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CHAPTER I
INTRODUCTION

The concept of homomorphism has been introduced and studied in any al-
gebraic structure. As we know, the concept of continuity plays a crucial role
in topological structures. To generalize the concept of continuous function, the
lower semi-continuity and the upper semi-continuity of multi-valued functions have
been considered and studied. See for example in [11], [7] and [3]. This motivated
Triphop, Harnchoowong and Kemprasit [10] to consider multi-valued functions in
an algebraic sense. They defined multi-valued homomorphisms or multthomomor-
phisms between groups. Then characterizations of multihomomorphisms among
all the cyclic groups (up to isomorphism) were provided in [10]. In addition, the
numbers of such multihomomorphisms were determined. In fact, multi-valued
endomorphisms of hypergroups in a more general sense have been introduced to
obtain an example of feeble hyperrings ([2], page 176). Nenthein and Lertwichit-
silp [5] studied extensively by making use of the results in [10]. They defined a
surjective multihomomorphism in a natural way and characterized and counted
the surjective multihomomorphisms between cyclic groups. Some interesting nec-
essary conditions of the multihomomorphisms from any group into a subgroup of
the additive group of real numbers and a subgroup of the multiplicative group of
nonzero real numbers were provided by Youngkhong and Savettaseranee in [12].

In ‘this research, multi-valued homomorphisms and surjective multi - valued
homomorphisms between hypergroups are defined exactly the same as those were
given in [10] and [5] for groups, respectively. Such multi-valued functions between
the cyclic groups (Z,+), (Zn,+) and the hypergroups of the forms (Z, o) and
(Z,, o) are characterized where k is a positive integer, x o, y = x + y + kZ and

(2], ok [Y]n = [x]n + [yl + kZ,, for all z,y € Z. In addition, most of them are



counted.

As given in [10] and [5], let MHom((H, o), (H’,0")) and SMHom((H, o), (H", o))
be the sets of all multi-valued homomorphisms and all surjective multi-valued ho-
momorphisms from the hypergroup (H, o) into the hypergroup (H’, o).

The preliminaries and notations used in this research are given in Chapter II.
Multi-valued homomorphisms and surjective multi-valued homomorphisms from
our target groups into the hypergroups of our interest are characterized in Chap-
ter ITI. That is, the elements of MHom((Z,+), (Z, ox)), SMHom((Z, +), (Z, o)),
MHom((Zy,+), (Z,0)), SMHom((Z,,,+), (Z,ox)), MHom((Z,+), (Zy,,0x)), SMHom
(Z,+), (Zn, o)), MHom((Z,, +), (Zy,, o)) and SMHom ((Zy,, +), (Zy, o)) are de-
termined. Also, the cardinalities of these sets are all provided in this chapter.

Chapter IV provides characterizations determining when multi-valued func-
tions from the hypergroups of the above forms into the cyclic groups (Z, +) and
(Z,,,+) are multi-valued homomorphisms and surjective multi-valued homomor-
phisms. That is, the elements of MHom((Z, o), (%, +)), SMHom((Z, o), (Z, +)),
MHom((Z,0k), (Zn,+)), SMHom((Z,0.), (Zy,+) ), MHom((Z,,,01), (Z,+)), SMHom
(Zn,0k), (Z,+)), MHom ((Zy,, 0) s (Zy, +)) and SMHom((Z,,, o), (Zm, +)) are cha-
racterized. Moreover, we show that the cardinalities of all the sets MHom((Z, o),
(Z,+)), SMHom((Z,01),(Z,+)),MHom((Z,,,o),(Z,+))and SMHom((Z,,,o1),(Z,+))
with n { k are 2%,



CHAPTER I1
PRELIMINARIES

The cardinality of a set X is denoted by | X].
A multi-valued function from a nonempty set X into a nonempty set Y is
a function f : X — PHY) where P(Y) is the power set of Y and P*(Y) =
P(Y) {9} and for A C X let
FA) = fla).
acA
A hyperoperation on a nonempty set H is a multi-valued function o from H x H
into H, that is, o : H x H — P*(H), and for x,y € H, x oy denotes the value
of (x,y) € H x H under o. In this case, (H,o) is called a hypergroupoid. For
nonempty subsets A, B of H, let

AoB= U aob.
acA
beB
If o #ACHandxz e H,let Aox and z o A stand for Ao {z} and {z} o A,
respectively. We say that a hypergroupoid (H, o) is commutative if zoy =yox

for all =,y € H. A hypergroupoid (H, o) is called a semihypergroup if
(roy)oz==x0(yoz) forallz,y,z € H.
A hypergroup is a semihypergroup (H, o) such that
Hox=x0H =H forallx € H.

Notice that every group is a hypergroup. In fact, hypergroupoids, semihyper-
groups and hypergroups are generalizations of groupoids, semigroups and groups,

respectively.



Let G be a group and N a normal subgroup of G. If oy is the hyperoperation
on G defined by

xoyy=uzyN forall z,y € G,

then (G, o) is a hypergroup ([2], page 11). It is clearly seen that

JflONIQON-"ON(L‘l:JfliL’Q"'IlN for allIl,I27...,$l EG

with [ > 1.

Notice that if G is abelian, then (G, oy) is a commutative hypergroup. Also, if
N = {e}, then (G,oy) =G.

The set of integers is denoted by Z and let ZT = {x € Z | x > 0} and
Zi = 2+ U {0}. Let (Z,+) and (Z,,+)(where n € Z") denote respectively the
additive group of integers and the additive group of integers modulo n and for
x € Z, let [x],, be the congruence class modulo n of z. For a,b € Z witha #0, a | b
means that b is divisible by @ in Z. Also, if b is not divisible by a, we write a 1 b.

Recall that every infinite eyclic group is isomorphic to (Z,+),
Zp, = {[z]n | x €Z} = {0}, M)y . - -, [n — 10}, | Z0n] =1

and every finite cyclic group of order n is isomorphic to (%Z,, +). For ay,...,a € Z,
not all 0, let (aq,...,a) be the g.c.d. of ay,...,a;. Then (ay,...,q) = x1a1 +

Toag + - - - + xa; for some x4, ..., x; € Z. It is easily shown that

YL )i ol €2, Inbt Befnlo,
(1,m)" (I, m)

Z=mZ < | =+m foralll,m e Z,
IZ+mZ = (l,m)Z, Z,~+mZL, = (l,m)Z,
for all I, m € Z, not both 0,

1Z, = (,n)Z, = (|l|,n)Z, = |1|Z,
([0 [0 ). (L - 1) 0, )],

n
17, = —— foralll eZ.
| 1 Z,,] ) oralll e



Hence

1Z, =mZ, < (I,n) = (m,n) foralll,m e Z.

Moreover, every subgroup of (Z,+) is of the form [Z. Also, every subgroup of
(Zy,, +) is of the form [Z,. Recall that the Euler ¢-function is defined by ¢(1) =1
and for k € Z with k > 1, p(k) is the number of positive integers less than k and

relatively prime to k. Then
(k) = [{a € {1,2,...,k} | (a;k) = 1}| for all k € Z™.

It is known that for k € Z7, Z o(l) = k ([6], page 191).
Ik
For k € Z*, let (Z, o) and (Z,, o) be the hypergroups with

Topy = x+y+kZ,
[]a ok [Yln = [@n + [Yln + EZn(= [2 + yln + kZn)

forall z,y € Z.

By a muli-valued homomorphism or a multihomomorphism from a hypergroup
(H,o) into a hypergroup (H’,0o") we mean a multi-valued function from H into

H’ satisfying the condition

fwoy) = @) o f(y) forallzm,y e H.
Denote by MHom((H, o), (H’, ")) the set of all multi-valued homomorphisms from
(H,o) into (H’,0") and'set MHom(H, o) :=MHom((H, o), (H,o)). We say that
f € MHom((H, o), (H’,0")) is surjective if

ﬂm<=UfW>=H~

heH

Let SMHom((H,o),(H",0")) be the set of all surjective multi-valued homomor-
phisms from (H,0) into (H’, o") and also set SMHom(H o) :=SMHom((H,0), (H,0)).

Characterizations of multi-valued homomorphisms and surjective multi-valued
homomorphisms between cyclic groups were provided in [10] and [5], respectively.
Also, such elements were counted.

In the remainder of this research, let m,n be positive integers.



Theorem 2.1 ([10]). For a multi-valued function f from Z into itself, f €
MHom(Z,+) if and only if there exist a subsemigroup H of (Z,+) containing

0 and an element a € Z such that
f(z) =azx+ H for all x € Z.
Theorem 2.2 ([10]). |MHom(Z,+)| = Ny.

We note here that Theorem 2.2 was proved in [10] by exploiting the fact that
every subsemigroup of (Z, +) containing 0 is finitely generated, that is, if S is a

subsemigroup of (Zg , +) eontaining 0, then there are a;, as, ..., a; € S such that
S:a1Z5“+QQZ(J{+...+aZZ§.
This fact was mentioned in [1].

Theorem 2.3 ([5]). For a multi-valued function f from Z into itself, f € SMHom
(Z,+) if and only if there exist a subsemigroup H of (Z,+) containing 0 and a € 7
such that

fx) =azx + H for all x € Z,

(a,h) =1 for some h € H and

H = 7 whenever a = 0.
Theorem 2.4 ([5]). |SMHom(Z,+)| = N,.

Theorem 2.5 ([10]). For a - multi-valued function f from Z, into Z, f € MHom
((Zn,+), (Z,+)) if and only if either

(i) there exists a subsemigroup H of (Z,+) containing 0 such that
f(z]n) =H forallxzeZ

or

[
(ii) there exist l,a € Z such thatl # 0, —— |a and

(I,n)
fz]n) = ax +1Z  for all x € Z.



Theorem 2.6 ([10]). |MHom((Zy,+), (Z,+))| = Ro.

Theorem 2.7 ([5]). For a multi-valued function f from Z, into Z, f € SMHom
(Zyn,+),(Z,+)) if and only if there exist l,a € Z such that | #0, [ | n, (a,l) =1
and

f([x]n) = ax +1Z for all x € 7.
Theorem 2.8 ([5]). |SMHom((Z,,,+),(%Z,+))| = n.

Theorem 2.9 ([10]). For a multi-valued function f from Z into Z,,, f € MHom
(Z,+), (Zn,+)) if and only if there exist |, a € Z such that

f(z) = [ax], + Z,, for all x € Z.

Theorem 2.10 ([10]). |MHom((Z,+)), (Z,,+)| = Z l.

lez™*
lin

Theorem 2.11 ([5]). For a multi-valued function f from Z into Z,, f € SMHom
(Z,+),(Z,,+)) if and only if there are l,a € Z such that (a,l,n) =1 and

f(z) =lax], +1Z, for all x € Z.
Theorem 2.12 ([5]). |[SMHom((Z,+)),(Z,,+)| = n.

