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CHAPTER 1

INTRODUCTION

The study of nonlinear heat equation has attracted attention for many decades.
In general, people consider the following initial boundary value problem of the

nonlinear heat equation

)
%:Au—l—f(Du,u,:c,t), xreN,t>0
u(z,t) = g(x,t), x €I t>0 (1.1)
\u(az, 0) = up(x), x e

where u(x,t) is an unknown function defined on a domain Q@ C R™, ¢t € [0,T], f
and g are given functions, and wug is the initial state. This problem is used as a
mathematical model for many physical systems involving reaction diffusion type
phenomena. In 1960’s, H. Fujita, in his original paper [2], considered the model
case f =uP on 2 =R", i.e.

0
_u:Au+up xER",tG(OvT]

ot (1.2)
u(z,0) = ug(x)
where p > 1 is a constant and ug is a nonnegative, nontrivial, bounded smooth
function in R™. He proposed the concept of critical exponents during the discus-
sion of the heat conduction equation with a nonlinear source. In his study, he

showed that there is a critical value p. of the exponent p such that the solution

of (1.2)) behaves differently as p increases:



1. if 1 < p < 14 2/n the solution for any nontrivial initial data uo blows up in
a finite time, i.e. the supremum norm over z € R" of the solution is infinite

in a finite time 7.

2. if p > 1+ 2/n the equation admits both a global (in time) solution if
the initial value ug is sufficiently small and a blowing-up solution if uq is

sufficiently large.

We remark that if 0 < p < 1, then there exist global (in time) solutions for
each initial datum.

The behavior of solutions to the problem ([1.2)) when p = 1+2/n was shown to
belong to the blow-up case (i.e. the first case above) by Hayakawa for n = 1,2, and
by Kobayashi et.al. for general n > 1. Same result as Kobayashi et.al. was also
derived by Weissler using different approach. Nowadays, the value p = 14 2/n is
called the Fujita critical exponent for the nonlinear heat equation .

Nowadays, this classical work by H. Fujita has initiated several other works

on blow-up phenomenon in many directions such as

1. the equation related to wave equations (uy = cAu4uP), Quantum mechanics

(iuy = Au+ |u[P71u), or higher order equations

2. the heat equation on manifold by changing the Laplace operator to Laplace-

Beltrami operator

3. the reaction and/or convection terms to u” into a(z)u? (autonomous equa-

tion) or a(x,t)u? (non-autonomous equation)

4. the geometry of domains such as bounded domain €2 or exterior of a bounded

domain

5. the boundary condition



6. the condition of solutions not necessary positive.

See [3] and [6] for more examples and some intuitive discussion of this result based
upon the observations of Fujita and others. Moreover, the study of many impor-
tant questions such as existence, uniqueness, continuous dependence of solution
and asymptotic properties has been carried out by many mathematicians.

A related result to that of Fujita was the work by C.P. Wang and S.N. Zheng
[7] in 2006 which also served as a motivation for our work. The authors studied
the critical Fujita exponent for the initial-value problem of the degenerate and a

parabolic equation of the form

0
])‘18—1: = Au™ 4 |z2uP, reR"t>0

u(z,0) = ug(x),

|z

where m > 1, p >m and 0 < A\; < Ay < p(A; +1) — 1. Their work was motivated
by a flow model in a channel of a fluid whose viscosity is temperature dependent.

For this equation, they have found the critical exponent to be

24+ Ao
n—i—)\l’

pc:m_l'

and the solution always blows up if p < p. regardless of nontrivial ug, while if
p > pe, the solution can be either global (with sufficiently small initial data) or

blow-up (with sufficiently large initial data).

In 2009, C.P. Wang, Y. Cao and J. Yin studied in [2] the following third order

equation of the form

%—k@zﬁu—ku”, reR"t>0
ot ot (1.3)

u(z,0) = up(x),
where p > 0, k > 0, and ug(z) is nonnegative and smooth. In [2], the authors

have been able to find the critical exponent of the above nonlinear equation to be

2
p0:1 pc:1+_
n



The results of this paper are

1. there exists a global solution for any initial data uy where 0 < p < 1;
2. the solution blows up in a finite time if 1 < p < p,;

3. in case p > p., the solution can be either global (with sufficiently small

initial data) or blow-up (with sufficiently large initial data).

