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CHAPTER I

INTRODUCTION

1.1 General Background

Combinatorial optimization plays an important role for application in real world
problems including scheduling, balancing, timetabling and routing problems, where the
domains of feasible solutions are discretei. Combinatorial problems are intriguing as they
are easy to state but often vety difficult to solve. There is no algorithm exists to find the
optimal solution to these elasses 0f problems within polynomial time. Moreover, these
optimization problems cama' have' both sihgie ot multiple solutions in both single or
multiple objectives. Most of them find a r—1:a1tural mapping in permutation spaces where
mathematical programming models are inéppro_priate as they rather produce infeasible

solutions than produce feasible ones. )

The algorithm approaches to comﬁirié;’forial optimization problems can be
classified as exact and approximate, or sometimes alled stochastic and heuristics. Exact
algorithms are guaranteed-to—find-one-or-moie-optimal solutions in finite time by
systematically searching-the solution space. Unfortunatety, due to the NP-completeness
nature of the problems, the time needed to solve them may grow exponentially in the
worst case, for a“teasonable~problem|size, exact jalgorithms, are no longer feasible. To
practically solve, these “problems, “one "often has” to" satisfied with finding good
approximately . solutions within _a  given _reasonable polynomial time. Therefore
approximate! algorithms. or. sometimes. called| metaheuristics "arel_more preferable.
Normally, approximate algorithms cannot guarantee optimality of the solutions, anyhow,

in many cases, they are able to find optimal solutions in short computation time.

Over the past few decades, many metaheuristics algorithms have been designed
and applied to a wide variety of combinatorial problems. Unfortunately, the scalability of

such algorithms has been very poorly investigated. Since many of them use ad hoc



techniques for both representations and operators, they do not scale up. While, typical
industrial problems are often large and complex, traditional optimization methods are

expected to fail or yield inacceptable solutions.

1.2 Problem Difficulties for Combinatorial Optimizations

This dissertation addresses the ineffeetiveness’s of combinatorial optimization
methods mainly based on representation of candidate solution and its consequences when

constructive and improvement methods ate applied:

1.2.1 Cartesian and/pévmutation spaces

This section describes the difféfences between two types of problems [1]
in the discrete domain. The problems where the domains of parameters to be optimized
take on sets of independent walues belong“':!-tp Cartesian or vector spaces, while the
problems with domains that are permutationé o}items belong to permutation spaces. In
Cartesian space, the parameters are indeperi(iéhf‘from each other and the optimization
function can be represented-geometrically—in—a-multidimensional space, while the
parameters in the permutation spaces at a given position 1 the n-tupla are dependent on
all the others and constitutes the n-tupla of values differentiate one input from another.
Moreover, the parameters of“the) problems in-mappedinthe Cartesian space are directly
used as absolute, numbets in order~to evaluate a function, while the parameters of
permutation_problems are indirectly used, In ordet to evaluate a function, one or more
properties‘ofithe items are used. In addition, the properties.of an'item.can depend on an
absolute position of the item or a position related to the other items. Example 1.1 and 1.2
exemplify the different between the optimization function in discrete Cartesian space and
the optimization function in the permutation space. Particularly, the example 1.2 show
the indirectly use of the parameters in which the values of the input items depend on their

absolute positions.



Example 1.1: A two variable function to optimize (Discrete Cartesian

space)
Flo,y) = (x—*—(x—y)° (1.1)

wherex € [0..5],y €[1..4]

Example 1.2: A th , nction described by a permutation
(Discrete pe , ’
/ :
Q(x, : \Py) + z X Pz) (1.2)

Fxy)
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Table 1.1 Value of Q(x,y,2) : Q(1,2,2),Q(1,1,3),Q(3,3,2) ... etc. are non-valid

permutations

Value

1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

Q(x,y,z) | 14449 | 1+6+6 | 24249 | 2+6+3 | 3+2+6 | 3+4+3

=14 =13 =13 =11 =11 =10




Consequently, in combinatorial problems, the concept of distance between
different coordinates seems to be senseless and cannot be applied in order to estimate or
predict the goodness of a solution. In permutation spaces, most optimization methods rely
on Proximate Optimality Principle (POP) [2] which consider the continuity of each

candidate solution based on its neighborhoods.

There are many approaches to classify metaheuristics, which will be precisely
described later in Chapter Il -in-this dissertationswe focus on the ways a solution is
generated, that are constiuetive and improvement. Constructive methods generate a
solution by joining together “pieces” or “‘components™ of a solution, while improvement
methods generate a new' solution/ from I‘_a pre-existent one and try to improve it by
modifying some of its component; C(ir;étmctive strategies are sometimes called
recombination, while improvement'strategies‘f are usually known as local search. The
constructive methods have an advantage over the improvement methods as they usually
produce more diversity of'Solations whereas the improvement methods have advantage

on the quality of solutions. J s 2%

1.2.2 Neighborhoods and their similarities

As already mentioned in section 1.2.1, combinatorial problems cannot be
represented geometrically in a multidimensional space. However, there are researches on
geometric permutations [3][4][5], which try to represent models to traverse in the
permutationtspaces..Sonmehows-geomettic pernutations are not miatute/to be applied in

metaheuristics.



In an improvement scheme, the continuity of each solution depends on its
neighborhoods. The neighbors of a solution depend on one or more move operators
defined by the dedicated algorithm. Example 1.3 illustrates two different ways to define
move operators of an order-3 permutation problem that are neighborhood based on swap
operator and neighborhood based on rotation operator. It is exemplified that using a
rotation operator alone cannot traverse to some of the solution in the search space.
However, the rotation operator preserves larger sequences of concatenated items than the
swap operator. Consequently, many researcheésmeed to design such move operator to suit

the problems.

Example 1.3..n€ighborhood for a permutation based on different move

operator

Figure 1"2/shows th;er;neighborhood of permutation s of x where
x € [4..8]; where figure (a) shows the neighborhood based on
swap @perator and (b)‘__shpws the neighborhood based on rotation
operator. The neighbors, of the solution (2,3,1) in (a) are (3,2,1),
(2,1,3), and'¢1.3.2) while in'(b) are only (1,2,3) and (3,1,2).

(2,3,1) (3,2,1) (3.2,1)
/v\ (2,3,) /\ (1,2,3)
(2,1,3) (3,1,2) ><
\A/ (2,1,3) (1,3,2)
\ALZ)

(1,2,3) (1,3,2)
(a) (b)

Figure'1.2/Example of neighborheod for a permutation problem of size 3.
(a) neighborhood based on swap operator.
(b) neighborhood based on rotation operator.
Foundations of local search methods are based on a principle called
Proximate Optimality Principle (POP) which assumes that good solutions share similar
substructure. Therefore, move operators are designed in order to generate the solutions

that are considered to share similarity in many ways which will be discussed more in the



next Chapter. Figure 1.3 illustrates two types of similarities. The highlighted blocks
indicate the similarity the two sequences are sharing. (a) indicates the similarity of items
align in the same column call absolute order while (b) indicates the similarity of the

maximum sequence found in two candidate solutions.
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Figure 1.3. Absoluteandrelative pos"jiti()hing based similarity in permutation
representation
Clearly, the “neighbo_thood"-’.b,ogcept emphasizes local search. In seeking
ever better solutions, local search methods é’iﬂloy a sensible tenet: solutions that are

similar in structure will generally: be similari;‘iin',fmless. With a little thought, especially

given that suitably good solutions tend to make up onlyrra. tiny fraction of the search
space, this implies that"it is best to search locally in the region of the best solutions found

so far.

Local s¢arch methods therefore’ work' wia' ‘exploitation of the best candidate
solutions attained! so far. That is, the structures of such candidates are exploited
constantly, ag arstemplate for-potentially bettemsolutions. Anscontrasty theve is usually little
exploration i ‘local*search. Such ‘emphasis on exploitation corresponds to a very high
selection pressure strategy, with consequent well-known pitfalls. In particular, local
search techniques are highly prone to become “trapped” at solutions that are locally
optimal, with no means of escape toward better solutions that may exist elsewhere in the

fitness landscape.



1.2.3 Recombination and disruption in permutation

representation

Constructive methods differ from improvement methods in that they
balance effort between exploitation and exploration in a way that turns out to be more
effective in many applications. In combinatorial optimization, constructive schemes
usually refer to genetic algorithms. (notiall evolutionary algorithms) The idea of crossing
over aiding the search process by recombining shost, high fitness sections of the genotype
called building blocks. The-aim of crogsing Oveinis to propagate these high fitness
building blocks throughout .the popula;ion, raising average fitness by steering the
population towards promising ar€as of the search space. Difficulties quickly arise when a
simple genetic algorithm is‘applicd. In partlicular, the encoding of a solution as a bit string
is not convenient as most'Sequences in the search space would not correspond to the
feasible solutions. Thus the permutation r'-elpresentation rather preferred in this class of
problem. However, direetly applying class1cal recomblnatlon operators such as simple
one-point or two-point crossover to permutatlons will generate solutions that are invalid
and needed to be fixed. Accordingly. specga_hzed permutation operators must be

developed. A disruption caused by a simple ch_s_@_yer is exemplified in example 1.3

Examplé 1.3 Apphication —of the one-point crossover on the two

permutation chromosomes.

Applying the one-pointicrossover operator at position 2 creates two
infeasible offspring, as illustrated in figure 1.4, none of the two offspring
is a valid permutation solution. The darker blocks indicate the redundant
compenents;“in" the offspring, which ‘are "no" loniger considered being

permutations.



Parent 1 112(|3|4|5|6|7[8]29
Parent 2 918|7|6|5]|4]|3]|2]1
Offspring 1 - 3(4|5]|6]|7 -
Offspring 2 --J' 7/6 5|43 -

Figure 1.4 Application of the one-point crossover on the two permutation chromosomes

Consequer}lfy/ yérios ap;Sroaches have been proposed to avoid the
disruption problems in pe’:;;mtatlon represen’faﬂon which can be broadly grouped into two

il

classes: (i) those that focus on 1mpr0V1ng tlge crossover operator by adjusting the overall

crossover procedure in Such agways that- 1t is less likely to disrupt any distributed

l'g4 i

o 4

knowledge stored in the geneti¢ representatw? and (i7) those that focus on improving the
genetic representation by 1mplement1ng a one‘}'g) one mapping between genotype and

phenotype so that several genet1c permutatlons. of the same phenotypic solution cannot

co-exist in the same solution. These approaches will be discussed more in detail in the

S -
- -

Chapter II. Y e

1.2.4 Degree of freedom, exploitation and exploration

According | to- the [‘convergence argument proposed by [6], the
characteristics of permutation encoding GA are (7) genetic convergence occurs during the
initial génerations afterswhich most members of the population wrll have similar genetic
representations, and therefore (i7) several significantly distinct permutations of the same
solution are unlikely to co-exist. In this case using an absolute order preservation

crossover operator is likely to produce offspring with similar fitness to their parents.



To see a better perspective, we illustrate the effect of order based
crossovers for permutation encoding GA. With a comparable decision space, a solution
encoded in permutation has much less degree of freedom than a solution encoded in
binary. For instance, an ordering problem with search space equal to 16! or 2.09228 X
103 feasible solutions would need only 16 degrees of freedom for a permutation
representation while it takes up to 64 degrees of freedom for a binary representation. Let
the feasible spaces be equivalent and let ‘the schema domination rate for a degree of

freedom be equivalent, the trend of the search spaee reduction would be in the figure 1.5.
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n generation

Figure 1.5 A comparison/of search §pace réduction’by’ périntitation ¥ binary schema at a same
schema domiination rate

Allowing the candidate solutions to be encoded in permutation rather than
binary representation would increase the convergence rate due to the higher significant
number of the degree of freedom of each candidate position. The higher order of the
permutation size indicates the higher degree of freedom. In addition, high fitness
substructures of a genotype are likely to dominate the population faster due to the

constraint of the permutation does not allow the redundancy of an item elsewhere in the
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permutation solution. This property can either be advantage or disadvantage of the
constructive method. If some absolute order substructures show more outstanding fitness
than the other, they would cause high exploitation rate, yet lack of diverse solution. On
the other hand, if the substructures show similar fitness’s at any position, the algorithm
would not be able to converge to any single optima. For these reasons, the researchers
need to take good care of the population size and the diversity of the initial population. If
the initial population is not well diversified, for especially in an ordering problem with
larger degrees of freedom, a premature convergcace can occur for any population based
method. If using an oversize population,,the algorithm would waste too many function

evaluations in exploring thessearch-space.
1.2.5 Building blocks and linkage learning

Further, when crossover is;:c:amployed as a variation operator, the GA
increasingly samples combinations of buildiné blocks, possibly discovering new ones as
a result[7]. There is, however, much debatej'_over this hypothesis. For example, in some
problems there are verifiably no building blecks at the genotype level [8] and has been
shown to be somewhat problem dependent. ﬁééfﬁ’ite the lack of building blocks in some
problems, crossover may still be-afi effective Seérch operator. Accordingly, this implies
that crossover operators.are.able to have beneficial cfieets that do not involve the
recombination of buildiig blocks. It is shown that for miany problems where crossover
was believed to be t€combining building blocks, it was in fact performing a

macromutation [9] 10].

Additionally, other aspects of how genetic algorithms work have been
question€d With”the” tesult:that’ long-held ‘piinciples thave beeniShowh to be false or
incomplete. Jones [11] presents a means by which the possible existence of building
blocks in a genotype can be ascertained in a less ambiguous manner than with previous
methods. The problem is first attempted using a process of proportional selection and
crossover, then compared to the same process using random crossover. The aim is to
disrupt the building blocks (if any are indeed present) using the random crossover

operator and see how performance is affected. Random crossover entails performing
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crossover on one fit individual and a randomly generated individual. Given that the
second parent has been generated randomly, its fitness will on average be very low.
Combining a fit individual with a random individual effectively removes the implicit
information sharing offered by a population which clearly violates the idea of crossover.
If this approach is at least as effective as traditional crossover then it suggests that we do

not require the idea of crossover, but that its mechanics may be effective.

At first sight this lack of empiriCal-evidence may seem odd, in particular
because the permutation problem appears to encapsulate the reasonable claim that it usually
makes little sense to recombine andividuals who are genetically very dissimilar. As Watson
and Pollack [12] point out that “parents selected from two different fitness peaks are likely to
produce an offspring that dands in ithe vayéj/ in between”. For this reason, constructive
methods for permutation problems are not rec'-J:eiving good attention by many researchers.

In addition to the building Jbiep,k hypothesis, Holland [13] has also
suggested that operators learning finkage i_@(_ir-_mation to recombine alleles might be
necessary for genetic algorithni sﬁccess. AftérW;rd; many methods have been developed
to solve the linkage prdblem. The linkage model can be irhplicit [14] or explicit [15],
probabilistic [16] (probabilistic model building geneti¢c algorithms), or estimation of
distribution algorithm [17}. Unfortunately, most of the works are based on binary and
continuous représentation. The outstanding ‘algorithms used to solve the problem in
permutation representation domains are Edge histogram based sampling Algorithms
(EHBSAS) {18} and) Node' histogram based” sampling (Algorithms (NHBSAs) [19]
proposed by Tsutsui.
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1.3 Research Motivations

Over a few decades, many metaheuristics have been proposed in order to solve
both single and multiple objective combinatorial optimization problems especially those
which can be represented in permutation. However, many researches turn to be somewhat
problems dependent. For example, local search methods need well designed move
operators in order to produce effective neighborhoods or genetic algorithms need
different appropriate crossover operators to many specific problems. Even though most
metaheuristics rely on either” Proximate Optimality Principle (POP) [2] or Building
Blocks Hypothesis (BBH) [7], anyhow, diie to the constraint of the representation, linkage
learning models are rarely been applied: The only few metaheuristics considered to learn
the linkage of the substruciire €ontained in the solutions are Ant Colony Optimization
algorithms (ACO)[20], Edge Histogram Based Sampling Algorithms (EHBSA)[18] and
Node Histogram Based Sampling Algorithni_iv (NHBSA)[19].

The motivation of this research maiﬁi&_p’ased on a question whether the below
average solutions that population based meﬁﬁgﬁrisﬁcs usually discard contain useful
information and can bewsed in ndﬁtrimization ornz)t As a result, we raise a model capable
to learn the linkage of/bad substructures in order to produce solutions not containing
them. We propose a hypothesis called a Negative Building Block Hypothesis (NBBH)
simply states that “An dlgorithm can seeks _new-optimal performance by avoiding the
Jjuxtaposition ofayshort," low-order,  low-performance* schemiata, called the negative
building blocks” “Further, we expect this hypothesis could fulfill as a counterpart of the
BBH.
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1.4 Doctoral Framework

According to Bassett’s observation [21] that the crossover operator works in the
problems in which there is no building blocks exist in the genotype level, we suspect that
there might be bad building blocks that the crossover operator might filter out in order to
form the better solutions. From this observation, we propose the Negative Building Block
Hypothesis (NBBH) and try to test this hypothesis using a simple scientific method. This
doctoral framework is as follows: literature Sufveying, making hypothesis, design and

perform experiments to test the hypothesis and eonclude the results.

1.5 Research Objectives

The research objeetives are 1o develop a new evelutionary algorithm for single
and multiple objectives cembinatorial optifflization problems and to study the role of
applying negative knowledge in evelutionary algorithm for combinatorial optimization
problems.

1.6 Scope of the Study

This research proposed. to utilize ,tiﬁg/#ncgative knowledge in combinatorial
optimization; however, limited to the design, implementation and testing of edge based
EDAs. The benchmarks in this research include multimedal artificial combinatorial

problems and some real world applications.

Some broadrissues) are ignored dnthe secoperof-thesstudy and can be developed

further.

I'; The studies of negative knowledge ‘in the absolute erder such as the node
based estimation of distribution algorithms.

2. The studies of negative knowledge in the geometry based algorithm.

3. The studies of parameter tuning of such algorithm.

4. The studies of local search and hybridization with other metaheuristics.
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1.7 Research Contributions

The outcomes derived from this research include:

1. The first contribution of this research is a new estimation of distribution
algorithm (EDA) based on permutation representation call Coincidence Algorithm
(COIN) which is naturally more suitable with most combinatorial problems. This
contribution is twofold. (i) a probabilistic medel based on Markov chain matrix and (ii)

an incremental learning method that allow ncgative correlation learning of the samples.

2. The second contribution is a negative building block hypothesis (NBBH)
simply state that “An algorithm.€an seeks new-optimal performance by avoiding the

Juxtaposition of short, low-order, low-performance schemata, called the negative

building blocks”

3. Thirdly, a set of'benchmark to 't.esf the performance of algorithm in solving
globally multimodal optimization problemé'____ir;_cluding both permutation and selection
problems. In addition, an altenative method_.—ft(_)rsolve the fix-size combination problems
which most metaheuristics ar¢ nof-able to sol\é is'also proposed. The results indicate that
negative correlation learning capability contrib’ujes in both quantity and quality of the
solutions, however, depends mainly on the quantity of building blocks being shared and
the quantity of buildirig'blocks being in conflict. The msight discussion can be seen in the

Chapter V.

4. As a highlight, the roles of negative correlation learnmg specific in edge based

EDA are extractedjas followed:

1)/ The negative knowledge forces the algorithm to explore out of the search
space marked as forbidden areas.

2) The negative knowledge helps the algorithm to produce more diverse
solutions, however dissimilar to the solutions considered to be bad quality.

3) In cooperating with the positive knowledge, the negative knowledge

contributes in discrimination of good and bad substructure.
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4) The negative knowledge should enhance a constructive algorithm to

recognize better substructures and to compose better solutions.

5. Finally, the most important contribution is the extension of COIN in solving
multi-objective problems by applying the non-dominated sorting and crowding distance
adopted from NSGA-II. The new algorithm was test in several real world problems. The
results state that multi-objective wversion i of COIN can defeat NSGA-II for all

performance indicators.

1.8 Dissertation Structure

The outline of ‘this/dissertation isi:organized as follows. Chapter I states the
general background, objective, scope of s’;nQy,_ and contributions. The state of the art
algorithms are reviewed in Chaptér ﬁ. The :éééétive knowledge which is the inspiration
of this research is presented in Chapter HI::IJEIC proposed algorithm is presented in
Chapter IV. In Chapter V, a set of empiric_i_;iu_ldy are discussed. Then we show the
application of the proposed algéﬁthm in soiﬂe real world applications in Chapter VI.
Finally, the conclusions and discussions of this research.afe presented and the future

directions are also suggested in Chapter VII.



CHAPTER 11
METAHEURISTICS FOR
COMBINATORIAL OPTIMIZATION

2.1 Introduction

This chapter provides some necessary knowledge on solution methodologies
for solving both single and multi-objective gombinatorial problems. However, this
dissertation focuses on the methods which apply te the permutation representation,
which is naturally more suitable with combinatorial problems. The solution
methodologies involving.ihe transformation of representations are not in the scope of

the review.

This chapter can beg divided into tWo/main parts. The first part is the review of
the state of the art algorithms that are designed to solve combinatorial problems. The
second part is the additional techniques needed to solve the problems with multi-

objectives. il

2.1.1 Combinatorial Optimization
Combinatorial optimization problems (COPs) [22] are characterized by
the consideration of a seleetion or permutation of a finite or a countable discrete set of
structures. This class of problems arises incmany areas of pure mathematics, notably

in algebra, probability theory, topology and geometry.

In order to prevent the ambiguous of the term “Combinatorial
optimization problems” with any other literatures, we should first define this term
[23]. A combinatorial optimization problem is either a minimization problem or a

maximization problem with an associated set of instances.
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Definition 2.1: Combinatorial Optimization Problem

An instance of a combinatorial optimization problem is
a pair (S,f) where S is the finite set of candidate solutions and
f:S - Ris a function which assign to every x € S a value f(x) where
x = (xq1,...,x;) is a feasible solution belong to the discrete solution

set S. f(x) is also called an objective function.

Combinatorial optimization considers the following problem:

Definition 2.2; Combinatorial Optimization is defined by

Z(S) Fi minxeS f(X) (21)

wherg! xf = (% ...;;xk) 1s a feasible solution belong to the
discrete solution set S, ush_ahy called the decision space or solution
space. The function f maﬁs-'S‘? to R is called the objective function.
Therefore f(x) describes thfépbjective function value of the solution

Ad

X. —

2.1.2 Solution Methods for Combinatorial Problems
According fo Talbi[24], combinatorial optimiZation is a special class of
optimization distinct from the mathematical programming models. Nevertheless,
many iteratures ,econsider, thiseclass jof poptinmzations as=a ssubelass of integer
programming. This class of problems’is characterized by discrete decision variables
and a finite search space, moreover, the objective function and constraints may take

any form[25]. Figure 2.1 shows the classification of optimization models.
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Optimization models

v ‘ v

Combinatorial Mathematical programming Constraint satisfaction
optimization models models
Permutation Combination
A 4 ¥ A 4
Continuous Integers Mixed

|
v -

Linear Nonlinear

Figure 21 Classical optimization models [24]

As mentioned’ in Chaptef‘-" I; the COPs are different from the
mathematical programming probleiis as the Dptlmlze variables are usually indirectly
used in order to evaluate a function. Therefore the solution methodologies are also
different to those mathematical programmmg models. In,addition, many state of the
art algorithms appliedto different representations such as evolution strategy,
differential evolution and most estimation of distribiition algorithms (EDA) are
inappropriate to solve these kinds of problems.

The) algorithms™to solvie/ combindtérial problemis can be divided into
two classes called exact algorithms and approximate algorithms.

