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CHAPTER I

INTRODUCTION

The concept of homomorphism has been introduced and studied in any al-

gebraic structure. As we know, the concept of continuity plays a crucial role

in topological structures. To generalize the concept of continuous function, the

lower semi-continuity and the upper semi-continuity of multi-valued functions have

been considered and studied. See for example in [11], [7] and [3]. This motivated

Triphop, Harnchoowong and Kemprasit [10] to consider multi-valued functions in

an algebraic sense. They defined multi-valued homomorphisms or multihomomor-

phisms between groups. Then characterizations of multihomomorphisms among

all the cyclic groups (up to isomorphism) were provided in [10]. In addition, the

numbers of such multihomomorphisms were determined. In fact, multi-valued

endomorphisms of hypergroups in a more general sense have been introduced to

obtain an example of feeble hyperrings ([2], page 176). Nenthein and Lertwichit-

silp [5] studied extensively by making use of the results in [10]. They defined a

surjective multihomomorphism in a natural way and characterized and counted

the surjective multihomomorphisms between cyclic groups. Some interesting nec-

essary conditions of the multihomomorphisms from any group into a subgroup of

the additive group of real numbers and a subgroup of the multiplicative group of

nonzero real numbers were provided by Youngkhong and Savettaseranee in [12].

In this research, multi - valued homomorphisms and surjective multi - valued

homomorphisms between hypergroups are defined exactly the same as those were

given in [10] and [5] for groups, respectively. Such multi-valued functions between

the cyclic groups (Z, +), (Zn, +) and the hypergroups of the forms (Z, ◦k) and

(Zn, ◦k) are characterized where k is a positive integer, x ◦k y = x + y + kZ and

[x]n ◦k [y]n = [x]n + [y]n + kZn for all x, y ∈ Z. In addition, most of them are
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counted.

As given in [10] and [5], let MHom((H, ◦), (H ,́ ◦́ )) and SMHom((H, ◦), (H ,́ ◦́ ))

be the sets of all multi-valued homomorphisms and all surjective multi-valued ho-

momorphisms from the hypergroup (H, ◦) into the hypergroup (H ,́ ◦́ ).

The preliminaries and notations used in this research are given in Chapter II.

Multi-valued homomorphisms and surjective multi-valued homomorphisms from

our target groups into the hypergroups of our interest are characterized in Chap-

ter III. That is, the elements of MHom((Z, +), (Z, ◦k)), SMHom((Z, +), (Z, ◦k)),

MHom((Zn,+), (Z,◦k)), SMHom((Zn,+), (Z,◦k)), MHom((Z,+), (Zn,◦k)), SMHom

((Z, +), (Zn, ◦k)), MHom((Zm, +), (Zn, ◦k)) and SMHom((Zm, +), (Zn, ◦k)) are de-

termined. Also, the cardinalities of these sets are all provided in this chapter.

Chapter IV provides characterizations determining when multi-valued func-

tions from the hypergroups of the above forms into the cyclic groups (Z, +) and

(Zn, +) are multi-valued homomorphisms and surjective multi-valued homomor-

phisms. That is, the elements of MHom((Z, ◦k), (Z, +)), SMHom((Z, ◦k), (Z, +)),

MHom((Z,◦k), (Zn,+)), SMHom((Z,◦k), (Zn,+)), MHom((Zn,◦k), (Z,+)), SMHom

((Zn, ◦k), (Z, +)), MHom((Zn, ◦k), (Zm, +)) and SMHom((Zn, ◦k), (Zm, +)) are cha-

racterized. Moreover, we show that the cardinalities of all the sets MHom((Z, ◦k),

(Z,+)), SMHom((Z,◦k),(Z,+)),MHom((Zn,◦k),(Z,+))and SMHom((Zn,◦k),(Z,+))

with n - k are 2ℵ0 .



CHAPTER II

PRELIMINARIES

The cardinality of a set X is denoted by |X|.

A multi-valued function from a nonempty set X into a nonempty set Y is

a function f : X → P∗(Y ) where P(Y ) is the power set of Y and P∗(Y ) =

P(Y ) r {∅} and for A ⊆ X, let

f(A) =
⋃
a∈A

f(a).

A hyperoperation on a nonempty set H is a multi-valued function ◦ from H×H

into H, that is, ◦ : H × H → P∗(H), and for x, y ∈ H, x ◦ y denotes the value

of (x, y) ∈ H × H under ◦. In this case, (H, ◦) is called a hypergroupoid. For

nonempty subsets A, B of H, let

A ◦B =
⋃
a∈A
b∈B

a ◦ b.

If ∅ 6= A ⊆ H and x ∈ H, let A ◦ x and x ◦ A stand for A ◦ {x} and {x} ◦ A,

respectively. We say that a hypergroupoid (H, ◦) is commutative if x ◦ y = y ◦ x

for all x, y ∈ H. A hypergroupoid (H, ◦) is called a semihypergroup if

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.

A hypergroup is a semihypergroup (H, ◦) such that

H ◦ x = x ◦H = H for all x ∈ H.

Notice that every group is a hypergroup. In fact, hypergroupoids, semihyper-

groups and hypergroups are generalizations of groupoids, semigroups and groups,

respectively.
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Let G be a group and N a normal subgroup of G. If ◦N is the hyperoperation

on G defined by

x ◦N y = xyN for all x, y ∈ G,

then (G, ◦N) is a hypergroup ([2], page 11). It is clearly seen that

x1 ◦N x2 ◦N · · · ◦N xl = x1x2 · · ·xlN for all x1, x2, . . . , xl ∈ G

with l > 1.

Notice that if G is abelian, then (G, ◦N) is a commutative hypergroup. Also, if

N = {e}, then (G, ◦N) = G.

The set of integers is denoted by Z and let Z+ = {x ∈ Z | x > 0} and

Z+
0 = Z+ ∪ {0}. Let (Z, +) and (Zn, +)(where n ∈ Z+) denote respectively the

additive group of integers and the additive group of integers modulo n and for

x ∈ Z, let [x]n be the congruence class modulo n of x. For a, b ∈ Z with a 6= 0, a | b

means that b is divisible by a in Z. Also, if b is not divisible by a, we write a - b.

Recall that every infinite cyclic group is isomorphic to (Z, +),

Zn = {[x]n | x ∈ Z} = {[0]n, [1]n, . . . , [n− 1]n}, |Zn| = n

and every finite cyclic group of order n is isomorphic to (Zn, +). For a1, . . . , al ∈ Z,

not all 0, let (a1, . . . , al) be the g.c.d. of a1, . . . , al. Then (a1, . . . , al) = x1a1 +

x2a2 + · · ·+ xlal for some x1, . . . , xl ∈ Z. It is easily shown that

(
l

(l,m)
,

m

(l,m)

)
= 1 for all l,m ∈ Z, not both 0,

lZ = mZ ⇔ l = ±m for all l,m ∈ Z,

lZ + mZ = (l,m)Z, lZn + mZn = (l,m)Zn

for all l,m ∈ Z, not both 0,

lZn = (l, n)Zn = (| l|, n)Zn = | l|Zn

= {[0]n, [(l, n)]n, . . . ,

(
n

(l, n)
− 1

)
[(l, n)]n},

| lZn| =
n

(l, n)
for all l ∈ Z.
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Hence

lZn = mZn ⇔ (l, n) = (m, n) for all l,m ∈ Z.

Moreover, every subgroup of (Z, +) is of the form lZ. Also, every subgroup of

(Zn, +) is of the form lZn. Recall that the Euler ϕ-function is defined by ϕ(1) = 1

and for k ∈ Z with k > 1, ϕ(k) is the number of positive integers less than k and

relatively prime to k. Then

ϕ(k) = |{a ∈ {1, 2, . . . , k} | (a, k) = 1}| for all k ∈ Z+.

It is known that for k ∈ Z+,
∑
l|k

ϕ(l) = k ([6], page 191).

For k ∈ Z+, let (Z, ◦k) and (Zn, ◦k) be the hypergroups with

x ◦k y = x + y + kZ,

[x]n ◦k [y]n = [x]n + [y]n + kZn(= [x + y]n + kZn)

for all x, y ∈ Z.

By a muli-valued homomorphism or a multihomomorphism from a hypergroup

(H, ◦) into a hypergroup (H ,́ ◦́ ) we mean a multi-valued function from H into

H´ satisfying the condition

f(x ◦ y) = f(x) ◦́ f(y) for all x, y ∈ H.

Denote by MHom((H, ◦), (H ,́ ◦́ )) the set of all multi-valued homomorphisms from

(H, ◦) into (H ,́ ◦́ ) and set MHom(H, ◦) :=MHom((H, ◦), (H, ◦)). We say that

f ∈ MHom((H, ◦), (H ,́ ◦́ )) is surjective if

f(H)

(
=
⋃
h∈H

f(h)

)
= H .́

Let SMHom((H, ◦), (H ,́ ◦́ )) be the set of all surjective multi-valued homomor-

phisms from(H,◦) into (H ,́ ◦́ ) and also set SMHom(H,◦) :=SMHom((H,◦), (H,◦)).

Characterizations of multi-valued homomorphisms and surjective multi-valued

homomorphisms between cyclic groups were provided in [10] and [5], respectively.

Also, such elements were counted.

In the remainder of this research, let m,n be positive integers.
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Theorem 2.1 ([10]). For a multi-valued function f from Z into itself, f ∈

MHom(Z, +) if and only if there exist a subsemigroup H of (Z,+) containing

0 and an element a ∈ Z such that

f(x) = ax + H for all x ∈ Z.

Theorem 2.2 ([10]). |MHom(Z, +)| = ℵ0.

We note here that Theorem 2.2 was proved in [10] by exploiting the fact that

every subsemigroup of (Z+
0 , +) containing 0 is finitely generated, that is, if S is a

subsemigroup of (Z+
0 , +) containing 0, then there are a1, a2, . . . , al ∈ S such that

S = a1Z+
0 + a2Z+

0 + . . . + alZ+
0 .

This fact was mentioned in [1].

Theorem 2.3 ([5]). For a multi-valued function f from Z into itself, f ∈ SMHom

(Z, +) if and only if there exist a subsemigroup H of (Z, +) containing 0 and a ∈ Z

such that

f(x) = ax + H for all x ∈ Z,

(a, h) = 1 for some h ∈ H and

H = Z whenever a = 0.

Theorem 2.4 ([5]). |SMHom(Z, +)| = ℵ0.

Theorem 2.5 ([10]). For a multi-valued function f from Zn into Z, f ∈ MHom

((Zn, +), (Z, +)) if and only if either

(i) there exists a subsemigroup H of (Z, +) containing 0 such that

f([x]n) = H for all x ∈ Z

or

(ii) there exist l, a ∈ Z such that l 6= 0,
l

(l, n)
| a and

f([x]n) = ax + lZ for all x ∈ Z.
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Theorem 2.6 ([10]). |MHom((Zn, +), (Z, +))| = ℵ0.

Theorem 2.7 ([5]). For a multi-valued function f from Zn into Z, f ∈ SMHom

((Zn, +), (Z, +)) if and only if there exist l, a ∈ Z such that l 6= 0, l | n, (a, l) = 1

and

f([x]n) = ax + lZ for all x ∈ Z.

Theorem 2.8 ([5]). |SMHom((Zn, +), (Z, +))| = n.

Theorem 2.9 ([10]). For a multi-valued function f from Z into Zn, f ∈ MHom

((Z, +), (Zn, +)) if and only if there exist l, a ∈ Z such that

f(x) = [ax]n + lZn for all x ∈ Z.

Theorem 2.10 ([10]). |MHom((Z, +)), (Zn, +)| =
∑
l∈Z+

l|n

l.

Theorem 2.11 ([5]). For a multi-valued function f from Z into Zn, f ∈ SMHom

((Z, +), (Zn, +)) if and only if there are l, a ∈ Z such that (a, l, n) = 1 and

f(x) = [ax]n + lZn for all x ∈ Z.

Theorem 2.12 ([5]). |SMHom((Z, +)), (Zn, +)| = n.