Moreover, some asymptotic properties of global solutions and blow-up time esti-
mations are also derived.

The equation can also be regarded as a pseudo-parabolic equation, a
Sobolev type equation or a Sobolev-Galpern type equation (for more details see the
next chapter). Equations of the form are usually used to explain mathemati-
cal and physical processes. For example, we can use them as mathematical models
to explain behaviors of liquids through a layer of rocks, to interpret the propa-
gation of population or to account the nonstationary process in semiconductors
etc.

In my thesis, motivated by [2] and [7], we consider the Cauchy problem of the
following semilinear pseudo-parabolic equation

Ou 98U _ nuta(@)t,  wERMES0
ot "o (1.4)

u(z,0) = ug(x)

where 1 < p < 00,k > 0 and a(z) > 0 is a continuous function satisfying
clzl” < a(z) < |z, (x € R")

for some constants ¢, ¢* > 0, ug is nonnegative and appropriately smooth as well
as 0 > —2 are constants. In the case a(z) =1 and k = 0, the equation (1.4)) is the
well-known Cauchy problem studied by H. Fujita in [5] and is also the problem

studied by Wang et. al. if a(z) = 1.



In this thesis, we extend the main result of Wang et. al. [2] in to the more
general form (1.4). The appearance of the term a(x) for the Cauchy problem
(1.4) makes our proof more complicated than the proof of Wang et. al. for the
case a(x) = 1. We have to create inequalities in order to bound the terms having
the appearance of a(x). More importantly, we find the two interesting points of

the above equation, namely

o o+2
Pey :1_'_(_) p02:1+ )
n/+ n

where my = m if m > 0 and my = 0 if m < 0. When o = 0, p., is the same

point as Wang et. al., so does the point p.,. Furthermore, we study the behavior

of solutions for the Cauchy problem ([1.4)) in the cases:

Per <P < Pey-

In this case, any nontrivial classical solution (1.4]) blows up in a finite time re-

gardless of the initial condition. The main result is as follows:

o+ 2

Theorem 1. Let 1+ (z) <p<l+ and o > —2. Then for any nontrivial
n/+4
0 < ug € C**(R™) with a compact support, the nonnegative classical solution of

the Cauchy problem blows up in a finite time.

We conjecture that p,,, p., are critical exponents and the behavior of solutions
for are different from Wang et. al. However, to answer these questions requires
more techniques and time. We hope that this thesis will be the beginning of the
study to extend the work of Wang et. al. We also expect this thesis will give ideas
to other mathematicians who are curious about extending the work of Wang et.
al. or studying blow-up problems to different types of PDEs.

This paper is arranged into four chapters as follows.

In chapter 2, we introduce some fundamental facts, definitions and theories

in Partial Differential Equations as well as solutions of linear pseudo-parabolic



equations. We begin constructing the important inequalities essential to prove

the integral estimate in chapter 3. Finally, chapter 4 contains our main results.



CHAPTER II

PRELIMINARIES

In this chapter, we give some basic concepts in PDEs which are omitted the
details of proofs. The proof can be found in common PDEs textbooks. They will

be used in this work and be presented as the following:

2.1 Basic Knowledge

Pseudoparabolic Equation
A pseudoparabolic equation is an arbitrary higher-order partial differential

equation with the first-order derivative with respect to time:

0
E(A(u)) + B(u) =0

where A(u) and B(u) are elliptic operators, the differential operators that

generalize the Laplace operator

Example 1. The Barenblatt-Zheltov-Kochina equation

%(Au—l—cu)%—&u:(), c € R—{0}.

This equation is considered a linear equation and it describes nonstationary fil-

tering process in fissured-porous media.

Example 2. The Showalter equation

%(Au + div(|VuP?Vu) — u) + aAu + adiv(|Vu|’"2Vu) = 0.



