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CHAPTER I

INTRODUCTION

The study of nonlinear heat equation has attracted attention for many decades.

In general, people consider the following initial boundary value problem of the

nonlinear heat equation

∂u

∂t
= 4u+ f(Du, u, x, t), x ∈ Ω, t > 0

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω

(1.1)

where u(x, t) is an unknown function defined on a domain Ω ⊂ Rn, t ∈ [0, T ], f

and g are given functions, and u0 is the initial state. This problem is used as a

mathematical model for many physical systems involving reaction diffusion type

phenomena. In 1960’s, H. Fujita, in his original paper [2], considered the model

case f = up on Ω = Rn, i.e.
∂u

∂t
= 4u+ up x ∈ Rn, t ∈ (0, T ]

u(x, 0) = u0(x)

(1.2)

where p > 1 is a constant and u0 is a nonnegative, nontrivial, bounded smooth

function in Rn. He proposed the concept of critical exponents during the discus-

sion of the heat conduction equation with a nonlinear source. In his study, he

showed that there is a critical value pc of the exponent p such that the solution u

of (1.2) behaves differently as p increases:
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1. if 1 < p < 1 + 2/n the solution for any nontrivial initial data u0 blows up in

a finite time, i.e. the supremum norm over x ∈ Rn of the solution is infinite

in a finite time T .

2. if p > 1 + 2/n the equation admits both a global (in time) solution if

the initial value u0 is sufficiently small and a blowing-up solution if u0 is

sufficiently large.

We remark that if 0 ≤ p ≤ 1, then there exist global (in time) solutions for

each initial datum.

The behavior of solutions to the problem (1.2) when p = 1+2/n was shown to

belong to the blow-up case (i.e. the first case above) by Hayakawa for n = 1, 2, and

by Kobayashi et.al. for general n ≥ 1. Same result as Kobayashi et.al. was also

derived by Weissler using different approach. Nowadays, the value p = 1 + 2/n is

called the Fujita critical exponent for the nonlinear heat equation (1.2).

Nowadays, this classical work by H. Fujita has initiated several other works

on blow-up phenomenon in many directions such as

1. the equation related to wave equations (utt = c4u+up), Quantum mechanics

(iut = 4u+ |u|p−1u), or higher order equations

2. the heat equation on manifold by changing the Laplace operator to Laplace-

Beltrami operator

3. the reaction and/or convection terms to up into a(x)up (autonomous equa-

tion) or a(x, t)up (non-autonomous equation)

4. the geometry of domains such as bounded domain Ω or exterior of a bounded

domain

5. the boundary condition
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6. the condition of solutions not necessary positive.

See [3] and [6] for more examples and some intuitive discussion of this result based

upon the observations of Fujita and others. Moreover, the study of many impor-

tant questions such as existence, uniqueness, continuous dependence of solution

and asymptotic properties has been carried out by many mathematicians.

A related result to that of Fujita was the work by C.P. Wang and S.N. Zheng

[7] in 2006 which also served as a motivation for our work. The authors studied

the critical Fujita exponent for the initial-value problem of the degenerate and a

parabolic equation of the form
|x|λ1

∂u

∂t
= 4um + |x|λ2up, x ∈ Rn, t > 0

u(x, 0) = u0(x),

where m ≥ 1, p > m and 0 ≤ λ1 ≤ λ2 < p(λ1 + 1)− 1. Their work was motivated

by a flow model in a channel of a fluid whose viscosity is temperature dependent.

For this equation, they have found the critical exponent to be

pc = m+
2 + λ2

n+ λ1

,

and the solution always blows up if p ≤ pc regardless of nontrivial u0, while if

p > pc, the solution can be either global (with sufficiently small initial data) or

blow-up (with sufficiently large initial data).

In 2009, C.P. Wang, Y. Cao and J. Yin studied in [2] the following third order

equation of the form
∂u

∂t
− k∂4u

∂t
= 4u+ up, x ∈ Rn, t > 0

u(x, 0) = u0(x),

(1.3)

where p > 0, k > 0, and u0(x) is nonnegative and smooth. In [2], the authors

have been able to find the critical exponent of the above nonlinear equation to be

p0 = 1 pc = 1 +
2

n
.
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The results of this paper are

1. there exists a global solution for any initial data u0 where 0 < p ≤ 1;

2. the solution blows up in a finite time if 1 < p ≤ pc;

3. in case p > pc, the solution can be either global (with sufficiently small

initial data) or blow-up (with sufficiently large initial data).

Moreover, some asymptotic properties of global solutions and blow-up time esti-

mations are also derived.