2.1.2.1 Exact algorithms

The exactalgorithms ‘are désigned-to find'the-eptimal solution
to the combinatorial problems. They are usually computationally expensive because
they must (implicitly) consider all solutions in order to identify the optimum. These
exact algorithms are typically derived from the integer linear programming (ILP) [26].
Branch and X (refer to Branch and Bound, Branch and Cut and Branch and Price and
more variation) algorithms are commonly used to find an optimal solution to many
combinatorial problems, however in many cases, partial fitness cannot be determined,

thereby, without a heuristic to guide a search, such methods are not applicable.
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2.1.2.2 Approximate algorithms

Many COPs are belonging to the class of NP-hard optimization
problems [27]. This means that there the algorithms that guarantee to find the optimal
solution within bounded time or exact algorithms might require the exponential
computational time. Therefore, running an exact algorithm for hours on a powerful
computer may not be very cost-effective. Accordingly, heuristic or approximate
algorithms are often preferred to exact algorithms for solving the COPs. Heuristic
strategies are receiving more and more infercst as«they can find the reasonable good
solution (but not necessarily-an optimal one) compared to the given computational
time.

The term*“heuristic” derives from the Greek verb “heuriskein”
(evpioxerv) which means %o find’? or “te discover™ it is'in optimization not so much
used to describe how to find as how to séarch for good solutions [28]. Generally, the
exact algorithms can apply heuristic straté_gies, for example, to guide the search in a
branch and bound procedure. However, thé' term heuristic is preferred to denote the
approximate algorithm. There atre mainljﬁt two types of heuristics, “Constructive
Algorithms” and “Improvement Algorithms’;tC!l(f;nstmctive algorithms build a solution
by joining together. ‘pieces” or “comporié:ﬁ't's“"s of .a solution, while Improvement
algorithms start from-a pre=existent sotution-and try to-miprove it by modifying some
of its component. Some heuristics algorithm combines both constructive and
improvement strategies altogether, we call these algorithms “Composite Algorithms”,
“Hybrid Algonithnis’) or {‘MenieticiAlgorithins’ ) These compeosite algorithms are now
the most powerful heuristics for solving COPs.” Among the new generation of
composite heuristics, the.most outstanding, ones-are the CCAQ “heuristic [29], the
iterated ' Lin-Kernighan ! heuwistic® [30][31], 'and ‘the'~GENIUS - heuristic [32].
Unfortunately, most of the algorithms are problem-specific and are not in the scope of
review. Somehow, they usually combine the existing constructive and improvement

strategies found in this chapter.
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The Greek suffix “meta” used in the word metaheuristics
means “beyond, in an upper level”. The term “metaheuristics” was first used by
Glover [33] to describe a heuristic that is superimposed on another heuristic.
Generally speaking, metaheuristics are algorithms that combine heuristics (that are

usually problem specific solvers) in a more general framework.

According to Blum and Roli [34], metaheuristics are high level
concepts for exploring search spaces by using different strategies. These strategies
should be chosen in such a way that a’dynamic balance is given between the
exploitation of the accumulated search experienee and the exploration of the search
space. This balance is neeessary.on one side to quickly identify regions in the search
space with high qualityssolutions and on the other side not to waste too much time in

regions of the search space which are either already explored or don’t provide high

quality solutions.

The different metaﬁc;ur_istics approaches can be characterized
by different aspects concerming the search, path they follow or how memory is
exploited. In this section, we diseuss these é_épétts according to some general criteria
which may be used to classify ‘the preéehjed algorithms. For a more formal
classification of local search algorithms based on an abstract algorithmic skeleton we
refer to [34].

Frajectory methods vs. discontinuous methods: An

important_ distinction” between  different metaheuristics is

whether they follow one single search trajectory corresponding
to a closed walk on the neighborhood graphsor whether larger

jumps in the neighborhood graph are allowed.

Population-based vs. single-point search: Related to the
distinction between trajectory methods and discontinuous walk
methods is the use of a population of search points or the use of
one single search point. In the latter case only one single

solution is manipulated at each iteration of the algorithm.



21

Memory usage vs. memoryless methods: Another possible
characteristic of metaheuristics is the use of the search

experience (memory, in the widest sense) to influence the

future search direction.

borhood structures: Most local search

single neighborhood structure

inspiration: A minor point
metaheuristics is to take into account
‘ ati n.’Many methods are actually
Qccu u\; phenomena. The algorithmic
e ad antage of these phenomena for the

atorial optimization problems.

]
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2.2 Single-Solution Based Algorithms
2.2.1 Neighborhood and local search

Local search seems to be the oldest and simplest metaheuristics
method [25,35]. It starts at a given initial solution. At each iteration, the heuristic
replaces the current solution by a neighbor that improves the objective function. The
search stops when all candidate neighbors are worse than the current solution,
meaning that a local optimum is reached. For large neighborhoods, the candidate
solutions may be a subset of the neighborhood: The main objective of this restricted
neighborhood strategy is to speed up the seaich..Variants of LS may be distinguished
according to the order in which™ the neighboring solutions are generated
(deterministic/stochastic) and” the selection strategy (selection of the neighboring

solution).

PROCEDUR@FBagi glio€alSearch
1. s <- GenerateInitialSélution()

2. Repeat

3. s <-"Impdotai¢Ni(s)Y) 1&

4., Until ne improvement ié'bbééible

Algorithin 2.1: Basic Local Seaich

Definition 2.4: The neighborhood of a permutation [35]
The neighborhoods N(s) of a permutation string s is represented by
the et {s/d (s7,8) £ €} whered representsa given distance that is

related to the move operator.

Definition 2.5: A locally minimal solution (or local minimum) [35]
with respect to a neighborhood structure N is a solution § such that
Vs € NS): f(§) < f(s). We call §a strict locally minimal
solution if f (8) < f (s)V s € N(%).
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2.2.1.1 Move operators
For permutation-based representations, a usual neighborhood is
based on the swap operator that consists in exchanging or swapping the position of
two items §; and §; of the permutation. For a permutation of size n, the size of this

neighborhood is n(n — 1) /2.

How. A SWa op\eralo ight not be able to produce the
neighborhoods that share someSimilarity apa e absolute positioning of items.

For instance, the insertionfopera ;ﬁhdii/mi";i n figure 2.3 preserves both absolute and

"wﬁ.

relative similarities. Figure !‘ : s_. crator which preserve relative

similarity and Figure 2.5 she ; h is a generalization version

AU EREYSNER
| v
9 A EERITAR T A

Figure 2.4 Rotation operator

Figure 2.5 Inversion operator
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2.2.1.2 Selection of the Neighbor

There are many strategies to select a better neighbor [24][35]
including best improvement, first improvement and random select. A compromise in
terms of quality of solutions and search time may consist in using the first
improvement strategy when the initial solution is randomly generated and the best
improvement strategy when the initial solution is generated using a greedy procedure.
In practice, on many applications, it has been observed that the first improvement
strategy leads to the same quality of solutions as the best improving strategy while
using a smaller computational time. Morcover, the probability of premature

convergence to a local optima s less importanitin-the first improvement strategy.

lnwgenerals local 'search is a very easy method to design and
implement and gives fairly good soluticlj_ns very quickly. This is why it is a widely
used optimization method n‘practice. Ori_é' of the main disadvantages of LS is that it
converges toward local optima. MOreove"rl;., the algorithm can be very sensitive to the
initial solution; that is, a large Variabilityf)f_' the quality of solutions may be obtained
for some problems. Addifionally, there is no.means to estimate the relative error from
the global optimum and the number of iteiétﬁ‘dns performed may not be known in
advance. Even if the complexity is accepta:bl’e_'-,»the worst case complexity of LS is
exponential. Local gearch works well if there are not too.many local optima in the

search space or the quality of the different local optima is more or less similar.

As already mentioned in_the-Chapter I that the main disadvantage of
local search algorithims.is the convergence towatd local optima, many alternatives

algorithms have been proposed to avoid becoming.stuck at local optima.
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2.2.2 Simulated annealing

Simulated annealing (SA) emerges from the work of Kirkpatrick et al.
[36] and Cerny [37]. Previously, SA has been applied to graph partitioning [36] and
VLSI design [37]. In the 1980s, SA had a major impact on the field of heuristic search
because of its simplicity and efficiency in solving combinatorial optimization
problems. Then, it has been extended to deal with continuous optimization problems
[38][39].

SA is based on the principles of statistical mechanics whereby the
annealing process requires heating and thesSlewly cooling a substance to obtain a
strong crystalline structure. The strength of the structure depends on the rate of
cooling metals. If the imitial temperature is not sufficiently high or a fast cooling is
applied, imperfections«(metastable states|) are obtained. In this case, the cooling solid
will not attain thermal*equilibrium at é,a(_;h temperature. Strong crystals are grown
from careful and slow gooling, The SA élgorithm simulates the energy changes in a
system subjected to acoolingprocess untii,- itd-(:onverges to an equilibrium state (steady
frozen state).

Table 2.1 Analogy between the physical S}’zstem and the optimization problem [24]

Physical System 'TO-fJﬁmization Problem
System state =~ “/“Selution

Moleeular positions Decision variables
Energy Objective function
Ground state Global optimal solution
Metastablesstate Local optimum

Rapid quenching Local search
Temperature Control parameter T
Carefullainealing Simulateéd anniealing

Table 2.1 illustrates the analogy between the physical system and the
optimization problem. The objective function of the problem is analogous to the
energy state of the system. A solution of the optimization problem corresponds to a
system state. The decision variables associated with a solution of the problem are
analogous to the molecular positions. The global optimum corresponds to the ground
state of the system. Finding a local minimum implies that a metastable state has been

reached.
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SA is a stochastic algorithm that enables under some conditions the
degradation of a solution. The objective is to escape from local optima and to delay
the convergence. From an initial solution, SA proceeds in several iterations. At each
iteration, a random neighbor is generated. Moves that improve the cost function are
always accepted. Otherwise, the neighbor is selected with a given probability that
depends on the current temperature and the amount of degradation AE of the objective
function. AE represents the difference in the objective value (energy) between the
current solution and the generated neighboring solution. As the algorithm progresses,
the probability that such moves are accepied decreases. This probability follows, in
general, the Boltzmann distribution:

F(s))-Fe
PULE, D\=e T (2.2)

|
It uses a eontrol parameter, called temperature, to determine the
probability of accepting nonimproying so_Iutj_Qns. At a particular level of temperature,
many trials are explored. Once an equilibrium state is reached, the temperature is
gradually decreased According to'a cool-_iﬁ;gﬂschedule such that few nonimproving
solutions are accepted at the'end o’f the sé£f5hﬁ..‘Algorithm 2.2 describes the template

of the SA algorithm. : T

PROCEDURE -SimulatedAnnealing
1. s <—'GenerateInitialSolution()

2. Initialize Temperature gl

3. Répeat

4. select awrandom .,solutdon v.from. Neighborhood (x)

5. if f(y) > f£(x) then x <=y

6. else if exp((f(y)-f(x))/Temp) < random[0;1] then x <- vy
7. if f(x) > BestFx then {BestX <- x and BestFx <- f(x)}
8. Update (Temp)

9. Until Termination Condition is met

Algorithm 2.2: Simulated Annealing
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2.2.3 Iterated Local Search

A major problem for local search algorithms is that they may get
trapped in local optima in the search space. In such a situation, an action should take
place that allows the local search to leave local minima and to continue the search for
possibly better solutions. One straightforward possibility is to modify the current
locally optimal solution s using a modification larger than those used in the local
search algorithm. The application of such a move yields some intermediate solution
so beyond the neighborhood searched by ithe local search algorithm and allows to
leave local minima. The local search is then'coentinued from s,. Iterated local search
(ILS) [30][40] systematically uses this idea to solve combinatorial optimization
problems. In ILS a local'search-algorithm is applicd repeatedly from initial solutions

obtained by modifications toione of the previously visited locally optimal solutions.

ILS isga simple, yet _;plowerful metaheuristic to improve the
performance of local search algorithms: IThe simplicity stems from the underlying
principle and the fact that only. few line;-_ofr code have to be added to an already
existing local search procedure o impleﬁient an ILS algorithm. ILS also can be
expected to perform better than'to restart loc:éi tééarch from a new, randomly generated
solution. This is emphasized by the fact thai‘-’fES'algorithms are currently among the
best performing approximation—inethods—{0i—inany -combinatorial optimization

problems like the traveling salesman problem [40].

To apply jan IS, algorithm-te, &y given, preblem, three “ingredients”
have to be defined. 'One is*a procedure ‘Modity, that perturbs the current solution s
(usually a local optimum) leading to some intermiediate solution's0. We will refer to
the perturbation also as kicksmove. in-the following. Next, LacalSearch is applied
taking sO to a local minimum s00. Finally, one has to decide which solution should be
chosen for the next modification step. This decision is made according to an
AcceptanceCriterion that takes into account the previous solution s, the new candidate

solution s00 and possibly the search history.
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PROCEDURE IterateLocalSearch

1. generate initial solution s

2. s <- LocalSearch(s)

3. sBest <- s

4. repeat

5. s’ <- Modify(s,history)
6. s” <- LocalSearch (sf)
7. if (f(s”)<f(sBest)l)) then sBest <- s”

8. Until Temminafion /[CoOnditien is met

Algorithm 28" lt€rated Local Search

a3 |

2.2.4 Tabu Seareh = 1 4

Tabu search (TS) is an itef‘ative local search metaheuristic [33,2]. The
most distinctive feature of TS co}npared té*bfﬁer metaheuristics is the systematic use
of a memory to guide the search process For the detail discussions of its features, we
refer to the recently pubhshed book by Glover and Laguna [2].

The fdoé"i widely applied feature of Tabu search is the use of a short
term memory to escap'_e from local minima. TS typically uses an aggressive local
search that in each step tries to make the best possible move from s to a neighbor s,
even if that move worsens the objective function value. To prevent the local search to
immediately return to a previously visited solution and to avoid cycling, moves to
recently" visited" schutions jare” forbiddent (This «Can’ belimpleniented by explicitly
memorizing previously visited solutions and forbidding moving to those. More
commonly, reversing recent moves is forbidden by disallowing the introduction of
move attributes to a solution. In particular, reverse moves are forbidden for tl
iterations; the parameter tl is called the fabu tenure. Forbidding possible moves has
the same effect as restricting dynamically the neighborhood N(s) of the current
solution s to a subset of admissible solutions. Thus, Tabu search can also be

considered as a dynamic neighborhood search technique. Yet, the Tabu conditions
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may be too restrictive and they may forbid moves to attractive, unvisited solutions.
Aspiration criteria are used to override the tabu status of certain moves and to avoid
such situations. Most commonly, the aspiration criterion drops the tabu status of

moves leading to a better solution than the best one visited so far.

PROCEDURE TabuSearch

1. Find a feasible solution x

2. BestX <- x and Bestfx <- f(x) and TabulList <- {}

3. Repeat
4., y <swAromax.{f(y)| | y € Neighbor (x)AMoveAttribute(x,y) &
Tabulist}
L
5. if@length (€ 1) /> TabulistLength then remove the oldElement

from Tabuliist g

6. add MoveAttribute(y}x)‘as the newest element to TabulList
7. X <- ¥ ‘

¥,

‘Jd_a‘
8. if £(x)F > JBesStix then}TiﬁestX <- x and BestFx <- f(x) }

9. Until Terminetign Condiiieh’is met

Algorithm 2.4: Tabu Search

To increase the efficiency of Tabu seareh, techniques exploiting the
long-term memory.of the search process.are used. These methods are used to achieve
intensification' or /diversification lof the Search Iprocess.! Intensification strategies
correspond to efforts of revisiting promising regions of the search space either by
recoveting ¢lite solutions (that is, the best'solutions obtained s 'far) or attributes of
these solutions. Diversification refers to exploring new search space regions
corresponding to the introduction of new attribute combinations. Many long term
memory strategies in the context of TS are based on a frequency memory on the

occurrence of solution attributes.
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TS appears to be one of the most successful metaheuristics. For many
problems, TS implementations are among the algorithms giving the best tradeoff

between solution quality and the computation-time required [41,42].

2.2.5 GRASP

Greedy randomized adaptive search procedures (GRASP) [43][44]
allow escaping from local minima by generating new starting solutions. Each GRASP
iteration consists of two phases, a construction phase and a local search phase. In the
construction phase a solution is construeted fiom scratch, adding one solution
component at a time. At.each construction iteration-the components to be added are
contained in a restricted candidate list which is dcfined according to a greedy
function. However, not ngeessarily the‘l best component is added. Instead, in each
solution constructionstep Ong’ of the components of the restricted candidate list is
chosen at random acgording fo a-uniform distribution. The algorithm is called
adaptive because the greedy, funct‘i-lon valt?if; Jfor each component is updated reflecting
the changes due to the preyiously added cc_);ﬁipénent. The constructed solutions are not
guaranteed to be locally optimal Wifh respécf%_jto some simple neighborhood definition.

#e 2 4

Hence, in the second phase local search is applicd to improve solutions.

Il

PROCEDURE GRASP

1. geﬁefate initial solution s

2. repeat

s s K- ConstructGreedyRandomiizeSolution ()
4. s’ <- LocalSearch (s)
5. if "f(s’?) < f(sBest) then sBest <= s’

6. Until Termination Condition is met

Algorithm 2.5: GRASP
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2.3 Population-Based Algorithms

2.3.1 Genetic Algorithms

Genetic algorithm (GA) [13][7] is a specific type of evolutionary
algorithms [45]. Evolutionary algorithms are population-based, adaptive search
algorithms designed to attack optimization problems. They are inspired by models of
natural evolution of species and use the principle of natural selection which favors
individuals that are more adapted to a specific environment for survival and further
evolution. Each individual in an evelutionary algorithm typically represents a solution
with an associated fitness walue. The thie€ .main operators used are selection,
mutation, and recombination. Selection prefers fitter individuals to be chosen for the
next generation and for the.application of the mutation and recombination operator.
Mutation is a unary operator that introduces random modifications to an individual.
Recombination combines the genefie material of two individuals, also called parents,
by means of a crossover operator to genefétq_new individuals, called offsprings.

The thrge main algoritﬁmic developments within the field of
evolutionary algorithms are genctic algori‘fhﬁls, evolution strategies [46] [47] and
evolutionary programming [48}. Théé%_f;‘qlgorithms have been developed
independently and, although these algorithm:sgfl initially have been proposed in the
sixties and seventiesy, only in the beginnir.lg;_(_)-f_ the ninegies the researchers became
aware of the common underlying principles of these approaches [45]. (For a detailed
discussion of similarities and differences between these approaches we refer to [45].)
Here we focus on genetic algorithms since they appear to be the best suited
evolutionary algorithms for ¢ombinatorial ‘optimization problems, which are the target
of this dissertation. Evolution strategies and evolutionary programming differ from
genetic~algorithms~by representing | solutions~directlyasy real, valued jparameters (in
case of genetic algorithm applications'to continuous parameter optimization problems
the numbers are coded in binary form) and the much stronger reliance on mutation as
a primary search operator. Indeed, in evolutionary programming only mutation is used

for modifying solutions.

In the first GA applications, individuals were represented by bit strings

of fixed length [13]. Yet, this type of representation proved to be insufficient to
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efficiently attack certain types of combinatorial problems [49] like permutation
problems. Therefore, for such problems usually more general, problem specific
encodings are applied. The crossover operator is usually understood as the main
operator driving the search in genetic algorithms. The idea of crossover is to exchange
useful information between two individuals and in this way to generate a hopefully
better offspring. Mutation is understood as a background operator which introduces
small, random modifications to an individual. Yet, recent results suggest that the role
of mutation has been underestimated [45]. The selection operator is used to keep the
population at a constant size, choosing prefciably individuals with higher fitness
(survival of the fittest). The eomplete cycle ofreeombination, mutation and selection

is called generation.

PROCEDURE @€net'l el gorithm

1. generaffe #higidl" popwlation p

2. repeat

3. p’ <- Recombiﬁation(ﬁ?ﬂ

4. p’ <- Muta¥ion(p) —,
5. p <= Selection(p,p')-fg;;-,

8. Until Termination Condition is met

Algorithin 2.6: Simple Genetic Algorithmi

2.3:1.1 Crossover opérators

As mentioned in Chapter I, the recombination of two
permutation..sequences, is. not straight, forward. Applying.GAS in, combinatorial
problems turns 'to’ be* somewhat ‘problem’ dependent. “Choosing ‘an inappropriate
crossover operator would not improve the populations, yet disrupt the schemas as
well. Many permutation based crossover operators have been consecutively proposed
since 1985. They are broadly categorized to preserve the schemas in the parent
solutions in three manners including absolute order, relative order and edge. The

permutation based crossover operators are reviewed as followed:
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2.3.1.1.1 Partially-mapped crossover (PMX) [50] was
first proposed by Goldberg and Lingle. This operator first randomly selects two cut
points on both parents. In order to create an offspring, the substring between the two
cut points in the first parent replaces the corresponding substring in the second parent.
Then, the inverse replacement is applied outside of the cut points, in order to
eliminate duplicates and recover all positions.

In figure 2.6, the offspring is created by first replacing
the substring 4-3-7-6 in parent 1 by the substring 1-7-5-3. Then, the redundancy items
in the parent 1 are mapped and were replaccd by the matched items in the substring.
Those are item 1 was replaced by item 4 while item 5 was replaced by item 6.
However, the item 5 wasamapped to item 7 which would be redundant to the items in
the exchanged substringas well therefore, the mapping procedure repeats until an
available item is foundaThe atem 5 ﬁnallly mapped and replaced with the item 6 in the

parent 2. A
Clearly, PMX‘tries to preserve the absolute position of
the items when they ar¢ copied from the Eqregts to the offspring. In fact, the number
of items that do not inherit their positions from one of the two parents is at most equal
to the length of the string between-the two (Etpblnts From the above example, in the
offspring 1, only item 1 and 5 de-tiot inheri_t-their absolute position from one of the

two parents.



Step 1. Select the substring

s [2]7 ISR 315
ez [+ [N+ =T

Step 2. Map the relationship

Step 3. Exchange the subs rl@i, v

Proto-Offspring

et
Proto- Offsprmgz |= 4

T

Al
Offspringl

ATa
ARIANN TN T TA &

34



35

2.3.1.1.2 Cycle crossover (CX) [51] was introduced by
Oliver. The cycle crossover focuses on subsets of items that occupy the same subset
of positions in both parents. Then, these items are copied from the first parent to the
offspring (at the same position), and the remaining positions are filled with the items
of the second parent. In this way, the position of each item is inherited from one of the
two parents, However, many edges (connection between each item) can be broken in

the process, because the initial subset of items is not necessarily located at

consecutive positions in the paren !f /
‘ r to construct offspring 1, the

subset of items {2,9, e subse ’Wg positions {1,7,8} in both parents.
Hence, an offspring i N PO » -7, and 8 with the items found

in the parent 1, and fili he items found in the parent 2.

ﬂuﬂfmﬂmwmm
QW’]ﬂ\ﬂﬂ‘iﬂJ UA1AINYAY



36

Step 1. Select the first node

Parent 2 9.1753826

Step 2. Find the legal mask by cyclic the occupied node

Parent 1

Parent 2

Proto-Offspri

Parent 2

Proto-O *f- i

Step 3. erformfrﬁsover

q Wélﬁg\‘d f ?m

Figure 2.7 The cycle crossover
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2.3.1.1.3 Modified crossover [52] was proposed by
Davis. This crossover operator is an extension of the one-point crossover for
permutation problems. A cut position is chosen at random on the first parent
chromosome. Then, an offspring is created by appending the second parent
chromosome to the initial segment of the first parent (before the cut point), and by

eliminating the duplicates. An example is prov1ded in figure 2.8.