In some works, pseudoparabolic equations are equations in which the opera-
tor A(u) has a continuous inverse operator in appropriate Banach spaces; in the
opposite case, the equation is said to be a Sobolev-type equation.

The terms for a solution of pseudoparabolic equations

ou IS JANY)
—_— —_— P n >
5 kat Au+a(x)uP, € R t>0

are usually found as follow:

Definition 1. Classical Solution
A classical solution is the solution of which all derivatives appearing in the

equation exist and are continuous.

Definition 2. Weak Solution
A function u(x,t) € L*(R" x [0,T)) is called a weak solution of the initial

value problem if and only if the equation

T
—/ up(x, 0) dx—/ / uatwdxds—Fk/ upAp(x,0) dx
R n R
T § i T
—i—k:/ / w0 A dxds = / / ulNp dxds —i—/ / a(z)uPy dxds
0o Jrr o Jrn 0o Jrn
(2.1)
is valid for all smooth functions 1» € C°(R"™ x [0,T)) where 0 < T < oo.
We observe that the integrands in (2.1)) do not involve any derivatives of w.

That is the equation ([2.1)) remains well defined even if u or its derivatives have

discontinuities.

Definition 3. (Cao. Y et. al., 2009) Mild Solution

A solution v € C([0,T]; C(R™) N L*(R™)) of the integral equation
¢
u(z,t) = G(t)up(x) —I—/ G(t —7)Buf(x,7) dr
0

t
— [ Gy, uoly) dy + / dr [ H(z =yt =m0y, 7 dy
0 R7

Rn



where
G(IL’ t)—<271)g€kt E —k "t B (I)>0 IERt>0
’ 0 m! m - T
H(ZL’ t) = (27K)g€kt E —k ¢ B (I)>O reR t>0
) A m' m—+41 - Y, y U Yy

with B,, being the Bessel-Macdonald kernel is called a mild solution of the Cauchy

problem in [0, 7.
Definition 4.

1. A mild solution u of the Cauchy problem 18 said to be a local solution

if the domain is R™ x [0,T") where T' < oo

2. A muld solution u of the Cauchy problem is said to be a global solution

if the domain is R™ x [0, 00)

3. A mild solution u of the Cauchy problem 18 said to be a blow-up solution

n a finite time if there exist 0 <T < o0 such that

li )| 700 (pmy = 00-
tj%}_||“(>)||L Rr) = X

Theorem 2. Divergence Theorem
Ifu,p : U - R and € Ct, u e C? and U C R" is a bounded domain with

C' boundary, then

/1/1Audx:—/v¢-Vudx+ Yo, udo
U U

oU
Here 0, denotes the outward directional derivative of the functions on the bound-

ary, and do is the surface measure of OU.



Theorem 3. Gauss-Green Theorem

Let U be a bounded open subset of R™ and OU is C*. Suppose u € CY(U).
Then

/uxid:v:/ w'do (i=1,2,3,...,n)
U ouU

Theorem 4. Integration-by-parts formula

Let U be a bounded, open subset of R™ and OU is C'. Let u,v € CY(U). Then

/uxivdx:—/uvxi dx+/ wrv'de (i=1,2,3,...,n)
U U ou

An eigenfunction of an operator T is a function f such that the application

of T on f gives f again, times a constant, k,

Tf = kf.

f is said to be an eigenfunction of 7" with the eigenvalue k.
A radial function on R” is a function whose value at each point depends

only on the distance between that point and the origin.

2.2 Solutions of Linear Pseudo-Parabolic Equations

In this section, we consider the solution of a linear pseudo-parabolic equation,

ou 0Au .

u(z,0) = ug(x),

(2.2)

where k£ > 0 and ug is nonnegative and appropriately smooth. We begin consider-
ing this linear equation before studying the nonlinear equation. At the beginning,
we will introduce some basic knowledge about the existence of weak solutions for

linear elliptic equations.
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Theorem 5. [/ Third Existence Theorem for weak solution
There exists an at most countable set ¥ C R such that the boundary-value
problem
Lu=Mu—+f in U
u =0, on OU
has a unique weak solution for each f € L*(U) if and only if X & X.
Theorem 6. [J]] Boundedness of the inverse
If X ¢ X, there exists a constant C such that  |[ul| 2y < ClIfll 2y » where
f € L*U) and u € H{(U) is the unique weak solution of
Lu= M+ f in U
u =70, on OU
The constant C' depends only on X\, U and the coefficients of L.
The equation Lu = Au + f can be seen in view of the operator. That is
(L — XNu = f where L — X\ : H} — L? is the operator. From this theorem, we
get that (L — \)~! exist because f has the unique weak solution u. The operator

(L — X\)~! is also bounded because u is bounded by f.