The equation (1.3) can also be regarded as a pseudo-parabolic equation, a

Sobolev type equation or a Sobolev-Galpern type equation (for more details see the

next chapter). Equations of the form (1.4) are usually used to explain mathemati-

cal and physical processes. For example, we can use them as mathematical models

to explain behaviors of liquids through a layer of rocks, to interpret the propa-

gation of population or to account the nonstationary process in semiconductors

etc.

In my thesis, motivated by [2] and [7], we consider the Cauchy problem of the

following semilinear pseudo-parabolic equation
∂u

∂t
− k∂4u

∂t
= 4u+ a(x)up, x ∈ Rn, t > 0

u(x, 0) = u0(x)

(1.4)

where 1 ≤ p <∞, k > 0 and a(x) > 0 is a continuous function satisfying

c|x|σ ≤ a(x) ≤ c∗|x|σ, (x ∈ Rn)

for some constants c, c∗ > 0, u0 is nonnegative and appropriately smooth as well

as σ > −2 are constants. In the case a(x) = 1 and k = 0, the equation (1.4) is the

well-known Cauchy problem studied by H. Fujita in [5] and is also the problem

studied by Wang et. al. if a(x) = 1.



5

In this thesis, we extend the main result of Wang et. al. [2] in to the more

general form (1.4). The appearance of the term a(x) for the Cauchy problem

(1.4) makes our proof more complicated than the proof of Wang et. al. for the

case a(x) = 1. We have to create inequalities in order to bound the terms having

the appearance of a(x). More importantly, we find the two interesting points of

the above equation, namely

pc1 = 1 +
(σ
n

)
+

pc2 = 1 +

(
σ + 2

n

)
,

where m+ = m if m > 0 and m+ = 0 if m < 0. When σ = 0, pc1 is the same

point as Wang et. al., so does the point pc2 . Furthermore, we study the behavior

of solutions for the Cauchy problem (1.4) in the cases:

pc1 < p < pc2 .

In this case, any nontrivial classical solution (1.4) blows up in a finite time re-

gardless of the initial condition. The main result is as follows:

Theorem 1. Let 1+
(σ
n

)
+
< p < 1+

σ + 2

n
and σ > −2. Then for any nontrivial

0 ≤ u0 ∈ C2+α(Rn) with a compact support, the nonnegative classical solution of

the Cauchy problem blows up in a finite time.

We conjecture that pc1 , pc2 are critical exponents and the behavior of solutions

for (1.4) are different from Wang et. al.However, to answer these questions requires

more techniques and time. We hope that this thesis will be the beginning of the

study to extend the work of Wang et. al. We also expect this thesis will give ideas

to other mathematicians who are curious about extending the work of Wang et.

al. or studying blow-up problems to different types of PDEs.

This paper is arranged into four chapters as follows.

In chapter 2, we introduce some fundamental facts, definitions and theories

in Partial Differential Equations as well as solutions of linear pseudo-parabolic
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equations. We begin constructing the important inequalities essential to prove

the integral estimate in chapter 3. Finally, chapter 4 contains our main results.



CHAPTER II

PRELIMINARIES

In this chapter, we give some basic concepts in PDEs which are omitted the

details of proofs. The proof can be found in common PDEs textbooks. They will

be used in this work and be presented as the following:

2.1 Basic Knowledge

Pseudoparabolic Equation

A pseudoparabolic equation is an arbitrary higher-order partial differential

equation with the first-order derivative with respect to time:

∂

∂t
(A(u)) +B(u) = 0

where A(u) and B(u) are elliptic operators, the differential operators that

generalize the Laplace operator

Example 1. The Barenblatt-Zheltov-Kochina equation

∂

∂t
(4u+ cu) +4u = 0, c ∈ R− {0}.

This equation is considered a linear equation and it describes nonstationary fil-

tering process in fissured-porous media.

Example 2. The Showalter equation

∂

∂t
(4u+ div(|∇u|p−2∇u)− u) + α4u+ α div(|∇u|p−2∇u) = 0.
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In some works, pseudoparabolic equations are equations in which the opera-

tor A(u) has a continuous inverse operator in appropriate Banach spaces; in the

opposite case, the equation is said to be a Sobolev-type equation.

The terms for a solution of pseudoparabolic equations (1.4)

∂u

∂t
− k∂4u

∂t
= 4u+ a(x)up, x ∈ Rn, t ≥ 0

are usually found as follow:

Definition 1. Classical Solution

A classical solution is the solution of which all derivatives appearing in the

equation (1.4) exist and are continuous.