/,f

Step 1. Choose the cut position

Parentl' ZflJ 161 9| 8|5

Parentz/______.M4 1| 7453 |8|2]6

Step 2. Appendin . 11
Proto-Of pr| g
Proto-Offspring 2

Y et
L

Step 3. Legalize the__gffg,;;_pi-ng /) s
A £
— -
Pa rent ¥ 6
Offspring 1 2|1 6

Parent 1 7|1 é“ﬁar AA’?

Figure 2.8 The modified crossover

[S(e)]
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2.3.1.1.4 Order crossover (OX) proposed by Oliver
[47] and Goldberg [7]. This crossover operator extends the modified crossover of
Davis by allowing two cut points to be randomly chosen on the parent chromosomes.
In order to create an offspring, the string between the two cut points in the first parent
is first copied to the offspring. Then, the remaining positions are filled by considering
the sequence of items in the second parent, starting after the second cut point (when

the end of the chromosome is reached, the sequence continues at position 1).

In figure 2.94 thcosubstring 4-3-7 in parent 1 is first
copied to the offspring. Then, the remaining pesitions are filled one by one after the
second cut point, by considering the corresponding sequence of items in parent 2,
namely 9-4-1-7-5-3-8-26. Hence. itcm 9 is first considered to occupy position 1, the
item 4 is secondly considered to occupy l“_che position 2 but it is discarded because it is
already included in the offspring . Item l_élS the next item to be considered, and it is
inserted at position 2. The procedure rep"gafé as item 5 fills the position 6, item 3 is
discarded, item 8 fills the position ‘_7, and::ﬂ::_cm 2 fills the position 8. Finally, the last

item 5 fills the last sequence. ¥/
Clearly, OX 3§ri_és§ to preserve the relative order of the

items rather than their absolute position. In figure 2.9, the offspring2 does not

preserve the position of most items in parent I. The variant of OX, known as the

maximal preservative erossover [MPX], 1s also described in [53].
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Step 1. Choose the cut position

Parent 1 2 1

Parent 2 9 | 4

Step 2. Select the substring

L ‘
Proto-Offspring 1 \ \‘ | ,’

Proto—OWﬁ <
Step 3. Leg g
K

J {
ﬂ u EJ ’g gﬂlgjﬁqﬁrwsg &})ﬂ‘% (OBX) [54] was first

introduced by Syswerda. This crossover also focuses on the relative order of the items
on thespar .First; . S 'tas 18]S IMt\r first parent. In
the ofﬁrﬂ G:]:ﬁ magemnﬂeﬁ:ll ?dﬂaﬂﬁ@ﬂgl parent, but at
positions taken from the second parent. Then, the remaining positions are filled with
the items of the second parent.

In figure 2.10, item 4, 7, 9 are first selected in parent 1,
and must appear in this order in the offspring. Actually, these items occupy positions
I, 2 and 4 in parent 2. Hence, items 9, 4 and 7 occupy positions 1, 2 and 4,

respectively, in the offspring. The remaining positions are filled with the items found

in parent 1.
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Step 1. Choose the cut positions

Parent 1 21.3.6.85

Step 2.Match up

Parent 2

Then, the items found at these‘mhon
2 '_, s S

positions). The othelji)osmons are 'ﬁlleﬂ w1th't e rsﬁi

as in the second par ‘ﬁ(
m pera@' is a little bit misleading,

because it is the relatlvg order of the 1tems that is inherited from the parents (the

e o 8 L N B ey e

This operator can be seen as an extensmn of the order crossover OX where the items

"TRAWCTE T N

In figure 2.11, positions 3, 5 and 7 are first selected in

opied to the offspring (at the same

items, in the same order

parent 1. items 4, 7 and 9 are found at these positions, and occupy the same positions
in the offspring. The other positions are filled one by one, starting at position 1, by

inserting the remaining items according to their relative order in parent 2.
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Step 1. Choose the cut position

Parent 1 21.3.6.85
Parent 2 941.5.8.6

Step 2. Appending the chromosome and eliminating the duplicates.

Proto-Offspring 1

R
Proto-Offspring 2 E ,

Step 3. Legalizeithe offspring

2|6

v

Offspri 2|6
Offspri 5
Parent 1 = =5 5

4 ) - -
Figure 2.11 The po
- a___ .»"f_'_'.(—" / '_" 2 -
k_i 2.3.1.1.7 Weight mappilé, crossover (WMX) was

recently proposed b%rjiifze el al. [55][56] In many ap;(._};c‘{les, the mechanism of the
crossover is not the sam’le with that of the conventional ene-cut point crossover. Some
offspring may_generate’ néw_chromosomes’ that_are not possible to succeed the
character of the parents, thereby tetardingcthe process of evelution. For this reason
weight mapping crossover is invented.

| In (figure 2.12, The weight mapping erossover begins
with identifying the cut position, then map the items in the substring according to
their weight. In this case, the weight of an item is equal to its value. For instance, an
item 3 has a weight equal to 3 as well. Thus, a substring 6-9-8-5 from the parent 1 is
sorted according to their weight and result is 5-6-8-9 then is map to the sorted
substring 2-3-6-8 from parent 2. Then the substring 6-9-8-5 is rearranged according to
the sequence of substring 3-8-2-6. The final step simply legalizes the offspring

according to the sequence of the mapped weight.
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Step 1. Choose the cut position

Parent 1 2 1143 |7

Parent 2 9141|1175

Step 2. Mapping the weight of the substring

2 3.1.1.7 Ed e recombination (ER) was proposed by

Whitley et aﬂ[ﬂ B\J}%Wﬁj Wﬂﬂfﬂeﬁned to facilitate the

manipulation ofl edges. The crossover operators based on this representation generate
offspri it Q‘{zlt\osomes. The
adjacen g ﬁmmﬁm ;i;ﬁmg ﬁmc osition i in the
chromosome if there is an edge from item i to item j in the permutation string. This
representation usually considers the relationship between edges as they are
symmetrical. For instance an edge 3-2 is equivalent to 2-3. Various crossover
operators are designed to manipulate this representation. These operators are aimed at

transferring as many edges as possible from the parents to the offspring; however, the

effective and most powerful one has shown to be only edge recombination.
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The edge recombination operator reduces the myopic
behavior of the alternate edge crossover [58] approach with a special data structure
called edge map. The edge map maintains the list of edges that are incident to each
node item of the parent and that lead to the nodes not yet included in the offspring.
Hence, these edges are still available for extending the search and are said to be
active. The strategy is to extend the search by selecting the edge that leads to the node
item with the minimum number of active edges. In the case of equality between two
or more item nodes, one of these nodes is selected at random. With this strategy, the

approach is less likely to get trapped in a dead‘cad.

Foi the parent 2-1-4-3-7-6-9-8-5 and 9-4-1-7-5-3-8-2-6
(path representation), the'initial edge map is shown in figure 2.13 Let us assume that
node 1 is selected as the'Stagting node. A‘_ccordingly, all edges incident to node 1 must
first be deleted from thednitial edge map. ji.rom node 1, we can go to nodes 2, 4 or 7.
Each node has three active edges; hence, a. random choice is made between nodes 2, 4
and 7. We assume that node 2 is selected. Frorn 2, we can traverse to nodes 5, 6 and 8.
Node 5 and 8 has up to threc active edges iyhﬂe node 6 only has got two, so the latter
is selected. From node 6, there-are two clﬁifc’és 7 and 9 with the same amount of
active edges, thus a random choice is made'_.-_--Tlle procedure repeats until there is no
node left. From the figure 2.13 the final candidate is gencrated one node by one node
start from node 1 and end up with 8. The final candidateis 1-2-6-9-4-3-7-5-8 which
inherits edge 2-1, 6-9,4-3, 3-7 and &-5 from parent 1 while inherits edge 2-6, 9-4, 7-5
from parent 2.

More¢_ variantiof edge recombination which focuses on
edges common to both parents is described in [57]. Recently, a descendant of ER
called Sequential [Constructive . Crossover (SCX) [58] proposed by Armed Z.H.

integrated the edge weight matrix to the edge map in order to choose a better path.
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Step 1. Constructing an edge map
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Figure 2.13 The edge recombination
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2.3.1.2 Mutation operators

Mutation is a genetic operator that alters one or more gene
values in a chromosome from its initial state. This can result in entirely new gene
values being added to the gene pool. With these new gene values, the genetic
algorithm may be able to arrive at better solution than was previously possible.
However, mutation operators in permutation representation are also needed to be
design such that the operators always generate the feasible solutions. Typically, the
move operators of local search are ‘adepted as the mutation operators for

permutations.

|
2.3.1.3 Selection‘operators

Sglectionfisia genef_idc' operator that chooses a chromosome from
the current generation’s population for iﬂ:ph‘lfsion in the next generation’s population.
Usually, selection operatots are not restrié‘g‘_ed:to the representations. The three most
commonly used selection methods are proportional (roulette wheel), tournament, and
ranking. A proportional *selection operéofl‘_:’ selects the population from the
probabilities in which the chance of a chrorﬁo’sbme getting selected is proportional to
its fitness (or rank). This is where the concept of survival of the fittest comes into
play. A tournament s€lection operator randomly divides the populations in to subsets,
and then selects the -best candidates among the member of such set. A ranking
selection operator selects thetop N percent'of the population based on their rank. The

variant of these operators can be foundiin [7].
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2.3.2 Ant colony optimization

Ant colony optimization (ACO) is a population-based search inspired
by the behavior of ants [59][60][61][62]. Ants are simple insects that live in colonies
and show their amazing capabilities through their cooperative behavior like finding
shortest paths from a food source to their colony. The ants exchange information via
pheromones. The pheromones are chemical substances which the ants lay down in
varying quantities to mark a path. While isolated ants move essentially at random, an
ant encountering a previously laid pheromone trail can detect it and may follow the
pheromone trail. The ants’ probability to follow the pheromone trail depends on the
pheromone intensity. The higher the pheromone intensity indicates the larger the
possibility to follow. Atthe same ime the ants following the pheromone trail may lay
down additional pheremone and. a poslitive feedback loop results. The more ants
previously have chosen'the pheromone tlir‘ai,l_, the more ants will follow it in the future.
One of the basic ideas of ant colony optifni'zation 15 to use an algorithmic counterpart
of the pheromone trail a§ a/medium foé{ caoperation and communication among a
colony of artificial ants which is guided b&jﬁosjtive feedback.

JJ: b

The most important part 1n_1_&d() algorithms, in general, is how the
pheromone trails are used to -generate béft'e'r; solutions in future iterations of the
algorithm. The idea-is to.combine the solution components that in previous iterations
have shown to be pait of good solutions, even better-solutions may be generated.
Thus, ACO algorithms can be seen as adaptive sampling algorithms — adaptive in the

sense that they.consider past experience to influence future-iterations.

PROCEDURE AntColonyOptimization

1. Initdalize PheromoneTrails, calculate HeutklsticInformation

2. Repeat

3. p <- ConstructSolutions (PheromoneTrails,

HeuristicInformation)

4. GlobalUpdateTrails (p)

5. Until Termination Condition is met

Algorithm 2.7: Ant Colony Optimization
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We give an algorithmic skeleton into which fit the ACO algorithm
applications for static combinatorial optimization problems. For an outline of the
more general ACO metaheuristics we refer to [65]. In the main loop of the algorithm,
first solutions are generated for all ants of the colony (the colony is indicated by p) by
a function ConstructSolutions. The solution construction typically uses the pheromone
information and problem specific local heuristic information. The solutions are then
improved by a local search phase (LocalSearch). This local search phase is optional;
in fact, it is not used in all applications<of ACO algorithms to combinatorial
optimization problems. Finally, the solutions are-used to update the pheromone trails
in a function GlobalUpdatetrails:

2.3.3 Particle’swarm optimizgition

Particle swarm optimizatiQ‘_nj(PSO) 18 a population-based metaheuristic
inspired from swarm intelligence [63]: JJt ‘mimies the social behavior of natural
organisms such as bird flocking and fish sé_hooling to find a place with enough food.
Indeed, in those swarms, a coordinated behavior using local movements emerges
without any central control. Originally, PSd has been successfully designed for
continuous optimization probilems. Its first '%lpﬁlication to optimization problems has

been proposed in Ref-[64].

In the basic model, a swarm consists of N particles flying around in a
D-dimensional-search space, Eachypasticle-i is a candidate selution to the problem,
and is represented by the vector "x; in'the decision space. ‘A particle has its own
position and velocity, which means the flying“direction and step of the particle.
Optimization takesiadvantage of'the cooperation between! the particlés. The success of
some particles will influence the behavior of their peers. Each particle successively
adjusts its position x; toward the global optimum according to the following two
factors: the best position visited by itself (pbest;) denoted as p; = (p;1,Piz, --»Pip)
and the best position visited by the whole swarm (gbest) (or lbest, the best position
for a given subset of the swarm) denoted as p, The vector (p; — x;) represents the
difference between the current position of the particle i and the best position of its

neighborhood.



50

PROCEDURE ParticleSwarmOptimization

1. Initialize p[N]

2. Repeat

3. Evaluate f(p[N])

4. UpdateVelocities (p[N])

5. UpdatePosition (p[N])

6. UpdateBestFoundPatic¢le (Best [N],gbest)

5. Until Termingatson GAnditdon 1S met

Algorithme2'8: Particle Swarm Optimization
Updatesthe wvelogity: The velocity v; that defines the amount of
change that will be applied to the part_icle:i,s defined as

vi® = vt =1+ p ol = (e AD) £ (py — %t -D) @9
where p; and p, are two random Varlables 1n the range [0, 1]. The constants C; and C;
represent the learning factors. They represent the attraction that a particle has either

toward its own success or toward the success: of its neighbors. The parameter C; is the

cognitive learning fagtor that represents the attractron that a particle has toward its

own success. The p‘_arameter C, 1s the social learmng__factor that represents the
attraction that a particle_ has toward the success of its neighbors. The velocity defines
the direction and the diﬁstance the particle should go ’

Update the position: Each particle will update its coordinates in the

decision space.

x () ="xt-1 + v;(t) (2.6)

Then it moves to the new position.

Update the best found particles: Each particle will update
(potentially) the best local solution:

if f(x;) < pbest;, thenp; = x; (2.7)
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Moreover, the best global solution of the swarm is updated:
if f(x;) < gbest;, then g; = x; (2.8)

Hence, at each iteration, each particle will change its position
according to its own experience and that of neighboring particles. As for any swarm
intelligence concept, agents (particles for PSO) are exchanging information to share
experiences about the search carried out.' The behavior of the whole system emerges
from the interaction of those simple agents..In PSO, the shared information is

composed of the best global selution gbest.

Traditionally, PSO algorithms are applied to continuous optimization
problems. Some adaptationssmust be ma;de for diserete optimization problems. They
differ from continuous models in mappiﬁg between particle positions and discrete
solutions: Many discrete representatio-ps"' such as binary encodings [65] and
permutations can be used for a particle ﬁ(__)_si_‘;ion. The velocity models may be real
valued, stochastic, or based on a 'list of fmgyes. In stochastic velocity models for
permutation encodings, the velocity is assoc@t‘é'd with the probability for each item to
be generated in a position. Eurther informé_t;inl can be found in [66][67]. Velocity
models for discrete optimization problems have been. generally inspired from

mutation and crossover operators of EAs.

2.3.4 Estimation of distribution algorithms

Estimation..of .distribution, algorithms (EDA), are“a, recent class of
optimization techniques based on the‘Concept of Using prebability distribution of the
population in reproducing new offsprings [68][69]. EDAs construct a probability
distribution of desired population and then create new individuals by sampling from
this probability distribution. This class of algorithms is classified as non-Darwinian
evolutionary algorithms as they replace Darwinian operators with probability
distributions. The first algorithms belonging to this class have been proposed in Refs.

[70].
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The principal idea in EDAs is to transform the optimization problem
into a search over probability distributions. They maintain a population of individuals.
A probabilistic model for promising individuals is constructed. For instance, EDA
estimates the probability distribution of each decision variable of the optimization
problem. The probabilistic model represents an explicit model of promising regions of
the search space. The induced probabilistic model will be used to generate new
solutions. The generated individuals will replace the old population in a full or a
partial manner. This process iterates until a given stopping criteria. The general EDA

can be sketched as follows (Algorithm 2.9);

PROCEDURE EDA

1. InitigddZe #ProbabilisticModel

2. Repegat
3. joF = Samplinq(ProbéEilisticModel)
4. p & Sgiled@tionlpD; Pl

5. Update(ProbabilisticMBdel,p)
=3,

6. Until Termination Condition is met

Algorithm 2:9: Estimation of Distribution Algorithm

Various algorithms in EDA class have been proposed since 1994, the
famous EDAs including PBIL (population based inciemental learning)[71], CGA
(compact genetic algorithm)[72], UMDA (univariate marginal distribution
algorithm)[ 73], MIMIC [(mutidl informationmaXimiZing input clustering)[74], and
BOA (Bayesiameoptimization algorithm)[75]. These algorithms differ from each other
in encoding,.probability .models. and, the .methods.to update the.models. Further
information of these'algorithms can'be found in'Réfs.[68][69]

The results obtained from the EDA family of algorithms are not yet
competitive compared to more traditional metaheuristics especially in combinatorial
problems. The simple explanation is that all the mentioned EDAs use inappropriate
encoding to solve permutation problems. Recently, two EDAs that naturally represent
the permutation in the genotype have emerged. They are called EHBSA (edge
histogram based sampling algorithm) [18] and NHBSA (node histogram based
sampling algorithms) [19].
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2.3.4.1 Edge Histogram Based Sampling Algorithm
Edge Histogram Based Sampling Algorithm (EHBSA) [18]
was proposed by Tsutsui in 2002. EHBSA was designed to solve combinatorial
problems and has shown the competitive performances in solving many real world
applications including traveling salesman problems (TSP), flow shop scheduling

problems (FSSP) and capacitated vehicle routing problems (CVRP).

In permutation scheme, the models of solutions can be
represented as a graph of nodes connected by edges. EHBSA utilizes Edge Histogram
Matrix (EHM) to learn the mutual information of edges contained in the selected
solutions and then construct new.solutions by sampling from it. The idea of EHBSA
is to use the edge recombmnation (ER) [57] in genetic algorithms with the whole

selected population instead.of tradition two=parent recombination.

Constructing Edge _Histogram Matrix: Edge histogram
matrix is a matrix that simply store the sdln_lmation of edge counted from the selected
population plus a bias. Lef string of kth iﬁdividual in population P(t) at generation ¢t
represent as sy = (mf (0), 7 (1), ., 7t} (l:‘ill)) ), (0), m.(1),..,andm(L—1)
are the permutation of (0,1, ... ,L — 1) whe_r?l?is the length of the permutation. Edge
histogram matrix EHM" (eit,]:)(i,j =041, -,L — 1) [of population P(t) is

symmetrical and consists of L? items as follows:

Yr=1(8:;(sp) +eifi #7
eti,j :{ k 1( l,]o lfkl :] ] (29)
where N is the population size, §; ; (s}) is a'delta funiction defined as
1ifInThEW0A & L 150N
81,/ (s ="{rL(h) ='i Anf((h +1)modL) =7] (2.10)

0 otherwise

and € (¢ > 0) is a bias to control pressure in sampling nodes just like those used for
adjusting the selection pressure in the proportional selection in GAs. The average
number of edges of item (ef’j) in EHMtis 2LN/(L> — L) = 2N/(L —1). So, ¢ is

determined by a bias ratio B,4;j, (Bratic > 0) of this average number of edges as
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2N
&= EBmtio (2.11)

A smaller of value of B,,;, reflects the real distribution of edges in sampling of
nodes and a bigger value of B,;;, will give a kind of perturbation in the sampling. An

example of EHM"is shown in figure 2.14.

node j
si 0.17
sz = (13, ' . 1 21 01
s5 0.1

Si = g A TR 41

Figure 2.1 i togram matrix for

Histogram Matrix: The sampling
algorithm of EHBSA is similat-to-Ant C Optimization[20]. A new individual

permutation c[] is generated str: :_';' 15 follows:

Nl %‘Wﬁﬁﬁ“

ﬁ Construct a roulette wheel vector rw[] from matrix as

amgi'iﬂ“” 191308088,

et to prev1ously sampled nodes inrw[] (

5. Sample next node c[p+1] with probability rw[x]/zjlf;%rw[j] using

roulette wheel rw[].
6. Update the position counter p<« p+1.

7. If p<L-1, go to Step 3.

Algorithm 2.10: Sampling Algorithm of EHBSA
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In this review, we exemplify only the simple version of
EHBSA. However, there are variations of EHBSA such as hybridization with absolute
order base crossover obtained from genetic algorithm to improve the quality of the
results. Further information can be found in Ref. [18][19]

2.3.4.2 Node Histogram Based Sampling Algorithm

Node Histogram Based Sampling Algorithm [19] (NHBSA)
was also proposed by Tsutsui. NHBSA was also designed to solve combinatorial
problems and have shown the competitive performances in many more combinatorial
problems. However, NHBSA differs from EHBSA as NHBSA is more suitable to the
problems where fitness’s depend on the absolute order of item. NHBSA utilize a

Node Histogram Matrix (INHM) to_¢onstruct a solution.

Construeting: Node Histogram Matrix: Node histogram
matrix is a matrix that'Simply store the sﬁmmation of node counted from the selected
population plus a bias et string of kth ijndividual in population P(t) at generation ¢t
represent as s = (mh(0), @), (1), ... 70k CL s 1). n;(0), m(1),..,and7L(L — 1)
are the permutation of (0,1, ..., L= 1) whgfe L is the length of the permutation. Node
histogram matrix NHM" (nf,]-)(i, J = 0,1;";’2;,;11,_‘— 1) of population P(t) consists of

L? items as follows:
ﬁti,j = Z¥=1(5i,j (s} )Hg (2.12)

where N is the population size, &; ; (sj.) is a delta function defined as

1ifnL (i) =
5.4 (sh) = { k 2.13
¥ (&) 0 otherwise ( )

and € (¢ > 0) i§/a bias to control pressure in sampling nodes just like those used for
adjusting ther seleetionypressurecin jthe [proportionalyselection iny GAs. The average
number of edges of item (nf ;) in NHM"is LN /(L*) = "N7/L. So, ¢ is determined by a
bias ratio B,4sj, (Bratioc > 0) of this average number of nodes as

N
&= ZBratio (214)

A smaller of value of B,,;, reflects the real distribution of nodes in sampling of
positions and a bigger value of B,,;;, Will give a kind of perturbation in the sampling.

An example of NHM'is shown in figure 2.15.
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position j
si =(0,1,2,34) 11 11 01 01 3.1
s;=(13420) 111 21 01 21 01
s$§=(4210  Sl11 01 21 11 11
s§=(40312)  Si11 11 21 11 01
ss = (2,1,3,4,0) 11 11 11 11 1.1
NHM!
Figure 2.15 An exan ode histogram matrix for

=5.

gram Matrix: Although the
apling algorithm of NHBSA is

ON

NHM" is simpler to con

a little bit more complicate. tructed one position by one

position in a sequence & ' NHBSA, each node is constructed with a random
position sequence. A new individya ermutation ¢| s generated straightforwardly as

follows:

2. all positions.
3. ;w— ‘t'g
4. m a position j from the roul&e wheel of position

guidweninems -

U

PRIFATE AT Iy

7. Sample next node c[p+1] with probability rw[x]/Z};&rw[i] using

roulette wheel rw][].
6. Update the counter p« p+1.