Moreover, we can prove that the operator

AT S e e

> tnAn t2A2 t3./43 tnAn
etA:Z + ...

n=0
is bounded at each t if A : X — Y is a bounded linear operator in Banach spaces

X and Y as the following proposition

A

Proposition 1. Let A be a bounded linear operator. The operator e** is bounded

at each t.
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Proof. Consider

o0 o
A" " [1A]"
tA|] _
le =12 =l =2
n=0 n=0
o n n
. . . . " JlAl
Since the operator A is bounded and ¢ is fixed, we get that the series Z ‘
n!
n=0
converges for each time t. Consequently, the operator e** is bounded. O

The boundedness in Proposition (1) implies that the operator e** is continuous.

A

In fact, the operator e is called a uniformly continuous semigroup, the map

t — T(t) is continuous from [0, c0) to the Banach space L(X,Y).

Proposition 2. Let A be a bounded linear operator. The Cauchy problem

vy = Av
(2.3)
v(0) = vp.
has a unique solution
v = ey,

Proof. Tt can be shown that e, is a solution of the problem (2.3). For the

uniqueness, assume ¢, f € X are the initial conditions of the following equations
v = Av vy = Av

v(0)=f |v(0) =g

The solutions of two problems are v(t) = e f and vy(t) = eg respectively.

Consider,

lor = vall = [|e"*(f = || < [[e]| - 1 — gl

Since the operator A is bounded, if f = g, we see that v;(t) = va(t). Therefore

the solution of the problem ([2.3) is unique. O]
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Theorem 7. For each ug € L*(R™) N H?, the Cauchy problem has a unique

solution.

Proof. From the equation (2.2)), we define v = u—kAu = (I —kA)u. By theorem

(6), letting L = —kA and A = —1, we get that (I — kA)~! exist and is bounded.

Then,
dv d 1
%za[u—kAu] =AI —kA)" v
- % I —T(T—kA) (1 — kD)o
—(yas - 10)o (2.4

1 1
Let A = z (I — kA)_l — EI' The equation (D can be written as

vi = Av
v(x,0) = (I — kD) up(z)

The operator A is bounded and linear, hence we get that
v(z,t) = e (I — kA) up(2)
by the proposition (2). Since v = u — kAu = (I — kA)u, we get
u(z,t) = (I — kD) (T — kA) ug(z)

is a solution of the Cauchy problem ([2.2)). O



CHAPTER III

INTEGRAL ESTIMATES

In this chapter, we derive a crucial integral estimate for solutions of the fol-

lowing initial-valued problem

A
Ou_ 98 _ nuka(oht,  zeRE>0

A €4
u(z,0) = up(z)
where p > 1,k > 0 are constants, a(z) > 0 is a continuous function satisfying
del7 < a(@) <l (zeR)

for some constants ¢, ¢* > 0, and ug is an initial condition.

We assume u is a nonnegative classical solution, i.e. it is C? in z and is C! in
t. up has a compact support. Throughout this chapter, let By := B;(0) denote

the unit disk in R".

Let ¢ : B; — R be the principal eigenfunction of the Laplacian —A in By with
the homogeneous Dirichlet boundary condition. In other words, ¢ is a nontrivial

C? function on B; satisfying
AQO + )\SO =0 in Bl,

©lop, =0

where A € R is a constant which is smallest so that such a function exists.