Definition 2. Weak Solution

A function u(x, t) ∈ L2 (Rn × [0, T )) is called a weak solution of the initial

value problem (1.4) if and only if the equation

−
∫

Rn
u0ψ(x, 0) dx−

∫ T

0

∫
Rn
u∂tψ dxds+ k

∫
Rn
u04ψ(x, 0) dx

+k

∫ T

0

∫
Rn
u∂t4ψ dxds =

∫ T

0

∫
Rn
u4ψ dxds+

∫ T

0

∫
Rn
a(x)upψ dxds

(2.1)

is valid for all smooth functions ψ ∈ C∞c (Rn × [0, T )) where 0 < T <∞.

We observe that the integrands in (2.1) do not involve any derivatives of u.

That is the equation (2.1) remains well defined even if u or its derivatives have

discontinuities.

Definition 3. (Cao. Y et. al., 2009) Mild Solution

A solution u ∈ C([0, T ];C(Rn) ∩ L∞(Rn)) of the integral equation

u(x, t) = G(t)u0(x) +

∫ t

0

G(t− τ)Bup(x, τ) dτ

=

∫
Rn
G(x− y, t)u0(y) dy +

∫ t

0

dτ

∫
Rn
H(x− y, t− τ)up(y, τ) dy
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where

G(x, t) = (2π)
n
2 e
−t
k

∞∑
m=0

k−mtm

m!
Bm(x) ≥ 0, x ∈ R, t ≥ 0

H(x, t) = (2π)
n
2 e
−t
k

∞∑
m=0

k−mtm

m!
Bm+1(x) ≥ 0, x ∈ R, t ≥ 0,

with Bm being the Bessel-Macdonald kernel is called a mild solution of the Cauchy

problem (1.4) in [0, T ].

Definition 4.

1. A mild solution u of the Cauchy problem (1.4) is said to be a local solution

if the domain is Rn × [0, T ) where T <∞

2. A mild solution u of the Cauchy problem (1.4) is said to be a global solution

if the domain is Rn × [0,∞)

3. A mild solution u of the Cauchy problem (1.4) is said to be a blow-up solution

in a finite time if there exist 0 < T <∞ such that

lim
t→T−

‖u(·, t)‖L∞(Rn) =∞.

Theorem 2. Divergence Theorem

If u, ψ : U → R and ψ ∈ C1, u ∈ C2 and U ⊂ Rn is a bounded domain with

C1 boundary, then∫
U

ψ4u dx = −
∫
U

∇ψ · ∇u dx+

∫
∂U

ψ∂νu dσ

Here ∂ν denotes the outward directional derivative of the functions on the bound-

ary, and dσ is the surface measure of ∂U .
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Theorem 3. Gauss-Green Theorem

Let U be a bounded open subset of Rn and ∂U is C1. Suppose u ∈ C1(U).

Then ∫
U

uxi dx =

∫
∂U

uνi dσ (i = 1, 2, 3, ..., n)

Theorem 4. Integration-by-parts formula

Let U be a bounded, open subset of Rn and ∂U is C1. Let u, v ∈ C1(U). Then∫
U

uxiv dx = −
∫
U

uvxi dx+

∫
∂U

uvνi dσ (i = 1, 2, 3, ..., n)

An eigenfunction of an operator T is a function f such that the application

of T on f gives f again, times a constant, k,

Tf = kf.

f is said to be an eigenfunction of T with the eigenvalue k.

A radial function on Rn is a function whose value at each point depends

only on the distance between that point and the origin.

2.2 Solutions of Linear Pseudo-Parabolic Equations

In this section, we consider the solution of a linear pseudo-parabolic equation,
∂u

∂t
− k∂4u

∂t
= 4u, x ∈ Rn, t > 0

u(x, 0) = u0(x),

(2.2)

where k > 0 and u0 is nonnegative and appropriately smooth. We begin consider-

ing this linear equation before studying the nonlinear equation. At the beginning,

we will introduce some basic knowledge about the existence of weak solutions for

linear elliptic equations.
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Theorem 5. [4] Third Existence Theorem for weak solution

There exists an at most countable set Σ ⊂ R such that the boundary-value

problem 
Lu = λu+ f in U

u = 0, on ∂U

has a unique weak solution for each f ∈ L2(U) if and only if λ /∈ Σ.

Theorem 6. [4] Boundedness of the inverse

If λ /∈ Σ, there exists a constant C such that ‖u‖L2(U) ≤ C ‖f‖L2(U) , where

f ∈ L2(U) and u ∈ H1
0 (U) is the unique weak solution of

Lu = λu+ f in U

u = 0, on ∂U

The constant C depends only on λ, U and the coefficients of L.

The equation Lu = λu + f can be seen in view of the operator. That is

(L − λ)u = f where L − λ : H1
0 → L2 is the operator. From this theorem, we

get that (L− λ)−1 exist because f has the unique weak solution u. The operator

(L− λ)−1 is also bounded because u is bounded by f .