Theorem 2.13 ([10]). For a multi-valued function f from Z., into Z,, [ €

l
MHom((Zy,, +), (Zn,+)) if and only if there are l,a € Z such that % | a

and

fzlm) =az], +1Z, forall z € Z.

Theorem 2.14 ([10]). |MHom((Zy,, +)); (Zy, +)| = Z(l,m). In particular,

lez+

|\MHom(Z,, +)| = Z l. In

lez+
lln

Theorem 2.15 ([5]). For a multi-valued function f from Z., into Z,, f €
SMHom((Z,+), (Zn,+)) if and only if there exist l,a € Z such that (I,n) | m,
(a,l,n) =1 and

f([@]m) = [ax], + Zy, for all x € Z.



Theorem 2.16 ([5]). | SMHom((Zy,+)), (Zn,+)| = (m,n). In particular,
|SMHom(Zy,, +)| = n.

The following basic facts of sets and cardinal numbers will be used.
(1) For any set X, |P(X)| = 21X,
(2) For nonempty sets X and Y, [{f | f: X — Y}|=|Y[XL].
(3) (2R0)m = (280)%o = 2% for all n € Z* ([4), page 98).

Let k be a positive integer in the remainder of this research. Also, let (Z, o)

and (Z,, ox) be the hypergroups defined previously.



CHAPTER III
MULTI-VALUED HOMOMORPHISMS FROM
GROUPS INTO HYPERGROUPS

This chapter gives characterizations of multi-valued homomorphisms and sur-
jective multi-valued homomorphisms from the groups (Z,+), (Z,,+) into the
hypergroups of the forms (Z, o) and (Z,, o). The cardinalities of the sets of
such multi-valued funetions of all pairs of those groups and hypergroups are also

provided.

3.1 Multi-valued Homomorphisms from the Group (Z, +)
into the Hypergroup (Z,oy)

We begin this section by recalling the following fact given in [10].

Lemma 3.1.1 ([10]). If H is a subsemigroup of (Z,+) such that HNZ' # &
and HNZ~ #+ &, then H = IZ for some |l € Z ~ {0}.

The following lemmas are also needed.

Lemma 3.1.2. Let G be a group with identity e. If f € MHom(G, (Z, o)), then
f(e) =1Z for some l € Z~ {0} with [ | k.

Proof. Let f € MHom(G, (Z,0)). Then
f(e) = fee) = f(e) ox fle) = f(e) + f(e) + KZ
2 fle) + fle)

since 0 € kZ. This implies that f(e) is a subsemigroup of (Z,+). Let a € f(e).
Then from (1),

(1)

20+ kZ =a+a+kZ C f(e)+ f(e) + kZ = f(e). (2)
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-2
Let b,c € Z be such that b > Ta > c¢. Then kb > —2a > kc which implies from
(2) that
0<2a+kbe f(e) and 0 > 2a + ke € f(e).

It follows that f(e)NZ* # @ and f(e)NZ~ # &. By Lemma 3.1.1, f(e) = IZ for
some [ € Z ~ {0}. Hence by (1),

IZ = 1Z 412+ kL =1Z + kZ = (I, k)Z.
Consequently, [ = £(I, k), so [ | k. O

Lemma 3.1.3. Let G be a group with identity e and f € MHom(G, (Z,o)). Then

for every x € G, there exists an element a € f(x) such that
f(@') = at+ f(e) for allt € Z.

Proof. By Lemma 3.1.2, f(e) = [Z for some | € Z ~ {0} with [ | k. Then
17+ kZ = (I,k)Z =17Z. Let x € G be given. Then

fz) = f(ze) = f(z) o fle) = f(z) + IZ+ kZ = f(x) +1Z, (1)
and similarly,
fl@™h) = fa™h) +iZ. (2)
Since IZ + kZ = 17, we obtain respectively from (1) and (2) that
fx)+kZ = f(x) +1Z = f(2), (3)
[T + kL = f (@77 + 1Z=f (@] ) (4)

These imply that
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Since 0 € IZ, from (5), there are a € f(x) and b € f(x™!) such that 0 = a + b.

Then —a = b € f(z~!). Thus from (5), we have

which imply that
f() Ca+1Z and f(x ') C —a+IZ.
By (1), (2) and (6),

f)yCa+1ZC f(x) +1Z = f(x),

fla™) € ~a+iIZC fla=H)+1Z = f(z7).

Consequently,

fx)=a+1Z=a+ f(e) and f(v') = —a+1Z = —a + f(e).

Note that f(z°) = f(e) = a0 + f(e). If t € Z" and ¢ > 1, then

f(z") = f(x)op f(x) oy - op f(x) (t copies)
=f@)+- -+ fz) +kZ

t copies

= (f(2)+ kZ)+ --- + (f(x) =kZ) (t brackets)

= f(x)+ -+ f(x) (tcopies) ' from (3)
= (@ +1Z)+ - +(a+1Z)(t brackets). from (7)
=at + Z

= at + f(e),

(7)
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(z7") o fla™) o+ op flz™h) (t copies)

f
= f@™) + -+ flaTh) +RZ

t copies

= (f(a™) +EZ)+ -+ (f(z™") + kZ) (t brackets)

= f(z™) 4+ -+ f(z7') (t copies) from (4)
=(—a+I1Z)+ - -+ (—a+1Z) (t brackets) from (7)
= (—at) +1Z

= a(—t)+ f(e).

Hence the desired result follows. O

Theorem 3.1.4. For a multi-valued function f from 7Z into itself, f € MHom
((Z,+),(Z, o)) if and only if there arel,a € Z such thatl # 0,1 | k and

f(z).=ax +1Z for all x € Z.

Proof. Let f € MHom((Z,+),(Z,0;)). By Lemma 3.1.3, there is an element
a € f(1) such that

f(z1) = ax + f(0) for all x € Z,

that is,
f(z) = ax+ f(0) for all z € Z.

By Lemma 3.1.2, f(0) = (Z for some | € Z ~ {0} with [ | k. Hence
f(z) = azx +1Z for all z € Z.
Conversely, assume that there are [,a € Z such that [ #0, [ | k and

f(x) =ax +1Z for all x € Z.
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Since [ | k, we have IZ + kZ = (I, k)Z = IZ. Then for all x, y € Z,
flet+y)=alz+y)+1Z
=ar+ay + 7
=ar+ay+ 12+ kZ
= (ax +1Z) + (ay + 1Z) + KZ
= f(2) + f(y) + kZ
= f(z) o fly).
Hence f € MHom((Z,+), (Z, o)), as desired. O

Theorem 3.1.5. For a multi-valued function f from Z into itself, f € SMHom
((Z,+),(Z,0x)) if and only if there exist l,a € Z such that 1 # 0,1 | k, (a,l) =1

and
f(z) = ax +1Z for all x € Z.

Proof. Assume that f € SMHom((Z,+),(Z,0)). Then f € MHom((Z,+), (Z,01))
and f(Z) = Z. By Theorem 3.1.4, there are | € Z ~ {0} and a € Z such that [ | k,

f(z) =ax+1Z for all z € Z.

Consequently,

z=(2) = | f(2) = | Jaz +12)

=aZ+IZ = (a,1)Z

which implies that (a;l) = 1.

Conversely, assume that | € Z~ {0}, a € Z, [ | k, (a,]) = 1 and
f(z) =ax +1Z for all x € Z.
By Theorem 3.1.4, f € MHom((Z, +), (Z, o)). Since (a,l) = 1, we have
f(Z)=aZ +1Z = (a,))Z = Z.

Therefore f € SMHom((Z,+), (Z, ox)). O
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For | € Z ~ {0} with [ | k and a € Z, let F}, € MHom((Z,+), (Z,0x)) be
defined by
Fl.(z) = ax +IZ for all z € Z.

To determine [IMHom((Z, +), (Z, ox))| and |[SMHom((Z, +), (Z, o))|, the following

lemma is needed.

Lemma 3.1.6. Let I,t € Z ~ {0} with ! | k and t | k and a, b € Z. Then
Fi .= F,p if and only if t = £l and b= a mod |I|.

Proof. If I}, = F};, then
ar +1Z = F,(z) = Fp(x) = b +tZ for all z € Z.
In particular,
17 =a04+1Z =00+ tZ = tZ

which implies that ¢ = £/. Hence
a+lZ=al+1Z=01+4+1Z=0b+1Z,

so b —a € lZ. Therefore b =a mod [I|.
Conversely, assume that ¢ = £l and b= a mod |l|. Then b —a € |||Z = IZ
and [Z = tZ. Since

forall z € Z, bx —ax = (b—a)x € [ Zzx CIZ,
it follows that
ax + 17 = bx +17 = bx +tZ for all x € Z.

Hence

Fi.(z) =ar +1Z = ax +tZ = Fyu(x) for all x € Z,
so Fiq = Fip. ]

Theorem 3.1.7. |MHom((Z,+), (Z,o))| = Zl

lez*
and 1k

|SMHom((Z,+), (Z,01,))| = k.
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Proof. From Theorem 3.1.4 and Theorem 3.1.5, we have
MHom((Z,+), (Z, o)) = {Fl.| l € Z~ {0}, a € Z and [ | k}, (1)

SMHom((Z, +), (Z, o)) ={Fl.| l € Z~ {0}, a € Z, | | k and

(a,l) = 1}.
Then (1), (2) and Lemma 3.1.6 yield the followings :

MHom((Z,+), (Z,01)) = {Fia |l € Z*, 1 | kand a € {0, 1,..., 1= 1}}, (3)

SMHom((Z, +), (Z,0x)) = {Fi | L € Z+, 1| kyae {0, 1,...,1— 1}

(4)

and (a,l) = 1}.

Again, by (3), (4) and Lemma 3.1.6, we have
INMHom((Z, +), (Z, o)) = > _ 1.
lezt
Ik
[SMHom((Z, ), (Z,0x))| = > (1) = k.

lez+

Ik
[

Remark 3.1.8. Let us compare the results of this section with Theorem 2.1 -

Theorem 2.4 where H is a subsemigroup of (Z, +) containing 0 and [, a € Z.
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Characterization Cardinality
MHom((Z,+), (Z,+)) f(x)=ax+H Ng
SMHOHI((Z, +)> (Z> +)) f(l‘) =ar + Ha NO
(a,h) =1 for some h € H,
a=0=H=1Z
MHom((Z, +), (Z, o)) flx) = ax+IZ, M
lez*
1#0,0]k 1|k
SMHom((Z, +),(Z, o)) f(x) = ax +1Z, k

140, 1|k, (a,]) =1

3.2 Multi-valued Homomorphisms from the Group (Z,, +)

into the Hypergroup (%, o)

In this section, the following result is needed. It was proved in [10].

Lemma 3.2.1 ([10]). Let l,a € Z and define
f([z]n) = ax +1Z for all x € Z.

