from the set of the

strings contained in the negative schemas remain to be explored. This mechanism

enhances the preserving of diversity and force the algorithm to search in the

unexplored space.

0

1

2

3

4

5

1
2

3
4

1
2

4
3

1
3

2
4

1
3

4
2

1
4

2
3

1
4

3
2

2
1

3
4

2
1

4
3

2
3

1
4

2
3

4
1

2
4

1
3

2
4

3
1

3
1

2
4

3
1

4
2

3
2

1
4

3
2

4
1

3
4

1
2

3
4

2
1

4
1

2
3

4
1

3
2

4
2

1
3

4
2

3
1

4
3

1
2

4
3

2
1

f(x)

x

89

3.6 Applying the Negative Knowledge in Optimization

In most evolutionary algorithms, the schemas are kept in a form of the selected

population. Thus the knowledge of which schemas are likely to form the bad

solutions, are abandoned with the non-selected population. The evolutionary process

repeats searching for the more specific schema within the bounded area assuming that

the solutions in the unexplored space would not be able to survive. The solutions in

the unexplored area are composed of the unknown to the positive area and known

negative area.

Vice versa, the negative schemas void the search space and left behind the

unexplored area that composed of unknown quality solutions and the positive known

solutions.

In theory, the negative concepts should be the complement of the positive

concepts. However, it is impossible to identify the positive and the negative concepts

without verifying all of the solutions in the space. The learning process starts from the

unknown space. As the learning progresses, the solutions are verified and classified.

In order to combine together the positive and negative schemas, we need to

discriminate between the good and the bad schemas. However some average solutions

might contain both good and bad schemas in a solution, such structure should not be

prejudged and should not be recognized as either good or bad. Therefore the selection

methods also need to distinguish between the good solutions, the bad solutions and

the solutions that might contain both positive and negative schemas.

90

Figure 3.5 The classification of the solution in the space

 According to the negative knowledge defined by Parviainen and Eriksson

[108], the negative cannot be considered to be the complement of the positive due to

the space contain not only the known positive and known negative but also contain

the unknown.

In order to utilize the negative knowledge in learning, we apply the four

feature of the negative knowing proposed by Parviainen and Eriksson. First of all we

need to categorize the solutions in to two categories as known and unknown.

Moreover, the known solutions are also divided in to positive and negative. This

enable the algorithm to distinguish between what is known and what is not known.

 The algorithm should be able to identify the negative schemas in order to pre-

shape the search space and try not to waste the function evaluation with the expected

undesired geometries containing the bad schemas. Thus, we need a data structure to

keep the state of schema.

Moreover, the solutions found in the good solutions might contain the same

schemata found in the bad solutions or vice versa, which can be classified as false

positive or false negative. Thus, the algorithm should be able to justify the gained

knowledge and should be able to unlearn or bracket the knowledge back to unknown

information or re-classify or re-justify the old beliefs.

Positive

Unknown Known

Negative

91

3.7 Chapter Summary

 This chapter, we give an introduction to the negative knowledge and give a

brief review of optimization methodologies utilizing them. In many literatures, the

negative knowledge is proved to be beneficial in many ways including the quality of

solutions, the diverse solutions, and the time to convergence.

 We adopt the order schema as a tool to explain the behaviors of constructive

algorithms based on permutation representation. In addition, we introduce a new

subtype of relative o-schema called edge schema and the negative order schema.

From the models, we presume that the negative knowledge in edge representation

should contribute in the following ways:

1) The negative knowledge forces the algorithm to explore out of the search

space marked as forbidden areas.

2) The negative knowledge forces to produce diverse solutions, however

dissimilar to the solutions considered to be bad quality.

3) In cooperating with the positive knowledge, the negative knowledge

contributes in discrimination of good and bad substructure. From such

cooperation, negative knowledge should enhance a constructive method

should recognize better substructures and composing better solutions.

Finally, we propose some guidelines to design an adaptive searching algorithm

incorporate the negative knowledge as a form of classifier based algorithm. However,

such guidelines are not limited to the permutation representation.

CHAPTER IV

COINCIDENCE ALGORITHM

4.1 Introduction
 In the Chapter III, we propose some guidelines for designing an evolutionary

algorithm that can make use of negative knowledge in optimization. In this chapter,

we introduce a new evolutionary algorithm in a form of estimation of distribution

algorithm.

4.2 Coincidence Algorithm
The proposed algorithm is explained in this section. The main idea of the

algorithm is to allow learning from the below average solutions as well as the

traditional learning from the good solutions. The coincidence found in a situation

should be able to statistically describe the chance of the situation to be happening

whether the situation is good or bad. Thus the learning of the coincidence found in the

bad solutions should be used to avoid the bad situation as well.

 4.2.1 Design
 Coincidence algorithm (COIN) is designed to construct the solutions

based on the mutual information in edge schema. We assume that there are linkages

between each of the pairwise items. In this algorithm, we rather focus on the pair of

permuted objects called incidences than the absolute position of a single object. For

example, two candidates with order 5, 1-2-3-4-5 and 4-5-3-2-1 share the common

coincidence 4-5 which is considered to be a schema in edge schema.

According to the definition of building blocks hypothesis (BBH), the

coincidences can be considered to be the building blocks. However, we would not

rather call the coincidences as building blocks due to the coincidences can describe

only some partial building blocks in relative o-schema.

93

COIN adapts the first order matrix of MCMC[125] (Markov Chain

Monte Carlo) as a data structure to maintain the joint probabilities, this matrix is used

to learn both positive and negatives incidences found in the populations. Then it is

used to generate the populations according to the conditional probability. Even though

the relative o-schemas with gaps are not easy to be recognized, they are indirectly

identified using the conditional probability property of Markov Chain. Therefore

COIN can indirectly recognize the relative o-schema as well.

COIN uses the same distribution similar to EHBSA. However, COIN

does not estimate the selected population the same way as EHBSA does. COIN rather

uses the incremental model based on reward and punishment. When an incidence is

found in the above average solutions, it is rewarded more probability to be selected.

Otherwise, if an incidence is found in the below average solutions, it would be

punished by deducting the probability to be selected. The reward probabilities are

gathered from the other incidences equally, while the deducted probabilities are

scattered to the other incidences the oppositional way.

 4.2.2 Components
Similar to most black box optimization algorithms, the components of

the algorithms are composed of data structure and fitness function(s) evaluator. The

data structure of this algorithm mimics from the first order matrix of Markov Chain in

which we use to learn the positive and negative building blocks in a form of joint

probabilities and then use the joint probabilities to generate the candidates. We simply

call it a generator.

4.2.2.1 Generator

The COIN algorithm uses a generator to generate the

population according to the coincidences found in the good and the bad candidates.

The generator 𝐻 is a matrix of size 𝑛 × 𝑛 where 𝑛 is the size of a permutation. The

sum over each row 𝐻𝑖,𝑗 where j ranges from 1 to 𝑛 equals to 1.0. It denotes the

probability of the occurrence of 𝑖𝑗 in the solution string. Each entry of 𝐻𝑖,𝑗 has a value

between 0 to 1.0. The diagonal 𝐻𝑖,𝑖 are 0.

94

4.2.2.2 Fitness Function Evaluator

The fitness function evaluator is used to evaluate the fitness of

the solution generated by the generator. To maximize the efficiency of the algorithm,

the solutions are sorted on the fly (an insertion sort is recommended) as the selection

mechanism of the algorithm needs to select the solutions from their ranks.

 4.2.3 Mechanics
The mechanism of the COIN algorithm is shown in Algorithm 4.1. It

begins by initializing the generator then the population is sampling from the

generator. The generator is updated by each of the coincidences found in the selected

good and bad candidates according to their evaluated ranks. The generating,

evaluating and updating steps are repeated until a termination condition is met.

PROCEDURE COIN

1. Initialize Generator

2. Repeat

3. p <- Sampling(Generator)

4. p’ <- Sort(Evaluate(p))

5. Reward(Selection(Top(p)),Generator)

 Punnishment(Selection(Bottom(p)),Generator)

6. Until Termination Condition is met

Algorithm 4.1: Estimation of Distribution Algorithm

4.2.3.1 Initialization

The generator 𝐻 is initialized so that each of the joint

probabilities 𝐻𝑖,𝑗 except the 𝐻𝑖,𝑖 equal to 1/(𝑛 − 1). The summation of all joint

probability 𝐻𝑖,𝑗 where 𝑗 range from 1 to 𝑛 equals to 1. This initialization represents

the uniform distribution of each joint probability.

95

4.2.3.2 Generating population

The sampling algorithm of COIN is similar to EHBSA and ACO.

Each individual are sampling one position by one position from head to tail. Each

position is generated depend on the current and all of the previously generated

position. Therefore the permutation sequences are always feasible. The sampling

procedure is as follows:

PROCEDURE SamplingfromCOIN

1. Set position counter 𝑝 ← 0

2. Obtain first node 𝑐[0] randomly from [0, 𝐿 − 1]

3. Construct a roulette wheel vector 𝑟𝑤[] from matrix as

𝑟𝑤[𝑗] ← 𝐻𝑐 𝑝 ,𝑗 (𝑗 = 0,1, … , 𝐿 − 1)

4. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]] ←

 0 for 𝑖 = 0, … , 𝑝)

5. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/

 𝑟𝑤[𝑗] 𝐿−1
𝑗=0 using roulette wheel 𝑟𝑤[].

6. Update the position counter 𝑝 ← 𝑝 + 1.

7. If 𝑝 < 𝐿 − 1, go to Step 3.

Algorithm 4.2: Sampling Algorithm of COIN

4.2.3.3 Selection

Two selection methods are considered: a uniform method

selects from the top and bottom 𝑐 percent of the population and an adaptive method

selects from the population above and below the average band of two standard

deviations.

In the adaptive selection process, if the population contains

more good candidates, the selector will select more of the bad solutions rather than

the good solutions. Conversely the selector would select more of the good solution

when the overall candidates in the population are not good. This mechanism

maintains the fitness distribution among the candidates in the objective space in which

we hope to be corresponded to the diversity of the candidates in the decision space.

96

4.2.3.4 Updating the generator

In the initialization phase, the joint probabilities 𝐻𝑖,𝑗 are equally

initiated so that the probabilities to be selected are uniform. As the generation

progresses, the candidates are ranked, good and bad populations are well separated. In

this phase, the mutual information indicating the joint probabilities are used to bias

the generator in order to generate the desired candidates being closed to the good

concepts and avoid generating the undesired candidates being distant to the opposite

concepts.

The reward and punishment schemes are used to bias the

generator. The coincidence found in the top ranks are considered as good building

blocks and given more probabilities to be chosen as rewards. On the other hand, the

coincidence found in the bottom ranks are considered as bad building blocks and

punished by deducting the probabilities to be chosen.

The incremental and detrimental models used in the algorithm

are different to the other evolutionary algorithms based on probabilistic models as

most of them are represented in binary. The good substructures are usually rewarded

by deducted from the bads[71][72][119]. In this algorithm, when good and bad

coincidences are found, all the other coincidences 𝑖𝑗 sharing joint probability 𝑖 are

affected. The generator updates the good and bad joint probabilities using two

different methods.

4.2.3.4.1 Reward When each coincidence 𝑖, 𝑗 is found in a

better group of candidates, the reward is given to 𝐻𝑖,𝑗 by gathering the probability
𝑘

(𝑛−1)2
 from the 𝐻𝑖,𝑗 where 𝑗 range from 1 to n, 𝑗 ≠ 𝑖. 𝑘 is denoting the learning

coefficient, and 𝑟𝑖,𝑗 is the total number of coincidence 𝑖, 𝑗 counted from the good

solution. The reward equation is

𝐻𝑖,𝑗 (𝑡 + 1) = 𝐻𝑖,𝑗 (𝑡) +
𝑘

 𝑛 − 1
 𝑟𝑖,𝑗 −

𝑘

 𝑛 − 1 2
 𝑟𝑖,𝑧

𝑛

𝑧=1
 (4.1)

97

The last term, 𝑘

 𝑛−1 2 𝑟𝑖,𝑧
𝑛
𝑧=1 , represents the adjustment step for all “others”

𝐻𝑖,𝑗 (z ≠ i, z ≠ j) in the opposite direction hence keeping the sum of all probabilities

in a row constant to one.

4.2.3.4.2 Punishment Contrary to the rewarding, when each

coincidence 𝑖, 𝑗 is found in a worse group of candidates it is used to update the joint

probability 𝐻𝑖,𝑗 by scattering its own probability 𝑘

(𝑛−1)2 to every member 𝐻𝑖,𝑗 where j

range from 1 to n, 𝑗 ≠ 𝑖. k is the coefficient denoting the learning coefficient, and 𝑝𝑖,𝑗

is the total number of coincidence i,j counted from the bad solution. The punishment

equation is

𝐻𝑖,𝑗 (𝑡 + 1) = 𝐻𝑖,𝑗 (𝑡) −
𝑘

 𝑛 − 1
 𝑝𝑖𝑗 +

𝑘

 𝑛 − 1 2
 𝑝𝑖,𝑧

𝑛

𝑧=1
 (4.2)

The last term, 𝑘

 𝑛−1 2 𝑝𝑖,𝑧
𝑛
𝑧=1 , also represents

the adjustment step for all “others” 𝐻𝑖,𝑗 (z ≠

 i, z ≠ j) in the opposite direction hence keeping

the sum of all probabilities in a row constant to

one.

Combining together reward and punishment when a

coincidence 𝑖, 𝑗 is found in both good and bad solutions we will get:

 𝐻𝑖,𝑗 𝑡 + 1 = 𝐻𝑖,𝑗 𝑡 +
𝑘

 𝑛−1
 𝑟𝑖,𝑗 − 𝑝𝑖,𝑗 +

𝑘

 𝑛−1 2 𝑝𝑖,𝑧
𝑛
𝑧=1 − 𝑟𝑖,𝑧

𝑛
𝑧=1 (4.3)

There is some constraint in updating the generator. Since the joint

probability is updated by increasing or decreasing by a constant rate, a joint

probability must not become negative. Therefore we need to maintain the probability

value by disallowing the punishment if it would decrease the probability down below

0.

98

Figure.4.1. Updating the generator k=0.1

Figure. 4.1 exemplifies the process of initializing the generator,

generating the first population, selection of good and bad candidates and finally

updating the generator using the selected candidates. Since the problem size is equal

to 5, the generator is initialized so that each joint probability is equal to 0.25. Then,

the population is generated from the initiated generator. The candidates are sorted and

classified into three classes: high fitness, medium fitness, and low fitness. The high

fitness candidates are considered to be the good solutions while the low fitness

candidates are considered to be the bad solutions in the population.