Moreover, we can prove that the operator

etA =
∞∑
n=0

tnAn

n!
= 1 + tA+

t2A2

2!
+
t3A3

3!
+ · · ·+ tnAn

n!
+ . . .

is bounded at each t if A : X → Y is a bounded linear operator in Banach spaces

X and Y as the following proposition

Proposition 1. Let A be a bounded linear operator. The operator etA is bounded

at each t.
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Proof. Consider

∥∥etA∥∥ =

∥∥∥∥∥
∞∑
n=0

tnAn

n!

∥∥∥∥∥ ≤
∞∑
n=0

|t|n ‖A‖n

n!
.

Since the operatorA is bounded and t is fixed, we get that the series
∞∑
n=0

|t|n ‖A‖n

n!

converges for each time t. Consequently, the operator etA is bounded.

The boundedness in Proposition (1) implies that the operator etA is continuous.

In fact, the operator etA is called a uniformly continuous semigroup, the map

t→ T (t) is continuous from [0,∞) to the Banach space L(X, Y ).

Proposition 2. Let A be a bounded linear operator. The Cauchy problem
vt = Av

v(0) = v0.

(2.3)

has a unique solution

v = etAv0.

Proof. It can be shown that etAv0 is a solution of the problem (2.3). For the

uniqueness, assume g, f ∈ X are the initial conditions of the following equations
vt = Av

v(0) = f


vt = Av

v(0) = g.

The solutions of two problems are v1(t) = etAf and v2(t) = etAg respectively.

Consider,

‖v1 − v2‖ =
∥∥etA(f − g)

∥∥ ≤ ∥∥etA∥∥ · ‖f − g‖ .
Since the operator A is bounded, if f = g, we see that v1(t) = v2(t). Therefore

the solution of the problem (2.3) is unique.
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Theorem 7. For each u0 ∈ L2(Rn)∩H2, the Cauchy problem (2.2) has a unique

solution.

Proof. From the equation (2.2), we define v = u−k4u = (I−k4)u. By theorem

(6), letting L = −k4 and λ = −1, we get that (I − k4)−1 exist and is bounded.

Then,

dv

dt
=

d

dt
[u− k4u] = 4(I − k4)−1v

=
1

k
[I − I (I − k4)] (I − k4)−1 v

=

(
1

k
(I − k4)−1 − 1

k
I

)
v. (2.4)

Let A =
1

k
(I − k4)−1 − 1

k
I. The equation (2.4) can be written as


vt = Av

v(x, 0) = (I − k4)u0(x)

(2.5)

The operator A is bounded and linear, hence we get that

v(x, t) = etA (I − k4)u0(x)

by the proposition (2). Since v = u− k4u = (I − k4)u, we get

u(x, t) = (I − k4)−1etA (I − k4)u0(x)

is a solution of the Cauchy problem (2.2).



CHAPTER III

INTEGRAL ESTIMATES

In this chapter, we derive a crucial integral estimate for solutions of the fol-

lowing initial-valued problem
∂u

∂t
− k∂4u

∂t
= 4u+ a(x)up, x ∈ Rn, t > 0

u(x, 0) = u0(x)

(1.4)

where p > 1, k > 0 are constants, a(x) > 0 is a continuous function satisfying

c|x|σ ≤ a(x) ≤ c∗|x|σ, (x ∈ Rn)

for some constants c, c∗ > 0, and u0 is an initial condition.

We assume u is a nonnegative classical solution, i.e. it is C2 in x and is C1 in

t. u0 has a compact support. Throughout this chapter, let B1 := B1(0) denote

the unit disk in Rn.

Let ϕ : B1 → R be the principal eigenfunction of the Laplacian −4 in B1 with

the homogeneous Dirichlet boundary condition. In other words, ϕ is a nontrivial

C2 function on B1 satisfying
4ϕ+ λϕ = 0 in B1,

ϕ|∂B1 = 0

where λ ∈ R is a constant which is smallest so that such a function exists.

It is a basic fact that ϕ = ϕ(|x|), i.e. ϕ is a radial function, and ϕ can be

normalized so that

ϕ(0) = 1, ϕ′(0) = 0, ϕ′(t) < 0 for all 0 < t ≤ 1,
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where we have regarded ϕ as a function of one variable. In addition, we set

ϕ(t) = 0 if t > 1, ϕ(t) = 1 if t ≤ 0.

Test Functions. For ` > 0, let ψ` : Rn → R be defined by

ψ`(x) = ϕ
( |x|
`
− 1
)

(3.1)

It is important to note that ψ` ∈ C1 on B2`(0), but it is not C1 on Rn; in fact,

∇ψ` does not exist on

∂B2`(0).