7. If p<L, go to Step 2.

Algorithm 2.11: Sampling Algorithm of NHBSA
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2.3.5 Scatter Search and Path Relinking

Scatter search has its origin in the paper of F. Glover [76]. SS is a
deterministic strategy that has been applied successfully to some combinatorial and
continuous optimization problems. Even if the principles of the method have been
defined since 1977, the application of SS is in its beginning.

SS is a evolutionary and population metaheuristic that recombines
solutions selected from a reference set to build others [77]. The method starts by
generating an initial population satisfying the criteria of diversity and quality. The
reference set (RefSef) of moderate size S then constructed by selecting good
representative solutions from the population, The selected solutions are combined to
provide starting solutions™t0 an-itnprovement procedure based on a S-metaheuristic.
According to the resultof sueh procedur;lj, the reference set and even the population of
solutions are updated.t0 ingorporate botil high-quality and diversified solutions. The
process is iterated until & stopping cfiteri(in 'is satistied.

The SS approach iﬁvolve;f different procedures allowing to generate
the initial population, to build and update:-d‘fhe reference set, to combine the solutions
of such set, to improve the consiructed s(}lutlons and so on. SS uses explicitly
strategies for both search intensification and_sgarch diversification. It integrates search
components from P-metaheuristics and S-metaheurlstlcs. The algorithm starts with a
set of diverse solutiens, which represents the reference set (initial population) This set
of solutions is evolved by means of recombination of solutions as well as by the

application of local search (or another S-metaheuristic).

PROCEDURE ScatterSearch

1. Generate RefSet

21 Construct a'rouletife wheellofialllpesitionsh

3. Repeat

4. SolutionRecombinationMethod (RefSet)

5. Until a termination condition is met

Algorithm 2.11: Scatter Search
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Search components of scatter search algorithms: The search
component of SS including diversification generation method, improvement method,
reference set update method, subset generation method and solution combination
method.

The diversification generation method generates a set of diverse initial
solutions. In general, greedy procedures are applied to diversify the search while
selecting high-quality solutions. The improvement method transforms a trial solution
into one or more enhanced trial solutions using any S-metaheuristic. In general, a
local search algorithm is applied and then a local optimum is generated. In reference
set update method, a referenee sct is construcied-and maintained. The objective is to
ensure diversity while keeping high-quality solutions. The subset generation method
operates on the referenee setyfo.produce a subset of selutions as a basis for creating
combined solutions. This procedure is I“similar to the selection mechanism in EAs.
However, in SS, it is a deterministic op.érator, whereas in GAs, it is generally a
stochastic operator. Finally, the selution -g;ofhbination method recombined the subset
of solutions produced by the subset gqne;ration method. In general, weighted
structured combinations are used yia linearf_ggmbinations and generalized rounding to
discrete variables. This operator-may be Vi{iWed as a generalization of the crossover
operator in GAs where more than two indiviciﬂa_ls are recombined.

Path_relinking method: [78] [79] The path relinking method is
simply a solution combination method. However, the main'idea of path relinking is to
generate and to explere the trajectory in the search-space connecting a starting
solution s and a target solution t. The idea 1s to reinterpret the linear combinations of
points in the Euelidean space las paths between and beyond solutions in a
neighborhood space. The path between two-, solutions ingthe search space
(neighborhood space) will generally yield solutions that share common attributes with
the input solutions. A sequence of neighboring solutions in the decision space is
generated from the starting solution to the target solution. The best found solution in
the sequence is returned. The path relinking method becomes popular in finding the
set of multi-objective solution in the Pareto frontier. The variants of this method can

be found in the Ref.[80][81]
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2.4 Multi-Objective Combinatorial Optimization

As far as real world decision making is concerned, it is also well known, that
decision makers have to deal with more than one objective. The growth in the interest
of theory and methodology of multi-criteria decision making (MCDM) over the last
thirty years [82] [83][84][85] is well aware.

Definition 2.3: Multi-objective Combinatorial Optimization [82]

MOP = minyes F(x) = (fi(x), (%), ..., o (%)) (2.15)

where n (n = 2) is themumber of objectives, x = (xq, ... , Xx)
is a feasible selution belong to the-discrete solution set S defined in the
definition el F(x) = (fi(x), f5(0),., f,(x)) is the vector of
objectivesto be‘optimized.

Surprisingly, multi-efiteria’ or {multi-objective combinatorial optimization
(MOCO) has not been widely studied. Tliéfe is a lack of “standard” benchmarks even
if recently there is an interest in providing test instances for classical combinatorial
MOPs. 4

In this dissertation, we preferred to teview the multi-objective technique in a
form of addition to the common'concepts of _Sfﬂgle-objective metaheuristics, since the
multi-objective techniques that applied-to cdmbinatorial problems are rarely studied.
A unified view of multi-objective metaheuristics [24] is presented in an attempt to
provide a common terminology and classification mechanisms. The goal of the
general classification 48 to provide a mechanism that allows a common description
and comparison of multi-objective metaheuristics in a_qualitative way. It also allows
the design of new multi-objective metaheuristics, borrowing ideas from current ones.
The multi-objective metaheuristics ¢ontains three main search components:

Fitness assignment: The main role of this procedure is'to guide the search
algorithm toward Pareto optimal solutions for a better convergence. It assigns a
scalar-valued fitness to a vector objective function.

Diversity preserving: The emphasis here is to generate a diverse set of Pareto
solutions in the objective and/or the decision space.

Elitism: The preservation and use of elite solutions (e.g., Pareto optimal
solutions) allows a robust, fast, and a monotonically improving performance of a

metaheuristic.
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The following sections discuss how these three search components can be

defined independently to design a multi-objective metaheuristic.
2.4.1 Fitness assignment strategies

For a given solution, a fitness assignment procedure maps a fitness
vector to a single value. The fitness scalar value measures the quality of the solution.
According to the fitness assignment strategy, multi-objective metaheuristics can be
classified into four main categories including scalar approaches, criterion-based
approach, dominance-based approach and indicator-based approsed. Figure 2.16 show
overviews of dominance-based, criterion-based.and scalar approaches.

Scalar approaches: They ar¢ based on the MOP problem
transformation into a single gbjeetive problem. This elass of approaches based on
aggregation that combine the various obljectives f; into a single objective functionF.

These approaches require for the decisibr;_ maker to have a good knowledge of his

problem. =
Criterion-based approaehes In  criterion-based approaches, the
search is performed by treating thevarious noncommensurable objectives separately.
Dominance-based approacaﬁes The dominance-based approaches'?
use the concept of dominance aiid Pareto Qpnmahty to guide the search process. The
objective vectors of solutions are- Scalarized usmg’che dominance relation.
Indicator-based approaches: In indicator-based approaches, the
metaheuristics use performance quality indicators to drive the search toward the

Pareto front.

SO ikl -
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(a) Dominance-based (b) Criterion-based (c) Scalar

Figure 2.16 Fitness assignment strategies
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2.4.1.1 Scalar approaches
This class of multi-objective metaheuristics contains the
approaches that transform a MOP problem into a single objective. Among these
methods one can find the aggregation methods, the weighted metrics, the goal
programming methods, the achievement functions, the goal attainment methods, and
the e-constraint methods. The use of scalarization approaches is justified when they

generate Pareto optimal solutions.

2.4.1.1.1 Aggregation.method The aggregation (or weighted)
method is one of the first and most used, methods for the generation of Pareto optimal
solutions. It consists in.using an aggregation funetion to transform a MOP into a
single objective problemby gombining the various objective functions f; into a single
objective function F ina lingar way [86]t87]:

Foo)=SiaMifi@), xes (2.16)

where the weights 4; € [03.|;’..1]and 2i=14; = 1. The solution of the

weighted problem is weakly Pareto optimal.; 2
2.4.1.1.2 Weighted metrics In this approach[88], the decision
maker must define the reference point z to attain. Then,-a distance metric between the
referenced point and the feasible region of the objective space is minimized. The
aspiration levels of the reference point, are” introduced into-the formulation of the

problem, transforming'it'into a'single objective problem:.

2.4.1.1.3 Goal programming It is one of,the oldest and most
popular methods dealing with MOPs [89]. The decision maker defines aspiration
levels z;for each objective f;, which define the goals f;(x) < z;.Then, the deviations

6; associated with the objective functions f; are minimized.

2.4.1.1.4 Achievement functions Achievement functions have
been introduced by Wierzbicki [90]. Unlike the previous methods where the reference

point must be chosen carefully (e.g., ideal point), an arbitrary reference point Z can be
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selected in the objective space. A Pareto optimal solution is produced for each
location of the reference point. Different Pareto optimal solutions may be generated
by using various reference points. Without using the augmentation factor, weakly

Pareto optimal solutions are generated.

2.4.1.1.5 Goal attainment [91] The goal attainment method
constitutes another approach that is based on the preference specification of the
intermediary of a goal to reach. In this approach, a weight vector and the goals for all
the objectives have to be chosen by the decision.maker.

The major drawback of-this‘method is the possible absence of
the selection pressure of«the generated solutions. For instance, if there are two
solutions that have the same wvalue for one objective and different values for the other
objective, they have the'Same fitness. Tﬁe search algorithm cannot differentiate them
in the problem resolution: .

2.44.146 éConstraint method [92] In the popular e-
constraint, the problem consists, in optin{i';jng one selected objective f;, subject to

constraints on the other objectives ]j-, JE. Ll,n], Jj # k of a MOP. Hence, some

objectives are transformed inte-constraints. The new considered problem may be

formulated as follows: : o] =

: min fi (x)
(MOP(€)) X€ES (2.17)
se.(fix)=¢,j=1,.,nj+k

Where the vector € = (€4, ... €,) represents an upper bound for

the objectives,Thus, A single objective problem subject to constraints on the other

objectives is solved.

2.4.1.2 Criterion-based approaches In this class that 1s mainly based
on P-metaheuristics, the search is carried out by treating the various objectives
separately. Few studies belonging to this class exist in the literature. Among them one
can find the parallel selection in evolutionary algorithms, parallel pheromone update

in ant colony optimization, and lexicographic optimization.
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2.4.1.2.1 Parallel Approach [93][94] In this approach, the
objectives are handled in parallel. P-metaheuristics may be transformed easily to
parallel criterion-based multi-objective optimization algorithms. Indeed, the
generation of new solutions will be carried out independently according to the

objectives.

2.4.1.2.2 Sequential or Lexicographic approach [95] In this
approach, the search is carried out according to given preference order of the
objective defined by the decision maker. ‘This order defines the significance level of
the objectives. Let us suppose that the objectivendices of the functions also indicate
their priority; the functionsf; has the greatest priority. Then, a set of single objective
problems are solved in.aScquential manner.

If the puoblem associated{ with the most significant objective function
has a unique solution. ithe Search proviﬂés the optimal solution found and stops.
Otherwise, the problem agsociated with thj,e second most significant objective function
is solved, including the €onstraint thatf'___th;: most significant objective function
preserves its optimal value (i.e., an,equality constraint is associated with the already
optimized functions). _ 4

The solution obtained with -lé_}(ig;ographic ordering of the objective is
Pareto optimal. A relaxation may be applied to the constraint regarding the previous

objective functions. For instance, a small decrease in the performance of the most

significant objective functions may be allowed to obtain-trade-off solutions.

2.4.13 Domainance-based approaches

The dominance-based approaches usegthe concept of
domindnce i the/ fitness assignment, contrary to the other approaches that use a
scalarization function or treat the various objectives separately. This idea was
introduced initially by Goldberg [7]. The main advantage of dominance-based
approaches is that they do not need the transformation of the MOP into a single
objective one. In a single run, they are able to generate a diverse set of Pareto optimal
solutions and Pareto solutions in the concave portions of the convex hull of feasible

objective space.
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P-metaheuristics seem particularly suitable to solve MOPs,
because they deal simultaneously with a set of solutions that allow to find several
members of the Pareto optimal set in a single run of the algorithm. Most of Pareto
approaches use evolutionary multi-objective algorithms (EMOs). One can mention the
commonly used ones: NSGA-II (nondominated sorting genetic algorithm) [96] , and
SPEA2 (strength Pareto evolutionary algorithm) [97]. Many other competent EMOs
have been developed, such as MOMGA (multi-objective messy GA) [98], MOMGA.-
I [99][100] and neighborhood 'constraint GA [515]. Moreover, Pareto P-
metaheuristics are less sensitive to thesshape of the Pareto front (continuity,

convexity).
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Figure 2.17 Fitness assignment: some dominance-based ranking methods.

Our concern here is to design a fitness assignment procedure to guide
the search toward the Pareto border. Ranking methods are usually applied to establish
an order between the solutions. This ordet depends. on the concept of dominance and
thus directly on/Pareto optimality. Most of these fitness assignment procedures have
been propesedsin the EMO, ecommunity.] The most, popular; dominanee-based ranking
procedures are as follows (see Figure. 3.17) [102]:

2.4.1.3.1 Dominance rank In this strategy, the rank associated
with a solution is related to the number of solutions in the population that dominates
the considered solution [103]. This strategy was first employed in the MOGA
algorithm (multi-objective genetic algorithm) [103]. In the MOEA algorithm, the
fitness of a solution is equal to the number of solutions of the population that

dominate the considered solution, plus one.
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2.4.1.3.2 Dominance depth The population of solutions is
decomposed into several fronts. The nondominated solutions of the population receive
rank 1 and form the first front E;. The solutions that are not dominated except by
solutions of E; receive rank 2; they form the second front E,. In a general way, a
solution receives the row k if it is only dominated by individuals of the population
belonging to the unit E; U E, U ...U E;_4. Then, the depth of a solution corresponds
to the depth of the front to which it belongs. For instance, this strategy is applied to
the NSGA-II algorithm [96].

2.4.1.3.3 Dominance eount The dominance count of a solution
is related to the number of solutions dominated by the solution. This measure can be
used in conjunction withstheé othet.ones. For mstance, in the SPEA algorithm family,
the dominance count issuscd in combinat|i0n with the dominance rank [97].

Since a single value ﬁtnes;s.l(rank) 1s assigned to every solution in the
population, any search compenentof a siﬁ-glé objective metaheuristic can be reused to
solve MOPs. For instance, the selection ni'echanism in EAs can be derived from the
selection mechanisms used in single objeCﬁye optimization. The interest of Pareto-
based fitness assignment, compared to scalaf; hi"é‘“[hods, is that they evaluate the quality
of a solution in relation to the whole populati‘o';n.rNo absolute values are assigned to

solutions.

2.4.1.4' Indicator-Based Approaches
In, indicator-based approaches,. the search is guided by a
performance quality"indicator [[104]. The optimization goal fis given in terms of a
binary quality indicator I that can bé viewed as amsextension of the/Pareto dominance
relation:y, A'\value, [(A,B) .quantifies the difference” in quality | between two
approximated efficient sets A and B. So, if R denotes a reference set, the overall

optimization goal can be formulated as
argmingeq I(4, R) (2.18)

where () represents the space of all efficient set approximations.
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The reference set R does not have to be known, it is just
required for the formalization of the optimization of the optimization goal. Since R is
fixed, the indicator I actually represents a unary function that assigns a fitness
reflecting the quality of each approximation set according to the optimization goal I.
If the quality indicator I is dominance preserving, [(4, R) is minimum for A =
R[842]. Indicator-based multi-objective algorithms have several advantages:

e The decision maker preference may be easily incorporated

into the optimization algorithm.

e No diversity maintenance; it is implicitly taken into account

1in the performance indicator definition.

e "Smallsensitivity of the landscape associated with the Pareto

{refit, il
¢ Onlyfew paraf;lq‘ters are defined in the algorithm.

it

2.4.2 Diversity Presérvation’

P-metaheuristi¢s are reputétf"i& be very sensitive to the choice of the
initial population and the blased samplmg d'urlng the search. Diversity loss is then
observable in many P- metaheurlstlcs To ferctr thls drawback related to the stagnation
of a population, diyersity must “be malntalned in_the population. The fitness
assignment methods piesénted previously tend to favor the convergence toward the
Pareto optimal front; However, these methods are not able to guarantee that the
approximation obtainea will be of good quality in terms of diversity, either in the

decision or objective space.

Kernel Nearest neighbor Histogram

Figure 2.18 Diversity maintaining strategies.
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Thus, diversity preservation strategies must be incorporated into multi-
objective metaheuristics. In general, diversification methods deteriorate solutions that
have a high density in their neighborhoods. As suggested in Ref. [102], the diversity
preservation methods may be classified into the same categories used in statistical
density estimation.

2.4.2.1 Kernel methods

Kernel methods define the neighborhood of a solution I
according to a Kernel function K, which'takes the distance between solutions as the
argument. For a solution i, the distances @, /beiween i and all other solutions of the
population j are computed. The kernel funetrton K (d;) is applied to all distances.
Then, the density estimate of the solution 1 is represented by the sum of the Kernel

function K (d;).

2.4.2.2 Nearest-N eighbor;lflethods
In the nearcst-neighbor approach, the distance between a given
solution I and its k*" nearest neighbors is fé_ken into account to estimate the density of
the solution. For instance, this approach isaused in the SPEA2 algorithm [97], where

the estimator is a function of the-inverse of thjs'jdistance.

2.4.2;3 Histograms
The histograms approach consists in partitioning the search
space into several hypergrids defining the neighborhoods. The density around a
solution is estimated by the aumbert ©f) solutionsrin thessamie box of the grid. For
instance, this approach is used in the PAES (Pareto archived evolution strategy)
algorithm [105]. The hypergrid can be fixed a.ptiori (statically).or adaptively during

the search with regard to the curréntpopulation.

One of the most important issues in the diversity preservation
approaches is the distance measure. Many metrics can be used. Moreover, the
distance may be computed in the decision and/or objective space of the problem. In
general, in MOPs, the diversity is preserved in the objective space. However, for
some problems, the diversity in the decision space may be important in terms of

decision making, and may also improve the search.
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2.4.3 Elitism

In general terms, elitism consists in archiving the “best” solutions
generated during the search (e.g., Pareto optimal solutions). A secondary population,
named archive, is used to store these high-quality solutions. First, elitism has been
used to prevent the loss of the obtained Pareto optimal solutions. In this passive
elitism strategy, the archive is considered as a separate secondary population that has
no impact on the search process. Elitism will only guarantee that an algorithm has a
monotonically nondegrading performance in terms of the approximated Pareto front.
Then, elitism has been used in the search proeess of multi-objective metaheuristics
(active elitism), that is, the archived selutions are used to generate new solutions.
Active elitism allows to-achicyve faster and robust convergence toward the Pareto front
for a better approximation of'the Paveto front. However, a care should be taken to be
trapped by a premature cenyergence if a high-elitist pressure is applied to the
generation of new solutions, A |

The archiyé méaintains.a set of “good” solutions encountered during the
search. The strategy used in updating thé'-_.archive (elite population) relies on size,

convergence, and diversity criteria. .l

2.5 Chapter Summary FENSS

This Chapter; we review the metaheuristics “for solving combinatorial
problems particularly in the permutation representation. Each metaheuristic approach
is designed with the aim of both intensification and diversification or sometimes
called exploitation and exploration. However, the terms ‘exploitation and exploration
have a more resfricted meaning. In fact, the notions of exploitation and exploration
often referptorrather short-termy strategies itied-to randomness;ywhereas intensification
and divetsificationrefer to rather'medium and long term strategies based on the usage
of memory. As the various different ways of using memory become increasingly
important in the whole field of metaheuristics, the terms intensification and
diversification are more and more adopted and understood in their original meaning.

Table 2.2 summarizes them in term of their feature. The symbol V indicates
the existence of the features. While symbol 3 presents partial feature and symbol —
indicates nonexistence of the features. Table 2.3 summarizes all the reviewed

metaheuristics in term of intensification and diversification component.
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Table 2.2 Feature classification of metaheuristics

Algorithm

Feature

SA Tabu ILS GRASP GA ACO PSO EDA  SsS
Trajectory v \'4 - - - - - - v
Population - - Y ¥ \V4 \V4 V4 v v
Memory — v 3 - = v v 3 3
Multiple
Neighborhood - 7, N J - - - 3
Nature-inspired VvV F f 4 i \4 v v - -

Among the presented metaheurisi;i_cs, SA, Tabu search and SS are typical
examples of trajectory fetiods. These '_‘r-'_f;lé't-hods usually allow moves to worse
solutions to be able to escape from local min]n;a Also local search algorithms which
perform more complex transitions which a_re :composed of simpler moves may be
interpreted as trajectory methods. In ant colno_r-iyroptimization, iterated local search,
genetic algorithms, GRASP, PSO and EDA starting points for a subsequent local search
are generated. This is done by constructing solutions with ants, modifications to
previously visited locally. optimal solutions, applications of genetic operators,
randomized gréedy construction heuristics,| driving particles and sampling from the
probabilistic model respectively. The generation of starting solutions corresponds to
Jumpsin théseéarchspace; theseralgotithing) in generdl, follow 4 diScontinuous walk
with respect to the neighborhood graph used in the local search. SS is consider to

contain both trajectory and non-trajectory methods as the algorithm can be

customized.



Table 2.3 Intensification and diversification component of metaheuristics

Metaheuristic [&D component

SA acceptance criterion + cooling
schedule

ILS

al search

TS abu lists)

SS diversification generation method

improvement method

reference set update method

subset generation method

solution combination method

70
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Tabu search, simulated annealing, iterated local search, and GRASP are such
single-point search methods. On the contrary, in ACO, GA, PSO, EDA and SS
algorithms, a population of individuals is used. Using a population-based algorithm
provides a convenient way for the exploration of the search space. However, the final

performance depends strongly on the way the population is manipulated.

Memory is explicitly used in Tabu<search. Short term memory is used to
forbid revisiting recently found solutiens and to_avoid cycling, while long term
memory is used for diversificanon and intensification features. In ACO and EDA an
indirect kind of adaptive me€mory of previously wisited solutions is kept via the
pheromone trail matrix*whieh is nsed to‘.ir_jl_ﬂuence the construction of new solutions.
Also, the population of the GA; PSO and$é could be mterpreted as a kind of memory
of the recent search expérience. Recently, the term adaptive memory programming
[245] has been coined to refer to algoritﬁﬁls-'.that use some kind of memory and to
identify common features among-them. Aléo,ILS could be classified as an adaptive
memory programming algorithm. On the conj;ra‘ry, SA and GRASP do not use memory

functions to influence the future-seaich dire’cﬁéﬁ: )

ILS algorithms-typically use at least two diffcrent neighborhood structures N
and N,. The local search starts with neighborhood N until a local optimum is reached
and in such a situation-a;kiek-move issapphed,to catapult.the-search to another point.
The behavior of GA*and 'SS+has the-same effect as'the kick-move in ILS and therefore
may also be interpreted as a change in the neighborhood during the local search. On
the other side, théysolution constriction processgin ACO, EDA' and GRASP is not
based on a specific neighborhood structure. Nevertheless, one could interpret the
construction process used in ACO, EDA and GRASP as a kind of local search, but this

interpretation does not reflect the basic algorithmic idea of these approaches.

Among the presented methods, ACO, SA, and GA belong to the nature-
inspired algorithms. The others, have been inspired more by considerations on the

efficient solution of combinatorial problems.
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This dissertation mainly focuses on how a solution is generated. There are two
main methods that are constructive methods and improvement methods. Table 2.4
summarize the methods in term of their capability to preserve the schema order of the

initial solution.

Table 2.4 Information inheritance for generation methods

Preservation

” // Relative Absolute Edge

Improvement //// h\ \
//ﬁ ﬁ\\\\\
(s W\Y

Generate m

P‘asmon based (PB)Q’

NN

Q‘Imﬂ@ﬂ’ml NW]’MEJ’M‘EJ

Weight Mapping (WMX)

Edge recombination (ER) X
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For the multi-objective metaheuristics, we present a unified view of their
feature in an attempt to provide a common terminology and classification mechanisms

including fitness assignment, diversity preserving and elitism.