Then f is a well-defined multi-valued function from Z,, into Z if and only if either
(i)l=a=0or

{
i) [ and —— | a.
()10 and 7o |

Theorem 3.2.2. For a multi-valued function f from Z,, into Z, f € MHom((Zy,+),

(Z,0y)) if and only if there exist l,a € Z such that 1 # 0, | k, (ll—) | a and
N

f([z]n) = ax +1Z for all x € Z.
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Proof. Assume that f € MHom((Z,,+), (Z,0)). By Lemma 3.1.2 and Lemma
3.1.3, there are [ € Z ~. {0} and a € f([1],) such that [ | k and

f([z]n) (= f(z[1],)) = ax + Z for all z € Z.

l
(l;n)

For the converse, assume that [ € Z ~ {0}, a € Z, [ | k

By Lemma 3.2.1, we have | a.

| @ and

b
" (I,n)
f(z],) = ax +1Z for all x € Z.

Then by Lemma 3.2.1, f is well-defined. Since I | k, we have IZ + kZ = 1Z. If
x,y € Z, then

F([@ln + [yla) =fle+ yla)
=a(z+y) +1Z
= az+ay+1Z + kZ
= (ax +1Z) + (ay + 1Z) + kZ
= f(lal) + f([yln) + KZ
= f([x]n) o f([y]n)-

Hence f € MHom((Z,,, +), (Z, o)). O

[
Lemma 3.2.3. Forl € Z~ {0} and a € Z, 1 | k, o | a and (a,l) =1 if and
only if 1| (k,n) and (a;l) = 1.

l
Proof. Assume that [ | k, | @ and (a,l) =1. Since (a,l) =1, < > =1.

(t;n) n)

[
But ) | a, so <

But since [ | k, we have [ | (k,n).

) = 1 which implies that (I,n) = |l|, so [ | n.

Conversely, assume that [ | (k,n). Then [ | k and [ | n. Thus (I,n) =[], so

l l
———=41. H
(I.n) )

| a. O
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Theorem 3.2.4. For a multi-valued function f from Z, into Z, f € SMHom
((Zn,+), (Z,0r)) if and only if there exist l,a € Z such thatl # 0, 1| (k,n), (a,l)=1
and

f([z]n) = ax +1Z for all x € Z.

Proof. Assume that f € SMHom ((Z,,+),(Z, ox)). Then f € MHom((Z,, ,+),

(Z, o)) and f(Z,) = Z. By Theorem 3.2.2, there are | € Z ~. {0} and a € Z such
l

that [ | k, —— | a and

(I,n)
f(z]n) = ax + 1Z for all x € Z.

This implies that

Z= {(Z) =) f(lela)

TEZ

= U(ax +1Z)

TEZ

=aZl+1Z = (a,l)Z,

Thus (a,l) = 1. It follows from Lemma 3.2.3 that [ | (k,n).

For the converse, let [,a and f be as above. By Lemma 3.2.3, [ | k, ﬁ | a
and (a,l) = 1. By Theorem 3.2.2, f € MHom((Z,, +);(Z,o)). Since (a,l) =1,
it follows that

F(Z) = aZ +1Z = (a,))Z = 7.
[
l
For Le Zi\ {0}, a € Z; 1| & and. —|a; let Gy € MHom((Z,; +), (Z, o))

(&,n)
be defined by
Giro([z]n) = ax + IZ for all x € Z.

Lemma 3.2.5. Let I, t € Z~ {0}, a,b € Z,1 | k, t| k, ﬁ | a and
N
Then G = Gy if and only if t = £l and b = a mod [I|.

t
Ty !

Proof. The proof is analogous to that of Lemma 3.1.6 O]



Theorem 3.2.6. |MHom((Z,,+),(Z,or))| = Z(l,n)

lez*
and 1|k

|\SMHom((Zy, +), (Z, o)) = (k,n).

Proof. From Theorem 3.2.2 and Theorem 3.2.4, we have

MHom((Z,,+),(Z,0k)) = {Gia| l € Z~ {0}, a € Z, | | k and ﬁ | a},

SMHom((Zy,, +), (Z,01)) = {Gu| l € Z~ {0}, a € Z, | | (k,n) and
(a,1) =1},
respectively. We deduce from (1), (2) and Lemma 3.2.5 that
MHom((Zy,, ), (Zyor)) ={Gio | L €ZT, 1 |k, a € {0, 1,..., 1 -1}

and —— | a},

@)
={Gla |l €Z", 1|k and
ae {0, () -1y,

(Ln)™ (l;n)
SMHom((Zn,+),(Z,0k)) ={G1. | L€ ZT, 1| (k,n),ac{0,1,...,1—1}
and (a,l) = 1}.

Hence (3), (4) and Lemma 3.2.5 give

IMHom((Z, +), (Z, o)) = > (I,m),
lﬁﬁf
[SMHOm((Z, +), (Z;ox)) = > (l) = (k,n).

lez*
U (k)
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Remark 3.2.7. The following diagram gives a comparison of the results of this

section and Theorem 2.5 - Theorem 2.8 where H is a subsemigroup of (Z,+)

containing 0 and [, a € Z.



MHom((Zn, +), (Z,+))

SMHom ((Zy,, +), (Z,+))

MHom((Zn, +), (Z,0}))

SMHom((Zy, +), (Z, o))

Characterization

f(lz]n) = H or
f([2]n) = ax +1Z,

l
00w

| a

f(z],) =azx +1Z,
[#0,1|n, (a,l)=1

f([z]n) = az + 17,

[
l NN - 7}
£ 001k, e |

f(z],) = ax + 12,

Z%O, ! ’ (kan)a (aal>:1

20

Cardinality

No

3.3 Multi-valued Homomorphisms from the Group (Z, +)

into the Hypergroup (Z,, o)

First, we recall that a subsemigroup of a finite group G must be a subgroup

of G. Thus if S is a subsemigroup of (Z,, +), then S"= [Z,, for some [ € Z.

The following two lemmas are similar to Lemma 3.1.2 and Lemma 3.1.3. They

are needed to obtain our main results of this section.

Lemma 3.3.1. Let. G be a group with identity e. If f € MHom(G,(Zn, o)), then
f(e) =IZ, for somel € Z such that (I,n) | k.

Proof. If f € MHom(G, (Z,, o)), then
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since [0], € kZ,. Thus f(e) is a subsemigroup of (Z,,+). Hence f(e) = IZ,, for

some [ € Z. Consequently,

1Z, = f(e)= fle)+ fle) + kZ,, = Z, + Z,, + kZ,

— Ty + kT = (L, k)2
which implies that (I,n) = (I, k,n) = ((I,n), k). Hence (I,n) | k. O

Lemma 3.3.2. Let G be a group with identity e and f € MHom(G, (Zy,ox))-

Then for every x € G, there ewists a € 7 such that [a), € f(x) and
f(x") = [at],, + f(e) for allt € Z.

Proof. By Lemma 3.3.1, f(¢) = IZ, for some [ € Z with (I,n) | k. We also have
that

1Z,, +KZy= (1,5)Z0 = (I, k,0) 2
= (L), k)Zy = (I,n)Z, = IZ,.

Let z € G be given. Then from (1),

F(x) = flaey=Fayor fe) = F@) +iZa+ kL, = f(z) + 1L,  (2)

and similarly

From (1), (2) and (3), we have

f(x) +kZ, = f(x)+1Z, = f(2), (4)
f@™) + kL = f(z7) + 12, = f(z7). (5)
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It follows that

L = [(e)

= flaz™)

= f(x)or f(z™")

= f(@) + f(a7") + kZ,

= f(@) + (f(@) + kZy)

= f(z) + f(z~1) . from (5). (6)

Since [0, € lZ,, from (6), there is an element o € Z such that [a], € f(z),
—la], € f(z™1). Tt follows from (6) that

) < laln S f(z) + f(a™") = 1Zn,
o]+ £(z7) S f(z) + fla™) = iZ,

which imply that
f(z) C la], +1Z, and f(z~ ') C —|a], + (Zy. (7)
We deduce from (2), (3) and (7) that

f(z) C [a], +1Z, C f(z) +1Z, = f(2),
fle™") C ~[a, +1Z, C f(z™") +1Z, = f(z71).

Consequently,

f(@) =ldn +1Zy = [aly + f(e) and (&) = —[aln +1Zy = [waln + f(e). (8)
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We have that f(2°) = f(e) = [a0], + f(e). If t € Z" and ¢ > 1, then

fl@') = f(a) + -+ f(z) +KZ,

(x) + kZyp) + -+ (f(x) + kZ,) (t brackets)

= (f
fx) 4+ f(z) (t copies) from (4)

[aln +1Zy,) + -+ ([a]n + {Z,) (t brackets) from (8)

(
lat], + Z,
lat],, + f(e),

fl@™) = f(@™))
= f@) 4ok fla7) +KZ,

"
t copies

= (f(x™ 1) +kZ,) + -+ (f(x) + kZ,) (t brackets)

=flx )+ -+ f(x ") (tcopies) from (5)
= (—|al, +1Zy,) + -+ + (=|al, + IZ,) (t brackets) from (8)

= (—l[at],) + (Z,
= [a(=t)]n + f(e).
Therefore the proof is complete. m

Theorem 3.3.3. For a-multi-valued function f from Z into Z,, f € MHom
(Z,+), (Zn,0x)) if and only if there are l,a € Z such that (I,n) | k and

f(z) = |az], + Z,, for all x € Z.

Proof. Assume f € MHom((Z, +), (Z, ox)). By Lemma 3.3.2, there is an element
a € Z such that [a], € f(1) and

f(x) (= f(xl)) = [ax],, + £(0) for all z € Z. (1)
By Lemma 3.3.1, f(0) = [Z,, for some [ € Z with (I,n) | k. Hence from (1),

f(z) = [ax], + IZ,, for all z € Z.
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For the converse, let [, a € Z be such that (I,n) | k and
f(z) = [ax], + Z, for all x € Z.
Since (I,n) | k, from (1) of the proof of Lemma 3.3.2, we have
1L+ KLy = T, (2)
If 2,y € Z, then
fl@+y) = la(@ +y)ln +1Zy

= laz], + ay], +1Z, + kZ, from (2)

= (laz], +1Zy) + ([ayl, +1Z,,) + kZ,

= f@)+ Fy) + kZy,

= f(@) o f(y)-
Hence f € MHom((Z, +), (Zy, o))- O

Theorem 3.3.4. For a multi-valued function f from Z into Z,, f € SMHom
(Z,+),(Zy, o)) if and only if there exist l,a € Z such that (I,n) | k, (a,l,n) =1

and
f(z) = lazx], +1Z,, for all x € Z.