As seen in the figure 4.1, the candidate X2-X3-X4-X1-X5 is

classified as a good solution. The incidences X2-X3, X3-X4, X4-X1 and X1-X5 are used to

update the generator as rewards. The candidate X3-X2-X4-X1-X5 is classified as a bad

solution thus the incidences X3-X2, X2-X4, X4-X1 and X1-X5 are used to punish the

generator in the opposite way. Since the coincidences X4-X1 and X1-X5 are found in

both good and bad solutions, they are counted as a one-time reward and a one-time

punishment so the row 1,j and row 4,j remain unchanged. While X2-X3 and X3-X4 are

considered to be the coincidences found in the good solutions, hence these

coincidences are used to update the row X2 and X3. The coincidences X3-X2 and X2- X4

are used to punish the generator as they are found in the bad solutions.

99

Figure. 4.2. The probability dependency tree of a 3 dimensions combinatorial problem

 Figure. 4.2 represents the search space of a 3 dimensional ordering problem.

In the generation 0, all joint probabilities are equal. As the generation progresses, the

joint probabilities are increased or decreased. It can be seen that some of the

connections are weaken as they are statistical found in the bottom ranks. Whereas

some of the connections are strengthen as they are found in the top ranks.

4.2.4 Computational cost and space
 Let the problem size = n, and there are m candidates in each

generation, the computational cost and space complexity are as follow:

1. Generating the population requires time 𝑂(𝑚𝑛2) and space

𝑂(𝑚𝑛)

2. Sorting the population requites time 𝑂(𝑚 𝑙𝑜𝑔 𝑚)

3. The generator require space 𝑂(𝑛2)

4. Updating the generator require time 𝑂(𝑚𝑛2)

100

4.3 Multiobjective Coincidence Algorithm
The multiobjective version of coin is slightly different from the single

objective COIN in the selection method. We adopt the non-dominate sorting and

crowding distance of NSGA-II[25] as the way to select the population used in

updating the generator. Again, we use the not-good solutions to update the generator.

The not-good solutions are defined different from the single-objective COIN. They

are obtained from the non-dominated frontier of the opposite side of the objectives we

are optimizing.

Undesired Solutions

)(1 xf

)(2 xf

Desired Solutions

General Solutions

Figure. 4.3. The non-dominate ranking in multiobjective coincidence algorithm

Figure. 4.3 shows the non-dominate ranking in Multi-objective COIN. The

number of the selected candidates depends on the rank of the frontiers. In this case the

first and the second ranks contain 10 candidates, while the last two ranks contain 11

candidates.

101

4.4 Discussion
 In this Section, we differentiate COIN from the existing algorithms in the

Chapter II and III. Figure 4.4 illustrates genealogy of COIN. Clearly, COIN is a

population based metaheuristic and is also a constructive algorithm. COIN and

EHBSA[18] use the different encoding and different probabilistic model compared to

most EDAs [71][72][119]. The data structures of COIN and EHBSA are more similar

to ACO[20]. However, the distinctiveness of COIN is that it learns the negative

correlation of the worse group of candidates as well as the traditional better group of

candidates. COIN and ACO incrementally combines the solution components of the

latest generation with all the previous iterations while EHBSA construct a new

probabilistic model only from the most recent population. However, ACO uses a more

complicate model of pheromone evaporation for exploration purpose in which an

appropriate parameter tuning is needed.

 The negative knowledge of COIN is different to that used in NPSO [120] as

COIN considers the correlation of bad building blocks in the candidate solutions

while NPSO considers the negative knowledge of the geometry of neighborhoods.

 The incremental model of COIN is also difference to PBIL, cGA and iBOA.

PBIL, cGA and iBOA deduct the probability from the opposite values at the same

absolute positions. However, COIN gathers the probability from the rest of the edges

sharing the same starting nodes. Incremental models of PBIL, cGA and iBOA

consider being reward and punishment at the same time, whiling, COIN separately

uses different method to the reward. The punishment model of COIN scatters the

probability of an edge to the rest of the edges sharing the same starting nodes.

 The multiobjective version of COIN (MO-COIN) mimics the non-dominated

sorting and crowding distance from NSGA-II. However, COIN is an EDA, therefore

COIN does not need to maintain the elitists. The purpose of embedding the crowding

distance in MO-COIN is to prevent the premature convergence of the probability

model.

102

Figure. 4.4. Genealogy of COIN.

4.5 Chapter Summary
 In this chapter, we propose a new edge-based estimation of distribution

algorithm called COIN, which incorporate the negative correlation learning. The

reward and punishment scheme is used to update the probabilistic model adopt from

the first order Markov chain matrix. The selection process of COIN discriminate the

good and the bad edges found in the better and the worse groups of candidates. This

mechanism enhances the algorithm to recognize the better substructures in order to

compose them. In addition, the worse substructures are discriminate and can be

avoided. The figure 4.5 illustrates the recognition of the better quality substructure by

eliminating the substructures found in the worse group.

GA

GA-ER

PBIL cGA

BOA

iBOA

EHBSA

COIN

ACO

NSGA-II

MO-COIN

103

1 3 5 7 9 2 4 6 8

1 3 5 7 9 4 6 8 2

Higher
Fitness

Lower
Fitness

Better Quality
Substructure

Worse Quality
Substructure

Equally Quality
Substructure

S1

S2

Figure. 4.5. The differentiation of substructures contain in the good and the bad

populations.

 We also, propose the extension of COIN to solve the multi-objective problems

by adopting the non-dominated sorting and crowding distance from NSGA-II. Finally,

the distinctive characteristics of COIN are discussed.

CHAPTER V

EMPIRICAL ANALYSIS
5.1 Introduction

 Previously in chapter III and IV, we set a hypothesis that the negative

knowledge should (i) prevent the composition of bad building blocks and should (ii)

preserve more diversity. In order to test the hypothesis, this chapter compares two

EDAs, COIN and EHBSA which utilize similar probabilistic model in order to

construct a candidate solution. The major difference of COIN and EHBSA is that the

COIN takes the negative knowledge into account, while EHBSA doesn’t consider the

negative knowledge at all. In addition, COIN incrementally combines the solution

components of the latest generation with all the previous iterations while EHBSA

construct a new probabilistic model only from the most recent population.

One approach to investigate the behavior of EAs is to test them on artificial

problems where the solutions are known a priori. For this purpose researchers usually

used deceptive problems, which are hard globally multimodal optimization problems.

In our experiments, we use multimodal combinatorial puzzles where the solutions are

known and expected to mislead the testing algorithm to certain local optimal points.

We compare COIN with EHBSA in two classes of combinatorial problems that are

permutation and combination. The permutation problems include 8-Queens puzzles,

3 × 3 magic square, 4 × 4 magic square and knight’s tour problems while the

combination problems include 8-Queens, 8-rooks, 14-bishops and 32-knights puzzles.

EAs and EDAs are usually ineffective in solving globally multimodal

problems as they converge to a single global optimum. The explanation [126] is

straight forward. The basins of different global optima may be represented in the

population. As there is no significant selective preference for one of the basins in the

population over another, the stochastic variations due to the selection method make

the population drift towards one of them and, thus, discover only one global optimum

at most. Moreover, this global optimum is randomly chosen from the existing global

optima. This phenomenon is known as genetic drift [127][7]. In absence of selective

pressure, the stochastic nature of the selection method reduces population diversity.

105

5.2 Magic Square
 5.2.1 Introduction

A magic square of order n is an arrangement of 𝑛 × 𝑛 distinct integers

in a square, such that the 𝑛 numbers in all rows, all column and both diagonals sum to

the same constant or magic sum 𝑀. which can be calculate by the equation

𝑀 =
𝑛(𝑛2 + 1)

2

For normal magic square of order 𝑛 = 3, 4, 5 the magic constants are 15, 34, 65

respectively

Figure 5.1 Sample of magic square solutions

(a) The solution of a 3 × 3 magic square
(b) The solution of a 4 × 4 magic square

 5.2.2 Related works
 Apart from the exact methods, there is no known algorithm to find the

solution to magic squares. According to [128] and [129], genetic algorithm with

specific crossover cannot always find a solution to these problems. In the works of

[128][129], they relax the constraints of the magic squares such that the fitness

evaluation are calculated only from the row and the column, while, the works of [130]

use multimillion of runs to find a solution and measure the relative error compared to

the optimal solution.

 Surprisingly, magic square problems are composed with the set of

numbers with summand equal to the magic numbers in each axis, thus they are

considered to contain building blocks in the genotype. However, constructive

algorithms such as genetic algorithms can rarely be able to find such a solution. The

competitive algorithms to solve magic square problems become the improvement

algorithms that usually are trapped in some local optima.

2 7 6

9 5 1

4 3 8

(a)

12 6 15 1

13 3 10 8

2 16 5 11

7 9 4 14

(b)

106

Figure 5.2 The magic squares that contain the conflict building blocks

 The simple explanation is that even if a constructive algorithm can

recognize that which squares are better than the others in term of fitness and

determine that they might contain the good building blocks which should lead to a

better solution, however, the algorithm cannot be able to recognize that which

building blocks are good and which ones are not. In addition, even if the algorithm

can recognize the good building blocks contained in a candidate solution, the

algorithm does not know how to compose them as they might be being in conflict.

 Figure 5.2 exemplifies two of the fittest solutions in which none of the

crossover operators [50][51][52][53][54][55][56][57][58]can recombine to form a

better solution. Moreover, the recombining these two solutions results in generating

the worse offspring compared to their parents due to the crossover operator would

rather disrupt the building blocks than constructing the higher order, better ones.

 In a 3 × 3 magic square problem, each axis composed of the

summands equal to 15. However, not all the summands are the good building blocks.

For example, the summands M = 15 can be 1+5+9, 2+4+9, 2+6+7, 3+5+7, 1+6+8,

2+5+8, 3+4+8, 4+5+6 and their permutations, but the subsequence 5+1+9 is not a

subcomponent of any solution. We call this kind of subsequence a false building

block. Composing a false building block, might mislead the search algorithm into a

pitfall. This reason makes the problems become much harder to be solved.

2 7 6

9 5 8

4 1 3

1 3 4

8 5 9

6 7 2

107

 5.2.3 Experimental setup
We compare EHBSA and COIN in 3 × 3 and 4 × 4 magic square

problems. Both EHBSA and COIN were implemented using Codegear Delphi 2007

and test them using Intel core 2 duo 2.16 GHz with 2 GB of RAM. Ten runs ware

performed for each problem, we apply different configurations of population size and

number of generation such that the total numbers of evaluation are smaller than the

solution/space ratios. For the 3 × 3 magic square we use to 5,000 evaluations while in

the 4 × 4 magic square we use up to 800,000 evaluations. The bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜 of

EHBSA is 0.005 were used in all experiments while the learning rate k of COIN is set

to be 0.05. The selection pressure of EHBSA is 50% of the whole population, while

COIN uses 25% for both reward and punishment.

We evaluate the algorithms by measuring their ANE (average number

of evaluations to find the first global optimum) #SOL (average number of solution

found within the given number of evaluations) and #DSOL (average number of

distinct solution found within the given number of evaluations)

Figure 5.3 illustrates the encoding of a 3 × 3 magic square. The

candidate simply formed by concatenation of each of the row. This problem is a

problem that the building blocks are explicitly exposed. Apart from the rows, each

magic square clearly contains the building blocks for each column and diagonal axes.

Figure 5.3 Encoding and building blocks (BB) of a 3 × 3 Magic Square problem

2 7 6 BB1

9 5 1 BB2

4 3 8 BB3

2 6 7

9 5 1 4 3 8

BB4
BB5

BB6

BB7
BB8

108

 5.2.4 Discussion

Figure 5.4 Performance of EHBSA in 3 × 3 magic square problem

Figure 5.5 Performance of COIN in 3 × 3 magic square problem

Figure 5.4 and 5.5 show the result of EHBSA and COIN in 3 × 3

magic square problem respectively. The vertical axes indicate the fitness of the

benchmarks while the horizontal axes indicate the number of generation used by the

algorithms. The magic squares are the maximization problems, thus the larger number

indicates the better performance. In these experiments, COIN performs better than

0

1

2

3

4

5

6

7

8

9

1 11 21 31 41 51 61 71 81 91

Best Average

0

1

2

3

4

5

6

7

8

9

1 11 21 31 41 51 61 71 81 91

Best Average

109

EHBSA in magic square problems, as COIN can find a solution to the 3 × 3 magic

square, while EHBSA cannot converge to find such a solution. COIN learns the

negative correlation of the bad building blocks contained in the bad solutions. COIN

prevents the composition of these building blocks, thus easier to converge closer to

the optimal solutions. For example, in the 3 × 3 magic square problem, The total

number of 3 combination summand is 9
3
 = 84 × 3!. the summands of magic

number M = 15 are the permutation of 1 + 5 + 9, 2 + 4 + 9, 2 + 6 + 7, 3 + 5 +

7, 1 + 6 + 8, 2 + 5 + 8, 3 + 4 + 8 and 4 + 5 + 6 altogether = 8 × 3!, otherwise the

summand are infeasible. (consequently, there are only 24 good valid summand out of

504 summand which are considered to be the good building blocks). EHBSA cannot

determine whether which summand belongs to which model. It only tries to compose

a solution from the good found build blocks, while COIN prevents the composition of

480 bad building blocks. However, COIN rarely finds the solution of the 4x4 magic

square. The probability to find a solution is 0.5, otherwise got stuck in a local optima.

Magic squares are also considered to be a hard deceptive problem

where the canonical magic squares can be generated all the other by rotation and

transposition or reflection. The difficult part of this problem is that there are no

overlapping relative building blocks between each solution, thus, there is no

significant selective preference for one of the basins in the population over another.

So the algorithms don’t know which direction they should converge to. The figure 5.6

reveals all the possible solutions to the 3 × 3 magic square.