The fitness assignment can be classified as scalar, criterion-based, dominance
based and indicator based. The scalar methods are more suitable to S-metaheuristic.
They are easy to implement, yet require a decision maker to fine-tune the parameter.
Criterion based methods are used. in both_ single solution and population based
algorithms. These methods are good af finding the extreme solutions for each
objective as they treating each objective sepaiately, however lack of the coverage in
the Pareto frontier. The.deminance-based methods are more suitable to population
based algorithms. They.do not need the transformation of the MOP into a single one.
Moreover, they are able to  gemerate |a diverse set of Pareto optimal solutions.
Indicator-based method wise indicator to ([éfermine the quality of a solution. The main
advantage of this methodiis that it implid,tly’ embedded the diversity mechanism into
the indicator; therefore, no diversity, maintér_;_ar_;ce is required.

The diversity preservation mechanisﬁ_i isneeded to prevent the genetic drifting
in constructive based algorithms. One of thé_- most importance issues in the diversity
preservation is the distance measure. Many metrics can be use. In Kernel methods and
histogram based methods, the distances are usually determined in the objective
spaces. While the neatést neighbor methods, the distanees are usually determine by
the genotypes of the solutions. Histogram"based methods are easiest to implement,
however, the grids/sizes need to be appropriate to.the fitnesstlandscape. The nearest

neighbor methods provide the best diverse solutiens compared te, the other methods,

but require expensive eomputation.

One of the main issues of the multi-objective optimization is elitism. Archives
are needed to maintain in order to improve both quality and quantity of the solution.
The strategy used in updating the archive depends on size, convergence and diversity

criteria.



CHAPTER 111

NEGATIVE KNOWLEDGE

3.1 Introduction

In nature, the potential differences between two reference points produce
potential energies including gravity, electricity, elasticity, pressure and temperature.
The higher the potential difference causessthe higher energy and thus higher
acceleration rate of a particle carrying the energy. It is interesting to find out if there
exists a potential difference of knowledge in order to accelerate the learning process

in machine learning.

Machine learning methods usually use the empirical data, such as from sensor
data or databases to ‘shape the behaviorxs: of computers. In classification tasks, the
negative samples usually help the learner to learn a concept faster and more
accurately. However, in optimizatioh tasks; the negative information is rarely utilized.
In improvement methods such as tabu searc;l.-liz_l, memories are used in order to forbid
the search process to search in the landscaéé_gqnsidered to be inferior. However, in
constructive methods,ithe algorithms such as GA[13][7] and SS[76] try to extract only
good substructures-.an order to compose a better solution, therefore positive
information are usually kept in form of a population of desired solution, while the
negative information ar€ simply neglected.s This research tries to study how the
concept of negative knowledge contributes to the construction of a candidate in

permutation representation.

3.2 Neégative Knowledge

Negative knowledge has been previously discussed as developed in the field
of artificial intelligence, education and business philosophy [106] [107] [108]. Before
we get to know more about the negative knowledge, we need to clarify the definition
of negative knowledge which commonly misunderstood to be bad, disadvantageous,
or malign. Just like negative numbers, they are not being either good or bad. The term

“negative” in negative knowledge does not imply a valuation. Instead, the term
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“negative” refers to characteristic attributes which will be described later. To clarify
an important attribute of negative knowledge requires considering the use of the term
“knowledge” in constructivist theorization which is considered to be “propositional
knowledge”. In constructivism, knowledge is not seen as an exact representation of

reality, but rather as a

map of what reality allows us to do. It is the repertoire of concepts conceptual
relations, and actions or operations that have proven to be viable in the

pursuit of our goals.(von Glasersfeld)|109]

In that sense, knowledge in a constructvist understanding is regarded as a
system of representations.and.assumptions about reality that is closely related to
individual goals or indiwidual /achievément. Roughly speaking, this means that
individuals™ assumptions€an' be /called wviable if they do not contradict previous
knowledge and turn out tobe useful for rgaqhing goals. Yet, non-viable knowledge is
knowledge that somehow; stands..in aontradiction to prior knowledge or is

counterproductive with regard to a certain ggal

The basic idea that is pursued thro@l_i the concept of negative knowledge is
that just because knowledge isxnon—viable m the described understandings, it is not
necessary worthless or-superﬂuous. This is because in order to reach a goal, there are
often different ways that seem possible and the task of identifying the right one is
very complex and demanding. Therefore, it is seen as having a heuristic advantage
through knowing whatis wrong in regard fo a certain task: that is, to have negative
knowledge. Hence, negative knowledge can be described as non-viable knowledge

that is heuristicallyvaluable.

According to the quote of von Glaserfeld, knowledge is compared to a map.
Remaining with that metaphor, negative knowledge can be seen as an indicator of
adverse ways, wrong turns or disadvantageous routes in order to reach a certain

destination.
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In 1994, Minsky[106] introduced explicitly the idea of knowing negatively in
his literature “Negative Expertise”. He points out that competence often requires one
to know what one must do, but it also requires one to know what not to do. Living
things more often learn to avoid disaster rather than how to succeed in order to
survive. In the process of learning, even experts seem to have negative rather than
positive goals, namely that we seem to learn what should not be done. Minsky also
states that the creativity of the machine does not only come from the randomization,
but also come from the reduction of the search space. The performance of a smart or
creative problem-solver is not how many trials precede a success, but how few. So the
secret lies not in disorderly search, but in pré-shaping the search space so as reduce

the numbers of useless attempts.

In 2005, Oser andsSpychiger [107] define negative knowledge as knowledge
about “what something isaot, (in ¢onirast to what it is), and how something does not
work, (in contrast to-how it works), whiXéh strategies do not lead to the solution of
complex problems (in contrast to those, i!/a_at do so) and why certain connections do

not add up (in contrast towhy they add up)’-’;

In 2006, Parviainen and Eriksson[lQS] -_éxtended Minsky*s idea. They further
characterize the negative knowledge by ideﬁﬁfﬁﬁg four features of negative knowing
as follows:-

1) to know what one does not know: experts are usually aware of their
own cempetence, but they must also know what they do not know
and what they should know

2) to know what not to do: experts must know both how to achieve
ooalg afid how to avoididisasters; namely Jearfiing'what not to do*

3) unlearning "and bracketing knowledge: experts may get into a
situation when they have to give up some parts of their knowing
and ,,unlearn® or ,bracket® their skills and know-how

4) failures and mistakes: experts should also regard the value of
failures and disappointments as emotions, as well as recognize the

creativity that emerges from making mistakes
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Apart from the negative knowing, they also argue that negative is not
considered as the mere empty opposite to the positive. They purpose that positive and
negative knowledge can be considered as independent areas, which overlap one

another in the following way:

Table 3.1 Linking positive and negative knowledge[ 108]

Positive knowledge Positive and Negative Negative knowledge

knowledge
True justified beliefs To know what,one Unlearning and
does not know bracketing knowledge
Constructive, To know what netto Failures and mistakes
cumulative, do ) ignorance
paradigmatic

In 2008, Gartmeier” ci” al.[110] describc  the three functions of negative
knowledge as follows:- 4

1) negativednowledge incjegses certainty: It is assumed that negative
knowledge helps to ;;fdiﬂérease individuals™ certainty through
awarengss ©Of “possible ":‘p-"(')s’i-"tive as well as negative outcomes of
their actigns afid througﬁ_ft;h_e capability to judge their respective
probabilities undér given%if(;{lmstances.

2) negative knowledge incffédé*'eb’eﬁiciency: Negative knowledge is
assumed to contribute to eftective action.

3) negative knowledge promotes reflection: Negative knowledge is
assumed to promote detailed reflective processes, because an
esseittial comiponent ofreflection comprises an engagement with
individual®s prior and episodic knowledge. Remembering and
being aware what.is inappropriate, in ,a-given .situation should

enhance the-ability to'precisely discriminate’similar-phenomena.

The negative knowledge has shown to be beneficial in many ways. This
dissertation presumes that it could be used in a constructive algorithm where building
blocks are combined to form a better solution. On the other hand, bad building block

should be avoided to construct a solution as well.
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3.3 Related Concepts and Methodologies

3.3.1 Opposition-based learning

In 2005, the concept of opposition-based learning (OBL)[111] has
emerged. Tizhoosh introduces the idea of learning toward the opposite states, opposite
weights, opposite actions and many morte opposition ways. The secret behind OBL is
the simultaneous consideration of an estimate/and its corresponding opposite estimate
in order to achieve a better-approximation-0f-the current candidate solution. The
opposition-based learning.has been successfully applied to accelerate reinforcement

learning[112], back propagatien leatning[111], and differential evolution[113].

OBL algerithms arc cor}éidered to be utilizing of the negative
knowledge to accelerate the optimizatiQn ‘process. However the opposition-based
extension idea of genefic algorithm is stillf'-_t__oc__)._ far from the negative knowledge. The
anti -chromosome with Anverted sub mu‘t_%tion can partially describe some of the
negative information. The negative conce@i{)‘f a binary representation of a sub-
chromosome [*101%*] is not as simple as [*0_10*] The complete negative concept
should includes [*001*], [*011*], [*100*], [*110*] and [*000*] as well. This
example indicates that the size of the negative concept in probabilistic-based learning

is unimaginable large ¢ompared to the positive one.

3.3.2 Artificial immune system
Artificial immune systems (AIS) are computational systems inspired
by thegprineiples and, processes of the vertebrate immune system.- The algorithms
typicallyexploit the immune system's characteristics of learning and memory to solve
a problem. The negative selection techniques[114] in AIS try to output the
complementary concept of the real target concept. Algorithms in this class are used in

many areas including classification and optimizations.
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3.3.3 Evolutionary Algorithms
There are some works based on evolutionary algorithms that try to
utilize the negative knowledge hidden in the below average solutions by applying

classification techniques in optimization. These algorithms include:-

3.3.3.1 Learnable Execution Model (LEM)
In 2000, Michalski[115] proposed algorithms that apply
classifiers to develop a population of solutions. The candidates of a population are
divided as the fittest and the less fitted ones./Then the characteristics of the good ones

are strengthened while bad ones are avoided.

3.3.3.2 Statistical Learning + Inductive Learning (SI3E)
Later 102003, Llora and Goldberg[116] proposed an algorithm
that combined the Inductien of Decision Tree (ID3) and evolutionary algorithm using

statistical approaches.

3.3.3.3 Evolutionary Bayesigm‘:Classiﬁer—Based Optimization
Algorithm (EBCOA) '

In 2004, Miguelez, Béﬁgéetxea, and Larranaga[117] introduced
a new estimation of"distribution algorithm based on Bayesian classifiers and later

extended in the continuous optimization domains|118].

3.3.3.4 Population Based Incremental Learning (PBIL)

In 1994, Baluja [71]  proposed 'the first estimation of
distribution algerithm called PBIL. This algorithm allows learning from the below
average solutions. Variationsof negative learning raté wetelusSed:in the original paper.
From the empirical experiments, different negative learning rates show their
effectiveness in different behaviors in different benchmarks. Moreover, negative
correlation learning in PBIL contributes to find the optimal solutions in hard
deceptive problems faster than the other benchmark algorithms in term of function

evaluations.
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3.3.3.5 Compact Genetic Algorithm (cGA)

In 1998, Harik et al. presented and EDA called CGA [72]. In
each iteration, cGA generates two candidate solutions from the current probability
vector. Then, the two generated solutions compete against each other. The the winner
and the loser are used to update the probabilistic vector using reward and punishment

model. Performance of cGA can be expected to be similar to that of PBIL.

3.3.3.6 Incremental Bayesian Optimization Algorithm (iBOA)

In 2008, Pelikan et al.proposed another EDA called iBOA
[119]. This algorithm modify the original Baycsian Optimization Algorithm (BOA) to
estimate the probabilistic model in an incremental manner. Similar to cGA, the loser
of a tournament selection lest iheir probability to be reégenerated to the winner. The
main benefit of usingdBO A instead of the_jlstandard BOA is that iBOA eliminates the
population and it willsthus reduce the ﬁlemory requirements of BOA. iBOA also
provides the first incremental BDA capat"il_efof maintaining multivariate probabilistic

models built with the use of multivariate statistics.

¥

3.3.4 Particle Swarm OptimizationrT t!‘.‘"‘

In 2005, Yang and Siﬁibﬁ' proposed.a new version of PSO that
utilized only the negative-knowledge-in-optimization-whete each particle adjusts its
position according to its own previous worst solution and its group's previous worst to
find the optimal value. The strategy is to avoid a particle's previous worst solution and
its group's previous jworst~based on similar (formulaeyofthe-regular PSO. In their

experiments, the results“show that the ' NPSO[120] always finds better solutions than
PSO in every benchmark.

3.3.5 Evolutionary Ensemble with Negative Correlation Learning
(EENCL)

In 2000, Liu, Yao and Higuchi proposed ensemble techniques

[121][122] which composed of neuron networks (NN). The negative correlation

learning and fitness sharing were adopted to encourage the formation of diverse

species in the population.
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3.4 Schema Theorem and Order Schema

The Schema Theorem is defined by Holland[13] represented a mile stone in
the development of Genetic Algorithms. In schema theorem, the search space is
partitioned into subspaces of varying levels of generality, and mathematical models
are constructed which estimate how the number of individuals in the population

belonging to certain schema can be expected to grow in the next generation.

3.4.1 Schema theorem
Theorem 3.1: Schema Theorem [13]
The expected number £-6fsehema H at generation t + 1 when
using a.eanonieal GA with preportional selection, single point
crossovet and gene wise mutation is,

E[m(H, t 4 1)] > m(H,t)f(H;t)'{ S (H)

T U= By (H.O) = 0(H)p } B.1)

where pgir (H;E) “is the-'-'pf"obability that parent does not match
schema H;p, is the selecfé?c_f tp;eshold of applying crossover and p,,
is the threshold 6f applying;_rriﬁi[ation.

Schema thec.>r‘e‘i.r_1_1-j ' implies that schema with fitness
greater than the average population fitness are likely to account for
proportionally more of the population at the next generation. From
this Theorem, Goldberg arose the building block hypothesis (BBH),
which attempted to explain how a GA solyes,a problem by positing
that near optimal solutions were forged from small, low-order,

bettersthan-average schemata:

3.4.2 Order schema
In 1992, Kargupta, Deb and Goldberg [123] discussed about schemata
in permutation problems, the so called order schema or o-schema is defined by
assigning a sequence characteristic to a similarity subset. It has unique alleles at all of
its fixed positions and contains all permutations of other alleles at don“t care
positions. In general, an o-schema can be classified into two broad categories —

absolute ordering schema and relative ordering schema.
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Table 3.2 A Comparison of some statistics for binary,/-ary and size-/ permutation

problems[123]
binary [ —ary size — | permutation
Solution Space 2! It I
String in an order o(H) schema  2!=0(D) Ji=oCH) (I — o(H))!
Pm(l,o(H))
Number of o(H) schemata k¢ [o¢H)
=/l
Total schemata 3 C+.1) z () Pm(l, i)
i
i=0

3.4.1.1 AbSoldt¢ order schema The absolute o-schema defines a
similarity subset having some common ;:llelic position characteristics. For instance,
the absolute o-schema [1! /1 18 ! | ] deﬁﬁe_:s the subsct of all valid permutation string
that have alleles 1 and &/n fourth and siit_%?ositions respectively. The string S1 =
[4321587 6] is contained in the schema;WhileSZ = [158243567]isnot
contained in the schema. This schema reprezﬁlt[ation is useful in the problems where
the placement of certain position is important. In this type of schema, both ordering

and position of the defined alleles are important.

3.4.1.2 Relative order schema The relative o-schema defines a
similarity subs€t having somecomimon;order allelic/characteristics which in between
the order there ean be some gap containing any size of the permutation substring. For
example, the. relative ,0-schema.J ! !l 11 4 Ll ] tepresents the.subset of all valid
permutation string-that"have allele™l fhappens before 4 in‘any configuration without
having any restriction on the specific allelic position of genes. This coding is

important for problems where ordering among alleles is the only matter.

According to the literatures [123] and [7], the definitions of relative o-
schema are inconsistent. The definition defined in 1989[7] allow only the fixed

distance between the defined schemata. For example, the strings containing 4 placed
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after 1 with in a fixed order of gaps. In this dissertation, we refer to the relative o-
schema proposed in 1989 as type I relative o-schema and the one in 1992[123] as type

II relative o-schema.

Size of a schema can be used to describe the searching boundary of a
GA. If a schema dominates a population, the available solution that a simple
crossover operator can search is reduced according to the size of the schema. Table
3.2 summarizes the statistics of three different types of schemas, that are binary, unary
with size | and permutation with size [. Forexample, in a binary representation GA,
let [ #* 1 * ] be a binary schema with ordCieI? given size [ of the solution strings
equal to 5, the solution space contained only 2800 = 25-1 = 14 total strings. The
number of solution per space sation is 1/2. The larger number of order, the smaller

number of available space'ts.

The size offa s€héma m hxi;gher based unary is relatively less than the
size of a schema in lower based unary. For example, let [ *x * 4 x* ] be a based 5 [-
ary schema with order 1, given size £ = 5. The solution space is equal to 5° = 3,125,

while the number of solution sirings. in an order 1 schema is equal to 551 = 625.

The number of solution per space ratio is 1/_5__.: iv_\(hich is relatively less than the binarys.

Once-a schema dominates the population,/a GA reduces the search
space according to the based [-ary schema. This higher based schema indicates the
higher degree of exploitation. Consequently, many researches in GA prefer to
represent the genotype of a solution string using the lowest order as possible, in order

to fine grain the'search and to preserve the diversity.

In permutation representation, the redundancy of an item is not
allowed. This means that an item can occupy only one position at a time. Therefore, if
an o-schema dominate the population, the number of solution per space would be
worse than a unary schema with the equal based. Let [ *x * 1 * * | be a binary schema,
there would be only 16 strings in the order 1 schema which is 1/2 of the solution
space. While an absolute o-schema [!! 1!!] reduce the solution space down from

120 to only 24 strings. Figure 3.1 shows the effect of how a schema with greater
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fitness dominates the population in permutation and binary representation. The gray

areca indicates the number of solutions in the schema, while the white area indicates

the deducted solution spaces.
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populatlon causes the reduction of the search space by 3/4, while a binary schema

[0 ***] reduces only 1/2 of the whole space in figure 3.1 (b). As generation

progressed, the more specific order schema [2 3!!] and binary schema [0 0 * x]

dominates the population. The order schema reduces the search space at a much

greater rate compared to the binary schema. In figure 3.2 (a) the order schema with

order 2 reduces the space down to only 1/12, while the binary with order 2 reduces the

search space down to 1/4 .
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generate infeasible solutions. Therefore, encoding a solution string in permutation is
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unavoidable. Unfortunately, as mention in Chapter I, using a permutation encoding

could easily lead to a premature convergence. This is the explanation why GAs with

permutation encoding do not scale.
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3.4.2.3 Edgesschema In thisidissertation, we aim to study the roles of

kmﬂdu 813 N BNSHLELA N Ssution agore.

Therefore we opose a new schema call edg schema. Anesdge is a link or
cons L S B8 AN ke e
string. However, edge can be symmetry. This research refers to the edge schema as
the edges are asymmetry. The set of edge schema can be considered as a subset of
relative o-schema, yet the gaps are not taken into account. Figure 3.3 illustrate the
comparison of an absolute order schema and an edge schema. In a fitness landscape,
two types of schema conquer different geometries. The figure 3.3 (a) illustrates how
an absolute o-schema [ 2 !!!] dominate the population, while (b) illustrates an edge

schema[! 2 3!]. This can be seen that the number of solutions contained in the edge



87

schema [! 2 3!] is equal to that in the absolute o-schema [ 2!!!]. The two darker
gray bars in (b) are the solution where the circulated edges are taken into the account.
From this example, we also illustrate the different kind of neighborhoods. Using
inappropriate move operators or crossover operators could not be able to find such
good regions. As illustrated, the edge schema can cover all the global optimal

solutions and consider them to be the neighborhood of each others.

3.4.3 Negative Schema
In 2006, Tae and Lee[124] prove that a negated concept is defined
implicitly by a hidden feature abstracted from-ihesproperty common to all the objects
not belonging to the coneept: This paper proposes-based on Minsky that there is a
logical schema that enables an agent to perceive a negated concept. However, the
negative schema of Tagiand Ieg'is deﬁn‘t;d based on an assumption in which an agent
can recognize only one gonceptata time.;’fhey also state that the positive and negated

concepts, exist together, and two'concepts .cannot be recognized at the same time.

3.5 Negative Order Schema

In this work, we purpose a way to recognize negative schema in the ordering

problems and show the role of the negative schema in seareh and optimization.

In most evolutiofiary. algorithms, thespositive schemas usually dominate the
population and assume that the soltitions in.the inverse set of the schema are negative
due to the selection process filters the less fitted solutions. Thus, the strings that are
not containgd in thesschemaiare extinct especially 'in'the ordering problems; the
strings satisfied by the schema are not easy to regenerate by chance. The search and
optimization procedure might be stuck in some local peaks. Moreover, some of the
multimodal and multi-objective solutions might be missing. These problems are well
aware therefore many researches try to preserve the diversity and elitist in order to
explore more in the uncovered searching areas and prevent the extinction of solutions

in the uncovered space.
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Negative o-schemas play a different role compared to the positives. They are
used to void the search space rather than to limit the search space. The more specific
schemas void less space than the general ones as can be seen in Figure 3.4 The

(13 2
~

negative o-schemas are defined using a in front of the positive o-schema. For
example ~[! 34!] is negative edge schema that void the search space from the
string containing in the negative schema. The search space after voiding is reduced
down from 4! to 4! — 3!. Therefore the remaining space is greater than the space

bounded by the positive schema with LV iqually order.
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3.6 Applying the Negative Knowledge in Optimization

In most evolutionary algorithms, the schemas are kept in a form of the selected
population. Thus the knowledge of which schemas are likely to form the bad
solutions, are abandoned with the non-selected population. The evolutionary process
repeats searching for the more specific schema within the bounded area assuming that
the solutions in the unexplored space would not be able to survive. The solutions in
the unexplored area are composed of the unknown to the positive area and known

negative area.

Vice versa, the negative schemas void the search space and left behind the
unexplored area that composed.ef unknown quality selutions and the positive known

solutions.

In theory, the negatiye concepts should be the complement of the positive
concepts. However, it is impossible to ideﬁt_ify the positive and the negative concepts
without verifying all of the sglutions in the space. The learning process starts from the
unknown space. As the learning progresses, ﬂ_ﬁé"éolutions are verified and classified.

In order to combine together the positive and negative schemas, we need to
discriminate between the good and the bad schemas. Howcver some average solutions
might contain both good and bad schemas in a solution; such structure should not be
prejudged and should not be recognized.as.either, good.or bad..Therefore the selection
methods also needto distinguish between ‘the good solutions, the bad solutions and

the solutions that might contain both positive andinegative schemas.
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Unknown Known

Positive

J Negative

Figure 3.5 The-elassification of the solution in the space

According to the'negative knowledge defined by Parviainen and Eriksson
[108], the negative canngt bg consideredo be the complement of the positive due to

it

the space contain not only the known pd;"sitijve and known negative but also contain
the unknown.

In order to utilize the, negative knf0§§1:¢dge in learning, we apply the four
feature of the negative knowing proposed _If?_ryiainen and Eriksson. First of all we
need to categorize the solutions in to tWo categories .as known and unknown.

Moreover, the knowat solutions are also divided in to positive and negative. This

enable the algorithm to distinguish between what 1s known and what is not known.