Proof. Assume that f € SMHom((Z, +), (Z,, ox)). Then f € MHom((Z, +),
(Zy,01)) and f(Z) = Zy. From Theorem 3.3.3, there are [,a € Z such that
(I,n) | k and

f(z) = laz], + 1Z, for all z € Z,

and hence



25

This implies that (1,n) = (a,l,n), so (a,l,n) = 1.
Conversely, assume that [, a, f are given as above. By Theorem 3.3.3, f €

MHom((Z,+), (Zn, ok)). Since (a,l,n) = 1, it follows that

f(Z) = aZ, +1Z,
= (a,0)Z,
= (a,1,n)Z,

= L,
Hence f € SMHom((%Z, +),(Z,, o). O

For l,a € Z with (i,n) | k, let H,, € MHom((Z,+), (Z,, o)) be defined by
Hy () = [ax]y, + [Z, for all z € Z.
Note that if I | (k,n), then (I,n) | (k.n) and (k,n) | k, so H;, is meaningful.

Lemma 3.3.5. (i) MHom((Z,+),(Zy. o)) = {H,, | l € Z", | (k,n)
and a € {0,1,...,1—1}}.
(i) SMHom((Z,+),(Zn, o)) ={Hio | L€ ZT, 1| (k,n), a € {0,1,...,1—1}
and (a,l) = 1}.
(ii) If l,t € Z*, U | (k,n), t | (k,n), a € {0,1,...,l —1} and b€ {0,1,...,t — 1},

then H;, = H;; implies | =t and a = 0.

Proof. (i) From Theorem 3.3.3 and the fact mentioned above, it suffices to show
that for I,a € Z with (I,n) | k, there are t € Z* and b € {0,1,...,t — 1} such
that ¢ | (k,n) and H;, = Hyp. Let [,a € Z be such that (I,n) | k. Let t = (I,n)
and b € {0,1,...,t — 1} be such that a = pt + b for some p € Z. Hence t € ZT,
t|kandt|n,sot|(kmn). Also, we have that
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for all x € Z, Hyp(x) = [bx],, + tZy,
= [(a = pt)zly + 1Zy,
= laxln — [tpa]n + tZn
= [ax], — t[px], + tZ,
= |ax]n + tZ,

= laz|y+ (Lin)Z,

(ii) Let I € ZT and a € {0,1,...,0 — 1} be such that [ | (k,n). Since
H A7) < 0Tyt 1Zy = (0, ) Zon,

it follows that H,,(Z) = Z,, if and only if 1 = (1,n) = (a,l,n) = (a,!). From this
fact and (i), (ii) follows.

(ii) fl,t € Z*, 1| (k,n), | (k,n),a€{0,1,..., -1} and b e {0,1,...,t—1}
are such that Hy, = H;p, then [ | n, ¢t | n and

[Z,, = H;,(0) = H.,(0) = tZy,,
sol=(l,n) = (t,n) =t. Thus H;, = H}, so
[aln + 1Z,, = Hio(1) = Hip(1) = [b], + 1 Z,.

Then
la = blln € 1Zn = {[0n, [l]n, - - -, (5 — D)[U]n}

But |a —b] € {0,1,...,l =1}, so |a — b] = 0. Thus a = b. O

n
l

Theorem 3.3.6. |MHom((Z,+), (Zn,0x))| = Z l

ezt
and I|(k,n)

|SMHom((Z, +), (Zn, o1))| = (k,n).
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Proof. By Lemma 3.3.5(i) and (iii),

IMHOm((Z, +), (Zn, o)) = > _ L.
lez*
U|(k,n)
We have from Lemma 3.3.5(ii) and (iii) that
[SMHom((Z, +), (Zy. o)) = Y, () = (k,n).
lez+

l|(k,n)

[]

Remark 3.3.7. We compare the results in this section and Theorem?2.9 - Theorem

2.12 by the following diagram where [, a € Z.

Characterization Cardinality

MHom((Z, +), (Z,, +)) f(x) = [az], + 1Z,, M
le”%:r
SMHom(((Z, +), (Zy, +)) f(z) = [ax], + Zn, n
Eirm—=—t
MHom((Z, +), (Zn, ox)) f(z) = [az], + 1Z,, >l
(I;n) [k ll\(EkZ,n)
SMHom((Z,+),(Z,, o)) f(z)="ax], +1Z,, (kyn)

(I,n) |k, (a,l,n) =1

3.4 Multi-valued Homomorphisms from the Group (Z,,, +)

into the Hypergroup (Z,, o)

The following known fact is needed in this section.
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Lemma 3.4.1 ([10]). Let l,a € Z and define
f(x]m) = [az], + 1Z,, for all x € Z.

Then f is a well-defined multi-valued function from Z,, into Z, if and only if
(,n)

Qo) | @

Theorem 3.4.2. For a multi-valued function f from Z,, into Z,, f € MHom

l
((Zpn, +),(Zy,, o)) if and only if there existl,a € Z such that (I,n) | k, (l(r’nn)n) | a

and

f([z]m) = [ax], + (Z,, for all x € Z.

Proof. Assume that f € MHom((Z,,, +), (Z,, ox)). By Lemma 3.3.1 and Lemma
3.3.2, there are [,a € Z such that (I,n) | k and

fz]m) = laz], +1Z, for all x € Z.

[
e,
(l,m,n)

For the converse, let [, a, f be as above. By Lemma 3.4.1, f is well-defined.

Lemma 3.4.1 yields the fact that

Since (I,m) | k, we have as before that
1Z,, + kZy, = Zy,.
Hence for all x,y € Z,

F (el + )= fll2+ 9lm)
={a(@  y)ln F+1Zx
= laz], + [ay)n + 1 Zy, + KZ,
(laz)n + Zy) + ([ayln + Zy) + kZy,
([2]m) + f([Ylm) + kZn,
([#]m) ok f([y]m)-

f
f

Therefore f € MHom((Z,, +), (Zy, o)), as desired. O
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(4, n)

(l,m,n)

Lemma 3.4.3. Forl,a €Z, (I,n) | k,
(l,n) | (k,m) and (a,l,n) = 1.

| @ and (a,l,n) =1 if and only if

Proof. Assume that (I,n) | k, (,n) | @ and (a,l,n) = 1. Then (a, (I,n) ) _

(l,m,n) (l,m,n)

l l
1 since (a, (I,n)) = (a,l,n) = 1. But (Ln) | a, thus (Ln) = 1. That is,
(I,m,n) (I,m,n)

(I,n) = (I,m,n). This implies that (I,n) | m. Hence (I,n) | (k,m).
For the converse, assume that (I,n) | (k,m) and (a,l,n) = 1. Then (I,n) | k
(n

l
) = 1. Hence (Ln) | a. O
(l,m,n) (l,m,n)

and (I,n) | m. Thus (I;m,n) = (I,n), so

Theorem 3.4.4. For a multi-valued function f from Z,, into Z,, f € SMHom
(Zm,+), (Zn,or)) if and only if there exist l,a € Z such that (I,n) | (k,m),
(a,l,n) =1 and

fzlm) = laz], + IZ, for all x € Z.

Proof. Assume that f € SMHom((Zy,,+), (Z,,°x)). Then f € MHom((Z,,,+),
(Zy,,01)) and f(Zy,,) = Z,. By Theorem 3.4.2, there are [,a € 7Z such that

(;n)

(l;n) | k, @)

| a and
f([z]m) = laz], +1Z, for all x € Z.

It follows that
Lo = f (L) = 0y + 1Ly = (a,1) Ly,
and ‘hence 1= (1,n) =(a, l;n): By Lemma 3.4.3; we have (I;n) | (k,m).
Conversely, let [, a, f be as above. By Theorem 3.4.2 and Lemma 3.4.3, we
deduce that f € MHom((Zy,, +), (Zy,0x)) and (a,l,n) = 1. Since (a,l,n) =1, we
have

f(Zy,) =adZ, + 12, = (a,))Z,, = (a,l,n) 2Ly, = Ly,

Therefore f € SMHom((Zy,, +), (Zn, ok)). O
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(I,n)
(l,m,n)

For l,a € Z with (I,n) | k and
(Z,+),(Z,y,, 01)) defined by

| a, let I, , be the element of MHom

I o([x)m) = laz], + IZ,, for all x € Z.

l
If I #0,0| (k,n) and T | a, then (I,n) | [, 1|k, so (I,n) | k. Since (I,n) | I,

l
| a and (I, m) | m, it follows that (I,n) | am, so (Ln) o

l | a Since
(I,m) (I,m,n) '

(l,m,n)
((l(ly’nnl)’ 0 :nn n)) = 1, we have (l(lmnzz) | a. Hence 1}, is defined.
? Y ? ? l

Also, if 1 # 0 and [ | (k,m,n), then [ | (k,n) and ﬁ = [ = +1 which
,m

divides a, so by the above proof, [; , is also defined.

Lemma 3.4.5. (i) MHom((Z ., +), (Zn,01))={l1a | L € ZT, 1] (k,n),
ae{0,1,...,1— 1}and( )\a}
(i) SMHom((Zm,+), (Zy,0k))={Lia |l e Z", 1| (k;m,n), a €{0,1,...,1 -1}

and (a,l) =1}.
(iit) If 1,t € Z+, 1| (k,n), t] (kon), a€ {0,1,...,1—1}, be {0,1,...,t — 1},
(Z’Zm) | a and —(t,tm) | b, then I, , = Iy implies | =t and a = b.

Proof. (i) As mentioned above, to prove (i), by Theorem 3.4.2, it suffices to

(;n)
(lym,n)

| band I, , = I;;. Let [, a € Z be such that

prove that for [,a € Z with (I,n) | k and

| a, there are t € ZT and
be{0,1,...,4—1} such that —— (t,m)

l
(I,n).] k and % | a."Let t ='(I,n) and b €{0,1,...,t = 1} be such that
7m7n

a =pt+bfor some p € Z. Thent € Z*, t |k, t | n. Thus ¢ | (k,n). Since

t (I,n) (I,n) o t
(t,m) (I,m,n) (I,m,n) " (t,m)

b,

| t and b = a — pt, we deduce that

t
(t,m)
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We also have that

for every x € Z, I1([z,]) = [bx],, + tZ,
= [(a — pt)z], + tZy,
= lax], — tlpx], + tZ,
= |ax], + tZ,
= lax], + (I,n)Zy,
= lax), + 1Zy,

= ]l,a([x]m)-

(i) If { € Z ~ {0} and a € 7Z are such that [ | (k,m,n) and (a,l) = 1, then
(I,n) |1, 1] (k,m) and (a,l,n) = ((a,1),n) = (I,n) = 1. It follows from Lemma
3.4.3 and Theorem 3.4.4 that

{L.|leZt 1] (k,m,n),a€{0,1,...,0—1} and (a,l) =1}

C SMHom((Zn,, +), (Z, ox)).

