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CHAPTER VI

DISCUSSION AND CONCLUSION

To obtain the numerical value of muo and pc/p respectively,

we have used interaction the Iennard-Jonés 12-6 potential, the

Morse—vDD potential, andsthe HFDHE-2 potential, These interatomic

4
potentials are claimed to give the best fit for He I system, since

their virial coefficiénts/are in agreement with the exXperimental

results, However, difficultlies arise, when the interatomic distance

r between neutral helium atoms approdches, zero.

: : 4
In the field theoretical' appreoaches(2,27,28) to He I problem,

one takes Fourier transform of the interatomic potential into the

momentum space. The I-J 12-6 potential give the divergent result

when transformed into-thé momentum space while the Morse-VDD potential

and the HFDHE-2 potential yield the convergent results as shown H

H.R Glyde(25). For the example, the Fourier transform of the I~J 12-6

potential, the Morse—VDD potential and (the 'HEDHE=2 potential, for

>
momentum k = 0, are

o

12 6
16me [{(ro/0) ™" = (x/m)°)rar = = (6-1)
. L2 4
4rW(r)sin(kx).xdr = a + bk~ + ck (6-2)
k
a = 7.4093 )
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where a = 7.4093 ; b = -0,73407 ; c = 0.,000628
[oo]
v (i = 0) = 4qme | |aexp (~=.r/xr ) - {c_(r /r)6
1 m 6 m
0

8 10 2
+ C8(rm/r) + Clo(rm/r) }F(r)]r dr (6-3)

where equation (6-3) yield the converdent result. In the calculation
4
of eneragy spectrum for liguid. Fe |l and of condensate density below

T _V(K) is verv important, since it is always presents in the

A\
microscopic theories(?) .

In Table I and Table II; the numerical wvalue of the ground
state energy and the condensate fraction of liquid 4He I at T = 0 K
are shown along with those of othexr works. In the calculation,
equations (4-23) and (4-55)//have been used to get the numerical
value of mud and pc/p, where we have assumed that the screening
factor $l(?) = $2(?)(without anv—iustification)s The experimental
work of Sears(26), Lam and Ristig(ll), and the proposal df Cummings
et.al(18) tends to support this assumption. In the calculation,

o
the area under curves of. I, I8 and Iu

vs r lwere obtained with
Simpson’s rule method, we have gseen. that the calculation are sensitive
to the behaviour lof the function S(;), h(?) and| the |value of pc/p.
Theoretical estimates of pc/p-by Sears (26) recently shows that

pc/p = 0,139+0,023, These values of pc/p wouid'change the value

of the ground state energy greatly.
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6.1 Ground State Erergy
Vie first éhtained our numerical results by using the data
from curve of !cMillan. The L-J 12-6 potential and the Morse—vDD
potential were seen to yield the value of the ground state eneray
which were in good agreement with those of others(2,13). The HFDHE-2
potential did not yield good ;esults. Next we use data from the
curve of HNCE scaling in replace of data.fxem the McMillan’curve.
The 1L~J 12-6 potential, the Morse-vDD potential, and the HFpHE—2
potential were found to'yield the values of the ground state enrqgy
which were in good aareement with those of other. Use of the curve
of Puoskari yield better valué than the use of McMillan’s curve.
Since our theoretigal considerations were not concern to
the Fourier transform, the divergence or non diverqgence difficulties
did not enter into our calculation, Our results cannot be used
to decide which potential is the most appropriatée for 4He.
The most appropriate interatomic potential in liguid 4He is

still being souqght.

6.2 Condensate 'Fraction

In Table II, our results(obtained .from of McMillan’s
curve) for the L-J'12-6 potential, the Morse—VDD potentiall, and
the HFDHE-2 potential, show that the value of the condensate

fraction not good. We have also used data of the HNCE scaling
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in replace the McMillan's data.. The numerical value of the con-
densate fraction at O K obtained from the Morse-vDD potential is
in good agreement with others, whereas the L-J 12-6 potential
and the HFDHE-2 potential are not,:

For the value of the condensate fraction, our results are
obtained from eguation (4-55), where < and P are calculated at 0 K.
We have curves of p vs T using data from FcMillan’s curve and
from ENCE scalinag curves(Fic,6.2 and Fio.6,3), we have compared
the new p vs T curve with those ohtained hv Visoottiviseth(30) and by
Sears (26) in Fiq.6.l. From' Table 11, we see that the results of the
condensate fraction at O K whigch, have heen calculated- are not. good.
We expect (4-55) the exact relationship between pc and Py is not given
by equation (4-55). Sears et.al{2l) have found the structure factor
and the pair-correlation function by the neutronfscatterinc method and
they have used the . equation (4-45) proposed by Cummings et.al(18)

in obtaining the condénsate fraction which is in agreement with

the other theoretical work. They obtain

a
DC(T) DC(O) 1~ (T/TA) (6-4)

where pc(O)/o = 0.133%0.012 ; a = 4,7+1.2
Visoottiviseth(30) has proposed the relationship between

the condensate density and the superfluid density

pc(T) = Y(T)DS(T) (6-5)
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6.2.1 Near TA

Near the A-point( TA = 2,17 ), Wong(33) and Tvson et.al(34)

have found that

0 n (1 - T/T.) (6-6)

(6=7)

thus (6-8)

We see that the scr ction h(¥) depend

on the temperature. f the screening
factor $(?,T) and the i ‘ f’ e obtain the values
of condensate fraction i 1 be 4 C agreement with the

experimental value of Se

The function h(r sion function,

i;i
)

; : L)
hg,r) A 'ﬁ' (6-9)

e M ANENTNEONG. . o
" IR IUNRINGIAY

h{(r,T) ——— O

T—»T
A

and when r —+» 0 , we then obtain

h(r=0,T) —— 1
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as it should he. Therefore the function E(?,T) might be used to

denote the onset of criterion of superfluidity of He I.