The algorithm should be able to identify'the negative schemas in order to pre-
shape the search space and try not to waste the function evaluation with the expected
undesited geometries containing the bad schemas. Thus, we need a data structure to

keep the'state of schema.

Moreover, the solutions found in the good solutions might contain the same
schemata found in the bad solutions or vice versa, which can be classified as false
positive or false negative. Thus, the algorithm should be able to justify the gained
knowledge and should be able to unlearn or bracket the knowledge back to unknown

information or re-classify or re-justify the old beliefs.
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3.7 Chapter Summary

This chapter, we give an introduction to the negative knowledge and give a
brief review of optimization methodologies utilizing them. In many literatures, the
negative knowledge is proved to be beneficial in many ways including the quality of

solutions, the diverse solutions, and the time to convergence.

We adopt the order schema as a tool to explain the behaviors of constructive
algorithms based on permutation represeniation. In addition, we introduce a new
subtype of relative o-schema called e?ige schema and the negative order schema.
From the models, we presume-that the negative knowledge in edge representation

should contribute in the following ways:‘l

a3 |

1) The negative knowledge forcéjé the algorithm to explore out of the search
space marked as forbidden areés_.

2) The negative knowlédge forcéé; 0 produce diverse solutions, however
dissimilar to the solpf[idﬂ's consi:c-lréfeﬁll to be bad quality.

3) In cooperating witﬁ the posit@-‘-i(nowledge, the negative knowledge

i

contribufés, in'discrimination of good and bad substructure. From such

cooperatiof, negative knowledge should enhiance a constructive method

should recog_nize better substructures and composing better solutions.

Finally, e propose some guidelinesito design an adaptive searching algorithm
incorporate the negative knowledge as a form of classifier based algorithm. However,

such guidelifies are hotdimited to'thé permiutation Teptesentations



CHAPTER 1V

COINCIDENCE ALGORITHM

4.1 Introduction

In the Chapter III, we propose some guidelines for designing an evolutionary
algorithm that can make use of negative knowledge in optimization. In this chapter,
we introduce a new evolutionary algorithma in a form of estimation of distribution

algorithm.

4.2 Coincidence Algorithm

The proposed algorithm is explair__l_ed in this section. The main idea of the
algorithm is to allow J€arning from the below average solutions as well as the
traditional learning fromd/the' good solutions. The coincidence found in a situation
should be able to statistically: describe thé_,.chance of the situation to be happening
whether the situation is good or bad. Thus the learning of the coincidence found in the
bad solutions should be used to-avord the ba._d; éi’fuation as well.

4.2.1 Design

Coincidence algorithm (COIN) is designed to construct the solutions
based on the mutual information in edge schema. We assume that there are linkages
between each of the painwrse items. /In this-algorithms-we tather focus on the pair of
permuted objects called incidences than 'the absolute position of a single object. For
example, two candidates with order 5, 1-2-3-4<5%and 4-5-3-2-1"share the common

coincidence 4-5 which'is considered ta be a schema in edge schema.

According to the definition of building blocks hypothesis (BBH), the
coincidences can be considered to be the building blocks. However, we would not
rather call the coincidences as building blocks due to the coincidences can describe

only some partial building blocks in relative o-schema.



93

COIN adapts the first order matrix of MCMC[125] (Markov Chain
Monte Carlo) as a data structure to maintain the joint probabilities, this matrix is used
to learn both positive and negatives incidences found in the populations. Then it is
used to generate the populations according to the conditional probability. Even though
the relative o-schemas with gaps are not easy to be recognized, they are indirectly
identified using the conditional probability property of Markov Chain. Therefore

COIN can indirectly recognize the relative o-schema as well.

COIN uses the same distribution similar to EHBSA. However, COIN
does not estimate the selected population the'Same way as EHBSA does. COIN rather
uses the incremental model based on réward and punishment. When an incidence is
found in the above averagessolutions, it is rewarded more probability to be selected.
Otherwise, if an incidene€ 18 found in the below average solutions, it would be
punished by deducting theé probability to'be selected. The reward probabilities are
gathered from the other ancidences eqﬁélly, while the deducted probabilities are

scattered to the other ingidences the oppoSilt_ional way.

4.2.2 Components o324
Similar to most-black box op;c__im_';ization algorithms, the components of
the algorithms are composed of data structure and fitness- function(s) evaluator. The
data structure of this'algorithm mimics from the first ordermatrix of Markov Chain in
which we use to leari-the positive and negative building blocks in a form of joint
probabilities and then use€ the joint probabilities to generate the candidates. We simply

call it a generator.

4.2.2.1"Generator
The COIN algorithm wuses a generator to generate the
population according to the coincidences found in the good and the bad candidates.
The generator H is a matrix of size n X n where n is the size of a permutation. The
sum over each row H;; where j ranges from 1 to n equals to 1.0. It denotes the

probability of the occurrence of ij in the solution string. Each entry of H; ; has a value

between 0 to 1.0. The diagonal H; ; are 0.
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4.2.2.2 Fitness Function Evaluator
The fitness function evaluator is used to evaluate the fitness of
the solution generated by the generator. To maximize the efficiency of the algorithm,
the solutions are sorted on the fly (an insertion sort is recommended) as the selection

mechanism of the algorithm needs to select the solutions from their ranks.

4.2.3 Mechanics
The mechanism of the COIN algorithm is shown in Algorithm 4.1. It
begins by initializing the generator them .hes population is sampling from the
generator. The generator isupdated by each of the-eoincidences found in the selected
good and bad candidates=according rto their “evaluated ranks. The generating,

evaluating and updatingsteps.arc repeated until a termination condition is met.

PROCERURE COILN

1. fnigialigeliGengtator

i

= ‘-J

2. Repeat i

3. P <—‘Sampling(ééﬁgéétor)

4. p’ <- Sort (Evaluate (p))

o, Reward (Selection (Top (p)) ,Generator)

Pundishment (Selection (Bottom|(p)) , Generator)

6. Until Termination Condition is met

Algorithm 4, 1: Bstithation of Distribution A1gorithm

4.2.3.1 Initialization
The generator H is initialized so that each of the joint
probabilities H;; except the H;; equal to 1/(n —1). The summation of all joint
probability H;; where j range from 1 to n equals to 1. This initialization represents

the uniform distribution of each joint probability.
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4.2.3.2 Generating population
The sampling algorithm of COIN is similar to EHBSA and ACO.
Each individual are sampling one position by one position from head to tail. Each
position is generated depend on the current and all of the previously generated
position. Therefore the permutation sequences are always feasible. The sampling

procedure is as follows:

PROCEDURE SamplingfromCOIN
1. Set position comnger p<«< 0
2. Obtain first node«€[0}.wandomly from [0,L —1]

3" Congeruet a, toulette . wheel vector rw[] from matrix as

awlj] <l 5, G/= 0% .., L—1)
|

4. set to)0/previously sampled nodes inrw[] (rw[c[i]] «
Qo =0 I ») —

54 Safipl€ next . node c[p+1] with probability rw[x]/
Z};&rw[j] us¥ng roulette wheel Twl].

¥

i

6. Update.the positionfcounter p« p+1.

7. If "p<E=1, go 't‘.é"'s'ﬁep 3.

Algorithm 4.2 Sampling Aleonithm ¢f COIN

4.2.3.3 Selection

Twomselection methods are considered: a uniform method
selects from the top.and bottom c percent of the population and an adaptive method
selects from the population aboverand below the average band of two standard
deviations.

In the adaptive selection process, if the population contains
more good candidates, the selector will select more of the bad solutions rather than
the good solutions. Conversely the selector would select more of the good solution
when the overall candidates in the population are not good. This mechanism
maintains the fitness distribution among the candidates in the objective space in which

we hope to be corresponded to the diversity of the candidates in the decision space.
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4.2.3.4 Updating the generator

In the initialization phase, the joint probabilities H; ; are equally
initiated so that the probabilities to be selected are uniform. As the generation
progresses, the candidates are ranked, good and bad populations are well separated. In
this phase, the mutual information indicating the joint probabilities are used to bias
the generator in order to generate the desired candidates being closed to the good
concepts and avoid generating the undesired candidates being distant to the opposite
concepts.

The reward and punishment schemes are used to bias the
generator. The coincidence found in the top.ranks are considered as good building
blocks and given more probabilities to be chosen as rewards. On the other hand, the
coincidence found in the.bottem ranks are considered as bad building blocks and

punished by deducting the'probabilities to be chosen.

Theincremental ari&l detrimental models used in the algorithm
are different to the other evolutionary al"‘gorithms based on probabilistic models as
most of them are represented in biﬁary. The ébod substructures are usually rewarded
by deducted from the bads[71][72][119]._‘-,?f1§!,-}his algorithm, when good and bad
coincidences are found, all the other coin_c::i_f(_i_el-_l_czes ij sharing joint probability i are
affected. The generator updatés the good .a-r;d bad joint probabilities using two
different methods. -

4.2.3.4.1 Reward When each coincidence i,j is found in a

better group of candidatéss.the reward is given to H;; by gathering the probability

(nf—l)z from the |Hjgl wheretj range from d 0 ', j # i. K is denoting the learning

coefficient, and 7;; is_the total number of coinCidence i,j counted from the good

solution. The rewatd equation is

B k k n 4.1)
Hyj(t+1)=H;;(t) + m-D (rij) — =12 (zzzlri,z>
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The last term, #(Z;l:l r,,), represents the adjustment step for all “others”

H;; (z # i,z # j) in the opposite direction hence keeping the sum of all probabilities

1n a row constant to one.

4.2.3.4.2 Punishment Contrary to the rewarding, when each

coincidence i, is found in a worse group of candidates it is used to update the joint

probability H;; by scattering its own probability (nf_1)2 to every member H;; where j

range from 1 to n, j # i. k is the coefficient denoting the learning coefficient, and p;
is the total number of coincidence i,j counted ftem the bad solution. The punishment

equation is

¥ 3 k n 4.2
Hyj(t+1) =8 (8) = GL——I)(pL]) & m(zzzlpi,z) (4.2)

The Tast tetm;.-mic—l)z(Z;‘:l p;.), also represents
the adjustmeﬁ’c step. for all “others” H,; (z #
= ffi:_iafgpposite direction hence keeping
the"sum of all pf(;babilities in a row constant to

one.

Combining together reward and punishment when a

coincidence i, j is found in both good and bad solutions we will get:

k

K
Hij(t+1) =H;;(t) + =T () —pi) + W (X2 pi =X Ti,) (4.3)

There is' some“consirdint in'updating the-generator—Since the joint
probability is updated by increasing or decreasing by a constant rate, a joint
probability must not become negative. Therefore we need to maintain the probability
value by disallowing the punishment if it would decrease the probability down below

0.
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Reward
Xy | X | Xy | X | XG5 X pdo | X | X | X
X; | 0 025025025025 Candidate Fitness X; | 0 |025A25 | 025|025
Xy | 025 0 |025|025|0.25 ] @';,X:,Xsf High | Xy |0.25| 0 |0.275]0.225|0.25

Xy |0.25]025] 0 |0.25|0.25 = MAI - ed = Xy | 0.25 |0.225| 0 |0.2625 0.25

Xy |0.25 025|025 0 |0.25 Med Xy |0.25 %.:5 0.25| 0 | 025
X; | 0251025025025 0 | @m\v, i X5 X5] Low T° | x5 ,@é 0.268|0.243 0.25 | o

Punishment

Generator (7,) Population Generator (7;)

Figure.4.1. Updating the.generator k=0./

Figure, 4«1 exemﬁliﬁes the process of initializing the generator,
generating the first population; sclection of good and bad candidates and finally
updating the generator using the sélected candidates: Since the problem size is equal
to 5, the generator is initidlizéd/so that each joint probability is equal to 0.25. Then,
the population is generated from the initia:;ed7 generator. The candidates are sorted and
classified into three classes: h1gh fitness; f‘medlum fitness, and low fitness. The high
fitness candidates are cohsidered o be- the ‘good solutions while the low fitness

o

candidates are considered to be the bad solutlon,s in the population.

As seen in the ﬁgure 4 1, the candldate Xo-X3-X4-X1-X5 1S
classified as a good solutlon The incidences Xo-Xi, X3—X4, X4—X 1 and X7-X;5 are used to
update the generator as_rewards. The candidate X3-X>-Xj4-X;-X5 is classified as a bad
solution thus the incidences X3-X», X>-XanXs-X; and X;-Xs are used to punish the
generator in the€ opposite way. Sinee the coincidences Xi-X; and X;-X5 are found in
both good and bad solutions, they are counted as a one-time reward and a one-time
punishinent so‘the’iow'/,;j and row 4,j remain urnchanged. While. X5-X5 and X3-X; are
considered to be the coincidences found in the good solutions, hence these
coincidences are used to update the row X, and X3. The coincidences X3-X; and X>- X4

are used to punish the generator as they are found in the bad solutions.
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Generation 0

Figure. 4.2. The probability depe
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4.3 Multiobjective Coincidence Algorithm

The multiobjective version of coin is slightly different from the single
objective COIN in the selection method. We adopt the non-dominate sorting and
crowding distance of NSGA-II[25] as the way to select the population used in
updating the generator. Again, we use the not-good solutions to update the generator.
The not-good solutions are defined different from the single-objective COIN. They
are obtained from the non-dominated frontier of the opposite side of the objectives we

are optimizing.
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Figure. 4.3 The non-deminate ranking«n multiobjective, coincidence algorithm

Figure. 4.3_shows.the non-dominate ranking in Multi-objective COIN. The
number of the selected ‘candidates depends on the fank of'the frofitiers.'In this case the
first and the second ranks contain 10 candidates, while the last two ranks contain 11

candidates.
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4.4 Discussion

In this Section, we differentiate COIN from the existing algorithms in the
Chapter II and III. Figure 4.4 illustrates genealogy of COIN. Clearly, COIN is a
population based metaheuristic and is also a constructive algorithm. COIN and
EHBSA[18] use the different encoding and different probabilistic model compared to
most EDAs [71][72][119]. The data structures of COIN and EHBSA are more similar
to ACO[20]. However, the distinctiveness of COIN is that it learns the negative
correlation of the worse group of candidates as well as the traditional better group of
candidates. COIN and ACO incrementally €ombines the solution components of the
latest generation with all“the previous iterations while EHBSA construct a new
probabilistic model only fiem the most fecent population. However, ACO uses a more
complicate model of pheromone evaporation for cxploration purpose in which an

appropriate parameter tuningds nceded.

The negative knowledge of COIN}, is different to that used in NPSO [120] as
COIN considers the correlation of bad Et_l__ilging blocks in the candidate solutions
while NPSO considers the negative knowleg.}_gie of the geometry of neighborhoods.

The incremental model of COIN is ;__lsg.difference to PBIL, cGA and iBOA.
PBIL, ¢cGA and iBOA deduct the probability from the opposite values at the same
absolute positions. However, COIN gathers the probability from the rest of the edges
sharing the same statting nodes. Incremental models: of PBIL, cGA and iBOA
consider being reward and“punishment at the same time, whiling, COIN separately
uses different methed|to the reward. [Thespunishment model of COIN scatters the

probability of an edge to the rest of the edges sharing the same starting nodes.

The multiobjective version of COIN (MO-COIN) mimics the non-dominated
sorting and crowding distance from NSGA-II. However, COIN is an EDA, therefore
COIN does not need to maintain the elitists. The purpose of embedding the crowding
distance in MO-COIN is to prevent the premature convergence of the probability

model.
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GA
ACO
GA-ER
PBIL cGA
BOA NSGA-II
EHBSA
MO-COIN
Figure:4:4. Geneéldé"y of COIN.
4.5 Chapter Summary

In this chapter, we propose a new edge-based estimation of distribution
algorithm called COIN, which lincorporate the megative |correlation learning. The
reward and punishment scheme 1s used to update the probabilistic model adopt from
the firstsorder Martkov chain matrix; The seleetion, process; of, COIN,discriminate the
good and the'bad edges found'in'the better and the worse“groups ‘of-eandidates. This
mechanism enhances the algorithm to recognize the better substructures in order to
compose them. In addition, the worse substructures are discriminate and can be
avoided. The figure 4.5 illustrates the recognition of the better quality substructure by

eliminating the substructures found in the worse group.
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CHAPTER V

EMPIRICAL ANALYSIS

5.1 Introduction

Previously in chapter III and IV, we set a hypothesis that the negative
knowledge should (i) prevent the composition of bad building blocks and should (i7)
preserve more diversity. In order to test the hypothesis, this chapter compares two
EDAs, COIN and EHBSA which utilize similar probabilistic model in order to
construct a candidate solution. The major diffetence of COIN and EHBSA is that the
COIN takes the negative knowledge into account, while EHBSA doesn’t consider the
negative knowledge at all.dn addition, COIN inerementally combines the solution
components of the latestygeneration with all the previous iterations while EHBSA
construct a new probabilistic model only from the most recent population.

One approach.to investigate the Eéhavior of EAs is to test them on artificial
problems where the solutions are known a‘il,,.priori. For this purpose researchers usually
used deceptive problems, which ‘aré hard glébélly multimodal optimization problems.
In our experiments, we use multimodal coﬁiﬁiqqtorial puzzles where the solutions are
known and expected to mislead the testing ﬁléérithm to certain local optimal points.
We compare COIN with EHBSA in two (I:l‘e‘i.s__s-ie-srof combinatorial problems that are
permutation and conibination. The permutation problenis include 8-Queens puzzles,
3 X3 magic square, 4 X 4 magic square and knight’s tour problems while the
combination problems inglude 8-Queens, 8-rooks, 14-bishops and 32-knights puzzles.

EAs and EDAs are “usually’ incffective  in solving globally multimodal
problems as th€y converge to a single global optimum. The explanation [126] is
straight~forwardy The basinscofdifferentiglobal-eptimasmay, be\represented in the
population. As there is no significant Selective preference for one of the basins in the
population over another, the stochastic variations due to the selection method make
the population drift towards one of them and, thus, discover only one global optimum
at most. Moreover, this global optimum is randomly chosen from the existing global
optima. This phenomenon is known as genetic drift [127][7]. In absence of selective

pressure, the stochastic nature of the selection method reduces population diversity.
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5.2 Magic Square
5.2.1 Introduction

A magic square of order n is an arrangement of n X n distinct integers
in a square, such that the n numbers in all rows, all column and both diagonals sum to

the same constant or magic sum M. which can be calculate by the equation

_n(n®+1)
2
For normal magic square of order n = 3, 4, 5 the magic constants are 15, 34, 65
respectively
1216 |15 1
za® 133 [10| 8
D1
2,165 |11
4 343 |
() . 7.9 4 |14
| (b)
Figureg'S. F'Sample of fn,agic square solutions
(a)The solution of @ 3 X 3 magic square
(b) The solution of @ 4-X 4 magic square
5.2.2 Related works g

Apart from the exact methods, there is no known algorithm to find the
solution to magic squares. According to [128] and [129], genetic algorithm with
specific crossover cannot always find a solution to these problems. In the works of
[128][129], they relax-the comstraints’ of the magic squares such that the fitness
evaluation are calculated only from the row and the column, while, the works of [130]
use multindilliotof tuns to"find a solutionand measure) thelrelatiVe érror compared to
the optimal solution.

Surprisingly, magic square problems are composed with the set of
numbers with summand equal to the magic numbers in each axis, thus they are
considered to contain building blocks in the genotype. However, constructive
algorithms such as genetic algorithms can rarely be able to find such a solution. The
competitive algorithms to solve magic square problems become the improvement

algorithms that usually are trapped in some local optima.
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21716 1134
518 8|5
411 72

Figure 5.2 The magic squares that contain the conflict building blocks

The simple explanation is that even if a constructive algorithm can
recognize that which squares are beticr than the others in term of fitness and
determine that they might-eontamn the good building blocks which should lead to a
better solution, however, the" algorithm cannot be able to recognize that which
building blocks are good and which ones are not. In addition, even if the algorithm
can recognize the good building blocks contained in a candidate solution, the
algorithm does not knew how © co_‘mpose;"thjc_m as they might be being in conflict.

¢

Figure 5.2 gxemplifies two. of the fittest solutions in which none of the
Crossover operators [50][51][52][53][54][55][56 [57]|58]can recombine to form a
better solution. Moreover, the recombmmg—-these two solutions results in generating

the worse offspring compared to their parents ‘dué'to the-crossover operator would

rather disrupt the buildiiig blocks thai constructing the higher order, better ones.

In a 3>< 3 magic square problem, each axis composed of the
summands equal to 15 However, fiot alll the summands are: the good building blocks.
For example, the summands M = 15 can be 1+5+9, 2+4+9, 2+6+7, 3+5+7, 1+6+8,
2+5+8 314748 ~4+5+6and, their-permutations, but the subsequence 5+1+9 is not a
subcomponent of ‘any solution. “We call this kind of 'subsequence~a false building
block. Composing a false building block, might mislead the search algorithm into a

pitfall. This reason makes the problems become much harder to be solved.
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5.2.3 Experimental setup

We compare EHBSA and COIN in 3 X 3 and 4 X 4 magic square
problems. Both EHBSA and COIN were implemented using Codegear Delphi 2007
and test them using Intel core 2 duo 2.16 GHz with 2 GB of RAM. Ten runs ware
performed for each problem, we apply different configurations of population size and
number of generation such that the total numbers of evaluation are smaller than the
solution/space ratios. For the 3 X 3 magic square we use to 5,000 evaluations while in
the 4 X 4 magic square we use up to 800,000 evaluations. The bias ratio B,,, of
EHBSA is 0.005 were used in all experimentsswhile the learning rate k& of COIN is set
to be 0.05. The selection piessure of EHBSA“1S 50% of the whole population, while
COIN uses 25% for both reward and pu‘r’.ﬁshment.

We evalgafe; the algorith&ls by measuring their ANE (average number
of evaluations to find t}be"‘ figst glob'ﬂa}. ol;tﬁnum) #SOL (average number of solution
found within the givé;l aumber ',of._evaz;lations) and #DSOL (average number of
distinct solution found within the_:__ g‘i_V:en nul’hber of evaluations)

" --'_‘ " -:.J‘l:g
Figure 5.3 illustrates the encoding of a 3 X 3 magic square. The

candidate simply formed by_ggnoatenatio;{? of each of the row. This problem is a

problem that the bgi'l_@iing blocks are explicitly exposed{@part from the rows, each

magic square clearly: gb_ntains the building blocks for eacl;-c"olumn and diagonal axes.

BB4
BB5
2|7 |6 |BBl BB6
9 5 1 BB2 A A A4 A\ 4 A\ 4 \ 4
A
BB3 A A A A
BB7
BB8

Figure 5.3 Encoding and building blocks (BB) of a 3 X 3 Magic Square problem
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5.2.4 Discussion

Figure 5.4 0 "EHI \ ic square problem

ﬂﬁtﬁ%&ﬁ%WﬂWﬁ?

7 Best == Average

BR R L S RHDR

Figure 5.4 and 5.5 show the result of EHBSA and COIN in 3 X 3
magic square problem respectively. The vertical axes indicate the fitness of the
benchmarks while the horizontal axes indicate the number of generation used by the
algorithms. The magic squares are the maximization problems, thus the larger number

indicates the better performance. In these experiments, COIN performs better than
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EHBSA in magic square problems, as COIN can find a solution to the 3 X 3 magic
square, while EHBSA cannot converge to find such a solution. COIN learns the
negative correlation of the bad building blocks contained in the bad solutions. COIN
prevents the composition of these building blocks, thus easier to converge closer to

the optimal solutions. For example, in the 3 X 3 magic square problem, The total
number of 3 combination summand is (g) = 84 x 3!. the summands of magic

number M = 15 are the permutation of 14+5+9,24+4+9,24+6+7,3+5+
7,1+6+8,2+5+8,3+4+8and 4+ 5 + 6 altogether = 8 X 3!, otherwise the
summand are infeasible. (consequently, there arc.only 24 good valid summand out of
504 summand which are censidered to l?e the“good building blocks). EHBSA cannot
determine whether which summand bel;)ngs to which model. It only tries to compose
a solution from the good«foundbuild blocks, while COIN prevents the composition of
480 bad building blockss Howewver, COfN rarely finds the solution of the 4x4 magic

square. The probability te'find a'selution is".O.S, otherwise got stuck in a local optima.