The fact that ψ` is not C1 on the whole Rn will be reflected in the next chapter.

This proof is arranged into four steps as follows:

3.1 Employing the Divergence Theorem

Now let u = u(x, t) be a classical solution of (1.4). For ` > 0, we multiply the

equation (1.4) with the test function (3.1), ψ`(x), and then integrate over BR(0)

for R > 2` and ` > 1 to get

d

dt

∫
BR(0)

(u− k4u)ψ` dx =

∫
BR(0)

(4u+ a(x)up)ψ` dx. (3.2)

Consider the Laplacian terms, using the divergence theorem we have∫
BR(0)

ψ`4u dx =

∫
B2`(0)

ψ`4u dx = −
∫
B2`(0)

∇ψ` · ∇u dx+

∫
∂B2`(0)

ψ`∂νu dσ

where we have used the fact that ψ` is the test function, i.e., ψ` ∈ C1 on B2`(0)

and ψ`(x) = 0 if |x| > 2`. Since ψ` = 0 on ∂B2`(0), we find that∫
BR(0)

ψ`4u dx = −
∫
B2`(0)

∇ψ` · ∇u dx. (3.3)

To proceed further, we must be careful because ∇ψ` is not C1 on B2`(0). We

split B2`(0) into two sets

B2`(0) = U1 ∪ U2
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where

U1 :=
{
|x| ≤ `

}
, U2 :=

{
` ≤ |x| ≤ 2`

}
.

It is immediate that ∇ψ` = 0 on U1 since ψ` is constant there. Thus

−
∫
U1

∇ψ` · ∇u dx = 0.

On U2, ψ`(x) = ϕ(|x|/` − 1) and ϕ is C∞ there, hence applying the divergence

theorem to get

−
∫
U2

∇ψ` · ∇u dx =

∫
U2

u4ϕ(|x|/`− 1) dx−
∫
∂U2

u∂νϕ(|x|/`− 1) dσ

= − λ
`2

∫
U2

uϕ(|x|/`− 1) dx− 1

`

∫
|x|=2`

uϕ′(|x|/`− 1) dσ.

We have used the fact that 4ϕ(x) = −λϕ(x).

Therefore, we arrive at the following conclusion.

Lemma 1. For all t ≥ 0 and R > 2`, we have∫
BR(0)

ψ`4u dx = − λ
`2

∫
`≤|x|≤2`

uϕ

(
|x|
`
− 1

)
dx− 1

`

∫
|x|=2`

uϕ′
(
|x|
`
− 1

)
dx.

3.2 Integrating w.r.t. Time

Next we integrate the equation (3.2) with respect to time over [0, t] to get∫
BR(0)

(u−k4u)ψ` dx−
∫
BR(0)

(u0−k4u0)ψ` dx =

∫ t

0

∫
BR(0)

(4u+a(x)up)ψ` dxds

Rewrite it to find that∫
BR(0)

uψ` dx = k

∫
BR(0)

ψ`4u dx+

∫
BR(0)

(u0 − k4u0)ψ` dx

+

∫ t

0

∫
BR(0)

ψ`4u dxds+

∫ t

0

∫
BR(0)

a(x)upψ` dxds.

We estimate the terms on the right hand side as follows.
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The term of u0: Let ` be sufficiently large so that suppu0 ⊂ B2`(0). Then by

Lemma 1 above, we get∫
BR(0)

(u0 − k4u0)ψ` dx =

∫
BR(0)

u0ψ` dx+
kλ

`2

∫
`≤|x|≤2`

u0ϕdx+
1

`

∫
|x|=2`

u0ϕ
′ dx

≥
∫
BR(0)

u0ψ` dx.

The forth term is zero because u0 has a compact support.

The first Laplacian of u: By lemma 1, then∫
BR(0)

ψ`4u dx = − λ
`2

∫
`≤|x|≤2`

uϕ dx− 1

`

∫
|x|=2`

uϕ′ dx

≥ − λ
`2

∫
`≤|x|≤2`

uϕ dx

≥ − λ
`2

∫
BR(0)

uψ` dx,

since ϕ′ ≤ 0 at |x| = 2`.

The second Laplacian of u: As the equation (3.3), we use Divergence theorem

again as ∫
BR(0)

ψ`4u dx =

∫
B2`(0)

u4ψ` dx−
1

`

∫
|x|=2`

uϕ′(|x|/`− 1) dσ

Using the fact that ϕ′ ≤ 0, we get∫
BR(0)

ψ`4u dx ≥
∫
B2`(0)

u4ψ` dx.