It is a basic fact that ¢ = ¢(|z]), i.e. ¢ is a radial function, and ¢ can be

normalized so that

0(0) =1, ¢'(0) =0, Y'(t)<0 forall0<t<1,
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where we have regarded ¢ as a function of one variable. In addition, we set
e(t)=0 ift>1, e(t)=1 ift <0.

Test Functions. For ¢ > 0, let 1), : R* — R be defined by

2]

dile) = o (5~ 1) (3.1

It is important to note that ¢, € C! on By(0), but it is not C* on R™; in fact,

V), does not exist on

9By (0).

The fact that 1), is not C* on the whole R” will be reflected in the next chapter.

This proof is arranged into four steps as follows:

3.1 Employing the Divergence Theorem

Now let u = u(x,t) be a classical solution of (1.4)). For ¢ > 0, we multiply the
equation ([1.4)) with the test function (3.1)), ¢¢(x), and then integrate over Bg(0)
for R > 2¢ and ¢ > 1 to get

d

pr BR(O)<U — kAu),de = / (Au+ a(z)uP ), du. (3.2)

Br(0)
Consider the Laplacian terms, using the divergence theorem we have

Ve Au dr = —/

B2 (0)

Vb - Vudx + / YeO,udo

0B3¢(0)

Ve Au dr = /

Br(0) B2 (0)

where we have used the fact that 1, is the test function, i.e., ¢, € C* on By(0)

and ¢, (z) = 0 if |z| > 2¢. Since ¢y = 0 on dBy(0), we find that

YeAudr = — / Ve - Vudz. (3.3)

Br(0) B2 (0)

To proceed further, we must be careful because V), is not C'' on By,(0). We
split B(0) into two sets

Bg[(O) = U1 U U2
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where
Uri={lal < ¢}, Upi= {0 < o] < 2¢}.
It is immediate that Vi), = 0 on U; since 1), is constant there. Thus

—/ Vpy - Vudzr = 0.
Uy

On Uy, ¥y(z) = ¢(|z]/¢ — 1) and ¢ is C* there, hence applying the divergence

theorem to get

—/ Vl/}g-Vudx:/ uAgp(|x|/€—1)d:1:—/ udyp(|z|/l — 1) do
Us Us

U3

:—%/UQ ugp(|x|/£—1)dx—%/ up' (|| /¢ — 1) do.

|z|=2¢

We have used the fact that Ap(z) = —Ap(x).

Therefore, we arrive at the following conclusion.

Lemma 1. For allt >0 and R > 20, we have

A |z 1 (1]
wAudx———/ ugp(—— )da;——/ up (—— dx.
Br©) C Ji<izj<2e ¢  Jjoi=20 ¢

3.2 Integrating w.r.t. Time
Next we integrate the equation (3.2)) with respect to time over [0, ] to get

t
/ (u—kAu) dx — / (ug — kDug)thy dx = / / (Au+ a(x)uP ), deds
Br(0) Br(0) 0 JBgr(0)

Rewrite it to find that

/ upde =k Ve Audr + / (ug — kAug)e dx
BRr(0) Br(0)

Br(0)

¢ t
+/ WAudxdsqL/ / a(x)uP, dzds.
0 JBg(0) 0 JBr(0)

We estimate the terms on the right hand side as follows.
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The term of wuy: Let ¢ be sufficiently large so that suppug C Bg(0). Then by

Lemma [I] above, we get

1
/ (ug — kAug)y doe = / wuothe dr + @ wop dr + ~ / o dx
Br(0) ¢ |z|=2¢

Br(0) (<Jal<2t ¢

> / uptpp dx.
Br(0)

The forth term is zero because ug has a compact support.

The first Laplacian of u: By lemmal/[l] then

A 1
YeAudr = —— wp dr — —/ uy' dx
BR(0) 0 Je<iai<ar € Jjaf=2e
A
> % up dx
(<|a|<2e

A
Sio [ ubds,
¢ Br(0)

since ¢’ < 0 at |z| = 2(.

The second Laplacian of u: As the equation (3.3]), we use Divergence theorem
again as

1
e Audr = / ul\py dx — —/ up'(|z|/0 — 1) do
|x|=2¢

Br(0) Bay (0) ¢

Using the fact that ¢’ <0, we get

YeAudr > / u\py dx.