Theorem 2.13 ([10]). For a multi-valued function f from Zm into Zn, f ∈

MHom((Zm, +), (Zn, +)) if and only if there are l, a ∈ Z such that
(l, n)

(l,m, n)
| a

and

f([x]m) = [ax]n + lZn for all x ∈ Z.

Theorem 2.14 ([10]). |MHom((Zm, +)), (Zn, +)| =
∑
l∈Z+

l|n

(l,m). In particular,

|MHom(Zn, +)| =
∑
l∈Z+

l|n

l.

Theorem 2.15 ([5]). For a multi-valued function f from Zm into Zn, f ∈

SMHom((Zm,+), (Zn,+)) if and only if there exist l, a ∈ Z such that (l, n) | m,

(a, l, n) = 1 and

f([x]m) = [ax]n + lZn for all x ∈ Z.
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Theorem 2.16 ([5]). | SMHom((Zm, +)), (Zn, +) | = (m,n). In particular,

|SMHom(Zn, +)| = n.

The following basic facts of sets and cardinal numbers will be used.

(1) For any set X, |P(X)| = 2|X|.

(2) For nonempty sets X and Y , |{f | f : X → Y }|= |Y ||X|.

(3) (2ℵ0)n = (2ℵ0)ℵ0 = 2ℵ0 for all n ∈ Z+ ([4], page 98).

Let k be a positive integer in the remainder of this research. Also, let (Z, ◦k)

and (Zn, ◦k) be the hypergroups defined previously.



CHAPTER III

MULTI-VALUED HOMOMORPHISMS FROM

GROUPS INTO HYPERGROUPS

This chapter gives characterizations of multi-valued homomorphisms and sur-

jective multi-valued homomorphisms from the groups (Z, +), (Zn, +) into the

hypergroups of the forms (Z, ◦k) and (Zn, ◦k). The cardinalities of the sets of

such multi-valued functions of all pairs of those groups and hypergroups are also

provided.

3.1 Multi-valued Homomorphisms from the Group (Z, +)

into the Hypergroup (Z, ◦k)

We begin this section by recalling the following fact given in [10].

Lemma 3.1.1 ([10]). If H is a subsemigroup of (Z, +) such that H ∩ Z+ 6= ∅

and H ∩ Z− 6= ∅, then H = lZ for some l ∈ Z r {0}.

The following lemmas are also needed.

Lemma 3.1.2. Let G be a group with identity e. If f ∈ MHom(G, (Z, ◦k)), then

f(e) = lZ for some l ∈ Z r {0} with l | k.

Proof. Let f ∈ MHom(G, (Z, ◦k)). Then

f(e) = f(ee) = f(e) ◦k f(e) = f(e) + f(e) + kZ

⊇ f(e) + f(e)
(1)

since 0 ∈ kZ. This implies that f(e) is a subsemigroup of (Z, +). Let a ∈ f(e).

Then from (1),

2a + kZ = a + a + kZ ⊆ f(e) + f(e) + kZ = f(e). (2)
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Let b, c ∈ Z be such that b >
−2a

k
> c. Then kb > −2a > kc which implies from

(2) that

0 < 2a + kb ∈ f(e) and 0 > 2a + kc ∈ f(e).

It follows that f(e)∩Z+ 6= ∅ and f(e)∩Z− 6= ∅. By Lemma 3.1.1, f(e) = lZ for

some l ∈ Z r {0}. Hence by (1),

lZ = lZ + lZ + kZ = lZ + kZ = (l, k)Z.

Consequently, l = ±(l, k), so l | k.

Lemma 3.1.3. Let G be a group with identity e and f ∈ MHom(G, (Z, ◦k)). Then

for every x ∈ G, there exists an element a ∈ f(x) such that

f(xt) = at + f(e) for all t ∈ Z.

Proof. By Lemma 3.1.2, f(e) = lZ for some l ∈ Z r {0} with l | k. Then

lZ + kZ = (l, k)Z = lZ. Let x ∈ G be given. Then

f(x) = f(xe) = f(x) ◦k f(e) = f(x) + lZ + kZ = f(x) + lZ, (1)

and similarly,

f(x−1) = f(x−1) + lZ. (2)

Since lZ + kZ = lZ, we obtain respectively from (1) and (2) that

f(x) + kZ = f(x) + lZ = f(x), (3)

f(x−1) + kZ = f(x−1) + lZ = f(x−1). (4)

These imply that

lZ = f(e)

= f(xx−1)

= f(x) ◦k f(x−1)

= f(x) + f(x−1) + kZ

= f(x) + (f(x−1) + kZ)

= f(x) + f(x−1) from (4). (5)
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Since 0 ∈ lZ, from (5), there are a ∈ f(x) and b ∈ f(x−1) such that 0 = a + b.

Then −a = b ∈ f(x−1). Thus from (5), we have

f(x)− a ⊆ f(x) + f(x−1) = lZ,

a + f(x−1) ⊆ f(x) + f(x−1) = lZ

which imply that

f(x) ⊆ a + lZ and f(x−1) ⊆ −a + lZ. (6)

By (1), (2) and (6),

f(x) ⊆ a + lZ ⊆ f(x) + lZ = f(x),

f(x−1) ⊆ −a + lZ ⊆ f(x−1) + lZ = f(x−1).

Consequently,

f(x) = a + lZ = a + f(e) and f(x−1) = −a + lZ = −a + f(e). (7)

Note that f(x0) = f(e) = a0 + f(e). If t ∈ Z+ and t > 1, then

f(xt) = f(x) ◦k f(x) ◦k · · · ◦k f(x) (t copies)

= f(x) + · · ·+ f(x)︸ ︷︷ ︸
t copies

+kZ

= (f(x) + kZ) + · · ·+ (f(x) + kZ) (t brackets)

= f(x) + · · ·+ f(x) (t copies) from (3)

= (a + lZ) + · · ·+ (a + lZ) (t brackets) from (7)

= at + lZ

= at + f(e),
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f(x−t) = f((x−1)t)

= f(x−1) ◦k f(x−1) ◦k · · · ◦k f(x−1) (t copies)

= f(x−1) + · · ·+ f(x−1)︸ ︷︷ ︸
t copies

+kZ

= (f(x−1) + kZ) + · · ·+ (f(x−1) + kZ) (t brackets)

= f(x−1) + · · ·+ f(x−1) (t copies) from (4)

= (−a + lZ) + · · ·+ (−a + lZ) (t brackets) from (7)

= (−at) + lZ

= a(−t) + f(e).

Hence the desired result follows.

Theorem 3.1.4. For a multi-valued function f from Z into itself, f ∈ MHom

((Z, +), (Z, ◦k)) if and only if there are l, a ∈ Z such that l 6= 0, l | k and

f(x) = ax + lZ for all x ∈ Z.

Proof. Let f ∈ MHom((Z, +), (Z, ◦k)). By Lemma 3.1.3, there is an element

a ∈ f(1) such that

f(x1) = ax + f(0) for all x ∈ Z,

that is,

f(x) = ax + f(0) for all x ∈ Z.

By Lemma 3.1.2, f(0) = lZ for some l ∈ Z r {0} with l | k. Hence

f(x) = ax + lZ for all x ∈ Z.

Conversely, assume that there are l, a ∈ Z such that l 6= 0, l | k and

f(x) = ax + lZ for all x ∈ Z.
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Since l | k, we have lZ + kZ = (l, k)Z = lZ. Then for all x, y ∈ Z,

f(x + y) = a(x + y) + lZ

= ax + ay + lZ

= ax + ay + lZ + kZ

= (ax + lZ) + (ay + lZ) + kZ

= f(x) + f(y) + kZ

= f(x) ◦k f(y).

Hence f ∈ MHom((Z, +), (Z, ◦k)), as desired.

Theorem 3.1.5. For a multi-valued function f from Z into itself, f ∈ SMHom

((Z, +), (Z, ◦k)) if and only if there exist l, a ∈ Z such that l 6= 0, l | k, (a, l) = 1

and

f(x) = ax + lZ for all x ∈ Z.

Proof. Assume that f ∈ SMHom((Z,+),(Z,◦k)). Then f ∈MHom((Z,+), (Z,◦k))

and f(Z) = Z. By Theorem 3.1.4, there are l ∈ Zr{0} and a ∈ Z such that l | k,

f(x) = ax + lZ for all x ∈ Z.

Consequently,

Z = f(Z) =
⋃
x∈Z

f(x) =
⋃
x∈Z

(ax + lZ)

= aZ + lZ = (a, l)Z

which implies that (a, l) = 1.

Conversely, assume that l ∈ Z r {0}, a ∈ Z, l | k, (a, l) = 1 and

f(x) = ax + lZ for all x ∈ Z.

By Theorem 3.1.4, f ∈ MHom((Z, +), (Z, ◦k)). Since (a, l) = 1, we have

f(Z) = aZ + lZ = (a, l)Z = Z.

Therefore f ∈ SMHom((Z, +), (Z, ◦k)).
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For l ∈ Z r {0} with l | k and a ∈ Z, let Fl,a ∈ MHom((Z, +), (Z, ◦k)) be

defined by

Fl,a(x) = ax + lZ for all x ∈ Z.

To determine |MHom((Z, +), (Z, ◦k))| and |SMHom((Z, +), (Z, ◦k))|, the following

lemma is needed.

Lemma 3.1.6. Let l, t ∈ Z r {0} with l | k and t | k and a, b ∈ Z. Then

Fl,a = Ft,b if and only if t = ±l and b ≡ a mod |l|.

Proof. If Fl,a = Ft,b, then

ax + lZ = Fl,a(x) = Ft,b(x) = bx + tZ for all x ∈ Z.

In particular,

lZ = a0 + lZ = b0 + tZ = tZ

which implies that t = ±l. Hence

a + lZ = a1 + lZ = b1 + lZ = b + lZ,

so b− a ∈ lZ. Therefore b ≡ a mod |l|.

Conversely, assume that t = ±l and b ≡ a mod |l|. Then b − a ∈ |l|Z = lZ

and lZ = tZ. Since

for all x ∈ Z, bx− ax = (b− a)x ∈ lZx ⊆ lZ,

it follows that

ax + lZ = bx + lZ = bx + tZ for all x ∈ Z.

Hence

Fl,a(x) = ax + lZ = ax + tZ = Ft,b(x) for all x ∈ Z,

so Fl,a = Ft,b.

Theorem 3.1.7. |MHom((Z, +), (Z, ◦k))| =
∑
l∈Z+

l|k

l

and

|SMHom((Z, +), (Z, ◦k))| = k.
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Proof. From Theorem 3.1.4 and Theorem 3.1.5, we have

MHom((Z, +), (Z, ◦k)) = {Fl,a| l ∈ Z r {0}, a ∈ Z and l | k}, (1)

SMHom((Z, +), (Z, ◦k)) = {Fl,a| l ∈ Z r {0}, a ∈ Z, l | k and

(a, l) = 1}.
(2)

Then (1), (2) and Lemma 3.1.6 yield the followings :

MHom((Z, +), (Z, ◦k)) = {Fl,a | l ∈ Z+, l | k and a ∈ {0, 1, . . . , l − 1}}, (3)

SMHom((Z, +), (Z, ◦k)) = {Fl,a | l ∈ Z+, l | k, a ∈ {0, 1, . . . , l − 1}

and (a, l) = 1}.
(4)

Again, by (3), (4) and Lemma 3.1.6, we have

|MHom((Z, +), (Z, ◦k))| =
∑
l∈Z+

l|k

l,

|SMHom((Z, +), (Z, ◦k))| =
∑
l∈Z+

l|k

ϕ(l) = k.

Remark 3.1.8. Let us compare the results of this section with Theorem 2.1 -

Theorem 2.4 where H is a subsemigroup of (Z, +) containing 0 and l, a ∈ Z.
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Characterization Cardinality

MHom((Z, +), (Z, +)) f(x) = ax + H ℵ0

SMHom((Z, +), (Z, +)) f(x) = ax + H, ℵ0

(a, h) = 1 for some h ∈ H,

a = 0 ⇒ H = Z

MHom((Z, +), (Z, ◦k)) f(x) = ax + lZ,
∑
l∈Z+

l|k

l

l 6= 0, l | k

SMHom((Z, +), (Z, ◦k)) f(x) = ax + lZ, k

l 6= 0, l | k, (a, l) = 1

3.2 Multi-valued Homomorphisms from the Group (Zn, +)

into the Hypergroup (Z, ◦k)

In this section, the following result is needed. It was proved in [10].