So ∫ t

0

∫
BR(0)

ψ`4u dx ≥ −
∫ t

0

∫
BR(0)

u|4ψ`| dx.

Combining the above three estimates, we see that∫
BR

uψ` dx ≥
1

1 + kC0`−2

(∫
BR

u0ψ` dx−
∫ t

0

∫
BR

u|4ψ`| dxds+
∫ t

0

∫
BR

a(x)upψ` dxds

)
.

Taking R→∞ and using that a(x) ≥ c|x|σ, it follows that
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Lemma 2. Suppose ` > 0 is sufficiently large so that suppu0 ⊂ B2`(0). Then∫
Rn
uψ` dx ≥

1

1 + kC0`−2

(∫
Rn
u0ψ` dx−

∫ t

0

∫
Rn
u|4ψ`| dxds+c

∫ t

0

∫
Rn
|x|σupψ` dxds

)
where c, C0 > 0 are constants.

3.3 Using Hölder’s Inequality

Now we estimate ∫
Rn
u|4ψ`| dx

by using the Hölder’s inequality. Recall the constant p in the nonlinear term of

our equation satisfies p > 1. To justify the following calculation, let

Ω = {x : ` < |x| < 2`}.

Then ψ` > 0 in Ω. By Hölder’s inequality, we have∫
Rn
u|4ψ`| dx =

∫
Ω

u|4ψ`| dx

≤
(∫

Ω

|x|σupψ` dx
)1/p(∫

Ω

|x|−σ/(p−1)|4ψ`|p/(p−1)ψ
−1/(p−1)
` dx

)(p−1)/p

We make the following claim.

Claim. There is a constant C > 0 such that

|4ψ`|p/(p−1)ψ
−1/(p−1)
` ≤ C/`2p/(p−1) if x ∈ Ω,

Proof of Claim. In Ω we have ψ`(x) = ϕ
( |x|
`
− 1
)
. So the required inequality

is true on ` < |x| < 2` since

4ϕ(|x|/`− 1)| = 1

`2
λϕ(x) ≤ λ

`2
ϕ1/p.

the claim then follows. �
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Using the claim, then∫
Ω

|x|−σ/(p−1)|4ψ`|p/(p−1)ψ
−1/(p−1)
` dx

≤ C`−2p/(p−1)

∫
`<|x|<2`

|x|−σ/(p−1) dx

≤ C`−2p/(p−1)

∫ 2`

`

rn−1−σ/(p−1)dr.

From that

∫ 2`

`

rn−1−σ/(p−1)dr ≤


C`(n− σ

p−1
), n 6= σ

p−1
,

C, n = σ
p−1

hence, ∫
Ω

|x|−σ/(p−1)|4ψ`|p/(p−1)ψ
−1/(p−1)
` dx ≤ C`(n−σ+2p

p−1
).

Therefore, we have∫
Rn
u|4ψ`| dx ≤ C

(
`(n−σ+2p

p−1
)
) p−1

p

(∫
Ω

|x|σupψ` dx
)1/p

From lemma(2), we get∫
Rn
uψ` dx ≥

1

1 + kC0`−2

{∫
Rn
u0ψ` dx+

∫ t

0

[
c

∫
Rn
|x|σupψ` dx

− C
(
`n−

σ+2p
p−1

) p−1
p
(∫

Ω

|x|σupψ` dx
)1/p

]
ds

}
We summarize our calculation above.

Lemma 3. If ` > 0 is sufficiently large so that suppu0 ⊂ B2`(0), then∫
Rn
uψ` dx ≥

1

1 + kC0`−2

{∫
Rn
u0ψ` dx+

∫ t

0

(∫
Rn
|x|σupψ` dx

)1/p
[

c
(∫

Rn
|x|σupψ` dx

)(p−1)/p

− C
(
`n−

σ+2p
p−1

) p−1
p

]
ds

}
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3.4 Last Estimate

We further estimate the term∫
Rn
|x|σupψ` dx

as follows. Using Hölder’s inequality then∫
Rn
|x|σupψ` dx ≥

(∫
Rn
uψ` dx

)p(∫
Rn
|x|−σ/(p−1)ψ` dx

)−(p−1)

(3.4)

and if p > 1 +
σ

n
, then

∫
Rn
|x|−σ/(p−1)ψ` dx =

∫ 2`

0

rn−1−σ/(p−1) dr = C`(n− σ
p−1

)

Thus ∫
Rn
|x|σupψ` dx ≥ C1

(∫
Rn
uψ` dx

)p
`σ−n(p−1). (3.5)

Now we define

w`(t) =

∫
Rn
u(x, t)ψ`(x) dx, t ≥ 0.