Br(0) B(0)

So

t t
/ veAudr > —/ / u|Athy| d.
0 JBg(0) 0 /Bgr(0)

Combining the above three estimates, we see that

1 t t
/BR uthy dx > Hk—CW(/BR oy d:c—/o /BR u\Awddaﬁds—i-/o /BR a(z)uP, dxds).

Taking R — oo and using that a(z) > c|z|?, it follows that



18
Lemma 2. Suppose { > 0 is sufficiently large so that suppuy C Bae(0). Then

1 t t
/Rn uhy dx > Hk—CW</Rn oty dx—/o /nu]Az/Jd dxd8+c/o /n |z |7 uPpy dxds)

where ¢, Cy > 0 are constants.

3.3 Using Holder’s Inequality

Now we estimate

/ u|Nipy| dx

by using the Holder’s inequality. Recall the constant p in the nonlinear term of

our equation satisfies p > 1. To justify the following calculation, let
Q=A{z: 0 <|z| <20}

Then ¢, > 0 in ). By Holder’s inequality, we have

/ u|A¢g|dx:/Qu\AW|dx

- (r-1)/p
< (/ || 7uP 1)y dm) (/ ’x‘—a/(p—l)’Aw[‘p/(p—l)%*l/(pfl) dx)
Q Q

We make the following claim.
Claim. There is a constant C' > 0 such that
| D[P/ 0=V V0D < 020D if e Q

Proof of Claim. In Q we have ¥,(x) = gp(% — 1>. So the required inequality

is true on ¢ < |z| < 2¢ since
Ap(lz/6 =1 = ZAp(z) <

the claim then follows. O
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Using the claim, then

/ |x|—0/(p—1)|A¢Z|p/(p—1)w—1/(p—1) dr
Q

< C«g—?p/(p—l)/ |x|_0/(p_1) dx
L<|z|<2¢
20
§C€2p/(p1)/ pri=e/ =1 gy
¢

From that

hence,

/Q |7 =D A [P Y g < ol =0

Therefore, we have

1/p
(/ || uP1, dx)

/n ul Atpy| dx < C'(

From lemma, we get

1 t
TP
1/p
—C( /\x| upwdx }ds}

We summarize our calculation above.

Lemma 3. If ¢ > 0 is sufficiently large so that suppug C Boy(0), then

d ! do [ e
/nUW x_l—f—k—cofz / Uote x+/o (/nm uPY, x)
(p—1)/p ot2p\ 55
c(/ ]x\”upwda:>p —C(ﬁ” +) ]ds}
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3.4 Last Estimate

We further estimate the term

/ || uPey dx

as follows. Using Holder’s inequality then

—(p-1)
|z |7 uPepy dz > (/ qux)p( \xlfa/(pfl)wd:c) ' (3.4)
Rn R

R

and if p > 1—1—2, then
n

20
| =/ 0Dy der = / 1ol g — 075
R™ 0

Thus

/ |z |7 uPyy dx > C’1</ ungdm)pé"_”(”_l). (3.5)
Now we define
= / w(z Bz dz, t3 0.

Using this estimate and the previous lemma, we get

wlt) 2 e )+ (Cir=ro0Y? / t )|

p—1

cC’lp%wgfl(s) (6"’"(”’1)) - C(Zn_%ﬁv ppl] ds} (3.6)

Next we compare the two important terms
_ -1
pone=)E A g o (c —n(p— 1))p—

and the other

_0+2p)p—1 n(p—1)—c—2p
p =

= et p  p_nlp—1l)—o—2p

p

o+2

o
From the equation 1) we consider p in the cases 1+ — <p <1+
n
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Proposition 3.
2
F1+%<p<1+2 2 henB< A
n n

. . o—+2
Proof. To prove the proposition, we first show that the assumption p < 14+ ——

implies B < A. Consider

np—1)—o—2p

o+2

:n(1+ —p)>o.