To prove the reverse inclusion by Lemma 3.4.3 and Theorem 3.4.4, let l,a € Z
be such that (I,n) | (k,m) and (a,l,n) = 1. Let t = (l;n) and b € {0,1,...,t—1}
be such that a = pt + b for some p € Z. Then t | n, t | (k,m) and (a,t) =
(a,(l,n)) = 1, that is, t € Z", t | (k,m,n) and (a,t) = 1. We have (t,n) =t =
(I,n), (I,n) | (k,m) and

(b,tyn) = (a —pt,t,n)
N | (a—p(l,n),(l,n),n).

If ce Zt issuch that ¢| a—p(l,n), ¢| (I,n) and ¢ | n, then ¢ | a,so ¢ | (a, (I,n)). But
(a,l,n) =1, so ¢ = 1. This shows that (b,t,n) = 1. Since t | n, (b,t) = (b,t,n) =
1. From Lemma 3.4.3 and Theorem 3.4.4, I;;, € SMHom((Z,,, +), (Zy,ox)). The
proof in (i) shows that I, = [, ,.

(iii) Let I,t € ZT, a € {0,1,...,1 — 1} and b € {0,1,...,¢t — 1} such that

U] (k,n), t| (k,n), | a and . | b. Assume that [;, = I;;,. Then

_t
(I,m) (t,m)
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so (I,n) = (t,n). Since | n and t | n, we have [ =t. Then [;, = [;;,. Thus

[QL14_1221:: Iha([an> ::]Lb([an) ::[bLz‘% [ Z.,,

s0 [Ja — bll € 1Zn = {[0]n, [ - - - (ﬁ - 1) [1],}. Since |a —b| € {0,1,...,0—1},

[
it follows that |a — b| = 0. Thus a = b.

Hence the lemma is proved.

Theorem 3.4.6. |MHom((Zy,, +), (Zn, o))l = > (1,m)

leZT
and 1|(k,n)

|SMHom((Zny +), (Zy, 01))| = (K, m,n).
Proof. From Lemma 3.4.5(i), we have

MHom((Zm> +)7 (Zm Ok)) = {]l,a ” = ZJr, [ } (k:,n) and
[

ae{0,——. ... ((l,m)—1)

(L,m)
Hence by Lemma 3.4.5(iii),

IMHOM(Z )+ (Zny O} = (L, ).

lez+
U (kymn)

It follows directly from Lemma 3.4.5(ii) and (iii) that

ISMHom((Zan, +), (Zoyor))l = D2 (1) = (k,m,n).

lezt
U (k,m,m)

]

l
(DL

[]

Remark 3.4.7. The following diagram shows a comparison of Theorem 2.13 -

Theorem 2.16 and the results obtained in this section where [, a € Z.



MHom((Z,, +), (Zn, +))

SMHom((Zy, +), (Zy, +))

MHom((Zum, +), (Zon, 01))

SMHom((Z,, +),(Z,,, o))

Characterization

f([z]m) = [az]n + 1Zn,

F([zlm) = lazln + 1Zn,

(l,n)
(lym) | K, T ) | a

f([x]m) I [ax]n + 1Ly,

(l,m) | (k,m), (a,l,n) =1
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Cardinality



CHAPTER IV
MULTI-VALUED HOMOMORPHISMS FROM
HYPERGROUPS INTO GROUPS

Multi-valued homomorphisms and surjective multi-valued homomorphisms from
the hypergroups (Z, o;.) and (Z,,, o)) into the group (Z,+) and (Z,,, +) are deter-
mined in this chapter. We give characterizations of such multi-valued functions.
It is also shown that the cardinalities of the sets of such multi-valued homomor-

phisms and surjective multi-valued homomorphisms into (Z,+) where n{k are 2.

4.1 Multi-valued Homomorphisms from the Hypergroup
(Z, o) into the Group (Z,+)

Lemma 3.1.1 and the following three lemmas are needed.

Lemma 4.1.1. If H is a subsemigroup of (Z,+) such that H + H = H, then
0e H.

Proof. If H C Z*, then H 4+ H C Z" and min(H + H) = 2minH > minH
which is a contradiction since H + H = H. Hence H SZ Z7.Also, if H C Z~, then
max(H + H) = 2maxH < maxH which is contrary to that H + H = H. Then
either 0'e Hor HNZ" # @ and HNZ~ # '@, 50 by Lemma 3.1.1,0 € H. O

Lemma 4.1.2. If f € MHom((Z, o), (Z,+)), then the following statements hold.

(i) f(kZ) = f(x1)+ -+ f(zy) forall xy,...,xy € Z with x1 + -+ -+ x; € kZ

andt>1

(i) f(kZ)= f(z)+ f(y) for all z,y € KZ.

(iii) f(KZ) is a subsemigroup of (Z,+) containing 0.
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(iv) f(z)+ f(y) = f(2) + f(y) + [(KZ) for all z,y € Z.
(v) f(z+kZ) = f(z)+ f(KZ) for all z € Z.
Proof. (i) If z1,..., 2 € Z are such that ¢ > 1 and @, + -+ + 2, € kZ, then
T+ -+ 2+ kZ = kZ, s0
FZY = f(xy + - + 2 + kZ)
— F(a1 04" - - op )

= fz1) + oot (7).

(ii) follows directly from (i).

(iii) If z,y € f(kZ), then x € f(s) and y € f(¢) for some s,t € kZ, so
by (ii), z +y € f(s)+ f(¢) = f(kZ). This shows that f(kZ) is a subsemigroup of
(Z,+). Also, by (i),

f(RZ) + f(KZ) = f(0) + £(0) + f(0) + f(0) = f(kZ).

Hence by Lemma 4.1.1, 0 € f(kZ).
(iv) If x,y € Z, then

f(z) + fy) = fzory)

fle+y+ k)

= flx+y+0+0+kZ)

= f(z oy ox 001, 0)

= f(x)+ fly) + £(0) + f(0)

= f(@)+ fy) + f(KZ) by (it)-

)

(v) For every = € Z,
flo +kZ) = f(z + 0+ 0+ kZ)

(
( 0 0 05 0)

(2) + £(0) + £(0)
() + F(KZ) Dy (iD).

f
f
f
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Lemma 4.1.3. If f € MHom((Z, o), (Z,+)), then there exists an element a €
f(1) such that

flx +kZ) = ax + f(KZ) for allx € Z.

Proof. By Lemma 4.1.2(i) and (iii), 0 € f(kZ) = f(1) + f(—1), so there is an
element a € Z such that a € f(1) and —a € f(—1). Since f(1) + f(-1) =
F(h2), F(KZ) = F(Z) + F(KZ), fO +KZ).= [(1) + f(KZ) and f(~1+ KZ) =
f(=1)+ f(kZ) by Lemma 4.1.2(i),(iii) and (v), respectively, it follows that

fQA+KZ) = f(1) + f(KZ)

2 a+ f(KZ)
— a+f(kZ) + f(kZ)
=a+f(=1)+ f(1)+ f(kZ)
Da—a+ f(1)+ f(kZ)
= f(1) + f(kZ)
= f(1 +kZ)

and

[(=1+kZ) = f(=1) + J(kZ)
D —a+ f(KZ)
= —a-+ f(kZ)+ f(kZ)
= —a+ f(1) + f(=1) + f(kZ)
D —a+a+ f(-1)+ f(kZ)
= f(=1) + f(kZ)
= f(~1+ kZ)

which imply that f(1+ kZ) = a+ f(kZ) and f(—1+ kZ) = —a + f(KZ).
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If | € Z* with [ > 1, then

fU+EKZ)=f(1+---+ 1+ KkZ)

l copies

:f(lok;"'okl)

| copies

= )+ ()
=f()+---+ f(1) + f(kZ) by Lemma 4.1.2(iv)
= (f(1) + f(kZ))+--- + (f(1)+ f(kZ)) by Lemma 4.1.2(iii)

= f(L+kZ) ++ -+ f(1 + kZ) by Lemma 4.1.2(v)

= (a+ f(KZ))+ -+ (a+ f(KZ))

= al + f(kZ)
and
f(=l+kZ)=f(-1+-- =1+ kZ)
[ copies
= f((=1) o -+ o (=1))
[ copies
= F(hb et f=)
= f(=14+KkZ)+ -+ f(=1+ kZ) by Lemma 4.1.2(iii), (iv) and (v)
= (—a+ f(KZ)) +---+ (—a+ f(KkZ))
=a(—1) +'f(kZ).
Hence the lemma is proved. O

Theorem 4.1.4. For a multi-valued function f from Z into itself, f € MHom
((Z,01),(Z,+)) if and only if one of the following two conditions holds.
(i) There exists a subsemigroup H of (Z,+) containing 0 such that

fle+kZ) =H forall x€Z and

flx)+ fly)=H forall xz,y € Z.
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l
(ii) There exist l,a € Z such that l # 0, —— | a,

(L, k)
fle+kZ) =ax+IZ forall x € Z and

f@)+ fly) = f(x)+ fly) +1Z for all z,y € Z.

Proof. Assume that f € MHom((Z, ox), (Z,+)). By Lemma 4.1.2(iii), f(kZ) is

a subsemigroup of (Z, +) containing 0. By Lemma 4.1.2(iv),
f(@) + fy) = f(@) + fy) £ f(kZ) forall z,y € Z. (1)
By Lemma 4.1.3, there exists a € f(1) such that

fle+ kZ) = ax 4+ f(kZ) forall z € Z. (2)

Case 1: a = 0. From (2), we have
flz + kZ) = f(kZ) forallxecZ (3)

and for all z,y € Z,

flx)+ fy) = f(zory)

(z 4y +EZ)

-

f(kZ) from (3).
Thus f satisfies (i).

Case 2: a # 0. It follows from (2) that

F(kZ) = f(k + KZ) = ak + f(KZ) and

FZ) = f(—k + kZ) = —ak + f(KZ).

Since 0 € f(kZ), ak,—ak € f(kZ), so f(kZ)NZ" # & and f(KZ)NZ~ #+ @.
Then by Lemma 3.1.1, f(kZ) = IZ for some | € Z and [ # 0. But ak € lZ, so

l
l|ak. Thus 0] | a. From (1) and (2), we have
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fl@)+ fly) = flz)+ fly) +1Z forall z,y € Z

and

flx+kZ)=ax+1Z forall z € Z,

respectively. Hence (ii) holds.

Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then for all
x,y € 7,

flxopy) = flz+y+kZ)=H = f(z) + f(y),

which implies that f € MHom((%Z, o), (Z,+)).
Next, assume that [ satisfies (ii). First we show that f defined on each coset
is independent on its representatives. If x,y € Z are such that » + kZ = y + kZ,

[
then z — y € kZ. Since Zﬁf—) | a, we have [ | ak, so

ax — ay € akZ C 7

which implies that azx + [Z = ay + (Z. To show that f € MHom((Z, o), (Z,+)),
let x,y € Z. Since f(x) C f(x + kZ) = ax + Z and f(y) C f(y + kZ) = ay + 1Z,
we deduce that f(z) = ax + A and f(y) = ay + B for some nonempty subsets
A, B of IZ. Therefore A + B + lZ = lIZ and hence

f(zopy) =f(z +y+ kZ)
= alz+y)+IZ
=ar +ay+ 1%L
=ar+A+ay+ B+IZ
= f(2)+ f(y) +1Z

= f(z)+ f(y) by assumption.

Therefore the proof is complete. O
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We give a note here that if a multi-valued function f from Z into itself satisfies

(ii) of Theorem 4.1.4 with a = 0, then f satisfies (i). To show this, assume that

fle+kZ)=1Z for all x € Z and

fl@)+ fly) = flz)+ fly) +1Z for all z,y € Z.

Then for z,y € Z, f(x) C f(x + kZ) = IZ and f(y) C f(y + kZ) = IZ which
implies that f(z) + f(y) +1Z = IZ. Hence f(x) + f(y) = lZ.

l
Lemma 4.1.5. Forl € Z~ {0} and a € Z, o | a and (a,l) =1 if and only if
l|k and (a,l) = 1.
Proof. Assume that 4 | @ and (a,l) = 1. These imply that (a Ly
* (l, k) ) \ % 4 p y ) (l, k/') -
]

1 i !
) and (a, (l,k)) =1, respectively. Thus (l|, L) =1,s0 |I| = (I, k). Hence l | k.
[

If | k, then ——= = — = £1 which divides a.
k)

Therefore the lemma is proved. O]

Theorem 4.1.6. For a multi-valued function f from Z into itself, f € SMHom
((Z,01),(Z,+)) if and only if one of the following two conditions holds.

(i) flx+KkZ) =7Z forall x€Z and

fl@)+ fly)=7Z forall z,y € Z.
(ii) There existl,a € 7 such thatl # 0, 1| k, (a,1) =1,
fle+kZ) =ar+IZ forall x €Z and

flz)+ fly) = flz)+ fly) +IZ “ for all z,y € Z.

Proof. Assume that f € SMHom((Z, o), (Z,+)). Then f satisfies (i) or (ii) of
Theorem 4.1.4. If f satisfies (i) of Theorem 4.1.4, then (i) holds since Z = f(Z) =

U f@+kz)=H
rEZ
Next, assume that f satisfies (ii) of Theorem 4.1.4. Then there are l,a € Z

l
such that [ # 0, W | a,
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flx +kZ) =ax+1Z for all x € Z and

fle)+ fly) = f(z)+ fly) +1Z for all z,y € Z.

Since f(Z) = Z, it follows that

Z=f(Z)= ] f@+kZ) = aZ +1Z = (a,1)Z

ey
which implies that (a,l) = 1. By Lemma 4.1.5, [ | k£ and (a,1) = 1.

For the converse, assume that f satisfies (i) or (ii). If f satisfies (i), then
by Theorem 4.1.4, f € MHom((Z,0y),(Z,+)) and Z = f(1 + kZ) C f(Z), so
f(Z) =7Z.

If f satisfies (ii), then by Theorem 4.1.4 and Lemma 4.1.5, f € MHom((Z, oy,),
(Z,+)). Since (a,l) =1 and

f@) = U +kz2) = | (az +12) = aZ +1Z = (a,1)Z,

TEZ TEZ

it follows that f(Z) = Z.

Therefore the theorem is proved. O

Theorem 4.1.7. |MHom((Z, o), (Z,+))| = |SMHom((Z, o},), (Z,+))| = 2%.

Proof. Note that

(2Z+1)U{0p) +((2Zz+1)u{0}) =RZ+1+2Z+1)U(2Z+ 1)U {0}
=(2Z+2)U(2Z +1)u{0}

—~97.U (2L 4+ 1) = Z. (1)
Let X C 2Z ~ {0} and define fx : Z — P*(Z) by

fx(0) = ((2Z + 1) U {0}) U X and
fx(z) =% for all x € Z ~ {0}.

Then fx(x) 2 (2Z + 1) U {0} for all x € Z, so by (1), we have
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Ix(@)+ fx(y)=Z for all x,y € Z. (3)

Moreover, if x € Z, then x 4 kZ is infinite since k > 0. Therefore we have

fx(x+kZ) =) fx(x + kt) = Z. (4)

tez

By (3) and (4), fx satisfies (i) of Theorem 4.1.6, so fx € SMHom((Z, o), (Z,+)).

If X and X’ are distinct subsets of 2Z ~. {0}, then ((2Z + 1) U{0}) U X #

((2Z41)U{0})UX"’, so from (2), we have fx(0) # fx/(0). Consequently, fx # fx/
for all distinct subsets X and X' of 2Z ~ {0}. Hence we have

IMHom((Z, ok ) (Z, +))| = |[SMHom((Z, o), (Z, +))|
> {fx | X € 2Z ~ {0}]
= [{X | X € 2Z ~ {0}
= 230,
But

IMHom((Z, ox), (Z, D)) S {F | f: Z — P*(Z)}]
e (QNO)NO — 9o

Y

so we have [MHom((Z, o;), (Z, +))| = [SMHom((Z, o1.), (Z, +))| = 2%, as desired.

[]

Remark 4.1.8. Note that ford € Z*, IZ = I(2Z U (2Z + 1)) = 2Z U (21Z + 1).
We can see from the proof of Theorem 4.1.7 that if [ € ZT and X C 2IZ ~ {0},
then gy : Z — P*(1Z) C P*(Z) defined by

gx(0) = ((21Z + 1) U{0}) U X and

gx(z) =1Z for all x € Z ~ {0}

belongs to MHom ((Z, o), (Z, +)) with gx(Z) = IZ. Also, gx # gx- for all distinct
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nonempty subsets X and X~ of 21Z ~ {0}. If [ > 1, then IZ C Z and thus

2o > |MHOIH((Z, Ok)a (Z, +)) ~ SMHOIH((Z, ok)’ (Z’ +))|
> |{gx | X C20Z~ {0}}|
~ (X | X € 2z {0})]

= 2%,

This implies that [MHom((Z, o), (Z,+)) ~ SMHom((Z, o), (Z,+))| = 2%.

Remark 4.1.9. It can be seen from Theorem 2.1 that each pair H, a determines

a unique f € MHom(Z, +) with
f(v) =ar+ H forallzeZ

where H is a subsemigroup of (%, +) containing 0 and @ € Z. If a # 0 and
(a,h) = 1 for some h &€ H, then the pair H,a also determines a unique f €
SMHom(Z, +) which satisfies the above equality.

In contrast, we can see from the proof of Theorem 4.1.7 that for every subset

X of 2Z ~ {0},

fx(z+kZ)=7Z forall xzecZ,

fx(@)+ fx(y)=Z forall z,y €Z
which imply that

fx(z +kZ) =ax+7Z for all a,x € Z,

fx(@) +fx(y) = fx(@)+ fx(y)+Z _forall x,y € Z.

1
Note that ) | a,1 | k and (a,1) = 1. Therefore we deduce that a sub-

semigroup H of (Z,+) containing 0 does not necessarily determine a unique f €
MHom((Z, o), (Z,+)) [SMHom((Z, o), (Z,+))] satisfying (i) of Theorem 4.1.4
[Theorem 4.1.6]. Also, each pair [,a with [ # 0 and L | a [l #0,0| k and

(L, k)
(a,l) = 1] does not necessarily determine a unique f € MHom((Z, o), (Z,+))

[SMHom((Z, o), (Z,+))] satisfying (ii) of Theorem 4.1.4 [Theorem 4.1.6].



44

Remark 4.1.10. Theorem 2.1 - Theorem 2.4 are compared with the results of

this section as follows: where H is a subsemigroup of (Z,+) containing 0 and

l,a € Z.

MHom((Z,+),(Z,+))

SMHom((Z, +), (Z,+))

MHom((Z, ox), (Z,+))

SMHom((Z, o), (Z, +))

Characterization
f(z)=ax+ H
f(z) &= ax=H,

(a,h) =1 for some h € H,
g0 - =7

() flz+ kZ) =H,

f(z)+ f(y) = H or

(i) f(zr+kZ) =ax+IZ,
f@)+fy) = f(2) + f(y) +1Z,

!

[ £ 65 (l A | a

(i) f(z+kZ) =2Z,
fx)+ fly) =Z or

(ii) f(z +kZ) =az+1Z,
f@) + fly) = f(z) + f(y) +1Z,
L#£0, 1]k, (a,]) =1

Cardinality

No

4.2 ~Multi-valued Homomorphisms from the Hypergroup

(Z,04) into the Group (Z,, +)

Recall that if H is a subsemigroup of the group (Z,,+), then H = [Z,, for

some [ € Z. With this fact, the following two lemmas can be proved analogously

to those of Lemma 4.1.2 and Lemma 4.1.3.



45

Lemma 4.2.1. If f € MHom((Z, o), (Zn,+)), then the following statements hold.

(i) f(RZ) = f(z1) + -+ f(zy) forall xy,...,x; € Z withxy + -+ - + x4 € k7

(KZ) = f(z) + f(y) for all z,y € KZ.
(kZ) = 1Z,, for some | € Z.
(
(

2+ 1) = F(@) + F) S for all 2,y € 2.
z+KkZ) = f(x) + f(KZ) for all x & Z.

Lemma 4.2.2. If f € MHom((Z, o), (Zy,+)), then there exists an element a € Z
such that [a), € f(1) and

[+ kZ) = |ax], + f(KZ) for allx € Z.
Theorem 4.2.3. For a multi-valued function f from Z into Z,, f € MHom

(I,n)
(I, k,n)

((Z,01), (Zn,+)) if and only if there exist I, a € Z such that | a and

f(x + kZ) = az], +1Zy, for all x € Z,

f(@) + fly) = f(x) + f(y) +1Z, for all v,y € Z.

Proof. Assume that f € MHom((Z, o), (Z,,+)). By Lemma 4.2.2, there is an

element a € Z such that [a],, € f(1) and
flz +kZ) =fax), + f(KZ)—for all x € Z.
By Lemma 4.2.1(iii), f(kZ) = lZ,, for some | € Z. Hence
f(x + kZ) = |ax)n + 17,  for all z € Z. (1)
Also, from Lemma 4.2.1(iii) and (iv),
flz)+ fly) = f(z) + fly) + Z, forall z,y € Z.
From f(kZ) = {Z,, (1) implies that

1Z, = f(KZ) = f(k + kZ) = [ak], + Z,,
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so [akl,, € IZ,,. Hence

akZy, = [ak]nZn C 12370 = 17,

n

(,n)

which implies that |akZ,| | |IZ,|. Thus
(,n)

| , 80 (I,n) | (ak,n). Hence

(ak,n)

(I,n) | ak. Tt follows that 0 k) | a.
l
For the converse, assume that there are [,a € Z such that % | a and
f(x + kZ) = |az),, + IZ, for all x € Z, (2)
@)+ fy) = fx) + f(y) +1Zy for all z,y € Z. (3)

Then (I,n) | ak. To show that f is defined independently to the representatives
of cosets, let x,y € Z be such that © + kZ = y 4+ kZ. Then v — y € kZ, so

laz]y, —[ayln + 1Z,, = [a(z = y)]n + Z,
C akZy,, + [ Zy,
= (ak,1)Z,,
= (ak,l,n)Z,
= (l,n)Z, since(l;n) | ak

= 1Zy,.