Lemma 3.2.1 ([10]). Let l, a ∈ Z and define

f([x]n) = ax + lZ for all x ∈ Z.

Then f is a well-defined multi-valued function from Zn into Z if and only if either

(i) l = a = 0 or

(ii) l 6= 0 and
l

(l, n)
| a.

Theorem 3.2.2. For a multi-valued function f from Zn into Z,f ∈MHom((Zn,+),

(Z, ◦k)) if and only if there exist l, a ∈ Z such that l 6= 0, l | k,
l

(l, n)
| a and

f([x]n) = ax + lZ for all x ∈ Z.
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Proof. Assume that f ∈ MHom((Zn, +), (Z, ◦k)). By Lemma 3.1.2 and Lemma

3.1.3, there are l ∈ Z r {0} and a ∈ f([1]n) such that l | k and

f([x]n)(= f(x[1]n)) = ax + lZ for all x ∈ Z.

By Lemma 3.2.1, we have
l

(l, n)
| a.

For the converse, assume that l ∈ Z r {0}, a ∈ Z, l | k,
l

(l, n)
| a and

f([x]n) = ax + lZ for all x ∈ Z.

Then by Lemma 3.2.1, f is well-defined. Since l | k, we have lZ + kZ = lZ. If

x, y ∈ Z, then

f([x]n + [y]n) = f([x + y]n)

= a(x + y) + lZ

= ax + ay + lZ + kZ

= (ax + lZ) + (ay + lZ) + kZ

= f([x]n) + f([y]n) + kZ

= f([x]n) ◦k f([y]n).

Hence f ∈ MHom((Zn, +), (Z, ◦k)).

Lemma 3.2.3. For l ∈ Z r {0} and a ∈ Z, l | k,
l

(l, n)
| a and (a, l) = 1 if and

only if l | (k, n) and (a, l) = 1.

Proof. Assume that l | k,
l

(l, n)
| a and (a, l) = 1. Since (a, l) = 1,

(
a,

l

(l, n)

)
=1.

But
l

(l, n)
| a, so

|l|
(l, n)

=

(
a,

l

(l, n)

)
= 1 which implies that (l, n) = |l|, so l | n.

But since l | k, we have l | (k, n).

Conversely, assume that l | (k, n). Then l | k and l | n. Thus (l, n) = |l|, so
l

(l, n)
= ±1. Hence

l

(l, n)
| a.
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Theorem 3.2.4. For a multi-valued function f from Zn into Z, f ∈ SMHom

((Zn,+), (Z,◦k)) if and only if there exist l, a ∈ Z such that l 6= 0, l |(k, n), (a, l)=1

and

f([x]n) = ax + lZ for all x ∈ Z.

Proof. Assume that f ∈ SMHom((Zn, +), (Z , ◦k)). Then f ∈ MHom((Zn , +),

(Z, ◦k)) and f(Zn) = Z. By Theorem 3.2.2, there are l ∈ Z r {0} and a ∈ Z such

that l | k,
l

(l, n)
| a and

f([x]n) = ax + lZ for all x ∈ Z.

This implies that

Z = f(Zn) =
⋃
x∈Z

f([x]n)

=
⋃
x∈Z

(ax + lZ)

= aZ + lZ = (a, l)Z,

Thus (a, l) = 1. It follows from Lemma 3.2.3 that l | (k, n).

For the converse, let l, a and f be as above. By Lemma 3.2.3, l | k,
l

(l, n)
| a

and (a, l) = 1. By Theorem 3.2.2, f ∈ MHom((Zn, +), (Z, ◦k)). Since (a, l) = 1,

it follows that

f(Zn) = aZ + lZ = (a, l)Z = Z.

For l ∈ Z r {0}, a ∈ Z, l | k and
l

(l, n)
| a, let Gl,a ∈ MHom((Zn, +), (Z, ◦k))

be defined by

Gl,a([x]n) = ax + lZ for all x ∈ Z.

Lemma 3.2.5. Let l, t ∈ Z r {0}, a, b ∈ Z, l | k, t | k,
l

(l, n)
| a and

t

(t, n)
| b.

Then Gl,a = Gt,b if and only if t = ±l and b ≡ a mod |l|.

Proof. The proof is analogous to that of Lemma 3.1.6
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Theorem 3.2.6. |MHom((Zn, +), (Z, ◦k))| =
∑
l∈Z+

l|k

(l, n)

and

|SMHom((Zn, +), (Z, ◦k))| = (k, n).

Proof. From Theorem 3.2.2 and Theorem 3.2.4, we have

MHom((Zn, +), (Z, ◦k)) = {Gl,a| l ∈ Z r {0}, a ∈ Z, l | k and
l

(l, n)
| a}, (1)

SMHom((Zn, +), (Z, ◦k)) = {Gl,a| l ∈ Z r {0}, a ∈ Z, l | (k, n) and

(a, l) = 1},
(2)

respectively. We deduce from (1), (2) and Lemma 3.2.5 that

MHom((Zn, +), (Z, ◦k)) = {Gl,a | l ∈ Z+, l | k, a ∈ {0, 1, . . . , l − 1}

and
l

(l, n)
| a},

= {Gl,a | l ∈ Z+, l | k and

a ∈ {0, l

(l, n)
, . . . , ((l, n)− 1)

l

(l, n)
}},

(3)

SMHom((Zn, +), (Z, ◦k)) = {Gl,a | l ∈ Z+, l | (k, n), a ∈ {0, 1, . . . , l − 1}

and (a, l) = 1}.
(4)

Hence (3), (4) and Lemma 3.2.5 give

|MHom((Zn, +), (Z, ◦k))| =
∑
l∈Z+

l|k

(l, n),

|SMHom((Zn, +), (Z, ◦k))| =
∑
l∈Z+

l|(k,n)

ϕ(l) = (k, n).

Remark 3.2.7. The following diagram gives a comparison of the results of this

section and Theorem 2.5 - Theorem 2.8 where H is a subsemigroup of (Z, +)

containing 0 and l, a ∈ Z.
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Characterization Cardinality

MHom((Zn, +), (Z, +)) f([x]n) = H or ℵ0

f([x]n) = ax + lZ,

l 6= 0,
l

(l, n)
| a

SMHom((Zn, +), (Z, +)) f([x]n) = ax + lZ, n

l 6= 0, l | n, (a, l) = 1

MHom((Zn, +), (Z, ◦k)) f([x]n) = ax + lZ,
∑
l∈Z+

l|k

(l, n)

l 6= 0, l | k,
l

(l, n)
| a

SMHom((Zn, +), (Z, ◦k)) f([x]n) = ax + lZ, (k, n)

l 6= 0, l | (k, n), (a, l) = 1

3.3 Multi-valued Homomorphisms from the Group (Z, +)

into the Hypergroup (Zn, ◦k)

First, we recall that a subsemigroup of a finite group G must be a subgroup

of G. Thus if S is a subsemigroup of (Zn, +), then S = lZn for some l ∈ Z.

The following two lemmas are similar to Lemma 3.1.2 and Lemma 3.1.3. They

are needed to obtain our main results of this section.

Lemma 3.3.1. Let G be a group with identity e. If f ∈ MHom(G, (Zn, ◦k)), then

f(e) = lZn for some l ∈ Z such that (l, n) | k.

Proof. If f ∈ MHom(G, (Zn, ◦k)), then

f(e) = f(ee) = f(e) ◦k f(e)

= f(e) + f(e) + kZn

⊇ f(e) + f(e)
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since [0]n ∈ kZn. Thus f(e) is a subsemigroup of (Zn, +). Hence f(e) = lZn for

some l ∈ Z. Consequently,

lZn = f(e) = f(e) + f(e) + kZn = lZn + lZn + kZn

= lZn + kZn = (l, k)Zn

which implies that (l, n) = (l, k, n) = ((l, n), k). Hence (l, n) | k.

Lemma 3.3.2. Let G be a group with identity e and f ∈ MHom(G, (Zn, ◦k)).

Then for every x ∈ G, there exists a ∈ Z such that [a]n ∈ f(x) and

f(xt) = [at]n + f(e) for all t ∈ Z.

Proof. By Lemma 3.3.1, f(e) = lZn for some l ∈ Z with (l, n) | k. We also have

that

lZn + kZn = (l, k)Zn = (l, k, n)Zn

= ((l, n), k)Zn = (l, n)Zn = lZn.
(1)

Let x ∈ G be given. Then from (1),

f(x) = f(xe) = f(x) ◦k f(e) = f(x) + lZn + kZn = f(x) + lZn (2)

and similarly

f(x−1) = f(x−1) + lZn. (3)

From (1), (2) and (3), we have

f(x) + kZn = f(x) + lZn = f(x), (4)

f(x−1) + kZn = f(x−1) + lZn = f(x−1). (5)
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It follows that

lZn = f(e)

= f(xx−1)

= f(x) ◦k f(x−1)

= f(x) + f(x−1) + kZn

= f(x) + (f(x−1) + kZn)

= f(x) + f(x−1) from (5). (6)

Since [0]n ∈ lZn, from (6), there is an element a ∈ Z such that [a]n ∈ f(x),

−[a]n ∈ f(x−1). It follows from (6) that

f(x)− [a]n ⊆ f(x) + f(x−1) = lZn,

[a]n + f(x−1) ⊆ f(x) + f(x−1) = lZn

which imply that

f(x) ⊆ [a]n + lZn and f(x−1) ⊆ −[a]n + lZn. (7)

We deduce from (2), (3) and (7) that

f(x) ⊆ [a]n + lZn ⊆ f(x) + lZn = f(x),

f(x−1) ⊆ −[a]n + lZn ⊆ f(x−1) + lZn = f(x−1).

Consequently,

f(x) = [a]n + lZn = [a]n + f(e) and f(x−1) = −[a]n + lZn = [−a]n + f(e). (8)
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We have that f(x0) = f(e) = [a0]n + f(e). If t ∈ Z+ and t > 1, then

f(xt) = f(x) + · · ·+ f(x)︸ ︷︷ ︸
t copies

+kZn

= (f(x) + kZn) + · · ·+ (f(x) + kZn) (t brackets)

= f(x) + · · ·+ f(x) (t copies) from (4)

= ([a]n + lZn) + · · ·+ ([a]n + lZn) (t brackets) from (8)

= [at]n + lZn

= [at]n + f(e),

f(x−t) = f((x−1)t)

= f(x−1) + · · ·+ f(x−1)︸ ︷︷ ︸
t copies

+kZn

= (f(x−1) + kZn) + · · ·+ (f(x−1) + kZn) (t brackets)

= f(x−1) + · · ·+ f(x−1) (t copies) from (5)

= (−[a]n + lZn) + · · ·+ (−[a]n + lZn) (t brackets) from (8)

= (−[at]n) + lZn

= [a(−t)]n + f(e).

Therefore the proof is complete.

Theorem 3.3.3. For a multi-valued function f from Z into Zn, f ∈ MHom

((Z, +), (Zn, ◦k)) if and only if there are l, a ∈ Z such that (l, n) | k and

f(x) = [ax]n + lZn for all x ∈ Z.

Proof. Assume f ∈ MHom((Z, +), (Z, ◦k)). By Lemma 3.3.2, there is an element

a ∈ Z such that [a]n ∈ f(1) and

f(x) (= f(x1)) = [ax]n + f(0) for all x ∈ Z. (1)

By Lemma 3.3.1, f(0) = lZn for some l ∈ Z with (l, n) | k. Hence from (1),

f(x) = [ax]n + lZn for all x ∈ Z.
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For the converse, let l, a ∈ Z be such that (l, n) | k and

f(x) = [ax]n + lZn for all x ∈ Z.