Using this estimate and the previous lemma, we get

w`(t) ≥
1

1 + kC0`−2

{
w`(0) +

(
C1`

σ−n(p−1)
) 1
p

∫ t

0

w`(s)

[
cC

p−1
p

1 wp−1
` (s)

(
`σ−n(p−1)

) p−1
p − C

(
`n−

σ+2p
p−1

) p−1
p

]
ds

}
(3.6)

Next we compare the two important terms

`(σ−n(p−1)) p−1
p := `A ⇒ A = (σ − n(p− 1))

p− 1

p

and the other

`(n−σ+2p
p−1

) p−1
p = `

n(p−1)−σ−2p
p := `B ⇒ B =

n(p− 1)− σ − 2p

p
.

From the equation (3.6), we consider p in the cases 1 +
σ

n
< p < 1 +

σ + 2

n
.
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Proposition 3.

If 1 +
σ

n
< p < 1 +

σ + 2

n
then B < A.

Proof. To prove the proposition, we first show that the assumption p < 1 +
σ + 2

n

implies B < A. Consider

A−B =
p− 1

p
(σ − n(p− 1))− n(p− 1)− σ − 2p

p

= n
(

1 +
σ + 2

n
− p
)
> 0.

This proves the proposition. �



CHAPTER IV

THEOREM ON CRITICALS EXPONENTS

In this chapter, we prove the main result on the critical exponents for classical

solutions of the Cauchy problem. According to the Introduction in chapter 1, the

main theorem is stated as follows .

Theorem 1 Let 1 +
(σ
n

)
+
< p < 1 +

σ + 2

n
and σ > −2. Then for any nontrivial

0 ≤ u0 ∈ C2+α(Rn) with a compact support, the nonnegative classical solution of

the Cauchy problem blows up in a finite time.

Proof. We will split this theorem into several parts in order to make it easy to

understand and follow.

From the inquality (3.6),

w`(t) ≥
1

1 + kC0`−2

{
w`(0) +

(
C1`

σ−n(p−1)
) 1
p

∫ t

0

w`(s)

[
cC

p−1
p

1 wp−1
` (s)

(
`σ−n(p−1)

) p−1
p

− C
(
`n−

σ+2p
p−1

) p−1
p

]
ds

}
For convenience, we let

R =
1

1 + kC0

R2 = cC
p−1
p

1

(
`σ−n(p−1)

) p−1
p

R1 =
(
C1`

σ−n(p−1)
) 1
p

R3 = C
(
`n−

σ+2p
p−1

) p−1
p

.

Thus the inequality (3.6) can be rewritten

w`(t) ≥ R

(
w`(0) +R1

∫ t

0

w`(s)

[
R2w

p−1
` (s)−R3

]
ds

)
. (4.1)
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Step 1

In this step, we give a condition to show that the classical solution blows up

in a finite time. In the proposition (3), we get

n(p− 1)− σ − 2p

p
<
p− 1

p
(σ − n(p− 1))

Since w`(t) is continuous, there is t0 > 0 such that

w`(t0) > Rw`(0) and w`(t) ≥ Rw`(0) ∀t ∈ [0, t0].

Let t ∈ [0, t0]. From (4.1),

w`(t) ≥ R

(
w`(0) +R1

∫ t

0

w`(s)

[
R2w

p−1
` (s)−R3

]
ds

)
≥ R

(
w`(0) +R1

∫ t

0

w`(s)

[
Rp−1R2w

p−1
` (s)−R3

]
ds

)
. (4.2)

As the classical solution u is nonnegative, we also get that w`(t) ≥ 0. From the

proposition (3), we fix ` > 0 sufficiently large such that

` ≥ 1 +

2C2(1 + kC0)p−1

cC
p−1
p

1 wp−1
` (0)

 1
σ+2+n−np

. (4.3)

Then, from (4.2),

w`(t) ≥ R

(
w`(0) +R1

∫ t

0

w`(s)

[
−R3 +

1

2
R2w

p−1
` (s) +

1

2
R2w

p−1
` (s)

]
ds

)
> R

(
w`(0) +

1

2
R1R2

∫ t

0

wp` (s)ds

)
∀t ∈ [0, t0]. (4.4)

Step 2 Construct the Lemma

This lemma is essential to construct the inequality related to prove that the

solution is blow up at a finite time.
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Lemma 4. w`(t) ≥ Rw`(0) ∀t ≥ 0 where R is a constant independent of `.

Proof. We have already known that w`(t0) > Rw`(0) and w`(t) ≥ Rw`(0) ∀t ∈

[0, t0] for some t0 > 0. Define

A = {t ≥ 0|w`(t) ≥ Rw`(0)} and TM = sup {t ≥ 0| [0, t] ⊆ A}.