This implies that [az], = [ay], +1Z, = IZ, and thus [ax], + [Z, = [ay], + [ Z,.
Let z,y € Z. From (2),

F@) €, f(m +KZ)\ S ozl + 1Za 1 fly) C F (Y 4 KZ)C layln 1 Zn,

so there are nonempty subsets A, B of [Z, such that f(x) = [az], + A and
f(y) = [ay]n, + B. Thus A+ B +1Z, = IZ,. Hence
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f@ory) = f(z+y+kZ)
= la(z + y)|n +1Z»
= [az], + [ay], + Z,
= laz], + A+ [ay|, + B+ Z,
= f(x) + f(y) + Zy,

= f(x) + fy) from (3).

Therefore the proof of the theorem is complete. O

l
Lemma 4.2.4. Forl,a € Z, (l( ;{n}l) | a and (a,l;n) =1 if and only if (I,n) | k
and (a,l,n) = 1.

(,n)

((1,n), k)
(a,(I,n)) = 1if and only if (I,n) | k and (a, (/,n)) = 1. Therefore the desired

Proof. Note that ([,n) # 0. By Lemma 4.1.5, we have | a and

result follows. N

Theorem 4.2.5. For a multi-valued function f from Z into Z,, f € SMHom
((Z, o), (Zn,+)) if and only if there exist |, a € Z such that (I,n) | k, (a,l,n) =1

and

fx + kZ) = [az], + Z,, for all x € Z,

f) +f(y) = f(@) + fly)+ 2y for allz;y € Z.

Proof. Assume that f € SMHom((Z,o4), (Z,,+)). Then f(Z) = 7Z, and by
(L,n)

Theorem 4.2.3, there are [, a € Z such that ——— | a and
(I, k,n)
flx + kZ) = [ax],, + Z,, for all x € Z, (1)
f@)+ fly) = f(x) + f(y) + 12y, for all 2,y € Z. (2)

Since f(Z) = Zy, by (1)

Zn = f(Z) = f(Z+ kZ) = aZ, +1Z, = (a,1)Z,
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which implies that 1 = (1,n) = (a,l,n). By Lemma 4.2.4, (I,n) | k.

Conversely, assume that [,a € Z such that (I,n) | k, (a,l,n) = 1 and f
satisfies (1) and (2). It follows from Theorem 4.2.3 and Lemma 4.2.4 that f €
MHom((Z, o), (Zy,+)). Since (a,l,n) =1, by (1), we have

f(Z) =aZ, +1Z, = (a,1)Z,, = (a,l,n) Ly, = 12, = Ly,.
Hence f € SMHom((Z, o), (Zn,+)). O

Remark 4.2.6. Let us compare Theorem 2.9 - Theorem 2.12 with the results of

this section where [, a € Z.

Characterization Cardinality
MHom((Z, +), (Zn, +)) f(x) = [az], + 1Zn >l
lez*
lln
(a,l,n) =1

MHom((Z, o), (Zn, +)) T + kZ) = [az], + 1%, -

(
f@)+ fly) = f(x) + [(y) + Zn,
(I,n)

@k n) | @

SMHom((Z, o), (Zy, +)) f(x + kZ) = |az], +1Z,, -

f@)y+fy) = f(z)+ fly) + Zn,
(l,n) |k, (a,l,n) =1

We give a remark that the cardinalities of MHom((Z, o), (Z,, +)) and SMHom
((Z,o),(Zy,+)) are not known in this research. It is easily seen that [MHom((Z,04),
(Zy, +))|= [SMHom((Z, o), (Z1, +))| = 1.
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4.3 Multi-valued Homomorphisms from the Hypergroup
(Zy,, 01) into the Group (Z, +)

First, we provide the lemmas analogous to Lemma 4.1.2 and Lemma 4.1.3. The

proofs can be given analogously.

Lemma 4.3.1. If f € MHom((Zy,, 1), (Z,+)), then the following statements hold.
(1) f(EZn) = f([z1]n) + -+ f([2e)n) for all 4, ...z, € Z with

[T1]n 4 -+ [@4]n € KZy,.
(i) f(KZn) = f([x]n) + f(W]n) for all z,y € Z with (], [yln € kZq.
(iif) f(
(iv) f(lz]n) + f([yln) = f(zln) + f(ln) + £ (kZ0) for all z,y € Z.
f([@)n + kZy) = [([x]a) + [(KZy) for all z € Z.

kZ,) is a subsemigroup of (Z,+) containing 0.

Lemma 4.3.2. If f € MHom((Z,,,o1),(Z,+)), then there exists an element a €
f([1]) such that

f(x), +kZ,) = [az], + f(kZ,) for all v € Z.

Theorem 4.3.3. For a multi-valued function f from Z,, into Z, f € MHom((Z,,ox),
(Z,+)) if and only if one of the following two conditions holds.

(i) There exists a subsemigroup-H of (Z,+) containing 0 such that
fzln+ kZ,) = H for all x € Z and
F@l) +f(yln)=H _for all x,y € Z.

(ii) There exist l,a € Z such that | # 0, (lakl?—ﬂ”b) | a and
f(z]n + kZ,) =ax+IZ forall x € Z and

F(aln) + f(lyln) = f(2]n) + f(lyln) +1Z for all z,y € Z.

Proof. Assume that f € MHom((Z,, o), (Z,+)). By Lemma 4.3.1(iii), f(kZ,)
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is a subsemigroup of (Z,+) containing 0. By Lemma 4.3.1(iv),
F2ln) + f(wla) = f([2]n) + f([Wla) + f(KZy) for all .y € Z. (1)
By Lemma 4.3.2, there exists a € f([1],,) such that
F([2]n + kZy) = az + f(KZ,) for all z € Z. (2)
Case 1: a=0. From (2), we have
F([@]n + kZyp) = f(kZy) forall z € Z (3)

and for all z,y € Z,

Thus [ satisfies (i).

Case 2: a # 0. It follows from (2) that

f(kZy) = f([k]n + kZy) = ak + f(kZ,) and

[(kZ,) = f(|—k]n + kZ,) = —ak + f(KkZ,).

Since 0 € f(kZy,), ak, —ak € f(kZ,), so f(kZ,)NZ" #& and f(kZ,) 7L~ #+ .
Then by Lemma 3.1.1, f(kZ,) = IZ for some | € Z ~ {0}. Since ak € IZ, 1 | ak.

Also, we have

IZ = f(kZy,) = f([n|n + kZy,) = an + IZ,

so an € IZ. Thus [ | an. But (I,k,n) = xl + yk + zn for some z,y,z € Z, so

| a

l
a(l,k,n) = axl+y(ak)+ z(an) which implies that [ | a(l, k,n). Hence b
) 7n
From (1) and (2), we have

() + f(lln) = f([z]n) + f([yln) +1Z for all m,y € Z
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and

f([x]n + kZy,) = ax +1Z for all x € Z,

respectively. Hence (ii) holds.
Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then for all

T,y € 1,
[zl ok [yln) = f([#]n + [y]n + KZ5)

= [zt yln + kZn)
=H

= f([z]n) + f([yln),

which implies that [ € MHom((Z,, o), (Z,+)).
Next, assume that f satisfies (ii). First we show that f defined on each coset
is independent on its representatives, let o,y € Z be such that [z], + kZ, =

(Yl + kZy. Then [z =y, € kZ,. Thus x — y = ks + nt for some s,t € Z. Since

k) ;j ) | a, we have I | a(l,k,n), so L | ak and I | an. Thus ak,an € IZ. It follows
Y 7n

that
ar —ay = a(x —y) = alks +nt) = aks + ant € IZ
which implies that ax + IZ = ay + [Z.

To show that f € MHom((Z,,, o), (Z,+)), let x,y € Z. Since

flz]n) € f([2]n + kZn) = ax +1Z, f(lyln) € [([Yln + kZy) = ay + (Z,

we deduce that f([z],) = ax+ A and f([y],) = ay + B for some nonempty subsets
A, B of IZ. Therefore A+ B + IZ = IZ and hence

f([z)n ok [ylw)=f([Z]n +yla + kZp)
=alr+y)+1Z
= ax 4 ay + IZ
=ar+A+ay+ B+ 17
= f([z]a) + f([y]a) +1Z
= f([z]n) + F([y]n)-

Hence f € MHom((Z,,, ox), (Z,+)). O
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Lemma 4.3.4. Forl € Z € {0} and a € Z, (lk{—) | @ and (a,l) =1 if and only
) ’n
if U] (k,n) and (a,l) = 1.

Proof. Since (I,k,n) = (I,(k,n)), the desired result follows directly from
Lemma 4.1.5. [l

Theorem 4.3.5. For a multi-valued function f from Z, into Z, f € SMHom
((Zy,0k),(Z,+)) if and only if one of the following two conditions holds.

() f(zln+kZy) =7 foral x€Z and
f([z]n) + f([W]n) =Z - for all 2,y € Z.
(ii) There exist |, a € Z such that 1 £0,1| (k,n), (a,1) = 1,
F(2]n + KZ,) =ax +1Z for all x €7 and

Faln) + flyhe) = f(2]n) + f[y]n) + 1Z " for all z,y € Z.

Proof. Assume that f € SMHom((Z,, o), (Z,+)). Then f satisfies (i) or (ii) of
Theorem 4.3.3 and f(Z,) = Z. If f satisfies (i) of Theorem 4.3.3, then (i) holds.
Next, assume that f satisfies (ii) of Theorem 4.3.3. Then there are [,a € Z

such that | # 0, ﬁ | @ and

f([@]n + kZ,) = ax + IZ for all v € Z and

S(lln) + f(lyln) = f([2]n) + f([yln) + 1Z for all z,y € Z.

Since f(Z,) = 7Z, it follows that

22 f@)= AUJA R2.)

TEZL
= J f([2]n + kZy)
TEZL
— Uax—i—lZ:aZ—i—lZ: (a,1)Z
TEZL

which implies that (a,l) = 1. By Lemma 4.3.4, [ | (k,n).