Since (l, n) | k, from (1) of the proof of Lemma 3.3.2, we have

lZn + kZn = lZn. (2)

If x, y ∈ Z, then

f(x + y) = [a(x + y)]n + lZn

= [ax]n + [ay]n + lZn + kZn from (2)

= ([ax]n + lZn) + ([ay]n + lZn) + kZn

= f(x) + f(y) + kZn

= f(x) ◦k f(y).

Hence f ∈ MHom((Z, +), (Zn, ◦k)).

Theorem 3.3.4. For a multi-valued function f from Z into Zn, f ∈ SMHom

((Z, +), (Zn, ◦k)) if and only if there exist l, a ∈ Z such that (l, n) | k, (a, l, n) = 1

and

f(x) = [ax]n + lZn for all x ∈ Z.

Proof. Assume that f ∈ SMHom((Z, +), (Zn, ◦k)). Then f ∈ MHom((Z, +) ,

(Zn, ◦k)) and f(Z) = Zn. From Theorem 3.3.3, there are l, a ∈ Z such that

(l, n) | k and

f(x) = [ax]n + lZn for all x ∈ Z,

and hence

Zn = f(Z) =
⋃
x∈Z

([ax]n + lZn)

=
⋃
x∈Z

a[x]n + lZn

= aZn + lZn

= (a, l)Zn.
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This implies that (1, n) = (a, l, n), so (a, l, n) = 1.

Conversely, assume that l, a, f are given as above. By Theorem 3.3.3, f ∈

MHom((Z, +), (Zn, ◦k)). Since (a, l, n) = 1, it follows that

f(Z) = aZn + lZn

= (a, l)Zn

= (a, l, n)Zn

= Zn.

Hence f ∈ SMHom((Z, +), (Zn, ◦k)).

For l, a ∈ Z with (l, n) | k, let Hl,a ∈ MHom((Z, +), (Zn, ◦k)) be defined by

Hl,a(x) = [ax]n + lZn for all x ∈ Z.

Note that if l | (k, n), then (l, n) | (k, n) and (k, n) | k, so Hl,a is meaningful.

Lemma 3.3.5. (i) MHom((Z, +), (Zn, ◦k)) = {Hl,a | l ∈ Z+, l | (k, n)

and a ∈ {0, 1, . . . , l − 1}}.

(ii) SMHom((Z, +), (Zn, ◦k)) = {Hl,a | l ∈ Z+, l | (k, n), a ∈ {0, 1, . . . , l − 1}

and (a, l) = 1}.

(iii) If l, t ∈ Z+, l | (k, n), t | (k, n), a ∈ {0, 1, . . . , l − 1} and b ∈ {0, 1, . . . , t− 1},

then Hl,a = Ht,b implies l = t and a = b.

Proof. (i) From Theorem 3.3.3 and the fact mentioned above, it suffices to show

that for l, a ∈ Z with (l, n) | k, there are t ∈ Z+ and b ∈ {0, 1, . . . , t − 1} such

that t | (k, n) and Hl,a = Ht,b. Let l, a ∈ Z be such that (l, n) | k. Let t = (l, n)

and b ∈ {0, 1, . . . , t − 1} be such that a = pt + b for some p ∈ Z. Hence t ∈ Z+,

t | k and t | n, so t | (k, n). Also, we have that
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for all x ∈ Z, Ht,b(x) = [bx]n + tZn

= [(a− pt)x]n + tZn

= [ax]n − [tpx]n + tZn

= [ax]n − t[px]n + tZn

= [ax]n + tZn

= [ax]n + (l, n)Zn

= [ax]n + lZn

= Hl,a(x).

(ii) Let l ∈ Z+ and a ∈ {0, 1, . . . , l − 1} be such that l | (k, n). Since

Hl,a(Z) = aZn + lZn = (a, l)Zn,

it follows that Hl,a(Z) = Zn if and only if 1 = (1, n) = (a, l, n) = (a, l). From this

fact and (i), (ii) follows.

(iii) If l, t ∈ Z+, l | (k, n), t | (k, n), a ∈ {0, 1, . . . , l−1} and b ∈ {0, 1, . . . , t−1}

are such that Hl,a = Ht,b, then l | n, t | n and

lZn = Hl,a(0) = Ht,b(0) = tZn,

so l = (l, n) = (t, n) = t. Thus Hl,a = Hl,b, so

[a]n + lZn = Hl,a(1) = Hl,b(1) = [b]n + lZn.

Then

[|a− b|]n ∈ lZn = {[0]n, [l]n, . . . , (
n

l
− 1)[l]n}.

But |a− b| ∈ {0, 1, . . . , l − 1}, so |a− b| = 0. Thus a = b.

Theorem 3.3.6. |MHom((Z, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,n)

l

and
|SMHom((Z, +), (Zn, ◦k))| = (k, n).
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Proof. By Lemma 3.3.5(i) and (iii),

|MHom((Z, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,n)

l.

We have from Lemma 3.3.5(ii) and (iii) that

|SMHom((Z, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,n)

ϕ(l) = (k, n).

Remark 3.3.7. We compare the results in this section and Theorem2.9 - Theorem

2.12 by the following diagram where l, a ∈ Z.

Characterization Cardinality

MHom((Z, +), (Zn, +)) f(x) = [ax]n + lZn

∑
l∈Z+

l|n

l

SMHom((Z, +), (Zn, +)) f(x) = [ax]n + lZn, n

(a, l, n) = 1

MHom((Z, +), (Zn, ◦k)) f(x) = [ax]n + lZn,
∑
l∈Z+

l|(k,n)

l

(l, n) | k

SMHom((Z, +), (Zn, ◦k)) f(x) = [ax]n + lZn, (k, n)

(l, n) | k, (a, l, n) = 1

3.4 Multi-valued Homomorphisms from the Group (Zm, +)

into the Hypergroup (Zn, ◦k)

The following known fact is needed in this section.
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Lemma 3.4.1 ([10]). Let l, a ∈ Z and define

f([x]m) = [ax]n + lZn for all x ∈ Z.

Then f is a well-defined multi-valued function from Zm into Zn if and only if
(l, n)

(l,m, n)
| a.

Theorem 3.4.2. For a multi-valued function f from Zm into Zn, f ∈ MHom

((Zm, +),(Zn, ◦k)) if and only if there exist l, a ∈ Z such that (l, n) | k,
(l, n)

(l,m, n)
| a

and

f([x]m) = [ax]n + lZn for all x ∈ Z.

Proof. Assume that f ∈ MHom((Zm, +), (Zn, ◦k)). By Lemma 3.3.1 and Lemma

3.3.2, there are l, a ∈ Z such that (l, n) | k and

f([x]m) = [ax]n + lZn for all x ∈ Z.

Lemma 3.4.1 yields the fact that
(l, n)

(l,m, n)
| a.

For the converse, let l, a, f be as above. By Lemma 3.4.1, f is well-defined.

Since (l, n) | k, we have as before that

lZn + kZn = lZn.

Hence for all x, y ∈ Z,

f([x]m + [y]m) = f([x + y]m)

= [a(x + y)]n + lZn

= [ax]n + [ay]n + lZn + kZn

= ([ax]n + lZn) + ([ay]n + lZn) + kZn

= f([x]m) + f([y]m) + kZn

= f([x]m) ◦k f([y]m).

Therefore f ∈ MHom((Zm, +), (Zn, ◦k)), as desired.
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Lemma 3.4.3. For l, a ∈ Z, (l, n) | k,
(l, n)

(l,m, n)
| a and (a, l, n) = 1 if and only if

(l, n) | (k,m) and (a, l, n) = 1.

Proof. Assume that (l, n) | k,
(l, n)

(l,m, n)
| a and (a, l, n) = 1. Then

(
a,

(l, n)

(l,m, n)

)
=

1 since (a, (l, n)) = (a, l, n) = 1. But
(l, n)

(l,m, n)
| a, thus

(l, n)

(l,m, n)
= 1. That is,

(l, n) = (l,m, n). This implies that (l, n) | m. Hence (l, n) | (k,m).

For the converse, assume that (l, n) | (k, m) and (a, l, n) = 1. Then (l, n) | k

and (l, n) | m. Thus (l,m, n) = (l, n), so
(l, n)

(l,m, n)
= 1. Hence

(l, n)

(l,m, n)
| a.

Theorem 3.4.4. For a multi-valued function f from Zm into Zn, f ∈ SMHom

((Zm, +), (Zn, ◦k)) if and only if there exist l, a ∈ Z such that (l, n) | (k,m),

(a, l, n) = 1 and

f([x]m) = [ax]n + lZn for all x ∈ Z.

Proof. Assume that f ∈ SMHom((Zm, +), (Zn, ◦k)). Then f ∈ MHom((Zm, +),

(Zn, ◦k)) and f(Zm) = Zn. By Theorem 3.4.2, there are l, a ∈ Z such that

(l, n) | k,
(l, n)

(l,m, n)
| a and

f([x]m) = [ax]n + lZn for all x ∈ Z.

It follows that

Zn = f(Zm) = aZn + lZn = (a, l)Zn

and hence 1 = (1, n) = (a, l, n). By Lemma 3.4.3, we have (l, n) | (k,m).

Conversely, let l, a, f be as above. By Theorem 3.4.2 and Lemma 3.4.3, we

deduce that f ∈ MHom((Zm, +), (Zn, ◦k)) and (a, l, n) = 1. Since (a, l, n) = 1, we

have

f(Zm) = aZn + lZn = (a, l)Zn = (a, l, n)Zn = Zn.

Therefore f ∈ SMHom((Zm, +), (Zn, ◦k)).
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For l, a ∈ Z with (l, n) | k and
(l, n)

(l,m, n)
| a, let Il,a be the element of MHom

((Zm,+),(Zn, ◦k)) defined by

Il,a([x]m) = [ax]n + lZn for all x ∈ Z.

If l 6= 0, l | (k, n) and
l

(l,m)
| a, then (l, n) | l, l | k, so (l, n) | k. Since (l, n) | l,

l

(l,m)
| a and (l,m) | m, it follows that (l, n) | am, so

(l, n)

(l,m, n)
| a m

(l,m, n)
. Since(

(l, n)

(l,m, n)
,

m

(l,m, n)

)
= 1, we have

(l, n)

(l,m, n)
| a. Hence Il,a is defined.

Also, if l 6= 0 and l | (k, m, n), then l | (k, n) and
l

(l,m)
=

l

|l|
= ±1 which

divides a, so by the above proof, Il,a is also defined.

Lemma 3.4.5. (i) MHom((Zm, +), (Zn, ◦k))= {Il,a | l ∈ Z+, l | (k, n),

a ∈{0, 1, . . . , l−1}and
l

(l,m)
|a}.

(ii) SMHom((Zm, +), (Zn, ◦k))= {Il,a | l ∈ Z+, l | (k, m, n), a ∈ {0, 1, . . . , l − 1}

and (a, l) = 1}.

(iii) If l, t ∈ Z+, l | (k, n), t | (k, n), a ∈ {0, 1, . . . , l − 1}, b ∈ {0, 1, . . . , t− 1},
l

(l,m)
| a and

t

(t,m)
| b, then Il,a = It,b implies l = t and a = b.

Proof. (i) As mentioned above, to prove (i), by Theorem 3.4.2, it suffices to

prove that for l, a ∈ Z with (l, n) | k and
(l, n)

(l,m, n)
| a, there are t ∈ Z+ and

b ∈ {0, 1, . . . , t − 1} such that
t

(t,m)
| b and Il,a = It,b. Let l, a ∈ Z be such that

(l, n) | k and
(l, n)

(l,m, n)
| a. Let t = (l, n) and b ∈ {0, 1, . . . , t − 1} be such that

a = pt + b for some p ∈ Z. Then t ∈ Z+, t | k, t | n. Thus t | (k, n). Since

t

(t,m)
=

(l, n)

(l,m, n)
,

(l, n)

(l,m, n)
| a,

t

(t,m)
| t and b = a− pt, we deduce that

t

(t,m)
| b.
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We also have that

for every x ∈ Z, It,b([xm]) = [bx]n + tZn

= [(a− pt)x]n + tZn

= [ax]n − t[px]n + tZn

= [ax]n + tZn

= [ax]n + (l, n)Zn

= [ax]n + lZn

= Il,a([x]m).

(ii) If l ∈ Z r {0} and a ∈ Z are such that l | (k,m, n) and (a, l) = 1, then

(l, n) | l, l | (k, m) and (a, l, n) = ((a, l), n) = (1, n) = 1. It follows from Lemma

3.4.3 and Theorem 3.4.4 that

{Il,a | l ∈ Z+, l | (k, m, n), a ∈ {0, 1, . . . , l − 1} and (a, l) = 1}

⊆ SMHom((Zm, +), (Z, ◦k)).

To prove the reverse inclusion by Lemma 3.4.3 and Theorem 3.4.4, let l, a ∈ Z

be such that (l, n) | (k, m) and (a, l, n) = 1. Let t = (l, n) and b ∈ {0, 1, . . . , t− 1}

be such that a = pt + b for some p ∈ Z. Then t | n, t | (k,m) and (a, t) =

(a, (l, n)) = 1, that is, t ∈ Z+, t | (k,m, n) and (a, t) = 1. We have (t, n) = t =

(l, n), (l, n) | (k, m) and

(b, t, n) = (a− pt, t, n)

= (a− p(l, n), (l, n), n).

If c∈Z+ is such that c | a−p(l, n), c | (l, n) and c | n, then c | a, so c | (a, (l, n)). But

(a, l, n) = 1, so c = 1. This shows that (b, t, n) = 1. Since t | n, (b, t) = (b, t, n) =

1. From Lemma 3.4.3 and Theorem 3.4.4, It,b ∈ SMHom((Zm, +), (Zn, ◦k)). The

proof in (i) shows that It,b = Il,a.

(iii) Let l, t ∈ Z+, a ∈ {0, 1, . . . , l − 1} and b ∈ {0, 1, . . . , t − 1} such that

l | (k, n), t | (k, n),
l

(l,m)
| a and

t

(t,m)
| b. Assume that Il,a = It,b. Then
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lZn = Il,a([0]m) = It,b([0]m) = tZn,

so (l, n) = (t, n). Since l | n and t | n, we have l = t. Then Il,a = Il,b. Thus

[a]n + lZn = Il,a([1]m) = Il,b([1]m) = [b]n + lZn,

so [|a− b|]n ∈ lZn = {[0]n, [l]n, . . . ,
(n

l
− 1
)

[l]n}. Since |a− b| ∈ {0, 1, . . . , l − 1},

it follows that |a− b| = 0. Thus a = b.

Hence the lemma is proved.

Theorem 3.4.6. |MHom((Zm, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,n)

(l,m)

and

|SMHom((Zm, +), (Zn, ◦k))| = (k,m, n).

Proof. From Lemma 3.4.5(i), we have

MHom((Zm, +), (Zn, ◦k)) = {Il,a | l ∈ Z+, l | (k, n) and

a ∈ {0, l

(l,m)
, . . . , ((l,m)− 1)

l

(l,m)
}}.

Hence by Lemma 3.4.5(iii),

|MHom((Zm, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,n)

(l,m).

It follows directly from Lemma 3.4.5(ii) and (iii) that

|SMHom((Zm, +), (Zn, ◦k))| =
∑
l∈Z+

l|(k,m,n)

ϕ(l) = (k, m, n).

Remark 3.4.7. The following diagram shows a comparison of Theorem 2.13 -

Theorem 2.16 and the results obtained in this section where l, a ∈ Z.
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Characterization Cardinality

MHom((Zm, +), (Zn, +)) f([x]m) = [ax]n + lZn,
∑
l∈Z+

l|n

(l,m)

(l, n)

(l,m, n)
| a

SMHom((Zm, +), (Zn, +)) f([x]m) = [ax]n + lZn, (m, n)

(l, n) | m, (a, l, n) = 1

MHom((Zm, +), (Zn, ◦k)) f([x]m) = [ax]n + lZn,
∑
l∈Z+

l|(k,n)

(l,m)

(l, n) | k,
(l, n)

(l,m, n)
| a

SMHom((Zm, +), (Zn, ◦k)) f([x]m) = [ax]n + lZn, (k,m, n)

(l, n) | (k,m), (a, l, n) = 1



CHAPTER IV

MULTI-VALUED HOMOMORPHISMS FROM

HYPERGROUPS INTO GROUPS

Multi-valued homomorphisms and surjective multi-valued homomorphisms from

the hypergroups (Z, ◦k) and (Zn, ◦k) into the group (Z, +) and (Zm, +) are deter-

mined in this chapter. We give characterizations of such multi-valued functions.

It is also shown that the cardinalities of the sets of such multi-valued homomor-

phisms and surjective multi-valued homomorphisms into (Z,+)where n -k are 2ℵ0 .

4.1 Multi-valued Homomorphisms from the Hypergroup

(Z, ◦k) into the Group (Z, +)

Lemma 3.1.1 and the following three lemmas are needed.

Lemma 4.1.1. If H is a subsemigroup of (Z, +) such that H + H = H, then

0 ∈ H.

Proof. If H ⊆ Z+, then H + H ⊆ Z+ and min(H + H) = 2minH > minH

which is a contradiction since H +H = H. Hence H * Z+. Also, if H ⊆ Z−, then

max(H + H) = 2maxH < maxH which is contrary to that H + H = H. Then

either 0 ∈ H or H ∩ Z+ 6= ∅ and H ∩ Z− 6= ∅, so by Lemma 3.1.1, 0 ∈ H.

Lemma 4.1.2. If f ∈ MHom((Z, ◦k), (Z, +)), then the following statements hold.

(i) f(kZ) = f(x1) + · · ·+ f(xt) for all x1, . . . , xt ∈ Z with x1 + · · ·+ xt ∈ kZ

and t > 1

(ii) f(kZ) = f(x) + f(y) for all x, y ∈ kZ.

(iii) f(kZ) is a subsemigroup of (Z, +) containing 0.
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(iv) f(x) + f(y) = f(x) + f(y) + f(kZ) for all x, y ∈ Z.

(v) f(x + kZ) = f(x) + f(kZ) for all x ∈ Z.

Proof. (i) If x1, . . . , xt ∈ Z are such that t > 1 and x1 + · · · + xt ∈ kZ, then

x1 + · · ·+ xt + kZ = kZ, so

f(kZ) = f(x1 + · · ·+ xt + kZ)

= f(x1 ◦k · · · ◦k xt)

= f(x1) + · · ·+ f(xt).

(ii) follows directly from (i).

(iii) If x, y ∈ f(kZ), then x ∈ f(s) and y ∈ f(t) for some s, t ∈ kZ, so

by (ii), x + y ∈ f(s) + f(t) = f(kZ). This shows that f(kZ) is a subsemigroup of

(Z, +). Also, by (i),

f(kZ) + f(kZ) = f(0) + f(0) + f(0) + f(0) = f(kZ).

Hence by Lemma 4.1.1, 0 ∈ f(kZ).

(iv) If x, y ∈ Z, then

f(x) + f(y) = f(x ◦k y)

= f(x + y + kZ)

= f(x + y + 0 + 0 + kZ)

= f(x ◦k y ◦k 0 ◦k 0)

= f(x) + f(y) + f(0) + f(0)

= f(x) + f(y) + f(kZ) by (ii).

(v) For every x ∈ Z,

f(x + kZ) = f(x + 0 + 0 + kZ)

= f(x ◦k 0 ◦k 0)

= f(x) + f(0) + f(0)

= f(x) + f(kZ) by (ii).
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Lemma 4.1.3. If f ∈ MHom((Z, ◦k), (Z, +)), then there exists an element a ∈

f(1) such that

f(x + kZ) = ax + f(kZ) for all x ∈ Z.

Proof. By Lemma 4.1.2(i) and (iii), 0 ∈ f(kZ) = f(1) + f(−1), so there is an

element a ∈ Z such that a ∈ f(1) and −a ∈ f(−1). Since f(1) + f(−1) =

f(kZ), f(kZ) = f(kZ) + f(kZ), f(1 + kZ) = f(1) + f(kZ) and f(−1 + kZ) =

f(−1) + f(kZ) by Lemma 4.1.2(i),(iii) and (v), respectively, it follows that

f(1 + kZ) = f(1) + f(kZ)

⊇ a + f(kZ)

= a + f(kZ) + f(kZ)

= a + f(−1) + f(1) + f(kZ)

⊇ a− a + f(1) + f(kZ)

= f(1) + f(kZ)

= f(1 + kZ)

and

f(−1 + kZ) = f(−1) + f(kZ)

⊇ −a + f(kZ)

= −a + f(kZ) + f(kZ)

= −a + f(1) + f(−1) + f(kZ)

⊇ −a + a + f(−1) + f(kZ)

= f(−1) + f(kZ)

= f(−1 + kZ)

which imply that f(1 + kZ) = a + f(kZ) and f(−1 + kZ) = −a + f(kZ).
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If l ∈ Z+ with l > 1, then

f(l + kZ) = f(1 + · · ·+ 1︸ ︷︷ ︸
l copies

+ kZ)

= f(1 ◦k · · · ◦k 1︸ ︷︷ ︸
l copies

)

= f(1) + · · ·+ f(1)

= f(1) + · · ·+ f(1) + f(kZ) by Lemma 4.1.2(iv)

= (f(1) + f(kZ)) + · · ·+ (f(1) + f(kZ)) by Lemma 4.1.2(iii)

= f(1 + kZ) + · · ·+ f(1 + kZ) by Lemma 4.1.2(v)

= (a + f(kZ)) + · · ·+ (a + f(kZ))

= al + f(kZ)

and

f(−l + kZ) = f(−1 + · · · − 1︸ ︷︷ ︸
l copies

+ kZ)

= f((−1) ◦k · · · ◦k (−1)︸ ︷︷ ︸
l copies

)

= f(−1) + · · ·+ f(−1)

= f(−1 + kZ) + · · ·+ f(−1 + kZ) by Lemma 4.1.2(iii), (iv) and (v)

= (−a + f(kZ)) + · · ·+ (−a + f(kZ))

= a(−l) + f(kZ).

Hence the lemma is proved.

Theorem 4.1.4. For a multi-valued function f from Z into itself, f ∈ MHom

((Z, ◦k), (Z, +)) if and only if one of the following two conditions holds.

(i) There exists a subsemigroup H of (Z, +) containing 0 such that

f(x + kZ) = H for all x ∈ Z and

f(x) + f(y) = H for all x, y ∈ Z.
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(ii) There exist l, a ∈ Z such that l 6= 0,
l

(l, k)
| a,

f(x + kZ) = ax + lZ for all x ∈ Z and

f(x) + f(y) = f(x) + f(y) + lZ for all x, y ∈ Z.

Proof. Assume that f ∈ MHom((Z, ◦k), (Z, +)). By Lemma 4.1.2(iii), f(kZ) is

a subsemigroup of (Z, +) containing 0. By Lemma 4.1.2(iv),

f(x) + f(y) = f(x) + f(y) + f(kZ) for all x, y ∈ Z. (1)

By Lemma 4.1.3, there exists a ∈ f(1) such that

f(x + kZ) = ax + f(kZ) for all x ∈ Z. (2)

Case 1: a = 0. From (2), we have

f(x + kZ) = f(kZ) for all x ∈ Z (3)

and for all x, y ∈ Z,

f(x) + f(y) = f(x ◦k y)

= f(x + y + kZ)

= f(kZ) from (3).

Thus f satisfies (i).

Case 2: a 6= 0. It follows from (2) that

f(kZ) = f(k + kZ) = ak + f(kZ) and

f(kZ) = f(−k + kZ) = −ak + f(kZ).

Since 0 ∈ f(kZ), ak,−ak ∈ f(kZ), so f(kZ) ∩ Z+ 6= ∅ and f(kZ) ∩ Z− 6= ∅.

Then by Lemma 3.1.1, f(kZ) = lZ for some l ∈ Z and l 6= 0. But ak ∈ lZ, so

l | ak. Thus
l

(l, k)
| a. From (1) and (2), we have
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f(x) + f(y) = f(x) + f(y) + lZ for all x, y ∈ Z

and

f(x + kZ) = ax + lZ for all x ∈ Z,

respectively. Hence (ii) holds.

Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then for all

x, y ∈ Z,

f(x ◦k y) = f(x + y + kZ) = H = f(x) + f(y),

which implies that f ∈ MHom((Z, ◦k), (Z, +)).

Next, assume that f satisfies (ii). First we show that f defined on each coset

is independent on its representatives. If x, y ∈ Z are such that x + kZ = y + kZ,

then x− y ∈ kZ. Since
l

(l, k)
| a, we have l | ak, so

ax− ay ∈ akZ ⊆ lZ

which implies that ax + lZ = ay + lZ. To show that f ∈ MHom((Z, ◦k), (Z, +)),

let x, y ∈ Z. Since f(x) ⊆ f(x + kZ) = ax + lZ and f(y) ⊆ f(y + kZ) = ay + lZ,

we deduce that f(x) = ax + A and f(y) = ay + B for some nonempty subsets

A, B of lZ. Therefore A + B + lZ = lZ and hence

f(x ◦k y) = f(x + y + kZ)

= a(x + y) + lZ

= ax + ay + lZ

= ax + A + ay + B + lZ

= f(x) + f(y) + lZ

= f(x) + f(y) by assumption.

Therefore the proof is complete.
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We give a note here that if a multi-valued function f from Z into itself satisfies

(ii) of Theorem 4.1.4 with a = 0, then f satisfies (i). To show this, assume that

f(x + kZ) = lZ for all x ∈ Z and

f(x) + f(y) = f(x) + f(y) + lZ for all x, y ∈ Z.

Then for x, y ∈ Z, f(x) ⊆ f(x + kZ) = lZ and f(y) ⊆ f(y + kZ) = lZ which

implies that f(x) + f(y) + lZ = lZ. Hence f(x) + f(y) = lZ.

Lemma 4.1.5. For l ∈ Z r {0} and a ∈ Z,
l

(l, k)
| a and (a, l) = 1 if and only if

l | k and (a, l) = 1.

Proof. Assume that
l

(l, k)
| a and (a, l) = 1. These imply that

(
a,

l

(l, k)

)
=

|l|
(l, k)

and

(
a,

l

(l, k)

)
=1, respectively. Thus

|l|
(l, k)

= 1, so |l| = (l, k). Hence l | k.

If l | k, then
l

(l, k)
=

l

|l|
= ±1 which divides a.

Therefore the lemma is proved.

Theorem 4.1.6. For a multi-valued function f from Z into itself, f ∈ SMHom

((Z, ◦k), (Z, +)) if and only if one of the following two conditions holds.

(i) f(x + kZ) = Z for all x ∈ Z and

f(x) + f(y) = Z for all x, y ∈ Z.

(ii) There exist l, a ∈ Z such that l 6= 0, l | k, (a, l) = 1,

f(x + kZ) = ax + lZ for all x ∈ Z and

f(x) + f(y) = f(x) + f(y) + lZ for all x, y ∈ Z.

Proof. Assume that f ∈ SMHom((Z, ◦k), (Z, +)). Then f satisfies (i) or (ii) of

Theorem 4.1.4. If f satisfies (i) of Theorem 4.1.4, then (i) holds since Z = f(Z) =⋃
x∈Z

f(x + kZ) = H.

Next, assume that f satisfies (ii) of Theorem 4.1.4. Then there are l, a ∈ Z

such that l 6= 0,
l

(l, k)
| a,



41

f(x + kZ) = ax + lZ for all x ∈ Z and

f(x) + f(y) = f(x) + f(y) + lZ for all x, y ∈ Z.

Since f(Z) = Z, it follows that

Z = f(Z) =
⋃
x∈Z

f(x + kZ) = aZ + lZ = (a, l)Z

which implies that (a, l) = 1. By Lemma 4.1.5, l | k and (a, l) = 1.

For the converse, assume that f satisfies (i) or (ii). If f satisfies (i), then

by Theorem 4.1.4, f ∈ MHom((Z, ◦k), (Z, +)) and Z = f(1 + kZ) ⊆ f(Z), so

f(Z) = Z.

If f satisfies (ii), then by Theorem 4.1.4 and Lemma 4.1.5, f ∈ MHom((Z, ◦k),

(Z, +)). Since (a, l) = 1 and

f(Z) = f(
⋃
x∈Z

(x + kZ)) =
⋃
x∈Z

(ax + lZ) = aZ + lZ = (a, l)Z,

it follows that f(Z) = Z.

Therefore the theorem is proved.

Theorem 4.1.7. |MHom((Z, ◦k), (Z, +))| = |SMHom((Z, ◦k), (Z, +))| = 2ℵ0.

Proof. Note that

((2Z + 1) ∪ {0}) + ((2Z + 1) ∪ {0}) = (2Z + 1 + 2Z + 1) ∪ (2Z + 1) ∪ {0}

= (2Z + 2) ∪ (2Z + 1) ∪ {0}

= 2Z ∪ (2Z + 1) = Z. (1)

Let X ⊆ 2Z r {0} and define fX : Z → P∗(Z) by

fX(0) = ((2Z + 1) ∪ {0}) ∪X and

fX(x) = Z for all x ∈ Z r {0}.
(2)

Then fX(x) ⊇ (2Z + 1) ∪ {0} for all x ∈ Z, so by (1), we have
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fX(x) + fX(y) = Z for all x, y ∈ Z. (3)

Moreover, if x ∈ Z, then x + kZ is infinite since k > 0. Therefore we have

fX(x + kZ) =
⋃
t∈Z

fX(x + kt) = Z. (4)

By (3) and (4), fX satisfies (i) of Theorem 4.1.6, so fX ∈ SMHom((Z, ◦k), (Z, +)).

If X and X ′ are distinct subsets of 2Z r {0}, then ((2Z + 1) ∪ {0}) ∪ X 6=

((2Z+1)∪{0})∪X ′, so from (2), we have fX(0) 6= fX′(0). Consequently, fX 6= fX′

for all distinct subsets X and X ′ of 2Z r {0}. Hence we have

|MHom((Z, ◦k), (Z, +))| ≥ |SMHom((Z, ◦k), (Z, +))|

≥ |{fX | X ⊆ 2Z r {0}|

= |{X | X ⊆ 2Z r {0}|

= 2ℵ0 .

But

|MHom((Z, ◦k), (Z, +))| ≤ |{f | f : Z → P∗(Z)}|

= (2ℵ0)ℵ0 = 2ℵ0 ,

so we have |MHom((Z, ◦k), (Z, +))| = |SMHom((Z, ◦k), (Z, +))| = 2ℵ0 , as desired.

Remark 4.1.8. Note that for l ∈ Z+, lZ = l(2Z ∪ (2Z + 1)) = 2lZ ∪ (2lZ + l).

We can see from the proof of Theorem 4.1.7 that if l ∈ Z+ and X ⊆ 2lZ r {0},

then gX : Z → P∗(lZ) ⊆ P∗(Z) defined by

gX(0) = ((2lZ + l) ∪ {0}) ∪X and

gX(x) = lZ for all x ∈ Z r {0}

belongs to MHom((Z, ◦k), (Z, +)) with gX(Z) = lZ. Also, gX 6= gX´ for all distinct
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nonempty subsets X and X´ of 2lZ r {0}. If l > 1, then lZ ( Z and thus

2ℵ0 ≥ |MHom((Z, ◦k), (Z, +)) r SMHom((Z, ◦k), (Z, +))|

≥ |{gX | X ⊆ 2lZ r {0}}|

= |{X | X ⊆ 2lZ r {0}}|

= 2ℵ0 .

This implies that |MHom((Z, ◦k), (Z, +)) r SMHom((Z, ◦k), (Z, +))| = 2ℵ0 .

Remark 4.1.9. It can be seen from Theorem 2.1 that each pair H, a determines

a unique f ∈ MHom(Z, +) with

f(x) = ax + H for all x ∈ Z

where H is a subsemigroup of (Z, +) containing 0 and a ∈ Z. If a 6= 0 and

(a, h) = 1 for some h ∈ H, then the pair H, a also determines a unique f ∈

SMHom(Z, +) which satisfies the above equality.

In contrast, we can see from the proof of Theorem 4.1.7 that for every subset

X of 2Z r {0},

fX(x + kZ) = Z for all x ∈ Z,

fX(x) + fX(y) = Z for all x, y ∈ Z

which imply that

fX(x + kZ) = ax + Z for all a, x ∈ Z,

fX(x) + fX(y) = fX(x) + fX(y) + Z for all x, y ∈ Z.

Note that
1

(1, k)
| a, 1 | k and (a, 1) = 1. Therefore we deduce that a sub-

semigroup H of (Z, +) containing 0 does not necessarily determine a unique f ∈

MHom((Z, ◦k), (Z, +)) [SMHom((Z, ◦k), (Z, +))] satisfying (i) of Theorem 4.1.4

[Theorem 4.1.6]. Also, each pair l, a with l 6= 0 and
l

(l, k)
| a [l 6= 0, l | k and

(a, l) = 1] does not necessarily determine a unique f ∈ MHom((Z, ◦k), (Z, +))

[SMHom((Z, ◦k), (Z, +))] satisfying (ii) of Theorem 4.1.4 [Theorem 4.1.6].
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Remark 4.1.10. Theorem 2.1 - Theorem 2.4 are compared with the results of

this section as follows: where H is a subsemigroup of (Z, +) containing 0 and

l, a ∈ Z.

Characterization Cardinality

MHom((Z, +), (Z, +)) f(x) = ax + H ℵ0

SMHom((Z, +), (Z, +)) f(x) = ax + H, ℵ0

(a, h) = 1 for some h ∈ H,

a = 0 ⇒ H = Z

MHom((Z, ◦k), (Z, +)) (i) f(x + kZ) = H, 2ℵ0

f(x) + f(y) = H or

(ii) f(x + kZ) = ax + lZ,

f(x) + f(y) = f(x) + f(y) + lZ,

l 6= 0,
l

(l, k)
| a

SMHom((Z, ◦k), (Z, +)) (i) f(x + kZ) = Z, 2ℵ0

f(x) + f(y) = Z or

(ii) f(x + kZ) = ax + lZ,

f(x) + f(y) = f(x) + f(y) + lZ,

l 6= 0, l | k, (a, l) = 1

4.2 Multi-valued Homomorphisms from the Hypergroup

(Z, ◦k) into the Group (Zn, +)

Recall that if H is a subsemigroup of the group (Zn, +), then H = lZn for

some l ∈ Z. With this fact, the following two lemmas can be proved analogously

to those of Lemma 4.1.2 and Lemma 4.1.3.
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Lemma 4.2.1. If f ∈MHom((Z, ◦k), (Zn, +)), then the following statements hold.

(i) f(kZ) = f(x1) + · · ·+ f(xt) for all x1, . . . , xt ∈ Z with x1 + · · ·+ xt ∈ kZ

and t > 1.

(ii) f(kZ) = f(x) + f(y) for all x, y ∈ kZ.

(iii) f(kZ) = lZn for some l ∈ Z.

(iv) f(x) + f(y) = f(x) + f(y) + f(kZ) for all x, y ∈ Z.

(v) f(x + kZ) = f(x) + f(kZ) for all x ∈ Z.

Lemma 4.2.2. If f ∈ MHom((Z, ◦k), (Zn, +)), then there exists an element a ∈ Z

such that [a]n ∈ f(1) and

f(x + kZ) = [ax]n + f(kZ) for all x ∈ Z.

Theorem 4.2.3. For a multi-valued function f from Z into Zn, f ∈ MHom

((Z, ◦k), (Zn, +)) if and only if there exist l, a ∈ Z such that
(l, n)

(l, k, n)
| a and

f(x + kZ) = [ax]n + lZn for all x ∈ Z,

f(x) + f(y) = f(x) + f(y) + lZn for all x, y ∈ Z.

Proof. Assume that f ∈ MHom((Z, ◦k), (Zn, +)). By Lemma 4.2.2, there is an

element a ∈ Z such that [a]n ∈ f(1) and

f(x + kZ) = [ax]n + f(kZ) for all x ∈ Z.

By Lemma 4.2.1(iii), f(kZ) = lZn for some l ∈ Z. Hence

f(x + kZ) = [ax]n + lZn for all x ∈ Z. (1)

Also, from Lemma 4.2.1(iii) and (iv),

f(x) + f(y) = f(x) + f(y) + lZn for all x, y ∈ Z.

From f(kZ) = lZn, (1) implies that

lZn = f(kZ) = f(k + kZ) = [ak]n + lZn,
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so [ak]n ∈ lZn. Hence

akZn = [ak]nZn ⊆ lZnZn = lZn

which implies that |akZn| | |lZn|. Thus
n

(ak, n)
| n

(l, n)
, so (l, n) | (ak, n). Hence

(l, n) | ak. It follows that
(l, n)

(l, k, n)
| a.

For the converse, assume that there are l, a ∈ Z such that
(l, n)

(l, k, n)
| a and

f(x + kZ) = [ax]n + lZn for all x ∈ Z, (2)

f(x) + f(y) = f(x) + f(y) + lZn for all x, y ∈ Z. (3)

Then (l, n) | ak. To show that f is defined independently to the representatives

of cosets, let x, y ∈ Z be such that x + kZ = y + kZ. Then x− y ∈ kZ, so

[ax]n − [ay]n + lZn = [a(x− y)]n + lZn

⊆ akZn + lZn

= (ak, l)Zn

= (ak, l, n)Zn

= (l, n)Zn since (l, n) | ak

= lZn.

This implies that [ax]n − [ay]n + lZn = lZn and thus [ax]n + lZn = [ay]n + lZn.

Let x, y ∈ Z. From (2),

f(x) ⊆ f(x + kZ) ⊆ [ax]n + lZn, f(y) ⊆ f(y + kZ) ⊆ [ay]n + lZn,

so there are nonempty subsets A, B of lZn such that f(x) = [ax]n + A and

f(y) = [ay]n + B. Thus A + B + lZn = lZn. Hence
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f(x ◦k y) = f(x + y + kZ)

= [a(x + y)]n + lZn

= [ax]n + [ay]n + lZn

= [ax]n + A + [ay]n + B + lZn

= f(x) + f(y) + lZn

= f(x) + f(y) from (3).

Therefore the proof of the theorem is complete.

Lemma 4.2.4. For l, a ∈ Z,
(l, n)

(l, k, n)
| a and (a, l, n) = 1 if and only if (l, n) | k

and (a, l, n) = 1.

Proof. Note that (l, n) 6= 0. By Lemma 4.1.5, we have
(l, n)

((l, n), k)
| a and

(a, (l, n)) = 1 if and only if (l, n) | k and (a, (l, n)) = 1. Therefore the desired

result follows.

Theorem 4.2.5. For a multi-valued function f from Z into Zn, f ∈ SMHom

((Z, ◦k), (Zn, +)) if and only if there exist l, a ∈ Z such that (l, n) | k, (a, l, n) = 1

and

f(x + kZ) = [ax]n + lZn for all x ∈ Z,

f(x) + f(y) = f(x) + f(y) + lZn for all x, y ∈ Z.

Proof. Assume that f ∈ SMHom((Z, ◦k), (Zn, +)). Then f(Z) = Zn and by

Theorem 4.2.3, there are l, a ∈ Z such that
(l, n)

(l, k, n)
| a and

f(x + kZ) = [ax]n + lZn for all x ∈ Z, (1)

f(x) + f(y) = f(x) + f(y) + lZn for all x, y ∈ Z. (2)

Since f(Z) = Zn, by (1)

Zn = f(Z) = f(Z + kZ) = aZn + lZn = (a, l)Zn
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which implies that 1 = (1, n) = (a, l, n). By Lemma 4.2.4, (l, n) | k.

Conversely, assume that l, a ∈ Z such that (l, n) | k, (a, l, n) = 1 and f

satisfies (1) and (2). It follows from Theorem 4.2.3 and Lemma 4.2.4 that f ∈

MHom((Z, ◦k), (Zn, +)). Since (a, l, n) = 1, by (1), we have

f(Z) = aZn + lZn = (a, l)Zn = (a, l, n)Zn = 1Zn = Zn.

Hence f ∈ SMHom((Z, ◦k), (Zn, +)).

Remark 4.2.6. Let us compare Theorem 2.9 - Theorem 2.12 with the results of

this section where l, a ∈ Z.

Characterization Cardinality

MHom((Z, +), (Zn, +)) f(x) = [ax]n + lZn

∑
l∈Z+

l|n

l

SMHom((Z, +), (Zn, +)) f(x) = [ax]n + lZn, n

(a, l, n) = 1

MHom((Z, ◦k), (Zn, +)) f(x + kZ) = [ax]n + lZn, –

f(x) + f(y) = f(x) + f(y) + lZn,

(l, n)

(l, k, n)
| a

SMHom((Z, ◦k), (Zn, +)) f(x + kZ) = [ax]n + lZn, –

f(x) + f(y) = f(x) + f(y) + lZn,

(l, n) | k, (a, l, n) = 1

We give a remark that the cardinalities of MHom((Z, ◦k), (Zn, +)) and SMHom

((Z,◦k),(Zn,+)) are not known in this research. It is easily seen that |MHom((Z,◦k),

(Z1, +))|= |SMHom((Z, ◦k), (Z1, +))| = 1.
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4.3 Multi-valued Homomorphisms from the Hypergroup

(Zn, ◦k) into the Group (Z, +)

First, we provide the lemmas analogous to Lemma 4.1.2 and Lemma 4.1.3. The

proofs can be given analogously.

Lemma 4.3.1. If f ∈MHom((Zn, ◦k), (Z, +)), then the following statements hold.

(i) f(kZn) = f([x1]n) + · · ·+ f([xt]n) for all x1, . . . , xt ∈ Z with

[x1]n + · · ·+ [xt]n ∈ kZn.

(ii) f(kZn) = f([x]n) + f([y]n) for all x, y ∈ Z with [x]n, [y]n ∈ kZn.

(iii) f(kZn) is a subsemigroup of (Z, +) containing 0.

(iv) f([x]n) + f([y]n) = f([x]n) + f([y]n) + f(kZn) for all x, y ∈ Z.

(v) f([x]n + kZn) = f([x]n) + f(kZn) for all x ∈ Z.

Lemma 4.3.2. If f ∈ MHom((Zn, ◦k), (Z, +)), then there exists an element a ∈

f([1]n) such that

f([x]n + kZn) = [ax]n + f(kZn) for all x ∈ Z.

Theorem 4.3.3. For a multi-valued function f from Zn into Z,f ∈MHom((Zn,◦k),

(Z, +)) if and only if one of the following two conditions holds.

(i) There exists a subsemigroup H of (Z, +) containing 0 such that

f([x]n + kZn) = H for all x ∈ Z and

f([x]n) + f([y]n) = H for all x, y ∈ Z.

(ii) There exist l, a ∈ Z such that l 6= 0,
l

(l, k, n)
| a and

f([x]n + kZn) = ax + lZ for all x ∈ Z and

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZ for all x, y ∈ Z.

Proof. Assume that f ∈ MHom((Zn, ◦k), (Z, +)). By Lemma 4.3.1(iii), f(kZn)
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is a subsemigroup of (Z, +) containing 0. By Lemma 4.3.1(iv),

f([x]n) + f([y]n) = f([x]n) + f([y]n) + f(kZn) for all x, y ∈ Z. (1)

By Lemma 4.3.2, there exists a ∈ f([1]n) such that

f([x]n + kZn) = ax + f(kZn) for all x ∈ Z. (2)

Case 1: a=0. From (2), we have

f([x]n + kZn) = f(kZn) for all x ∈ Z (3)

and for all x, y ∈ Z,

f([x]n) + f([y]n) = f([x]n ◦k [y]n)

= f([x]n + [y]n + kZn)

= f(kZn) from (3).

Thus f satisfies (i).

Case 2: a 6= 0. It follows from (2) that

f(kZn) = f([k]n + kZn) = ak + f(kZn) and

f(kZn) = f([−k]n + kZn) = −ak + f(kZn).

Since 0 ∈ f(kZn), ak, −ak ∈ f(kZn), so f(kZn)∩Z+ 6=∅ and f(kZn)∩Z− 6= ∅.

Then by Lemma 3.1.1, f(kZn) = lZ for some l ∈ Z r {0}. Since ak ∈ lZ, l | ak.

Also, we have

lZ = f(kZn) = f([n]n + kZn) = an + lZ,

so an ∈ lZ. Thus l | an. But (l, k, n) = xl + yk + zn for some x, y, z ∈ Z, so

a(l, k, n) = axl+y(ak)+z(an) which implies that l | a(l, k, n). Hence
l

(l, k, n)
| a.

From (1) and (2), we have

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZ for all x, y ∈ Z
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and

f([x]n + kZn) = ax + lZ for all x ∈ Z,

respectively. Hence (ii) holds.

Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then for all

x, y ∈ Z,
f([x]n ◦k [y]n) = f([x]n + [y]n + kZn)

= f([x + y]n + kZn)

= H

= f([x]n) + f([y]n),

which implies that f ∈ MHom((Zn, ◦k), (Z, +)).

Next, assume that f satisfies (ii). First we show that f defined on each coset

is independent on its representatives, let x, y ∈ Z be such that [x]n + kZn =

[y]n + kZn. Then [x− y]n ∈ kZn. Thus x− y = ks + nt for some s, t ∈ Z. Since
l

(l, k, n)
| a, we have l | a(l, k, n), so l | ak and l | an. Thus ak, an ∈ lZ. It follows

that

ax− ay = a(x− y) = a(ks + nt) = aks + ant ∈ lZ

which implies that ax + lZ = ay + lZ.

To show that f ∈ MHom((Zn, ◦k), (Z, +)), let x, y ∈ Z. Since

f([x]n) ⊆ f([x]n + kZn) = ax + lZ, f([y]n) ⊆ f([y]n + kZn) = ay + lZ,

we deduce that f([x]n) = ax+A and f([y]n) = ay+B for some nonempty subsets

A, B of lZ. Therefore A + B + lZ = lZ and hence

f([x]n ◦k [y]n) = f([x]n + [y]n + kZn)

= a(x + y) + lZ

= ax + ay + lZ

= ax + A + ay + B + lZ

= f([x]n) + f([y]n) + lZ

= f([x]n) + f([y]n).

Hence f ∈ MHom((Zn, ◦k), (Z, +)).
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Lemma 4.3.4. For l ∈ Z ∈ {0} and a ∈ Z,
l

(l, k, n)
| a and (a, l) = 1 if and only

if l | (k, n) and (a, l) = 1.

Proof. Since (l, k, n) = (l, (k, n)), the desired result follows directly from

Lemma 4.1.5.

Theorem 4.3.5. For a multi-valued function f from Zn into Z, f ∈ SMHom

((Zn, ◦k), (Z, +)) if and only if one of the following two conditions holds.

(i) f([x]n + kZn) = Z for all x ∈ Z and

f([x]n) + f([y]n) = Z for all x, y ∈ Z.

(ii) There exist l, a ∈ Z such that l 6= 0, l | (k, n), (a, l) = 1,

f([x]n + kZn) = ax + lZ for all x ∈ Z and

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZ for all x, y ∈ Z.

Proof. Assume that f ∈ SMHom((Zn, ◦k), (Z, +)). Then f satisfies (i) or (ii) of

Theorem 4.3.3 and f(Zn) = Z. If f satisfies (i) of Theorem 4.3.3, then (i) holds.

Next, assume that f satisfies (ii) of Theorem 4.3.3. Then there are l, a ∈ Z

such that l 6= 0,
l

(l, k, n)
| a and

f([x]n + kZn) = ax + lZ for all x ∈ Z and

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZ for all x, y ∈ Z.

Since f(Zn) = Z, it follows that

Z = f(Zn) = f(
⋃
x∈Z

([x]n + kZn))

=
⋃
x∈Z

f([x]n + kZn)

=
⋃
x∈Z

ax + lZ = aZ + lZ = (a, l)Z

which implies that (a, l) = 1. By Lemma 4.3.4, l | (k, n).

For the converse, assume that f satisfies (i) or (ii). By Theorem 4.3.3 and
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Lemma 4.3.4, f ∈MHom((Zn, ◦k), (Z,+)). If f satisfies (i), then Z=f([1]n+kZn) ⊆

f(Zn), so f(Zn) = Z. If f satisfies (ii), then

f(Zn) = f(
⋃
x∈Z

([x]n + kZn)) = aZ + lZ = (a, l)Z = Z.

Hence f ∈ SMHom((Zn, ◦k), (Z, +)).

Theorem 4.3.6. The cardinalities of MHom((Zn,◦k),(Z,+)) and SMHom((Zn,◦k),

(Z, +)) are the followings.

(i) If n | k, then

|MHom((Zn, ◦k), (Z, +))| = ℵ0, |SMHom((Zn, ◦k), (Z, +))| = n.

(ii) If n - k, then

|MHom((Zn, ◦k), (Z, +))| = |SMHom((Zn, ◦k), (Z, +))| = 2ℵ0.

Proof. If n | k, then kZn = {[0]n}, so (Zn, ◦k) = (Zn, +), hence (i) holds by

Theorem 2.6 and Theorem 2.8.

Next, assume that n - k. Then n > 1, so |Zn| = n > 1. We have that

((2Z + 1) ∪ {0}) + ((2Z + 1) ∪ {0}) = 2Z ∪ (2Z + 1) = Z. (1)

Let X ⊆ 2Z r {0} and define fX : Zn → P∗(Z) by

fX([0]n) = ((2Z + 1) ∪ {0}) ∪X and

fX([x]n) = Z for all x ∈ Z r nZ.
(2)

Then fX([x]n) ⊇ (2Z + 1) ∪ {0} for all x ∈ Z, so by (1), we have

fX([x]n) + fX([y]n) = Z for all x, y ∈ Z. (3)

Since n - k, |kZn| = |(k, n)Zn| =
n

(k, n)
> 1. Thus for any x ∈ Z, |[x]n + kZn| =

|kZn| > 1. It follows that

fX([x]n + kZn) =
⋃
t∈Z

fX([x]n + k[t]n) = Z. (4)

By (3) and (4), fX satisfies (i) of Theorem 4.3.5, so fX ∈ SMHom((Zn, ◦k), (Z, +)).

If X and X´ are distinct subsets of 2Z r {0}, then ((2Z + 1) ∪ {0}) ∪ X 6=
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((2Z + 1) ∪ {0})∪X ,́ so from (2), we have fX([0]n) 6= fX´([0]n). Consequently,

fX 6= fX´ for all distinct subsets X and X´ of 2Z r {0}. Hence we have

|MHom((Zn, ◦k), (Z, +))| ≥ |SMHom((Zn, ◦k), (Z, +))|

≥ |{fX | X ⊆ 2Z r {0}}|

= |{X | X ⊆ 2Z r {0}}|

= 2ℵ0 .

But

|MHom((Zn, ◦k), (Z, +))| ≤ |{f | f : Zn → P∗(Z)}|

= (2ℵ0)n

= 2ℵ0 ,

so |MHom((Zn, ◦k), (Z, +))| = |SMHom((Zn, ◦k), (Z, +))| = 2ℵ0 if n - k.

Remark 4.3.7. The following diagram gives a comparison between Theorem

2.5 - Theorem 2.8 and the theorems in this section where l, a ∈ Z and H is a

subsemigroup of (Z, +) containing 0.
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Characterization Cardinality

MHom((Zn, +), (Z, +)) (i) f([x]n) = H or ℵ0

(ii) f([x]n) = ax + lZ,

l 6= 0,
l

(l, n)
| a

SMHom((Zn, +), (Z, +)) f([x]n) = ax + lZ, n

l 6= 0, l | n, (a, l) = 1

MHom((Zn, ◦k), (Z, +)) (i) f([x]n + kZn) = H, ℵ0 if n | k,

f([x]n) + f([y]n) = H or 2ℵ0 if n - k.

(ii) f([x]n + kZn) = ax + lZ,

f([x]n) + f([y]n)

= f([x]n) + f([y]n) + lZ,

l 6= 0,
l

(l, k, n)
| a

SMHom((Zn, ◦k), (Z, +)) (i) f([x]n + kZn) = Z, n if n | k,

f([x]n) + f([y]n) = Z or 2ℵ0 if n - k.

(ii) f([x]n + kZn) = ax + lZ,

f([x]n) + f([y]n)

= f([x]n) + f([y]n) + lZ,

l 6= 0, l | (k, n), (a, l) = 1

4.4 Multi-valued Homomorphisms from the Hypergroup

(Zn, ◦k) into the Group (Zm, +)

Lemma 4.4.1 and Lemma 4.4.2 given below can be proved analogously to the

proofs of Lemma 4.1.2 and Lemma 4.1.3, respectively. Note that a subsemigroup

of (Zm, +) must be of the form lZm, l ∈ Z.
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Lemma 4.4.1. If f ∈ MHom((Zn, ◦k), (Zm, +)), then the following statements

hold.

(i) f(kZn) = f([x1]n)+ · · ·+f([xt]n) for all x1, . . . , xt ∈ Z with [x1]n + · · ·+[xt]n

∈ kZn.

(ii) f(kZn) = f([x]n) + f([y]n) for all x, y ∈ Z with [x]n, [y]n ∈ kZn.

(iii) f(kZn) = lZm for some l ∈ Z.

(iv) f([x]n) + f([y]n) = f([x]n) + f([y]n) + f(kZn) for all x, y ∈ Z.

(v) f([x]n + kZn) = f([x]n) + f(kZn) for all x ∈ Z.

Lemma 4.4.2. If f ∈ MHom((Zn, ◦k), (Zm, +)), then there exists an element

a ∈ Z such that [a]m ∈ f([1]n) and

f([x]n + kZn) = [ax]m + f(kZn) for all x ∈ Z.

Theorem 4.4.3. For a multi-valued function f from Zn into Zm, f ∈ MHom

((Zn, ◦k),(Zm, +)) if and only if there exist l, a ∈ Z such that
(l,m)

(l, k, m, n)
| a and

f([x]n + kZn) = [ax]m + lZm for all x ∈ Z,

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZm for all x, y ∈ Z.

Proof. Assume that f ∈ MHom((Zn, ◦k), (Zm, +)). By Lemma 4.4.2, there is an

element a ∈ Z such that [a]m ∈ f([1]n) and

f([x]n + kZn) = [ax]m + f(kZn) for all x ∈ Z.

By Lemma 4.4.1(iii), f(kZn) = lZm for some l ∈ Z. Hence

f([x]n + kZn) = [ax]m + lZm for all x ∈ Z.

Also, from Lemma 4.4.1(iii) and (iv),

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZm for all x, y ∈ Z.

From f(kZn) = lZm, we have

lZm = f(kZn) = f([k]n + kZn) = [ak]m + lZm,

lZm = f(kZn) = f([n]n + kZn) = [an]m + lZm,
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so [ak]m, [an]m ∈ lZm. From the proof of Theorem 4.2.3, we have that (l,m) | ak

and (l,m) | an. Since (l, k, m, n) = ((l,m), k, n) = x(l,m) + yk + zn for some

x, y, z ∈ Z, it follows that (l,m) | a(l, k, m, n). Hence
(l,m)

(l, k, m, n)
| a.

For the converse, let l, a, f be as above. To show that f is defined indepen-

dently to the representatives of cosets, let x, y ∈ Z be such that [x]n + kZn =

[y]n + kZn. Then [x− y]n ∈ kZn. Thus x− y = ks + nt for some s, t ∈ Z. Since
(l,m)

(l, k, m, n)
| a, we have (l,m) | a(l, k, m, n), so (l,m) | ak and (l,m) | an. Thus

[ak]m, [an]m ∈ (l,m)Zm = lZm. It follows that

[ax]m − [ay]m = a[x− y]m

= a[ks + nt]m

= [ak]m[s]m + [an]m[t]m ∈ lZm

which implies that [ax]m + lZm = [ay]m + lZm.

To show that f ∈ MHom((Zn, ◦k), (Zm, +)), let x, y ∈ Z. Then

f([x]n) ⊆ f([x]n + kZn) = [ax]m + lZm, f([y]n) ⊆ f([y]n + kZn) = [ay]m + lZm.

Then there are nonempty subsets A, B of lZm such that f([x]n) = [ax]m + A and

f([y]n) = [ay]m + B. Therefore A + B + lZm = lZm and hence

f([x]n ◦k [y]n) = f([x]n + [y]n + kZn)

= [a(x + y)]m + lZm

= [ax]m + [ay]m + lZm

= [ax]m + A + [ay]m + B + lZm

= f([x]n) + f([y]n) + lZm

= f([x]n) + f([y]n).

Therefore the proof is complete.

Lemma 4.4.4. For l, a ∈ Z,
(l,m)

(l, k, m, n)
| a and (a, l, m) = 1 if and only if

(l,m) | (k, n) and (a, l, m) = 1.
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Proof. By Lemma 4.1.5, we have that
(l,m)

((l,m), (k, n))
| a and (a, (l,m)) = 1 if and

only if (l,m) | (k, n) and (a, (l,m)) = 1. Hence the result follows, as desired.

Theorem 4.4.5. For a multi-valued function f from Zn into Zm, f ∈ SMHom

((Zn, ◦k), (Zm, +)) if and only if there exist l, a ∈ Z such that (l,m) | (k, n),

(a, l, m) = 1 and

f([x]n + kZn) = [ax]m + lZm for all x ∈ Z,

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZm for all x, y ∈ Z.

Proof. Assume that f ∈ SMHom((Zn, ◦k), (Zm, +)). Then f ∈ MHom((Zn, ◦k),

(Zm, +)) and f(Zn) = Zm. By Theorem 4.4.3, there exist l, a ∈ Z such that
(l,m)

(l, k, m, n)
| a and

f([x]n + kZn) = [ax]m + lZm for all x ∈ Z,

f([x]n) + f([y]n) = f([x]n) + f([y]n) + lZm for all x, y ∈ Z.

Since f(Zn) = Zm, we have

Zm = f(Zn) = aZm + lZm = (a, l)Zm.

Thus 1 = (1, m) = (a, l, m). By Lemma 4.4.4, (l,m) | (k, n).

Conversely, assume that l, a, f are as before. By Theorem 4.4.3 and

Lemma 4.4.4, we have f ∈ MHom((Zn, ◦k), (Zm, +)). Since (a, l, m) = 1,

f(Zn) = aZm + lZm = (a, l)Zm = (a, l, m)Zm = Zm.

Therefore f ∈ SMHom((Zn, ◦k), (Zm, +)).

Remark 4.4.6. We also compare the results of this section with Theorem 2.13 -

Theorem 2.16 by the following diagram where l, a ∈ Z.
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MHom((Zn, +), (Zm, +)) f([x]n) = [ax]m + lZm,
∑
l∈Z+

l|m

(l, n)

(l,m)

(l,m, n)
| a

SMHom((Zn, +), (Zm, +)) f([x]n) = [ax]m + lZm, (m, n)

(l,m) | n, (a, l, m) = 1

MHom((Zn, ◦k), (Zm, +)) f([x]n + kZn) = [ax]m + lZm, –

f([x]n) + f([y]n)

= f([x]n) + f([y]n) + lZm,

(l,m)

(l, k, m, n)
| a

SMHom((Zn, ◦k), (Zm, +)) f([x]n + kZn) = [ax]m + lZm, –

f([x]n) + f([y]n)

= f([x]n) + f([y]n) + lZm,

(l,m) | (k, n), (a, l, m) = 1

We note here that counting the elements of MHom((Zn, ◦k), (Zm, +)) and SMHom

((Zn, ◦k), (Zm, +)) is still open in this research. However, these two sets are finite.

It is clear |MHom((Zn, ◦k), (Z1, +))|=|SMHom((Zn, ◦k), (Z1, +))| = 1. It is not

difficult to see that |MHom((Z1, ◦k), (Zm, +))| =
∑
l∈Z+

l|m

1 and |SMHom((Z1, ◦k),

(Zm, +))| = 1.
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