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CHAPTER IV
OFF-DIAGONAL LONG-RANGE ORDER AND LIQUID 4HE I

In this section we will used the reducéd,density matrices
and ODLRO, and the microscopic quantities for He I, to obtain the
thermo-hydrodynamics equation. The system of He I ig considered as an
interacting Bose system; but the concept of its "condensation" is more
complicated than of the'ideal Bose gas. When the condensation has
occurred, every atom cont;ibutes both to the condensate spreadihg
throughout the volume ogcupied by the system in the presence of
strong interaction between the 4He atoms and to.localized region of
higher density (localized to within about the average interatomic
spacing, 4;5 g), The condensate-densityv pc of Fe I at 0 X has teen
estimated to be between 8% and 25% of the total dersity p. This
result have been comfirmed by many experimental works (21).
Theréfore, the colldensate densitv pc should he distincuished
from the superfluid dernsitv ps. The superfluid density ps is
equal to the total denrsity at o K. Both the condensate density,
and superfluid depsity decrease with(lincrease of tefiperature

from O K and vanish at the lambda transition temperature, TA

4.1 Thermo-Hydrodynamic Equation of He I
A two-fluid model was propoéed (22) for He 1l as

the condensate and depletion model: thé total density

(4-1)

where Pq is called the depletion density. pd is equal to the



total density p at T,. The appearance

3 in

Ql for the condensation in He @I system is written as

t L * m ot ot ”"
Q. (X ; %) = 6 () 6(x) + A (F; %) (4-2)
1 | 1
o L N R
where Al(x ;%) » 0 when X - X I-——* ©

. .. 4 - o . .
Liguid He as well as a ‘guantum liguid" is differentiated. from ordi-
nary liquid at below TA bv thesappearance of macroscopic wave function 6 (F).
X - . P ’ il A > _ -
The wave Zunction ¢(%) is ti@e ytatistical averagas < (%) > over an ensemb.e

such that it has a cdefiniteiphase and amplitude(22). ¥ () is the spinless

0N

2
o A
bogson annihilation orneratox for | He atomse |¢(x)[ 1S defined as the
. =
"condenzate" density Pe belaw TX' ant ¢0(x) is refared to as the "condensate

(nacroscopic) wave function":

sl /2
¢ (X) = {pc(x)} 4 exp{i® (%)} (4-73)
= - 2
where pc(f) = l¢(2)]". The concensate velccitv: isidefined as
- >
P (%) = = 1NV (%)

= -imv{pc(ﬁ)}l/zexp 10(%)
3 hV@(?){pc(i)}l/zexP 10160

= nvo (x) ¢ (X)

> >
and P = mv ; mv = 'hVG(z)
c c
V.= nve (4-4)

nm
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and the "depletion” density Pq is then given by
pq(® = A, (%% (4-5)

where Al(x;x) is written in terms of two real function; an ever func-

X ; %) and an odd function x(; ;X))

tion pd(

] L1 1

pd<§ #xVexplix(x ; x )} (4-6)

=

X
®t
|

"whose phase X vanishes when.x % /The depletion velocityv is defined
p iy :

from the depletion currentidensity as

] _»!
bV = Bl Mm (9 =V A (X ; %) (4-7)
daa w5 IR 1
2mi) x>x
] ” H 1]
where 3d = n A lim (VLW Y (X ; X)) (4-8)
2m X% .
The condensate current density.dis-defined as
.t ] [} "’ % +n _*l
PVe = Ls! l}m"(v = V)¢ (x )op(x ) (4-9)
2mi x*x
The total current density) ¢éf the/He Ilsvstem becomes
<> -5 -> -
= = + 4-10)
J pVv A P 4y (

In the bulk system, the depletion "bulk" density which is. spatially indepen-

independent is defired as

-
X
%
I
-
x+
1
x¥
]

pdh(lz'- ;"|)exp{ix(|§'— §"|)}

(4-11)
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where h(r) is real function and approaches zero at 0 K when r is much

greater than the average interatomic spacing

Yang(20) has also shown that the factorization of Ql(§ ; X ) in

]
P > > . . . .
the limit |x - X |—-—+ o implies the factorization of the seccnd order

? " "

reduced density matrix 92(§1,§2; xllzz) of the Bose system. A very plau-

sible form(12,24) of Qz which shows the presence of ODLRO may be written

as

D
o
X+
ey

¥
]

g :)n =T ko yn *x L u ) "‘_;v N
o e, s o= M %)) () (X))0 (%)

"
—-¥

+' :}l :).ll _»" * ->ll _’:’
5 R Dis (= Fob o7 G e A (R0
* ->l| _)-l _" .)" 4 +ll -;I -)| -)"
o JO0) 8 (1) Al 5 %,) 1o (%) 0 (x )0, (i)

1" ! '

+¢ (x )¢(' )A (Y l) + A (/l,x xl,kz) (4-12)

where $1(;3 and $§£5 are the screening factors for the "core" condition.
The function htr) and the screening ‘factors $(;5 can be obtained from the
expression of McMillan(?2). The function /\2 is required to satisfy all
condition analodous to-the condition(l2) of 92

We will now ohtain the thermo-hvdrodvnamic equations of motion for

_ 4 .
the bulk system 6f |He ' l. Inserting equation -{4-2) into equation (3=26)