Figure 5.6 All of the 3 × 3 magic square solutions

2 7 6

9 5 1

4 3 8

6 1 8

7 5 3

2 9 4

8 3 4

1 5 9

6 7 2

4 3 8

9 5 1

2 7 6

2 9 4

7 5 3

6 1 8

6 7 2

1 5 9

8 3 4

4 9 2

3 5 7

8 1 6

8 1 6

3 5 7

4 9 2

110

EHBSA Gen 10 P-COIN Gen 10 N-COIN Gen 10 COIN Gen 10

EHBSA Gen 20 P-COIN Gen 20 N-COIN Gen 20 COIN Gen 20

EHBSA Gen 30 P-COIN Gen 30 N-COIN Gen 30 COIN Gen 30

EHBSA Gen 40 P-COIN Gen 40 N-COIN Gen 40 COIN Gen 40

EHBSA Gen 50 P-COIN Gen 50 N-COIN Gen 50 COIN Gen 50

EHBSA Gen 60 P-COIN Gen 60 N-COIN Gen 60 COIN Gen 60

111

Figure 5.7 Generator snapshots of EHBSA, positive COIN, negative COIN and COIN

for the 3 × 3 magic square problem

 Figure 5.7 shows the generator snapshots of EHBSA and COINs for

the 3 × 3 magic square problem. In this experiment, we analyze the effects of

negative correlation learning of COIN by comparing EHBSA and the three versions

of COIN including the positive correlation learning COIN (P-COIN), the negative

correlation learning COIN (N-COIN) and COIN that combines the positive and

negative correlation learning altogether. The lighter blocks indicate the lower

probabilities while the darker blocks indicate the higher probabilities. The probability

ranges from white to black as 0 to 1.

 Since the 3 × 3 magic square is a multimodal problem where the

building blocks are rarely shared, EHBSA and P-COIN cannot converge to a single

solution. However, EHBSA and P-COIN are different to each other as EHBSA

estimates the probabilistic model from the current population only, while P-COIN

incrementally combines the results learned from the current generation with all the

EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70

EHBSA Gen 80 P-COIN Gen 80 N-COIN Gen 80 COIN Gen 80

EHBSA Gen 90 P-COIN Gen 90 N-COIN Gen 90 COIN Gen 90

112

previous generations. N-COIN seems to be smarter in exploiting the search space. The

negative correlation learning contributes in converging by exploiting the common bad

substructures shared by the below average solutions. The combination of positive and

negative correlation learning enhances COIN to converge fastest compared to the

others.

Figure 5.8 Performance of N-COIN in 3 × 3 Magic Square problem

 Figure 5.8 illustrate the behavior of N-COIN in the 3 × 3 magic

square problem. The negative correlation learning can make the overall solution

converge towards the optimality. However, after the whole population is dominated

by some substructure, the negative correlation learning considers the algorithm to be

stuck in a local optima and then try to unlearn the edges containing in the below

average solutions in order to jump off the local optima.

5.3 Combination Chess Puzzle
 5.3.1 Introduction

The n-pieces chess puzzles are the problem of placing n kind of the

same class chess pieces on an 8 × 8 chessboard so that none of them can capture any

other using their moves. A standard 8 × 8 chessboard can place maximum number of

8 queens, or 8 rooks, 14 bishops or 32 knights so that none of them can attack each

other. These n-pieces chess puzzles are considered to be the combination problems

which are formally defined as “to find an optimal n-combination of a set S is a subset

of n distinct elements of S”. These combination problems are more difficult than

selections problems because the feasible set of solutions need to be a fixed size of k

0

1

2

3

4

5

6

7

8

9

1
1

3
2

5
3

7
4

9
6

1
7

3
8

5
9

7
1

0
9

1
2

1
1

3
3

1
4

5
1

5
7

1
6

9
1

8
1

1
9

3
2

0
5

2
1

7
2

2
9

2
4

1
2

5
3

2
6

5
2

7
7

2
8

9

Best Average

113

distinct items which standard mutation and crossover operators in genetic algorithms

could produce infeasible solutions even the crossover operators for permutation

representation is used. For 8-queens puzzle, the problem can be both combination and

permutation as it is possible to reduce the number of possibilities by generating the

permutations that are solutions of the eight rooks puzzle and then checking for

diagonal attacks further reduces the possibilities from 4,426,165,368 or 64
8
 to just

40,320

Figure 5.9 shows the available chess moves of the dedicated problems

and a sample solution to each problem as follows: (a) shows the available rook’s

move and a sample of 8-rooks puzzles solutions. (b) shows the available bishop’s

move and a sample of 14-bishops puzzles solutions. (c) shows the available queesn’s

move and a sample of 8-queens puzzles solutions. (d) shows the available knight’s

move and a sample of 32-knights puzzles solutions. The rook can move any number

of squares along any rank or file while the bishop can move any number of squares

diagonally. The queen combines the power of the rook and bishop and can move any

number of squares along rank, file, or diagonal. The knight moves to any of the

closest squares that are not on the same rank, file, or diagonal, thus the move forms an

"L"-shape two squares long and one square wide.

(a) Available rook’s move and

a sample of 8-rooks puzzles solutions

(b) Available bishop’s move and

a sample 14-bishops puzzles solutions

(c) Available queen’s move and

a sample 8-queens puzzles solutions

(d) Available knight’s move and

a sample 32-knights puzzles solutions
Figure 5.9. Available chess move and sample solutions of combination problems.

According to [131], The 8-Queens puzzle has totally 92 distinct

solutions, the 8-Rooks puzzle has up to 40,320 distinct solutions, the 14-Bishops

114

puzzle has totally 8 distinct solutions and the 32-Knights puzzle has only 2 distinct

solutions

 5.3.2 Related works
 None of the existing literature is found to solve such combination

chess puzzle problems. However, n-queen problems can be found in many literatures

including [132][133] and [134], however, the multimodality of the solutions to the n-

queen have not been tested in any of them.

5.3.3 Experimental setup
 The experiments settings of the combination chess puzzles are similar

to that in the experiments setting of magic square problems. However, the only

difference is that the encoding of the solution strings. Figure 5.8 presents the encoding

of a 8-queen solution. A candidate solution compose of items correspond to the

positions label in the chess board. The candidate 4-15-19-32-34-45-49-62 represents

the solution in the figure 5.10.

Figure 5.10 The sample encoding of a combination 8-queen solution

In these test sets, we also include the permutation version of 8-Queens

benchmark. The encoding is shown in the figure 5.11.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

4 15 19 32 34 45 49 62

115

Figure 5.11 The sample encoding of a permutation 8-queen solution

We also evaluate the algorithms by measuring their ANE (average

number of evaluations to find the first global optimum) #SOL (average number of

solution found within the given number of evaluations) and #DSOL (average number

of distinct solution found within the given number of evaluations)

5.3.4 Discussion
Figure 5.12 through Figure 5.21 show the results of EHBSA and COIN

in 8 permutation Queens (8-Queens-P), 8-Rooks, 8 combinations Queens (8-Queens-

C), 14-Bishops and 32-Knights Respectively. The vertical axes indicate the fitness of

the benchmarks while the horizontal axes indicate the number of generation used by

the algorithms. These benchmarks are the minimization problems, thus the smaller

number indicates the better performance.

 1 2 3 4 5 6 7 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

1 2 3 4 5 6 7 8

7 5 3 1 6 8 2 4

116

Figure 5.12 Performance of EHBSA in 8-Queens-P problem

Figure 5.13 Performance of COIN in 8-Queens-P problem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46

Best Average

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46

Best Average

117

 Figure 5.14. Performance of EHBSA in 8-Rooks problem

 Figure 5.15 Performance of COIN in 8-Rooks problem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

5
7

1
1
3

1
6
9

2
2
5

2
8
1

3
3
7

3
9
3

4
4
9

5
0
5

5
6
1

6
1
7

6
7
3

7
2
9

7
8
5

8
4
1

8
9
7

9
5
3

Best Average

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

5
7

1
1
3

1
6
9

2
2
5

2
8
1

3
3
7

3
9
3

4
4
9

5
0
5

5
6
1

6
1
7

6
7
3

7
2
9

7
8
5

8
4
1

8
9
7

9
5
3

Best Average

118

 Figure 5.16. Performance of EHBSA in 8-Queens-C problem

Figure 5.17 Performance of COIN in 8-Queens-C problem

0

1

2

3

4

5

6

1

4
0
1

8
0
1

1
2
0
1

1
6
0
1

2
0
0
1

2
4
0
1

2
8
0
1

3
2
0
1

3
6
0
1

4
0
0
1

4
4
0
1

4
8
0
1

5
2
0
1

5
6
0
1

6
0
0
1

6
4
0
1

6
8
0
1

7
2
0
1

7
6
0
1

Best Average

0

1

2

3

4

5

6

1

4
0
1

8
0
1

1
2
0
1

1
6
0
1

2
0
0
1

2
4
0
1

2
8
0
1

3
2
0
1

3
6
0
1

4
0
0
1

4
4
0
1

4
8
0
1

5
2
0
1

5
6
0
1

6
0
0
1

6
4
0
1

6
8
0
1

7
2
0
1

7
6
0
1

Best Average

119

Figure 5.18 Performance of EHBSA in 14-Bishops problem

Figure 5.19 Performance of COIN in 14-Bishops problem

0

1

2

3

4

5

6

7

8

9

1

1
0
1

2
0
1

3
0
1

4
0
1

5
0
1

6
0
1

7
0
1

8
0
1

9
0
1

1
0
0
1

1
1
0
1

1
2
0
1

1
3
0
1

1
4
0
1

1
5
0
1

1
6
0
1

1
7
0
1

1
8
0
1

1
9
0
1

Best Average

0

1

2

3

4

5

6

7

8

9

1

1
0
1

2
0
1

3
0
1

4
0
1

5
0
1

6
0
1

7
0
1

8
0
1

9
0
1

1
0
0
1

1
1
0
1

1
2
0
1

1
3
0
1

1
4
0
1

1
5
0
1

1
6
0
1

1
7
0
1

1
8
0
1

1
9
0
1

Best Average

120

Figure 5.20 Performance of EHBSA in 32-Knights problem

Figure 5.21 Performance of COIN in 32-Knights problem

0

5

10

15

20

25

1
2
5
1

5
0
1

7
5
1

1
0
0
1

1
2
5
1

1
5
0
1

1
7
5
1

2
0
0
1

2
2
5
1

2
5
0
1

2
7
5
1

3
0
0
1

3
2
5
1

3
5
0
1

3
7
5
1

4
0
0
1

4
2
5
1

4
5
0
1

4
7
5
1

Best Average

0

5

10

15

20

25

1
2
5
1

5
0
1

7
5
1

1
0
0
1

1
2
5
1

1
5
0
1

1
7
5
1

2
0
0
1

2
2
5
1

2
5
0
1

2
7
5
1

3
0
0
1

3
2
5
1

3
5
0
1

3
7
5
1

4
0
0
1

4
2
5
1

4
5
0
1

4
7
5
1

Best Average

121

From the overall perspective, EHBSA seems to outperform COIN in

the combination problems as EHBSA can converge to the solution faster than COIN.

However, COIN can generate more diverse solution compared to EHBSA.

In 8 Queens-P problems, COIN can find up to 13 distinct solutions

while EHBSA can find only 4 distinct solutions. 8-Queens-C and 8-Rooks are the

problems with equal feasible solution space. However, in 8-Queens-C problem

EHBSA can find an average of 4 distinct solutions while COIN can find up to 9

distinct solutions, however, the average numbers of distinct solutions are equal. While

in 8-Rooks problem EHBSA can find more distinct solutions than COIN.

In 14-Bishops problem, COIN can find all the 8 distinct solutions

while EHBSA can find only 4 distinct solutions. EHBSA speedily converge to an

optima point, while COIN tries to maintain all of the possible good substructures in

order to compose them.

The 32-Knights problem is the hardest problem. It is considered to be a

deceptive problem. In this problem, there are only two patterns of solutions, where

either black or white checkers are all filled. Thus, this implies that there are no

overlapping building blocks existing. None of the dedicated algorithm can solve this

problem. According to the figure 5.20 and 5.21, COIN can converge closer to the

global optimal solution, unfortunately, got stuck in some local optima, where the

black and the white checkers are equally filled while EHBSA cannot improve the

average population at all. The explanation is that COIN tries to generate a

compromise model by filter the bad substructures from the goods. We try to bias the

algorithm such that both EHBSA and COIN always select the top black corner as a

starting position. And it results that EHBSA always find an optimal solution within a

hundred generation, while COIN gives the same compromising results shown in

figure 5.22.

Figure 5.22 Two compromising 32-Knight solutions obtained from COIN

122

EHBSA Gen 10 P-COIN Gen 10 N-COIN Gen 10 COIN Gen 10

EHBSA Gen 20 P-COIN Gen 20 N-COIN Gen 20 COIN Gen 20

EHBSA Gen 30 P-COIN Gen 30 N-COIN Gen 30 COIN Gen 30

EHBSA Gen 40 P-COIN Gen 40 N-COIN Gen 40 COIN Gen 40

EHBSA Gen 50 P-COIN Gen 50 N-COIN Gen 50 COIN Gen 50

EHBSA Gen 60 P-COIN Gen 60 N-COIN Gen 60 COIN Gen 60

123

Figure 5.23 Generator snapshots of EHBSA, P-COIN, N-COIN and COIN

for the 8 Queens-P problem

 Figure 5.23 shows generator snapshots of EHBSA, P-COIN, N-COIN

and COIN for the 8 Queens-P problem. These generators do not represent the

graphical phenotype of the solutions. In order to generate a solution, we need to

sample from the generator. For example, if we begin with the node 3 and then we

perform the greedy search within the final generator of COIN, we will get a solution

3-5-7-1-4-2-8-6 which is a solution to the 8-Queens-P. If we begin with the node 4,

we will either obtain a solution 4-2-8-5-7-1-3-6 or a solution 4-2-8-5-7-1-6-3. The

first case is also a solution to the 8-Queens-P as well while the latter case is not.

In contrast to the 3 × 3 magic square problem, EHBSA and P-COIN

converge to a solution faster than N-COIN. However, EHBSA and P-COIN can find

less distinct solutions compared to the COIN with the negative correlation learning

embedded. In this problem, the negative correlation learning seems not to be

converging at all. However, when combining with the positive correlation learning, it

contributes in producing more diverse distinct solutions as it try to preserve all the

possible good substructures found in the better population.

EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70

EHBSA Gen 80 P-COIN Gen 80 N-COIN Gen 80 COIN Gen 80

EHBSA Gen 90 P-COIN Gen 90 N-COIN Gen 90 COIN Gen 90

124

5.4 Knight’s Tour
 5.4.1 Introduction
 Knight’s Tour is a well-known classical chess puzzle which has been

studied over the last thousand years. The objective of the problem is to find a

Hamiltonian path in a graph defined by the legal move of a knight on a chess board in

which the chess knight has to traverse each square exactly once. Moreover, there are

superior solutions called closed tours which are the solutions that the knight can have

an extra move to complete the circuit at the starting square. The closed tours are more

difficult to find. Murray [16] trace the origin of the problem as the first manuscript

written in Arabic text was introduced by Ali C. Mani in 1350. It described the first

closed by Ar-Rumi in Baghdad in 840. Later in 1766, Euler [17] proposed the first

mathematical analysis of the problem. Other well-known mathematicians who work

on the problem include Taylor, de Moivre and Lagrance.

Figure 5.24 Two of the earliest known knight’s tour solutions

Left is the solution by Ali C. Mani.

Right is the first closed tour solved by Ar-Rumi in 840A.D.

125

 5.4.2 Related works
 Recently, there are many works on solving the knight’s tour problem

on a standard 8x8 chessboard. Borrell [135] proposed a straight forward depth first

search with no bias or heuristic using a Prolog language to develop a brute force

algorithm. The work aims to speed up the search time.

 In contrast to the exact algorithm, there are metaheuristics approaches

try to overcome the problem including Ant Colonization Optimization (ACO) by

Hingston and Kendall [136] which augmented the problem specific heuristic [137] in

to their algorithms in order to increase the chance to find the solutions. Genetic

Algorithm (GA) by Gordon and Slocum [138] and Jarfar Al-Gharaibeh Zakariya

Qawagneh and Hiba Al-Zahawi[139] utilized the repair operation and heuristics

augmented respectively. The advantage of using the problem specific heuristic is that

the search space is reduced down from 63! or approximately 1.98x1087 solutions

down to 865 or approximately 5x1058 solutions.

 Another approach to the knight’s tour was proposed by Takefuji and

Lee [140]. They utilized a Neural Network to solve the knight’s tour problem on a

large 26x26 boards. However, standard approaches such as Euler and Warnsdorf [141]

heuristics and divide and conquer approach proposed by Parburry [142] can easily

find the knight’s tours on the board as large as 78x78.

 The total number of solutions to the knight’s tours problems was

researched by Wegener [143] , Mckay [144] and Mordecki [145] using a very large

scale computers. On a standard 8x8 chess board, McKay calculated the total number

of closed tours to be 13,267,364,410,532 while Mordecki found the open tours to be

approximately 1.305x1035.

126

5.4.3 Experimental setup
 In this section, we report the experiment result of COIN in the knight’s

tour problem. We conduct the experiment using two algorithms which is EHBSA/WO

and COIN and then compare the result with ACO [138] GA with repair [140] and GA

with heuristic [141] using the results report in their literatures.

 For testing purpose, In order to compare the performance of COIN and

EHBSA, We chose the EHBSA/WO which is the standard version of EHBSA in order

to contrast the result of edge based sampling algorithm with and without a negative

learning. We set the parameters of COIN and EHBSA to the following values as:-

 Population size = 400

 Number of generation = 800

 COIN Learning rate = 0.05

 Reward selection pressure = 0.25

 Punishment selection pressure = 0.25

 EHBSA selection pressure = 0.5

 Both COIN and EHBSA were implemented with CodeGear Delphi 7,

the testing environment is MS Windows XP on a 2.4 GHz Intel core 2 duo, with 2 GB

RAM.

The encoding scheme of both COIN and EHBSA is a straight forward

permutation string, where each of the items refers to the position of the chess board

ranging from the top left toward right as 1 to 8 and then repeat to the next row until 64

at the bottom right. The evaluation function of our approach is the number of legal

move found in a tour.

127

 5.4.4 Discussion
 Figure 5.25 compares the performance of COIN and EHBSA. The two

red top lines are the result of maximum and average tour generated by COIN, which

can converge to the first open tour at the generation 150. Then more of the complete

tours are rapidly generated until the first closed tour is found at the generation 301.

Figure 5.25 Comparison of the performance of

COIN vs. EHBSA in the knight’s tour problem

Figure 5.26 Average performance of COIN in the knight’s tour problem

0

10

20

30

40

50

60

70

1 51 101 151 201 251 301 351

n
u

m
b

er
 o

f
le

ga
l m

o
ve

generation

Best EHBSA Average EHBSA

Best COIN Average COIN

0

2000

4000

6000

8000

10000

12000

to
u

rs

generation

No. of Open Tours

No. of Closed Tour

128

Figure 5.27 Two of the solutions generated by the coincidence algorithm.

Left is the first open-tour found in the generation 150.

Right is the first closed-tour found in the generation 301.

Due to [18] and [146], given a same number of function evaluation,

EHBSAs are better than COINs in TSP benchmarks, however in the knight’s tour

puzzle which is the globally multimodal problem, EHBSA cannot converge to a single

optimal tour. The explanation is that in this benchmark, there are substructures in the

population in which there is no significant selective preference to differentiate which

one is better. EHBSA cannot even make the population drift towards to a single peak.

 While EHBSA got stuck in local optima, COIN has an ability to learn

the negative knowledge contained in the undesired solutions. In a complete graph, a

knight can have at most 8 legal moves while the rest 56 moves are prohibits. Learning

the prohibit moves is easier than learning the legal moves as there are the greater

number of the prohibit moves.

Negative correlation learning of COIN plays two major roles in this

benchmark. First, it helps recognizing and eliminating the illegal knight’s path from

the complete graph, which leads to the diversity amongst the legal path. Second, once

the probability matrix converges, it unlearns some of the occurrence in the previous

generation in order to find more of the solution models.

129

EHBSA Gen 60 P-COIN Gen 60 N-COIN Gen 60 COIN Gen 60

EHBSA Gen 40 P-COIN Gen 40 N-COIN Gen 40 COIN Gen 40

EHBSA Gen 50 P-COIN Gen 50 N-COIN Gen 50 COIN Gen 50

EHBSA Gen 20 P-COIN Gen 20 N-COIN Gen 20 COIN Gen 20

EHBSA Gen 30 P-COIN Gen 30 N-COIN Gen 30 COIN Gen 30

EHBSA Gen 10 P-COIN Gen 10 N-COIN Gen 10 COIN Gen 10

130

EHBSA Gen 120 P-COIN Gen 120 N-COIN Gen 120 COIN Gen 120

EHBSA Gen 100 P-COIN Gen 100 N-COIN Gen 100 COIN Gen 100

EHBSA Gen 110 P-COIN Gen 110 N-COIN Gen 110 COIN Gen 110

EHBSA Gen 80 P-COIN Gen 80 N-COIN Gen 80 COIN Gen 80

EHBSA Gen 90 P-COIN Gen 90 N-COIN Gen 90 COIN Gen 90

EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70

131

Figure 5.28 The 27th row generator snapshots of

EHBSA, P-COIN, N-COIN and COIN for the knight’s tour problem

0" 1/8

min max

EHBSA Gen 140 P-COIN Gen 140 N-COIN Gen 140 COIN Gen 140

EHBSA Gen 150 P-COIN Gen 150 N-COIN Gen 150 COIN Gen 150

EHBSA Gen 130 P-COIN Gen 130 N-COIN Gen 130 COIN Gen 130

132

 Figure 5.28 shows the generator snapshots of EHBSA, P-COIN, N-

COIN and COIN for the knight’s tour problem. Due to the enormous size of the

generator, we sample only from the 27th row of the generator. Such row can be

transform to the possible path of a knight from the coordinate 5B to all the other

coordinates. In this experiment, we do not embed the problem specific heuristic in

order to observe the behavior of the 4 algorithms. The probabilistic model of EHBSA

cannot converge to a stable stage at all as it estimates the distribution from the latest

generation, while P-COIN, N-COIN and COIN incremental learn from all the

previous generations. The probabilistic models of P-COIN, N-COIN and COIN

slowly adjust themselves toward a stable stage. Such stable stages show that the

probability models try to constraint the probabilities of the possible moves to satisfy

the knight’s legal moves.

According to figure 5.29, compared to the figure 5.25, P-COIN

performs almost as the same quality as COIN. Unfortunately, P-COIN cannot find an

optimal solution. From the generator snapshot, P-COIN tries to converge to a single

solution, while COIN tries to maintain all the possible solution. In this problem, the

negative correlation learning contributes in preventing the premature convergence to a

single model.

Figure 5.29 Comparison of the performance of

P-COIN vs. N-COIN in the knight’s tour problem

0

10

20

30

40

50

60

70

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

2
9

0

3
0

7

3
2

4

3
4

1

3
5

8

3
7

5

3
9

2

N
u

m
b

e
r

o
f

le
ga

l m
o

ve

Generation

Best P-COIN

Average P-COIN

Best N-COIN

Average N-COIN

133

According to [140] and [141], pure genetic algorithm was proven to

fail to find solutions to the knight’s tour problem. One of the reasons is there are too

many global optimum which contain diverse of substructure. These substructures are

not only hard to recognize but also are in conflict to each other. Even if all of the

substructures are identified, the problem of how to compose these substructures

remains. The probability matrix of COIN does not only learn to compose

substructures in order to form a good solution, it also learns not to compose the

substructures likely to form an undesired solution.

For method comparison, we increase the number of generation from

the testing propose to 2,000 generations in order to compare the results with GA with

heuristic and GA with repair operation proposed by Al-Ghraibah [141] and Slocum

[142]. We also compare our work with an improved version of ACO called Multiple-

restart Ant Colony Enumeration (MACE) algorithm proposed by Hingston [137] as

well, however, the number evaluation used by Hingston is incredibly enormous

therefore we prefer to mainly compare the result using the hit ratio obtained from the

percentage of tour found from the invested function evaluation.

Table 5.1 Results of applying different approaches to solve Knight’s tour.

Algorithms Evaluations Tours Found Hit Ratio

MACE 172,800,000 13,124,464 7.5%

COIN 1,000,000 10,531 1.05%

GA+Repair 1,000,000 5,696 0.57%

Repair only 1,000,000 192 0.02%

GA+Heuristic 800,000 12,084 1.51%

Heuristics only 800,000 1,979 0.25%

134

From Table 5.1 the performance of MACE is superior. Within

172,800,000 evaluations, MACE has found over 13 millions tours in average as the

ants quickly bias the prohibit moves by not laying the pheromones on it. Once a

complete tour is found a population of ants performs local search over the shared

information. While MACE evolves a tour from the sub-tours containing only the legal

moves, COIN learns the whole permutation strings where both legal and illegal moves

are mixed and trying to differentiate the legal and illegal moves among the whole

populations. This is considered as a totally blind search. Without a problem specific

heuristics or bias, COIN can find an average of 10,531 tours within a million function

evaluations with 1.05% hit rate compared to 7.5% obtained from MACE. GA with

heuristics also perform a great job as it improve the odds to find a solution of a pure

heuristics from 0.25 up to 1.51%. GA with repair can improve the odds to find a

solution from an iterated repair operation up to only 0.57%.

However, the numbers of closed tours are not mentioned in the

literature. In average, COIN can find up to closed 921.4 tours out of 10,531 open

tours.

5.4 Discussion
From the 3 sets of experiments, COIN rather gives more diverse solutions

compared to EHBSA. However, it sacrifices more function evaluation as it trades of

the convergence rate with the diversity. However, in 8-rooks puzzles, EHBSA can

find more distinct solutions than COIN, while in 8-queens-C, COIN can find more

distinct solutions than EHBSA. The explanation to this phenomenon is that the

solution of the 8-rooks solutions share more common substructure than 8-Queens. The

8-Rooks solutions share at most 6 positions while the 8-Queens can share at most 2

positions. Once the probabilistic model of EHBSA converge to a solution, neighbors

of such solution are likely to be a solution as well. While 8-Queens puzzle rarely

shares the substructure. Moreover, the substructures of 8-Queens solutions are likely

to conflict with each others, therefore EHBSA cannot converge to any direction.

135

5.7 Chapter Summary
This chapter, we investigate the roles of negative correlation learning of COIN

compared to EHBSA where negative information is not taken into account. Table 5.2

summarizes all the benchmarks and their properties, while table 5.3 summarizes the

performances of such benchmarks. The results conclude that negative correlation

learning contributes in preserving diversity and preventing the premature

convergence.

Table 5.2 Summary of test suites and their properties

Problem Problem
Type Search Space No. of

Solution
Solution/Space

Ratio
Population

Size
Number of
Generation

Number of
Trial

(Evaluation)

8 Queens-P Permutation 40,320 92 1/438 50 50 2,500

8 Queens-C Combination 4,426,165,368 92 1/48,110,493 100 1,000 1,000,000

8 Rooks Combination 4,426,165,368 40,320 1/109,776 100 1,000 1,000,000

14 Bishops Combination 47,855,6999,958,816 8 1/5,981,962,494,852 100 2,000 2,000,000

32 Knights Combination 1,832,624,140,942,590,534 2 1/916,312,070,471,295,267 100 5,000 5,000,000

Knight’s
Tour Permutation 1.268 x 1089 1.3 x 1035 1/9.72 x 1053 400 1,000 4,000,000

3x3 Magic
Square Permutation 326,880 8 1/40860 50 100 5,000

4x4 Magic
Square Permutation 20,922,789,888,000 7,040 1/2,971,987,200 100 800 800,000

Table 5.3 Performance of EHBSA vs. COIN in combinatorial puzzles

Problem

Algorithm

EHBSA COIN

ANE #SOL #DSOL ANE #SOL #DSOL

8 Queens-P 8 25 4 8 21 13

8 Queens-C 1821 78 4 3651 10 9

8 Rooks 25 2457 2293 454 4 4

14 Bishops 419 408 4 1070 45 8

32 Knights N/A 0 0 N/A 0 0

Knight’s Tour N/A 0 0 154 2816 2759

3x3 Magic Square N/A 0 0 35 40 2

4x4 Magic Square N/A 0 0 N/A* 0 0

CHAPTER VI

REAL WORLD APPLICATIONS
6.1 Introduction

This chapter, we introduce the application of COIN in three major applications

including travelling salesman problems (TSP), production line balancing problems

and production line sequencing.

6.2 Travelling Salesperson Problem
 6.2.1 Introduction

The traveling salesman problem (TSP) is a typical combinatorial

optimization problem which is perhaps the most-studied NP-hard combinatorial

problem. Given a list of cities and their pairwise distances, the common objective is to

find a shortest possible tour that visits each city exactly once. The problem was first

formulated as a mathematical problem in 1930 and is one of the most intensively

studied problems in optimization. It is used as a benchmark for many optimization

methods.

