CHAPTER 3

 Feynman's Method

In this chapter we present Feynman's method for calculating
the harmonic-oscillator path integral., /1ln the first section we
introduce the form of the harmonic-osciltator path integral and
demonstrate the mathematica]»technfque used by Feynman for
separatﬁhg the harmonic-osegiliator propagatof into the prefactor and
the exponent of the classical acfi_on° In sec. 3.2 and 3.3 we
evaluate the classicalfaction and"the prefactor of thé harmonic-
oscillator propagator respectively.  In the last section we discuss
some of the mathematical/difficulties involved but were avoided by

Féynman.

3.1 Harmonic-Oscillator Path Integral

Let us consider the one-dimensional harmonic oscillator

problem where the 1agrangién of the'system is given by |
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For the sake of simplicity, let the péftic]e‘moves_from the point
xy at time t = 0 to the ‘point X, at time t =T. In the path
integral formalism, the propagator can be written as
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In order to separate the propagator in eq. (3.2) 1into two
parts, the prefactor and the exponent of classical action,

* Feynman described the path x(t) \by;means of the classical path x(t)

and the deviation from the classical path y(t) as

x by = ) b yth (3.4)

By this trick , the path differential x(t) can be represented by

y(t) and the action im'thé eq. (3.3) becomes
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where Sc] is the cTassical action and the resuiting integra] for
all terms which contain y(t) as linear factor in the integrand

vanishes. Feynman‘called this Simple integral ‘the' | "the Gaussian

Path Integral”. 4

On'substituting eq. {3.5) “into eq. (3.2)“we obtain

Kok, T3 x,,0) quxp% j_ﬂs&k' __ (3.6)
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where Fm = SﬁotglaxP%;Qt‘v)}g | (3.7)
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is only a function of the time at the end point. Since all paths
y(t) start from and return to the point y = 0. The path integrand

F(T) 1is called "the prefactor".

3.2 The Eva]uation of the Classical Action

To’ca]cu]ate the classical action we must first solve the

classical equation of motion

xty + wiiity =7 0 : (3.8)

with the boundary conditions /x{o) = x_., x(T) = Xp o

The standard method for solving the above equation gives

xdty = xaeoowt N | {Xb-XACoouoT@'mmt (3.9)
DINST
Since the c1assjca] action of the harmonic.oscillator can be
written as
. T X
: =2 7\ =1 ‘
660 = /‘_‘2‘ Xty dt - /W‘_ZVQ - 3w (by ot (3.10)
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.we can integrate by part to the first term_and by using, the

classicalyequation (3.9), .we obtain |

" E
%ea = M_/\_U.O i (la +xi)ct>ou\ﬂ‘ - Qxa’x_l ' (3-11)
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In the next section we shall evaluate the prefactor in eq. (3.7)

using Feynman's method.
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3.3 Harmonic-Oscillator Prefactor

To evaluate the prefactor Feynman represented the paths

y(t) as a Fourier sine series with a fundamental period of T , i.e.

g)m E %am""‘”"“:?t | (3.12)
Using this mathematical representations Feynman considered the paths
-as functions of the'coefficients of a, instead of y at any particular
value of t. This is a.linear transformation-whose jacobiaﬁ J s
a constant; which is eBviously ‘independent ofw., m, and H,

The integral for the acfionicanbbe written in terms |

of the Fourier series/of eq. (3.12)° The kinetic-energy term becomes

T ; 4 L .
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and similarly the potential=energy term becomes
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On the assumptionfof dividing the time T nto N discrete

steps of length €. , eq. (3.7). can be wiitten as
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-Since the exponent can be separated into factors, the integral over
each a, can be done separately. The result of one such integration

is
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Thus the path integral is proportional to
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The first product does not depend on W.and on combining it with
the jacobian ahd other factors, we get a constant. The second
factor has the 1limit [ _sih ngT/(foT"]"éL as N 50 , or

as € % 0O . Thus

F = C[ 'o;M“’T\ ; | (3.18)

where C is indepehdent of w. For W=0_ our integral is that

for a free pértic'le which we know to be ( chapteri3, Ref. 10 )
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Fay = KM—\ o (3.19) .

Hence for the harmdnic osciﬂator-we have

B - M _
Fm &27/& m‘wm] (3.20)

»'Substituting the eqs. (3.20) and (3.11) into the eq. (3.6) we

obtain the harmonic-oscillator propagator in the following form :
i . :
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3.4 Conclusion and Discussion

In calculating the “harmonic-oscillator propagator, Feynman
expressed all possible paths x(t) as the sum of the classical path
i(f) and the deviation from the classical path, y(t). He separated
the harmonic—oéci]]ator path integral into two parts, the prefactor

and the exponent of the classical actions :

Since the prefactor can beAexpressed as the path ihtegra]
with vanishing boundary points. Feynman expressed‘ y(t) as the
Fourier sine series and.transforméd,this path integral to be the
multiple intégra]s of . the Fouriéer coefficients.. Instead of using
a systematic method of performing direct ;a]cu]ation; he used the

free-particle 1imit to»eva1uate the “integrals.

At this point, one can see that 4f one wants to perform
direct calcu]afion one has to solve for the jacobian of transformation
and take care of all factors arising in the integrations. In the
following chapters we shall show that by using the‘present technique

the propagator can be determined of systematically.
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