We see that TM ≥ 0. As TM − 1
n
< TM , we get there exist tn ∈ {t ≥ 0| [0, t] ⊆ A}

such that TM− 1
n
< tn < TM . We also see that tn ↗ TM and w`(tn) ≥ Rw`(0), ∀n.

From (4.4),

w`(tn) ≥ R

{
w`(0) +

1

2
R1R2

∫ tn

0

wp` (s) ds

}
≥ R

{
w`(0) +

1

2
R1R2

∫ tn

0

(Rw`(0))p ds

}
≥ R

{
w`(0) +

1

2
R1R2(Rw`(0))ptn

}
Since w` is continuous and tn ↗ TM , we get that

w`(TM) ≥ R

{
w`(0) +

1

2
R1R2(Rw`(0))pTM

}
> Rw`(0).

If TM were finite, then [0, TM + 1
n
] * A. We get there exist xn ∈ (TM , TM + 1

n
]

such that w`(xn) < Rw`(0). So,

w`(xn) < Rw`(0) < w`(TM).

Since xn ∈ (TM , TM + 1
n
], xn → TM . We get w`(TM) ≤ Rw`(0) < Rw`(0), a

contradiction. This means that TM is infinite, i.e., w`(t) ≥ Rw`(0) ∀t ≥ 0.

Step 3 ODE inequality

We will set up the inequality which results in blowing up of the solution.

By the above lemma and the selected ` in (4.3), we get

1

2
R2w

p−1
` (s)−R3 ≥ 0 ∀s ∈ [0, t], ∀t ≥ 0.
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Then

w`(t) ≥ R

(
w`(0) +R1

∫ t

0

w`(s)

[
R2w

p−1
` (s)−R3

]
ds

)
= R

(
w`(0) +R1

∫ t

0

w`(s)

[
−R3 +

1

2
R2w

p−1
` (s) +

1

2
R2w

p−1
` (s)

]
ds

)
≥ R

(
w`(0) +

1

2
R1R2

∫ t

0

wp` (s)ds

)
∀t ≥ 0. (4.5)

Let δ = 1
2
R1R2 = 1

2
cC1`

σ−n(p−1) and

v(m) = w`(0) + δ

∫ m

0

wp` (s) ds, ∀m ≥ 0.

By Fundamental Theorem of Calculus, we get

d

dm
v(m) = δwp` (m) ≥ δ{Rv(m)}p∫ t

0

1

vp
dv ≥

∫ t

0

δRp dm

v1−p

1− p

∣∣∣∣m=t

m=0

≥ δRpm

∣∣∣∣m=t

m=0

v1−p(t)

1− p
≥ δtRp +

v1−p(0)

1− p
= δtRp +

w1−p
` (0)

1− p

v1−p(t) ≤ (1− p)δtRp + w1−p
` (0) ; 1 < p

Thus,

v(t) ≥
(

1

(1− p)δtRp + w1−p
` (0)

) 1
p−1

. (4.6)

If (1− p)δT ∗Rp + w1−p
` (0) = 0, we get

T ∗ =
w1−p
` (0)

(p− 1)δRp
=

w1−p
` (0)

(p− 1)(1/2)R1R2Rp

=
2

(p− 1)RpR1R2w
p−1
` (0)

=
2(1 + kC0)p

(p− 1)cC1w
p−1
` (0)

· `np−n−σ

From (4.6), if t→ T ∗, we get the right hand side of the inequality is infinite. This

implies that lim
t→T ∗

v(t) =∞. It leads to

w`(t) =

∫
Rn
u(x, t)ψ`(x) dx→∞ as t→ T ∗,
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which implies ‖u(·, t)‖L∞ → ∞ as t → T ∗ because

∫
Rn
u(x, t)ψ`(x) dx →

∞ as t → T ∗ and ‖ψ`(x)‖L∞(Rn) ≤ 1, if we assume that u(x, t) were not blow

up as t→ T ∗, then |u(x, t)| ≤M for some M > 0 and for all x ∈ Rn and t ≤ T ∗.

Consider ∣∣∣∣∫
Rn
u(x, t)ψ`(x) dx

∣∣∣∣ =

∣∣∣∣∫
B2`

u(x, t)ψ`(x) dx

∣∣∣∣
≤
∫
B2`

|u(x, t)ψ`(x)| dx

≤
∫
B2`

M · 1 dx ≤M · V ol(B2`) <∞,

a contradiction the fact that w`(t) =

∫
Rn
u(x, t)ψ`(x) dx → ∞ as t → T ∗. So

u(x, t) blows up in a finite time.
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