This proves the proposition. U



CHAPTER IV

THEOREM ON CRITICALS EXPONENTS

In this chapter, we prove the main result on the critical exponents for classical
solutions of the Cauchy problem. According to the Introduction in chapter 1, the

main theorem is stated as follows .

o+ 2

Theorem 1 Let 1+ <g> <p<l+ and o > —2. Then for any nontrivial
n/+

0 < uy € C*(R™) with a compact support, the nonnegative classical solution of

the Cauchy problem blows up in a finite time.

Proof. We will split this theorem into several parts in order to make it easy to

understand and follow.

From the inquality (3.6)),

p—1

1 = i p=1
> o—n(p—1) )P » ,,p—1 oc—n(p—1)\ P
wdt) > T gQ{wg(O)%—(Clﬁ ) /0 we(s) {cCl wk (s)(ﬁ )

For convenience, we let
1
R =
1+ kCy
Rl — (C«lga—n(p—l)>

p—1

Ry = cCy7 (errm)
Ry = 0(£"+)

Thus the inequality (3.6 can be rewritten

3=

wy(t) > R(wg(()) + Ry /0 t wy(s) {ngf_l(s) — Rg] ds). (4.1)
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Step 1
In this step, we give a condition to show that the classical solution blows up

in a finite time. In the proposition , we get

M=) 2T P o —nfp - 1)

Since wy(t) is continuous, there is ty > 0 such that

wy(to) > Rwe(0) and wy(t) > Rwe(0) Vt € [0, to].

Let t € [0,%]. From (4.1),
wy(t) > R(wg<0> + R’ /0 : wy(s) {ngf_l(s) — Rgl ds)

> R(W(O) + Ry /0 t wy(s) [Rp—lRng—l(s) - RS] ds>. (4.2)

As the classical solution u is nonnegative, we also get that w(t) > 0. From the

proposition (3)), we fix £ > 0 sufficiently large such that

ST
205(1 P
(>1+ 02(,,;? £Co) . (4.3)
O Wl (0)
Then, from (4.2)),
t 1 . 1 .
we(t) > R(’LU@(O) + Ry /0 we(s) { — Rs + §R2w§ (s)+ §R2wf (5)1 ds)
1 t
>R (U}g(O) + §R1R2/ wf(s)ds) Vi € [0,t0].  (4.4)
0

Step 2 Construct the Lemma
This lemma is essential to construct the inequality related to prove that the

solution is blow up at a finite time.
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Lemma 4. wy(t) > Rwy(0) Vt > 0 where R is a constant independent of £.

Proof. We have already known that wy(tg) > Rwy(0) and wy(t) > Ruw,(0) Vt €
[0, to] for some ¢y > 0. Define
A ={t>0|wt) > Rwe(0)} and Tp; = sup {t > 0] [0,t] C A}.

We see that Thy > 0. As Ty — % < Ty, we get there exist ¢, € {t > 0[[0,¢] C A}

such that Ty, —% < t, < Ty. We also see that t,, /" Ty and wy(t,) > Rw,(0), Vn.

From (L),

wg(tn)

v

R {w(o) @ %Rle /0: wh(s) ds}
R{W(O) + %Rle/on(ng(O))p ds}

v

v

R {Wm) + %RleRw(O))ptn}

Since wy is continuous and t,, /" Ty, we get that
1
U)g(TM) >R {U}g(O) == iRlRQ(Rwé((]))pTM} > ng((]).

If Ty; were finite, then [0, Ty + 1] € A. We get there exist z, € (Th, T + 1]

such that wy(x,) < Rw(0). So,
we(z,) < Rwe(0) < we(Th).

Since x, € (Th, Tn + 1], @ — Ty We get we(Th) < Rwe(0) < Ruwe(0), a

contradiction. This means that T}, is infinite, i.e., w(t) > Rw,(0) Vt > 0. O
Step 3 ODE inequality

We will set up the inequality which results in blowing up of the solution.