 6.2.2 Related works
Even though the problem is computationally difficult, a large number

of heuristics and exact methods are known, so that some instances with tens of

thousands of cities can be solved. There are some near-optimal or approximate

approaches to solve this problem, such as simulated annealing[147], neural

networks[148], and tabu search[149]. Integer linear programming approach[150] is an

exact algorithm to solve this problem by using additional linear constraints to

eliminate the illegal sub-tours. Genetic algorithm is also purposed with the goal of

solving the optimization problems, and has been applied to the TSP with varying

degree of success.

 6.2.3 Experimental setup
To measure the performance of COIN, we perform several benchmarks

on single objective TSP problems and compare them to the experiment of Robles and

Larrañaga [151]. We aim to measure the performance of the algorithm in two main

aspects: quality of the results and the number of function evaluations. This research,

137

we show the result of the well known Gröstel24, Gröstel48 and Gröstel120 which can

be obtained from the TSPLIB [152].

The experiments of Robles and Larrañaga use both of the discrete and

continuous EDAs in the following learning methods: UMDA [73], MIMIC[74],

TREE [154] and EBNA [155]. Moreover we compare the results with GA in the

literature of Larrañaga [156] in 1999 which uses GENITOR [57] algorithm. The

parameter of COIN in these experiments depends on the size of the problems. For

each of the combinations shown in the experiment, we perform 10 runs and average

the results.

To study the effect of negative correlation learning in multi-objective

problems, the multi-objective COIN is tested in a multi-objective TSP problem. We

setup an experiment using kroa100 and krob100 as a bi-objective 100 tours TSP

problem obtained from the TSPLIB. The population size we used in the experiment is

250 and the learning step k is equal to 0.1.

 6.2.4 Discussion
6.2.4.1Gröstel24

Table 6.1 Tour length for the Gröstel24 problem

Population & Local Optimization

Algorithm
500-without 500-with 1000-without 1000-with

Best Aver Best Aver Best Aver Best Aver

GA-ER* 1272 1272

GA-OX2* 1300 1367

UMDA 1339 1495 1272 1272 1329 1496 1272 1272

MIMIC 1391 1486 1272 1272 1328 1451 1272 1272

TREE 1413 1486 1272 1272 1429 1442 1272 1272

EBNA 1431 1528 1272 1272 1329 1439 1272 1272

COIN unif 1272 1280 1272 1278

COIN adpt 1272 1272 1272 1272

* Size of population 200, mutation used SM

unif denotes uniform selection with learning step k = 0.1

adpt denotes adaptive selection with learning step k = 0.1

Optimum 1272

138

The TSP coding for continuous EDAs in the original literature

uses real numbers which later sorted into the ordering path based on these numbers, is

known to be a poor alternative coding compared with path representations based on

permutations. Thus, the results obtained from continuous EDAs are not compared in

this study due to the use of different representations. Additionally, the detail of local

search in the literature is limited to us, thus the result of COIN incorporate with local

search cannot be implemented and compared.

Table 6.2 Number of generations for the Gröstel24 problem

Population & Local Optimization

Algorithm

500-

without

500-with 1000-

without

1000-

with

Gen Gen Gen Gen

UMDA 75 19 78 12

MIMIC 47 4 58 4

TREE 37 4 46 2

EBNA 72 16 79 7

COIN 67 48

Table 6.1 shows the best results and average results obtained

for each of population size, with and without local optimization and learning type of

EDAs. The table also shows results obtained for the GA using the crossover operators

ER and OX2. The results show that COIN with adaptive selection can find the

optimum of Gröstel24 without the need of local optimizer and it is competitive with

all the EDAs in the experiment.

Figure 6.1 shows the convergence of the Gröstel24 problem

using only good solutions, only bad solutions and using both. It shows that the use of

both good and bad solutions outperform the use of only either good or bad solutions.

Learning from bad solutions creates more diversity amongst the best results but

retaining the average results.

139

Figure 6.1 The best candidates generated from the generator for Gröstel24

In this experiment, we use the parameter less adaptive selection

approach. According to the Figure 6.2, in some generation, there is no reward given to

the good solutions as overall fitness’s are high. In order to maintain the fitness

distribution, the selector rather selects more of the bad individuals than the good ones.

When some generations contain more of the bad solutions, the selector rather give

more reward than punishment.

Figure 6.2 The number of good and bad selected solutions using an adaptive selection

method in Gröstel24 problems

1000

1200

1400

1600

1800

2000

2200

2400

1 11 21 31 41

Fi
tn

e
ss

 V
al

u
e

Generation

Good Bad Both

0

10

20

30

40

50

60

70

80

90

1 11 21 31 41

N
o

. o
f

Se
le

ct
e

d
 S

o
lu

ti
o

n

Generation

Reward Punishment

140

6.2.4.2 Gröstel48

The results for the Gröstel48 are shown in Table 6.3 and 6.4

COIN sacrifices more generations for a better solution compared to the other discrete

EDAs.

Table 6.3 Tour length for the Gröstel48 problem

Population & Local Optimization

Algorithm
500-without 500-with 1000-without 1000-with

Best Aver Best Aver Best Aver Best Aver

GA-ER* 5074 5138

GA-OX2* 5251 5715

UMDA 6715 7432 5079 5149 6683 7388 5067 5139

MIMIC 6679 7083 5046 5053 6104 6717 5046 5057

TREE - - 5046 5071 - - 5046 5057

EBNA 7044 7476 5165 5193 6398 7336 5114 5146

COIN** 6356 6889 6136 6358

* Size of population 200, mutation used SM

** Learning step k = 0.12, Adaptive Selection

Optimum 5046

Table 6.4 Number of generations for the Gröstel48 problem

Population & Local Optimization

Algorithm

500-

without

500-with 1000-

without

1000-

with

Gen Gen Gen Gen

UMDA 362 47 218 54

MIMIC 167 23 113 18

TREE - 8 - 7

EBNA 306 63 261 65

COIN 384 304

141

6.2.4.3Gröstel 120

Table 6.5 and 6.6 show the results of the Gröstel120 problem.

Again, the COIN algorithm outperforms the rest discrete EDAs. However, more

function evaluations were sacrificed.

Table 6.5 Tour length for the Gröstel120 problem

Population & Local Optimization

Algorithm
500-without 500-with 1000-without 1000-with

Best Aver Best Aver Best Aver Best Aver

UMDA 14550 15530 7171 7257 14440 15127 7287 7298

MIMIC 13644 14432 7050 7092 12739 13444 7042 7079

COIN* 12298 14307 10162 11273

* Learning step k = 0.14, Adaptive selection

Optimum 6942

Table 6.6 Number of generations for the Gröstel120 problem

Population & Local Optimization

Algorithm

500-

without

500-with 1000-

without

1000-

with

Gen Gen Gen Gen

UMDA 385 55 368 42

MIMIC 306 51 348 42

COIN 659 574

142

6.2.4.4 KroAB100

We took some snapshots at the number of generations equal to

100 and 500 respectively. The behavior of the algorithm can be seen in Fig. 14 and

Fig 15.

Figure 6.3 The population clouds in a bi-objective kroa/b100 TSP

Figure 6.4 The parato frontier obtained from different generation and updating

method in a bi-objective kroa/b100 TSP

143

Figure 6.3 shows the population in the generation 1, 100 and 500 respectively.

As the generation progresses, the population migrates towards the optimum fitness

area. Figure 6.4 shows the effect of COIN algorithm in using only reward and only

punishment compared with using both. Two curves at the upper-right hand corner are

the result from using only reward or punishment for 500 generations. Contrast this

with the rest of the curves in the lower-left corner which use both reward and

punishment together for 100 and 500 generations. The use of both reward and

punishment for just 100 generations outperforms the result from using only either one

for 500 generations.

However, the result of KroAB100 of COIN cannot be compared with the

results of hybrid algorithms in Kumar and Singh’s experiments [34]. In their

experiment, the local search methods were used in order to improve the quality of the

solutions. However, they did not report the number of function evaluation used by

local search.

144

6.3 U-Shape Assembly Line Balancing Problem
 6.3.1 Introduction

U-shaped assembly line balancing is considered to be NP-Hard. This

kind of assembly line has advantage in reduction of the waste walking time to switch

from workstation to workstation, thus enhance reduction of employee and cost. Figure

6.5 illustrates the Jackson’s problem[158] with 11 tasks.

6

1

5

7
4

3 5

622 5

1

2

3

4

5

7

6 8

9

10

11

Figure 6.5 The precedence diagram with assembly network (Jacjson 1956)

Given each workstation 𝑤𝑠 = 1 to 𝑚 , number of tasks 𝑖 = 1 to 𝑛,

each task uses time 𝑡𝑖. The total time used in the Figure 6.6 (a) is equal to 10 while it

used up to 14 if the line is straight. After fitting the tasks and workstations in to the

assembly line, we can see that the U-shaped assembly line in the Figure 6.6 (b) use

one less workstation than the straight line in the Figure 6.6 (a) 10. As the employee

who processes the task number 1 can be shared with the task number 11.
WS1

{1,2,6}

idle=0

WS2

{4,5}

idle=2

WS3

{3,7}

idle=2

WS4

{8}

idle=4

WS5

{9,10}

idle=0

WS6

{11}

idle=6

in out

Operation

(a) Straight assembly line

{1}

{11}

{3}

{10}

{4,2,5}

{8}

{6
,7

,9
}

out

 in

Backward Work

Forward Work
(b) U-shape assembly line

Figure 6.6 The comparison of U-Line and straight complete line assignment

145

 6.3.2 Experimental Setup

We carry three experiments based on the work of Hwang and

Katayama [159] in three objectives:

Given 𝑚 is number of workstation

𝑆𝑁𝑘 is number of relatedness of work in the workstation k

𝑆𝑚𝑎𝑥 is total maximum time in the workstation

𝑆𝑘 is total time in the workstation 𝑘

, the three objectives are:

1. To minimize the number of workstation.

mMinXf )(1 (6.1)
2. To minimize the relatedness of the workstations.





m

k
kSNmmXf

1
2)((6.2)

3. To minimize the distribution of workload in each station.

  mSSMinXf
m

k
k




1

2
max3)(

 (6.3)

We perform the experiment using Matlab 7.0. The test environment is

on Intel Core2 Duo 2.00 GHz with 1.49 GB of RAM. NSGA-II use WMX as a

crossover operator. The crossover probability is 0.7 while the mutation probability is

0.3. In this experiment, COIN uses an extra probabilistic model to estimate the first

sequence. Moreover, the precedence constraints are integrated into the probability

matrix in order to prevent the infeasible solution. In addition, NSGA-II uses a

repairing algorithm to detect and repair the infeasible solutions.

146

 The performance indicators use in this experiment including

1. Convergence to the Pareto optimal set.

*
1

*

S

d
eConvergenc

S

i
i

 (6.4)

where


















k

i ii

ii

ff
yfxfdi

1
minmax

)()(

 (6.5)
and 𝑆∗ is the set of the solutions, 𝑓𝑖max and 𝑓𝑖min are the

maximum and minimum value of the objective 𝑖 and 𝑘 is the

number of objective function.

2. Spread to the Pareto-optimum set.

dNdd

dddd
Spread

lf

N

i
ilf

)1(

1

1









 (6.6)

where 𝑑𝑓 and 𝑑𝑙 are the distances of the Parato ends, 𝑑𝑖 is the

distance from the neighbor solutions in the Parato front and 𝑁 is

the total number of solution in the Pareto front.

3. Ratio of non-dominated solution

 

j

jj

S

xySySxS
Ratio

:| 


 (6.7)

where Sj is the solution set j, S is the union of all Sj, x are the

member Sj and y are the member of set S.

Table 6.7 Problem sets of Hwang and Katayama

Problem set Product Task Time
(ces)

Density
Network

Thomopolous
(1970) 3 19 2 0.122807

Kim(2006) 4 61 10 0.036066

Arcus(1963) 5 111 10,000 0.028337

147

The density network shown in table 6.7 indicates the relationship of the

task. If the density network has high value (limited to 1), the possibility of assigning

task to workstation is low. In contrast, the possibility of assigning task to workstation

is high when the density network is low.

 6.3.3 Discussion
According to the Table 6.8, COIN has higher convergence rate than the

NSGA-II. NSGA-II give more spread solution in the Pareto-optimal set, but the

spread of the solution in this experiment has less significant due to the ratio of non

dominated solution of COIN. It is equal to 1 in every test set as none of the NSGA-

II’s solution can dominate the COIN’s solution. Figure 6.7 to 6.9 compares only the

Pareto-optimal solution for two objectives since the numbers of workstations in each

problem are equal. Moreover, in terms of real CPU time, the multi-objective COIN is

much faster than NSGA-II. The total processing time of NSGA-II in Thomopolous

(19 tasks), Kim (61 tasks) and Arcus (111 tasks) are 124, 347 and 735minites, while

COIN uses only 3, 15, and 40 minutes respectively.

Smooth Index

R
e
la

te
d
n
e
ss

0.40.30.20.10.0

3.4

3.3

3.2

3.1

3.0

NSGA-II VS COIN (Thomoulos,1970 Problem)

Figure 6.7 The comparison of NSGA-II and COIN in Thomoulos’s Problem

148

Smooth Index

R
e
la

te
d
n
e
ss

1.00.90.80.70.60.50.40.30.20.1

9.5

9.4

9.3

9.2

9.1

9.0

8.9

8.8

8.7

8.6

Variable

NSGA_RL * NSGA_SI

COIN_RL * COIN_SI

NSGA-II VS COIN (Kim,2006 Problem)

Figure 6.8 The comparison of NSGA-II and COIN in Kim’s Problem

Smooth Index

R
e
la

te
d
n
e
ss

14001300120011001000900800700

15.70

15.65

15.60

15.55

15.50

NSGA-II VS COIN (Arcus,1963 Problem)

Figure 6.9 The comparison of NSGA-II and COIN in Arcus’s Problem

Table 6.8 Result of the experiment in Hwang and Katayama’s problems

Benchmarking

Problems and Algorithms
Thomopolous

(19 task)
Kim

(61 task)
Arcus

(111 task)
NSGA-II COIN NSGA-II COIN NSGA-II COIN

Convergence 0.295 0 0.847 0 0.189 0
Spread 0.566 0.523 0.742 0.774 0.485 0.710
Ratio of solution 0 1 0 1 0 1
Time (min) 124 3 347 15 735 40
Population size = 100, Generation = 200

NSGA-II: Crossover probability = 0.7, Mutation probability = 0.3

COIN: k = 0.1

149

6.4 U-Shape Assembly Line Sequencing Problem
 6.4.1 Introduction

The next case study, the problem sets are sequencing problems on

mixed-model U-Shaped assembly lines sequencing. In this experiment, we assume

that line balancing is solved and only sequencing problems are considered.