Magic squares are”also c.;pnas-idered to be a hard deceptive problem
where the canonical magi€¢ squares:can be generated all the other by rotation and
transposition or reflection. The difficult p'axt of this problem is that there are no
overlapping relative building <blocks bet\%eéﬁ each solution, thus, there is no
significant selective preferenee-for-one of the’-llbasins in the population over another.
So the algorithms den’t know which direction they should converge to. The figure 5.6

reveals all the possible-solutions to the 3 X 3 magic squaic.

716 61118 81314 4192
5|1 715 115 517
4138 21914 672 8|11|6
318 21914 672 8|11|6
511 715 5 517
21716 6118 813|4 4192

Figure 5.6 All of the 3 X 3 magic square solutions
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Figure 5.7 Generator snapshots of EHBSA, fi;')o"sitive COIN, negative COIN and COIN
add v ol ok
forthe 3 % 3 magic square problem

Y, iy

Figure 5.7 showé the genera‘tér snapshots/of EHBSA and COINs for

the 3 X 3 magic square problem. In this experiment,:we analyze the effects of
negative correlation leé_rning of COIN by comparing EHBSA and the three versions
of COIN including the positive correlation Jearning COIN (P-COIN), the negative
correlation leatning COIN (N-COIN) and COIN that combines the positive and
negative correlation learning altogether. The lighter blocks indicate the lower
probabilities while {the ‘darkerblocks indicate the'higher probabilifies. The probability

ranges from white to black as 0 to 1.

Since the 3 X 3 magic square is a multimodal problem where the
building blocks are rarely shared, EHBSA and P-COIN cannot converge to a single
solution. However, EHBSA and P-COIN are different to each other as EHBSA
estimates the probabilistic model from the current population only, while P-COIN

incrementally combines the results learned from the current generation with all the
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previous generations. N-COIN seems to be smarter in exploiting the search space. The
negative correlation learning contributes in converging by exploiting the common bad
substructures shared by the below average solutions. The combination of positive and
negative correlation learning enhances COIN to converge fastest compared to the

others.

O R N W b U1 O N 0O O

&

Figure 5.8 Per ince of NfCO\}N in 3 X 3 Magic Square problem

Figure 5.841ll trate the bg:hawor of N-COIN in the 3 X3 magic

square problem. The negative. correlatlon*:E"afmng can make the overall solution
Jl

converge towards the optlmahty_-FFoweve—fter the whole population is dominated
“- b
by some substmcture,ithe negatlve correlatlon‘Tearnmg CPn51ders the algorithm to be

sl

— o
stuck in a local optlgia and then try to unlearn the eﬂ% >§ containing in the below

average solutions in orﬂﬁr to jump off the local optima. |

T

5.3 Combination-Chess ' Puzzle

5.3.1 Intreduction

The n-pieces chess puzzles are the problem of placing » kind of the
same class chess pieces on an 8 X 8 chessboard so that none of them can capture any
other using their moves. A standard 8 X 8 chessboard can place maximum number of
8 queens, or 8 rooks, 14 bishops or 32 knights so that none of them can attack each
other. These n-pieces chess puzzles are considered to be the combination problems
which are formally defined as “to find an optimal n-combination of a set S is a subset
of n distinct elements of S”. These combination problems are more difficult than

selections problems because the feasible set of solutions need to be a fixed size of &
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distinct items which standard mutation and crossover operators in genetic algorithms
could produce infeasible solutions even the crossover operators for permutation
representation is used. For 8-queens puzzle, the problem can be both combination and
permutation as it is possible to reduce the number of possibilities by generating the
permutations that are solutions of the eight rooks puzzle and then checking for
diagonal attacks further reduces the possibilities from 4,426,165,368 or (684)t0 just
40,320

Figure 5.9 shows the available chess moves of the dedicated problems
and a sample solution to each 'prhb M

\. ws: (a) shows the available rook’s
\“‘ .‘-"- :I‘ “ . . .
move and a sample of 8-Mzzles S ) shows the available bishop’s
T —

uzzles SOW shows the available queesn’s

.

1 s Qlutiogs shows the available knight’s
€

move and a sample of 14-bi

closest squares that are ng

"L"-shape two squares long 2

(a) Avail b ¢ r6o ’ ove
a sample of 8 tooks puzzles Solutl S

(b) Available bishop’s move and (d) Available knight’s move and
a sample 14-bishops puzzles solutions a sample 32-knights puzzles solutions
Figure 5.9. Available chess move and sample solutions of combination problems.
According to [131], The 8-Queens puzzle has totally 92 distinct

solutions, the 8-Rooks puzzle has up to 40,320 distinct solutions, the 14-Bishops
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puzzle has totally 8 distinct solutions and the 32-Knights puzzle has only 2 distinct

solutions

5.3.2 Related works
None of the existing literature is found to solve such combination
chess puzzle problems. However, n-queen problems can be found in many literatures
including [132][133] and [134], however, the multimodality of the solutions to the n-
queen have not been tested in any of them.
5.3.3 ExperimentalSetup
The experiments seitings of the combination chess puzzles are similar
to that in the experiments setting of magic square problems. However, the only
difference is that the encoding of the solut‘ior}_ strings. Figure 5.8 presents the encoding
of a 8-queen solution. /A candidate soh:‘f‘i;ioﬂn compose of items correspond to the
positions label in the chess beard. The caﬁdid‘a‘[e 4-15-19-32-34-45-49-62 represents
the solution in the figure 5.10. i

1]02|3 (4] 5| 6dezits it

=

9 | 10|11 | 12513114 F15° 16
- ——

17 |18 | 19 | 20 .21 | 22 | 23 | 24

25|26|27|28129|30|31]32

33 | 34 | 35|36 |37 [38 394 40

41 | 42 | 43 | 44 [;é 46| 47148

42ﬁ 50,51 |52 |53 |54 55|56

57 158 1591160 |61 IG 63+ 64

Figure 5.10 The sample encoding of a combination 8§-queen solution

In these test sets, we also include the permutation version of 8-Queens

benchmark. The encoding is shown in the figure 5.11.
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Figure 5.19 Performance of COIN in 14-Bishops problem
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Figure 5.21 Performance of COIN in 32-Knights problem
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From the overall perspective, EHBSA seems to outperform COIN in
the combination problems as EHBSA can converge to the solution faster than COIN.
However, COIN can generate more diverse solution compared to EHBSA.

In 8 Queens-P problems, COIN can find up to 13 distinct solutions
while EHBSA can find only 4 distinct solutions. 8-Queens-C and 8-Rooks are the
problems with equal feasible solution space. However, in 8-Queens-C problem
EHBSA can find an average of 4 distinct solutions while COIN can find up to 9
distinct solutions, however, the average numbers of distinct solutions are equal. While
in 8-Rooks problem EHBSA can find mo'{e/}fs inct solutions than COIN.

In 14-Bishops problem, CCIN%‘H__' find all the 8 distinct solutions
while EHBSA can find @;dif,tinc solution?._ETiBSA speedily converge to an
optima point, while CM 0 maintain all of the possible good substructures in
order to compose them. 7/ -

The 32-

oblem is the hardest problem. It is considered to be a
deceptive problem. I m,The—' are only two patterns of solutions, where
either black or white ghecker arg;all ..t:[_led._ Thus, this implies that there are no

4 d kA cikdy 4
overlapping building blo is’tir‘ig._‘ Noé]é:‘.of the dedicated algorithm can solve this

add i
problem. According to the figure 5.20 and 5.21, COIN can converge closer to the
global optimal solution, unfortunately, gq%sglck in some local optima, where the
PN g -f"'u':‘

s b
black and the white ¢checkers are equally filled while EHBSA cannot improve the
<, M

average populationz_%g all. The explanation is that d@DIN tries to generate a
compromise model by:i}"llter the bad substructures frorn:t_he goods. We try to bias the
algorithm such that bothAEHBSA and COIN,always select the top black corner as a
starting position., And it results that EHBSA always find an optimal solution within a
hundred generation,‘ while COIN gives the same compromising results shown in

figure 5223 ¢

Figure 5.22 Two compromising 32-Knight solutions obtained from COIN



"

EHBSA Gen 10

ra

EHBSA Gen 20

EHBSA Gen 30

",

EHBSA Gen 40

p

EHBSA Gen 50
o 7

.,

EHBSA Gen 60

\ OIN-Gen-40.
IN=C O TINCOC A

ONIEL]

P-COIN Gen 505

> ai

T
¥ - e
[ | [ |
-y
P-COIN Gen 10 N-COIN Gen 10 COIN Gen 10
[ |
[ |
[
||
o
COIN Gen 20
[ |
... [ |
. o
COIN Gen 30
||
- [ |
[ |
]
I

N-COIN Gen 50
B - S—

W13

P-COIN Gen 60

N-COIN Gen 60

COIN Gen 60

122



123

“y " 0

..I - " | .I =

|
B ||
EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70
|| || ||

“y " 0

.-l " " r .I =

O ,
| B AN y 0
EHBSA Gen 80 P-COIN Gen 80 /N-COIN.Gen 80 COIN Gen 80
H — | — O

e — |1 — 0

LI 7N SO

m
a VT INEY |

EHBSA Gen 90 RPCOIN'Gen90 = = N-COIN'Gen 90 COIN Gen 90

F F

Figure 5.23 Generator snapshots of EHBSA, P-COIN, N-COIN and COIN
for the 8 Queens<P problem

Figure 5.23 shows generator'-sﬁaﬂtpshots of EHBSA, P-COIN, N-COIN
and COIN for the 8 Queens<P problem.’ These generators do not represent the
graphical phenotype of-the-solutions—lin-ordei-to-genetate a solution, we need to
sample from the generator. For example, if we begin with the node 3 and then we
perform the greedy search within the final generator of COIN, we will get a solution
3-5-7-1-4-2-8-6-whichris a-solution to;the:8-Queens-Py [fwe-begin with the node 4,
we will either gbtain a“solution’ 4-2-8-5-7-1-3-6 'or a solution 4-2-8-5-7-1-6-3. The

first case is also a solution to the 8-Queens-P as wiell while the latter case is not.

In contrast to the 3 X 3 magic square problem, EHBSA and P-COIN
converge to a solution faster than N-COIN. However, EHBSA and P-COIN can find
less distinct solutions compared to the COIN with the negative correlation learning
embedded. In this problem, the negative correlation learning seems not to be
converging at all. However, when combining with the positive correlation learning, it
contributes in producing more diverse distinct solutions as it try to preserve all the

possible good substructures found in the better population.
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5.4 Knight’s Tour
5.4.1 Introduction

Knight’s Tour is a well-known classical chess puzzle which has been
studied over the last thousand years. The objective of the problem is to find a
Hamiltonian path in a graph defined by the legal move of a knight on a chess board in
which the chess knight has to traverse each square exactly once. Moreover, there are
superior solutions called closed tours which are the solutions that the knight can have

an extra move to complete the circ{&}j':,wmg square. The closed tours are more
N

difficult to find. Murray [16] ﬁa’&i /t e problem as the first manuscript

written in Arabic text was ced by Al €"Mani in 1350. It described the first
— ¥

closed by Ar-Rumi in 3840 Laté?x'{:::‘uler [17] proposed the first

mathematical analysi r f t'r WEQL& mathematicians who work

on the problem inclu ¢/Moivre and Lagrance.
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Figure 5.24 Two of the earliest known knight’s tour solutions
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5.4.2 Related works

Recently, there are many works on solving the knight’s tour problem
on a standard 8x8 chessboard. Borrell [135] proposed a straight forward depth first
search with no bias or heuristic using a Prolog language to develop a brute force

algorithm. The work aims to speed up the search time.

In contrast to the exact algorithm, there are metaheuristics approaches
try to overcome the problem including Ant Colonization Optimization (ACO) by
Hingston and Kendall [136] which augmentedithe problem specific heuristic [137] in
to their algorithms in order to increase thc-chance to find the solutions. Genetic
Algorithm (GA) by Gordon.and Slocilm [138] and Jarfar Al-Gharaibeh Zakariya
Qawagneh and Hiba Al-Zahawi|139] lutilized the tepair operation and heuristics
augmented respectively. . Fhe advantage of using the problem specific heuristic is that
the search space is reduced/down from 63! or approximately 1.98x10*” solutions
down to 8% or approximately §x10°® solugions.

Another approach- té the kn}ght’s tour was proposed by Takefuji and
Lee [140]. They utilized a Neural ‘Network.d:;c‘;),_j‘solve the knight’s tour problem on a
large 26x26 boards. However, s‘@_ndard app_rnal_r(_:hejs such as Euler and Warnsdorf [141]
heuristics and divide land conqﬁer approach-p;oposed by Parburry [142] can easily

find the knight’s touts on the board as large as 78x78.

The totalénumber of solutions to the knight’s tours problems was
researched by Wegener [143] | Mckay [144] and Mordecki [145] using a very large
scale computers.'On a standard 8x8.chess board, McKay calculated the total number
of closed tours to be 13,267,364,410,532 'while Mordecki found-the open tours to be
approximately 1.305x10™.
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5.4.3 Experimental setup

In this section, we report the experiment result of COIN in the knight’s
tour problem. We conduct the experiment using two algorithms which is EHBSA/WO
and COIN and then compare the result with ACO [138] GA with repair [140] and GA

with heuristic [141] using the results report in their literatures.

For testing purpose, In order to compare the performance of COIN and
EHBSA, We chose the EHBSA/WO which is the standard version of EHBSA in order
to contrast the result of edge based sampling.algorithm with and without a negative

learning. We set the parameters of COIN and EHBSA to the following values as:-

Populationsize = 400

Number offgenérafion =800

COIN Learning rate = 0.05"

Reward selection pressure%— 0.25

Punishment selection press;tre = 025

EHBSA selection f)réssure =J()5

Both COIN and EFBSA weE_:i_mplemented with CodeGear Delphi 7,
the testing environment is MS Windows XP‘ (;n*a 2.4 GHz Intel core 2 duo, with 2 GB
RAM.

The encoding, scheme of both COIN and EHBSA is a straight forward
permutation string, where each of the fitems refers to the position of the chess board
ranging from the'top left toward right as 1 to 8 and then repeat to the next row until 64
at the bottom righis (Fhe ‘evaluation function ‘of our ‘approach is<the number of legal

move found in a tour.



127

5.4.4 Discussion
Figure 5.25 compares the performance of COIN and EHBSA. The two
red top lines are the result of maximum and average tour generated by COIN, which
can converge to the first open tour at the generation 150. Then more of the complete

tours are rapidly generated until the first closed tour is found at the generation 301.
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f)l;jle BS‘A cannot converge to a single
, there are substructures in the
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the negative knowl
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benchmark. First, it helps recognizing and eliminating the illegal knight’s path from
the complete graph, which leads to the diversity amongst the legal path. Second, once
the probability matrix converges, it unlearns some of the occurrence in the previous

generation in order to find more of the solution models.



-

EHBSA Gen 10

P-COIN Gen 10

N-COIN Gen 10

COIN Gen 10

EHBSA Gen 20

EHBSA Gen 30

.E:- |

COIN Gen 20

<COIN Gen 50

1A @_’:J

EHBSA Gen 60

P-COIN Gen 60

N-COIN Gen 60

COIN Gen 60

129



[ | I. I.
:' D-' d D-'
||
EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70
[ | i I. I.
L D-' x D-'
1I
! %‘ A
EHBSA Gen 80 P-COINGen80 |/, «(ﬂn’ n 80 COIN Gen 80
T
D \.-Dh“a-i‘. D
t .:\ -
EHBSA Gen 90 “ N-COIN Gen 90 COIN Gen 90
L]
oy F .
s ::::g!:!
EHBSA Gen 100 P-COIN Gen 200 N-COIN Gen 100 COIN Gen 100

i o BY E

- Vi

D_

]
Isi-“r“
|

N

e}
4

W |

EHBSA Gen 110

{ {'PLCOIN Gén 110

{1 N=CQIN'Gen 110, « #COIN Gen 110

AN HEDAN:

1T 1

e
i tFD,F

EHBSA Gen 120

P-COIN Gen 120

N-COIN Gen 120

COIN Gen 120

130



] ] ] ]
[ | [ |
[ |
[ |
EHBSA Gen 130 P-COIN Gen 130 N-COIN Gen 130 COIN Gen 130
(] 1 ] (1
et "
||
EHBSA Gen 140 OIN Gen 140 COIN Gen 140
El: 7 | ORI H
/ £h .
EHBSA Gen 150 ‘e(%%o COIN Gen 150
1/8
max

ﬁ%‘u q{}a%‘@m5 H—'}ﬂi
ammﬂmﬂmmm’a@

Il. | |
- 1

B

_ B

A

Figure 5.28 The 27" row generator snapshots of
EHBSA, P-COIN, N-COIN and COIN for the knight’s tour problem

131



132

Figure 5.28 shows the generator snapshots of EHBSA, P-COIN, N-
COIN and COIN for the knight’s tour problem. Due to the enormous size of the
generator, we sample only from the 27" row of the generator. Such row can be
transform to the possible path of a knight from the coordinate 5B to all the other
coordinates. In this experiment, we do not embed the problem specific heuristic in
order to observe the behavior of the 4 algorithms. The probabilistic model of EHBSA
cannot converge to a stable stage at all as it estimates the distribution from the latest
generation, while P-COIN, N-COIN and COIN incremental learn from all the
previous generations. The probabilistic mﬁQﬂLS of P-COIN, N-COIN and COIN
slowly adjust themselves toward a stable stage’ Such stable stages show that the

probability models try to constralnt the1 probabilities of the possible moves to satisfy

the knight’s legal moves. .
Accordln 0 Jfigtue’ 5. 39 compared to the figure 5.25, P-COIN
performs almost as the uahty as QOIN Unfortunately, P-COIN cannot find an

optimal solution. From the'g erator sn. shot P-COIN tries to converge to a single

solution, while COIN tries falntam all.-the possible solution. In this problem, the

ontributes 1mprevent1ng the premature convergence to a
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Figure 5.29 Comparison of the performance of

P-COIN vs. N-COIN in the knight’s tour problem
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According to [140] and [141], pure genetic algorithm was proven to
fail to find solutions to the knight’s tour problem. One of the reasons is there are too
many global optimum which contain diverse of substructure. These substructures are
not only hard to recognize but also are in conflict to each other. Even if all of the
substructures are identified, the problem of how to compose these substructures
remains. The probability matrix of COIN does not only learn to compose
substructures in order to form a good, solution, it also learns not to compose the
substructures likely to form an undesired solution.

For method comparison, we ineréase the number of generation from
the testing propose to 2,000 generation§ in oider o compare the results with GA with
heuristic and GA with repair operation proposed by Al-Ghraibah [141] and Slocum
[142]. We also compare out work with an improved version of ACO called Multiple-
restart Ant Colony Enumeration (MACE) algorithm proposed by Hingston [137] as
well, however, the number evaluation lele}._d by Hingston is incredibly enormous
therefore we prefer to mainly compare thé-result using the hit ratio obtained from the

percentage of tour found from the iﬁvested:f}'lriétion evaluation.

2 L

Table 5.1 Results of applying differeﬁgéfibroaches to solve Knight’s tour.

Algorithms Evaluations ' Touws Found Hit Ratio
MACE & 172,800,600 13,124,404 7.5%
COIN - 1,000,000 10,53t 1.05%
GA+Repair 1,000,000 5,696 0.57%
Repair only 1,000,000 102 0.02%
GA-+Heuristic 800,000 12,084 1.51%

Heuristics only 800,000 1,979 0.25%




134

From Table 5.1 the performance of MACE is superior. Within
172,800,000 evaluations, MACE has found over 13 millions tours in average as the
ants quickly bias the prohibit moves by not laying the pheromones on it. Once a
complete tour is found a population of ants performs local search over the shared
information. While MACE evolves a tour from the sub-tours containing only the legal
moves, COIN learns the whole permutation strings where both legal and illegal moves
are mixed and trying to differentiate the legal and illegal moves among the whole
populations. This is considered as a totally blind search. Without a problem specific
heuristics or bias, COIN can find an average©£10,531 tours within a million function
evaluations with 1.05% hit rate compared 0 /5% obtained from MACE. GA with
heuristics also perform a great job as it improve the odds to find a solution of a pure
heuristics from 0.25 up to«1"54%: GA with repair can improve the odds to find a

solution from an iterated gepair operation up to only 0.57%.

However, the mumbers of closed tours are not mentioned in the
literature. In average, GOIN can find up to closed 921.4 tours out of 10,531 open

tours.

5.4 Discussion FENSS

From the 3" scis-of experiments,- COIN rather gives more diverse solutions
compared to EHBSA.-However, it sacrifices more function evaluation as it trades of
the convergence rate with the diversity. However, in 8-rooks puzzles, EHBSA can
find more distinCtsolutions, than COIN; while) ine8-queens-C; COIN can find more
distinct solutions than“EHBSA. The" explanation~to this" phenomenon is that the
solution of the 8-rooks solutions share more common substructurethan 8-Queens. The
8-Rooksisolutions share at most 6-positions while the 8:Queens) can_share at most 2
positions. Once the probabilistic model of EHBSA converge to a solution, neighbors
of such solution are likely to be a solution as well. While 8-Queens puzzle rarely
shares the substructure. Moreover, the substructures of 8-Queens solutions are likely

to conflict with each others, therefore EHBSA cannot converge to any direction.
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This chapter, we investigate the roles of negative correlation learning of COIN

compared to EHBSA where negative information is not taken into account. Table 5.2

summarizes all the benchmarks and their properties, while table 5.3 summarizes the

performances of such benchmarks. The results conclude that negative correlation

learning contributes

in preserving diversity and preventing the premature

convergence.
Table 5.2 Summary of test.suitcs and their properties
Problem No. of Solution/Space Population =~ Number of Numl_)er of
Problem Search. Space . . . Trial
Type Solution Ratio Size Generation .
(Evaluation)
8 Queens-P Permutation 40,320 92 1/438 50 50 2,500
8 Queens-C  Combination 44%6,165,368 24 /48,110,493 100 1,000 1,000,000
8 Rooks Combination 4,426M165,368 40,320 1/109,776 100 1,000 1,000,000
14 Bishops  Combination 47,855,69991958 816 8 U 1/5,981,962,494,852 100 2,000 2,000,000
32 Knights ~ Combination  1,832,6244140,942590,534 5 1916,312,070,471,295,267 100 5,000 5,000,000
| 4
%&%ht s Permutation 1.268% 10 14%10% *‘ : 1/9.72 x 10 400 1,000 4,000,000
I3IMagic b tation 326,380 = 1/40860 50 100 5,000
Square )
» | v il ._g
g’;ﬁ;ﬁaglc Permutation 20,922,789,8880001 . 7,040 o W2.971.987,200 100 800 800,000

i od el

Table 5.3 Peifermance-of EHBSA-vs=EOINan-¢d0mbinatorial puzzles

Algorithmr
Problem EHBSA ' COIN
ANE p#SOL =#DSOL | AANE, «##SOL #DSOL
8 Queens-P 8 25 4 8 21 13
8 Queens-C 1821 78 4 3651 10 9
8 Roaks b4 ¥ 1229% 454 4 4
14 Bishops 419 408 4 1070 45 8
32 Knights N/A 0 0 N/A 0 0
Knight’s Tour N/A 0 0 154 2816 2759
3x3 Magic Square N/A 0 0 35 40 2
4x4 Magic Square N/A 0 0 N/A* 0 0




CHAPTER VI

REAL WORLD APPLICATIONS

6.1 Introduction

This chapter, we introduce the application of COIN in three major applications
including travelling salesman problems (TSP), production line balancing problems

and production line sequencing.