For the converse, assume that f satisfies (i) or (ii). By Theorem 4.3.3 and



23

Lemma4.3.4, f e MHom((Z,,, o), (Z,+)). If f satisfies (i), then Z= f([1],+kZ,) C
f(Z,), so f(Z,) =7. 1f f satisfies (ii), then

F(Zo) = F(J (@l + kZ)) = aZ +1Z = (a,1)Z = .

TEZ

Hence f € SMHom((Zy, o), (Z,+)). O

Theorem 4.3.6. The cardinalities of MHom((Zy,01),(Z,+)) and SMHom((Z,,o4),
(Z,+)) are the followings.
(i) If n | k, then
| MHom((Zy, or),(Z,+))| = No, |SMHom((Z,,, o), (Z,+))| =
(i) If ntk, then
| MEHom((n, o), (2,4))] = [SMBon((Zy, o0, (2. +))| = 2%

Proof. If n | k, then kZ, = {[0],}, so (Z,,or) = (Z,,+), hence (i) holds by
Theorem 2.6 and Theorem 2.8.

Next, assume that n t k. Then n > 1, so |Z,| =n > 1. We have that
(2Z+1)u{0}) +(2Z+1)U{0}) =2ZU(2Z+1) =Z. (1)
Let X C 2Z ~ {0} and define fx : Z, — P*(Z) by

fx([0]») = ((2Z +1) U {0}) U X and
Ix([x]n) =Z for all z € Z ~ nZ.

Then fx([x]n) D (2Z + 1) U {0} for all z € Z, so by (1), we have

fxa)w) +fx([yln) = Z for-all x,y € Z. (3)
Since n { k, |kZ,| = |(k,n)Z,| = (kn ) > 1. Thus for any = € Z, |[z], + kZ,| =
N
|kZ,| > 1. It follows that
Fx([2]n + kZy) = | fx([] t],) = Z. (4)

tez
By (3) and (4), fx satisfies (i) of Theorem 4.3.5, so fx € SMHom((Z,, o), (Z,+)).
If X and X~ are distinct subsets of 2Z ~\ {0}, then ((2Z + 1) U {0}) U X #
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((2Z + 1) U{0}HuX", so from (2), we have fx([0],) # fx-([0],). Consequently,
fx # fx- for all distinct subsets X and X~ of 2Z ~ {0}. Hence we have

IMHom((Zn, ok), (Z, +))| = |[SMHom((Z,, ok), (Z, +))|
> {fx | X C2Z~ {0}}]
= {X [ X €22~ {0}}]
20 )
But
IMHom ((Znyor), (Z,+))| < {f | [+ Zn — P*(Z)}]
= (2%)"

—. o0,
SO IMHom ((Z,,, o1), (%, +))| = |[SMHom((Z,,, 01), (Z,+))| =28 if nt k. O
Remark 4.3.7. The following diagram gives a comparison between Theorem

2.5 - Theorem 2.8 and the theorems in this section where [,a € Z and H is a

subsemigroup of (Z, +) containing 0.



MHom((Zn, +), (Z,+))

SMHom ((Zy,, +), (Z,+))

MHom((Zy, o), (Z,+))

SMHom((Zy, 01,), (Z,+))

Characterization

(i) f([z].) = H or
(i) f([x]n) = ax + 12,
l
[ 7é 0, (l’—n) ’ a
[([#]a) = az+ 1Z,
[#0,1|n (a,])=1

() f([z]n +kZy) = H,
flzln) + f(lyln) = H or
(i) f([®], + kZy) = az + 1Z,
F(laln) + f(lyln)
flzln) + f(lyln) +1Z,
l7é0, ! | a

Q) f([z]n + kZy) =7,
f([z]a) + f([yln) = Z or
(I
(

(i) f([x], + kZy, )_ax+lZ,

= f([=]x ) ([y]n)JrlZ,
L#0,0](kn), (al) =1

95

Cardinality

No

NO 1fn]k,
2% if n t k.

n ifn|k,
2% if n t k.

4.4 Multi-valued Homomorphisms from the Hypergroup

(Zy,, o) into the Group (Z,,, +)

Lemma 4.4.1 and Lemma 4.4.2 given below can be proved analogously to the

proofs of Lemma 4.1.2 and Lemma 4.1.3, respectively. Note that a subsemigroup

of (Z,,+) must be of the form IZ,,, | € Z.
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Lemma 4.4.1. If f € MHom((Z,, o), (Zm,+)), then the following statements

hold.

(1) f(kZyn) = f([x1]n)+- -+ f([xe]n) for all xq, ... x¢ € Z with [x1]n+ -+ [T]n
€ kZy,.

Lemma 4.4.2. If f € MHom((Z,,, o), (Zm,+)), then there exists an element
a € Z such that [al, € f([1],) and

fllz]w+ EZ,) = [ax)m + f(KZ,) for all z € Z.
Theorem 4.4.3. For a multi-valued function f from Z, into Z,,, f € MHom

(1, m)

((Zn, 0k),(Zm, +)) if and only if there exist l,a € Z such that Wk mon)

| a and

f(x]n + kZ,) = [az}y + 1 Zm, for.all x € Z,
f(2ln) + f(yln) = flxln) + [(Yla) + 1 Zy, for all z,y € Z.

Proof. Assume that f € MHom((Z,,, o), (Zu, +)). By Lemma 4.4.2, there is an

element a € Z such that [al,, € f([1],) and
f(x]n + kZy,) = [axy + f(KZ,) for all x € Z.
By Lemma 4.4.1(iii), f(kZ,) = lZ,, for some | € Z. Hence
f(x]p + kZ,) = [az)y, + 1 Z,, for all z € Z.
Also, from Lemma 4.4.1(iii) and (iv),
f(lzln) + f(yln) = f(lzln) + f([ln) + Zm, for all 2,y € Z.
From f(kZ,) = Z,,, we have

1L, = f(KZy) = f([K]n + KZy,) = [ak]m + (Z,

1Z = f(KZy) = f([n]n + kZ,,) = [an]y, + 1 Zy,
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so [ak]m, [an],, € Z,,. From the proof of Theorem 4.2.3, we have that (I,m) | ak

and (I,m) | an. Since (I,k,m,n) = ((I,m),k,n) = x(l,m) + yk + zn for some
(L, m)
| a
(l7 k? m7 n)
For the converse, let [, a, f be as above. To show that f is defined indepen-

x,y,z € Z, it follows that (I,m) | a(l, k,m,n). Hence

dently to the representatives of cosets, let x,y € Z be such that [z], + kZ, =

[y]n + kZy,. Then [x — y], € kZ,. Thus x — y = ks + nt for some s,t € Z. Since
(l,m)
(I, k,m,n)
[ak]m, [an]y, € (I,m)Zy, = 1Zy,. 1t follows that

| a, we have (I,m) | a(l,k,m,n), so (I,m) | ak and (I,m) | an. Thus

[ — ol alz ~yln
= alks + nt},,

= [ak]m[s]m + [an)m[tlm € 1Z,,

which implies that [ax],, + (Z,, = [aylm + (Zy,.
To show that f € MHom((Z,,,01), (Zm,+)), let z,y € Z. Then

f([x]n) - f([x]n + kzn) = [a*ﬂm + 1Ly, f([y]n> - f([y]n + kzn) = [ay]m + A Z,.

Then there are nonempty subsets A, B of [Z,, such that f([z],) = [az],, + A and
f([yln) = [ay]m + B. Therefore A + B + lZ,,, = IZ,, and hence

Sln ok [yln) = f([x]n + [yln + kZa)
= [a(z + y)|;m +1Zn,
= |az]n+ [aylm + 1Zn,
= [a@l & At [aylm + B +1Zy
= f([z]) + f([¥]n) + (Zn,
= f([z]a) + F([y]n)-

Therefore the proof is complete. O

({,m)

Lemma 4.4.4. For Z,CL € Z, m

(I,m) | (k,n) and (a,l,m) = 1.

| a and (a,l,m) = 1 if and only if
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({,m)
((,m), (k,n))

only if (I,m) | (k,n) and (a, (I,m)) = 1. Hence the result follows, as desired. [

Proof. By Lemma 4.1.5, we have that | a and (a, (I,m)) = 1if and

Theorem 4.4.5. For a multi-valued function f from Z, into Z,,, f € SMHom
(Zn,0k), (Zm,+)) if and only if there exist I, a € Z such that (I,m) | (k,n),
(a,l,m) =1 and

f([z]n + kZ,) = [ax]m + Zy, for all x € Z,

f(2ln) + f(wln) = f(l2ln) + F(lyln) + Zm for all 2,y € Z.

Proof. Assume that f € SMHom((Z,, o), (Zm,+)). Then f € MHom((Z,, o),

(Zy,+)) and f(Z,) = Zy. By Theorem 4.4.3, there exist [,a € Z such that
(1, m)
(L, k,m,n)

| @ and

f([z]n + kZ,) = [ax)m + (Zy, for all z € Z,

f([z]n) + f(lyla) = f(z]n) + f([Y]a) +1Z for all z,y € Z.
Since f(Z,) = Z,,, we have
Ly = f(Zy) = oy, + Ly, = (a, 1) Zy,.

Thus 1 = (1,m) = (a,l,m). By Lemma 4.4.4, (I,m) | (k,n).
Conversely, assume that [, a, f are as before. By Theorem 4.4.3 and

Lemma 4.4.4,we have f € MHom((Zy,,05): (Zy;+)). Sinee (a,l,m) =1,
f(Zy,) = aZy, + 1 Zy= (a, ) L, =(a,l,m) Ly, = Doy
Therefore f € SMHom((Z,, ok), (Zm, +)). O

Remark 4.4.6. We also compare the results of this section with Theorem 2.13 -

Theorem 2.16 by the following diagram where [, a € Z.



MHom((Zn, ok ), (Zy+))

Characterization

MHom((Zn, +), (Zm, +)) f([z]n) = [az]m + 1Z,

(l,m)
(l,m,n)

| a

SMHom ((Z, +), (Zym,+)) f([x]n) = [az)m + Zy,

(I,m) | n,(a,l,m) =1

f([#]n + KZn) = laz]m
([fff]n) ([ In)

SMHom ((Zy, k), (Zy, +)) fz]n + kZ,) = ax)m + (Zny,

Fzln) 4 ([yln)

= f(lzla) + [ ([yln) +1Zp,
(l,m) | (k,n),(a,l,m)=1

lez+

=1. Ilm

+))|:|SMHOH1((Z7“ Ok)a (Zh
difficult to see that | MHom((Zy, o), (Zm,+))| = ) 1 and [SMHom((Z1, %),

29

Cardinality

S (1n)

lezt
llm

(m, n)

We note here that counting the elements of MHom((Z,,, o), (Z,, +)) and SMHom
((Zn, o), (Zy,,+)) 1s still open in this research. However, these two sets are finite.

It is clear |MHom((Z,, o%), (Z1;, +))| = 1. Tt is not
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