6.2.2 Near T = 0 K

From equation (6-4), T = 0 K, we ohtain
P (T =0XK) = P (0 s=s0,133%0.012 .
c c

T = o0 K, we have equation (6=5)

where pS(T)-———————o p4d Agcording to Creswick (35)
T— 0 K

OS(T) o = =55 AT4) ’ T =0 K.. (6~-10)

We can obtain from equations (6-4), (6-5), and (6-10)

a
~ l-cr -
Y(T) | =""P¢ (0)[1 > AT4] T30 P (0) /P (6-11)

P

This equation is for 'the condensate fraction depend en the temperature,
The validity of the two-fluid model is most strikiggly demon-
strated in the experiment devised by Andronikashvili (1¥946). He used a
pile of equally spaced thin metal disks(Fig.6.4), suspensed by a tor-
sion. fibre so that they were able to perform oscillation in liquid
helium. The disk spacing was sufficiently small to ensure that above

Ty all the fluid between the disks was dragged with them. However,

below TA the period of oscillation decreased sharply, indicating
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that not all the fluid in the spaces was being entrained by the
disks. This result confrimed the prediction that the superfluid
fraction would have no effect on the torsion pendulum. The ex-
periment yields a direct method of measuring the variation of
pn/p with temperature (Fig.6.4), and by inference ps/p. We note
that He I is almost entirely superfiuid below 1 K. From Fig.6.4,

we expect the equation from curve of ps/p is

"9/ 5 L= yT,) " (6-12)
P

where we can find the constant m by fitting the variation of
temperature T with ps/p. We thus obtain the expression of re-
lationship between the condensate density and the superfluid

density

P (T) = Y(T)P5(T). (6-13)
o p

From equations (6-12). and (6-13) we obtain

i3

P (T) = y@n] 1 - (T/T)‘)m (6-14)
P

when T —— 0, we thus obtain from equation (6-14)

Pe —> v (0)
P
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6.3 Second Order Reduced Density Matrix 92

A number of general physic¢al relations valid for system
consisting of a great number of particles must be derivable from
microphysics in a manner which does not make use of detailed so-
lutions of the N-body problem. One set of such general features
are connected with the so-called reduced density matrices. From
the exact equations of motion of ythe first and second reduced
density matrices and in_eonjunction with the some general symmetry
properties of such matrices, Frohlich(17,36,37) derived the
generally valid equations of hydrodynamics and the equations of
motion of some macroscopic wave function, without resorting to a
specific microscopic model.

Cummings et.al(18) proposed for an experimental determi-
nation of the equilibrium eendensate fraction in 4He I which relies
only on measurement of the liguid structure factor as a function
of temperature., The equilibrium pair-correlaticn function at tem-
perature T, P(r,T)-€an be written in terms of the second order

reduced density.matrix 92 as

| > > 3> _ 2
P(x,T) = Qz(x,y,x,le) = o (T)_+ 2 (Tipy + A, (xr,T)

P(f,T) is, however, directly related to the experimentally deter-

minable quality the radial distribution function, g{r,T), by

n
e

2
P(r,T) (X,9:%, 7T = Ng(r,)

then for T < T
1/2

gle,T) - 1

(6-15)

l)o
3
1]
(-

1

P g(x,T=T,) - 1
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Cummings (22) has discussed the piloting action of the
macroscopic wave function in a superfluid at T = 0 K, by using
a principle of an approximate expression of the energy.
Terreaux and Lal(24) have improved the form of the second
reduced density matrix by using ja relevant assumption.
Griffiﬁ(38) has discussed some.simple models for a con-
densed-Bose system {free particles and the Bogoliubov model for
a dilute interacting Bose gas) and make contact with the work
of FrShiich(l?) as wedl as /Hyland, Rowlands, and Cummings(14,18),
Yukalov(39) has shown that for the model of a condensate
with non-zero momentum satisfies the Hyland, Rowlands, and Cummings
formula., |
Finally, Ghassib and/Sridhar(40) have shown a new simple

formula for determining condensate fraction in He [, where he has

begun with the familar equation for Ql and Qz

Ql('f'l,'fl) = pN + Al(?i e RE (6-16)

>, 22 ¥, >0 Py >, > >, *
Qz(rl,rzlrl,rz) Ql(rl,rl)Ql(rz,rz) + Ql(rl,rz)Qltrz,rl)

. +' -b' .—* = _
P N5 Qz(rl,rz,rl,rz). - (6-17)

- Invoking the usual definition for g(fl— ?2) = g(?)

> > > > 2 - > '
Qz(rl,rz,rl,rz) = N g(rl— rz)} (6~18)

upon comhining equations (6-16) and (6-17)
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>
r

> 2 > > 2 2 > > > > 2
g(F- %) = 1-o_+ o T[T/ N w8, @ E TN,

He thus obtains from ecuation (6-19)

{(6-20)

NS

e} ‘ir \
However, ncither the i *@: ’ \ yvieclds the numecrical
‘
I

.;u.
value of pc(T).

Finallv;, we be vdt, ‘ession for 0 (eq. (4-12))

is a reasonahle one. QJ" LA 2N
Sl 7 ey g

ﬂUEJ’JVIEmTWEJ’Iﬂi
amaﬂnimummmaa
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