Determining the sequence of introducing models to MMUL is of particular

importance considering the goals crucial for efficient implementation of JIT, i.e.

smoothening workload and setup time reduction.

 6.4.2 Experimental setup
We carry three experiments based on the work of Kim and Arcus

[159] in two objectives:

Given MPSi is the minimum part set for a task i,

 MSi is the model sequencing of task i.

 sik is equal to 1 if the task pattern at the position k of MSi is

different from the task pattern at k-1, otherwise 0.

 tik is the machine setting up time for task i.

 ti0 is the machine initialization time.

 Li is the total number of task pattern

 N is the total number of task

 J is the number of work station

 Tjs is the number of assigned task to the work station j at

the sth cycle.

 T is the cycle time

 n is the number of the product in the production line

 di is the product demand

, the objective functions are:

1. To minimize the machine setting up time

  0
1 2

1)(iik

N

i

L

k
ik ttsxf

i

 
 

 (6.8)

2. To minimize the absolute deviation of the workload

 

1 1
2 TTxf

J

j

S

s
js 

 

 (6.9)

150

Figure 6.10 Encoding of the sequencing problem.

The experiments settings and performance indicators of this

experiment are similar to that in the Multiobjective U-shape assembly line balancing

problems. However, the only difference is that the encoding of the solution strings.

Figure 6.10 presents the encoding of a sequencing problem. In sequencing problems,

the sequence items can be redundant. Therefore, in order to apply the coincidence

algorithm, we need to encoding the redundant items in to a permutation of unique

items such that the unique items can be mapped to the redundant tasks.

6.4.3 Discussion
According to the Table 6.9, COIN defeat NSGA-II in all performance

measurements. Figure 6.11 and 6.12 compares the Pareto-optimal solution obtained

from COIN and NSGA-II.
An important aspect of this individual representation based on

permutations is that the cardinality of the search space is 𝑛!.This cardinality is higher

than that of the traditional individual representation, but it is tested for its use with

EDAs in sequencing problems for the first time here. In addition, it is important to

note that a permutation-based approach can create redundancy in the solutions, as two

different permutations may correspond to the same solution. An example of this is

shown in Figure 6.13, where two individuals with different permutations are shown

and the solution they represent is exactly the same.

1 3 2

4 5 6 7 8 9

1 2 1

2 2 3 4 5 6

Genotype

Phenotype

6 5 3

9 7 2 4 1 8

5 2 2

5 4 1 8
2

1 3

Genotype

Phenotype

151

Table 6.9 Performances of NSGA II and COIN
in U-shaped assembly line sequencing problems

Problem Set Performance
Measure

Algorithm
NSGA-II COIN

Kim 2

Convergence 0.015 0
Spread 0.783 0.719

Ratio of Solution 0.667 0.778
Time (min) 398 12

Kim 3

Convergence 0.031 0
Spread 0.532 0.573

Ratio of Solution 0.667 0.714
Time (min) 398 12

Kim 5

Convergence 0.025 0
Spread 0.572 0.643

Ratio of Solution 0.315 0.5
Time (min) 398 12

Kim 6

Convergence 0 0
Spread 0.427 0.427

Ratio of Solution 0.693 0.693
Time (min) 397 11

Arcus 2

Convergence 0.013 0
Spread 0.546 0.549

Ratio of Solution 0.800 1
Time (min) 725 18

Arcus 3

Convergence 0.178 0.076
Spread 0.783 0.543

Ratio of Solution 0.750 0.8
Time (min) 725 18

Arcus 4

Convergence 1.097 0
Spread 0.758 0.758

Ratio of Solution 0 1
Time (min) 725 19

Arcus 6

Convergence 0.016 0.019
Spread 0.664 0.692

Ratio of Solution 0.714 0.714
Time (min) 725 18

Arcus 7

Convergence 0 0
Spread 0.553 0.553

Ratio of Solution 1 1
Time (min) 725 18

Arcus 8

Convergence 0.124 0.049
Spread 0.687 0.654

Ratio of Solution 0.333 0.5
Time (min) 725 18

152

ADW

S
e

tu
p

 t
im

e

38800386003840038200380003780037600374003720037000

22000

21000

20000

19000

18000

17000

16000

Variable

NSGA Obj1 * NSGA Obj2

COIN Obj1 * COIN Obj2

NSGA II VS COIN (Arcus 3)
5 Product

Figure 6.11 The comparison of NSGA-II and COIN in Arcus’s Problem

X-Data

Y
-D

a
ta

174172170168166164162

25000

20000

15000

10000

5000

NSGA II VS COIN (KIM 5)
4 Product

Figure 6.12 The comparison of NSGA-II and COIN in Kim’s Problem

153

Consequently, encoding using such scheme favor NSGA-II to generate

more diverse solution than COIN due to COIN might waste the function evaluation to

evaluate the redundant solutions.

Figure 6.13 Example of redundancy in the permutation-based approach. The two

individuals represent the same solution shown in the phenotype.

6.5 Discussion
 In this chapter, COIN has proved its efficiency in solving several real world

applications. COIN searches and samples candidates for single and multiple

objectives problems very effectively compared to GA. The performances of COIN are

gained from (i) the sampling method and (ii) the negative correlation learning. As

shown in the TSP benchmarks, the negative correlation learning does not only

contribute in preventing the premature convergence, but also contribute in

accelerating the search process.

6.6 Chapter Summary
 This chapter, we propose some application of COIN in several real world

applications including travelling salesperson problems, line balancing problems and

sequencing problems. The overall results show that COIN is a competitive algorithm

in solving both single and multiple objectives real world applications.

9 3 5

6 7 1 4 2 8

5 2 2

5 4 1 8
2

1 3

Genotype 2

Phenotype

6 5 3

9 7 2 4 1 8 Genotype 1

CHAPTER VII

CONCLUSIONS
7.1 Conclusions
 In this dissertation, we addressed the difficulties of combinatorial optimization

where the main difficulty is the representation and the effective ways to construct a

candidate solution.

 We presented a new estimation of distribution algorithm (EDA) called

Coincidence Algorithm (COIN). Our contribution here is twofold. First, a

probabilistic model based on Markov Chain Monte Carlo (MCMC), and second new

incremental learning method that involve the negative correlation learning in the

model.

From this algorithm, we propose a new hypothesis called the negative building

block hypothesis (NBBH) which extends the building block hypothesis (BBH)

previously proposed by Goldberg [7]. The NBBH simply says that avoiding the

recombination of short low fitted schemas so called negative building blocks should

be able to form the average solutions not worse than their ancestors. Searching in a

scope of schemas can be considered to be a guided search or a search with direction.

However, searching out of a scope of schemas cannot be considered to be an

unguided search or a search without a direction but considered to be a multi-direction

search. The multi-direction search is expected to maintain more diversity than a

guided search; however, the time to converge and the quantity of the result are

expected to be poorer. COIN is an algorithm based on both BBH and NBBH. The

combination of BBH and NBBH is expected to utilize both of the BBH and NBBH

advantages.

 Different types and different sizes of the benchmarks have been presented.

Our contribution here is a set of globally multimodal benchmarks which has never

been tested by any algorithm on the capability to find the multimodal solutions. The

results show that the negative correlation learning capability of COIN contributes on

both quality and quantity of the solutions. However, the negative correlation learning

expresses differently in different benchmarks which depends mainly on the quantity

of building blocks being shared and the quantity of building blocks being in conflict.

155

 Finally, one of the best contributions is that we propose an extension of COIN

in solving multi-objective problems. We adopt the non-dominated sorting and

crowding distance from NSGA-II. The experiments were performed in several real

world applications and yield fascinating results. The overall performances of COIN

are better than NSGA-II in every benchmark indicators. More results of COIN in

solving multi-objective problems can be found in parallel works including a PhD

dissertation [160] and five master theses [161][162][163][164][165].

7.2 Recommendation for Future Research
Many different adaptations, tests, and experiments have been left for the future

due to lacking of time (i.e. the experiments with real world applications are usually

very time consuming, requiring even days to finish a single run). Future work

concerns deeper analysis of particular mechanisms, new proposals to try different

methods, or simply curiosity.

There are some ideas that the author would like to try during the development

of the updating equation in Chapter IV. This dissertation has been mainly focused on

the use of negative knowledge in EDAs. However, we used a constant learning rate k

for both positive and negative sample. Moreover, the learning rate is static. From the

observations, the greater learning rate would lead the algorithm to converge faster, yet

easier to get stuck in some local optima. In order to investigate the role of negative

knowledge, the constant learning rate is needed to be fixed, leaving the study of

dynamic learning rate outside the scope of the dissertation. The following ideas could

be tested:

1. It could be interesting to separate the learning coefficient k for

reward and punishment.

2. The learning coefficient k could be change dynamically.

The negative correlation could be apply to node based EDA as well. At the

very beginning of this research, the incremental node based EDA came up in the

author’s mind. The prototype of COIN based on absolution position was

implemented. However, the algorithm was failed to converge. At the end of this

research, we found out that the candidate solutions in node based EDA should not be

generated as a sequence, but should be generated according to the random position.

156

The initial population in all EDAs has been built using a uniform distribution.

Other methods could be also tested, as sometimes a pre-processing step could be

added such that the search can also start with some specific individuals. Also, other

types of statistical initializations such as greedy probabilistic methods could help at

directing the search from the beginning, leading to fewer evaluations.

Regarding the application of parallelism to EDAs, an extension for the near

future is the use of more powerful multiple instruction multiple data (MIMD)

architecture. COIN can make use of the advantage of parallel instruction set to

improve the performance in generating the candidates, updating the probabilistic

model and evaluation of the population.

REFERENCES

[1] Silvio, T. Optimization in Permutation Spaces. Western Research Laboratory 1996/1

[2] Glover, F., and Laguna, M. Tabu Search. Kluwer Academic Publishers : Norwell,

1997.

[3] Andrei, A. Geometric Permutation in the Plane and in Eucidean Spaces of Higher

Dimension. Doctoral dissertation in Mathematics Faculty of Mathematics Israel

Institute of Technology, 2005.

[4] Aronov, B. and Smorodinsky. On Geometric Permutations Induced by Lines

Transversal through a Fixed Point. Proc. 16th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA) (2005)

[5] Cheong, O. Goaoc, X. anh Na, H.S. Geomatric Permutations of Disjoint Unit

Spheres. Comput. Geom.: Theory and Applications 30 (2005) : 253-270.

[6] Stefan, H. On the Significance of the Permutation Problem in Neuroevolution.

Doctoral dissertation, Faculty of Engineering and Physical Sciences University of

Manchester, 2010.

 [7] Goldberg D.E. Genetic Algorithms in Search and Optimization. Addison-Wesley

Professional, 1989.

[8] Bassett, JK. Potter, MA. and De Jong, K. Applying Price’s Equation to Survival

Selection. Proc. of the 2005 Genetic and Evolutionary Computation (GECCO)

(2005) : 1371–1378.

[9] Jain, A. and Fogal D. Case Studies in Applying Fitness Distributions in Evolutionary

Algorithms: I. Simple Neural Networks and Gaussion Mutation.. Proc. of The

International Society for Optical Engineering (SPIE) (2000) : 168-175.

[10] Fodal, D. Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. John Wiley and Sons, 2006.

[11] Jones, T. Crossover, Macromutation, and Population-Based Search. Proceedings of

the Sixth International Conference on Genetic Algorithm (1995) : 73-80.

158

[12] Watson, R. A., and Pollack, J. B. Recombination Without Respect: Schema

Combination and Disruption in Genetic Algorithm Crossover. Proc. of the 2000

Genetic and Evolutionary Computation (GECCO) (2000) : 112-119.

[13] Holland, J.H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI :

University of Michigan Press, 1975.

[14] Harik, G.R., and Goldberg, D.E. Learning Linkage, Foundations of Genetic

Algorithms 4, 7-12. 1996.

[15] Munetomo, M., and Goldberg, D. E. Identifying Linkage Groups by

Nonlinearity/Non-monotonicity Detection. Proc. of the 2000 Genetic and

Evolutionary Computation (GECCO) 1 (1999) : 433-440.

[16] Pelikan, M. and Goldberg, D.E. A Survey of Optimization by Building and Using

Probabilistic Models. IlliGAL Report 99018 (1999).

[17] Larrañga, P., and Lozano, J. A. Estimation of Distribution Algorithms. Kluwer

Academic Publishers, 2002.

[18] Tsutsui, S. Node Histogram vs. Edge Histogram: A Comparison of Probalistic

Model-Building Genetic Algorithms in Permutation Domains. Proc. of the IEEE

Congress on Evolutionary Computation (2006).

[19] Tsutsui, S. Probabilistic Model-Building Genetic Algorithms in Permutation

Representation Domain Using Edge Histogram. Proc. of the 7th International

Conference on Parallel Problem Solving from Nature (PPSN VII) (2002) : 224-

233.

[20] Dorigo, M. et al. Ant Algorithms for Distributed Discrete Optimization. Artificial

Life, 5 (1999).

[21] Bassett, J.K. Potter, M.A., and De Jong, K. Looking Under the EA Hood with

Price’s Equation. Proc. of the 2005 Genetic and Evolutionary Computation

(GECCO) (2004) : 914–922.

[22] William J.C., William H.C., William R.P. and Alexander S. Combinatorial

Optimization. John Wiley & Sons, 1997.

[23] Alexander, S. Combinatorial Optimization. Springer, 2003.

[24] Talbi, E. Metaheuristics : From Design to Implementation. John Wiley and Sons,

2009.

159

[25] Papadimitriou, C.H. Combinatorial Optimization : Algorithm and Complexity.

Prentice-Hall, 1982.

[26] Dmitris, A., and Manfred, W.P. Linear Optimization and Extensions: Problems and

Extensions. Springer-Verlag, 2001.

[27] Garey, M.R., and Johnson, D.S. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.

[28] Reeves, C.R., and Beasley, J.E. Modern heuristic techniques for combinatorial

problems. McGraw-Hil, 1995.