6.2 Travelling Salesperson Probiciin

6.2.1 Introduetion

The traveling salesman  problem (TSP) is a typical combinatorial
optimization problem*which s/ perhaps ,_j.the most-studied NP-hard combinatorial
problem. Given a list ofcities and their pe;irwise distances, the common objective is to
find a shortest possible tour that visits each-ﬂcity exactly once. The problem was first
formulated as a mathemagical problem in 1930 and is one of the most intensively
studied problems in optimization: It is us'e‘:(':i--as a benchmark for many optimization

methods.
6.2.2 Related works S

Even thotigh the problem is computationally difficult, a large number
of heuristics and exact methods are known, so that some instances with tens of
thousands of cities can_be solved. There are some near-optimal or approximate
approaches t@., solve!'this | problem, 'such ‘as ‘simulated “annealing[147], neural
networks[148],@and tabu search[149]. Integer linear programming approach[150] is an
exact algorithm, to-, solve- this problem by ~using .additienal Jinear, constraints to
eliminate the' illegal’ sub-tours. Genetic'algorithmis" also~purposed with the goal of
solving the optimization problems, and has been applied to the TSP with varying
degree of success.

6.2.3 Experimental setup

To measure the performance of COIN, we perform several benchmarks
on single objective TSP problems and compare them to the experiment of Robles and
Larrafiaga [151]. We aim to measure the performance of the algorithm in two main

aspects: quality of the results and the number of function evaluations. This research,
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we show the result of the well known Grostel24, Grostel48 and Grostel120 which can

be obtained from the TSPLIB [152].

The experiments of Robles and Larrafiaga use both of the discrete and
continuous EDAs in the following learning methods: UMDA [73], MIMIC[74],
TREE [154] and EBNA [155]. Moreover we compare the results with GA in the
literature of Larrafiaga [156] in 1999 which uses GENITOR [57] algorithm. The
parameter of COIN in these experiments depends on the size of the problems. For
each of the combinations shown in the experument, we perform 10 runs and average
the results.

To study the effeet of négative correlation learning in multi-objective
problems, the multi-objective COIN is tested n a multi-objective TSP problem. We
setup an experiment using kroal00 and krobl00 as a bi-objective 100 tours TSP
problem obtained from the'TSPLIB: The population size we used in the experiment is
250 and the learning step ks equal to Ol-

6.2.4 Discussion :

6.2.4.1Gristel24 ‘)

i

Table 6.1 Tour length for the Grostel24 problem

Population & Local Optimization

500-without 500-with 1000-without 1000-with

Algorithm

Best Aver  Best Aver  Best. Aver Best Aver
GA-ER* 1272 1272
GA-OX2* 1300 - 1367
UMDA 1339 1495 1272 1272 1329 1496 1272 1272
MIMIC 1391 . 0 86~ 412723 | 42727 71328 @ 14512y 272 1272
TREE 1413 1486 1272 1272 1429 1442 1272 1272
EBNA 1431 1528 1272 1272 1329 1439 1272 1272
COIN unif 1272 1280 1272 1278
COIN adpt 1272 1272 1272 1272

* Size of population 200, mutation used SM
unif denotes uniform selection with learning step k = 0./
adpt denotes adaptive selection with learning step £ = 0./

Optimum 1272
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The TSP coding for continuous EDAs in the original literature
uses real numbers which later sorted into the ordering path based on these numbers, is
known to be a poor alternative coding compared with path representations based on
permutations. Thus, the results obtained from continuous EDAs are not compared in
this study due to the use of different representations. Additionally, the detail of local
search in the literature is limited to us, thus the result of COIN incorporate with local

search cannot be implemented and compared.

Table 6.2 Number of generationsfor the Grostel24 problem

Population &|Local Optimization

500- 500-with “+1000- 1000-

Algorithm without without with

@en l; " Gen Gen Gen
UMDA () ) 19 78 12
MIMIC 472 ain 4 58 4
TREE 37 : Jnd 46 2
EBNA 72 16 79 7
COIN g IR 43

r

Table 6.1 shows the best results“and average results obtained
for each of population siz€, with and without local optimization and learning type of
EDAs. The table also shows'results.obtained for the.GA! usingfthe crossover operators
ER and OX2. The results show that COIN with adaptive selection can find the
optimuin of Grostel24vwithout the need of local optimizer and it'is competitive with
all the EDAs in the experiment.

Figure 6.1 shows the convergence of the Grdstel24 problem
using only good solutions, only bad solutions and using both. It shows that the use of
both good and bad solutions outperform the use of only either good or bad solutions.
Learning from bad solutions creates more diversity amongst the best results but

retaining the average results.
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Figure 6.2 The number of good and bad selected solutions using an adaptive selection

method in Grostel24 problems
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6.2.4.2 Grostel48
The results for the Grostel48 are shown in Table 6.3 and 6.4
COIN sacrifices more generations for a better solution compared to the other discrete

EDA:s.

Table 6.3 Tour length for the Grostel48 problem

Population & Local Optimization

500-without 500-with 1000-without 1000-with

Algorithm

Best Aver Best Awer Best Aver Best Aver
GA-ER* 5074 5138

-
GA-OX2* 5251 S Ll
UMDA 6715 7432 5079 5149 6683 7388 5067 5139
MIMIC 6679 7083 5046 5053 6104 6717 5046 5057
TREE ; 4 5046~ " 5071 i ; 5046 5057
EBNA 7044 7476 | -+5165 J 5193 6398 7336 5114 5146
* % F .

COIN 6356 9687;4 6136 6358
* Size of population 200, mutation used SM' J

-

** Learning step k = 0.12, Adaptive Selection
Optimum 5046 - —

......

Table 64 Number of generations for the Gré§_ﬂel48 problem

Population & Local Optimizatjon

500- 500-with ~ 1000- 1000-
Algorithm without without with

Gen Gen Gen Gen
UMDA 362 47 218 54
MIMIC 167 23 113 18
TREE - 8 - 7
EBNA 306 63 261 65

COIN 384 304
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6.2.4.3Grostel 120

Table 6.5 and 6.6 show the results of the Grostel120 problem.
Again, the COIN algorithm outperforms the rest discrete EDAs. However, more

function evaluations were sacrificed.

Table 6.5 Tour length for the Grostel120 problem

Population & Local Optimization

500-without 1000-without 1000-with

Algorithm

Best
UMDA 14550 15530
MIMIC 13644

Best Aver Best Aver
15127 7287 7298
) 13444 7042 7079
com* 1220800 77/f | by, 11273

* Learning step k =014, At

Optimum 6942

Table 6.6 Nu e Grostel120 problem

. . D WO WY
ona @1 ation

ith . 1000- 1000-

Algorithm B without with

', Gen
UMDA /385 | 42
MIMIC m _ 306 L 42

COI o

AN TUNNINGAY
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We took some snapshots at the number of generations equal to

100 and 500 respectively. The behavior of the algorithm can be seen in Fig. 14 and

Fig 15.
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Figure 6.4 The parato frontier obtained from different generation and updating

method in a bi-objective kroa/b100 TSP
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Figure 6.3 shows the population in the generation 1, 100 and 500 respectively.
As the generation progresses, the population migrates towards the optimum fitness
area. Figure 6.4 shows the effect of COIN algorithm in using only reward and only
punishment compared with using both. Two curves at the upper-right hand corner are
the result from using only reward or punishment for 500 generations. Contrast this
with the rest of the curves in the lower-left corner which use both reward and
punishment together for 100 and %f(ms. The use of both reward and
punishment for just 100 gener )e result from using only either one

for 500 generations. ~——

However, the ABTO(
results of hybrid algomu K and experiments [34]. In their
experiment, the local sea ) o r to improve the quality of the
solutions. However, t e 0 | the n of function evaluation used by

local search.

AUEINENINYINg
RN INUNINYAY
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6.3 U-Shape Assembly Line Balancing Problem

6.3.1 Introduction
U-shaped assembly line balancing is considered to be NP-Hard. This
kind of assembly line has advantage in reduction of the waste walking time to switch
from workstation to workstation, thus enhance reduction of employee and cost. Figure

6.5 illustrates the Jackson’s problem[158] with 11 tasks.

"
Figure 6.5 The precedence diagrarrll with assembly network (Jacjson 1956)
Given each workstation VI;_S‘ = 1 tom , number of tasks i = 1ton,
each task uses time ti. The total time usea in the Figure 6.6 (a) is equal to 10 while it
used up to 14 if the line i3 straight Aftef-dﬁtting the tasks and workstations in to the
assembly line, we can sce that the U—shaped- assembly line in the Figure 6.6 (b) use
one less workstation than the straight line i 1n tfle Figure 6.6 (a) 10. As the employee

who processes the task number ¥ ¢an be shared-wrth the task number 11.

WS1 WS2 WS3 WS4 WSS + WS6

(1,26} " (45) B {8} (9,10} [y |ou N\
idle=0 | "] idle=2 idle=2 idle=4 idle=0 idle=6 Onorat
peration

N T e o) N eV

(a) Straight assembly line

BackwardWork

Forward Work

(b) U-shape assembly line

Figure 6.6 The comparison of U-Line and straight complete line assignment
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6.3.2 Experimental Setup
We carry three experiments based on the work of Hwang and

Katayama [159] in three objectives:

Given m is number of workstation
SN, is number of relatedness of work in the workstation k&
Smax 18 total maximum time in the workstation

Sy 1s total time i

] pworkstatlon k

2

(6.1)
(6.2)
d in each station
(6.3)
We perform the easnv;j . Matlab 7.0. The test environment is

et e

on Intel Core2 Dup:? 00 GHz Wlth SGA-IT use WMX as a

crossover operator. The crossover proba 1le the mutation probability is
0.3. In this experimenBCO SRR ra pro abilisﬂ model to estimate the first
sequence. Moreover, the' precedence consfraints are integrated into the probability

matrix in orcﬂ u)ﬁeﬁﬁ %é] %ﬂa%\‘j w Eﬂrqvﬂiﬁion, NSGA-I uses a

repairing algorithm to detect and repbglr the 1nfeas1b1e solutions.

ARIANN TN UAIAINYA Y
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The performance indicators use in this experiment including

1. Convergence to the Pareto optimal set.

Zd

Convergence = (6.4)

where

A 65)
ﬁltions, @ and  f;™" are the

the objective i and k is the

(6.6)

T et A
ol a%b?‘f*ﬁ”iﬁ‘iﬁﬁ“ﬁﬁﬁma

Table 6.7 Problem sets of Hwang and Katayama

Time Density

Problem set Product Task Jees( Network
Thomopolous

(1970) 3 19 2 0.122807

Kim(2006) 4 61 10 0.036066

Arcus(1963) 5 111 10,000 0.028337
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The density network shown in table 6.7 indicates the relationship of the
task. If the density network has high value (limited to 1), the possibility of assigning
task to workstation is low. In contrast, the possibility of assigning task to workstation

is high when the density network is low.

6.3.3 Discussion

According to the Table 6.8, COIN has higher convergence rate than the
NSGA-II. NSGA-II give more spread solution _in the Pareto-optimal set, but the
spread of the solution in this experime—;;t has less significant due to the ratio of non
dominated solution of COIN__it'is equall to 1 in every test set as none of the NSGA-
I’s solution can dominate the COIN’s ;olution. Figure 6.7 to 6.9 compares only the
Pareto-optimal solution for two objéctivés"éince the numbers of workstations in each
problem are equal. Moreoyer, in tcrn;s ofg‘real CPU time, the multi-objective COIN is
much faster than NSGA-ILi The total pro‘ige'sging time of NSGA-II in Thomopolous
(19 tasks), Kim (61 tasks) and Arcgs (11 ljta‘sks) are 124, 347 and 735minites, while
COIN uses only 3, 15, and 40 niinuies respe'_c:§i§_a§1y.

NSGA-11 ¥5-COIN (Thomoulos, 1970 Problem)
I A
8 384
Q
=
°
© (3.2}
g
(]
o
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Figure 6.7 The comparison of NSGA-II and COIN in Thomoulos’s Problem
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Figure 6.9 The comparison of NSGA-II and COII;I_i“n Arcus’s Problem

Table 6,8 Result of'the experiment in‘Hwang and Katayama’s problems
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Problems and Algorithims

. Thomopolous Kim Arcus
Benchmarking (19 tl;sk) (6task) (111 task)
NSGA:IL | COIN /NSGA-IT COIN NSGA-II COIN
Convergence 0.295 0 0.847 0 0.189 0
Spread 0.566  0.523 0.742 0.774 0485  0.710
Ratio of solution 0 1 0 1 0 1
Time (min) 124 3 347 15 735 40

Population size = 100, Generation = 200
NSGA-II: Crossover probability = 0.7, Mutation probability = 0.3
COIN: £=0.1
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6.4 U-Shape Assembly Line Sequencing Problem

6.4.1 Introduction

The next case study, the problem sets are sequencing problems on
mixed-model U-Shaped assembly lines sequencing. In this experiment, we assume
that line balancing is solved and only sequencing problems are considered.
Determining the sequence of introducing models to MMUL is of particular
importance considering the goals crucial for efficient implementation of JIT, i.e.

smoothening workload and setup time redugtion.

6.4.2 Experimental setup -
We carry thiee experiments based on the work of Kim and Arcus
[159] in two objectives: |
Given MPSy" is the mimimum part set for a task

MS; 1§ the model'sequencing ofitask i.

Sik isiequal to 1fti_f fhe task pattern at the position k of MS; is
different fror":rjf"'tﬁ'e task pattern at k-1, otherwise 0.

tik 1s the machiﬁé{%@t}tjmg up time for task i.

tio 18 the‘machine;—ltrlji!fialization time.

L; isihe fotal nutaber of task pattern

N is the total number of task

! is the number of work station

Z}V-S is the number of assigned task to the work station j at

thé)s? éyele.

T 1s the cycle time
n is the number of-the-product,in the production line
d; 18 the product demand

, the objective functions are:

1. To minimize the machine setting up time

fl(x): Z(Zsik Xty )+t

i=l k=2

(6.8)
2. To minimize the absolute deviation of the workload

)= T,-T | (6.9)

j=1 s=l1
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Genotype 112 (34|56 ]|7]|8]°9
Phenotype 1112|2234 ]|]5]|6
Genotype 6|1 3|5|19|7]12]4]1]8
Phenotype 5({2(2(5|4|1|8|1]3

Figure 6:10-Encoding of the sequencing problem.

The expeuments - settings and performance indicators of this
experiment are similar tosthatdinthe Multiobjective U-shape assembly line balancing
problems. However, the enly/difference is that the encoding of the solution strings.
Figure 6.10 presents the encoding of a sequencing problem. In sequencing problems,
the sequence items can'be redundant. Tﬁerefore, in order to apply the coincidence
algorithm, we need to encoding the redundaﬁt items in to a permutation of unique

items such that the unique iteéms can be mappedito the redundant tasks.

6.4.3 Discussion
According to'the Table 6.9, COIN defeat NSGA-II in all performance
measurements, Figute 6.11¢and 6/12 ¢ompares the Pareto-optimal solution obtained

from COIN and NSGA-IIL
An/ important ~aspect ~of this individual | representation based on
permutations is that the cardinality of the search space is n!.This cardinality is higher
than that of the traditional individual representation, but it is tested for its use with
EDAs in sequencing problems for the first time here. In addition, it is important to
note that a permutation-based approach can create redundancy in the solutions, as two
different permutations may correspond to the same solution. An example of this is
shown in Figure 6.13, where two individuals with different permutations are shown

and the solution they represent is exactly the same.
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Table 6.9 Performances of NSGA II and COIN
in U-shaped assembly line sequencing problems

Performance Algorithm
Problem Set Measure NSGA-II COIN
Convergence 0.015 0
Kim 2 ' Spread _ 0.783 0.719
Ratio of Solution 0.667 0.778
Time (min) 398 12
Convergence 0.031 0
Kim 3 _ Spread 0:532 0.573
Ratio of Solution 0.667 0.714
Timg(min) 398 12
Cenhyergence 0.025 0
Kim . Spread 0.572 0.643
Ratig of Solution 0.315 0.5
Timg (min)- 4 398 12
Conyergence.s 0 0
Kim 6 Spread _'a ¥ 0.427 0.427
Ratig of SGlution 0.693 0.693
Fope(in) k. N 3% 11
Convergence 0.013 0
Arcus 2 Spread . J! 0.546 0.549
Ratio’of*Selution "4 0.800 1
Timetminy—— , 725 18
€onvergence & =-0.178 0.076
S e
et Time (min) - 18
Convergence 1.097. 0
- Spread 0.758 0.758
Arcus 4 Ratio of Solution 0 1
Time (min) 725 19
Convergence 0.016 0.019
Arcus 6 . Spread . 0.664 0.692
Ratio of Solution 0:714 0.714
Time (min) 725 18
Convergence 0 0
Spread 0.553 0.553
Arcus 7 Ratio of Solution 1 1
Time (min) 725 18
Convergence 0.124 0.049
Arcus 8 . Spread - 0.687 0.654
Ratio of Solution 0.333 0.5

Time (min) 725 18
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NSGA II VS COIN (Arcus 3)
5 Product
22000
L] Variable
— o NSGA Obj1 * NSGA Obj2
= COIN Obj1 * COIN Obj2
20000
g °
s 19000 - . .
3
18000 - o
17000 4 =
[ ]
16000 -
37000 37200 //’ ;1 (\4\-\ 8000 38 38200 38400 38600 38800

Figure 6.11 Th / 4 a I an \ in Arcus’s Problem

25000 4
20000
g 15000
=
10000 - i
ﬂ‘UEﬂ’J VIEW]‘?WEHﬂi :
” 162 . 164( 156 , 168 - =9 170 . 172 U 174

l*aigure 6.12 The comparison of NSGA-II and COIN in Kim’s Problem
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Consequently, encoding using such scheme favor NSGA-II to generate
more diverse solution than COIN due to COIN might waste the function evaluation to

evaluate the redundant solutions.

Genotype 1 6 (35917 |2]4]|1]8
Genotype 2 915|136 |7|1|4(2]38
Phenotype 5122454 |1|8]|1]3

Figure 6.13 Example of redundancy in the permutation-based approach. The two

individuals represcatthe same solution shown in the phenotype.

6.5 Discussion

In this chapterCOIN has proved its efficiency in solving several real world
applications. COIN sgarches / and samnles candidates for single and multiple
objectives problems very effectively compared to GA. The performances of COIN are
gained from (i) the sampling method and (zz) the negative correlation learning. As
shown in the TSP benchmarks, the negatlve correlation learning does not only
contribute in preventing the premature convergence, but also contribute in

accelerating the search process.

6.6 Chapter Summary

This chapter, we propose some application ‘of COIN in several real world
applications including travelling salesperson problems, line balancing problems and
sequencing problems. The overall results show that COIN is a competitive algorithm

in solving both single and multiple objectives real world applications.



CHAPTER VII

CONCLUSIONS

7.1 Conclusions

In this dissertation, we addressed the difficulties of combinatorial optimization
where the main difficulty is the representation and the effective ways to construct a
candidate solution.

We presented a new estimation of distribution algorithm (EDA) called
Coincidence Algorithm (COIN). Our eontribution here is twofold. First, a
probabilistic model based on Markov Chain Monte Carlo (MCMC), and second new
incremental learning methodthat involve the negative correlation learning in the
model.

From this algotrithms we propose a new hypothesis called the negative building
block hypothesis (NBBH) whi¢ch eXterIds_._ the building block hypothesis (BBH)
previously proposed by Goldberg [7]. fhe NBBH simply says that avoiding the
recombination of short low fitted schemas-'-slo"'called negative building blocks should
be able to form the average solufions not'ig'/()gsne than their ancestors. Searching in a
scope of schemas can be considered to be ef' gujlded search or a search with direction.
However, searching.out of a scope of ééﬁéﬁids cannot be considered to be an
unguided search or asgarch withouit a direction but considered to be a multi-direction
search. The multi-diréction search is expected to maintain more diversity than a
guided search; however, the time to converge and the quantity of the result are
expected to be poorer.’ COIN'is an algorithm based on ‘both-BBH and NBBH. The
combination oftBBH and NBBH 1s expected to utilize both of the BBH and NBBH
advantages

Different' types “and’ different sizes of the“benchmarks have-been presented.
Our contribution here is a set of globally multimodal benchmarks which has never
been tested by any algorithm on the capability to find the multimodal solutions. The
results show that the negative correlation learning capability of COIN contributes on
both quality and quantity of the solutions. However, the negative correlation learning
expresses differently in different benchmarks which depends mainly on the quantity

of building blocks being shared and the quantity of building blocks being in conflict.
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Finally, one of the best contributions is that we propose an extension of COIN
in solving multi-objective problems. We adopt the non-dominated sorting and
crowding distance from NSGA-II. The experiments were performed in several real
world applications and yield fascinating results. The overall performances of COIN
are better than NSGA-II in every benchmark indicators. More results of COIN in
solving multi-objective problems can be found in parallel works including a PhD

dissertation [160] and five master theses [161][162][163][164][165].

7.2 Recommendation for FutureResearch

Many different adaptations, tests) and cxperiments have been left for the future
due to lacking of time (i.c. the“€xperiments with real world applications are usually
very time consuming, requiring even days to finish a single run). Future work
concerns deeper analySis of parficular mechanisms, new proposals to try different
methods, or simply curiosity. o

There are some ideas/that the authb_r-.{)vould like to try during the development
of the updating equation in Chapter 1V. Tﬁis dissertation has been mainly focused on
the use of negative knowledge in EDAs. Hd:vyeyer, we used a constant learning rate k&
for both positive and negative Sample. Moréegije:f, the learning rate is static. From the
observations, the greater learniing rate would Tead the algorithm to converge faster, yet
easier to get stuck inseme-local-optima.In-order to-investigate the role of negative
knowledge, the constant learning rate is needed to be fixed, leaving the study of
dynamic learning rate outside the scope of the dissertation. The following ideas could
be tested:

1., It"could be "interesting to separate the learning coefficient & for
reward and punishment,

2. 'The'learning coefficient kicouldibe change dynamically.

The negative correlation could be apply to node based EDA as well. At the
very beginning of this research, the incremental node based EDA came up in the
author’s mind. The prototype of COIN based on absolution position was
implemented. However, the algorithm was failed to converge. At the end of this
research, we found out that the candidate solutions in node based EDA should not be

generated as a sequence, but should be generated according to the random position.
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The initial population in all EDAs has been built using a uniform distribution.
Other methods could be also tested, as sometimes a pre-processing step could be
added such that the search can also start with some specific individuals. Also, other
types of statistical initializations such as greedy probabilistic methods could help at

directing the search from the beginning, leading to fewer evaluations.

Regarding the application of parallelism to EDAs, an extension for the near

future is the use of more power

ultiple instruction multiple data (MIMD)
architecture. COIN can make ' %\mge of parallel instruction set to
improve the performance 1 ng ,ﬂdagates, updating the probabilistic

. | ——

model and evaluation of

]

§
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