By the above lemma and the selected ¢ in (4.3]), we get

1
5ngg‘l(s) —R3>0 Vs € [0,], Yt > 0.
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Then

wy(t) > R<w4(0) + Ry /0 t wy(s) {RQw;’—l(s) - Rg] ds)

R(wg(O) + Ry /O t wy(s) [ — Rz + %ngf_l(s) + %ngfg—l(s)] ds>

v

R (U)g(O) + %RlRQ /Ot wf(s)ds) Vit > 0. (4.5)
Let § = 1R Ry = 2cCi07"®=1 and

v(m) = we(0) + 5/07” wy(s)ds, Ym > 0.
By Fundamental Theorem of Calculus, we get

L p(m) = 6wt m) = 6{Ro(m)}?

dm
t 1 t
/ —dvz/ ORP dm
o VP 0
Ulfp =t m=t

> ORPm
1 -P m=0 m=0
1-p t 1-p 1-p
LI Oy S O R e B O]
I—-p 1—p 1—p

vIP(t) < (1 —p)0tRP +w, P(0)  ;1<p

Thus,
@)>( : );1 (4.6)
v : :
~ \ (1 — p)tRr +w, *(0)
If (1—p)dT*RP +w, "(0) =0, we get
pe_ w0 w(0)
(p—1dR>  (p—1)(1/2)RiRyRP
_ 2
 (p— DRPR Ryw ' (0)
_ 200+ kG rp-n—o

(p = D)eCruw](0)
From (4.6)), if t — T, we get the right hand side of the inequality is infinite. This

implies that lim v(t) = oo. It leads to
t—T*

wy(t) :/ u(z, t)e(z) de — o0 as t — T7,
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which implies  ||u(-,t)|;« — 00 as t — T because / u(z, t)(z) doe —
0o as t — T and [[¢0o(2)|| poo(ny < 1, if we assume that u(z,t) were not blow
up as t — 7%, then |u(z,t)| < M for some M > 0 and for all x € R" and t < T*.

Consider

/n u(z, t)1e(x) da

/B% u(z, t)ihe(x) de

< / fu(z, ()| de

< M- 1dx < M- -Vol(By) < oo,
Bay

a contradiction the fact that w,(t) = / u(z, t)e(x) dr — oo as t — T*. So

u(x,t) blows up in a finite time. O



REFERENCES

Al’shin A. B., Korpusov M.O., Sveshnikov A.G.: Blow up in nonlinear sobolev
type equations, Walter de Gruyter GmbH & Co. KG., New York, 2011.

Cao, Y., Yin, J., Wang, C.P.: Cauchy problems of semilinear pseudo-
parabolic equation, J. Differential equations 246 (2009) 4568-4590.

Deng, K., Levine, H.A.: The role of critical exponents in blow-up theorems:
The sequel, J. Math. Anal. Appl. 243 (1)(2000) 85-126.

Evans L.C.: Partial Differential Equations, Amer Mathematical Society,
Providence, 1998

Fujita, H.: On the blowing up of solutions of the Cauchy problem for
Ou/Ot = Au+u'™*, J. Fac. Sci. Univ. Tokyo Sect. (1) 16 (1966) 109-124.

Levine, H.A.: The role of critical exponents in blowup theorems, SIAM Rewv.
32 (2)(1990) 262-288.

Wang, C.P., Zheng, S.N.: Critical Fujita exponents of degenerate and singular
parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 136 (2)(2006) 415-
430.



Name

Date of Birth

Place of Birth

Education

Scholarships

28

VITA

Mr. Puttha Sakkaplangkul

6 August 1986

Trang, Thailand

B.Sc.(First-Class Degree Honours) Mathematics,
Prince of Songkla University, 2009

The Development and Promotion of Science and Technology

Talents Project(DPST)



	Cover (English) 
	Cover (Thai) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents 
	CHAPTER I INTRODUCTION
	CHAPTER II PRELIMINARIES
	2.1 Basic Knowledge
	2.2 Solutions of Linear Pseudo-Parabolic Equations

	CHAPTER III INTEGRAL ESTIMATES
	3.1 Employing the Divergence Theorem
	3.2 Integrating w.r.t: Time
	3.3 Using HŁolder's Inequality
	3.4 Last Estimate

	CHAPTER IV THEOREM ON CRITICAL EXPONENTS
	References 
	Vita