 [29] Golden, B.L, and Stewart, Jr.W.R. Empirical Analysis of Heuristics. Lawler, E.L.,

and Shmoys, D.B. (Eds), The Travelling Salesman Problem. A Guided Tour of

Combinatorial Optimization, 207-249. Wiley, 1985.

[30] Johnson, David S., and McGeoch, Lyle A. The Traveling Salesman Problem: A

Case Study in Local Optimization. Aarts H.L. and Lenstra, J.K. (Eds) Local

Search in Combinatorial Optimization, 215-310. London : John Wiley and Son,

1997.

[31] Lin, S. and Kernighan, B.W. An Effective Heuristic Algorithm for the Traveling-

Salesman Problem., Operations Research , 21/2 (1973) : 498-516.

[32] Gendreau, M., Hertz, A., and Laporte, G. New Insertion and Post Optimization

Procedures or the Traveling Salesman Problem. Operations Research 40 (1992) :

1086-1094.

[33] Glover, F. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13 (5): 533–549.

[34] Blum, C., and Roli, A. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys 35/3 (2003) : 268-308.

[35] Aarts H.L., and Lenstra, J.K. Local Search in Combinatorial Optimization. London :

John Wiley and Son, 1997.

[36] Kirkpatrick, S. et al. Optimization by Simulated Annealing. Science 220 (1983) :

671-680.

[37] Cerny, V. A Thermodynamics Approach to the Travelling Salesman Problem: An

Efficient Simulation Annealing. Journal of Optimization Theory and Applications

45 (1985) : 41-51.

160

[38] Dekkers, A., and Aarts, E. Global Optimization and Simulated Annealing.

Mathematical Programming 50 (1991) : 367-397.

[39] Locatelli, M. Simulated Annealing Algorithms for Continuous Global Optimizatin:

Convergence Conditions. Journal of Optimization Theory and Applications 29/1

(2000) : 87-102.

[40] Martin, O. Otto, S.W., and Felten, E.W. Large-Step Markov Chains for the

Traveling Salesman Problem. Complex Systems, 5/3(1991) : 299–326.

[41] Nowicki, E. and Smutnicki, C. A Fast Tabu Search Algorithm for the Permutation

Flow-Shop Problem. European Journal of Operational Research 91 (1996) : 160–

175.

[42] Vaessens, R.J.M., Aarts, E.H.L., and Lenstra, J.K. Job Shop Scheduling by Local

Search. INFORMS Journal on Computing, 8 (1996) : 302–317.

[43] Feo, T.A. and Resende, M.G.C. A Probabilistic Heuristic for a Computationally

Difficult Set Covering Problem. Operations Research Letters 8 (1989) : 67–71.

[44] Feo, T.A. and Resende, M.G.C. Greedy Randomized Adaptive Search Procedures.

Journal of Global Optimization 6(1995) : 109–133.

[45] Back, T. Evolutionary Algorithms in Theory and Practice. Oxford University Press,

1996.

[46] Rechenberg, I. Evolutionsstrategie— Optimierung technischer Systeme nach

Prinzipien der biologischen Information. Fromman Verlag, Freiburg, 1973.

[47] Schwefel, H.-P. Numerical Optimization of Computer Models. John Wiley & Sons,

1981.

[48] Fogel L.J., Owens A.J., and Walsh M.J.. Artificial Intelligence Through Simulated

Evolution John Wiley & Sons, 1966.

[49] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs 3rd

edition Springer Verlag, 1996.

[50] Goldberg, D.E., and Lingle, R. Alleles, Loci and the Traveling Salesman Problem.

Proc. of the 1st International Conference on Genetic Algorithm (ICGA) (1985) :

154-159.

161

[51] Oliver, I.M., Smith, D.J., and Holland, J.R.C. A Study of Permutation Crossover

Operators on the Travelling Salesman Problem. Proc. of the 2nd International

Conference on Genetic Algorithm (ICGA) (1986) : 224-230.

[52] Davis, L. Applying Adaptive Algorithms to Epistactic Domains. Proc. of

International Conference on Artificial Intelligence (IJCAI) (1985) : 162-164.

[53] Gorges, S.M. ASPARAGOS: An Asynchronous Parallel Genetic Optimization

Strategy. Proc. of the 3rd International Conference on Genetic Algorithm (ICGA)

(1987) : 422-427.

[54] Syswerda, G. Schedule Optimization Using Genetic Algorithm. Davis L. (Eds)

Handbook of Genetic Algorithm 332-349 Van Nostrand Reinhold, 1990.

[55] Lee, J., Gen M., and Rhee, K. Designing a Multistage Reverse Logistics Network

Problem by Hybrid Genetic Algorithm. Proc. of the 10th Annual Conference on

Genetic and Evolutionary Computation (GECCO) (2008).

[56] Lee, J., Gen, M. and Rhee, K. Network Model and Optimization of Reverse

Logistics by Hybrid Genetic Algorithm. Computers and Industrial Engineering

56/3 (April 2009).

[57] Whitley, D. Starkweather T. and Fuquay D. Scheduling Problems and Traveling

Salesman: The Genetic Edge Recombination Operator. Proc. of the 3rd

International Conference on Genetic Algorithm (ICGA) (1987) : 133-140.

[58] Grefenstette, J. et al. Genetic Algorithms for Traveling Salesman Problem. Proc. of

the 1st International Conference on Genetic Algorithm (ICGA) (1985) : 160-168.

[57] Starkweather, T. et al. A Comparison of Genetics Sequencing Operator. Proc. of the

4th International Conference on Genetic Algorithm (ICGA) (1991) : 69-76.

[58] Armed, Z.H. Genetic Algorithm for the Traveling Salesman Problem using

Sequential Constructive Crossover Operator. International Journal of Biometrics

& Bioinformatics (IJBB) 3/6 (2010) : 96-105.

[59] Dorigo, M. Optimization, Learning, and Natural Algorithms. Doctoral thesis, Dip.

Elettronica e Informazione, Politecnico di Milano, Milano, Italy, 1992.

[60] Dorigo, M., Maniezzo, V., and Colorni, A. Positive Feedback as a Search Strategy.

Technical Report 91-016, Politecnico di Milano, Milano, Italy, 1991.

162

[61] Dorigo, M., Maniezzo, V., and Colorni, A. The Ant System: Optimization by a

Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and

Cybernetics – Part B, 26/1 (1996) : 29–42.

[62] Dorigo, M. et al. Ant Algorithms for Distributed Discrete Optimization. Artificial

Life, 5 (1999).

[63] Kennedy, J. and Eberhart, R.C. Swarm Intelligence. San Francisco, CA : Morgan

Kaufmann, 2001.

[64] Kennedy, J. and Eberhart, R.C. Particle Swarm Optimization. Proc of IEEE

Conference on Neural Networks (1995) : 1942-1948.

[65] Kennedy, J. and Eberhart, R.C. A Discrete Binary Version of the Particle Swarm

Algorithm. Proc. of IEEE Conference Systems, Man and Cybernetic (1997) :

4104-4108.

[66] Li, B., Wang, L. and Liu, B. An Effective PSO-Based Hybrid Algorithm for

Multiobjective Permutation Flow Shop Scheduling. Proc. of IEEE Conference

Systems, Man and Cybernetic (2008) : 818-831.

[67] Hu, X., Eberhart, R. C., and Shi, Y. Swarm Intelligence for Permutation

optimization: a case study on n-queens problem. Proc. of the IEEE Swarm

Intelligence Symposium 2003 (SIS 2003) (2003) : 243-246.

[68] Lozano, J.A. Larrañga, P., Inza, I., and Bengoetxea, E. Towards a New

Evolutionary Computation. Advances in Estimation of Distribution Algorithms.

Springer, 2006

[69] Pelikan, M., Sastry, K., and Cantu-Paz, E. Scalable Optimization via Probabilistic

Modeling: From Algorithm to Applications. Springer, 2006.

[70] Baluja, S., and Caruana, R. Removing the Genetics from the Standard Genetic

Algorithm. Proc. of International Conference on Machine Learning. (1995) : 38-

46.

[71] Baluja, S. Population Based Incremental Learning: A Method for Integrating

Genetic Search Based Function Optimization and Competitive Learning.

Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA,

1994.

163

[72] Harik, G.R., Lobo, F.G., and Goldberg, D.E. The Compact Genetic Algorithm.

IEEE Transaction on Evolutionary Computation 3/4 (Nov 1999) : 287-297.

[73] Ghosh, A., and Muehlenbein, H. Univariate Marginal Distribution Algorithms for

Non-Stationary Optimization Problems. International Journal of Knowledge-

based and Intelligent Engineering Systems 8/3, (August 2004) : 129-138.

[74] De Bonet, J.S., Isbell, C.L., and Viola, P. MIMIC: Finding Optima by Estimating

Probability Densities. Advance in Neural Information Processing Systems, 9

(1997).

[75] Pelikan, M. Hierarchical Bayesian optimization algorithm: Toward a new

generation of evolutionary algorithms. Springer, 2005.

[76] Glover, F. Heuristics for Integer Programming Using Surrogate Constraints.

Decision Science, 8 (1997) : 156-166.

[77] Laguna, M. and Marti, R. Scatter Search: Methodology and Implementations in C.

Boston, MA, Kluwer Academic Publishers. 2003.

[78] Glover, F. Ejection Chains, Reference Structures and Alternating Path Methods for

Traveling Salesman Problems. Discrete Applied Mathematics 65(1996) : 223-253.

[79] Glover, F. A Template for Scatter Search and Path Relinking. Lecture Notes in

Computer Science, 1363(1997) : 13-54.

[80] Glover, F. Scatter Search and Path Relinking. New Ideas in Optimisation Wiley,

(1999).

[81] Glover, F. Fundamentals of Scatter Search and Path Relinking. Control and

Cybernatics 29/3 (2000) : 653-684.

[82] Ehrgott, M., and Gandibleux, X. A survey and annotated bibliography of

multiobjective combinatorial optimization. OR Spektrum, 22 (2000) : 425-460.

[83] Diaz, J.A. Solving multiobjective transportation problems. Ekonomicko

Mathematicky Obzor 14 (1978) : 267–274.

[84] Steuer, R.E., Gardiner, L.R., and Gray, J. A Bibliographic Survey of the Activities

and International Nature of Multiple Criteria Decision Making. Journal of Multi-

Criteria Decision Analysis 5 (1996) : 195–217.

164

[85] White, D.J. A Bibliography on the Application of Mathematical Programming

Multiple-Objective Methods. Journal of the Operational Research Society 41/8

(1990) : 669–691.

[86] Hwang, C.L., and Masud, A.S.M. Multiple Objective Decision Making – Methods

and Application: A State of the Art Survey. Lecture Notes in Economics and

Mathematical Systems 164 (1979).

[87] Srinivas, N., and Deb, K. Multi-Objective Function Optimization Using Non-

Dominated Sorting Genetic Algorithms. Evolutionary Computation 2/3(1995) :

221–248.

[88] Sandgren, E. Multicriteria design optimization by goal programming. Advances in

Design Optimization, 225-265. London, Chapman&Hall 1994.

[89] Kosmidou, K., and Zopounidis, C. Goal Programming Techniques for Bank Asset

Liability Management. Kluwer Academic Publishers, 1994.

[90] Wierzbicki, A. The use of reference objectives in multiobjective optimization.

Multiple Criteria Decision making, Theory and Application, Springer, 1980.

[91] Liao, W.B., Chen. Y.-L., and Wang, S.C. Goal-Attainment Method for Optimal

Multi-objective Harmonic Filter Planning in Industrial Distribution Systems.

IEEE Proc. on Generation, Transmission and Distribution. 149/5 (2002) : 557-

563.

[92] Becerra, R.L. Coello, C.C., and Alfredo, G. Alternative Techniques to Solve Hard

Multi-Objective Optimization Problems. Proc. of the 2007 Genetic and

Evolutionary Computation (GECCO) (2007) : 757–764.

[93] Schaffer, J.D. Multiple Objective Optimization With Vector Evaluated Genetic

Algorithms. Doctoral thesis, Vanderbilt University, Nashville, TN, USA, 1984.

[94] Parsopoulos, K.E., Tasoulis, D.K., and Vrahatis, M.N. Multiobjective Optimization

Using Parallel Vector Evaluated Particles Swarm Optimization. Proc. of the 22nd

International Conference on Artificial Intelligence and Applications (IASTED)

(2004).

[95] Fishburn, P.C. Lexicographic Orders, Utilities and Decision Rules: A survey.

Management Science 20/11 (1974) : 1442-1471.

165

[96] Deb, K., Pratap, A., Agrawal, S., and Meyarivan, T. A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation 6/2(April 2002) : 182-197.

[97] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2: Improving the Strength Pareto

Evolutionary Algorithm. TIK-Report 103 (May 2001).

[98] David, A., van Veldhuizen., and Lamont, G.B. Multiobjective evolutionary

algorithms: classifications, analyses, and new innovations. Doctoral Dissertation.

Air Force Institute of Technology Wright Patterson AFB, OH, USA 1999.

[99] Zydallis, J.B., David, A. van Veldhuizen., and Lamont, G.B, A Statistical

Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-

II. Proc. of the 1st International Conference on Evolutionary Multi-Criterion

Optimization (March 2001) : 226-240 .

[100] David, A., van Veldhuizen., and Lamont, G.B. Evolutionary Algorithms for

Solving Multi-Objective Problems, Norwell, MA : Kluwer Academic Publishers,

2002.

[101] Ranjithan, S. R., Chetan, S. K., and Dakshina, H. K. Constraint Method-Based

Evolutionary Algorithm (CMEA) for Multiobjective Optimization. Proc of

Evolutionary Multi-Criterion Optimization: First International Conference, EMO

2001, Zurich, Switzerland, March 2001. Lecture Notes in Computer Science 1993

(2001) : 299–313.

[102] Zitzler, E., Laumanns, M., and Bleuler, S. A Tutorial on Evolutionary

Multiobjective Optimization. Workshop on Multiple Objective Metaheuristics

(MOMH 2002) Springer Verlag 2004.

[103] Fonseca, C. M., and Fleming, P. J. Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. Proc. of the 5th

International Conference on Genetic Algorithms (1993) : 416–423.

[104] Zitzler, E., and Künzli, S. Indicator-Based Selection in Multiobjective Search.

Proc. of Conference on Parallel Problem Solving from Nature (PPSN VIII) (2004)

: 832-842.