] '
and taking the limit as !?*— ﬁ"—~i9 gives an exact equation of motion
! "

|
J . . o > . ->
for the condensate macroscopic . wave. function ¢l, separable in x and x

is obtained, ie.,

2 >' 5>

iﬁggjﬁ') = -h V ¢(x ) + }im fV(x - y)Qz(Y ,Yi X ,y) dy (4-13)
5t m x' |%-%"|> = or (")
cn >t
and ¢(§') = o(?)l/zelG(x )
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i'_?_{_oi/z(“ el Y o 52 vgocl:/z GHel®® ) o lin v E -hea L UE D 6
3t 2m 1% =% | 5 (X))
(4-14)

. > . > 1 o . > '
in 3lpg’ 2 et ) . ih[l QL0 o @y 4 it/ 2 et O ) ok )}

m ot m 2p1/2(,< )at 3t
: s o 1/2 v 16(¢%) '
= ih e'@ff )30 (x ) hpc/ (x )el (x EQ(Q') (4-15)
2mpé/2(>—<’ 3t m ot
and
2 . > - . = cac '
4h2vlol/2 5! ye 10(x ) _ :E2V | 31 (x ) V 0 (x — lp1/2 5! Ye i0(% )VO(x')
2m 2m 201/2(~>:) .
4 F ¥y 3 .
- YA o @R rget®  vehve @)
7m 402/2(x T *Uz(sc*) '
' 1
R ' ' ]
+ 1e(x )V pc(Z') + 1e_9(x )y o( ) 9h(x )
pé/z &' : :
l 2 ' " . ¥' L i ' '_ ‘ .->' '.
- o e e P+ 1ot/ Pyt ) Fo )]
_ 12. ele(si) (V;':C(X'))z h2 lO(x )_ V? c(iu)
Ty o) 4m ol/z(x ) )

1 2 ] . vr.:. : 2! . [
2 o YE (Ve )}.-i(’hz 0 gy,
hop, e  V
2m’; 4m pi/z(f )

L

l + f -> 2 '

Vp (x) +h° n’ o 7250 Yo (4-16)
2m2 .

Inserting equations(4-15) and (4-16) into equation(4-14), and separating

- real.part and imaginary part, for real part, we get
v ' 1
1/2 v i0(% ), 2 ei@('i ) n2 RECICINP v &

-hp (X e 30(X) = h (VoG N? e
m © ot 8mng72(§') 4m pI72(x )
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2 172 ' i0(x ) v,

2 . LY L e -
-hp (% Ve vV O(Xx))  + Re .;)f“_“;,, Jvix,y)02(x,v;x,v)dy
2m2 X =X |>  md (%)
2
2 ' 2
- ' pc<x ne-n’ Ve (X) - ve
8m o (%) 4m?2 2
- 1] ] _ll -
+ Re  }im IVED 02X, Y:%,y) dy
|% =" T mpT (R (XK)

= -h (4-17)
2m
where F =
>
| %
]
Putting (-V ) into equation
) 1 1
h 3V o(X) = =9 (4-18)
m gt
where 3(: = hV
m

We thus obtain, from equat@n (4-18

Hord - . B [‘H%J?( P Ems]‘w enNq (419
X
since V(K.B)wa;]v@ + (Qv;mj\lxm g qu a EJ
£ 2 = 5 = T
we get  Wv. = 2(V_.MIV_+ 2V x(VxT )
we o= @MY
2
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from equation (4-19), we have

g}i + (¥ V)Y = -V :EZ v |¢(x )| + Re F | . (4-20)
3t < ¢ m2 T To(x )]

For imaginary, we have

RS
h ele(X ) ap (x‘) =

om pcI72(3z*')a_tC

2
]
n ao() = 1’ v'e + ImF
2mp CBE
N
9Pc(x ) = X ).Im F
at

—v Y] p (x )y - p V v + 2moc(x ) ImF

ﬂummmﬁmm

= —V (o, (% )v ) ¢ 2mp (X ) Im F

QW’]ﬁNﬂiﬂJ 191388

Ppc(X) + ¥ .(p )v ) = 2mpc(X) ImF (4-21)
3t h
where F = »}im" IV (%, Y)QZLf:Y'z §) dy

|X - |- mé > (X ) (X')
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Inserting equation (4-12) into above equation, we obtain

] ? _)ll_> * _)n * N _»' . N
F = lim  SvE-9)s10]%-yDs1 %=y (X))o (N (X )&(F) af
|%'-% [ m (RS (%)
' ' S0 LA SF RS >
+ lim VG-I SRy Sp Ux=y Do R )6 )M (V:V) ay
|% =% | mp™ (%) $ (%)

. |+ _)1_+ _»n_> * _)n N _‘|_; N
+ lim, SV SRS, (F=Y e (X )6 (D) Ay (X D) &Y
|% -% |+ m ) g (%)

L ] __)n_* * 'l _»l >
+ m, ) S2 ([ =y s2txy e PeF oM %) &
% -% o= md (X))

) L My * N N _¥| N
+ liml, SvES) s201x=vD s Z-The DM E:TH @
|% -% |#% md >~ (<) (%)

1 1] 3] 3
+ Jim S V@) Mo Gy, y) dy
|x -x | -0 md T (X ) oAK )

> +r > i ]
= V- s1 Ry e (e v
m

L VB miS oberime p yel
m

ALV D $2(Fv Do ) Ay (F:9) ay
m $AFE )

3
= Pc IV S1(r) dr + Pa SVRLS,(r) dr
m m

N . _»:.; 3
+ i_fv(?)sg(r)¢(y)od;h(?)elX(X Y) d’r

¢ (X")

3

From equations(4-5) and (4-7) in the paper of Fr.ohlich(17), we get

ix(ﬁ;?) 1 i (—}') imr r 9. v m2 rrv ("ﬁ')v (')?')+
e = -imrv (X) - im - _ J. —_—
Y K dx T K £ 2dx on2 K 2 dk dag

Ub236H15 -
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[ ] ] 1
and ¢ (V) = S(%) +r 3 0(x) + 1 x,x03,3,0(X) 4 —ceen
2

1/2 5°. ie(i')

]
Now rd,. (%) Xy deP % e

N ,
_ rK[iDi/z(i Lo 10 (% )a o) + 1023 e 10 (% )3KDC<? ))
2 o, x")

= rK¢(x )[13 O(x )+ aKpc(X }
! 2pc(x )

& B T ’3.00%)

L]
1 ;Kr23K32¢(§ ) 1 . rlal[lp
2 2

p 2/2 7 1Q (% )aKpC(X )
2 P )

. LN '
1/2 ) 10(x )323K9(§ )

=lrrzlp
2

1/2

T
o ployedy
-0 " Jx e

1 L}
3901(®F ) 3,.0(x )
1/, A8 - ~
+ it B et B e ENCTES!
2p
172 .t [ 160G '
+11lo_ (% )[e 323kPe (X )
2 pc(? )

1
AT
+ ie1O(x )

3QO(§')BKDC(§')]
p (X))
10(x ) 1/2

e (? JAgPL (X )3K0 (x )
g(i )

1
2
1 rKr2¢(§')[i323KO(§') - 970(% ) 3,0(%")
2

] L I
+ i9,.0(X )3gPc(X ) + 993kPc(X )
X

2pc(§') 20 (x)

+ 1390(x )BKQ (x ) - ngc(x ) kP e (x )
20 (%) 4p2 (%)
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Therefore
S = 6% + r (% ){id3,0(%x) + W (X))}
2pc(x )4
# 1 ryo(%)(13,3,0(%) - 920(X )3,0(X)
2
+ iazoﬁ')aoc(?') + 393cPc(Z ) + 1920(X )P (X))
20 (X)) 20 (%) 20.(%)
- 3P (E V3P (%) )
4p&(%")
> ] o ) - '
ly) = 1+ ir,3,0(% ) + redfc(x )+ dir r,3,3,0(X)
B (%) = 20ix " ) 5
~ 1 rerg 2@ 29,005 )| + ircrpde0(x )P (X )
2 4p . (X)
1 v L3 )
+ reredg e (@ ) A iTrer 0 (%) 2l (X )
4pic (%) 4pc(§*)
1] ]
- rer2dgPc (R )Pl )
8p2(% )
Furthermore
s e X EI) L i 30 4 redPe(E ) + 1 rer2dgdc@ (¥ )
o (X") 2pc(§') 2

[ [ . ' '
ror 070X )9,0(% ) + i rergdO( )920¢ (X))
400(?')

i
o)

] 3 ) ]
retyd9Beba (% )M Tirneap00% ¥abe (X )

+ 1
1 ) ap _(X')
C C
_y' —)' . >)'
1 £ Per 9P (k N3P (X)) - im rdeK(x )
8 p2(%") i
C
1 L] 2 - [ ] 1]
emorly (X)00(%) - dmxl v (%3P )
o Kdx 2h dk p. (X))
P e (303 0 ) 4 im rirv (X)0,0(%)0 0(F)
z Krl‘c/jnex Lk — K23 2 K

2n 2h K

-~
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m rfrﬁw (y )D(O(x )R] oc(x ) - im rgrgv (A )8 ) OC(§ )
4ch(f ) 4hp (x
2 5! 5! ! . 2 ! 5!
mr, rh%,((x )3,0(x )3, Pl ) + im 2rwrgagoc(x )9, P (%)
4hp (% 8hp
c c
. - . 5! 2 .- !
imy r. 5. v (x) 4+ m r r .o, v 3 O(x )
— "k 2 2ax = 270 ae ¥
2h 2h
im r2r (A ) 9P (K YA +am r r 9.V (x )3 ) O(x )
m ) € T
2h K Q K 2« 'o—c‘(at"'l)—' 4n 2 er

. 2 2 _)I +| _>l
im rKrzaivdgx )QQO(X )BKO(A )

4R

1 H
m rzria ¥ (*( )3, 0% )apc(:? ) - im rzrlagv (x )apa(oc(?z )
Bh dx 8n ax ‘

m r2r§ zvd(x )9 O(A ) d Dc(x )
8np (X )

== . 2 N !
im r rpﬁyv )azﬂc(x Ja l (<) - m r rov (x )vglx )
16hp5 ak n2 <t odx 1

1m2r r yéx yv éx )3 O(x )y - m2 r2r v (;')v ;')Bpﬁ(g')
neds £ 4

a o tx )
o) £ dx d p X))

im2rle v (%) éx 1342 O(x )

4h2 K 0dx

2 22 > >! ! ->!

%herrgvdK(x )vdéx )3,0(x )3,0(x )

1m2r2rixd(x )v (x )3, O(x )8 D (x )
8h2 K

2' 1 ] '
rgvy (R 1% )3,3,0 (X))

(x )v (x )820(3:* )aKpC(Sz‘ )
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] L} ] 1
+m rsr%Y é? )gz(i )BZDC(K )SKDC(? )

1l6h2p (% ?
c
’ ! ! . . 2
1+ im fK¥c(x ) + rnagpcix )+ im rKrgagvc -m errva
2p (X ). 2h 2h
c
L} ] 1
+im rergv (X)3,Pc (R )+ rergdpdePelx )
- = KC > 1
dnp (X)) 40 (x")
S Te c
) S | g 1 N N
+im rKrgvzéx NN CIT LergdgPc(x )9cPc(x )
4np (%) 8p2 (%)
c =
! ' 2 2 S =5 2- 5! )
- i - - L P
1E.YK¥d(X o+ merzd(x )zc(x ) im rev o (x )3« Ci? )
h h 2h . p (%)
c
d F ¥ 2 .
- im rKrgaivd(ﬁ = Ik rKrzvd(; )
2n F 2n?

’ I 2 2 \' —&'
{1 + reocQe(® ) —m Tergv (X ) + rergd9d,fc(X )
280 &) n2 A 4p (%)

¥ v Z " R L )
rerpdpPc (X VoPc i ) # m 1, 1, ¥ (¥ )V _(X)
802(? )

U t
mirrgva (% )] + ilm Bov FmE g0y (K )

' ' | '
% )36Pc %)W m rerey (X )3kPc (X )
g rKC
4hpc(x

] ) ] 1] . ]
D0 AF Joo e T DV o (K )3 Pe X)), = maTkx gV (X )}
" BK 2hpc(%' K % dax

]
>
vc+ v2) + redkPelx)

{1 - m2 fKrZ(V2" 2v
m c kLT C)
2pc(§ )

2n2 d

+ r;rzagaKDc(il) - rKrgagDc(z')aKoc(§l)}
4pc(§ ) 8pg(§')
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—i{p_rrﬁ(v—-v)+mr(v—v)
2ﬁ'<9'9“ xd KC R x xd KC
+mr,rv,_ 9dp (x)) - mryr.v 3.p (i.)}
- K — % Kq K °
2n g R'T < © 2ho_ (X ©

Use has been made of the relations (f(r) is a function of Irl)

frf(r)dr= ’ = 0

Irrf(r) dr

Thus Yv@s,DHh

) c'k'ﬂa- i{ 2ﬁr a9V g™ V. )
ﬂuﬂﬁﬁﬂﬂiwﬂﬂﬂ?“‘
awwaqnﬂmwwnﬁwaﬂaﬂ

= _dfv(r)s (r)h(r)d r-m Od(vd- v o) IV(r)
m 2n 3

s, En@r 233 - pg¥ cfvms S h@r d3r
m 120

- P4(9pP¢) 2rv (@) $, ()h (D) a3
m 24 pg
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- il pg 9. (V- 3C)fV(;)$2(;)h(—f')d3r
2n 3

- 0g (9,9 ),ggg_IV(?)s2<?)h(?)rzd3r} (4-22)

2R € 3

C
The real part of F is
Re F = P IVEDIS. D dr A pafvD s (Hay
m m
+ gdfv<?)sz<?)h(?)d3r - mog/vD)s, ()
m 612

R@ e d i @ 0%+ 8a V20 IvDs, ()

m 12p
c
-3 2
B(#) fa’s = Bl ) U D)s, DB r a .
m 24 p2
€
Letting
f] 3
Vo py) = PSv@ s, (B diE s PasVES, (Na'r + Parvd s, (hn@da’r
m m m
(4-23)
which will be identifaed as the ground state energy later on,
and
o -> > 2.3
« = mg_fv(r)sz(r)h(r)r dr (4-24)
3h2
’\;O 2 > > > 2.3
Hip ,py) = Rg (Vo Y/v(xs, (nhix)r'dx
c d = c 2
12mp
c
2.3
- Pg3 (VDC)ZIV(?)SZ(?)h(?)r dr (4-25)
5, 2 .
24mpc
and
. > 2 0
= - ap T - -
Re F ?r(pc,pd) PaT - VT4 ﬁ(pc,pd) (4-25a)

2

we thus obtain, the equation of motion for 3c, pc and pd,
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2 2 2 Y 0
dve + GV = V(P @? e v 4 Wio e - a(T - V)7 4 Wip o)
ot 8m2 05 am2p € 2p €
c c
(4-26)
For the imaginary part of equatien (4-22) 1is
: -> > a0 3 - ->
2mpIm P = - m fV(r)$2(r)h(r)r g V.{pcpd(vd— v )
T 6h2 <
4 Lyt > > 2.3
- mpd(vd- vc).Voch(r)sz(r)h(r)r dr
3he
- & S Vs > >
J= {pcpd(vd vc)} A CERT BV SN
2p
where d(p ,p ,-\7 ,3 ) = MmOV~ v YeVp V@) s (-r))h(?)rzd:;r
cd ¢ d 352 d = € 2
We thus obtain, from equation (4-21)
. -> > -> ->
+ V. = v. - o 4~
P, + V (DCVC) y = {pcod(vd Vc)} + (Dc,Dd,Vc,Vd) (4-27)
3t 2p
From the mass conservation law, we have
30+ F = 0
ot
> > =
3 +py) + V.o v + CINY 0
3t
P, + V.(p V) + 9pg + V.p ¥ = 0 (4-28)
Lo T VWY T g T VePgYy

ot

at




Inserting equation (4-27)
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into equation (4-28), we obtain

apg + V.(odvd)

ot 2p

, -> _ -> -
_‘;{_V.pc,pd(vd ‘ vc)} <!>(pclo

> >
vc,vd) (4-29)

dl

Since the hydrodynamic equation of the two-fluid model must be based

on the hydrodynamic equation of a single

fluid the Navier-Stoke equation (3-28)

as derived microscopically by nghlich(l7) can-he written for He [ as

> - - ~ - > - 2>
p v, + pc(vc.‘?)vc + poVg b Dd(vd.V)Vd = VP + nVv Vs (4-30)
ot Lhe ‘
in the bulk system.
Multiplying equation (4=26) by nE yield
- > — 2 2 2 2 n,
+ = . A +
p Ve pc(vc.V)vc QCV{_EZ(Vgc) E_? v Pt u(DC,Dd)
at 8m< p 4dm<p
c c
> [Pl
= o:gd(v - Vv ) (4—31)
d @
2p
Substracting equation ¢4-31) with equation (4-30), we obtain
- > - 2 2 2,2 n, > - 2
p.oVg + p. (V. . W)V 3 PV -RGVRE) Tk DIV o tar(p 0 ) = «pg(v,—- v ) }
d'a—td d d d C 8m2 -p—?:- -—mc C d 20 d C
2
~Vp +inV Vi (4-32)
2 2 2
Wa + (V.07 = pe=hl (@0 + nV%0. + Flp i) = wpg(P - V7D
— d d == lm—p — 7 c d — 4 C
at p 8m< p 4m<p 20
d c c .
25 .
- VP + nV Ve - (4-33)

Pa Pa
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One can also cobtain the eguation of motion for the momentum density

J, from

I = PVe * PeYg

Multiplyinu eguation (4-27) by Vor we have

> > - - > ->
° + . = {- « ¥V, - + e
v ;ic {v (pcvc)}vc { o pcpd(v vc) o}v (d4-34)

Multiplvino equation (4-29) by«v , we have

d

-»> - - th, -)-~> b -> -
¥ gid + {V.(pdvd)}vd {26' by (=i v) ¢}vd (4-35)

From cquations(4-31), (4-32), (4-34) and (4-35), in the bhulk system, wec obtain

b bV > > J = a5 - N N N
%%ocvc + pgval + {pc(xc.V)vC 4 od(vd.v)vd + (V.(pcvc))vc + (v'(‘)d'd))vd}
0 o« a— _ > > _ 25
{2;_ v.(ocod(\_z_d vc)) ¢}(vd Vc) VP + nV v,
I i g 2
. v. ] ST A0 AV ) ) = 2J o v _
%% + 9.7 .{ég_ (ocod(vd vc)) ¢}(vd vc) + N0V (4-36)
where
v. ‘ = k3 v " > > 8 > > N
? lo (VMo Lt pgq(Vg- DIV + (Vo VIV, F (V. (p v )V i+ 7P

To obtain'the éguation “for thel energy) conservation haw), | one first
obtains the enerqy density 2; per unit mass, from the Hamitonian H of the
N-body system, equation (3-3), The energy density £(RX), which is defined via
< H(X) > = f&(i) dx, can be written as,

2 . 2 > > >
gR = -nf lim V50 R+ VVG=pIR, (K, YiX,Y) dy (4-38)

4

2m -0 2
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which r=x- X and R = x + % , and 27? =V .V (we will show this

in appendix A)

Gy = -n’lim (7= ) (@ - vhe k%) + yv&-y)nz(;:;,i’?) a5
2m X' > ¥ : 4 2
2 . 1] 1] 1 n * _}" +' ' _*l_*"
= SRS Lim (7= (T - V)0 R DR ) + A R
8m f'+ §"
v UVE-D 0, (K TiE 06
2
= ol lim (7 - Vo LV E 6D
= ="
8m x » X
cr? Lim (V= VMV E BNl GHERD) ¢ LGN 0 (RS dF  (4-39)
—_— 5 > 1 s 2
8m X > X 2
Since
1ok ! x _m £ - '
Vo XNeE) = 6 (R)eEIGY e ) + V p )
20
11 " * " - " " 1%
and Vo (X)0(x) E7 6 IV 0% ) #Y o)
T
we get
(-9 F6E) = 6 F )16 (F) UV R ) + iVOE) +Vp -Yop)
20 2p

3" FNeE (e (F )& inde(X) 49 0 - Vp )
h h 2p 20

Proceeding further,! we have
2 1 ” [ ] 1 * _»ll +|
-h }im+ (V=-V)(V-V)i¢ (x)d(x)

> "
8m X » X

= oS lim (T V)0 X)) limd (X)) + im¥ (R )
8m X » X n no
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I
3

' " * n St
m A lim (V- V)4 (% )6(X )
4 2mi X » X

= mp V..V
3 c C C
= mop vl (4-40)
- "c ¢
and L’
-h llm (V-— V )(V - V )A
8m %' >
; " SCNENIEED)
] -V )Od(§;X )
' T.on g —*: "
Voo, (% yelx (%% v X(Zi%) + 7 pg )
Pa
" 1 " ! " —‘:—L" "
v pd(" ) ix(x;x ) V x(x;x ) + Pq !}
Pa
1 Il ] [1] 1 H ] 11
(V- 9 )p (% )X ) G- vhx @iz + 7o, - v,

" Pa Pq
7': " ' "
iX ) + VY Py -V Py}
Pa Pq

—hz lim

2o WA nens
QRIAITRERTINGTNY =

M lim (9-9) ®¥OR lim (7 - V)X (X
2mi ¥ > X 2m % %"

3 [} "
:Ez lim "(V -V )pPg e AV - 9 )Od
2m %' > X 4 Py
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- > ' " ] "
= m ded vd - 1 11m '(V - V)Y@ - v )Dd
2 2mx—>x
2 2
= mp, v, -R lim V»IQ (Z,R) | (4-41)
2 2m i > X
l(?'ﬁ)l = P + Pq = p , in the bulk system

>

><p (oD )6

AU mmmm e o
AN aanm&mmma@ he

2 3\ 2, 3 >y W2 3
D >
2cfv(r)Sl(r) d’r + pcpdfv(r)sl(r) a’r

~i0() 1 cAEy s o
i0/( )O /2e1@(y)el/((xly)d3

+ Ocodfv(?)Sg('f)h(?)e .
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o 02r0 2 o3 3y o2 v 3
= _g_cfv(r)sl(r) d'r + 0 pJV(E)S (1) d'x

1x(x;y)d3

tpP fV(r)S

2(r)h(r) ¢(y)

()
where
iy (%Y 2 .
>Qly)elX(K'Y) = l-m errl(Gd— v‘)z + YyerePe (X'
¢ {x) 2p (x")
: 3 Cc <
kX8 3kP e (X') 3P (R')
i“ 2(%")
9]
We ohtain - i

—

LVEN, (7% d

L pde(r)Sl(r) d’r

3390 - XX P o (X') 3P (x )}
4p (%") 2<§') 3

ar

2 2
pcpde(r)Sl(r) d'r

€7 —ﬁ?) m SV(Y)S (r)h(r)r d r

ﬂUEJ’JVIEWT‘ﬁWﬁ*’Iﬂf

AR AN SISy

-p Dd(vpc)zfv(*)Sz(r)h(r)r2 3 (4-42)

2
24pc



49

Inserting equations(4-40),(4-41) and (4-42) into equation (4-39), we

obtain the energy density

> 2 2 3
E (D = mp v2 +m pdvg - h lim V¢|Q 3)|+ OCIV(r (r) dr
2 °° 2 2m 750 2
100 VS DI -0 o (T ) 8
c d 2 cd d c —
2p
\4 (?)h(?)r d r
+op %ﬂﬂﬂs
d129
LR o, ‘ :
- PPy (Voc) SIS (r)h(r)r d'r (4-43)
24p .
W B
where B # mo IV(Y)S (B)h(T)r d’r (4-44)
3R2 '
Energy density per unit mass is given by
n
e = &
. m
and so we have
. 2 X 3
£ = 1p i }pdvz - g? lim Vr|91(?,§)! + ocfv(r)s () d°r
2 @ 2 Zm? 0 T 2m

dfv(?)s () 4 D (En)dr - B(pcpd)(v -3 )
m 20

P Pav ch(f)s (r)h(r)r d r

m 129
v 2.3
- PPg (VRL) fV(r)$ (Dh()rd’r
m 24p2
2 2 s a2 Y
= ;pcvc + lpdvd - B(Dgzd)(vd— vc) + Enlpi0y)

+ 0PV V() 2 Bn B ria’r

m 120



50

- 9gPs (P IV 2 Bh@D e’ (4-45)
m 24p2
C
which € tooimg) = v si@a’r + pav @S2 @) (Len () das
2m m
- *_!_ﬁ Llim V;' Q, %] (4-46)
2m r + 0

The last term of equétion {4-46) is the "internal" kinetic
cenergy density which is independent of the macroscoﬁic flow velocities,

Ve wili now use the second quantization method to determine the
chemical potential at O K _(ground state enerqgy). The reduced density

matrices are defined in the second guantization representation as

1 " 1 + L

' 2> > > > + 5" -5 ! > !
Qn(il,...,xn,xl,...,xn) TE Q¥ “(x)...¥Y (xn)W(xl)o..W(xn) (4-47)

where Q is the von Neumann ‘density ‘operator of the system satisfying

inaQ - [ H,Q ]

—

ot
H is the Hamiltonian operator of the system. W+(W) is the creation (anni-

hilation) operator of the spinless boson which satisfies the commutation

rules. We now consider the first order reduced density matrix Ql at any
temperature helow TX‘ We write Ql in the,.form of expression. (4-47) as
(# i' t ! -
Q, (x,tix ,t) = Tr QY (x ,t)¥(%,t)

= 3 LBV (X, t)> (4-48)

in the Heisenherqg representation. In the ground state, we have
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+> ' ! 1'.'
Q, G, 5% ,t) = <E.,N|¥ (x ,t)W(ﬁ,t)IEO,N>

1- ]
= ¥<EO,N|W (x ,t)IEi,N-l><E ,N—IIW(;,t)IEO,N>

i

, + o0
= <BO,N|W (% ,t)IEO,N-1><EO,N-1IW(§,t)IEO,N>

-f- 1]
+1;;0<EO,N|\V (% ,t) IEi,N-1><Ei,N-1IW(§,t) Iao.m

(4-49)

where EO,N-1> is the same (to order l/N)tground state as |E_,N>.

0
Comparison between equation (4-49) and the form Ql aiven by
equation (4~2), for the ODLRO'in/the around state, gives the condensate

macroscopic wave function(23)" of the ‘system in the ground state as

> >
NERS <EO,N—1IW(x,t)IE0N>

<EO,N—1|elHt/hw(x)e—lHt/hlEo,N>

(02)1/2 e-imuot/h (4-50)

-hich is independent of space in the bulk system, and
= L L -51
my Eq(N)_= [E, (N-1) (4-51)

where muy  is the chéemicaly potentialior thellground) state |eflexgy [pér particle

0

in the ground state. From equation (4-13) we get

] ] L]
o) = -pl VRGN 4 lim, VG- GYienay
T o %' %" o o

which is the exact equation of motion for the condensate macroscopic wave

function ¢.
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Usino equation (4-50) and form of Q? given by (4-12) in the

S .
exact equation of motion for ¢O (equation(4-13)), in the oround

state, we have

>' »

T = Re lim, VG- R2(X,7:X L,y dy
l*—’i |*°° * 5! >
¢O(x )¢0(x)

0 3 0 3
pcfv(?)sl<¥)d rEp VS, (D)dx

0 3
¥ AIVD S @ Ea - (4-52)
where the real function h{T)/cémes from the definition of the deple-

tion "bulk" density pd as

+ll

I GO = g di- 1 = o' X))

4
and pg denotes the depletion density of ligquid He I in the ground
state

Comparison equation (4-52) and equation (4-25a) we have

>
v

3 is not equal to zero, Since the total current

>
=v at 0 K
c when pd

) > > > > .
density J = opnv & pcvc + pdvd, 1t can hel seen ‘that

e a ' in the ground state.

The equation (4-23) is the chemical potential at 0 K or the around

state energy.
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4,2 Condensate Fraction in 4He I

It is widely believed that the ratio of the (bulk) conden-
sate to the total density = pc/p is in the range of 0,05 at 0 K
for 4Hc I based on thecoretical considerations. An experimental
confirmation of this fact would be descrihable., We will review
the method.for determining the condensate fraction at all tem-
perature from knowledge of the pair distribution function, which .
was proposed by Cummings; wé wildl then-extend it.

We must first understocd that ObLRO in Ql is a statement
that each helium atomgmust be regarded as being partly in the con-
densate, and partly localized within a distance given by the range
of Al(§'- §"). The situation 'may be pictures as follows; (above
_ the lambda transition, TA =4 2007 /K ) “the helium afoms are
localized to within an angstiom or so., As the temperature is
lowered in this region, the diminishing. thermal motion, and
increasing localization, is reflected experimentally in
a heightening of the maxima of g(?,T>TA). As the temperature is
lower helow T%, each' helium atom begin to contribute to the
uniform condensate; density. Scattering) of X—réys or’neutrons will
take place only at the localized "lump", the depletion part of
the density associgted with Al' As lthe temperature 1§, 1owered in
the region below T“, the "meltina" of the "lump" into the condensate
will be reflected as a diminishing scattering intensity. This will
result in a lowering of the maxima of g(?,T) will decreasing
temperature. A reversal in trend of maxima‘ﬁeight of g(?,T) is
predicted as T is lowered throuch TA'

of g(T,T) is predicted as T is lowered through T,
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It may further bhe ‘expected that the relative localization, or struc-
ture, of the lump will remain relatively unchanged as T decreas below TA’
Above TA both average kinetic and potential enerqgy can be lowered by
decreasing the thermal motion, since the average potential eneray per

particle is

<v> = 1p/v(Dg@dr (4-53)

2
and the largest maxima of g(r) multiplies the'negative part of V(¥). The lamda
transition is presumably the peint below which the system cannot decrease
its eneroy in this manner.any lénder, since the increasing localization
with decreasing temperature would /lead to an increasing kinetic energy
via the uncertainty principles Relow*"this ROLIE SN S TA’ enerqy can he
lowered further by having gach helium particle qo partly into the con- .
densate. This would results in @ lowering of hoth kinetic and potential
enerqy,
Since the condensation(ODLRO) must also appear in the second

reduced density matrix Q?, we can write it as

Q. (X,7:%,7)

> ‘ 2
, 2, (|%-3]) = P g(Z,T)

]

S P 255hel 8 | wlas2@e A @ |+ 0, @)
| (4-54)

The function Al(O) = Dd and Al(;) ="0 for £>r,, where rlis about 4.5 A the

point where the first reduced density matrix Ql(r) becomes equal to the conden-

sate density Dc(fig 4,1), and where g(?,T) assume the value 1 for the second

time. The function A2 must satisfy all condition analogous to the condition
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o

. 2
required of Qz. Thus AZ(O) = 0, and Az(?) = Dd for r>r2, where r2 is several

times larger than e Vle. define

|, @) | = Dgg(?,'r) (4-55)

The bulk "depletion" density pd is defined via

> |1 >
IAl(r) | = Dh () (4-56) .

&

where h(¥) approaches ze¥o when r>r1. The screening factors, Sl(?) and Sz(?),
have been introduced in the expression (4-54) because of the "core" condition

required of 92

o —————— g, Tz1.4%K)
; * g4 T=4.2°K)

A a—
R/p

! I}

1 [e]

Sy B

Fig 4,1 Thne r-dependence of g(r,T), and 0,/p : observe that m(r)

€
attains 118 asyzpiotsic value of g atr = 4.5 - (ct. ref.5).
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-»>

B(r,T>TA) = g(?,T), and oc = 0 above TA; g(?,T<TA) - g(?,T>T\)
whenever g(?,T>TA) = l(which is the "crossing points" observed by Gordon

et al, see Fig 4.1)

In the expression (4-54) in the region r,>r>r

1 57 the screenincg

factor, 51(?) and $2(?), approach unity,and the function h(Y) approachs zero

2,

2 . 2
Q_ (%) p“g(¥,T) P+ ZQCQ + p

d

- - (4
p ) Py (4~58)

hol
Q
[
I
I

2 2 '
(0 20 [+ 20 = p )0, + de(?,T)

]

2 2 2 2n,
9" 77200, F0gF 200, = 20, + 0.9(F,T)

2 2
= P =P

2% 4
(i odg<r,T)

2

]

2 2
p 4, T) — o

2
P g(¥,T) - p -

02 g@,m - 1}

2’\1—»
pd{g(r,T) - 1}

1
Pgq = g@&,m - 1|2 (4-59)
p 5(?,’1‘) -1
This equation gives P3/P as a function of the measurable g(¥,T) - 1

and 8(?,T) - 1 represents the structure of the depletion "lumps", and g(Z,T)-1

may be expected to be equal to g(?,T=TA)—l. Since P = Dc + pd’ equation
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(d-59) gives

N 1/2
P-pc = g(r,T) - 1
o q(¥,T T ) -~ 1

1/2
W - 1
g(flT a1 ) - 1

0
1

°|o

which gives the depehdence of pc/p on the measurabhle q(?,T) -1

Therefore, we must not think that one 4He atom is in the condensate and
another is not, when the condensation has occured., Instead each and very
atom must be regarded as being in.the condensate and partly localized within
a distance about the average interatemic spacing ( ie, the range of Al(lilinl)
is about 4.5 X ). The diffraction pattern from the measurement of the liquid
structure factor $(X) by X-rayg of neutron diffraction will be due to the
"lumps" of higher density (the depletion part of the density associated with
Al) and not from the. uniform background. of “‘condensate.(if b = pc at T =0 K,
there is not structure ‘the-case of ‘the ideéal Bose gas}, The measurement of the
relative intensity of the.diffraction patterns,.at diffexent temperature below
TA; will show the ‘diminishing of scattering intensity from the depleting part
since the "lumps" will have melted into the condensate as the temperature is
lowered. The total density remains nearly constant,

On the other hand when the temperature is above T the helium atoms

A

are partly localized to within an angstrom or so. When the temperature is
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lowered below TA’ each helium atom will begin to contribute to a’ (struc-
tureless) uniform condensate density, spreading throughout the volume
occupied hv the system. Ahove TA' the lowerina temperature causes
diminishing thermal motion and increasing localization which have
experimentally causes a heichtering of the maxima of the pair distri-
bution function g(?,T>TA). The pair distribution function g(?,T) is re-
late to the liquid structure factor $(K) by arFourier transform. The
largest experimental error in $(K) occurs for very small momentum transfer
K. We expect the maxima of g(;) to be increasingly in error as ; is
increased . Thus ﬁhe hést rediable jvalue for pC/p is expectéd to come

from the second maximum or minimum of glr). For r1<r<r equation (4-60)

ot
should be independent of r ideally.

For the numerical value of the condensate fraction pc/p, we
will use the connection pbetween Landai two-fluid model and Rose-Einstein
condensation, which Visoottiviseth{29) has proposed, Visoottivisetl (5)

should that the expression for the energv densitv ebtained from the

microscopic point of view is

",
E = lov?' # PPyl = 1B) (;;d - 3C)2 4 5O(pc,pd) (4-61)
2 2p .

and from the phenomenoclagical| two-fluid view point | is

2 2
E = 1ov°+ PsPn (¥ - V)7 + & i$ip) (4-62)

2 20

The terms which depend on the macroscopic flow velocities are then

equated in two expressions,

phgl = B, -¥)% = 50 @ -7 (4-63)
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He has also shown that the expression for the chemical potential

obtaired from both the microscopic view point is

_ A, « > _ 22
it = \ (pc,pd) pd(vrl vs) (4-64)
2p
and from phenomenological point of view is
+ 2

u(P, T,V -V ) - (4-65)
n S

'~ Again egquating he macroscopic

flow velocities, 7
-> - - ; ’

@ - o« [ 4-66

pd(vd S AMY \ ( )

yetween the relations

obtained from equation requation 56) vields the connection
Fiet "
{4-67)
where « and B are V¢ spectively. We will

use the expression OE« and B calculating the rmnerical value of con-

“m“m“ﬁﬂﬁﬁﬂﬂﬂ5W81ﬂi
awwmmmummmaﬂ
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