CHAPTER 5

Harmonic-Oscillator Propagator

In this chapter we present our techniques fof calculating
the harmdnic-éﬁci]]ator propagator. In the fifst section We discuss
the main ideas of our technigues. In sec+5.2 we calculate the
harmonic-oscillator propagater and show how the prefactor and the
exponent of the classical”acéfon can be obtained simultaneously.

In the last section thesConelusions and discussions are given.

5.1 Preliminary

Our technique is'a cpmbinatjon of both Devies' and Feynman's
methods. We represent the paths as a co;ine series and transform
-the patH integral to be the muttiple integrals of the coefficients
of the series. We restrict ourselves to the discrete-time assumption
which Feynmén and Devies had not taken into consideration. After.
~performing the integrations=and Combiningn\ all factors together,
the required resu]fs are obtained.. | | In the following section.
we calculate the’harmonié-osci1]ator propagator by using these ideas.
In the next chapter we apply our techniques to the ‘calcuTation of the

‘non-1ocal harmonic osc¢illator propagator.

5.2 Calculating the Harmonic-Oscillator Propagator

In order to obtain the prefactor and the exponent of the
‘classical action simultaneously, we express the bropagator in the

following form :
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Since all paths originate at the point Xy and terminate at the

point Ko it is convenient to represent them as a cosine series :
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where j% and j_g are the._chosen weighting factors_°

Since we put the‘boundany points into the path integral,

the weighting factors of a, . and ay must be properly chosen.

On the assumption of dividing the time . T ~into N ~discrete

steps of length e: , | &q. (5.2) can be written as
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The kinetic-energy terms in the action function_of . eq. (5;1) can

be transformed on to’be (the derivations are presented in Appendix A)
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Similary, for the potential-energy terms can be transformed to be
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The path integral in eq. (5.1) now becomes
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Using the properties of.Dirac / delta function
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transformation (the derivation is presented in Appendix B)

is the jacobian of



Since the exponent can be separated into factors, the
integrations can be performed separately. The results of such

integrations are
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Therefore, eqo (5.9) ‘cam be wmtten as
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Before performing the integration over p and q we take
the 1imit of N approaching infinity in both sums in eq. (5.14)
(this will not effect the results of the integration). As N

approaches infinity we get
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The intégra] parf of the eq. (5.14) can be written as
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The eq. (5.14) then becomes
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On substituting @/A) : (W/z%iﬁé)lz and = 2/(¢ 5! we

obtain the prefactor F(T) ;
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Using the identity



The eq. (5.25) then becomes
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As N approaches infinity, sin (Mﬁ)
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‘the prefactor in eq. (5.30) can be written as
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On substituting eq. (5.32) into eq. (5.22) we obtain
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We can see that by using the present _technique the

prefactor and the exponent of the classical action can be obtained

simultaneously.

5.3 Conclusions and Discussions

. In the presentitechnique we have put the boundafy points into
the path -integral and represent the paths as a cosine series. We
‘restrict ourselves to the discrete-time assumption and transform the
path integra],toAbe the mu1tip1e integrals of the coefficients of the
series. After performing the integrations and taking care of all
factors we obtain'fhe Product series and the sum of the exponents.
'Fina11y we take the 1imit N "approaches fnfiﬁity and find that the
broduct.series converées to be thel prefactor and .the sumes of the

exponent converge to be the classical action.

Since Feynman ‘and! Dévies did not use discrete-time assumption
they had to calculate the action funétion by direct integration.
Feynman used the free-particle 1imit to calculate the prefactor,
while Deviés could not obtain the prefactor. Mathematically, this
is due to the fact that the 1imit N approaches infinity was not
properly taken in his paper. 1In our calculation we use the summat ion

for calculating the action function and the limit N approaches
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infinity is taken at the final step. The prefactor and the classical

action could be thérefore obtained directly.
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