166

[105] Knowles, J. D., and Corne, D. W. The Pareto Archived Evolution Strategy: A New

Baseline Algorithm for Pareto Multiobjective Optimisation. Proc. of Congress on

Evolutionary Computation (CEC99), 1 (1999) : 98–105.

[106] Minsky, M. Negative Expertise. International Journal of Expert Systems 7(1994) :

13-19.

[107] Oser, F., and Spychiger, M. Learning is Painful. On the Theory of Negative

Knowledge and the Practice of Error Culture. Weinheim: Beltz, 2005.

[108] Parviainen, J. & Eriksson, M. Negative Knowledge, Expertise and Organisations.

International Journal of Mangement Concepts and Philosophy 2(2006) : 140-153.

[109] von Glasersfeld, E. Constructivism in Mathematics Education. Kluwer Academic

Publishers, 1991.

[110] Gartmeier, M. et al. Negative knowledge: Understanding Professional Learning

and Expertise. Vocations and Learning: Studies in Vocational and Professional

Education. (2008) : 87-103.

[111] Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine

Intelligence. Proc.of International Conference on Computational Intelligence for

Modelling Control and Automation - CIMCA'2005 1(2005) : 695-701.

[112] Tizhoosh, H.R. Reinforcement Learning Based on Actions and Opposite Actions.

Proc. of International Conference on Artificial Intelligence and Machine Learning

(AIML-05) (2005)

[113] Rahnamayan, S., Tizhoosh, H.R., and Salama, M.M. Opposition-Based

Differential Evolution Algorithms. IEEE Congress on Evolutionary Computation

proceeding 2006 (WCCI 2006) (2006) : 7363-7370.

[114] Ji, Z., and Dasgupta, D. Revisiting Negative Selection Algorithms. Evolutionary

Computation. 15/2 (2007) : 223-251.

[115] Michalski, R.S. Learnable Execution Model: Evolutionary Processes Guided by

Machine Learning. Machine Learning. 38 (2000) : 9-40.

[116] Llorà, X. and Goldberg, D.E. Wise Breeding GA via Machine Learning

Techniques for Function Optimization. Proc. of Genetic and Evolutionary

Computation Conference (GECCO-03) (2003) : 1172-1183.

167

[117] Miquélez, T., Bengoetxea, E., and Larrañaga, P. Evolutionary Computation Based

on Bayesian Classifiers. International. Journal of Applied Mathematics and

Computer Science 14/3 (2007) : 101-115.

[118] Miquélez, T., Bengoetxea, E., and Larrañaga, P. Combining Bayesian Classifiers

and Estimation of Distribution Algorithms for Optimization in Continuous

Domains. Connection Science 19/4 (2007) : 297-319.

[119] Pelikan, M., Sastry, K., and Goldberg, D.E. iBOA: The Incremental Bayesian

Optimization Algorithm. Proc. of the Genetic and Evolutionary Computation

Conference (GECCO08) (2008) : 445-456.

[120] Yang, C., and Simon, D. A New Particle Swarm Pptimization Technique. Proc of

the International Conference on Systems Engineerin 2005 (2005) : 164-169.

[121] Liu, Y., Yao, X., and Higuchi, T. Evolutionary Ensembles with Negative

Correlation Learning. IEEE Transaction on Evolutionary Computation. 4

(September 2000) : 380–387.

[122] Liu, Y., and Yao, X. Ensemble Learning via Negative Correlation. Neural

Networks 12 (1999) : 1399–1404.

[123] Kargupta, H., Deb, K., and Goldberg, D.E.Ordering genetic algorithms and

deception. Parallel Problem Solving form Nature 2(1992) : 47-56.

[124] Tae, K.S. and Lee, S.S. On cognitive role of negative schema. Lecture Notes in

Computer Science Springer 2006.

[125] Andrieu, C. et al. An Introduction to MCMC for Machine Learning. Machine

Learning 50(2003) : 5-43.

[126] Peña, J.M., Lozano, J.A., and Larrañaga, P. Globally Multimodal Problem

Optimization Via an Estimation of Distribution Algorithm Based on

Unsupervised Learning of Bayesian Networks. Journal of Evolutionary

Computation 13/1 (January 2005) : 43-66.

[127] De Jong, K.A. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. Doctoral dissertation, University of Michigan. 1975.

[128] Barahona, J., and Fonseca. The Magic Square as a Benchmark: Comparing MIP to

Improved GA and to a High Performance Minimax AI Algoritm. Proc. of

WSEAS Evolutionary Computation Conference (2005) : 486-492.

168

[129] Barahona, J., and Fonseca. From the Magic Square to the Optimization of

Networks of AGVs and from MIP to a Hybrid Algorithm and from this one to the

Evolutionary Computation. Proc. of the 5th WSEAS International Conference on

Artificial Intelligence, Knowledge Engineering and Data Bases (2006) : 117-122.

[130] Heckman, I. Empirical Analysis of Solution Guided Multi-Point Constructive

Search. Master Thesis in Computer Science. Department of Computer Science,

University of Toronto, 2007.

[131] Watkins, J.J. Across the Board: The Mathematics of Chess Problems. Princeton:

Princeton University Press, 2004.

[132] Božikovic, M., Golu, M., and Budin, L. Solving n-Queen Problem Using Global Parallel

Genetic Algorithm. Proceedings of Eurocon 2003 (2003) : 104-107.

[133] Martinjak, I., and Golub, M. Comparison of Heuristic Algorithms for the N-Queen

Problem. Proc. of International Conference on Information Technology Interfaces

(ITI 2007). (2007) : 759 – 764.

[134] Zeng, C., and Gu, T. A Novel Assembly Evolutionary Algorithm for n-Queens

Problem. Proc. of International Conference on Computational Intelligence and

Security Workshops (CISW 2007). (2007) : 171-174.

[135] Borrel, R. A Brute Force Approach to solving the Knight’s Tour Problem using

Prolog. Proc. of The World Congress in Computer Science, Computer

Engineering and Applied Computing (2009).

[136] Hingston, P., and Kendall, G. Enumerating Knight’s Tours using an Ant Colony

Algorithm Proc. of the IEEE Congress on Evolutionary Computation 2005

(2005).

[137] Cordon, O. et al. A Review on the Ant Colony Optimization Metaheuristic: Basis,

Models and New Trends. Mathware and Soft Computing 9 2/3 (2002) : 141-175.

[138] Gordon, V.S., and Slocum, T.J. The Knight’s Tour – Evolutionary vs. Depth-First

Search Proc. of the IEEE Congress on Evolutionary Computations 2004 (2004).

[139] Al-Gharaibeh, J., Qawagneh, Z., and Al-zahawi, H. Genetic Algorithms with

Heuristic – Knight’s Tour Problem. Proc. of International Conference on Genetic

and Evolutionary Methods 2007 (2007).

169

[140] Takefuji, Y. and Lee, K.-C. Finding Knight’s Tours on an MxN Chessboard with

O(MN) hysteresis McCulloch-Pitts Neurons. IEEE Transactions on Systems, Man

and Cybernetics 24/2 (1994) : 300-306.

[141] Warnsdorff, H.C.V. Des Rösselsprungs einfachste und allgemeinste Lösung

Schmalkalden (1823).

[142] Parberry, I. An Efficient Algorithm for the Knight’s Tour Problem. Discrete and

Applied Mathematics 73 (1997) : 251-260.

[143] Löbbing, M. and Wegener, I. The Number of Knight’s Tours equals

33,439,123,484,294 – Counting with Binary Decision Diagrams. Electronic

Journal of Combinatorics. 3/1 (1996) : R5.

[144] McKay, B.D. Knight's tours of an 8x8 chessboard. Doctoral Thesis. Department of

Computer Science, Australian National University. 1997.

[145] Mordecki, E. On the number of Knight's tours. Pre-publicaciones de Matematica de

la Universidad de la Republica, Uraguay (2001).

[146] Wattanapornprom, W., and Chongstitvatana, P. Multiobjective Combinatorial

Optimization with Coincidence Algorithm. Proc. of IEEE Congress on

Evolutionary Computation 2009 (CEC2009) (2009).

[147] Kirkpatrick, S.et al. Configuration Space Analysis of Traveling Salesman Problem.

Journal Physique 46 (1985) : 1277–1292.

[148] Shirrish, B., Nigel, J., and Kabuka, M.R. A Boolean Neural Network Approach for

the Traveling Salesman Problem. IEEE Transactions on Computers 42 (1993) :

1271–1278.

[149] Glover, F. Artificial Intelligence. Heuristic Frameworks and Tabu Search.

Managerial & Decision Economics 11(1990) : 365–378.

[150] Wong, R. Integer Programming Formulations of the Traveling Salesman Problem.

Proc. of IEEE International Conference of Circuits and Computers. (1980) : 149–

152.

[151] Robles, V., and Larrañaga P. Solving the Traveling Salesman Problem with EDAs.

In Estimation of Distribution Algorithm: A New Tool for Evolutionary

Computation. (2006)

170

[152] Bixby, B., and Reinelt, G. 2008 [Online] Available from:

http://softlib.rice.edu/tsplib.html. [2009, August 12]

[153] Mühlenbein, H. The Equation for Response to Selection and Its Use for Prediction.

Evolutionary Computation, 5 (1998) : 303-346.

[154] Chow, C., and Liu, C. Approximating Discrete Probability Distributions with

Dependency Trees. IEEE Transactions on Information Theory, 14 (1967) : 462-

467.

[155] Etxeberria, R., and Larranga, P. Global Optimization with Bayesian Networks.

Proc. of the 2nd Symposium on Artificial Intelligence. (CIMAF99). Special

Session on Distributions and Evolutionary Optimization. (1999) : 322-339.

[156] Larrañaga, P., Kujipers, C.M. H., Murga, R.H., Inza, I., and Dizdarevic, S. Genetic

Algorithms for the Travelling Salesman Problem: A Review of Representations

and Operators. Artificial Intelligence Review 13 (1999) : 129-170.

[157] Kumar, R., and Singh, P.K. Pareto Evolutionary Algorithm Hybridized with Local

Search for Biobjective TSP. Studies in Computational Intelligence 75 (2007) :

361-389.

[158] Jackson, J.R. A Computing Procedure for a Line Balancing Problem. Management

Science 2/3 (1956) : 261-271.

[159] Hwang, R. K., Katayama, H., and Gen, M. U-shaped assembly line balancing

problem with genetic algorithm. International Journal of Production Research,

46/16 (2008) : 4637-4649.

[160] Sirovetnukul, R. Multi-Objective Worker Allocation in U-Shaped Assembly Lines.

Doctoral dissertation Faculty of Engineering, Chulalongkorn University 2010.

[161] Kidarn, S. Application of Mimetic Algorithms for Multi-Objective Balancing

Problem on Mixed-Model U-Shaped Assembly Line with Parallel Workstation in

JIT Production Systems. Master thesis Faculty of Engineering, Chulalongkorn

University 2010.

[162] Jirakomate, C. Application of Mimetic Algorithms for Multi-Objective Worker

Allocation in U-Shaped Assembly Lines. Master thesis Faculty of Engineering,

Chulalongkorn University 2010.

171

[163] Chimklay, P. Application of Particle Swarm Optimization Algorithms for Multi-

Objective Balancing Problem on Mixed-Model Two-Side Assembly Line. Master

thesis Faculty of Engineering, Chulalongkorn University 2010.

[164] Olanwichai, P. Application of Mimetic Algorithms for Multi-Objective Balancing

Problem on Mixed-Model U-Shaped Assembly Line in JIT Production Systems.

Master thesis Faculty of Engineering, Chulalongkorn University 2008.

[165] Kampirom, N. Application of Mimetic Algorithms for Multi-Objective Sequencing

Problem on Mixed-Model U-Shaped Assembly Line in JIT Production Systems.

Master thesis Faculty of Engineering, Chulalongkorn University 2008.

172

VITA

 Mr. Warin Wattanapornprom was born on September 24, 1978 in Bangkok,

Thailand. He earned his Bachelor of Science in Information Technology from

Sirindhorn International Institute of Technology, Thammasat University in 1999.

After he graduated his Master degree in Computer Science from Chulalongkorn

University in 2003, he had worked as a Chief Information Officer (CIO) at Thai

Ocean Industries Co.,Ltd. His research interests are metaheuristics, supply chain

management, parallel computing, robotics, production line balancing, sequencing and

scheduling.

 During his doctoral study at Chulalongkorn University, he presented two

international conference papers at the IEEE International Congress on Evolutionary

Computation (CEC2008) at Norway in 2008 and Genetic and Evolutionary

Computation Conference (GECCO2011) at Ireland in 2011. At present, he works as a

Chief Information Officer at Thai Ocean Industries Co.,Ltd. His email address is

yongkrub@gmail.com. His mobile phone is 080-935-6789.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 General Background
	1.2 Problem Difficulties for Combinatorial Optimizations
	1.3 Research Motivation
	1.4 Doctoral Framework
	1.5 Research Objectives
	1.6 Scope of the Study
	1.7 Research Contributions
	1.8 Dissertation Structure

	CHAPTER II METAHEURISTICS FOR COMBINATORIALOPTIMIZATION
	2.1 Introduction
	2.2 Single-Solution Based Algorithms
	2.3 Population Based Algorithms
	2.4 Multi-Objective Combinatorial Optimization
	2.5 Chapter Summary

	CHAPTER III NEGATIVE KNOWLEDGE
	3.1 Introduction
	3.2 Negative Knowledge
	3.3 Related Concepts and Methodologies
	3.4 Schema Theorem and Order Schema
	3.5 Negative Order Schema
	3.6 Applying the Negative Knowledge in Optimization
	3.7 Chapter Summary

	CHAPTER IV COINCIDENCE ALGORITHM
	4.1 Introduction
	4.2 Coincidence Algorithm
	4.3 Multiobjective Coincidence Algorithm
	4.4 Discussion
	4.5 Chapter Summary

	CHAPTER V EMPIRICAL ANALYSIS
	5.1 Introduction
	5.2 Magic Square
	5.3 Combination chess puzzle
	5.4 Knight’s tour
	5.5 Discussion
	5.6 Chapter Summary

	CHAPTER VI REAL WORLD APPLICATIONS
	6.1 Introduction
	6.2 Travelling Salesperson Problem
	6.3 U-Shape Assembly Line Balancing Problem
	6.4 U-Shape Assembly Line Sequencing Problem
	6.5 Discussion
	6.6 Chapter Summary

	CHAPTER VII CONCLUSION
	7.1 Conclusion
	7.2 Recommendation for Future Research

	References
	Vita

	Button3:

