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CHAPTER I

INTRODUCTION

Caging an object is to confine the object within a bounded region. The problem

of object caging was originally posed by Kuperberg (Kuperberg, 1990) as a problem

of designing formation of points to prevent an object from escaping to infinity by

any continuous rigid motion. A caged object is not necessary immobilized. Studies

in caging generally involve attempts to loosely envelope the object by means of sim-

ple and robust strategies that tolerate uncertainty and imprecision in measurement

and control. In the past few decades, the concept has been applied to various tasks,

for example, grasping and in-hand manipulation (Rimon and Blake, 1996), (David-

son and Blake, 1998a), (Davidson and Blake, 1998b), (Gopalakrishnan and Goldberg,

2002), (Sudsang et al., 1997) motion planning (Sudsang et al., 1999), (Sudsang et al.,

2002) part feeding (Blind et al., 2001), stable stance computation (Kriegman, 1997),

(Rimon et al., 2008). The manipulator to achieve caging may be a single or multiple

components that work altogether as a cage. They can be mobile robots, fingers of

grippers, arrays of pins, or cylindrical rods.

Grasping an object is to firmly hold the object by the manipulator. Compu-

tation of grasps involves finding contact points for the manipulator to effectively

counter balance external forces and torques. Stable grasp criteria are usually based

on the force closure and the form closure conditions (Bicchi and Kumar, 2000). In

the past decades, computed grasps does not give satisfactory result when applied

in practice. A primary cause of grasp failure is that the manipulator cannot simulta-

neously make appropriate contact with the object. Let alone exerting precise forces

and torques to balance out external disturbances. Nonsimulataneous contacts usu-

ally lead to undesirable forces and/or torques pushing the object away from its

initial position. It is difficult for the sensors to accurately keep track of the object

pose and for the manipulators to appropriately react to the change. As a result, the

fingers may not reach the precomputed contact points, and the object may slip away

from the manipulator. A more reliable approach is to form a cage prior to a grasp.
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That is to confine the object in a bounded region before an attempt to grasp it. The

problem of nonsimultaneous contacts is solved as the manipulator does not need to

maintain contact with the object in order to form a cage. After an appropriate cage

setup, the knowledge of the object pose is not necessary to maintain the cage. The

manipulator can continue to cage the object as long as the shape of the manipulator

does not change.

Some cage serves as a waypoint for grasping. As the cage shrinks, the

freespace which the object can move also shrinks. Eventually, the manipulator

grasps the object. This process is called error-tolerant grasping (Davidson and Blake,

1998b). The cage established prior to the grasp is called a pregrasping cage (Rodriguez

et al., 2011). An error-tolerant grasping is a grasp strategy that provides the required

manipulation robustness and precision.

Given a sufficient number of fingers, object caging on a plane can be achieved

by evenly placing fingers in a circle formation to surround the object. As long as the

distance between any pair of adjacent fingers is kept under an upperbound such as

the object’s diameter (Sudsang, 2002), or coverage diameter (Vongmasa and Sudsang,

2006), the object cannot escape. However, this often leads to inefficient utilization of

fingers as two fingers are sufficient to cage most concave objects. Rimon and Blake

(Rimon and Blake, 1996), have laid fundamental concepts in caging and proposed

a numerical solution to determine a caging set that contains a given immobilizing

grasp of two fingers. A caging set is a maximally connected set of configurations

that the object cannot escape by any rigid motion. Caging with two fingers can

be classified by the way their separation distance is maintained. One is caging by

squeezing fingers. Moving the fingers closer together shrinks the cage. The other

is caging by stretching fingers. The cage shrinks as the finger separation distance

increases Examples of a squeezing and a stretching cage are shown in Figure 1.1.

The dark dots and the shaded regions in the figure represent fingers and objects,

respectively.

It has been proven by Rodriguez and Mason (Rodriguez and Mason, 2008) that
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a caging set of two finger caging can only be either squeezing or stretching or both,

for any compact connected contractible object. Depending on the type of the cage,

the object could escape if the distance is either below or above a certain value called

the critical distance. A critical distance is either maximal distance or minimal distance.

The maximal distance is the greatest distance such that the object cannot escape as

long as the fingers’ separation distance does not exceed such distance. Conversely,

the minimal distance is the smallest distance that the object cannot escape as long

as the fingers’ separation distance does not fall below the value. The maximal and

the minimal distance serve as an upperbound or a lowerbound separation distance

to maintain the caging by squeezing and stretching, respectively. Vahedi and van

der Stappen (Vahedi and van der Stappen, 2006), Sudsang and Pipattanasomporn

(Pipattanasomporn and Sudsang, 2006) independently proposed algorithms that re-

port all two-fingered caging sets for a given polygonal object. As the number of fin-

gers increases, the problem of reporting all caging sets becomes more complex. One

reason is that the caging set associated with a caging configuration can no longer be

parameterized by just a critical distance. Erickson et al. (Erickson et al., 2003) stud-

ied the problem of caging convex object with three fingers and proposed both exact

and approximate algorithm to render capture region assuming that two robots are

fixed on the boundary of the convex object. Their work was extended to non-convex

polygon by Vahedi and van der Stappen (Vahedi and van der Stappen, 2008).

(a) (b)

Figure 1.1: (a) caging by squeezing fingers. (b) caging by stretching fingers.

To the best of our knowledge, most caging works are restricted to two-

dimensional workspace and a few number of fingers. Caging with more than three

fingers mostly remains unexplored. Even for the three-finger caging problem, none
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of the published works have proposed an efficient method to create a complete cat-

alog of all caging sets. Though caging with diameter or coverage diameter is an

easy and intuitive way to cage objects when many fingers are available, it does not

provide significant associations with possible error-tolerant grasps the way caging

set based approaches can.

The goal of this research is solve the caging problem for a system embeded

in two or three-dimensional space with an arbitrary number of fingers. Construct-

ing an algorithm that determines all caging sets for a given system seems to be the

ultimate goal to pursue at first. However, it is too computationally expensive to

compute the caging sets for a complex system. More fingers leads to a more com-

plex caging set. A more complex caging set leads to a more complex cage bound

that cannot represent by a critical value. Processing potrayed caging sets formed

by high-dimensional arrangements or algebraic hypersurfaces can be very resource

consuming as well. Regardless of the complexity, the critical information is not the

caging set as a whole. It is just a robust strategy to form a cage suitable for a specific

task.

1.1 Problem Formulation

Essentially, object caging is all about mutual geometrical obstruction created

by an object and a manipulator. An object can be a single or multiply connected

components. A cage is to be formed by the manipulator, here, a set of fingers.

The fingers are assumed to be free-moving point fingers at first. Extension to disc-

shaped fingers and constrained fingers are presented in later chapters. In the classi-

cal definition (Kuperberg, 1990), the object is said to be caged as long as the object

cannot travel arbitrarily far from the fingers, see Figure 1.2(a). If the object can travel

far from the fingers, it is said to escape from the cage, see Figure 1.2(b). On the other

hand, if the same phenomenon is observed from the object frame of reference in-

stead of a static one, the formation of fingers will be observed as rigidly moving

together towards infinity, escaping from the obstructing object, see Figure 1.2(c).

Whether an object is caged or not can be observed from any frame of reference.
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(a)

(b)

(c)

Figure 1.2: (a) the object cannot escape without penetrating the obstructing fingers.
(b) by rotating and translating, the object can escape without colliding with the fin-
gers. (c) consider the same situation as (b) but the object is seen as a static obstacle,
the finger placement can be rotated and translated to escape from the object.
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We are interested in the following caging problem: “Given an object and a

number of point fingers, determine all finger placements that cage the object along

with their error tolerance.” A finger placement consists of positions of the fingers

relative to the object. A finger placement that can prevent the object from escaping

by any rigid motion is said to be a caging placement. A caging placement is a finger

placement in a caging set. The other finger placements are referred to as non-caging

placements. A good caging placement should be able to tolerate error to some degree.

That is, each finger may displace from its position in the finger placement to some

extent without letting the object escape.

Representation of a caging set is simple for a system with two point fingers.

In two-finger setting, the fingers’ separation distance, a one-dimensional measure,

is necessary and sufficient to describe the formation shape of the the two fingers.

Decreasing (or increasing) the separation distance is therefore the only approach to

enter (or leave) a caging set. This implies that a caging placement along with the crit-

ical distance to be maintained (above or below) implicitly represents a caging set.

However, the same representation does not apply to a system with three or more

fingers. Let us consider the case of three fingers in a two-dimensional workspace.

Observe that we need additional parameters (for example, the position of the third

finger relative to the previous two fingers) to represent the shape of the finger for-

mation instead of the separation distance alone. Varying any of these parameters

changes the formation shape. A critical boundary for the parameters is needed to

describe a caging set. It should be noted that a critical distance is a kind of critical

boundary for a one-dimensional parameter. Keeping fingers within a caging set is

no longer as simple as keeping their separation distance below a value, but to keep

the fingers’ formation shape parameters within a volume wrapped by the critical

boundary. This volume depend on the geometry of the object and the parametriza-

tion of the configuration space.

Higher number of fingers lead to even more control parameters and more com-

plex critical boundaries. Though this leads to larger caging sets and permits us to

cage wider variety of objects, it is much more difficult and resource consuming to
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portray the critical boundaries of such caging sets. In practice, we may also face

problems of controlling multiple parameters in order to keep the manipulator in-

side a caging set. Especially when the critical boundary consists of multiple curves

and turns in the higher dimensional space. Our solution is to sacrifice some caging

placements for simplicity. We aim to identify a portion of a caging set that can be

efficiently recognized and robustly deployed instead of the whole caging set.

Consider the object that resembles a section of a double-sided saw blade in

Figure 1.3. Suppose that the number of the saw’s teeth is k on each side, and l0, l1, l2

are much longer than l3 so that placing two fingers between any two teeth, one on

the left and the other on the right side, always result in caging the saw. This way,

each finger can be placed any where in 2k− 2 gaps between the teeth but not all the

fingers are on the same side. Therefore, the number of all distinct cages is at least

(2k− 2)n − 2(k− 1)n where n is the number of fingers. Given that v is the number

of vertices representing the saw, it can be observed that 2k − 2 = v. This means

that the worst case running time of an algorithm for identifying all possible cages

must be Ω(vn). The running time will be exponential with respect to the number of

fingers, but will be polynomial to the number of features for a constant number of

fingers.

l1l0 l2

l3

Figure 1.3: An object which has the number of all possible distinct cages exponen-
tially proportional to the number of fingers, see text.

Apart from caging the object, we are also interested in error-tolerant grasping.

An error tolerant strategy to grasp an object is to first cage the object appropriately,

then “shrink” the cage. Here, to shrink is to control the manipulator to reduce the

range of possible object motions. Eventually, the object is grasped. Both of them
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move together as a single rigid body. Every possible grasp reached by the aforesaid

process is necessarily a cage, see an abstracted diagram in Figure 1.4. The arrow in

the diagram shows the state possibly reached after shrinking the cage. The diagram

can be created with a morse decomposition of the free configuration space (Choset

et al., 2005b). This is not surprising since a solution to a caging problem provided

by (Rimon and Blake, 1996) also relies on the stratified morse theory. However,

the current practical implementation of general morse decomposition is very lim-

ited to small dimensional space. Though the configuration space in our problem

is embeded in higher dimension, it possesses many regular structures for exam-

ple, the space to be decomposed is constructed from cartesian products of multiple

copies of the workspace. We will create an algorithm that will take advantages of

assumptions stated earlier to generate a similar diagram, called a caging roadmap,

efficiently.

non-caging formations caging formations

immobilizing grasp immobilizing graspimmobilizing grasp

immobilizing grasp

Figure 1.4: An abstracted diagram of cages and grasps.
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1.2 Scope and Objectives

Our goal is to study object caging via a simplified finger formation control.

We assume that each finger is a point, and the object is a bounded rigid polytope

embedded in a compact and contractible subspace of Rw. We propose an algorithm

capable of constructing a caging roadmap to assist planning and controlling tasks

related to caging and error-tolerant grasping. The caging roadmap is constructed

from a given rigid polytope and a simplified control capability. The caging roadmap

contains the information of all the caging sets up to a simplified control capability in

a simplified representation, including associations to immobilizing grasps. Distin-

guish sites to cage an object along with their error tolerance can be easily extracted

from the roadmap. The roadmap also supports a query: whether a finger placement

may function as a cage with respect to the simplified control.

The following is a checklist for the summarized objectives.

1. Study and simplify the problem of caging and error-tolerant grasping of poly-

hedral objects with multiple fingers.

2. Find a practical control strategy for the fingers to cage and grasp the object

such that the strategy will lead to an efficient computation of caging set and

provide a robust approach to cage and grasp the object.

3. Design an efficient algorithm to identify all possible solution sets under the

simplified control.

4. Design an efficient algorithm to compute the caging roadmap for error-

tolerant grasping with simplified control.

5. Provide an efficient algorithm to query whether a finger placement may func-

tion as a cage with respect to the simplified control.

Note that all the algorithms running time will be polynomial to the number of fea-

tures describing the caged polytope, the number of fingers are given as considered

as a constant.
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1.3 Research Direction

Caging and grasping object by squeezing fingers can be seen as an attempt

to envelope object with the fingers. The cage is shrinked by reducing the “size” of

the finger formation. Caging by squeezing fingers is undoubtedly one of the most

common strategy used by humans and, for this reason, it is supported by most

gripper systems. So far, squeezing caging with two fingers is said to be the act of

keeping the two fingers’ separation distance below a value. Multi-finger squeezing

is the act of maintaining the size of the finger formation smaller than a value. Possible

measures for the size are, for example:

1. Ring circumference. The circumference of ring formation is the sum of dis-

tance between pairwise adjacent fingers:

δ1
ring(x1, ..., xn) ≡ ∥x1 − x2∥2+∥x2 − x3∥2+... + ∥xn−1 − xn∥2+∥xn − x1∥2,

each xi represents a finger position in Rw. Caging by maintaining this below

a value is resemble to surrounding the object with fingers. The object can-

not move outside unless some fingers move away from the other, increasing

the circumference. When n = 2 (two fingers), 1
2 δ1

ring is exactly the separation

distance between the fingers.

2. Maximum separation distance among each pair of adjacent fingers in a ring:

δ∞
ring(x1, ..., xn) ≡ max{∥x1 − x2∥2, ∥x2 − x3∥2, ..., ∥xn−1 − xn∥2, ∥xn − x1∥2}.

This induces caging by maintaining the maximum gap between each pair of

adjacent fingers in the ring.

3. Weighted sum of lattice edge p-lengths. Let wij be a non-negative weight for

the lattice edge linking between xi and xj. Also let L(i) be the set of finger

indices such that, for any j ∈ L(i), the lattice’s edge connects xi and xj. The
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formation’s size is defined as:

δ
p
L(x1, ..., xn) ≡

1
2

Σn
i=1Σj∈L(i)wij∥xi − xj∥

p
2 ;

when p ∈ {1, 2, ..., ∞}. Since ∥xi − xj∥2∈ R+ (the set of all nonnegative real

values) and xp : R+ → R is convex and nondecreasing (Boyd and Vanden-

berghe, 2004a), ∥xi − xj∥
p
2 is convex for any i, j and so does its non-negative

weighted sum: δ
p
L(x1, x2, ..., xn). This δ

p
L generalizes the previously exempli-

fied formation’s size. For example, observe that δ1
L = δ1

ring, and δ∞
L = δ∞

ring

when:

L(i) =

 1, i = n;

i + 1, otherwise.

The previously stated functions: δ1
ring, δ∞

ring, δ∞
L , including the separation distance be-

tween two fingers; shares one common property in that they are all convex. These

functions are non-negative weighted summation or maximum among affine com-

positions of norms (Boyd and Vandenberghe, 2004a). All of them also attain their

minimal values when all the fingers are at the same point and increase in value

when the fingers are scattered. The choice of the formation’s size depends on user

preferences, applications, and mechanics of the manipulator.

In summary, we aim to present algorithms to design finger placements of ar-

bitrary number of fingers that cage a given object. The algorithms are based on

controlling a size measure of finger formations which we believe that this will lead

to simplified solutions and practical applications.



CHAPTER II

OVERVIEW

2.1 Approaches

This dissertation houses a collection of approaches to caging. The approaches

are inspired from the simplicity of two-finger caging. Each approach relies on dif-

ferent constraints enforced on the fingers’ positions; therefore, leads to a different

kind of cages. Nevertheless, they all share a common framework. This chapter

serves as an overview for the framework and introduces the variations among the

approaches.

• Squeezing Caging is a natural and intuitive way to cage an object. To squeezing

cage is to surround the object with the fingers and squeeze them. In the two

finger case, this is acheived by controlling the separation distance between

the two fingers to stay below a value, i.e., enfocing constraints on the fingers’

positions. When more fingers involve, a measure that represents the size of

the finger formation replaces the separation distance. With a sufficient num-

ber of fingers, it is always possible to cage by squeezing the fingers. To cage

by keeping the distance between fingers below the object’s diameter (Sudsang,

2002) or the coverage diameter (Vongmasa and Sudsang, 2006) is also a squeez-

ing caging. We present an algorithm for identifying all two-finger squeezing

cages in the first half of Chapter III. Its extensions to multiple fingers and

additional constraints follow in Chapter IV. Here, additional constraints are

constraints on the finger positions induced by physical limitations of the ma-

nipulator such as limited communication range and joint length.

• Stretching Caging is to cage by keeping the fingers stretched away from each

other. Like squeezing, the concept of stretching can be extended to multiple

fingers. In contrast to squeezing caging, the size of finger formation is con-

strained to be above a value. Utilization of stretching caging is less common

compared to that of squeezing caging. A convex object cannot be stretching
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caged for any number of fingers. Stretching caging is only possible when the

object has a sack-like concave section. The second half of Chapter III presents

the algorithm for computing two-finger stretching cages. The extension to

multiple fingers is similar to that of squeezing caging, which is summarized

in Chapter VII. The presented stretching caging algorithm is less feature-rich

and less developed compared to the squeezing caging one. Additional con-

straints appear in Chapter IV are not available for stretching caging. Only

approximated constraints introduced in Chapter VI are supported.

• Combined Squeezing and Stretching Caging is as the name suggests. Instead of

caging by controlling a formation size measure below or above a value. The

measure value is controlled to be in a certain interval to cage a given object.

This approach to caging can be considered as a constrained squeezing caging,

an extension to multi-finger squeezing caging.

• Robust Caging is to cage the object by attempting to fix a given finger forma-

tion. In practice, perfectly fixing the fingers to a specific finger placement or a

specfic finger formation may not be possible due to external disturbances. The

fingers may displace from its desired position in the formation to some extent

during caging. Robust caging is to cage the object by limiting a norm of such

displacements below a value. This caging method is designed to compliment

the squeezing and the stretching caging. In a system with more fingers, solu-

tion sets for squeezing and stretching caging reported by the algorithms tend

to be smaller. This contradicts the fact that it should be easier to cage with

more fingers – solution sets only occupy a small subset of a caging set. If the

finger formation to fix is a grasp, the robust cage functions as a pregrasping

cage (Rodriguez et al., 2011), a waypoint to the grasp. We present a method to

compute robust cages in Chapter VIII.

Regardless of the approach, caging in nature is robust to measurement and

control noise. Successful caging is usually possible even when the fingers and/or

the object is slightly deformed, inaccurately and/or partially observed. Chapter V
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presents a failsafe strategy to handle uncertainty of the object. The method that han-

dles object uncertainty is also generalized to deals with control uncertainty. Chapter

VI deals with control uncertainty with a focus on a specific application: constraint

approximation.

2.2 Basics

Let us begin by introducing the main actors: the fingers (the manipulators)

and the object. At first, we assume that the fingers are just points and the object is

a rigid body represented by polygons or polyhedra. As the discussion progresses,

the assumptions will be more relaxed. The fingers and the object are contained in

a workspace which is a two-dimensional plane R2 or a three-dimensional space

R3. Though the caging concepts and our approaches may extend to greater dimen-

sions, the problems in practice do not. We only focus on two and three-dimensional

workspace denoted by Rw where w is the workspace dimension. For the reference

coordinates, we choose the object’s coordinates. Consequently, the fingers are the

only moving entities. The fingers cannot cage the object if they can move arbitrarily

far from the object. Without any constraints imposed, each finger are free to move

around the object. That is, for an object occupying a set of points P without any

holes, the set of points reachable by a free finger is F ≡ Rw\P . We can safely as-

sume that the object does not contain any inaccessible holes. If it has some, they are

either inaccessible or/the object can be trivially caged by placing a finger in the hole.

Additionally, the set P must be open and bounded. This means that the fingers can

slide along the object’s boundary and the object does not extend to infinity.

With finite number of fingers and bounded object, the object is no longer caged

if all the fingers are sufficiently far from the object, i.e., all are outside a sufficiently

large box centered at the object. To avoid dealing with infinity, this condition will

be used instead of the usual caging condition. A method to compute a sufficiently

large box B′ is illustrated in Figure 2.1. The size of B′ is chosen to be a multiple of

a smallest object bounding box O containing the object in its interior. As shown in

the illustration, this choice of B′ is sufficient for n < 12. Any finger formation that
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B′

O

x1

x2

x3

x4

Figure 2.1: A sufficiently large box B′.

all the fingers are outside B′ cannot prevent the object from escaping. This sufficient

condition also applies to the three-dimensional workspace.

The configuration space for a system with n free fingers is given by Ω ≡ Fn.

Each caging approach relies on a set of constraints to cage the object. These con-

straints are either enforced by control policies or physical limitations of the manip-

ulator. The constraints define an infeasible set, a set of all finger placements that

violate at least one of the constraints. Finger placements in an infeasible set cannot

be reached from the others as long as the constraints are enforced. If the constraint

enforcement results in preventing the fingers from escaping, going arbitrarily far

from the object, i.e., the object is caged. Each constraint is in the implicit form of

f < l where f is a function that maps the positions of the fingers to a real value and

l is a real constant. Increasing or decreasing a constraint’s parameter either results in

a more relax or a more strict constraint, respectively. The more relax the constraint,

the more freely the fingers can move. A constraint can be classified as:

1. Always-active constraint. This class of constraint is always enforced, for exam-

ple, the constraint induced by physical limitations of the manipulator.

2. Toggleable constraint. A toggleable constraint is enforced after an initial finger

placement setup so as to cage the object. A toggleable constraint’s parameter
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is either fixed or adaptive.

• Fixed parameter. The parameter is just a constant real value parameter of

the system.

• Adaptive parameter. The parameter is a parameter to optimize so as to

obtain the largest possible cage. The algorithm for identifying all solution

sets is responsible for optimizing this parameter.

All of the caging approaches in this dissertation have only one toggleable constraint

with an adaptive parameter. Our problem involves solving the optimal adaptive

parameter. The optimal parameter maximizes the fingers’ freedom to move around

yet cannot escape. Formally, let f < l be the only toggleable constraint with the

adaptive parameter l, and the other constraints: f1 < l1, f2 < l2, ..., fc < lc. Also let

Γ(S, T, U) be the set of all paths that starts from a point S, terminates at a point in

T, and are contained in U. A path is defined as a continuous map from an interval

to the configuration space Ω. A path is said to be contained in a set if its image is

contained in the set. At the fundamental level, we want to query if it is possible to

cage the object by enforcing the constraints after setup the fingers at an initial finger

placement z. In other words, we are to check whether the initial placement z forms

a cage with respect to this set of constraints. This can be formulated as the following

optimization problem:

minimize l

subject to α ∈ Γ({z} , T , Ω)

∀x ∈ img(α), f (x) ≤ l, f1(x) ≤ l1, f2(x) ≤ l2, ..., fc(x) ≤ lc

Where the set T denotes a set of all points that all the fingers are outside a suffi-

ciently large box as discussed earlier. The minimal value for the optimization prob-

lem will be the adaptive parameter l for the constraint f < l. If fi(z) ≥ li for some i,

the optimization problem is infeasible, indicating that the finger placement z is not

in any solution set with respect to this set of constraints. Solving the optimization

problem is not a trivial task.
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Let Ω′ be a subset of Ω that does not include finger placements violating any

of the constraints f1 < l1, f2 < l2, ..., fc < lc. We can write a single-line formula for

the adaptive parameter l for an initial finger placement z ∈ Ω′ as:

l ≡ f ∗(z) = inf
α∈Γ({z},T ,Ω′)

sup
x∈img(α)

f (x).

Different caging approaches, workarounds, manipulators, and some other fac-

tors lead to different f and other functions comprising the constraints. Prior to

Chapter VI the constraints must be invariant to the change of the coordinate frame

of the fingers. The value of f is the same for the finger positions in the world co-

ordinates, the object coordinates, or any other coordinates obtained from rotating

and/or translating all of the finger positions. The coordinate invariant property al-

lows us to freely change the coordinate frame from the world coordinates to the

object coordinates without affecting the value of the function. That is: whether a

finger placement forms a cage does not depends on the coordinate frame of refer-

ence. In Chapter VI, the constraints are approximated with simplier functions and

may not satisfy the coordinate-frame invariant property. As a result, solutions may

depend on the coordinate frame. Even so, the generated solutions are guaranteed

to work, i.e., capable of caging the object. The readers are referred to Chapter VI for

more details.

Remaining chapters in this dissertation present solutions to the stated prob-

lem. The solutions varies based on different properties of the functions f , f1, f2, ..., fc

comprising the constraints. Conceptually, each function can be interpreted as a kind

of energy function. Higher function value indicates higher energy state. Higher

maximum energy bound (more relaxed constraint) implies that the fingers have

more freedom to change its formation. The following is a brief list of functions

that portray the behavior of each caging approach.

• Squeezing Caging: The function f is convex (or quasi-convex) and invariant

to the change of the coordinate frames. A quasi-convex or a convex func-
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tion has a property similar to squeezing. The function reduces its value if

a point straightforwardly travels to a minimal point of f . The more the fin-

gers are squeezed together, the lower the function value and the less freedom

to change its formation. The other functions f1, f2, ..., fc must be convex and

coordinate-frame invariant as well. However, the coordinate-change invariant

assumption is dropped after Chapter VI.

• Stretching Caging: The function f is the opposite of squeezing. It is concave (or

quasi-concave) and invariant to the change of coordinate frames. The higher

the maximum energy bound, the more the finger can be squeezed together.

Unlike squeezing caging, the other functions f1, f2, ..., fc must be linear. They

are introduced in Chapter VI.

• Robust Caging: The actual function f is an infimum of infinitely-many convex

functions, but it is simplified to a minimization among finitely-many convex

functions. The strategy for approximating actual f is a variation of the approx-

imation method in Chapter VI. Conditions on the other functions f1, f2, ..., fc

are the same as those in squeezing caging.

2.3 Roadmap Construction

Proposed approaches to solve the optimization problem vary and heavily de-

pend on properties of the functions. Nevertheless, it turns out that all algorithms

to generate the solutions rely on many common steps. One is to collapse most of

the configuration space into a one dimensional skeleton, a roadmap (Choset et al.,

2005a). In a view point, this is to prune the configuration space out, reducing the

search space for the optimal path. The optimal path between any two points can

be easily obtained by moving along the roadmap except when accessing it. In each

chapter, we will construct a roadmap and show that an optimal path between any

two points in the roadmap is contained in the roadmap itself. The roadmap is then

shown to be accessible from any point in the configuration space. An optimal path

from any two points in the configuration space consists of three concatenated paths.

The first path is an access path, from a starting point in the configuration space to
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an access point in the roadmap. The last path is also an access path, from a termi-

nal point in the configuration space to an access point in the roadmap. The middle

part is entirely in the roadmap. It optimally connects the two access points in the

roadmap.

The roadmap is represented as a graph. A vertex of the graph is a point, a fin-

ger placement in the configuration space. An edge of the graph is a path connecting

two vertices. A sequence of adjacent edges represents a path in the graph and a

path in the configuration space. The graph is where to search for the optimal path

with a modified shortest path algorithm. The cost assigned to each graph edge is

the cost for travelling between two adjacent vertices. The cost is the maximal value

of the parameter l, the toggleable constraint’s adaptive parameter, restricted to the

path. The cost for a path in the graph is of course the maximum cost of an edge

in the sequence that constitutes the path. An optimal path (in the graph) is a se-

quence of edge that has the least cost among other paths starting and terminating at

appropriate initial and terminal points.

Access points are minimal points of f restricted on the configuration space.

The function f may have infinitely many minimal points so we choose only one

representative minimal point per connected component of minimal points as an ac-

cess point. The reason to choose a minimal point as an access point is that any point

in the configuration space can always optimally access a minimal point. A gradient

descent trajectory to a minimal point serves as an optimal path connecting the two

points. The (optimal) cost is exactly the value of f at the starting point. Conse-

quently, a roadmap that contains all of the access points satisfies the accessbility

and the departability properties. The problem that remains is how to construct

a roadmap structure that contains an optimal path connecting any two minimal

points. To solve this problem, we rely on the convex decomposition of the config-

uration space. It is much easier to construct an optimal path connecting points in

a decomposed convex subset. Access points are chosen from minimal points re-

stricted in each decomposed convex subset. They are assigned as graph vertices.

Within each convex subset, a number of optimal paths connecting vertices are as-
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signed as graph edges, depending on caging approaches. To link between two over-

lapping convex subsets, consider the intersection between overlapping convex sub-

sets which is also convex. The minimal points that lie in the intersection are also

assigned as graph vertices. Since the vertices are in both overlapping convex sub-

sets, they are connected to other vertices in each subset in a similar manner. In a

point of view, the construction of the roadmap and the search for optimal points are

comparable to the divide and the conquer phase of the divide and conquer paradigm.

We identify a vertex (as a finger placement) that cannot cage the object as exit

vertices based on simple criteria, for example, all the fingers are sufficiently far from

the object. Then, for every vertex in the graph, we determine the cost of an optimal

path from it to an exit vertex. Such cost is referred to as the optimal cost for the vertex.

Optimal cost of an exit vertex is known to be the value of f at the vertex as the fingers

can escape without changing any formation starting from that point. Other vertices

optimal costs are computed by propagating from exit vertices’ known optimal costs.

The propagation works similar to the propagation of shortest distances in Dijkstra’s

shortest path algorithm. This is achieved by propagating the known optimal cost

starting from exit vertices. To determine whether a finger placement forms a cage

with respect to the constraints, just access its vertex for the adaptive parameter l and

check if the finger placement is feasible under the constraints.

In a point of view, each vertex that forms a cage with respect to the constraints

is a representative of finger placements that can access the vertex with a gradient de-

scent trajectory. A “solution set” is a maximally connected set of finger placements

satisfying the constraints. Such a solution set is identified by the set of maximally

connected vertices in the same solution set. We apply a simple connected compo-

nent labelling graph algorithm to keep track of the solution sets.

2.4 Error-Tolerant Grasping

It has been proven by (Rodriguez et al., 2011) that squeezing or stretching fin-

gers while maintaining a cage of an object will always lead to a grasp. However,

the grasp may not a desirable one. Reaching a specific grasp while caging the ob-
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ject usually requires the knowledge of the object pose. The roadmap is designed

for identifying the states of the fingers in detail (more than just indicating that it is

in a cage or not). A state of the fingers is a set of the possible convergences (some

are grasps) after reducing f (squeezing or stretching the fingers, for example). It is

possible to construct a simplified cage-state diagram based on the following rule:

“Let M1, M2, ... be sets of maximally connected minimal points of f . Vertices belong

to the same state if the set of all Mi reachable by gradient descending from every

vertex is equivalent (set equal).” Construction of the diagram is, however, optional

for typical caging tasks. Sometimes, it is more than necessary. Identifying only

the states that lead to a unique Mi usually suffices. Such states can be obtained by

connected component labelling on the roadmap as well.

2.5 Summary

This chapter serves as an overview and a guide to the subsequent chapters.

The key steps for identifying solution sets always begin with decomposing the con-

figuration space into convex subsets. Then, construct the roadmap and search for

optimal escape paths. What varies among chapters are the caging constraints which

lead to different roadmap and optimal escape paths.



CHAPTER III

TWO-FINGER CAGING

3.1 Introduction

Our prelimary solution for two-finger caging, i.e., two-finger squeezing and

stretching (Figure 1.1), was first published in Pipattanasomporn and Sudsang

(2006). The solution is based on rayshooting the two fingers along the line between

them to identify “state” of the fingers and formulate the problem into a state-space

search one. However, this idea does not extend to a setting with more than two

fingers. With more fingers, the rayshooting along the line between the fingers is no

longer defined. In this chapter, we reformulate our preliminary approaches to two-

finger squeezing and stretching caging. Based on this formulation, we can extend

our approaches to multi-finger squeezing and stretching caging to be presented the

subsequent chapters.

Let us assume that the two fingers are free moving points. The object is open,

bounded, rigid, and embedded in Rw. It is to be caged by either squeezing or

stretching the fingers. That is, to impose a constraint on the separation distance,

maintaining it below or above a value. Our goal is to identify all possible solution

sets formed by imposing a squeezing or a stretching constraint. Our algorithm dis-

tinguishes from the one presented by Rimon and Blake (Rimon and Blake, 1996) that

their algorithm numerically computes a critical distance of a single caging set given

an immobilizing grasp. The algorithm proposed by Vahedi and Stappen in (Vahedi

and van der Stappen, 2006), (Vahedi and van der Stappen, 2008) and our algorithm

report solution sets in O(v2 log v) where v is the number of the object’s vertices. Va-

hedi and Stappen’s algorithm operates on pseudo-trapezoids, and is designed to

report all solution sets for disc-shaped fingers and a two-dimensional object. Our

approach, on the other hand, operates on decomposed convex polytopes so that

two and three-dimensional versions of the problem are handled in a generalized

manner. Our algorithm report exact solutions for point fingers and approximate
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solutions for disc-shaped or spherical fingers.

This chapter is organized as follows. In the following section, we introduce

basic notations and properties for two-finger squeezing and stretching caging. Their

properties and relationships are shown in Section 3.3. An approach to compute an

optimal path between any two finger placements for squeezing caging is presented

in Section 3.4. For stretching caging, a different approach is needed and presented in

Section 3.5.. The implementation details and results of the algorithm are presented

in Section 3.7.

3.2 Assumptions and Definitions

The system consists of an object and two point fingers. The object and the fin-

gers are contained in Rw, where w ≥ 2 is the dimension of the workspace. The set of

all possible finger placements (configurations) is R2w. The separation distance of a

finger placement is a function δ that maps a finger placement x ≡ (x1, x2) ∈ R2w to

δ(x) ≡ ∥x1− x2∥2, the Euclidean distance (separation distance) between the two fin-

gers. The sets
{

x ∈ R2w | δ(x) ≤ d
}

and
{

x ∈ R2w | δ(x) ≥ d
}

are referred to as d-

sublevel set of δ and d-superlevel set of δ, respectively. Maintaining the fingers’ separa-

tion distance less (greater) than a value d is equivalent to squeezing (stretching) the

fingers, restricting possible finger placements within d-sublevel (resp. d-superlevel)

set of the separation distance function.

The object, denoted by P ⊂ Rw, is assumed to be open, rigid and is repre-

sented by a bounded polytope without holes (the region not occupied by the poly-

tope is contractible). To avoid dealing with the object’s rigid motion directly, we

choose the object frame as the frame of reference. The object is considered a static

obstacle placed at the origin o and assumed to lie inside B1(o), a w-dimensional ball

of radius 1 centered at o. If the object is caged, it has to block the fingers from escap-

ing to infinity (of course, given that the fingers are constrained either by squeezing

or stretching motion). Assuming that the fingers cannot penetrate the polytope, the

free workspace is given by F ≡ Rw\P . The set of all valid placements for two

fingers (free configuration space) is therefore F 2 denoted by Ω. That is, R2w\Ω
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constitutes our configuration space obstacle.

A synchronized motion of two fingers is represented by a path, a continuous

map from an interval to Ω. The paths α and β can be concatenated when they share

a common end points. The concatenated path is written as α · β. The image of a path

α is the range of α. For brevity, when no confusion may arise, we refer to the image

of a path that is contained in a set A as a path in A. A path is bounded if its image is

bounded. For a bounded path α, its reverse path is denoted by α−1(θ). It should be

noted that: i) concatenation of any two paths in the d1-sublevel and the d2-sublevel

of δ is in the max {d1, d2}-sublevel set of δ, and ii) concatenation of any two paths in

the d1-superlevel and the d2-superlevel of δ is in the min {d1, d2}-superlevel set of δ.

If an image of a path contains a finger placement at which both fingers are outside

the sufficiently large box bounding the object, the path is an escape path.

Squeezing (resp. stretching) is defined as the act of keeping the fingers’ separa-

tion distance below (resp. above) a given value. A maximally connected set of finger

placements that the object cannot escape by squeezing (stretching) the fingers is said

to be a solution set of the squeezing (stretching) constraint. For brevity, we refer to

a solution set of the squeezing (stretching) constraint as a squeezing (stretching) so-

lution set. When the object cannot escape from a squeezing or a stretching cage, the

fingers can be visualized as a point in the configuration space Ω being restricted

within a cage. Figure 3.1 shows an abstracted illustration of the configuration space

obstacle and some solution sets. The dotted lines marked by δ = d1 (resp. δ = d2)

represent finger placements with separation distance equal to d1 (resp. d2). Each fin-

ger placement in region A forms a squeezing cage. Each finger placement in region

B forms a stretching cage.

In this setting of two-finger caging, it is shown in (Rodriguez and Mason, 2008)

that a caging placement forms a squeezing cage or a stretching cage or both. A

finger placement that neither form squeezing nor stretching cages is a non-caging

placement.

Let x be a finger placement and d be a real value. The finger placement x forms
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δ = d1

δ = d2configuration space

Ω

obstacle

Figure 3.1: Abstracted illustration of the configuration space obstacle and some so-
lution sets.

a squeezing cage if, for some d > δ(x), every escape path from x contains some fin-

ger placement with a separation distance greater than or equal to d. The maximal

distance of x is denoted by δ∗(x) and is defined as the maximal value of d subject

to: every escape path from x contains some finger placement with a separation dis-

tance greater than or equal to d. The most relaxed squeezing constraint containing

x capable of preventing the object from escaping is the constraint δ < δ∗(x).

Similarly, the finger placement x forms a stretching cage if, for some d > δ(x),

every escape path from x contains some finger placement with a separation distance

less than or equal to d. The minimal distance of x is denoted by δ∗(x) and is defined

as the minimal value of d subject to: every escape path from x contains some finger

placement with a separation distance less than or equal to d. The most relaxed

stretching constraint containing x capable of preventing the object from escaping is

the constraint δ > δ∗(x).

3.3 Fundamental Properties

In this section, some properties related to the previously defined terms are

presented. We show that every finger placement in a squeezing solution set has the

same maximal distance. A similar fact holds for a finger placement in a stretching

solution set and its minimal distance. Additionally, we show that all solution sets

are contained in a compact subset of Ω.
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Consider finger placements x and y connected by a path in d-sublevel set of δ

such that d is less than δ∗(y), the maximal distance of y. Under this condition, the

maximal distance of x and y are equal.

Proposition 1. Let x, y ∈ Ω. If x and y are connected by a path α in d-sublevel set of δ

where d < δ∗(y), δ∗(x) is equal to δ∗(y).

Proof. Suppose that β, and γ, be an escape path from x and an escape path from

y, respectively. Also suppose that β and γ lie in the δ∗(x)-sublevel set of δ and the

δ∗(y)-sublevel set of δ, respectively. The concatenated path α · γ forms an escape

path in δ∗(y)-sublevel set of δ. This implies that δ∗(x) ≤ δ∗(y). However, it is not

possible for δ∗(x) to be less than δ∗(y); otherwise, α−1 · β forms an escape path that

starts from y and resides in d-sublevel set of δ where d < δ∗(y). This contradicts the

definition of δ∗(y). ■

Proposition 2. All finger placements in a squeezing solution set have the same maximal

distance d∗ and are pairwise connected by a path in the interior of the d∗-sublevel set of δ.

Proof. Let x and y be in the same solution set. Consequently, there exists a path

from x to y, say α, such that, any point belongs to the image of α is in the solution

set. Let z∗ be a point in the image of α such that δ(z∗) ≥ δ(z) for any z in the image

of α. Since z∗ is in the solution set, δ(z∗) < δ∗(z∗). This means that z and z∗ are

connected by a path in d-sublevel of δ such that d = δ(z∗) < δ∗(z∗). By Proposition

1, δ∗(z) = δ∗(z∗). ■

To certify that a configuration x lies in a squeezing solution set containing y,

it is sufficient to show that x and y are connected by a path in the d-sublevel of δ

where d < δ∗(y). A problem to be solved is how to compute the maximal distance

of the finger placement y. That is to determine the optimal escape path α from y

(with respect to the squeezing constraint). Among other escape paths from y, the

optimal one has the least upperbound separation distance. The least upperbound

separation distance is the maximal distance of y. Formally, the optimal escape path
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from y is the minimizer for following optimization problem:

minimize d

subject to α ∈ Γ({y} , T , Ω)

∀x ∈ img(α), δ(x) ≤ d.

The minimal value of the optimization problem is the maximal distance of y. Alter-

natively, it can be written as:

δ∗(y) = inf
α∈Γ({y},T ,Ω)

sup
x∈img(α)

δ(x).

An approach to compute an optimal escape path with respect to the adaptive

squeezing constraint is presented in Section 3.4.

Similar property for the stretching caging holds and can be proven in the same

manner.

Proposition 3. All configurations in a stretching solution set have the same minimal dis-

tance d∗ and are pairwise connected by a path in the interior of d∗-superlevel set of δ.

To identify a stretching cage, we need its representative finger placement and

its minimal distance. The minimal distance of a finger placement y is obtained by

considering optimal escape paths from y and finding its greatest lowerbound sepa-

ration distance. Formally, the minimal distance is the maximal value of the follow-

ing optimization problem:

maximize d

subject to α ∈ Γ({y} , T , Ω)

∀x ∈ img(α), δ(x) ≥ d.

Equivalently, the minimal distance of y is:

δ∗(y) = sup
α∈Γ({y},T ,Ω)

inf
x∈img(α)

δ(x).



28

Determining the optimal escape path (with respect to the stretching constraint) is to

be explained in Section 3.5.

From a non-caging placement, it is possible to rigidly move the fingers to-

gether (without changing its separation distance) arbitrarily far from the object. This

implies that:

Proposition 4. Any two non-caging placements x, y are connected by a path which is in

max {δ(x), δ(y)}-sublevel and min {δ(x), δ(y)}-superlevel.

After moving sufficiently far from the object, the separation distance between

the fingers may change to a desired value without being obstructed.

At a non-caging placement with separation distance d, say x with δ(x) = d, the

object can escape even if a squeezing or a stretching constraint is imposed. This im-

plies that a path from an arbitrary finger placement z to such non-caging placement

x can be recognized as an escape path from z.

Proposition 5. A finger placement x ≡ (x1, x2) ∈ R2w is non-caging if at least one of the

following conditions holds:

1. δ(x) = 0,

2. both x1 and x2 are outside B1(o),

3. δ(x) ≥ 2,

4. either x1 or x2 is not in B3(o).

Proof. 1) The fingers are a single point so they can travel anywhere by the assump-

tion on the object does not contain any hole and bounded.

2) The object can translate towards a direction without being blocked by any

finger. The direction to translate can be any direction perpendicular to the line con-

necting the fingers.
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3) The fingers cannot block the object because their separation is greater than

the object’s diameter.

4) Given that a finger placement x ≡ (x1, x2) /∈ B3(o)2, x1 (inclusive) or x2 is

outside B3(o). If both fingers are outside B1(o), x is non-caging by 2). If one finger is

inside B1(o) and the other is outside B3(o), the separation distance must be greater

than two; therefore, x is non-caging by 3). ■

Proposition 5 is a sufficient condition for non-caging placements. It allows us

to work entirely in a compact domain by guaranteeing that all finger placements

outside B3(o)2 are non-caging. Let B be a compact w-dimensional cube containing

B3(o). The compact version of free workspace and free configuration space are de-

noted by F̄ ≡ F ∩ B and Ω̄ ≡ F̄ 2, respectively. Note that F̄ and Ω̄ are polytopes

by construction.

3.4 Squeezing Cage

In this section, we present a strategy for constructing an optimal escape path

with respect to the squeezing constraint. Let us first consider the situation when

the current configuration x ∈ Ω̄ is inside a convex set K ⊆ Ω̄. Suppose that the

fingers’ configuration is to change from x to y ∈ Ω̄ inside another convex set K′ ⊆ Ω̄

that overlaps with K (K ∩ K′ ̸= ∅) under the condition that the fingers must lie in

K ∪ K′. An optimal path connecting x and y satisfying the condition is a path α that

minimizes the following optimization problem:

minimize d

subject to α ∈ Γ({x} , {y} , K ∪ K′)

∀z ∈ img(α), δ(z) ≤ d.

Unavoidably, any path from x must enter K ∩ K′ in order to reach y. An opti-

mal path is a concatenation of two straight line paths. One from x to a finger

placement z ∈ K ∩ K′ where δ restricted in K ∩ K′ attains its minimal value, i.e.,
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δ(z) ≤ δ(z′) for any z′ ∈ K ∩ K′. The other is a straight line path from z to y. Be-

cause K and K′ are convex, the optimal path is in K∪K′. Moreover, it is contained in

max {δ(x), δ(y), δ(z)}-sublevel set of δ (see an example in Figure 3.2). The straight

line path from x to z is α(θ) = (1− θ)x + θz. Since δ is a convex function:

δ(α(θ)) ≤ (1− θ)δ(x) + θδ(z); (3.1)

for any θ ∈ [0, 1]. Taking supremum over θ ∈ [0, 1] on both sides yields:

sup
θ∈[0,1]

δ(α(θ)) ≤ max {δ(x), δ(z)} .

This implies that α lies in the max {δ(x), δ(z)}-sublevel set of δ. The same goes for

the straight line path β from z to y. It lies in the max {δ(z), δ(y)}-sublevel set of δ.

Let d∗ ≡ max {δ(x), δ(y), δ(z)}. By concatenating α and β, we obtain α · β, a path

that starts from x, terminates at y, and lies in the d∗-sublevel of δ. Such d∗ is the

optimal value because x and y must be end points. Observe that when K = K′:

Proposition 6. The straight line path connecting any two points x, y in a convex subset

lies in the max {δ(x), δ(y)}-sublevel set of δ.

δ = d2
δ = d1

δ = d3x
y

z
K

K ′

α β

Figure 3.2: An example of K and K′. For this example, d1 < d2 < d3. Among paths
in Γ({x} , {y} , K ∪ K′), the optimal path lies in the max {d1, d2, d3} = d3-sublevel of
δ.

3.4.1 Optimal Path

Now let us consider a sequence of overlapping convex subsets of Ω̄ denoted

by: K1, K2, ..., Kk ⊆ Ω̄; for any i ∈ {1, 2, ..., k− 1}, Ki ∩ Ki+1 ̸= ∅. The fingers are to
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move from z0 ∈ K1 to some finger placement in K2, then to some finger placement in

K3, ..., finally to zk ∈ Kk in such a way that the fingers must remain in Ki while mov-

ing from zi−1 to zi for any i ∈ {1, 2, ..., k}. Under this condition, our task is to find

an optimal path that starts at z0, terminates at zk, and travels through the sequence

of convex subsets. Let zi be a finger placement in Ki ∩ Ki+1 such that δ restricted

in Ki ∩ Ki+1 attains its minimal value at zi, for i ∈ {1, 2, ..., k− 1}. As discussed

previously, a straight line path connecting each pair of zi−1 and zi is optimal. Since

the path has to travel in the given sequence of overlapping convex subsets, con-

catenation among the straight line paths connecting zi−1 and zi forms an optimal

path connecting z0 and zk. The optimal path is in d∗ ≡ max {δ(zi) | i ∈ {0, 1, ..., k}}-
sublevel set of δ.

To determine optimal escape path from a finger placement, we consider all

possible sequences of overlapping convex subsets. We decompose Ω̄ into finite

overlapping convex subsets and construct a roadmap, a graph (V , E). Let K be

the set of all decomposed convex subsets of Ω̄ and I be the set of all intersections

between two members in K. Each member K ∈ K ∪ I induces a graph vertex v,

a member of V . The graph vertex v is a point where δ restricted in K attains its

minimal value. Each member I = K ∩ K′ ∈ I (K ∩ K′ ̸= ∅ and K, K′ ∈ K) induces

two graph edges connecting vertices induced by K, K′, and I. For simplicity, we

assume that a member of K is contained in ∂B2. Recall that all configurations in

∂B2 are non-caging so any graph vertices induced by any K contained in ∂B2 are

non-caging placements. The set of all these graph vertices are denoted by Vexit.

3.4.2 Maximal Distance Propagation

To determine the maximal distance of a configuration x ∈ K where K ∈ K,

previously discussed strategy is translated to computing an upperbound separation

distance for each sequence of vertices that starts with v induced by K and ends

with one contained in Vexit. The least upperbound separation distance among such

sequences is δ∗(v). By Proposition 6, the maximal distance of a configuration x is:

δ∗(x) = max {δ(x), δ∗(v)} . (3.2)
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In case that v is not in Vexit, the escape sequence is not terminated. Let Nv be

the set of all vertices adjacent to v. The maximal distance of v is:

δ∗(v) = min
v′∈Nv

{
max

{
δ(v), δ∗(v′)

}}
= max

{
δ(v), min

v′∈Nv

{
δ∗(v′)

}}
. (3.3)

The propagation ends at vexit ∈ Vexit because at such a vertex there exists a

path that brings the fingers to the same point, therefore:

δ∗(vexit) = δ(vexit)

We have presented the approach to compute the maximal distance of any

given finger placement. For the minimal distance, however, we rely on a different

approach to be presented in the following section.

3.5 Stretching Cage

Consider decomposing M-dimensional Ω̄ into convex subsets satisfying the

following properties:

1. Each decomposed convex subset must be a compact M-dimensional convex

polytope.

2. Any two overlapping convex subsets, say K and K′, must share a common

(M− 1)-dimensional face. K ∩ K′ is a convex polytope on the boundary of K

and the boundary of K′. Every vertex of K ∩ K′ is a vertex of K and a vertex of

K′.

We claim that: an optimal path that starts and terminates at vertices of the decomposed

convex polytopes lies on edges of the decomposed convex polytopes. This is a product

of an observation that projecting (pushing) an optimal path in a convex polytope

onto the boundary of the convex polytope preserves path optimality. The projection
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function onto the relative boundary of K given a source point s is denoted by πK,s.

The projected point πK,s(x) satisfies the following properties:

• πK,s(x) lies on the relative boundary of K,

• πK,s(x), s, and x are collinear, and

• x is between s and πK,s(x).

An example of a projection is illustrated in Figure 7.3. When K is a compact con-

vex set and s is in the relative interior of K, the projection πK,s is well-defined and

continuous.

δ < dK
δ = d

δ > d

s

x

πK,s(x)

α

α

πK,s(α)

Figure 3.3: Projecting a path α (solid line) to another path πK,s(α) (dashed line) on
the relative boundary of K. If α is optimal, the projected path πK,s(α) is optimal as
well.

Proposition 7. Let K be a convex subset of Ω̄, and α be a path in the d-superlevel set of δ|K.

If some point in the relative interior of K are not in the image of α, there exists a source point

s in the relative interior of K such that the projected path πK,s(α) is in the d-superlevel set

of δ|∂K.

Proof. Let D be the complement of d-superlevel set of δ. We have that D is open

and convex since D is the interior of d-sublevel set of a convex function δ, see (Boyd

and Vandenberghe, 2004a). If the intersection between D and K is not empty, there

exists a source point s that lies in D and the relative interior of K. Otherwise, any

point s in the relative interior of K that is not in the image of α can be chosen as the
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source point. To obtain a path on the relative boundary of K, we project α to the

relative boundary of K. The projection πK,s(α) is a path since πK,s is continuous. To

show that πK,s(α) is in the d-superlevel set of δ, let us show that it does not overlap

with D. If the intersection between D and K is empty, πK,s(α) is always in the d-

superlevel set. Otherwise, suppose that πK,s(z) is in D, for some z ∈ img(α). By

definition of πK,s, z must lie inbetween s and πK,s(z); therefore, z must be in D. This

is a contradiction since α is in the d-superlevel set. ■

The following corollary is deduced from the proof of Proposition 7.

Corollary 8. Let K be a convex subset of Ω̄, and p be a finger placement in K. If K is not

a singleton, there exists a point s in the relative interior of K that a straight line from p to

πK,s(p) is in the δ(p)-superlevel set of δ|K.

Consider the situation when K is a convex M-polytope, M ≥ 2. By Corollary

8, for a given finger placement p in K, there exists a source point s and a straight

line path from p to its projection πK,s(p) in the δ(p)-superlevel set of δ|K. If πK,s(p)

is not a vertex of K, it must lie in the relative interior of a lower dimensional face

of K. The lower dimensional face is convex because it is a face of a convex poly-

tope. Consequently, Corollary 8 can be repeatedly applied to the projected point

contained in the convex face until the projected point is a vertex of K. This implies

that there exists a path that starts from p, terminates at a vertex of K and lies in the

δ(p)-superlevel set of δ|K. The path depends on source points for projection. How-

ever, any δ(p)-superlevel path from p to a vertex of K later proves to be equally

useful. We ignore the choice of source points and define βK as a function that maps

a finger placement p ∈ K to an optimal path from p to a vertex of K.

3.5.1 Optimal Path

With necessary background presented, let us prove the claim. Consider an op-

timal escape path γ that traverses through convex polytopes K1, K2, ..., Kk. Without

loss of generality, we assume that γ = γ1 · γ2 · ... · γk and each path γi lies in Ki.

Let aj and bj be the initial and the terminal points of γj. For 1 < j < k, observe
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that aj ∈ Kj−1 ∩ Kj, bj ∈ Kj ∩ Kj+1, aj = bj−1 and bj = aj+1. The path γj is in the

dj-superlevel set of δ for some value dj so δ(aj) ≥ dj, and δ(bj) ≥ dj. By Corollary

8, βKj−1∩Kj(aj) and βKj∩Kj+1(bj) lies in the dj-superlevel set of δ. Hence, the path

γ′j ≡ (βKj−1∩Kj(aj))
−1 · γj · βKj∩Kj+1(bj) is in the dj-superlevel of δ. Also observe that

γ′j begins where γ′j−1 ends and γ′j ends where γ′j+1 begins.

For any path γj, we can always construct another γ′j which begins at a vertex

and ends at another vertex of Kj, denoted by a′j and b′j respectively. Both paths lie in

the dj superlevel set of δ. Now let us apply Proposition 7 to γ′j. If γ′j does not occupy

the entire Kj, we can apply the projection described in the proposition to construct

another path γ′′j in the dj-superlevel set of δ. Clearly, γ′′j is a path from a′j to b′j that

lies on convex (M− 1)-dimensional faces of Kj. Suppose that γ′′j crawls through N

convex faces of Kj. We can correspondingly divide γ′′j into N smaller paths each of

which lies in each convex (M − 1)-dimensional face, i.e., γ′′j = γ′′j,1 · γ′′j,2 · ... · γ′′j,N.

Recall that this is exactly the same as when γ is divided into γ1 · γ2 · ... · γk. The

same process is repeated on γ′′j until Proposition 7 can no longer apply. That is,

when every divided path occupies the entire face (1-dimensional face) of Kj. This

means that for a given optimal path from a′j to b′j, γ′j, we can construct another

optimal path that joins the same pair of vertices and lies on the edges of Kj.

An example of repeated path decomposition and projection is illustrated in

Figure 3.4. The path γj is in dj-superlevel set of δ restricted to Kj. End points of

γj: aj and bj; lies on Kj−1 ∩ Kj (the bottom face of Kj) and on Kj ∩ Kj+1 (the top

face of Kj), respectively. The path γ′′j is, by construction, a path that starts from

a′j, terminates at b′j, and lies in the dj-superlevel set of δ restricted on the relative

boundary of Kj. The end points a′j and b′j are vertices of Kj. We further decompose

γ′′j into three paths each lies on a face of Kj, then repeat the projection process on

each of them. Concatenation of the projected paths gives β, a path that starts from

a′j, terminates at b′j, and lies in the dj-superlevel set of δ restricted to the edges of Kj.

For j = 1, the path γ′1 = γ1 · βK1∩K2(b1) since it is assumed that γ1 begins

at a vertex of K1. Similarly, γ is assumed to terminate at a vertex of Kk so γ′k =
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γj

γ′′j

β
Kj

Kj−1 ∩Kj

Kj ∩Kj+1γj

bj
a′j

aj

b′j

Figure 3.4: An example of repeated path decomposition and projection.

(βKk−1∩Kk(ak))
−1 · γk. Same as other γ′j, γ′1 and γ′k can be successively projected

to the edges of their containing convex polytopes. At this point, we successfully

prove the claim that an optimal path between vertices of the decomposed convex

polytopes exists on the edges of the decomposed convex polytopes.

Let V0 and E0 be, respectively, the set of all vertices and the set of all edges of

all decomposed convex polytopes. For each e in E0, we pick a point that δ restricted

to the edge attains its minimal value. LetM be the set containing all picked points.

The graph, the roadmap, for stretching caging (V , E) is defined as follows. The set

of vertices V the union of V0 andM. Each vertex m ∈ M connects two vertices in

V which are end points of the edge e that contains m.

3.5.2 Minimal Distance Propagation

Since each vertex on ∂B2 is a non-caging configuration, it has the minimal

distance equal to its separation distance. Let the set containing these vertices be

denoted by Vexit That is, for each vexit ∈ Vexit,

δ∗(vexit) = δ(vexit).

From these vertices, we propagate the minimal distance to the rest in V . The prop-

agation channels are the edges in E which are straight lines connecting adjacent
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vertices.

δ∗(v) = max
v′∈Nv

{
min

{
δ(v), δ∗(v′)

}}
= min

{
δ(v), max

v′∈Nv

{
δ∗(v′)

}}
(3.4)

where Nv is the set of all vertices adjacent to v. Alternatively, it is possible to prop-

agate negative minimal distance:

−δ∗(v) = max
{
−δ(v), min

v′∈Nv

{
−δ∗(v′)

}}
. (3.5)

To compute minimal distance for x in a decomposed convex polytope K and x

is not a vertex in V , recall the optimal path βK(x) that connects x and some vertex v

of K. Since v is a vertex in V , the minimal distance δ∗(v) can be computed from the

propagation described above. If δ∗(v) < δ(x) then βK(x) is in δ∗(v)-superlevel set of

δ. Therefore, from Proposition 3, x is in a stretching solution set and δ∗(x) = δ∗(v).

Otherwise, x does not form a stretching cage.

3.6 Spherical Fingers

Assigning the input object P to be the point-based Minkowski sum of the fin-

ger shape and the polytope representing the object reduces the problem of caging

with a pair of discs or spheres to the point-finger caging problem, see Figure 3.5.

However, the input object may contain curved parts and cannot be represented by

a polytope. Running the algorithm with a simplified polytope P ′ representing the

object as input may generate false solutions, i.e., some reported solutions may not

be a caging placement.

3.6.1 Squeezing Caging with Spherical Fingers

If an object P ′ is a subset of P , any valid two-finger placement for P will be

valid for P ′. Therefore, an escape path for P is also an escape path for P ′. Con-

sequently, the maximal distance of any valid finger placement for P ′ is not greater
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objectfinger

P ′
P

partitioned
convex subsets

Figure 3.5: The solid outline represents the point-based Minkowski sum of a disc-
shaped finger and an object, P . The dotted-line outline represents the simplified
geometry P ′.

than that for P . That is, if the simplified object is P ′ being a subset of the actual

object P , any maximal distance for the simplified object will be the lowerbound of

that for the actual object. In other words, a cage for P ′ is also a cage for the actual

object P . It should be noted that some of the reported cages may not be a valid

cage for P . Such cages are discarded. If the object is not oversimplified, only small

solution sets will be dropped.

We suggest a simplification that preserves straight lines and flat faces of the ac-

tual object while curved parts are simplified to edges and faces such that the newly

introduced vertices must lie on the boundary of P . The regions occupied by P but

not P ′ are partitioned into convex subsets, as in Figure 3.5. This simplification helps

us in determining whether a squeezing solution set for P ′ should be discarded or

not. Given a solution set for P ′, let x ≡ (x1, x2) be a finger placement satisfying the

following properties:

• δ restricted in the solution set attains its minimal value at x, and

• x1 and x2 are in partitioned convex subsets of close(P)\P ′ denoted by A1 and

A2, respectively.

Since A1 and A2 are convex, A1 × A2 is convex. By Proposition 6, we only need to

find where δ restricted in (A1 ∩ ∂P)× (A2 ∩ ∂P) attains its minimal value. That is,
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computing the least distance between two curves (in two-dimension) or two sur-

faces (in three-dimension). The least distance is then checked against the maximal

distance associated to the solution set for P ′ containing x. If it is greater, the solution

set is discarded.

3.6.2 Stretching Caging with Spherical Fingers

Applying the same concept, the simplified object P ′ must be a subset of the

actual object P so that the minimal distance of any valid placement for P ′ is not less

than that for P .

The previously introduced simplification that preserves straight lines and flat

faces works even better for stretching caging. Let x be a finger placement at which

δ attains its maximal value in a stretching solution set for P ′. Without loss of gener-

ality, we assume that each finger is at a vertex of P ′ at x (if not we can “push” them

to vertices using the βK function defined in Section 3.5). By the proposed simplifica-

tion rule, x must be on the boundary of P . This implies that a finger placement that

forms a stretching cage for P ′ also forms a stretching cage for P .

3.7 Implementation and Results

The recurrence relation (3.3) is resemble to that of Dijkstra’s shortest path algo-

rithm (Cormen et al., 2001). In our case, the maximal distance serves as the “shortest

distance” to a non-caging placement. The only difference is that addition is replaced

by maximization during updating each adjacent vertex’s shortest distance. Since

maximization does not decrease the value propagated across edges, it is possible

to construct a graph with non-negative cost on each edge for the shortest path al-

gorithm, reducing our problem to the shortest path problem. This also applies for

(3.5), the recurrence of negative minimal distances. By solving shortest path prob-

lems, we obtain the maximal and minimal distances of graph vertices. We employ

a disjoint set structure to keep track of vertices contained in the same solution sets.

Initially, a representative set ζv is initialized for each vertex v in V . By Proposition 1

and 2, any two sets ζv and ζv′ are merged if they satisfy:
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• v′ is adjacent to v, and

• v and v′ are connected by a path in the interior of δ∗(v)-sublevel set of δ.

Similar set merging scheme applies to stretching solution sets.

The process to obtain all solution sets is as follows:

1. Decompose F̄ into convex polytopes. We assume that the decomposition does

not introduce new vertices for simplicity of analysis. Our implementation

used Geompack++ (Joe, 2010) to triangulate polygon and polyhedra, taking

O(v2) time in worst case where v is the number of vertices representing the

object.

2. Decompose Ω̄ into convex polytopes. Each decomposed convex polytope is a

cartesian product of two decomposed convex subsets of F̄ .

3. Initialize the graph (V , E). This involves computation of optimal points of δ

restricted in convex polytopes. For squeezing caging, GJK algorithm (Van den

Bergen, 1999) is applied to the shortest distance between two convex poly-

topes. If the decomposition in the first step is a triangulation, the number of

faces, edges are linear to the number of vertices representing the object. Con-

sequently, the total number of graph vertices is O(v2).

4. Identify Vexit,. Initialize critical distance of such a vertex to its separation dis-

tance.

5. Propagate critical distances over the graph (V , E) according to (3.3) or (3.4).

Using the shortest path algorithm, the propagation over the graphs requires

O(v2 log v)

6. Report the solution sets by iterating through every set in the disjoint set struc-

ture.

The time complexity in the fifth step dominates that of the others. Our two-

finger caging algorithm has O(v2 log v) time complexity. Some results produced by



41

the algorithm are in Figure 3.7, for planar objects, and Figure 3.8, 3.9, 3.10 for three-

dimensional objects. The code was written in C++ and tested on Intel Core 2 6300,

1.86 GHz with 1 GB of RAM using only one core. The accumulative running time

of steps 2) through 6) is reported in Table 4.1. Time spent for computing stretch-

ing solution sets is significantly less than that for squeezing ones. This is because

the computation of minimal distance between two features in step 3), computing

distance between features used in stretching caging is simpler and less time con-

suming. It should be noted that the number of solution sets does not significantly

affect the running time because the algorithm has to operate on every graph vertex

regardless of the number of solution sets.
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Figure 3.6: The objects are: star, phone, jigsaw, snake, gun, maze. Each line segment’s
length is equal to a maximal distance of a squeezing cage and the arrows’ ends cor-
responds to a configuration with least separation distance in its containing solution
set.

To find in which solution set a finger placement x = (x1, x2) ∈ R2w is, we

first locate its containing K ≡ F1 × F2 where F1, F2 are decomposed convex subsets

of F̄ . The convex sets f1 and f2 can be found by solving a point location problem

(Snoeyink, 2004), which takes O(log v) time. For squeezing caging, compute the

maximal distance with (3.2). If it is greater than δ(x), the finger placement x is in a

squeezing solution set ζv where v is the vertex associated to K. For stretching caging,

we proceed to check whether x lies in a stretching solution set by successively pro-

jecting x to a vertex v of K. By Corollary 8, the minimal distance is min {δ(x), δ∗(v)}.
If δ(x) is greater than the minimal distance, x is in a stretching solution set ζv.

3.8 Summary

In this chapter, we have presented an algorithm for reporting all solution sets

for two point fingers and a given two or three-dimensional polyhedra representing

a rigid object. The algorithm also generates graph structures from which maximal

and minimal distance at any finger placement can be queried. For spherical fin-

ger case, we have presented a simple extension to report approximate solution sets
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Figure 3.7: The distance between each pair of arrows’ ends is equal to a minimal
distance of a stretching cage and the line segment length corresponds to a configu-
ration with greatest separation distance in its containing solution set.

Figure 3.8: Extruded hexagon with a hole. Only one solution set of the squeezing
constraint is caging at the bottom of the hole. Top row: left, front, top wireframe
views of the object. Bottom row: wireframe, transparent, shaded views of the object.
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Figure 3.9: Culled box. For each solution set, the fingers must be on each side of
the box except the top side (five squeezing solution sets in total). The only one
stretching solution set is caging by stretching fingers inside the box.

Figure 3.10: Crate. Two out of six squeezing solution sets require the fingers to be
at opposite concave sections. The rest requires the fingers to be concave sections of
adjacent sides. The algorithm does not report any stretching solution sets.
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Table 3.1: Algorithm Execution Time (Two-Finger Caging)

object v w squeeze stretch
# ms # ms

star 14 2 5 5 0 2
phone 22 2 1 10 1 4
jigsaw 20 2 4 8 0 3
snake 28 2 1 29 3 18
gun 38 2 15 75 1 53

maze 54 2 22 246 11 200
hexagon 36 3 1 1214 0 22

culled 33 3 5 528 1 17
crate 41 3 6 1821 0 31

guaranteed to be subsets of the actual ones. The extension to the algorithm to sup-

port more fingers is presented in the next chapter.



CHAPTER IV

MULTI-FINGER SQUEEZING CAGING

4.1 Introduction

In case of two-finger caging, squeezing and stretching are primary operations

of the manipulator which control the separation distance between the fingers. To

control the separation distance from going above (below) an upperbound (lower-

bound) is to impose a constraint. At an appropriate finger placemen, imposing an

appropriate constraint on the fingers results in caging the object, see Figure 1.1(a)

and 1.1(b), for example. The bound cannot be arbitrarily large or small. At a critical

distance, the cage is broken. The critical distance and a representative caging place-

ment are sufficient to describe a maximally connected set of caging placements for

two-finger caging.

Erickson et al. (Erickson et al., 2003) address the problem of three finger caging

of a convex polygon on a plane. Two out of the three fingers are called base fingers.

They are constrained in such a way that their separation distance is set to a given

constant. Erickson et al. propose an exact algorithm that, given positions of the base

fingers, computes a capture region, a region to place the other finger that together

with the fixed fingers cages the object. The time complexity of the algorithm is O(v6)

where v is the number of the polygon’s vertices. Vahedi and Stappen (Vahedi and

van der Stappen, 2008) extend the results to non-convex polygons in O(v6 log2 v). It

should be noted that the capture region is actually a 2D slice of the 6D caging set.

Each slice is identified by the positions of the fixed fingers.

An approach to multi-finger caging relies on controlling a 1-DOF function that

depends on the positions of the fingers. This generalizes the two-finger caging

with the separation distance as the 1-DOF function. Our preliminary work (Pipat-

tanasomporn et al., 2008) extends the two-finger caging algorithm to a multi-finger

caging algorithm under the assumption that the 1-DOF function is convex and in-

variant to the manipulators’ coordinate frame. A few years later, Rodriguez et al.



47

(Rodriguez et al., 2011) study the condition for a multi-finger cage to constitute way-

point to grasping, a pregrasping cage. They show that caging by preventing a value

of a function F below or above a value is a pregrasping cage if caging in such a

manner is not possible as the value of F gets arbitrary large or small.

Inspired by 1-DOF constraint-based approaches to caging, we extend the

two-finger squeezing caging to n-finger squeezing caging with user-provided con-

straints. The object is caged by controlling the fingers in a sufficiently tight forma-

tion satisfying the constraints. Our goal is to develop an algorithm for identifying

maximally connected sets of finger placements that cage an object in the aforesaid

manner. The maximally connected sets will be referred to as solution sets to be rep-

resented by their representative finger placement and the constraints. Caging is a

two-step process. The first step is to place the fingers inside a solution set. Then, im-

pose the constraints. The constraints are induced by physical limitations, kinematics

of the manipulator, and/or control policies. Some constraints will only be active af-

ter the initial finger placement setup, e.g., the ones that keeps the fingers squeezed

together. The others are always active, for example, those induced by physical lim-

itation of the manipulator. In practice, the manipulator can be free moving robots

on a plane constrained by communication distance among the robots, or an artic-

ulated hand with constraints among links. The ability to support user-provided

constraints permits our algorithm to report solutions, caging strategies, that take

advantage of specific environments. Theoretically, the constraints invalidate some

caging placements but also restrict possible motion of the fingers. They both hin-

der and help in caging. To the best of our knowledge, none of previously published

caging algorithms have neither taken constraints from the manipulator into account

nor supported custom constraints. Given a number of fingers and the constraints,

our algorithms generate solution sets from a given 2D or 3D object. They are capa-

ble of reporting exact solutions if all constraints are convex; otherwise, approximate

solutions.
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4.2 Formulation

This chapter addresses the problem of caging a rigid object P with n point

fingers. Same as in the previous chapter, the object P is represented by an open

but bounded w-polyhedra. It may consist of multiple components but all of them

must move together as a single rigid body. The compliment of P is assumed to

be connected, i.e., the object does not contain any inaccessible holes. A state of

the fingers is called a finger placement represented by x = (x1, x2, ..., xn) in Rw×n.

Each xi ∈ Rw is the position of i-th finger in the object’s coordinates. A finger

placement is valid if none of the fingers are in the interior of the object. The free

workspace, i.e., the set of all valid positions of a finger, is given by F ≡ Rw\P .

The free configuration space, or c-free, of n point fingers, when no constraints are

enforced, is Ω ≡ F n; while Rw×n\Ω is the c-obstacle.

In this section, the constraints imposed on the fingers have to be in the follow-

ing form: δ(x) < d, d ∈ R where δ : Rw×n → R is a function that is convex, and does

not change its value after rotating or translating the whole finger formation. The

function δ and its corresponding constraint is called a dispersion function and a dis-

persion constraint, respectively. The second property of δ ensures that δ(x) = δ(x′) if

there exists a rigid transformation T that transforms each ith-finger xi to T(xi) = x′i.

A dispersion function depends only on the formation shape of the finger placement.

Changes of coordinate frame or the object’s pose (rotation and translation) do not

affect the function nor the constraint.

The following are example dispersion functions:

• the greatest separation distance between a pair of fingers:

δ∞(x) ≡ max
{
∥xi − xj∥| i, j ∈ {0, 1, ..., n}

}
,

• the maximal distance of any two adjacent fingers:

δ∞
adj(x) ≡ max {∥xn − x1∥, ∥x1 − x2∥, ..., ∥xn−1 − xn∥} ,
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• the sum of square distance of any two adjacent fingers:

δ2
adj(x) ≡ ∥xn − x1∥2+∥x1 − x2∥2+... + ∥xn−1 − xn∥2.

All of these functions are convex since they are addition or supremum of norms

(Boyd and Vandenberghe, 2004b). In addition, they are invariant to rigid transfor-

mations of the finger formation because they depend only on distances between the

fingers.

We claim that a dispersion function attains its minimal value at any placement

that all fingers collapse to a single point.

Proposition 9. For any x and x′ having the same formation shape, the dispersion function

values at any finger placements that lie between x and x′ are less than those at x and x′.

Proof. The invariance property of a dispersion function’s implies that δ(x) = δ(x′).

A dispersion function is a convex function so it satisfies Jensen’s inequality (Boyd

and Vandenberghe, 2004a). Hence, dispersion of every point inbetween x and x′ is

less than δ(x) = δ(x′). ■

Proposition 10. Every dispersion function δ attains its minimal value when all the fingers

collapse to a point, i.e., at (x, x, ..., x) ∈ Rw×n for any x ∈ Rw.

Proof. Since any dispersion function is rigid-transformation invariant, it suffices to

show that any dispersion function attains its minimal value at the origin: 0w×n ≡
(0m, 0m, ..., 0m) ∈ Rw×n, where 0m is a w-vector with all zero elements.

When w is even, −Iw ∈ SO(w) where Iw is a w-by-w identity matrix. It is

possible to rigidly transform an arbitrary finger placement x to−x with the rotation

R = −Iw, and the translation t = 0w. Since the origin lies at the midpoint between

x and x′ = −x, the dispersion function attains its minimal value at the origin, by

Proposition 9.
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When w is odd, it can be verified that:

A ≡

 1 0T
(w−1)

0(w−1) −I(w−1)

 , Ā ≡

 −I(w−1) 0(w−1)

0T
(w−1) 1

 ;

are both in SO(w). Let x be an arbitrary finger placement in the form:

x ≡

 t

b

 ∈ Rw×n, t ∈ R1×n, b ∈ R(w−1)×n.

Consider the midpoint z between x and Ax:

z ≡ 1
2
(x + Ax) =

1
2

 t + t

b− b

 =

 t

0(w−1)×n

 ,

and the midpoint between z and Āz:

1
2
(z + Āz) =

1
2

 t− t

0(w−1)×n + 0(w−1)×n

 = 0w×n,

where 0(w−1)×n is the (w− 1)-by-n zero matrix. Apply Proposition 9 twice to obtain

that δ(z) ≤ δ(x) and δ(0w×n) ≤ δ(z). Hence, δ(0w×n) ≤ δ(x) for any x ∈ Rw×n. ■

This implies that if a dispersion constraint is feasible, every placement that all

fingers are at the same point will always satisfy the dispersion constraint. Figure 4.1

illustrates a typical relationship among finger placements, dispersion values and

caging states. Roughly speaking, a dispersion function measures how loose a for-

mation of fingers is. To control a dispersion function is to control the looseness of the

formation, independent of the object’s pose or the coordinate frame. A separation

distance function in two-finger caging is a dispersion function as δ∞, δ∞
adj reduces to

the separation distance function when n = 2.

A dispersion constraint: δ < d; restricts feasible finger placements, only those

with δ less than d is feasible. Let us first assume that the constraint is toggleable, and
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is not activated until an initial finger placement setup is complete. Prior to the acti-

vation, the free configuration space is Ω so the fingers are free to move everywhere

by the assumption on P . Imposing constraints restricts the fingers’ configuration to

be in a connected component of the intersection between Ω and the constraint’s fea-

sible region. A finger placement x is said to be in a solution set (for the constraint)

if its containing connected component is bounded in some dimension, i.e., some

fingers cannot move arbitrarily far from the object. When fingers cannot cage the

object, they can translate anywhere. Therefore, a finger placement in the connected

component that is unbounded in any dimension cannot be in a cage formed by the

constraint.

The real constant d of the constraint need to be adjusted to fit each caging site

and the object’s shape. For example, the fingers under δ2
adj need to be more spread

out when caging a large section so the constant has to be relatively large compare to

another constant applied to caging a smaller section. Similar to the critical distance

in two-finger squeezing caging, we are interested in determining the largest possible

value that the constraint can still prevent the object from escaping. Such a value is

called a maximal dispersion. When the dispersion constraint is δ2
adj and n = 2, it

reduces to the critical distance. The maximal dispersion at x is denoted by δ∗(x).

It is derived from an “optimal escape path” that starts at x. A path is a continuous

map from an interval to finger placements in the free configuration space. A path is

an escape path if it brings all the fingers arbitrarily far from the object. A path is not

blocked by the constraint δ < d if the supremum value of δ restricted on the path’s

image is less than d. A path α is said to be optimal among other paths satisfying

some given feasibility condition if it minimizes:

δ̂(α) ≡ sup
y∈img(α)

δ(y).

For an optimal escape path, the feasibility condition is that the path must be an

escape path from x. The maximal dispersion at a finger placement x is:

δ∗(x) ≡ inf
α∈Γ({x},T ,Ω)

δ̂(α),
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Any path α ∈ Γ({x} , T , Ω) with δ̂(α) = δ∗(x) is an optimal escape path from x.

If the starting point (initial finger placement), say x, is such that δ(x) = δ∗(x), it

is impossible to satisfy the dispersion constraint – keeping the dispersion below

δ∗(x). Every placement that all fingers collapse to a point is not in a cage formed

by any dispersion constraint because a point can translate to escape and no disper-

sion value is changed during the process. In case that δ(x) < δ∗(x), imposing the

dispersion constraint δ < δ∗(x) will always result in a successful caging.

grasping non-cagingcaging critical

more dispersionless dispersion

Figure 4.1: Formation dispersion increases from left to right.

An important property of maximal dispersion is that: the maximal dispersion

of a placement x is the same as that of a placement y if they are connected by any

path in a d-sublevel set of δ such that d is less than the maximal dispersion of y. The

proof is exactly the same as Proposition 1.

Proposition 11. The maximal dispersion of any finger placements x, y are equal if there

exists a path α from x to y such that α is contained in d-sublevel set of δ, for some d < δ∗(y).

This leads to the following fact (similar to Proposition 2) that:

Proposition 12. All finger placements in a cage formed by a dispersion constraint share the

same maximal dispersion.

Proposition 12 implies that it is reasonable to report maximally connected set
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of caging placements with a representative caging placement x and its maximal dis-

persion δ∗(x).

4.3 Optimal Path Construction

To compute a maximal dispersion, we construct an escape path guaranteed to

be optimal. The construction process is the same as that described in two-finger

squeezing caging with a dispersion function δ. The following is a review of Chapter

3.4. Suppose that the fingers are to move a placement x inside a convex set K1 ⊆ Ω.

to another placement y in another convex set K2 ⊆ Ω and the intersection between

K1 and K2 is not empty. Let z be a finger placement at which δ restricted on K1 ∩ K2

attains its minimal value Applying Jensen’s inequality (Boyd and Vandenberghe,

2004a), the concatenation of the two straight line paths from x to z and from z to y

is an optimal path contained in max {δ(x), δ(y), δ(z)}-sublevel set of δ.

An escape path starting at a given placement possibly passes through any

valid sequences of overlapping convex subsets of Ω. To consider all possibilities,

we decompose Ω into finite overlapping convex subsets. Let K be the collection of

all decomposed convex subsets and I contains all non-empty intersections of any

two overlapping convex subsets in K. That is:

I ≡ {K1 ∩ K2 | K1, K2 ∈ K, K1 ∩ K2 ̸= ∅} .

The set K covers Ω, i.e.,
∪

K∈K K = Ω, and every set in I is also a convex subset of

Ω.

All optimal paths constructed this way will lie on a one-dimensional skeleton

of Ω except when connecting their terminal points. The skeleton consists of:

• distinguished minimizers of δ restricted in each convex subset, and

• straight lines connecting them if their corresponding convex subsets overlap.

This structure forms a graph (V , E) such that the vertices are the distinguished min-
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imizers and the edges are the straight lines connecting adjacent vertices.

4.4 Maximal Dispersion Propagation

The maximal dispersion propagation is the same as maximal distance prop-

agation except how exit vertices are chosen. According to Proposition 11 and 6, a

placement x in a decomposed convex subset K ∈ K with an associated vertex v ∈ V
has:

δ∗(x) = max {δ(x), δ∗(v)} . (4.1)

That is, it is possible to evaluate the maximal dispersion of x if that of v is known.

If K contains a placement that all fingers collapse to a point, δ∗(v) is trivially the

global minimal value of δ. The maximal dispersion propagation will begin at such

v, an exit vertex. Otherwise, the maximal dispersion of v will be propagated from

the others whose maximal dispersions are already known. Let Nv be the set of all

vertices adjacent to v. Any member in Nv must be in the same convex set as v by

construction, it follows from Proposition 6 that, for any v′ ∈ Nv:

δ∗(v) ≤ max
{

δ(v), δ∗(v′)
}

. (4.2)

We claim that if v is not an exit vertex, an optimal escape path that begins with a

straight line from v to some v′ ∈ Nv exists. Therefore:

δ∗(v) = min
v′∈Nv

max
{

δ(v), δ∗(v′)
}

= max
{

δ(v), min
v′∈Nv

δ∗(v′)
}

. (4.3)

Let us suppose for a contradiction that it is possible to obtain a “better” escape path,

say α, contained in K entirely, that is:

δ(v) ≤ δ̂(α) < min
v′∈Nv

δ∗(v′). (4.4)
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Once the fingers can move arbitrarily far from the object along α, they can always

translate to somewhere spacious enough and collapse to a single point (by Proposi-

tion 10). If the process of collapsing to a point is a path in K, it will contradict with

the assumption that v is not an exit vertex. Otherwise, there exists a path that leaves

K yet better than one of the suggested straight lines, also a contradiction.

4.5 Dispersion Constrained Squeezing Caging

The previously discussed method computes maximal dispersion values for

a specific δ without additional constraints on the fingers. When the fingers are

constrained, some escape paths will be invalid. We denote the free configuration

space under constraints by Ω′. The maximal dispersion at x under constraints is

defined similarly but the set of all escape paths from x: Γ({x} , T , Ω′) is a subset of

Γ({x} , T , Ω) since Ω′ is a subset of Ω. The problem is that it may not possible to de-

compose Ω′ into finite overlapping convex subsets, e.g., Ω′ that consists of smooth

concave sections. However, when the constraints on the fingers are convex, such a

decomposition can be obtained by applying the convex constraints on decomposed

convex subsets of Ω. The constraints should be independent of the object’s pose as

well.

Apart from δ, we assume additional dispersion constraints in the form: δ1 <

d1, δ2 < d2, ..., δc < dc. Imposing constraints restricts the fingers’ configuration to be

in the intersection of Ω and the constraints’ feasible regions. The intersection among

the free configuration space and the feasible regions of the constraints 1, 2, ..., i is

denoted by Ωi. We also define Ω0 ≡ Ω for convenience. Since the constraints are all

dispersion constraints, if a finger placement that all fingers are at the same point is

infeasible then every finger placement is infeasible for the entire Ωc. In such a case,

no solution is reported, a trivial case.

The constraints are classified into: always-active constraints and toggleable con-

straints. The former cannot be turned off and will also restrict the fingers’ movement

even during the initial finger placement setup phase. They are for example induced

by physical limitations of the manipulator. The latter, on the other hand, are not im-
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posed during the initial setup phase, e.g., additional constraints from control policy.

The first b constraints: δ1 < d1, δ2 < d2, ..., δb < db, are assumed to be always-active

constraints while δb+1 < db+1, δb+2 < db+2, ..., δc < dc are toggleable constraints.

The intersection between Ωc and d-sublevel set of δ for some d is the set of all valid

finger placements after imposing all of the constraints. A finger placement x is said

to be a in a solution set (for the constraints) if x is contained in a connected compo-

nent of the intersection that is bounded in some dimension. We are only interested

in such x that is also contained in a connected component of Ωb that is unbounded

in any dimension because they are “reachable” by the fingers. Otherwise, either

the fingers cannot reach it or the fingers always cage the object by the effect of the

always-active constraints.

4.6 Fundamental Algorithm

The recurrence relation (4.3) resembles to that of Dijkstra’s shortest path al-

gorithm (Cormen et al., 2001). The maximal dispersion of a vertex v, δ∗(v), corre-

sponds to the “shortest distance to v”. The “cost” of an edge connecting v and v′ is

the cost of a straight path from v to v′, max {δ(v), δ(v′)}. The cost of a path is not

the sum but the maximum of edge cost.

We allocate a disjoint set structure to maintain sets of vertices contained in the

same solution set. Initially, for each vertex v ∈ V , its corresponding disjoint set

denoted by ζv is initialized as a root. By Proposition 11 and 12, any two sets ζv and

ζv′ will be merged if:

• v is adjacent to v′, and

• v and v′ are connected by a path lying in the interior of δ∗(v′)-sublevel set.

A question that arises is whether this method will report all solution sets for the

constraint.

If a vertex v that corresponds to a decomposed convex subset is not in a solu-

tion set, the convex subset will not overlap with any solution set. This is because



57

a straight line from any placement x in the convex subset to v can be concatenated

with an escape path from v to form an escape path from x in δ(x)-sublevel set of δ.

Proposition 13. Any convex subset of Ω overlaps with at most one solution set.

Proof. Suppose for contradiction that x and y are in the same convex subset of Ωc

but are from two different solution sets. We assume without loss of generality that

δ∗(x) ≥ δ∗(y). Since x and y are from different solution sets, they are not connected

by any path that lies in the interior δ∗(x)-sublevel set of δ. However, Proposition

6 states that there exists a path from x to y that is in the max {δ(x), δ(y)}-sublevel

set of δ. Observe that both x and y are from different solution sets so δ(x) < δ∗(x)

and δ(y) < δ∗(y). Hence, max {δ(x), δ(y)} < max {δ∗(x), δ∗(y)} ≤ δ∗(x). By

Proposition 11, x and y are in the same solution set. This is a contradiction. ■

Since we have decomposed the configuration space into convex subsets, each

solution set must overlap with some decomposed convex sets. If a decomposed

convex set overlap with one of the solution sets, its corresponding vertex has to be

in the solution set. Hence, the algorithm will report all solution sets.

For simplicity, we will first consider the case that δ1 < d1, δ2 < d2, ..., δc < dc,

are all always-active constraints, i.e., b = c. The implementation details and time

complexity analysis of the algorithm are as follows:

1. Decompose the free workspaceF into convex subsets by triangulatingF with-

out introducing new vertices. This operation produces a finite subcover, de-

noted by W , of F containing convex w-faces (w-dimensional polytope). The

size W is linearly proportional to v, the number of vertices representing the

object P . Geompack++ (Joe, 1991) was used in triangulation. The worst-case

time complexity is O(v2).

2. Construct K and I . Each member in K is created from Cartesian products

among n decomposed convex subsets of F ; therefore, is convex and covers
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the free configuration space Ω.

K = {W1 ×W2 × ...×Wn |Wi ∈ W} .

Consider two members of K in the form: W1 ×W2 × ...×Wn and W ′1 ×W ′2 ×
...×W ′n. Their intersection will be (nw− 1)-dimensional if, for an integer i, the

face Wi and W ′i are adjacent to each other in the workspace and Wj = W ′j for

any j ̸= i. Every member of I is also a convex set since each is an intersection

between two convex sets. Adding smaller-dimensional intersections will be

more than necessary and slow down the algorithm.

3. Construct the graph (V , E). For every member X in K and I , we formulate a

convex optimization problem: find v that minimizes δ subject to the dispersion

constraints: δ1 < d1, δ2 < d2, ..., δc < dc; and the linear constraints represent-

ing the convex polytope X. The vertex v, if exists, will be added to V . For each

member X, Y ∈ K such that X ∩ Y ∈ I , let x and y be vertices associated with

X and Y, respectively. If a vertex z associated with X ∩ Y exists, the line seg-

ments xz and zy will be added to E . Assuming that the number of dimension

and dispersion constraints are small constants, an interior point method op-

timizer can solve the problem at a reasonable precision within O(1), treating

n as a constant. Hence, solving all of the convex optimization problems re-

quires O(vn) time. Our implementation relies on MOSEK optimization software

to perform this task.

4. Initialize maximal dispersion values (cost) of each vertex v in V . If its asso-

ciated convex subset is in the form of W ×W × ...×W for some W ∈ W , its

maximal dispersion is δ(v). Otherwise, the maximal dispersion value of the

vertex is initially assigned to +∞.

5. Propagate maximal dispersion values over the graph (V , E) according to (4.3),

to obtain all maximal dispersion of every vertex. We apply the shortest path

algorithm to extract least cost unvisited vertex, propagate to its adjacent ver-

tices, and merge the disjoint sets if connected. This step takes O(vn log v) time.
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6. Report all solution sets formed by the constraint. Each solution set consists of

vertices in V representing union of convex subsets of Ωc. The number of these

sets are O(vn) and can be enumerated in O(vn) time.

The time complexity spent in propagating the maximal dispersion during step

5 dominates that of the others. Hence, the fundamental algorithm has O(vn log v)

time complexity.

To find which set of caging placements contains a given placement x =

(x1, x2, ..., xn), one has to identify first its containing a convex subset in the form of

X = W1 ×W2 × ...×Wn, Wi ∈ W . A point location algorithm (Snoeyink, 2004) may

apply to identify each Ki containing xi. If an associated vertex of X is not accessible

(not visited during propagation), the object cannot be caged there because it cannot

be reached by the fingers. Otherwise, the maximal dispersion of x is evaluated ac-

cording to (4.1). If it is greater than δ(x), x is a caging placement in the solution set

associated with X. In case that x is “not accessible” in (V , E), its maximal dispersion

remains +∞. A query takes O(log v) time in total.

In case that b < c, the algorithm will run in two passes. The first pass will

create a graph (Vb, Eb) for Ωb with the dispersion function δ assigned to a constant.

Optimization problems for vertices in step 3 become feasibility problems. The prop-

agation in step 5 will mark accessible vertices. The second pass remains the same

as the previous case. The solution sets are those reported in the second pass that

contain some vertices accessible in the first pass. The query algorithm follows the

first step to identify the containing convex subset X. The input to the query is a

caging placement only if the vertex associated with X is accessible in (Vb, Eb) but

not in (V , E).

4.7 Results

The algorithm was implemented in C++ and tested with several 2D and 3D

objects on Intel Core i5 CPU 650 at 3.20 GHz, using only one core in the execution.

The execution time for the experiments are shown in Table 4.1. We use δ ≡ δ2
adj



60

in all experiments. In the bottom row of Figure 4.2, the distance between finger 1

and 2 is also bounded below a value, having an additional always-active dispersion

constraint. The objects are shown in gray. Black dots show representative finger

placements of solution sets. The function δ restricted on their corresponding solu-

tion set attains its minimal value at each representative finger placement. A dashed

loop with a numeric label represents a projection of a solution set on the workspace

of a specified finger. For unconstrained cases, two solutions are identified as one

if one solution can be obtained from permuting or reversing the finger labels of the

other. The solutions shown are sorted by their quality in a descending manner. Qual-

ity of a solution is simply defined as the gap between the maximal dispersion and

the dispersion of the representative placement.

Observe that some fingers at representative placements are possibly at the

same point indicating that the object can be caged with fewer fingers. Though more

solutions are reported in settings with more fingers, the reported solutions can be

very small and the fingers need to be very close to the object – the fingers can easily

collapse to a point and escape by rising only a small amount of dispersion, start-

ing from the representative caging placement, see Figure 4.3, 4.4. A straightforward

method to improve solutions’ quality is to prevent the fingers from getting too close

together, i.e., by imposing constraints in the form ∥xi − xj∥≥ d, where d is a pos-

itive constant. Such constraints are concave – not dispersion constraints. We will

continue the discussion on this issue later in Chapter VI.

Table 4.1: Algorithm Execution Time (Fundamental)

object v n c cvx op. (s) total (s)
Figure 4.2 (top) 13 3 1 1.77 1.82

Figure 4.2 (bottom) 13 3 2 4.00 4.05
Figure 4.3 8 4 1 6.37 6.83
Figure 4.4 6 4 1 6.18 6.60
Figure 4.5 6 5 1 52.61 74.68
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Figure 4.2: Top and bottom row: top six solutions without and with an upperbound
dispersion constraint on the finger pair (1, 2), respectively.
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Figure 4.4: All three solution sets for a convex object with four fingers.
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Figure 4.5: Top four solutions for caging a convex polyhedron with five fingers.



CHAPTER V

IMPERFECT OBJECT MEASUREMENT

5.1 Introduction

This chapter presents an extension to the fundamental algorithm to handle

uncertainty of the object shape. The exact object shape P is not known. It is

possibly deformable or time-varying but must be inbetween P− and P+, that is:

P− ⊆ P ⊆ P+. The sets P− and P+ serve as a lowerbound and an upperbound of

P , guaranteeing that the object occupies points in P− and does not occupy points

outside P+, see Figure 5.1(a). To ensure that a finger placement cages the object

(a)

P−

P
P+

(b)

P−

P+

Figure 5.1: (a) the set P represents the unknown actual object inbetween given
bounds P− and P+. (b) decomposing the free workspace into convex polygons.

in the presence of uncertainty, all escape paths from the finger placement must be

blocked by imposed constraints regardless of the object shape P inbetween P− and

P+. Consider two object shapes A and A′ that A contains A′. A finger trajectory

in the free workspace of A is also a valid trajectory of A′. The same holds for every

escape path from a finger placement, i.e., any escape path valid for A is also valid

for A′. Let us consider a finger placement x valid for A. Since A′ contains A, x is

also valid for A′. If x is a caging placement for A′, x must be a caging placement for

A as well. Therefore:
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Proposition 14. A caging placement x for P− is also a caging placement for any P con-

taining P− if x is a valid finger placement for P .

A solution set for imperfect object should contain only caging placements that

certainly cage the uncertain shape P . Is it a solution set for an exact shape of P−?

What about a solution set for an exact shape of P− that contains some finger place-

ments inside P+? It is possible that such a finger placement may not be a valid

finger placement for P because some fingers may lie in the interior of the uncer-

tain shape P . Two finger placements in the same solution set for the exact shape of

P− may not be path-connected if every path connecting the two finger placements

consists of some finger trajectories that penetrate into P+.

To cage in the presence of the object uncertainty, we identify and make use of

finger placements that cages the object of any shape inbetween P− and P+.

Proposition 15. A finger placement x is a caging placement for any shape P inbetween

P− and P+, if and only if, x is a caging placement for P− and is a valid finger placement

for P+.

Proof. (→): When a finger placement x is a caging placement for any shapes inbe-

tween, it must be a caging placement forP−. It must also be a valid finger placement

for P+; otherwise, it is not a caging placement for P+.

(←): By Proposition 14, x is a caging placement for any P inbetween. ■

For a demonstration, we apply the concept to the multi-finger squeezing

caging. A solution set here is defined as a maximally connected set of finger place-

ments that cages any object inbetween P− and P+ as long as the constraints are

imposed.

5.2 Algorithm Modifications

A straightforward approach to obtain all solution sets is to compute all cages

for P− then intersect them with the free configuration space induced by P+:
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Ω+ ≡ (Rw\P+)n. Yet, it is possible to avoid expensive boolean operations. In-

stead of decomposing the free workspace F− ≡ Rw\P− derived from P− as in

the fundamental algorithm, it is decomposed in such a way that each decomposed

convex subset of F− is either contained in P+ or not overlap with the interior of

P+, see Figure 5.1 (b). These subsets induce K and I , ensuring that either of the

following conditions:

(i) some fingers are in the interior of P+, or

(ii) all fingers are in P+;

is satisfied for all finger placements inside any member of K and I . Any member

with all finger placements satisfying (i) is not a subset of Ω+, i.e., some fingers pene-

trate into P+. Its corresponding disjoint set entry will not be merged into a solution

set.

The query algorithm in this setting operates almost in the same manner as

the previous one. The first step is to locate a convex subset X containing a finger

placement x, the argument of a query. If X is contained in Ω+, the subsequent steps

follow those of the previous exactly. In case that the finger placement lies in Ω−

but not in Ω+, the query algorithm should report that it does not form a cage for all

shapes inbetween P− and P+ (formed by the constraints). In practice, it is possible

that some fingers actually enter the interior of P+. A reactive planner may still

want to know whether the current finger placement forms a cage for P− (i.e., caging

the actual object). In this case, the query algorithm is exactly the fundamental one,

treating P− as an input object.

5.3 Applications and Results

The following are possible applications and guidelines to exploit this exten-

sion.

• Shape uncertainty and/or deformable object. The bounds P− and P+ should con-
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tain the uncertain object shape. In case that the object and/or the fingers are

not perfectly rigid, their shape may slightly deform to some extent during

grasping or caging. The bounds P− and P+ should cover all possible shapes

of the object that may vary during the operation, see an example in Figure 5.2.

• Partial observation. Some parts of the object may be occluded or not visible

to the sensor. We assign P− to observed surfaces, P+ to cover unobserved

regions and the observed surfaces, see Figure 5.3. This method has a limitation

that the observed surfaces must belong to a single rigid (or almost rigid) body.

The output solution sets will only occupy the observed regions, i.e., using only

the observed sections in caging.

• Shape simplification. For a detailed and noisy input object, e.g., obtained from

range sensor, the exact algorithm may generate a lot of small solution sets at

the cost of high computation time. A more efficient alternative is to compute

simple bounding meshes that are a subset and a superset of input for P− and

P+, respectively. The simplification algorithm must be capable of preventing

the result mesh from penetrating into the input mesh (Gumhold et al., 2003).

See Figure 5.4, for an example.

• Spherical fingers. For spherical fingers, they can be treated as points by growing

the object. The grown object can no longer represented by polyhedra. The

bounds P− and P+ are sampled in such a way that they are a subset and a

superset of the grown object, see Figure 5.5.

Table 5.1 shows execution time of the results.

Table 5.1: Algorithm Execution Time (Object Uncertainty)

object v− v+ n cvx op. (s) total (s)
Figure 5.2 13 13 3 1.46 1.51
Figure 5.3 24 23 3 5.34 5.62
Figure 5.4 13 12 3 2.16 2.23
Figure 5.5 23 23 3 16.35 18.17
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Figure 5.2: Solutions for caging under imperfect object measurement: uncer-
tain/deformable object. A shaded region represents P−. A solid outline represents
P+.

1

23 1 23
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Figure 5.3: Solutions for caging under imperfect object measurement: partial obser-
vation. A shaded region representsP−, observed surface. A solid outline represents
P+, unobserved region.
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Figure 5.4: Solutions for caging under imperfect object measurement: simplification
(dotted outline represents the object prior to the simplification).
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Figure 5.5: Solutions for caging under imperfect object measurement: spherical fin-
gers (dark region represents the actual object).



CHAPTER VI

IMPERFECT FINGER CONTROL

6.1 Introduction

Occasionally, dispersion constraints alone are not sufficient to represent desir-

able traits of the manipulator critical to object caging. These traits are, for exam-

ple, limited minimum distance or collision between pair of fingers, rotational/ball

joint and joint limits possibly induced by the mechanics of the manipulator or the

control policy. Proposition 10 shows that no combination of dispersion constraints

can possibly simulate such behavior. This section focuses on approximating non-

convex constraints to capture desirable traits of manipulator that dispersion con-

straints cannot. The concept applied to handle imperfect object shapes can be im-

mediately upgraded to handle “imperfect c-obstacle”, combining the effect of object

measurement and finger control uncertainty. Instead of assuming exact c-obstacle,

the c-obstacle is uncertain and/or time-varying but it must be inbetween an upper-

bound and a lowerbound.

6.2 Distance Constraint

Let us consider a simple constraint that prevents two arbitrary fingers x1 and

x2 from getting too close to each other, given by: ∥∆1,2∥≥ rmin where ∆1,2 ≡ x2 − x1

and rmin is a positive real constant. We construct a “lowerbound” B− and an “up-

perbound” B+ for the constraint’s infeasible region B (B− ⊆ B ⊆ B+) in the co-

ordinates of ∆1,2 ∈ Rw, see an example in Figure 6.1 (a). The exact version of the

constraint is invariant to rigid transformations of the whole finger formation. Yet,

the bounds are only “invariant to translation” but not “invariant to rotation” of the

finger formation (consider a bound as a function that equals to 0 when in bound

but ∞ otherwise). If we were to apply a bound as a constraint in an actual caging

operation, the knowledge of relative rotation between the finger formation and the

object is required. In practice, it is more convenient to impose the exact constraint

while solution sets are derived from the approximated constraint. Similar to that
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in the previous section, we avoid boolean operations by decomposing the compli-

ment of B− into convex polyhedra in such a way that each decomposed polyhedron

that overlaps the interior of B+ must be contained in B+. Figure 6.1 (b) shows an

example of such approximation for a bounding minimum constraint. The decom-

posed convex polyhedra are then transformed to the coordinates of the first and

second fingers using the relationship ∆1,2 ≡ x2 − x1, which is a linear transforma-

tion, preserving convexity (Boyd and Vandenberghe, 2004a). Let B1,2 be the set of

transformed convex polyhedra. The set of convex polytopes containing the feasible

set of minimum distance constraint is given by: B1,2 ≡
{

B× (Rw)n−2 | B ∈ B1,2
}

.

The intersection among feasible sets induced by all constraints on fingers and

the object forms the free configuration space. Let K and K′ be sets of convex poly-

topes: ( ∪
K∈K

K

)
∩
( ∪

K′∈K′
K′
)

=
∪

K∈K∗K′
K

where: K ∗ K′ ≡ {K ∩ K′ | K ∈ K, K′ ∈ K′}. This ∗ operator will produce the in-

tersection between unions of convex polytopes in the form of a union of convex

polyhedra. Instead of directly decomposing the high-dimensional free configura-

tion space into convex polyhedra, we decompose low-dimensional feasible sets first

then apply the ∗ operator on them.

Under formation-translation invariant constraints, the whole finger formation

can freely translate along an arbitrary direction without being obstructed by any

constraints. This implies that once all the fingers and the object can be separated by

a plane Π not intersecting the object, they can move arbitrarily far from the object

by translating the whole finger formation. Let us denote the side of the plane Π

containing the fixed object by Π+, and the other side by Π−.

Proposition 16. For any escape path α starting from a feasible x, there exists another path

β from x to a point in (Π−)n such that δ̂(β) ≤ δ̂(α)

Proof. Let α = (a1, a2, ..., an) be an escape path from x. It can be implied from
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(a)

x

y

(0, 0)

B−
B B+

(b)

x

y

(0, 0)

B−
B+

Figure 6.1: (a) a lowerbound B− and an upperbound B+ for the infeasible region
B ≡ {(x, y) = ∆1,2 | ∥∆1,2∥≥ rmin}. (b) decomposition into eight convex polyhedra
(the center square is the void).

the definition of escape path that, for any R ∈ R, there exists some t0 that

min(∥a1∥, ∥a2∥, ..., ∥an∥)(t) > R for any t > t0. In other words, the fingers, after

following the escape path for a period of time, must all be scattered outside the ball

of radius R, which can be arbitrarily chosen. Since the object is bounded, at some

sufficiently large radius R the finger formation can be translated without colliding

the object arbitrarily far towards any direction. Hence, there exists some t0 such that

starting at α(t0) it is possible to translate the finger formation to some placement in

(Π−)n. ■

Vertices contained in (Π−)n are exit vertices for the maximal dispersion prop-

agation. At an exit vertex, the maximal dispersion value is equal to the dispersion

value. To ensure that some vertices are in (Π−)n, the half plane Π− should be in the

subcover of F after the decomposition.

6.3 Plane Constraint

The fingers lying on a plane obey constraints in the form: ⟨n, xi − p⟩ = 0 where

n and p is the normal and a point belongs to the plane. The constraint is linear when

n does not depend on the positions of the fingers. However, this means that the rela-

tive rotation between the object and the finger formation other than that around the
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normal axis is fixed, which is a rare case. Occasionally, the plane’s normal depends

on the positions of the fingers, e.g., the normal vector is derived from the cross

product between finger position differences: n = (x2− x0)× (x1− x0). In such case,

the constraints in the form ⟨n, xi − p⟩ = 0 are no longer linear and not convex. To

simulate an articulated gripper, it is more convenience to use the following hinge

constraints.

6.4 Hinge Constraint

For three dimensional workspace, a formulation of a hinge constraint imposed

on a triplet of fingers’ positions: x1, x2, x3, and a “ghost” finger x4. A hinge constraint

consists of five distance constraints:

• ∥∆1,2∥= ra,

• ∥∆2,3∥= rb,

• ∥∆2,4∥= h,

• ∥∆1,4∥=
√

r2
a + h2,

• ∥∆3,4∥=
√

r2
b + h2,

see Figure 6.2 (a). The ghost finger’s free workspace is the entire Rw as it does not

actually collide with the object but, together with x2, they define the rotation axis of

the hinge. The five distance constraints form two rigid triangles sharing a common

edge x2x4. Multiple hinge constraints can be applied by forming a mesh of distance

constraints as in Figure 6.2 (b). The distance constraint ∥∆5,6∥= r is added to fix the

rotation between the two hinge axes.

Additional distance constraints can be added to the system to setup hinge

joints’ limit. For example, based on the example in Figure 6.2 (b), the following

constraint

lmin ≤ ∥x1 − (cx3 − (1− c)x2) ∥≤ lmax (6.1)
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with sufficiently large c and appropriate lmin, lmax can limit the angle x̂1x2x3 within

a subset of [0, π].

x1
x2

x4

x3

hinge axis

‖∆1,4‖ =
√
r2a + h2

‖∆1,2‖ = ra‖∆2,3‖ = rb

‖∆3,4‖ =
√
r2b + h2 ‖∆2,4‖ = h

(a)

(b)

x1

x2

x3

x4

x5

x6
‖∆5,6‖ = r

Figure 6.2: (a) a hinge constraint setup, (b) two hinge constraint setup. The solid
lines with arrows on end points represent distance constraints and ra, rb, h, r are pos-
itive real constants.

6.5 Linear Constraints

A line segment or finger can be approximated with multiple fingers lying be-

tween two end points (fingers under a distance constraint). Let xi and xk be posi-

tions of two end points. The finger position xj lying between xi and xk satisfies the

linear constraint in the form: xj = (1− c)xi + cxk; for some real constant c ∈ (0, 1).

Such constraint is imposed along with the distance constraint between xi and xk is

fixed. The more fingers inbetween, the more computation time; however, they are

strictly constrained. We apply such fact to quickly reject some infeasible graph ver-

tices from consideration. It should be noted that, for 2D workspace, an alternate

approximation for line segment fingers can also be achieved by decomposing three

dimensional (x, y, θ)-coordinates free configuration space of a single line segment
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into (approximate) convex polyhedra; therefore, the cartesian among those convex

polyhedra becomes members of K0 instead.

Apart from fixing the fingers along a line, applying distance constraints and

appropriate linear constraints can fix the fingers in a rigid formation. For 2D

workspace, consider a pair of fingers x1 and x2 that the distance between them is

fixed, i.e., a rigid formation of two fingers. It is possible to attach another finger, say

x3, to the rigid formation by imposing constraints in the form: x3 = sR(x2− x1) + x1

where s is a scalar and R is a rotation matrix, respectively.

6.6 Algorithm Modifications

We assume that all constraints are invariant to translation of the whole finger

formation and at least a point in (Π−)n is feasible. The system are under c con-

straints, a of which are non-convex constraints to be bounded. We assume that the

set of appropriately decomposed convex subsets Bi for each i-th non-convex con-

straint is provided by user. The union of members in Bi is the lowerbound for the

feasible set of the i-th constraint. Additionally, each member may not contain both

the lowerbound and the upperbound’s interior points.

The following are key steps for the extended algorithm when all c constraints

are always active-constraints.

1. Same as step 1 of the fundamental algorithm, decompose the free workspace

into convex polyhedra. The decomposition guarantees that Π− is one of them.

2. Generate members of K0 and I0. Start from X ≡W1×W2× ...×Wn = (Π−)n,

initially in K0. Enumerate neighboring convex polyhedra of X in the form

X′ ≡ W ′1 ×W ′2 × ... ×W ′n such that, for some i, Wi ̸= W ′i but Wj = W ′j for

any j ̸= i. Ignore X′ that is already in K0. Test if the intersection I ≡ X ∩
X′ is feasible with respect to the constraints. If it is infeasible, reject I and

continue the enumeration. Otherwise, put X′ in K0, put I in I0, and have its

neighboring convex polyhedra of X′ enumerated recursively.
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3. Construct the graph (V , E). Let K1 ≡ K0 ∗ B1 ∗ B2 ∗ ... ∗ Ba and I1 ≡ I0 ∗
B1 ∗ B2 ∗ ... ∗ Ba. For each member X inK1 ∪ I1, solve the convex optimization

problem: find an associated vertex v in X, i.e., v is where δ attains its minimal

value subject to the convex constraints. The vertex v is added to V if exists.

For each member X, Y ∈ K1 such that X ∩Y ∈ I1 and the vertex associated to

X ∩Y exists, the edges {X, X ∩Y} and {X ∩Y, Y} are added to E .

4. The maximal dispersion of the initial vertex is set to the dispersion of the initial

vertex. Other vertices’ maximal dispersions are initialized to +∞.

5. Follow the step 5 of the fundamental algorithm in Chapter 4.6 to obtain all

solution sets with respect to the constraints.

6. Trim the solution sets by discarding each disjoint set entry with the associated

convex polyhedron contained in an upperbound.

The algorithm execution time now significantly depends on the constraints.

Stricter constraints increase the chance of pruning infeasible convex polyhedra early,

thus resulting in smaller K0, and I0. If all constraints are convex, we have K1 = K0

and I1 = I0; therefore, step 3 of the extended algorithm reduces to the step 3 of

the fundamental one. Assuming that the number of convex polyhedra used in

approximating those constraints be bounded by N. Cardinality of K1 and that of

I1 are O(|K0|Na) and O(|I0|Na), respectively. The number of convex optimiza-

tion subproblems to be solved are O((|K0| + |I0|)Na). Only feasible solutions to

these subproblems will be used in generating nodes and edges of the graph. In the

worst case situation that all nodes are feasible, the algorithm complexity becomes

O(aNanvn log(vN)), which reduces to O(vn log v) if n, N and a are treated as small

constants.

One may query which solution set contains a given configuration by identify-

ing a containing convex subset in K1. Like the fundamental query algorithm, we

identify a convex subset of free workspace that contains each finger. In addition, for

each i-th approximated constraint, we identify a convex subset in Bi containing the
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given configuration. Though it is possible to apply an available point location algo-

rithm to achieve a logarithmic query time in a higher dimensional space, the pre-

computation phase is complicated and time consuming (Snoeyink, 2004). Applying

a naive approach to point location yields O(log v + aN) query. Occasionally, we

can solve the point location problem in constant time, resulting in O(log v) query,

because the convex subsets are regularly generated from known function.

6.7 Applications and Results

Consider a setting consists three fingers that δ ≡ ∥x1 − x3∥2+∥x2 − x3∥2. Dis-

tance constraints are imposed between x1 and x2, the base fingers to restrict their

distance in a small interval. The maximum distance constraint ∥x1− x2∥2≤ rmax is a

dispersion constraint. We use unions of twelve polyhedra to define bounds for the

minimum distance constraint ∥x1 − x2∥2≥ rmin. The experiment results on polygo-

nal objects are shown in Figure 6.3. The key difference between our algorithm in this

setting and the exact algorithm presented in (Vahedi and van der Stappen, 2008) is

that: our algorithm takes O(v3 log v) to approximate all cages parametrized by the

maximal dispersion and the constraints. This is in contrast to the exact algorithm

that takes O(v6 log2 v) to generate an exact solution represented by curves given

fixed base fingers’ positions, say p1, p2 as additional input.

In Figure 6.4, the dispersion function δ is δ2
adj. We impose lowerbound distance

constraints between pairs of fingers to prevent the fingers from collapsing to a point.

This prevents degenerate solutions and make the fingers more scattered around to

block the object.

Motivated by the fact that distance constraints depend only on positions of

only two fingers and independent of the rest, we precompute whether a convex

polyhedron W1 ×W2 satisfies the constraint for all possible W1, W2 being decom-

posed convex subsets of the free workspace. The precomputed results are queried

in step 3 to quickly reject infeasible convex optimization subproblems. Table 6.1

shows the execution time of the extended algorithm using quick rejection. The non-

convex constraints significantly slow down the computation.
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Figure 6.3: Top solutions for three finger caging via dispersion control, the distance
between “base fingers” is constrained in a small interval. The dashed region shows
projections of the solution sets.
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Figure 6.4: (a) a solution set for three fingers with three lowerbound distance con-
straints imposed on pairs of adjacent fingers, (b) similar solution set but the fingers
are unconstrained.

Table 6.1: Algorithm Execution Time (Non-convex Constraint Approximation)

object v n c a cvx op. (s) total (s)
Figure 6.3 (top) 11 3 2 1 10.73 11.09

Figure 6.3 (bottom) 6 3 2 1 7.50 7.75
Figure 6.4 (a) 8 3 3 3 1720.27 9078.39
Figure 6.4 (b) 8 3 0 0 0.65 0.67
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6.8 Summary

We present a O(vn log v) algorithm for reporting all cages for a given object

represented by a w-polyhedron, a set of n point fingers, and a set of dispersion

constraints. The algorithm is extended to support object uncertainty and report

approximate solutions for non-convex constraints. Information of a given finger

placement, whether it is a in a cage and how much its maximal dispersion value

is, can be queried with a O(log v) algorithm. Experiments show that our squeezing

caging approach works well (reporting large solution sets) when the object has at

least a concave section. The solution sets may be very small otherwise. Appropriate

constraints can help improve solutions’ quality. Yet, choosing a set of appropriate

constraints to cage an object remains a challenging problem.



CHAPTER VII

COMBINED SQUEEZING AND STRETCHING

CAGING

7.1 Introduction

Caging by fixing a finger formation does not allow the finger formation to de-

form. In constrast to caging by dispersion control, maintaining dispersion to be the

same value or in an interval may permit the finger formation to change its shape.

Consider Fig. 7.1, fixing the finger formation immobilizes the object. However, con-

trolling the sum of square distance between adjacent fingers (a dispersion) below

any value cannot cage the object since it allows the finger 2 and 4 to slide to where

the finger 1 is and let the object escape without increasing dispersion. Conversely,

if the object can be caged by maintaining dispersion after an initial finger formation

setup, it can also be caged by fixing the initial finger formation. Though each solu-

tion set reported by this approach is a subset of a caging set, its description remains

as simple as that of two-finger caging, i.e., a representative formation and a critical

value. An important characteristic of caging via dispersion control is that the fin-

gers can always shrink to a single point without increasing dispersion, as shown

in Proposition 10. This implies that it is not possible to fix the finger formation by

keeping dispersion below or above a value regardless of the choice of a dispersion

function.

1 2

3

4

Figure 7.1: Four-finger caging by fixing the finger formation.



80

This chapter proposes an exact algorithm to identify approaches to cage an

object. Instead of caging by keeping dispersion either below or above a value, the

object is to be caged by controlling dispersion in an interval, using both the upper-

bound and the lowerbound. The algorithm is extended from that of squeezing and

that of stretching caging to report solution sets for caging in an interval [a, b), given

a. The process of generating solutions for a polygonal or polyhedral object with v

vertices and n fingers has O(vn log n) time complexity. Each reported solution set

remains in the form of a representative formation and an error tolerance. Unlike

caging sets, the solution sets depend on the choice of a dispersion function which

represents an “approach” to cage the object. The reported error tolerance is mea-

sured with respect to the chosen approach, the dispersion function. The higher the

reported tolerance, the more the finger formation may deform without letting the

object escape. Apart from identifying possible solutions to caging in the aforesaid

manner, the algorithm may be applied in computing error tolerance for caging by

fixing a finger formation on a plane. The finger formation possibly obtained from

a grasp synthesis, current manipulator configuration or other caging method. We

show that caging by fixing a given finger formation on a plane can be achieved by

controlling an appropriate dispersion function in an interval. Therefore, the algo-

rithm can be configured to report solutions to fixed formation caging – every distinct

site to cage the object with a given fixed formation along with corresponding error

tolerance.

This chapter is organized as follows. The next section is an overview for caging

via dispersion control in an interval, aimed to setup a dispersion function capable

of fixing a finger formation. Section 7.3 presents an approach to determine the up-

perbound value to control dispersion value below, given a lowerbound dispersion.

The algorithms for computing all solution sets are in Section 7.4 followed with con-

clusion in Section 7.5.
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7.2 Caging by Controling Dispersion in an Interval

Fixing a finger formation forbids the finger formation to deform, preventing

the fingers from squeezing and stretching. Caging by fixing a finger formation is

necessarily both squeezing and stretching caging. In two-finger setting, fixing a fin-

ger formation is equivalent to fixing the separation distance. For a setting with three

or more fingers, an appropriate substitute for the separation distance, a dispersion

function δ, has to be chosen to fix the finger formation a similar manner. The cho-

sen function has to be invariant rigid transformation of the finger formation so that

the fingers can perform caging without the knowledge of the object’s configuration.

Consider a three finger system with δ assigned to be δ2
adj ≡ d2

1,2 + d2
2,3 + d2

3,1 where

di,j is the distance between the finger i and the finger j. Suppose that the fingers are

in general positions (d1,2 > 0, d2,3 > 0 and d3,1 > 0), it can be observed that im-

posing the constraint δ2
adj = d for some d > 0 does not fix the finger formation. To

ensure that δ varies whenever the finger formation deforms from a given formation,

δ has to depend on it.

7.2.1 Caging by Fixing a Finger Formation

Assuming a system of n fingers on a plane and p ≡ (p1, p2, ..., pn) ∈ R2n be the

position of fingers representing a formation shape to fix. The measure on how much

a finger formation deform or deviate from the given formation shape p is based on

the difference:

∆p = x−Ap(r, t),

Ap =


p1 p⊥1 I2×2

p2 p⊥2 I2×2
...

...
...

pn p⊥n I2×2


where:

• x = (x1, x2, ..., xn) ∈ R2n is the current positions of the fingers,
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• Ap ∈ R2n×4 depends on the given formation p such that Ap(r, t) is the given

formation similarity transformed with (r, t) as parameter,

• r ∈ R2 is an orientation-scale vector such that direction and magnitude of r

correspond to rotation and scale of the transformation, respectively.

• t ∈ R2 is the translation part of the transformation,

Assuming that n ≥ 2 and the formation to fix is not a single point, we assign (r, t) =

A†
px so as to minimize ∆⊤p ∆p which measures the formation shape variance between

x and p “upto scale”. It should be noted that the formation shape of x is the same

as that of p, if and only if, the scale of the transformation is one (r⊤r = 1), and

the formation shape variance is zero (∆⊤p ∆p = 0). To control both the scale and the

variance, we exploit the following function:

δ2
p ≡ f + g

f ≡ λ(r⊤r− 1)

g ≡ (1− λ)∆⊤p ∆p,

where λ is a constant in (0, 1). The function δ2
p is a dispersion function that maps

a formation x to a real value because both f and g are. In addition, we claim that

the finger formation cannot deform its shape from that of p without varying δ2
p.

Assume without loss of generality that x = p. Varying the formation from p while

δ2
p = 0 either:

1. Varies scale: for any direction v such that the directional derivative of f at p

along the direction v: ∇ f (p) · v ̸= 0. The constraint δ2
p = 0 implies that

∇g(p) ·v ̸= 0 as well. However, ∆p vanishes at p so∇g(p) ·v = 2∆⊤p∇∆p(p) ·
v = 0, a contradiction. This case is not possible.

2. Fixes scale: ∇ f (p) · v = 0. The constraint δ2
p = 0 forces ∇g(p) · v = 0. After

the variation f remains the same so ∥r∥= 1, i.e., no change in formation scale.

Moreover, ∆p must remain vanished since g = 0 after the variation and g is a
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norm of ∆p. This implies that the formation shape must remain the same after

the variation.

Hence, caging by fixing δ2
p = 0 is exactly caging by fixing the formation shape of p.

Controlling δ2
p in an interval [0, e) for some e > 0 permits the finger formation

to deform from the shape of p. The parameter λ can be interpreted as a blending

factor between two extreme caging behaviors: one is that of assigning f , and the

other is assigning g, as a dispersion function. Setting λ close to zero will bias to-

wards caging by controlling the “scale” with respect to the formation shape p. On

the other hand, setting λ close to one will bias towards caging by controlling the

variance from p “upto scale”. These two behaviors compliment each other, and are

combined to control both the scale and the variance from p.

7.2.2 Caging in a Bounded Workspace

To simplify the subsequent discussions in this chapter, we assume that:

(FB) any finger cannot move outside a sufficiently large box B bounding the object.

This assumption prevents the fingers from going arbitrarily far from the object, i.e.,

the usual caging condition is always satisfied so we use the condition that: the ob-

ject is caged if all the fingers are prevented from going outside a sufficiently large

box B′, contained in B, bounding the object. Recall that the condition is equiva-

lent to the usual caging condition when (FB) is not assumed. When the fingers are

all outside B′, the finger formation can translate (the formation shape remains the

same) arbitrarily far from the object. The size of B′ must be large enough so that

even if the fingers surround B′, there exists a gap for the object to slip through. The

size of B′ depends on the number of fingers n and the size of the object, Conversely,

if the fingers can move arbitrarily far from the object, they can move outside any

box bounding the object. The assumptions allow us to work in a bounded domain,

bounded free workspace and configuration space so as to avoid complications that
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occur as a finger approaches infinity. In practice, it is also reasonable to assume (FB)

as fingers that are assigned to cage the object should be controlled to be in vincinity.

7.3 Combined Squeezing and Stretching Caging

Like the presented two-finger squeezing or stretching caging algorithm, the

one for combined squeezing and stretching caging is also based on convex decom-

position of the configuration space and identifying “optimal path” among paths in

each decomposed convex set. The free workspace of the system of interest is Rw

subtracted by the polytope representing the object with the coordinates of reference

set to that of the object. We assume that the free workspace is connected, ignoring

inaccessible holes inside the object. Here, a path is a function that maps a value in

[0, 1] to a configuration in the free configuration space denoted by Ω. An optimal

path in a set of paths A is defined as a path in A such that the dispersion of ev-

ery point along the path is equal or greater than the lowerbound and the maximum

value of dispersion among points along the path is the least among any other paths

in A. Without loss of generality, we assume the lowerbound dispersion to be the

constant 0. In other words, α is an optimal path in A, if and only if,

δ̂(α) = sup
x∈img(α)

δ(x) = inf
β∈A

sup
y∈img(β)

δ(y),

subject to:

inf
x∈img(α)

δ(x) ≥ 0. (7.1)

Given that α is optimal in A, the optimal dispersion of A is defined by δ̂(α). If an

optimal path α in Γ({x} , {y} ,A) does not exist because a path in Γ({x} , {y} ,A)
that satisfies the lowerbound constraint (7.1) does not exist, the fingers cannot reach

y from x (and cannot reach x from y) if the formation dispersion is controlled to be

equal to or above 0. Similarly, an existence of an optimal path α in Γ({x} , {y} , Ω)

is a certificate that the fingers cannot reach y from x (and vice versa) if the forma-

tion dispersion is controlled in [0, supx∈img(α) x). To identify whether a finger place-
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ment x forms a cage via dispersion control, we determine the optimal dispersion in

Γ({x} , {e} , Ω) where e is a remote configuration such that all fingers are outside

B′ and δ(e) = 0. For e to exist, B must be large enough to contain a smallest finger

formation with zero dispersion outside B′.

First, let us consider Γ({x} , {y} , K) where K ⊆ Ω is a bounded convex poly-

tope, δ(x) ≥ 0, and δ(y) ≥ 0. If the straight line segment from x to y does not contain

any formation with dispersion less than zero, the optimal path in Γ({x} , {y} , K)

is the straight line segment with max(δ(x), δ(y)) being the optimal dispersion of

Γ({x} , {y} , K). This is because every path in Γ({x} , {y} , K) must visit x then y,

and a dispersion is a convex function. Every formation along inbetween the straight

line segment has dispersion not greater than the end points, by Jensen’s inequality

(Boyd and Vandenberghe, 2004a). In case that the line segment contains some for-

mation with dispersion less than zero, we claim that:

Proposition 17. An optimal path α with optimal dispersion of Γ({x} , {y} , K) equal

to δ̂(α) = max(δ(x), δ(y)) exists if there exists a path β from x to y that satisfies

infz∈img(β) δ(z) ≥ 0.

The optimal path α can be constructed by first pulling each point on the path

β towards a point o ∈ K that δ(o) ≤ 0 until it hits the 0-level set of δ, see Figure

7.2. Since K is convex, such pull will not be blocked by the boundary of K. The

pulled path is a path with maximum dispersion along the path lower or equal to

β; therefore, is lower or equal to δ(x, y). Connect the beginning and the end point

of the pulled path using straight line segments to obtain the optimal path α with

optimal dispersion equal to max(0, δ(x), δ(y)) = max(δ(x), δ(y)). In case that such

β does not exist, any path from x must pass to some point with dispersion lower

than zero before reaching y; therefore, the optimal path in Γ({x} , {y} , K) does not

exist as well.

The existence of the path β in the previous paragraph can be verified using

a strategy presented in stretching caging. Given that K is a bounded convex poly-

tope and x, y are at some vertices of K, an optimal path is simply a sequence of
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δ < 0K
δ = 0

δ > 0

ox

β

α

Figure 7.2: Path pulling example, the solid-line path β is pulled to the middle section
of the dashed-line path. Connect the end points of the pulled path with straight lines
to obtain the optimal path α, the entire dashed-line path.

edges in K (see Chapter 3.5). The underlying idea is that for any path α in K, it

is possible to project each point x on the path along a straight ray enamating from

some point s towards x until it hits the relative boundary of K, see Figure 7.3. Let

d = infz∈img(α) δ(z). If the intersection between the interior of d-sublevel set of δ and

the interior of K is not empty, the point s can be any point in the interior of K that

δ(s) < d. Otherwise, any s in the interior of K not contained in the path is fine. Infi-

mum over dispersion of points along the projected path is guaranteed to be equal to

or higher to d. This projection operation is repeated on paths that lie on each facet

of K, sending them to lower dimensional facets of K until the entired path lies on

edges of K. When x and y are not at some vertices of K, they can be recursively pro-

jected to ones in the aforesaid manner, the trajectories during recrusive projection

are used in connecting x to a vertex, and a vertex to y. In fact, the relation that two

vertices are connected by some path β with infz∈img(β) δ(z) ≥ 0 partitions vertices in

K into connected components of vertices. Consequently, such β connecting x and y

exists, if and only if, x and y are recursively projected to vertices belong to the same

connected component of vertices in K. It should be noted that connected compo-

nents of vertices in A are one-to-one mapped to connected components (of points)

in A partitioned by the region with the dispersion lower than zero. An example is

illustrated in Figure 7.4. In the example, the pairs of corresponding connected com-

ponent of points : connected component of vertices are A : {a1, a2, a3}, B : {b1},
C : {c1, c2, c3}.
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δ < dK
δ = d

δ > d

s

x

πK,s(x)

α

α

πK,s(α)

Figure 7.3: Projecting a path α (solid line) to a path on the relative boundary of K
(dashed line).

δ < d
K

δ = d

δ > dA

B
Ca1

a2

a3 b1

c1

c2
c3

Figure 7.4: Points in a convex polyhedron are partitioned into multiply connected
components of points. The vertices of the convex polyhedra are paritioned into
connected components of vertices.

Recursively projecting a point with dipersion more than zero in A to a vertex

of A maps a connected component of points containing the point to a connected

component of vertices while each vertex of A can be mapped back to its containing

component of points. For brevity, the partitioned connected component of points

will be referred as “connected component”.

From the discussions so far, it can be concluded that:

Proposition 18. Let X be a connected component of a bounded convex polytope K. The

optimal dispersion of Γ({x ∈ X} , {y ∈ X} , X) is max(δ(x), δ(y)) and is equal to that of

Γ({x} , {y} , K).

Next, let us consider Γ({x} , {x′} , K ∪ K′) where:
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• K, K′ ⊆ Ω are bounded convex polytopes that share common vertices and

K ∩ K′ is exactly the convex hull of those vertices.

• X is a connected component of K and contains x.

• X′ is a connected component of K′ and contains x′.

Any path from x to x′ has to visit some point in K ∩ K′ so the optimal path exists, if

and only if, X ∩ X′ ̸= ∅. We claim that:

Proposition 19. X ∩ X′ ̸= ∅, if and only if, X and X′ shares a common vertex.

Proof. (←) is obvious. For (→), for any point z on X ∩ X′, it can be recursively

projected to a vertex of K ∩ K′ with greater or equal dispersion; therefore, X and X′

must share a common vertex when their intersection is not empty. ■

Suppose that an optimal path in Γ({x} , {x′} , X ∪ X′) exists, it must con-

sist of two parts: one from x to a point in X ∩ X′ and the other from the point

in X ∩ X′ to x′. Let z be a point that δ restricted on X ∩ X′ attains its minimal

value. The optimal path in Γ({x} , {x′} , X ∪ X′) is simply a concatenation be-

tween the optimal path in Γ({x} , {z} , X) and that in Γ({z} , {x′} , X′). Both can

be constructed by the discussed method. If K ∩ K′ intersects the 0-level set of

δ an empty set, then X ∩ X′ = K ∩ K′. The optimal dispersion in this case is

max(max(δ(x), δ(z)), max(δ(z), δ(x′))) = max(δ(x), δ(x′), δ(z)). Otherwise, it is

max(δ(x), δ(x′)) because the minimal value of δ restricted on X ∩ X′ is always zero.

Proposition 20. Given that X ∩ X′ ̸= ∅, the optimal dispersion of Γ({x} , {x′} , X ∩ X′)

is max(δ(x), δ(x′), δ(z)) and is equal to that of Γ({x} , {x′} , K ∩ K′).

Suppose that the free configuration space Ω is a union of bounded convex

polytopes K1, K2, ..., Kc such that the intersection of every convex polytope pair shar-

ing common vertices is exactly the convex hull of the common vertices. In this set-

ting, connected components in convex polytopes serve as basic building blocks for

the combinatorial search structure. A connected component X in a convex polytope
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K is said to be adjacent to another connected component X′ in convex polytope B

if there exists a common connected component in A ∩ B that overlaps with both X

and X′. The connected components in convex polytopes and their adjacency form a

graph structure: each graph vertex is a connected component in a convex polytope

Ki. The graph edge connecting the two graph vertices is present when the intersec-

tion between the graph vertices is nonempty. However, the graph edges defined this

way are more than necessary. To improve the algorithm, the edge should present

only when the intersection of the convex polytopes containing the graph vertices

is their common facet with dimension less than that of the configuration space by

one, ignoring lower dimensional gaps. Given a graph path, i.e., a sequence of adja-

cent graph vertices: X1, X2, ..., Xm; one could immediately construct an optimal path

travelling through the vertices using the stated method and compute its optimal

dispersion. The goal of computing the caging tolerance of an initial configuration x,

δ(x) ≥ 0, or the optimal dispersion of Γ({x} , {e} , Ω), can be achieved by finding

an “optimal graph path” that starts at a graph vertex containing x and terminates

at a graph vertex containing e. Here, the optimal graph path is a graph path that

induces the least optimal dispersion among all other graph paths linking the same

end points, x and e.

7.4 Algorithms

A single-source shortest path algorithm is modified to propagate optimal dis-

persion among graph vertices and a disjoint set data structure is used in keeping

track of solution sets, connected sets of caging formations. The algorithm to report

solution sets of combined squeezing and stretching caging is as follows:

1. Decompose the free workspace into convex polytopesW = {W1, W2, ...} such that

intersection of every convex polytope pair sharing common vertices is exactly

the convex hull of the common vertices. Each decomposed convex polytope

subset of Ω is created by cartesian product among n members of W . We de-

note K by the set of all such convex polytopes covering Ω. This step can be

accomplished by polygon/polyhedra triangulation in O(v2) or better.
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2. Identify connected components. Create a graph for stretching caging: each graph

vertex, and each graph edge, is a vertex, and an edge, of a convex polytope in

K. Compute the minimal value of δ restricted on each edge as the edge’s cost,

using a convex optimizer. Identify connected components of the stretching

caging graph by considering its edges whose cost is lower than 0 as removed.

Note that each connected component may span across convex polytopes in

K, but we will be working only on the connected component containing e,

referred to as E. The other connected components cannot be reached while the

constraint δ ≥ 0 is imposed. Solution to each optimization problem can be

solved in constant time (treating n as a constant) independent of v because of

triangulation. The time complexity of this step is O(vn) required for solving

O(vn) convex optimization problems.

3. Create the graph for combined squeezing and stretching caging. Each graph vertex

is the intersection of the connected component and a convex polytope in K.

Let K, K′ ∈ K be convex polytopes that intersect E a nonempty set. The graph

edge links the vertices E ∩ K and E ∩ K′ if K and K′ share a common facet.

Formally, a graph edge connects vertices X, X′ in the form:

X = E ∩ (Wι(1) ×Wι(2) × ...×Wι(n)),

X′ = E ∩ (Wι′(1) ×Wι′(2) × ...×Wι′(n)),

such that ι(i) = ι′(i) for any i except when i is equal to some index j that Wι(j) ∩
Wι′(j) is a common facet between Wι(j) and Wι′(j). At initialization, every graph

vertex is associated with an element of disjoint set and has its “temporary

optimal dispersion” (to be updated during propagation) set to ∞.

4. Propagate optimal dispersion. The propagation starts at a graph vertex contain-

ing e whose dispersion is trivially known to be equal to 0. Let X be such graph

vertex, and δ∗X be its optimal dispersion. For each adjacent vertex X′ of X, per-

forms 5) and 6).

5. Compute δX∩X′ , the minimum value of δ restricted on X ∩ X′. Such minimum

value can be computed using a convex optimizer. If the minimum value is
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below zero, it is clipped to zero, by Proposition 20.

6. Update the temporary optimal dispersion of X′ with max(δX∩X′ , δ∗X) if

max(δX∩X′ , δ∗X) is lower. Merge associated set elements of X and X′ if δ∗X ≤
δX∩X′ .

7. Next, the algorithm picks another graph vertex X with the least temporary op-

timal dispersion value to promote to the optimal dispersion of Γ({x} , {e} , Ω)

where x is a point at which δ restricted on X attains its minimal value. If such

X exists, performs 5) and 6) for each X′ adjacent to X. Otherwise, the algo-

rithm terminates, the solution sets can be enumerated from the disjoint set

data structure. Some feassible finger formation may not be visited due to the

hard constraint δ ≥ 0. If the fingers are considered as free fingers and the hard

constraint is enforced by a control policy, the constraint can be ignored before

the initial formation setup at such a formation. After the setup is complete, the

object can be caged by controlling their dispersion greater or equal to 0. Those

caging placements can be obtained by running the algorithm for reporting all

stretching cages.

The time complexity of the algorithm is dominated by steps 4) through 7)

which requires O(vn log v) for O(vn) operations of a heap – updating and extracting

least temporary optimal dispersion value.

Like squeezing and stretching caging solutions, it is possible query what so-

lution set a finger formation x that δ(x) ≥ 0 is in by applying the point location

algorithm (Snoeyink, 2004) to identify containing Wi of each finger. Let K, which is

a member of K, be the cartesian product among such Wi. The formation x is then

projected to a vertex ofK to check if it is in the same connected component that con-

tains e. If it does not, apply the stretching caging’s query algorithm for x instead.

Otherwise, identify X, the graph vertex of combined caging, using the projected

vertex and K. Of course, x is a caging formation and in a solution set overlapping X

only if δ(x) < δ∗X.
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The presented algorithm is for reporting all solution sets to caging by control-

ling a dispersion function in [0, δ∗), not an arbitrary interval. An approach to obtain

solutions of caging by controlling dispersion in an arbitrary interval is to update

topology of the graph and optimal dispersions of all graph vertices as the lower-

bound dispersion (previously the constant 0) varies from ∞ to −∞. Initially, the

lowerbound dispersion is ∞, the constraint is too strict, inducing an empty graph

of combined caging. The next lowerbound dispersion is chosen from the greatest

edge cost belong to the graph of stretching. The graph of combined caging is then

updated. As the constraint becomes more relaxed, connected components emerge.

The less the lowerbound dispersion, the larger subset of free configuration space

becomes accessible. As the lowerbound drop to −∞, the combined caging becomes

squeezing caging. Solution sets are to be reported as snapshot of the graph every-

time it is updated. The time complexity of this naive approach is O(v2n log v). For

better performance, a dynamic connected component and a dynamic shortest path

algorithms should be applied.

7.5 Summary

This chapter presents an algorithm that reports all possible approach to caging

an object by controlling dispersion above a fixed lowerbound and a critical upper-

bound, determined by the algorithm. The solution reported by the algorithm de-

pends on the given dispersion function which determines caging behavior and its

error tolerance. Solutions of squeezing caging that forbid the finger formation to

collapse to a point can be obtained from the algorithm by setting the dispersion

function to δ2
p and an appropriate lower bound dispersion. Setting δ2

p as the disper-

sion function, the algorithm will report all distinct approaches to caging by fixing

the finger formation on a plane to p.



CHAPTER VIII

ROBUST CAGING

8.1 Introduction

This chapter proposes an approximate algorithm to report all solutions to

caging by “attempting” to fix a given formation of n point fingers. Each solution

is described by a representative finger placement along with a corresponding error

tolerance based on a deformation measure. The deformation measure of a finger

placement determines how much its formation deforms from the given one. A so-

lution set represents a maximally connected set of finger placements that cages the

object by maintaining the deformation less than the error tolerance. The algorithm

produces solutions in O(CM2 log(CM2)) where C and M determine the complexity

of the configuration space and the quality of approximation, respectively. Maintain-

ing the fingers inside a solution set, a cage, is equivalent to keeping the deformation

measure below the error tolerance. The object is guaranteed to be caged as long as

the fingers are inside a solution set. This approach to caging simplifies the complica-

tion in modeling and applying caging sets for three or more fingers. The alogrithm

possibly applies:

• To locate where to cage an object with a given finger formation. The finger

formation maybe a set of contact points from a manipulator at a grasping pose.

• To validate, improve or convert existing caging placements obtained by other

algorithms.

• To determine a pregrasping cage, or a quality, for a grasp. The finger formation

to fix is set to a finger placement that grasps the object.

Attempting to fix the finger formation is not possible by controlling any dis-

persion function below or above a value. This is a consequence from the fact that

the fingers can always collapse to a single point without increasing dispersion, see
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Proposition 10. The capability of caging by attempting to fix a finger formation is

very close to the limit of traditional object caging. If a caging set of an object has an

interior point, caging by attempting to fix a finger formation (to that interior point’s

formation) is possible.

One of the differences between this chapter and the previous one is that this

chapter presents an approximate algorithm to support a wider range of constraints

and deformation measures. It is designed to measure error tolerance of a caging

placement under an intuitive measure, defined in the following section.

The chapter is organized as follows. The next two sections are an overview

of the problem, formulation (Section 8.2), and simplification (Section 8.3). Basic no-

tations, definitions, and their properties are also listed here. Section 8.4 concerns

properties of functions related to caging. The properties leads to Section 8.5: con-

struction of a roadmap that helps in computing the cages and their error tolerance.

The algorithm for computing all solution sets, and the results are presented in Sec-

tion 8.6, followed by the conclusion in Section 8.7.

8.2 Problem Formulation

We assume a system that consists of a bounded rigid object P without inac-

cessible holes and n point fingers on a plane. Each finger’s position is a point in

the coordinates of the object’s frame of reference. Let the finger formation to fix be:

o ≡ (o1, o2, ..., on) ∈ R2n. We define the measure of how much a finger formation

x ≡ (x1, x2, ..., xn) ∈ R2n deforms from o based on the difference between x and a

finger placement rigidly transformed form o:

∆(x, r, t) ≡ (∆1, ∆2, ..., ∆n)(x, r, t)

∆i(x, r, t) ≡
(

oi o⊥i

)
r + t− xi (8.1)

where:

• r ∈ R2, r⊤r = 1, is a unit vector representing the rotation part of the rigid
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transformation.

• t ∈ R2 is a vector representing the translation part of the rigid transformation.

• o⊥i is obtained by counter-clockwisely rotating oi by 90 degrees.

The deformation measure is δp : R2n → R,

δp(x) ≡ inf
r⊤r=1,t∈R2

∥s(x, r, t)∥p,

where ∥·∥p is the Lp-norm, and s : R2n ×R2 ×R2 → Rn,

s(x, r, t) ≡ (∥∆1∥2, ∥∆2∥2, ..., ∥∆n∥2) (x, r, t),

is a vector of displacements between each finger and its position in the given for-

mation shape. The choice of p depends on the desirable characteristics of the error

tolerance. For example,

• δ1 measures the sum of displacements.

• (δ2)
2 measures the sum of squared displacements.

• δ∞ measures the maximum displacement of a finger.

By maintaining the fingers to satisfy δp < ϵ, for some small ϵ, we effectively limit

their deformation from the given formation shape o. A function δp is clearly invari-

ant to rigid transformation of the finger formation, i.e., δp(x) = δp((Rx1 + t, Rx2 +

t, ..., Rxn + t)) for some R ∈ SO(1) and t ∈ R2. However, δp is not necessarily con-

vex. If δp were convex, it would be a dispersion function, and we could not attempt

to fix the finger formation by maintaining δp < ϵ since the finger can always collapse

to a point without increasing the dispersion.

When the error tolerance ϵ gets sufficiently large, the fingers are free to move

around the object and collapse to a single point. Imposing δp < ϵ using too
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large ϵ cannot cage the object. Let the object and the finger formation be con-

tained in balls of diameter do and d f , respectively. When the error tolerance is

ϵ∗ = max(do, d f )∥(1, 1, ..., 1)∥p+e (for any e > 0), each finger are free to displace

more than the maximum diameter max(do, d f ) so they cannot cage the object. The

maximum diameter that the finger formation can expand under this error tolerance

bound is below d f + 2ϵ∗. It is safe to bound the workspace by a square B that is at

least do + d f + 2ϵ∗ wide and centered at the object. If any of the finger goes outside

this bound, the finger formation either deforms beyond ϵ∗ or is separated from the

object by a plane. In either case, the fingers can no longer cage the object. Hence, the

workspace and the configuration space are given by F ≡ B\P , and Ω ≡ Fn ⊆ Bn,

respectively.

A finger placement x is in a δp < ϵ cage if the supremum value of δp restricted

on (an image of) every unbounded path from x is not less than ϵ. If x is in such a

cage, the finger formation must change in such a way that its deformation measure

δp goes above or equal to ϵ at some point regardless of a chosen escape route. A path

is an n-vector of syncronized finger trajectories that does not penetrate into P , i.e.,

(an image of) a valid path is contained in Ω. An unbounded path is equivalently an

escape path. This condition for a finger placement to lie in a cage can be rewritten

in such a way that no unbounded paths involved. Let Π be a half plane that inter-

sects P an empty set. The fingers at a finger placement in Πn can translate while

preserving their formation shape arbitrarily far from the object. Conversely, if the

fingers can move arbitrarily far from the object, they can translate while preserving

their formation shape to a finger placement in Πn. This path-transformation process

does not increase the supremum value of δp restricted on the path. Hence, we have

the following equivalent caging condition. A finger placement x forms a δp < ϵ cage

if the supremum value of δp restricted on (an image of) every path that starts from

x and terminates in T ≡ (B ∩Π)n is not less than ϵ.

To determine the error tolerance of a given finger placement x is to find the

largest possible ϵ that prevents the fingers from escaping from x if the constraint

δp < ϵ is imposed. That value of ϵ is referred to as the error tolerance, or the critical
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value, at x, given by:

δ∗p(x) ≡ inf
α∈Γ({x},T ,Ω)

sup
z∈img(α)

δp(z).

If δp(x) < δ∗p(x), then x is said to form a δp < ϵ cage and the maximum possible ϵ is

δ∗p(x). On the other hand, x does not form a δp < ϵ cage if δp(x) ≥ δ∗p(x).

A solution set is defined as a set of maximally connected finger placements that

forms a δp < ϵ. In order to identify each solution set, we must find a representative

finger placement inside the solution set and its error tolerance. In the implementa-

tion, an error tolerance at a representative finger placement x: δ∗p(x) will be obtained

from a δp-optimal escape path from x. A path α∗ in Γ(S, T, W) is said to be δ-optimal

(among paths in Γ(S, T, W)) when:

sup
z∈img(α∗)

δ(z) = inf
α∈Γ(S,T,W)

sup
z∈img(α)

δ(z).

The value supz∈img(α∗) δ(z) of a δ-optimal path α∗ is called δ-optimal value. A

δp-optimal escape path α∗ from x is a path that is δp-optimal among paths in

Γ({x} , T , Ω) so δ∗p(x) = supz∈img(α∗) δp(z). Any δp-optimal escape path from any

x is contained in δ−1
p (−∞, δ∗p(x)], the δ∗p(x)-sublevel set of δp, but not contained in

δ−1
p (−∞, δ∗p(x)).

8.3 Problem Simplification

To simplify the problem, we will deal with bounds of δp instead of δp itself.

An upperbound (and a lowerbound) of δp must be greater (resp. less) or equal to δp

pointwise. Consider δ̄p, and δp : R2n → R defined as follows.

δ̄p(x) ≡ min
{

δ̄1
p(x), δ̄2

p(x), ..., δ̄M
p (x)

}
,

δp(x) ≡ min
{

δ1
p(x), δ2

p(x), ..., δm
p (x)

}
,

δ̄
j
p(x) ≡ inf

t∈R2
∥s(x, rj, t)∥p,

δ
j
p(x) ≡ inf

r∈Rj,t∈R2
∥s(x, r, t)∥p ,
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Figure 8.1: An example of rj (big dots on the unit circle) and Rj (shaded convex
regions) with M = 12 and m = 4.

where:

• rj is a unit vector.

• Rj is a compact convex subset of R2 such that the union of every Rj, j ∈
{1, 2, ..., m} contains

{
r ∈ R2 | r⊤r = 1

}
.

Accuracy of error tolerances computed based on δp depends on m, the number of

convex subsets comprising the union. With more convex subsets, we obtain “better

approximation” for a unit circle centered at the origin, i.e., the union of every Rj

contain fewer points outside the unit circle. The condition that the union must con-

tain the circle, as well as, the condition that each rj must be on the circle are required

so that δp ≤ δp ≤ δ̄p pointwise. The error tolerance lowerbound defined based on

δp is:

δ∗p(x) ≡ inf
α∈Γ(x,T ;Ω)

sup
z∈img(α)

δp(z).

Similarly, δ∗p ≤ δ∗p pointwise. Figure 8.1 illustrates valid approximations of the unit

circle for δ̄p and δp.
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To cage an object, one must first move the fingers to a finger placement x that

forms a δp(x) < ϵ cage, i.e., δp(x) < δ∗p(x). It is possible to simplify computation of

δp by using the sufficient condition: δ̄p(x) < δ∗p(x); instead. Larger M is needed for

better δ̄p, closer to δp. When M is small, only finger placements in a large cage may

satisfy the sufficient condition.

Our simplified goal is to obtain maximally connected sets of finger placements

satisfying the sufficient condition.

Proposition 21. A finger placement x and y are in the same solution set if

1) δ̄p(x) < δ∗p(x), and

2) there exists a path α that travels from y to x and is contained in δ̄−1
p (−∞, δ∗p(x)).

Proof. By 1), δp(x) ≤ δ̄p(x) < δ∗p(x) ≤ δ∗p(x); therefore, x is in a δp < δ∗p(x) cage.

Since δ∗p ≤ δ∗p and δp ≤ δ̄p, δ̄−1(−∞, δ∗p(x)) ⊆ δ−1
p (−∞, δ∗p(x)). By 2), the

path α is also contained in δ−1
p (−∞, δ∗p(x)). Let β be an escape path that starts from

x and is contained in δ∗p(x)-sublevel set of δp. The concatenation of α and β is an

escape path that starts from y and is contained in δ∗p(x)-sublevel set of δp. This

implies that δ∗p(y) ≤ δ∗p(x). Suppose for a contradiction that δ∗p(y) < δ∗p(x), i.e.,

there exists an escape path γ that starts from y and lies in δ∗p(y)-sublevel set of δp.

The concatenation of reversed α and γ is an escape path that starts from x and lies

in δ∗p(y)-sublevel set of δp. This results in a contradiciton that: δ∗p(x) ≤ δ∗p(y) <

δ∗p(x). ■

Functions such as δ̄p and δp, p ∈ {1, 2, ∞}, are minimization among convex

functions. They possess several excellent properties that help in identifying all pos-

sible cages to be shown in the following section.

Proposition 22. δ̄
j
1, δ̄

j
2, δ̄

j
∞, δ

j
1, δ

j
2 and δ

j
∞ are convex.
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Proof. The readers are referred to (Boyd and Vandenberghe, 2004a) for theorems on

convexity applied in this proof. The function in the form ∥∆j∥2 is convex over the

variables x ∈ R2n, r ∈ R2, and t ∈ R2. The same holds for the following functions:

• ∥s∥1= ∥∆1∥2+∥∆2∥2+... + ∥∆n∥2,

• ∥s∥2= (∥∆1∥2
2+∥∆2∥2

2+... + ∥∆n∥2
2)

1/2 = ∥∆∥2,

• ∥s∥∞= max(∥∆1∥2, ∥∆2∥2, ..., ∥∆n∥2).

The reasons are: ∥s∥1 is a sum of convex functions, ∥s∥2 is a 2-norm of linear func-

tions, and ∥s∥∞ is a maximization among convex functions. The functions δ̄
j
1, δ̄

j
2, δ̄

j
∞

are convex because the infimum of δ
j
p over t ∈ R2 preserves convexity. Since Rj is

convex, the infimum of δ
j
p over r ∈ Rj, t ∈ R2 also preserves convexity. Hence, δ

j
1, δ

j
2

and δ
j
∞ are convex. ■

8.4 Minimization Among Convex Functions

In this section, we present properties of a function in the form of δ ≡
min( f1, f2, ..., fm) where fi is a real-valued convex function for any i ∈ {1, 2, ..., m}.
The goal is to construct an f -optimal path from any two points in the domain of f .

The domain of f and each fi must be a compact convex set denoted by D. Each fi

must have a strict global minimal point. Yet, it still works even if each fi is a convex

function with a pit of minimal points. By slightly “pushing” the pit, we obtain a

close approximate that satisfies the assumption. The less the pit is pushed, the more

accurate the approximation will be.

We define a subcover of D: D ≡ {D1, D2, ..., Dm} where each

Di ≡ {x ∈ D | fi(x) = f (x)} ,

and m1, m2, ..., mm as the unique minimal points of f1, f2, ..., fm, respectively.

Lemma 23. A straight line path from any point x ∈ Di to mi is f -optimal among paths in

Γ({x} , {mi} , D). Its f -optimal value is f (x).
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Proof. By Jensen’s inequality (Boyd and Vandenberghe, 2004a) and fi(mi) ≤ fi(x),

fi is nonincreasing along the straight line path from x to mi. Additionally, f ≤ fi

and f (x) = fi(x) due to x ∈ Di; therefore, the straight line path is contained in f (x)-

sublevel set of f . It is also f -optimal in Γ({x} , {mi} , D) because f -optimal value of

any path starts at x is at least f (x). ■

To find an f -optimal path connecting any two points now reduces to find an

f -optimal path connecting any two minimal points mi and mj.

Consider the following optimization problem denoted by (KP)A
i,j:

minimize l

subject to z ∈ A

fi(z) ≤ l

f j(z) ≤ l

.

A must be convex for (KP)A
i,j to be a convex optimization problem. Let li,j be the

minimal value and zi,j be a point satisfying the constraints of (KP)D
i,j when it is min-

imized. Solving (KP)D
i,j is equivalent to finding the lowest level l = li,j for l-sublevel

set of fi and l-sublevel set of f j to coincide, see Figure 8.2 for an illustration. When

l < li,j, the l-sublevel set of fi and that of f j are disjoint. It should be noted that:

• any nonempty sublevel set of fi contains mi, and

• the l-sublevel set of f is exactly the union of all l-sublevel set of fi, i ∈
{1, 2, ..., m}.

For any l < li,j, if the l-sublevel set of f contains both mi and mj, they will not be in

the same connected component until l = li,j.

Lemma 24. If fi(zi,j) > f j(zi,j), the following holds:

1) zi,j minimizes fi,
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z

fi(z) f1 f2

z1,2m1 m2

l1,2

︸ ︷︷ ︸
f−11 (−∞,k∗]

︸ ︷︷ ︸
f−12 (−∞,k∗]

︸ ︷︷ ︸
f−1(−∞,k∗]

Figure 8.2: A solution for an instance of (KP)D
1,2.

2) fi(mi) > f j(mj), and

3) there exists an f -optimal path from any x ∈ Di to mj with an f -optimal value of f (x).

Proof. 1) Suppose for a contradiction that fi(zi,j) > f j(zi,j) but zi,j does not minimize

fi. The function f j is continuous in its relative interior because of its convexity (Boyd

and Vandenberghe, 2004a). By continuity of f j, there exists a finite radius ball at zi,j

such that f j(z) < fi(zi,j) for any z inside the ball. Let w be the global minimizer

of fi. By Jensen’s inequality and fi(w) < fi(zi,j), any point z inbetween zi,j and w

must satisfy fi(z) < fi(zi,j). Any point z inside the ball and lies inbetween zi,j and

w must satisfy: f j(z) < fi(zi,j) = li,j, and fi(z) < fi(zi,j) = li,j. Hence, li,j is not the

minimal value for (KP)D
i,j, a contradiction.

It follows from 1) that:

2) fi(zi,j) = fi(mi) > f j(zi,j) ≥ f j(mj).

3) zi,j = mi when fi(zi,j) > f j(zi,j). By Lemma 23, a straight line from any
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x ∈ Di to such mi is f -optimal and contained in f (x)-sublevel set of f . By Jensen’s

inequality and f (mi) ≤ f (x), a straight line path from mi to mj is contained in f (x)-

sublevel set of f . As a result, the concatenation between two described straight line

paths forms the f -optimal path. ■

The minimal points m1, m2, ..., mm form nodes of a graph. A directed edge

from mi to mj is present if fi(zi,j) > f j(zi,j). Since it is necessary that fi(mi) must be

greater than f j(mj) for fi(zi,j) to be greater than f j(zi,j), the graph must be a directed

acyclic graph. A node without an outgoing edge is called a sink. For x ∈ Di such

that mi is not a sink, there exists an f -optimal path to its sink with f -optimal value

of f (x).

Without loss of generality, we assume a path α contained in D to satisfy the

following properties:

• α passes through a sequence of overlapping members in D:

Dι(1), Dι(2), ..., Dι(k). That is, α is a concatenation of k subpaths. Its i-th

subpath is contained in Dι(i).

• α passes through a sequence of points p0, p1, ..., pk such that p0 ∈ Dι(1), pk ∈
Dι(k) and pi ∈ Dι(i) ∩ Dι(i+1) for i ∈ {1, 2, ..., k− 1}.

Based on α, we define q0 = p0, qk = pk, and qi = zι(i),ι(i+1) for i ∈ {1, 2, ..., k− 1}.

Theorem 1 ( f -optimal path in a convex set). If the path α is f -optimal among paths in

Γ({p0} , {pk} , D), its f -optimal value is:

max
{

fι(1)(q0), min( fι(1), fι(2))(q1),

min( fι(2), fι(3))(q2), ...,

min( fι(k−1), fι(k))(qk−1), fι(k)(qk)
}

(8.2)

Proof. We claim that the path α can be transformed to a path α′ passing through the

points q0, q1, ..., qk. The transformation does not increases the supremum value of
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f restricted on the path, i.e., preserves optimality. To begin with, let us transform

each pi, i ∈ {1, 2, ..., k− 1}, to qi. Note that f (pi) = fι(i)(pi) = fι(i+1)(pi) by the

assumptions on pi. For i ∈ {0, k}, p0 and pk are initially at q0 and qk, respectively.

For i ∈ {1, 2, ..., k− 1}, we have that:

• fι(i)(qi) ≤ fι(i)(pi), (inclusive) or

• fι(i+1)(qi) ≤ fι(i+1)(pi).

Otherwise:

• fι(i)(pi) < fι(i)(qi) = fι(i)(zι(i),ι(i+1)) ≤ lι(i),ι(i+1), and

• fι(i+1)(pi) < fι(i+1)(qi) = fι(i+1)(zι(i),ι(i+1)) ≤ lι(i),ι(i+1).

This is a contradiction since lι(i),ι(i+1) does not minimize (KP)D
ι(i),ι(i+1) (pi satisfies the

feasibility conditions with lower l). Let j be either ι(i) or ι(i + 1) such that f j(qi) ≤
f j(pi). By Jensen’s inequality, f j is nonincreasing along the straight line from pi to

qi. This implies that: f (qi) ≤ f j(qi) ≤ f j(pi) = f (pi).

The construction of α′ is as follows, see Figure 8.3.

1. Connect q0 = p0 to mι(1) by a straight line path. According to Lemma 23, the

path is contained in f (q0) = fι(1)(q0) = f (p0)-sublevel set of f .

2. For i ∈ {1, 2, ..., k− 1}, connect mι(i) to qi. by a straight line path. We claim

that the path is contained in min( fι(i), fι(i+1))(qi)-sublevel set of f . Note that

min( fι(i), fι(i+1))(qi) ≤ f (pi) by construction of qi.

(a) Case fι(i)(qi) > fι(i+1)(qi): by Lemma 24, qi = mι(i). The claimed sub-

level set contains the path which is a single point.

(b) Case fι(i)(qi) ≤ fι(i+1)(qi): by Jensen’s inequality and fι(i)(mι(i)) ≤
fι(i)(qi) = min( fι(i)(qi), fι(i+1))(qi), The claimed sublevel set contains

the path.
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pipi−1 pi+1

Dι(i) Dι(i+1)

qi qi+1qi−1

mι(i) mι(i+1)

Dι(0) Dι(i+2)

p0 = q0 · · · · · ·
pk = qk

mι(1) mι(k)

p1 pk−1

· · · · · ·
q1 qk−1

Figure 8.3: Abstracted illustration for the optimality-preserving path transforma-
tion.

3. Similar to the previous step, connect qi to mι(i+1) by a straight line path. The

path is contained in min( fι(i), fι(i+1))(qi)-sublevel set of f .

4. Finally, connect mι(k) to qk = pk by a straight line path. The path is contained

in f (qk) = fι(k)(qk) = f (pk)-sublevel set of f

Given that α is f -optimal, α′ is f -optimal as well by construction. The f -

optimal value of α′ is as stated in the theorem because f ≤ f j, for any j. ■

Theorem 1 leads to an approach to compute the f -optimal value for an f -

optimal path connecting any two terminal points in D. The computation reduces

to finding a sequence of indices: ι that minimizes (8.2) such that Dι(1) and Dι(k) con-

tains the terminal points. The sequence ι does not need to satisfy the condition that

Dι(i) ∩ Dι(i+1) is nonempty. The theorem just gurantees that a sequence producing

the f -optimal value is among those that satisfy the condition. For any sequence that

does not satisfy the condition, the value computed from (8.2) will be greater than

or equal to the f -optimal one.

8.5 Roadmap Construction

Based on the derived properties, we construct a roadmap (Choset et al., 2005a)

for optimal paths contained in a nonconvex domain. The definition of f here re-

mains the same except that its domain D is not necessarily convex. For a compact
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convex set K contained in D, we define its “local roadmap” RM(K) by a complete

graph of m nodes. The i-th node is the global minimal point of fi|K, i ∈ {1, 2, ..., m}.
The “cost” between an edge connecting node i and j is given by min( fi, f j)(zK

i,j)

where zK
i,j is a point satisfying the constraints of (KP)K

i,j when it is minimized. It is

possible to optimize local roadmaps to some extent by collapsing nodes (minimal

points) that are not sink within its convex domain to its sink. Then, remove dupli-

cated edges that appear after collapsing, keeping only one with the minimal cost.

For the global roadmap of f , let K = {K1, K2, ..., Kc} be a finite subcover of the

configuration space such that every member of K is compact. The global roadmap

of f over the compact convex subsets consists of:

1. the local roadmaps: RM(K1), RM(K2), ..., RM(Kc); and

2. “transitions” among the local roadmaps.

According to Lemma 23 and 24, the global roadmap can be accessed from any point

x in D:

1. find the decomposed convex subset K containing x.

2. find k that fk(x) = f (x).

3. find the sink of the minimizer of fk|K.

The access cost is: fk(x). For Ki and Kj that has a nonempty intersection, their local

roadmaps are linked together by a transition part. The transition part consists all of

the nodes in the local roadmap of Ki ∩Kj and additional edges the local roadmaps of

Ki and Kj. The additional edges are generated by connecting nodes of RM(Ki ∩ Kj)

to those of RM(Ki) and those of RM(Kj). This is similar to accessing the global

roadmap except that K is given. For each K ∈
{

Ki, Kj
}

and a node m in RM(Ki ∩Kj),

an edge links m to a node n of RM(K) if n is a sink (node) of a minimizer of fk|K
such that fk(m) = f (m). The edge’s cost is fk(m). Conforming the definition of
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f -optimal, the distance of a path contained in the global roadmap of f is defined

as the maximum cost of the edges comprising the path. A single-source shortest

path algorithm is applied to compute shortest distances from every node to a given

escape node e which globally minimizes f . The shortest distance from a node n to

e is the f -optimal value of some f -optimal path among paths in Γ({n} , {e} , D).

Will this global roadmap works with any two finger placements in the con-

figuration space? If the finger placements are in the same convex subset in K an

f -optimal path is already contained in a local roadmap by construction. For a path

α that traverses across convex polyhedra, we can assume without loss of generality

that

• α passes through a sequence of overlapping convex polyhedra in the finite

subcover K: Kι(1), Kι(2), ..., Kι(k). That is, α is a concatenation of k subpaths. Its

i-th subpath is contained in Kι(i).

• α passes through a sequence of points p0, p1, ..., pk such that p0 ∈ Kι(1) ∈ Kι(1),

pk ∈ Kι(k) ∈ Kι(k) and pi ∈ Kι(i) ∩ Kι(i+1).

It is possible to transform α to a path that visits another sequence of points

q0, q1, ..., qk where q0 ≡ p0, qk ≡ pk, and qi is a node of RM(Kι(i) ∩ Kι(i+1)) for

i ∈ {1, 2, ..., k− 1}. The transformation simply inserts a loop (path) that starts at pi

and visits qi, for any i ∈ {1, 2, ..., k− 1}. Each loop is constructed by concatenating

a descent path from pi to a sink obtained by Lemma 23 and 24 with its reverse. The

transformed path is still f -optimal when α is f -optimal. This shows that there exists

an f -optimal path visiting a sequence of nodes in transition parts, i.e., the global

roadmap works.

8.6 Cage Identification Algorithm

Let us return to the problem of identifying all solution sets. The following are

the steps for precomputing δ∗p:
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1. Decompose the compact workspace space F̄ ≡ B\P into convex polyhedra

W1, W2, ..., Ww. The decomposition can be an optimal convex decomposition,

or just a triangulation. For simplicity, we assume that the decomposition does

not increase the number of vertices. Construct the decomposed convex poly-

hedra of the compact configuration space K1, K2, ..., Kc as a cartesian product

among n decomposed polyhedra, i.e.,

K1 = W1 ×W1 × · · · ×W1 ×W1,

K2 = W1 ×W1 × · · · ×W1 ×W2,

· · ·

Kc = Ww ×Ww × · · · ×Ww ×Ww︸ ︷︷ ︸
n terms

.

2. Construct the global roadmap of δp over the decomposed subsets K1, K2, ..., Kc.

Transition parts are created only for nonempty intersection Ki and Kj.

3. Run the SSSP algorithm with e assigned to the global minimal point of δp

restricted to T .

At this point, it is possible to query for approximated error tolerance at any finger

placement and enumerate all nodes in the global roadmap of δp that lies inside a

solution set. To check if a node n that δp(n) < δ∗p(n) is in a solution set, we compute

δ̄p(n) and test if it is less than δ∗p(n). Recall the sufficient condition that a node n is

in a solution set if it satisfies δ̄p(n) < δ∗p(n).

The remaining steps (optional, depending on applications) are to group nodes

that are in the same cage. By Proposition 21, nodes m and n are in the same cage if

there exists a path that connects them and is contained in δ∗p(m) = δ∗p(n)-sublevel

set of δ̄p.

4) Assume without loss of generality that K1, K2, ..., Kb, b ≤ c, are convex poly-

hedra containing some node n with δ̄p(n) < δ∗p(n). Construct the global

roadmap of δ̄p over the decomposed subsets K1, K2, ..., Kb. Remove every node
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n (and edges associated to n) that does not satisfy: δ̄∗p(n) < δ∗p(n) during the

roadmap creation.

5) Group nodes contained in the same solution set. Nodes m and n connected by

an edge are in the same solution set if the edge’s cost is below δ∗p(m) = δ∗p(n).

After completing all the steps, we obtain the global roadmap of δ̄p. Unlike the

previous one, it is for identifying which solution set a finger placement is in and

enumerating all possible solution sets.

The time complexity of step 3) is O(cm2 log(cm2)) dominating the others. Step

2) involves solving O(cm2) convex optimization problems of size O(n) which maybe

a bottle neck when n is small. The time complexity of Step 8.6 is proportional

to n times the number of caging nodes, which is much lower than the number of

nodes in practice. The exact time complexity is O((c + tc)m2 log((c + tc)m2)) + (b +

tb)M2 log((b + tb)M2)) where tc and tb are the number of transition parts (overlap-

ping convex sets) for the first and the second global roadmap, respectively. The

sum between c and tc represents the complexity of the configuration space. Yet, it

depends on the convex decomposition. An optimal convex decomposition should

produce the least number.

We rely on point location algorithm (Snoeyink, 2004) to query for a solution

set containing a finger placement x = (x1, x2, ..., xn). A solution set query requires n

point location queries for identifying a convex subset containing each xi and O(M)

tests for a sink of x. The time complexity of a solution set query is δ̄p is O(log v+ M).

8.6.1 Approximation for Input Object

In practice, the input polygon is usually complex, inaccurate and incomplete,

e.g., scanned from range sensors. Processing complex input can be time consum-

ing. On the other hand, traditional polygon simplification may lead to false solu-

tions. We apply the proposed approach in Chapter V It resembles to the strategy

applied when we approximate δp with δp and δ̄p. In addition to the deformation

measure bounds, the unknown actual input polygon P must lie inbetween a lower-
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P−

P
P+

Figure 8.4: The set P represents the unknown actual object inbetween the lower-
bound P− and the upperbound P+.

bound and an upperbound: P− and P+, see Figure 8.4. The lowerbound and the

upperbound ensures the presence and absence of the object mass insideP− and out-

side P+, respectively. Now, there are three versions of the configuration space: Ω,

Ω− ≡ (B\(P−))n, Ω+ ≡ (B\(P+))n. Because of the object’s uncertainty, we must

prepare for the worst case. The more spacious Ω− is used when computing the (ap-

proximated) error tolerance. Since Ω− ⊆ Ω, the set of all escape paths between two

specific sets of terminal points Γ(A, B, Ω−) ⊆ Γ(A, B, Ω); as a result, error tolerance

for P− is lower than that for P pointwise. On the other hand, the less spacious Ω+

applies when identifying valid finger placements.

To handle imperfect input, the algorithm requires a few modifications. In the

first step, K1, K2, ..., Kc must be obtained from the convex decomposition of B\(P−)
instead. In the forth step, K1, K2, ..., Kb must be replaced by decomposed convex

subsets of B\(P+) that overlap with K1, K2, ..., Kb.

8.6.2 Implementation and Results

We implement the algorithm in C++ and solve convex optimization problems

with MOSEK (mos, 2011). Figure 8.5 (a), (b) and (c) show projections of top-quality

solution sets on the workspace for an object generated after step 3) with p = 2, (a)

m = 8, (b) m = 16, and (c) m = 32. Each solution set contains finger placements
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that form δ < δ∗(x) cages where x is a finger placement inside. The object is shown

as a shaded region. The black dots represents the finger placement where the defor-

mation measure δp restrict in a corresponding solution set attains its minimal value.

Each displayed loop surrounds all the possible positions of a finger inside a solution

set. The formation to fix is the same as the leftmost set of points which is also an

immobilizing stretching grasp. Quality of a solution set is determined by the gap

between its approximated error tolerance and the minimal value of the deformation

measure restricted inside the solution set.

The second solution set from the left in Figure 8.5 (a) breaks into the second

and the third solution sets as m increases. In addition, the quality value and its order

of similar solution sets are not preserved as m varies.

It is possible that the finger placement where the deformation measure re-

stricted on a solution set attains its minimal value is not zero. The fingers can never

be at the finger formation to fix as long as they remain inside such a solution set.

This approach to caging, caging by attempting to fix a finger formation, may in-

clude cages similar to squeezing and stretching ones. In the figures, each set of

cross marks is a finger placement with zero deformation that minimizes L∞ norm of

the displacement vector. Perfectly overlapping dots and crosses indicates that their

corresponding solution set contains a member with zero deformation; otherwise, it

does not.

Figure 8.6 shows projections generated after step 5) with p = 2, m = 16, (a)

M = 16, (b) M = 32 and (c) M = 64. Each projected region will be a subset of a

corresponding region in Figure 8.5. Small M leads to smaller solution sets and may

cause them to break apart even if they are contained in the same δp < ϵ cage.

Figure 8.7 shows solution sets with p = ∞, each circle surrounding a cross

mark represents a radius that each finger may displace independently from its po-

sition in the formation without breaking the cage.

We apply the algorithm to identify error tolerance of immobilizing grasps (Fig-
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ure 8.8) and convert dispersion-control cages (Figure 8.9).

The results generated by the modified algorithm are shown in Figure 8.10.

Error tolerance decreases in exchange for ambiguity of the shape.

The running time taken to generate the results are shown in Table 8.1 where:

• topt: time spent in performing convex optimization for the first global

roadmap,

• tprop: time spent in propagating the error tolerance for the first global

roadmap,

• t̄opt: time spent in performing convex optimization for the second global

roadmap, and

• t̄prop: time spent in propagating the error tolerance for the second global

roadmap.

Our implementation performs all the tasks sequentially on an intel i5 CPU 650 at 3.2

GHz. The algorithm running time can be greatly improved by parallel computing

since each convex optimization subproblems can be solved separately. Applying

available parallel SSSP algorithm also helps when the roadmap becomes more com-

plex.

8.7 Summary

This paper presents an algorithm to identify cages by limiting deformation of

an n-point formation on a plane. The deformation measure is based on a given for-

mation to maintain. It is defined as the minimized norm of distances between each

finger and its position in a rigid-transformed formation. An object is caged by pre-

venting the deformation greater than an error tolerance after appropriately placing

the fingers. The algorithm approximates the cages by providing approximated error

tolerance. The approximated error tolerance is guaranteed to be less than or equal
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Table 8.1: Algorithm Execution Time (Robust Caging)

Figure p c + tc b + tb m M topt tprop t̄opt t̄pro total

8.5
(a) 2 1960 - 8 - 111.60 1.31 - - 112.91
(b) 2 1960 - 16 - 365.05 7.06 - - 372.11
(c) 2 1960 - 32 - 1398.74 109.53 - - 1508.27

8.6
(a) 2 1960 60 16 16 365.05 7.06 7.50 0.00 379.61
(b) 2 1960 60 16 32 365.05 7.06 43.74 0.02 415.87
(c) 2 1960 60 16 64 365.05 7.06 163.20 0.17 535.48

8.7 ∞ 1960 60 16 64 499.01 9.17 184.58 0.33 693.09

8.8

I ∞ 864 70 16 64 166.79 3.60 192.16 6.17 368.72
J ∞ 972 9 16 64 191.15 4.60 67.58 0.12 263.45
R ∞ 864 51 16 64 183.92 3.23 187.19 2.32 376.66
R ∞ 864 49 16 64 183.96 2.96 185.73 0.68 373.33
O ∞ 1280 4 16 64 274.53 3.48 11.47 0.00 289.48
C ∞ 864 33 16 64 169.38 3.76 107.58 0.84 281.56
A ∞ 1666 12 16 64 315.29 8.36 56.50 0.02 380.17
G ∞ 1372 166 16 64 254.47 14.41 400.24 11.98 681.10
E ∞ 1666 54 16 64 292.33 12.97 126.58 1.72 433.6

8.9
(a) ∞ 1188 16 16 64 284.56 6.01 44.98 0.16 335.71
(b) ∞ 1188 17 16 64 324.69 2.35 55.05 0.05 382.14
(c) ∞ 3200 73 16 64 757.32 77.46 291.04 2.18 1128.00

to the real value. Higher quality approximation makes it approaches the real value.

Under lower quality setting, the algorithm will only report sufficiently large cages,

ignoring cages with low actual error tolerance.

The algorithm is designed for caging an object on a plane. Straightforwardly

applying the algorithm to three-dimensional workspace, feeding three-dimensional

convex subsets as input, yields solutions under the assumption that the finger for-

mation and the object can only rotate around a fixed axis.
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Figure 8.5: Projections onto the workspace of top-quality solutions generated after
step 3) with p = 2 a) m = 8, b) m = 16, and c) m = 32.
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Figure 8.6: Projections onto the workspace of top-quality solutions generated after
step 5) with p = 2, m = 16, a) M = 16, b) M = 32, and c) M = 64.
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Figure 8.7: Solution sets when p = ∞, m = 16 and M = 64. Top: top-quality solution
sets. Bottom: lower-quality solution sets that does not contain any finger placement
with zero deformation measure inside.
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Figure 8.8: Cages from grasps. The paramters are p = ∞, m = 16, M = 64.
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CHAPTER IX

CONCLUSION

In this work, we consider the problem of caging an object. The range of the

problem concerns two and three dimensional setting, two or multiple fingers, free or

constrained fingers, rigid or slightly deformable object and uncertainty. We present

various approaches to caging and analyse appropriate conditions to apply each of

them. When a large number of free moving fingers is available it is best to em-

ploy the diameter-based method, surrounding the object by limiting the distance

between the fingers. This ensures the object is caged for subsequent manipula-

tion task. When only two point fingers are available, the object must have at least

a concave section in order to cage. More fingers leads to multi-finger squeezing

and stretching cages. However, without concave sections, mutli-finger cages can be

very small and provide low-error tolerance because a single dispersion constraint

is not strict enough to control the increasing freedom of the finger formations. We

present a framework that capable of handling multiple constraints. The constraints

can be from the manipulator’s physical limits or additional control policies. The

constraints have to be convex otherwise approximation is required. The approxi-

mation technique is presented which turns out to be a general method for dealing

with uncertainty of measurement and control. Nevertheless, the approximation is

not required for some nonconvex constraints as presented in the approach of com-

bining squeezing and stretching caging. A variation of the approximation technique

also leads to the solution presented in the previous chapter designed to determine

a very intuitive error tolerance measure.

More fingers, more constraints, better quality of approximation leads to more

resource consuming computation. Yet, as stated, our algorithm are suitable for a

system with several fingers. The caging problem can just be solved by surrounding

the object strategy when more fingers are available. Fortunately, the computation

speed is not a problem in the near future. The reason is because that the computa-

tion tasks of our algorithms can be processed in parallel. Especially, the most time
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consuming task: solving small convex optimization problems.
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